
Original Article

J Strain Analysis
1–18
� IMechE 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/03093247221096518
journals.sagepub.com/home/sdj

Compound influence of surface and
flexoelectric effects on static bending
response of hybrid composite nanorod

Kishor Balasaheb Shingare1 and Susmita Naskar2

Abstract
Nanoscale beams and rods are extensively used in several nano-electro-mechanical systems (NEMS) and their applica-
tions such as sensors and actuators. The surface and flexoelectricity phenomena have an extensive effect on nanosized
structures and are related to their scale-dependent characteristics. This article presents the effect of different surface
parameters and flexoelectricity on the electrostatic response of graphene-reinforced hybrid composite (GRHC) nanor-
ods (NRs) using the theory of linear piezoelectricity, Euler-Bernoulli (EB), and Galerkin residual method. Based on these
theories, the theoretical and finite element (FE) model is produced to investigate the static bending deflection of GRHC
NRs when subjected to point and uniformly distributed load (UDL) considering different boundary conditions: cantilever
(FC), fixed-fixed (FF), and simply supported (SS). This proposed FE model provides a useful tool for analyzing and investi-
gating the outcomes of analytical models, which are found to be in good agreement. Our results presented in this article
reveal that the effect of surface and flexoelectricity on the static bending response of GRHC NRs is noteworthy. These
effects diminish with increased thickness/diameter of NR, and hence, these effects can be neglected for large-sized struc-
tures. The results presented here would help to identify the desired electrostatic response of GRHC NRs in terms of
static bending response for a range of NEMS using different loading and boundary conditions as well as graphene volume
fraction. This current study offers pathways for developing new proficient novel GRHC materials with enhanced control
authority and present models can be exploited for numerous other materials as well as line-type structural systems such
as beams, wires, rods, column/piers, and piles to study their global response.
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Introduction

Over the last few decades, there is increasing research
attention in flexible piezoelectric structures because of
their inherent electro-mechanical coupling aspects that
offer various opportunities to develop multifunctional
next-generation nano-electro-mechanical systems
(NEMS) with energy harvesting applications.1,2 The
smart piezoelectric composite nanostructures show size-
dependent properties such as flexoelectric and surface
effects, which classical continuum mechanics cannot
account for as compared to conventional bulk fiber-
reinforced composite structures. In addition, due to the
coupling of piezoelectricity and flexoelectricity at nano-
level, the continuum and finite element (FE) modeling
of such novel composite nanostructures get compli-
cated. Hence, to make the optimum usage of the piezo-
electric composite materials, it is important to acquire a

well prior knowledge of these scale-dependent proper-
ties. Piezoelectric composite structures have widespread
usage in mechanical, civil, marine, aerospace, and other
industrial applications. A piezoelectric micro/nanoscale
structure such as beams, plates, rods, and panels is
found to be having massive capabilities for numerous
applications including energy harvesters which contain
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sensors, actuators, parallel plate capacitors, and nano-
generators.3–10 Nanoscale beams and rods are exten-
sively used in several NEMS applications. Precisely
from the past couple of years, piezoelectric/non-piezo-
electric materials have fascinated great interest for pro-
ducing energy harvesters to generate the electric
response on the application of mechanical load to the
structure. In contrast to the phenomenon of the piezo-
electric effect, an impulsive electric response in terms of
polarization is exploited by a strain gradient known as
the flexoelectric effect and it is more significant to
accomplish the purpose of energy harvesting. The flexo-
electric effect occurs in insulating as well as dielectric
materials11,12 whereas the inversion symmetry plays a
vital role. By breaking this inversion symmetry, one can
generate the polarization even in the centrosymmetric
crystals (i.e. in non-piezoelectric materials) because of
the strain gradient. Such a gradient term shows sub-
stantial results at the nanolevel and hence the flexoelec-
tric effect is acknowledged as a scale-dependent
phenomenon. Firstly, the flexoelectric effect was stud-
ied in 1950s13 but acknowledged very less in research
interest for a long period because of its weak effect.
Very recently from 2000s, the flexoelectric effect capti-
vated much more attention from the scientific and
nanoscale application point of view. Tagantsev11 inves-
tigated the flexoelectric coefficients of dielectrics, ferro-
electric, and materials such as relaxors and he observed
that these coefficients depend on dielectric coefficient.
These results confirmed the estimations made by Ma
and Cross14 through experimental characterization.
Maranganti et al.15 developed a comprehensive frame-
work based on variational principle for dielectrics con-
sidering the flexoelectricity and offered solutions for
the governing relations of a centrosymmetric conti-
nuum medium through Green’s function. Meanwhile,
the advantage of flexoelectricity over piezoelectricity is,
the piezoelectric effect which only occurs in 20 non-
centrosymmetric point groups while the flexoelectric
effect occurs in all dielectric with 32 crystalline point
groups, interesting fact about the flexoelectricity is that
one can generate piezoelectricity even in the non-
piezoelectric materials.16 For instance, Majdoub et al.17

observed the flexoelectric effect for energy harvesters
such as piezoelectric beam/ribbon due to substantial
enrichment of the piezoelectric coefficient. In addition
to flexoelectricity, Shen and Hu18 recognized a general
formulation for dielectrics with surface effects taken
into account at nanoscale. In case of unimorph piezo-
electric energy harvesters, Wang and Wang19 proposed
an analytical model with consideration of the flexoelec-
tricity at nanolevel. Their outcomes revealed that flex-
oelectricity shows a noteworthy effect for piezoelectric
cantilever beams in the energy harvesting application.

On the other hand, in addition to flexoelectricity, the
influence of surface parameters is extensively renowned
to substantially affect the physico-mechanical charac-
teristics of nanostructures. The effects of different para-
meters of surface such as residual stresses, surface

modulus, lame parameters, and surface piezoelectricity
engrossed great research attention from fundamental
applications. For example, Gurtin and Ian Murdoch20

proposed the continuum model considering the linear
surface elasticity theory. They assumed the deformable
surface having zero or negligible thickness, which is
adhered to bulk material considering the perfect bond
amongst the surface and bulk material. The surface
effect can also be known as a size-dependent phenom-
enon. Due to reduced geometrical dimensions to the
nanoscale, the surface effects are primarily liable to
produce the enhanced scale-dependent electro-mechani-
cal response from the base material. To distinguish the
crystal and amorphous structure, Izumi et al.21 carried
out the molecular dynamic (MD) simulation for evalu-
ating the surface elastic coefficient as well as surface
stresses. As the values/magnitudes of surface elastic
moduli and surface stresses are different for different
elements such as nickel (Ni), aluminum (Al), palladium
(Pd), silver (Ag), platinum (Pt), copper (Cu), gold (Au),
etc., including positive and negative sign. It depends
upon the surface orientations of elements and crystal
structures (crystallographic direction). For example,
Shenoy22 studied the different elements for values of
surface residual stresses and elastic moduli. They
showed the negative value of surface stresses for nickel
in case of specific crystallographic direction and crystal
surface while all other elements (Al, Ag, Cu, Au, Pd,
Pt) possess positive value. The influence of surface
stress on static/dynamic characteristics of elastic and
piezoelectric materials is investigated by several
researchers,23–26 and they observed that the surface
effect will influence the performance of energy-
harvesting elements as its size is minimized to nanole-
vel. Several authors21,25,27,28 investigated the approxi-
mate approach to compute the surface elastic constant
and Ru29 has predicted the same approach by consider-
ing the surface layer thickness and thermoelastic dissi-
pation factor into account for the analysis of nanowire.
Afterward, for demonstrating the influence of surface
parameters including surface lame constants and resi-
dual surface stresses on the bending/modal analysis of
circular and rectangular plates, Liu and Rajapakse30

presented the FE and analytical methods. Chen31 con-
sidered the consequence of a plane boundary of a
piezoelectric body molded as a thin layer means surface
layer with quantified bulk properties and derived the
state-space formulation for a transfer relation concern-
ing the state vectors at the top/bottom surface. The
author also stated the relationship amongst the surface
layer thickness and the surface piezoelectric coefficient.
Yan and Jiang32 have adopted the Euler-Bernoulli (EB)
model for static bending analysis of the piezoelectric
cantilever beam by taking the residual surface effects
into account, but they have not considered the effect of
flexoelectricity. Pan et al.33 and Nan and Wang34 intro-
duced the characteristic length to specify the surface
constant over the bulk material properties. From the
study of extensive literature related to classical
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continuum mechanics, it is observed that these theories
are not able to consider the small-scale effect of nano-
scaled structures due to the absence of different scale
parameters. Considering the insufficiencies of classical
continuum theories, the higher-order non-classical con-
tinuum theories such as non-local elasticity theory
(NET) of Eringen, shear deformation theory (SDT),
nonlocal strain gradient theory (NSGT), and modified
coupled stress theory (MCST) which give more precise
outcomes by considering size effects, have been recom-
mended to investigate the different responses of nanos-
tructures. For instance, Ebrahimi and Dabbagh35–37

investigated the hygro-thermal and viscoelastic wave
propagation properties of single- and double-layered
graphene sheets (SLGSs and DLGSs) employing NET
and NSGT. In addition, the value of wave frequency,
phase velocity, and escape frequency of DLGSs were
also obtained. Moreover, they performed parametric
studies to examine the effect of different parameters
such as length scale and nonlocal parameters, wave
number, moisture concentration, temperature gradient,
structural damping, Winkler and Pasternak coeffi-
cients, as well as axial load on the wave propagation
response of SLGSs and DLGSs. Based on NET,
Ebrahimi et al.38–41 presented a new two-step porosity
dependent homogenization technique to investigate the
wave propagation responses of functionally graded
(FG) porous nanobeams in the presence of axial pre-
load. They reported that if the porosity volume fraction
is increased then the dispersion responses of FG nano-
beams were decreased. Afterward, they investigated the
wave propagation response of smart magnetostrictive
sandwich nanoplates based on NSGT. In this, they
reported that for low wave numbers the magnetostric-
tion significantly affect the dispersion responses of
smart nanoplate. Using same NSGT framework, they
investigated the viscoelastic behavior of nanostructures
such as FG nanobeams and nanoplates which are
affected by the relationship between nonlocal time and
space. These studies reveal that an increase in the non-
local parameter can reduce the loss factor in a signifi-
cant way due to the coupling between the nonlocalities
in the spatial and temporal domains. Most recently,
Naskar et al.42 introduced a very powerful semi-
analytical ‘‘Extended Kantorovich method’’ in conjunc-
tion with MCST to analyze the static and dynamic
response of flexoelectric FG plate at the nanoscale in
the presence of surface and piezoelectric effect.

Novoselov et al.43 performed the ground-breaking
experimental analysis of a single layer graphene sheet
which fascinated enormous response from both
academia and industry. It is also called mankind of
the century because of its distinctive thermo-
electro-mechanical properties. As graphene is made
from allotrope of carbon, each atom is contributed to a
chemical reaction from both sides, which is attributed
to its two-dimensional (2-D) structure. In the present
day, graphene becomes broadly acknowledged as
the utmost outstanding material to form the

graphene-based composite due to its high mechanical
stiffness. To improve and economize the efficiency of
composite/matrix, graphene nanosheets (GNS), gra-
phene/graphite oxide (GO), and graphene platelets
(GPLs) which are derivatives of graphene were sur-
rounded into the different types of matrix.44–49

Whereas Rafiee et al.48 accomplished the systematic
experimentation to analyze the buckling behavior of
graphene-based composite beam and they conveyed
there is ;52% enrichment of buckling capacity of the
composite beam by adding graphene nanofillers with
0.1% weight fraction into the epoxy. Using algebraic
polynomials and the Ritz method, the thermal post-
buckling for examining the nonlinear thermal stability
of graphene-based composite beams under constant
temperature raise was performed by Kiani and
Mirzaei50 and Zhang et al.51 Zhang et al.51 presented
the mechanical analysis including vibration, bending,
and buckling of GO-based FG beams using the theory
of first-order shear deformation. In this, using the mod-
ified Halpin-Tsai (HT) method, they estimated the
effective mechanical properties of the graphene-based
composite. Several authors52–54 studied the static and
dynamic analysis of advanced composite, multi-
material lattices, and FG materials by using different
theories as well as a powerful machine learning tool for
stochastic analysis. Wang et al.55 established a 2-D
elastic model with consideration of the constant distri-
bution of graphene in each layer and also shear strain
as well as the thickness strain, that is, plane stress state
in each layer for free vibration and bending analysis of
layered graphene composite beams. In conjunction
with these investigations, interphase is a multifaceted
area that can be used amongst the matrix and rein-
forced fiber for finding additional upgraded effective
properties of the proposed composite. For finding more
accurate as well as precise properties of the composite,
no slippage assumption is generally taken into consid-
eration amongst the reinforcement, matrix, and inter-
phase. In that manner, Chen et al.56 investigated the
composite surrounded by GO to study gradient inter-
phase not only to improve the distribution of carbon
fiber/epoxy interface but also stress transfer features.
By using different micromechanical and numerical
models, Shingare and Naskar57 predicted the overall
piezoelastic properties of hybrid graphene-reinforced
composite. They also reported lead zirconate titanate
(PZT-5H)-based epoxy composite with and without
considering graphene interphase. They showed a signif-
icant enhancement because of graphene nanofillers in
traditional composites. Thus, graphene can be utilized
as interphase and nanofillers to enhance the effective
properties of composites. Nowadays, apart from con-
ventional composite and FG structures, hybrid nano-
composite attracted great research interest due to the
incorporation of micro- and nano-scaled reinforcement
in the matrix phase. For instance, Ebrahimi et al.58–62

performed extensive research investigation on static
stability, free vibration, and postbuckling analysis of
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multi-scale hybrid (MSH) nanocomposites and their
different structural elements such as beams, plates, and
shells composed of both macro- and nano-scale reinfor-
cements such as carbon fiber (CF), glass fiber (GF),
GO powder, and carbon nanotube (CNT) in a poly-
meric matrix. Most recently, Ebrahimi and Dabbagh63

and Ebrahimi et al.64,65 presented an analytical solution
for investigating the free vibration and buckling analy-
sis of MSH nanocomposites plates reinforced with
CNT nanoparticles. They considered the different
micromechanical models such as rules-of-mixture,
modified HT, and Eshelby-Mori-Tanaka model to
compute the effective properties. In these above studies,
they employed different analytical and FE theories
such as EB beam theory, classical plate theory,
Navier’s solution, Galerkin’s and Rayleigh-Ritz
method based new refined higher-order SDT to envi-
sage the buckling and vibration response of MSH
nanoplates subjected to clamped-clamped and simply
supported edge support conditions. Moreover, they
also considered the effect of different parameters such
as porosity, agglomeration of CNTs, straight and wavy
CNTs as well as effect of viscoelastic properties of
polymer and wavy shape of the CNTs to acquire
desired response of MSH nanocomposite beams,
plates, and shells. Shingare and Naskar66 also investi-
gated the piezoelectric and surface effects on a hybrid
graphene-reinforced composite plate to study its static/
dynamic responses. The above all studies related to
FG, MSH, and advanced composites were mainly
focused on static and dynamic behavior, but they
didn’t consider the electromechanical response consid-
ering size-dependent properties such as flexoelectric
and surface effects.

Taking inspiration from the concept of MSH nano-
composites, authors considered three-phase hybrid
nanocomposite, namely, ‘‘Graphene-Reinforced
Hybrid Composite (GRHC)’’ composed of graphene as
nanofillers or interphase and PZT-5H as active piezo-
electric fiber incorporated in the epoxy matrix. On
careful examining the available scientific literature, it is
noticed that no single study is available on such piezo-
electric GRHC nanorod considering size-dependent
properties such as flexoelectric and surface effects to
improve its electromechanical properties which is an
undeniable inspiration behind the present research. The
novelty of the current study proposes the analysis of
static bending analysis of flexoelectric GRHC nanorod
(NR) (hereinafter the ‘‘hybrid NR’’) considering differ-
ent boundary conditions (BCs): cantilever that is, free-
clamped (FC), fixed-fixed (FF), and simply supported
(SS) and loading conditions: point (P) and uniformly
distributed load (UDL). According to the practical
point of view, these loading and BCs are important in
automotive, aerospace, and spacecraft engineering
structures. These structures are mainly subjected to the
penetration of external load and UDL with all men-
tioned BCs. The objective of the present work is to
extend the base knowledge of the gradient of strain/

electric response to promote the importance of surface
and flexoelectric effects in the nanostructure. The sur-
face effects comprising the surface stress, modulus, and
piezoelectricity are integrated into the model. From the
literature, it is also observed that the analytical models
are restricted to simple geometries and BCs while these
models are also far more complicated for systems with
somewhat more complex geometry. It is also well-
known that nanoparticles appear with irregular sur-
faces when their dimensions are in the nanometer
range. Therefore, to further elucidate the surface effect
and better characterization of the electrostatic behavior
of nanostructures, the FE method (FEM) should be a
better option. In case of intricate geometries of beam
and BCs, usually accounted for NEMS applications, a
multipurpose in-house FE model needs to be devel-
oped. However, the traditional FEM can only provide
numerical solutions without considering the surface
and flexoelectricity effect. This thing keeping in mind,
we developed a new FE formulation in the present arti-
cle by incorporating the surface parameters as well as
piezoelectric and flexoelectric effects with the tradi-
tional one.30,67 The Galerkin residual method is the
most widely used technique to solve the problem with
suitable approximation in analytical relations without
using commercial FE software. Therefore, to avoid the
complexity due to consideration of all dimensions of
structures, we limited our FE analysis to one dimension
(1-D). In the context of dimensional reduction, 1-D
modeling always referred to line-type members such as
beams, wires, rods, column, and piles, 2-D modeling
referred to plate-type members such as walls, slabs, etc.
(assuming suitable problem type: plane stress, plane
strain, or axisymmetric) while 3-D modeling referred
for the structural member by assuming appropriate
dimensions to analyze prototype. For this reason, the
authors developed an in-house FE code by assuming 1-
D case based on the Galerkin residual method to vali-
date the results obtained from an analytical formula-
tion based on EB theory and compared both sets of
results.

The results obtained from the present research work
would offer new insights to engineer the domain config-
urations for tailoring the desired static electromechani-
cal responses of the novel GRHC considering surface
and flexoelectric effects. This has been demonstrated
by comparison of different sets of results such as: (i)
conventional composite nanorod (without surface and
flexoelectric effects), (ii) flexo composite nanorod (con-
sidering only flexoelectric effect), and (iii) flexo-surface
composite nanorod (considering surface and flexoelec-
tric effects). From the computational development
point of view, the impact of the above-mentioned
aspects is quite significant. Thus, most importantly, the
current results reveal that the incorporation of surface
effect dominantly influences the electromechanical
response of nanorods compared to the flexoelectric
effect and both the effects should be considered to
study the structural response of any nanostructure.
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Figure 1 illustrates the flowchart explaining the layout
of the work carried out in the research article.

Electromechanical response of GRHC
nanorod

Effective properties of GRHC

The determination of effective elastic and piezoelectric
properties of graphene-reinforced hybrid composite
(GRHC) is required priori and therefore, its effective
properties are predicted first. We considered graphene
sheets as nanofillers or interphase and PZT-5H as
active piezoelectric fiber incorporated in the epoxy
matrix to form GRHC. Figure 2 demonstrates a single
GRHC representative volume element (RVE) which is
assumed to be extracted from composite laminate.
Recently, Shingare and Naskar6,57 studied the electro-
static response of GRHC and its structures accounting
for the piezoelectric and flexoelectric effects. In this,
they envisaged the overall effective properties of
GRHC using analytical and numerical models such as
two- and three-phase mechanics of materials (MOM)
models, Halpin-Tsai (HT), rules-of-mixture (ROM),
modified rules-of-mixture (mROM) as well as FE mod-
eling. The effective properties of three-phase GRHC
are evaluated by changing volume fractions of gra-
phene interphase (vg) and PZT fibers (vp), that is, by
taking the value of vg in terms of vp.

The detailed analytical and FE micromechanical
model for the development of three-phase GRHC is

not shown here and for more details regarding MOM
and FE modeling, readers are referred to Shingare and
Naskar.57 From this study, authors reported that these
three-phase GRHCs show overall enhanced effective
properties as compared to two-phase PZT-based com-
posites, that is, without consideration of graphene
interphase. Therefore, this three-phase hybrid compo-
site is utilized for studying the static bending response
of GRHC nanorod and their essential effective proper-
ties are mentioned in Table 2.

Figure 1. Flowchart of electromechanical analysis of hybrid NRs.

Figure 2. Schematics of three-phase GRHC RVEs for
estimating effective properties.
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Governing equations

Considering the effects of flexoelectricity and surface
parameters, the electric Gibb’s energy density function
is characterized for materials with different effects: bulk
and surface effect. In case of bulk material, the follow-
ing internal energy density function is written by
neglecting the higher-order strain gradient68:

Ub =
1

2
sijeij +

1

2
tijkhij, k �

1

2
DiEi ð1Þ

wherein eij and sij signify the traditional strain and
stress tensor. hij, k and tijk signify the higher-order
strain and stress gradient, Di and Ei denote the electric
flux density and field vector. These components are
expressed as:

eij =
1

2
(uj, i + ui, j) ð2aÞ

hij, k = eij, k =
1

2
(uj, ik + ui, jk) ð2bÞ

Ek =�[, k ð2cÞ

whereas ui and [ represent the component of mechani-
cal displacement and electrostatic potential.

In case of bulk materials, the constitutive equations
can be written as:

sij =
∂Ub

∂eij
= Cijkl ekl � ekij Ek ð3aÞ

tjkl =
∂Ub

∂hjkl

=� mijklEi ð3bÞ

Di =� ∂Ub

∂Ei
= xijEj + eijkejk + mijklhjkl ð3cÞ

where xij, Cijkl, eijk, and mijkl are the dielectric suscept-
ibility, elastic, piezoelectric, and flexoelectric coefficient,
respectively.

In case of piezoelectric continuum, the surface inter-
nal energy density function is deduced as18:

Us =
1

2
so

abe
s
ab +

1

2
ss

abe
s
ab �

1

2
Ds

gE
s
g ð4Þ

where so
ab indicates the residual surface stress tensor of

the second order, esab and ss
ab denote the surface strain

and stress; Ds
g and Es

g denote the surface electric flux
density and field and it can be obtained as:

esab =
1

2
(usa,b +usb,a) ð5aÞ

Es
g =�[

s, g ð5bÞ

whereas us signifies the surface displacement and [
s

signifies the surface electric potential. The constitutive
expressions in case of surface effects (with superscript
‘‘s’’) are approximately identical as that of constitutive
relations for bulk material but some residual terms are
also present.

Using equation (4), the linear constitutive relations
are determined considering surface effect18:

ss
ab =

∂us
∂eab

= tab +Cs
abgke

s
gk � eskabE

s
k ð6aÞ

Ds
g =� ∂us

∂Es
g

= xs
gkE

s
k +esgkbe

s
ab ð6bÞ

To predict the static response of NRs with a ratio of
thickness to length (h=Lø 1=20), thin nanobeam the-
ory is utilized while thick nanobeam theory is utilized if
this ratio decreases with shear deformation effects
taken into consideration. Hence, the required ratio is
h=L\ 1=10 for the thick hybrid rod. Without any
mechanical load in the axial direction (Figure 3) the
axial force becomes zero, hence, a displacement field
can be obtained by using EB theory:

u(x)=� z
dv(x)

dx
=� zv

0
(x) ð7Þ

Here, u(x) and v(x) denote the horizontal and vertical
displacement of the NR.

Therefore, the following nonzero strain and strain
gradients are obtained by using equations (2) and (7).

Figure 3. NRs subjected to UDL with different BCs: (a) FC, (b) FF, and (c) SS.
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e11 =� z
d2v

dx2
=� z v

00
; h111 =� z

d3v

dx3
=� zv

000
;

h311 =�
d2v

dx2
=� v

00

ð8Þ

The internal energy density function for bulk material
is again deduced by using equations (3) and (8) into
equation (1)68:

dUb =

ð
v

s11de11 + t311dh311 + t111dh111ð ÞdV

=�
ðL
0

Mdv
00
dx �

ðL
0

Mhdv
000
dx�

ðL
0

Pdv
00
dx

ð9Þ

wherein,

M=

ð
A

s11zdA;P=

ð
A

t311dA; andMh=

ð
A

t111zdA ð10Þ

whereas
Ð
A

dA indicates the integration over the whole

area ‘‘A’’ in case of bulk material.
Using equations (5)–(8) into equation (4), the inter-

nal energy density function is again re-expressed as:

Us =

ð
a

dss
11

dx
zdv

0
da �

ð
z=H

2

(ss
11k)

udv da

+

ð
z= �H

2

(ss
11k)

ldvda

=

ðL
0

dMs

dx
dv

0
dx�

ðL
0

Ts
zdvdx

ð11Þ

where
Ð
a

da indicates the integration over the small infi-

nitesimal surface area ‘‘a.’’
By using equation (6a), the axial surface stress ss

11

can be expressed as:

ss
11 = t0 +Cs

11e
s
x � es31E

s
z : ð12aÞ

For surface effect, ss
11 can be rewritten as:

ss
11 = t0 +Cs

11 �z
d2v

dx2

� �
� es31E

s
z, ð12bÞ

in which t0 is the constant of residual surface stress.
wherein Ms and Ts

z denote the bending moment (BM)
and lateral loadings considering the surface effect and
can be obtained as:

Ms =

ð
c

ss
11 z dC; Ts

z =

ð
z=H

2

(ss
11k)

u da

�
ð

z= �H
2

(ss
11k)

l da

ð13Þ

whereas C denotes the perimeter of NR and super-
script ‘‘u’’ and ‘‘l’’ denote the upper and lower surface
of NRs, respectively. Here, k denotes the curvature

which is determined by k= d2v
dx2

when considering the

EB theory.
If the NR is subjected to uniformly transverse load

q xð Þ, end moment ~M and end force Q, the virtual work
done induced due to the external forces is acquired as:

dW =

ðL
0

q xð Þdvdx+Qdv+ ~Mdv
0 ð14Þ

The variation principle is expressed using equations (9),
(11), and (14):

dW� dUb + dUsð Þ=0 ð15aÞ

dW� dUb + dUsð Þ=
ðL
0

q xð Þdvdx+ Qdv+ ~Mdv
0 �

 ðL
0

Mdv
00
dx+

ðL
0

Mhdv
000
dx +

ðL
0

Pdv
00
dx

+

ðL
0

dMs

dx
dv

0
dx�

ðL
0

Ts
zdvdx

!
ð15bÞ

The equation (15b) is again re-formulated by using inte-
gration by parts:

dW� dUb + dUsð Þ= Mhdv
00 L

0

���� + Qdv + ~Mdv
0

� dM

dx
+

dP

dx
� d2Mh

dx2
+

dMs

dx

� �
dv

L

0

����
+

ðL
0

d2M

dx2
+

d2P

dx2
� d3Mh

dx3
+

d2Ms

dx2
+q xð Þ+Ts

z

� �

dvdx+ MTP�
dMh

dx

� �
dv

0 L

0
ð16Þ

����

Because of the uncertainty of dv in equation (16), one
can get governing expression as:

d2M

dx2
+

d2P

dx2
� d3Mh

dx3
+

d2Ms

dx2
+q xð Þ+Ts

z =0 ð17Þ
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The following BCs are applied at the ends of a GRHC
NRs:

Mh

M+F� dMh

dx

� �

d

dx
M+F� dMh

dx
+ Ms

� �

For example, if cantilever NR subjected to end point
load (P) then corresponding BCs are written as follows
(x=0 and L):
At x=0,

v 0ð Þ=v
0
0ð Þ=0

Mh =0

At x=L,

Mh =0

M Lð Þ=M+F� dMh

dx
=0,

Q Lð Þ= dM

dx
+

dF

dx
� d2Mh

dx2
+

dMs

dx
=� P:

whereas M, Mh, and F indicate the BM, higher-order
BM, and higher-order axial couple.

If we consider the open-circuit case, then the electric
field is obtained using the concept of electric flux den-
sity (Dy ! 0) which is zero on the surface.

E3 =�
e31
x33

e11 �
m31

x33

h311 ð18Þ

Using equations (3) and (8) into equation (18), the BM
and the higher-order axial couple can be reformulated
as:

M=� C11+ e31
e31
x33

� �
Iyv

00 ð19aÞ

F=� m2
31

x33

� �
v
00
A ð19bÞ

whereas A and Iy signify the cross-sectional area and
the moment of inertia of GRHC NR. Equation (13) is
again re-formulated as:

Ms =� Cs
11 + es31

e31
x33

� �
I�v

00 ð20Þ

wherein I� denotes the perimeter moment of inertia.

For Ex. NR with a circular (diameter D) and a rec-
tangular (height H, width B) cross-section, the peri-
meter moment of inertia can be obtained as30:

I�=

H3

6
+

BH2

2

p
D3

8

8>><
>>:

The curvatures give the equivalent magnitudes but
opposite directions on the top and bottom surfaces of
the NR. Hence, by ignoring the nonlinear effect caused
due to term (es31E

s
z) in equation (13), the lateral loading

(Ts
z) can be again deduced as:

Ts
z =

ð
z= H

2

(ss
11k)

uda�
ð

z= �H
2

ss
11k

� �l
da= S�t0

d2v

dx2
,

ð21Þ

whereas S�=
2B

pD=2

�
By considering the flexoelectric and surface effect in

equation (17), the governing equation is formulated
as69:

BRð Þeff d4v

dx4
= S�t0

d2v

dx2
� q xð Þ ð22Þ

wherein

BRð Þeff = C11+
e2311
x33

� �
I+

m2
31

x33

� �
A

+ Cs
11 +

es311e311
x33

� �
I�

ð23Þ

Static loading of the hybrid NRs

Equation (22) can be re-expressed to determine the non-
dimensional static bending deflection (�v=v=L) with
respect to the length of NR (�x=x=L) as:

d4�v

dx4
� G

d2�v

dx2
+

q xð Þ L3

BRð Þeff
=0 ð24Þ

where as G= S�t0L
2

BRð Þeff
To get the generalized solution, equation (24) is

again simplified for applied point/UDL which can be
determined as follows:

�v=D1e
�x
ffiffiffi
G
p

+D2e
��x
ffiffiffi
G
p

+D3 +D4�x +
q0L

3

2G BRð Þeff
�x2

ð25Þ

whereas D1 �D4 are the arbitrary constants deter-
mined from the respective necessary BCs mentioned in
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following Table 1 in equation (25). If the NR is sub-
jected to point load, then we can assume UDL as zero
(q0 =0) and vice versa.

Finite element (FE) formulation
considering the surface and flexoelectric
effects

The proposed FE formulation considers the thin NRs
subjected to point load and UDL under static loading
condition, by considering no axial force and ignoring
inertial terms equation (22) is re-expressed as:

BRð Þeff d
4v

dx4
� t0s

�ð Þ d
2v

dx2
q xð Þ= 0 ð32Þ

In FE formulation, Galerkin’s weighted residual
method is applied to equation (32) which can be refor-
mulated as:

C=

ðL
0

BRð Þeff d
4v

dx4
� (t0s

�)
d2v

dx2
q(x)

� �
�vdx= 0

ð33Þ

L denotes the NR length and �v denotes the weight
function.

C=

ðL
0

BRð Þeff d
2v

dx2
d2�v

dx2
+ t0s

�ð Þ dv
dx

d�v

dx
+q�v

� �
dx

+ M
dv

dx
�Qv

 !
L

0

���� =0

ð34Þ

where the BM and shear force is formulated as:

M=� BRð Þeff d2v

dx2

� �
; Q=� BRð Þeff d3v

dx3

� �

+ t0s
�ð Þ dv
dx

Equation (33) again expressed in weak form with appli-
cation of integration by parts as:

C=

ðL
0

BRð Þeff d
2v

dx2
d2�v

dx2
+ t0s

�ð Þdv
dx

d�v

dx
+q�v

� �
dx

� BRð Þeff d
2v

dx2
d�v

dx
� BRð Þeff d3v

dx3

� �
�v+ t0s

�ð Þ dv
dx

�v

� �
L

0

���� =0:

ð35Þ

From the above weak form in equation (35), it is noted
that the highest order of derivative of v is 3, that is, the
required approximation function can be obtained by
differentiating the equation thrice. Therefore, we can
say that function is a third/cubic degree polynomial.
Moreover, the highest order of derivative inside the
integral is 2 in equation (35), and therefore, the overall
approximation should be C1 continuous (1 is a non-
negative integer). Here, Figure 4 represents the two
noded NR elements with consideration of surface para-
meters having translational, v and rotational, [ degrees
of freedom at each node. In addition, the cubic function
also satisfies the conditions of displacement and slope
continuity at nodes.

Hence, the nodal displacement vector is interpreted as:

ve = v1 [1 v2 [2½ �
0

ð36aÞ

Therefore, making use of shape function N xð Þ, the ver-
tical displacement is interpolated as:

v=
X

Niv
e
i, i=1, 2, 3, 4: ð36bÞ

Here, N1, N2, N3, and N4 indicate the shape
functions for rod elements. These cubic shape functions
are known as Hermitian cubic interpolation (or cubic
spline) functions and the elements formulated using
these are called Hermite elements. In case of NR ele-
ment, N1 =1 when evaluated at node 1 and N1 =0
when calculated at node 2. Because N2 is related to
[1, we have dN2

dx =1 when evaluated at node 1.
Likewise, for node 2, N3 and N4 have equal out-
comes. Ni xð Þ is the shape function which can be
obtained as follows:

N1 xð Þ=1� 3x2

L2
+

2x3

L3
;N2 xð Þ=x� 2x2

L
+

x3

L2

N3 xð Þ= 3x2

L2
� 2x3

L3
;N4 xð Þ=� x2

L
+

x3

L2

ð37Þ

Figure 4. Two noded NR element.
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Making use of equation (37) into equation (35), we can
get

ðL
0

BRð ÞeffN00TN00+ t0s
�N0

T
N0

n o
vedx=�

ðL
0

q xð ÞNdx

ð38Þ

The element stiffness matrix is given by:

Ke =

ðL
0

BRð ÞeffN00TN00+ t0s
�N0

T
N0

n o
dx

n o
ð39aÞ

Ke =

ðL
0

BRð Þeff d2N

dx2

� �T
d2N

dx2
+ t0s

�ð Þ dN

dx

� �T
dN

dx

( )
dx

ð39bÞ

Ke =
BRð Þeff

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 12 �6L 4L2

2
6664

3
7775+

t0s
�ð Þ

30L

36 3L �36 3L

3L 4L2 �3L �L2

�36 �3L 36 �3L
3L �L2 �3L 4L2

2
6664

3
7775

ð40Þ

It is noted that equation (40) is divided into two sec-
tions: the initial section is analogous to improve the
stiffness matrix while another section is interrelated to
stiffness matrix accounting for the surface residual
stress. The negative or positive magnitude of residual
surface stresses influences the value of effective bending
rigidity.

Therefore, the generalized nodal force vector is
obtained as:

fe =�
ðL
0

q xð ÞNTdx ð41Þ

Here, we considered the generalized nodal force vector
which contains the effect of the point load P and UDL.

By using the assembly of nodal force and element
stiffness matrix, the equilibrium equation with global
force vectors and element stiffness can be obtained as:

Kd=f ð42Þ

where f, d, and K signify the global force, displacement
vector, and global stiffness matrix, respectively.

Results and discussion

The effective properties of GRHC were evaluated using
a three-phase MOM model with consideration of gra-
phene volume fraction which is considered 0.2 times
volume fraction of PZT-5H which is taken from
Shingare and Naskar57 and are enlisted in Table 2.
These properties of GRHC are used to envisage the
electrostatic response of hybrid nanorods (NR). In this,
we derived the analytical solutions for GRHC NRs
using EB theory considering surface and flexoelectric
effect in conjunction with FE model based on Galerkin
residual method to validate the results obtained from
the analytical model.

The surface elastic coefficients for the current model
are equal to the elastic coefficients of GRHC multiplied
by its surface layer thickness, assumed as 1 nm.29,31,70,71

Similarly, the coefficient of surface piezoelectricity can
be calculated. We have taken the flexoelectric coeffi-
cient as m31’10�8 Cm�1 for further calculations. It is
significant to note in NEMS applications that the piezo-
electric NRs are basic building blocks in the design of
nanostructures while analyzing the mechanical perfor-
mances with high potential. We considered nanorod
having length, (L=20H) with a thickness (H), dia-
meter (D), and width (B=0:5H). The results are evalu-
ated for NRs subjected to a point load (P) and UDL
(q0) for a cantilever (FC), fixed-fixed (FF), and simply
supported (SS) BCs using both the theoretical and
numerical modeling. According to the practical point of
view, these loading and BCs are extremely important in
automotive, aircraft, mechanical, and spacecraft engi-
neering structures. These structures are mainly sub-
jected to penetration of external load (i.e. resemblance
to point load) and UDL with all mentioned BCs. In
addition to this, two types of the cross-section of NRs
are considered such as rectangular and circular cross-
sections. In case of FE analysis, a convergence study is
also carried out, and it is observed that the obtained
results converge for a reasonable number of elements
and agree well with the analytical results for static
bending deflections of NRs. The results of the conver-
gence study for normalized deflection of FC nanorod
subjected to endpoint load are summarized in Table 3.
From this, it is found that the converged solutions for
static bending deflections of cantilever NRs can be

Table 2. Effective properties of GRHC.

Material C11 (GPa) e31 (C/m2) e33310�9 (F/m) Volume fraction

GRHC 112.43 -6.9337 3.264 vg = 0:2 vp

Shingare and Naskar 11



achieved with more than three finite elements while it is
achieved with five elements for the remaining two BCs.
Therefore, each FE simulation is performed using five
finite elements.

Effect of graphene nanofillers

Figure 5 shows the variation of normalized deflection
over the length of hybrid FC GRHC NR when sub-
jected to UDL considering the different combinations
of graphene and PZT. The different combinations of

graphene and PZT considered here are:
vg =0:2 vp, 0:4 vp, 0:6 vp, 0:8 vp and vg =vp,
whereas vg and vp denote the volume fraction of gra-
phene and PZT, respectively. From this Figure 5, it can
be noticed that the normalized deflection of NR
decreases as the value of graphene content in hybrid
composite NR increases. It is due to fact that the effec-
tive properties of GRHC were determined with consid-
eration of strong covalent bond which offers
interaction and in-plane stability of graphene as well as
strong van der Wall forces formed between graphene
and matrix. It is also reported that the large surface
area of graphene aids in strong interaction with fiber
and matrix which results in improved effective proper-
ties and obviously exhibits increased stiffness of
GRHC nanorod. According to the experimental stud-
ies, it is clear that the appropriate graphene volume
fraction in composite should be less than 10%.
Therefore, in this study, the volume fraction of gra-
phene is considered 0.2 times the volume fraction of
PZT (i.e. ;8% in composite). In the view of the experi-
mental outlook, we have considered vg =0:2 vp for
further calculation of static bending deflection which
consists of graphene content less than 10% in hybrid
GRHC NR.

Effect of flexoelectricity and surface parameters on
GRHC nanorods

In this Section, the flexoelectric and surface stress
effects on the NRs with different BCs are discussed to

Table 3. Convergence study for normalized deflection of NRs with respect to the number of finite elements.

Number of finite elements 1 2 3 4 5

FE results 27.9215 27.9870 28.0091 28.0157 28.0157

Figure 5. Normalized deflection of FC NR under UDL with
different graphene percentages.

Figure 6. Normalized bending rigidity with respect to: (a) NR thickness and (b) NR diameter.
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investigate their elastic behavior (i.e. softening and stif-
fening). The deviation of normalized bending rigidity
BRð Þeff= BRð Þ0 and BRð Þs= BRð Þ0 against rod thickness/
diameter is demonstrated in Figure 6, whereas
BRð Þeff, BRð Þs, and BRð Þ0 denote the bending rigidity
of NRs accounting for the flexoelectricity, surface para-
meters, and without considering the effect of flexoelec-
tric and surface parameters, respectively. According to
equation (23), bending rigidity depends only on rod
diameter/thickness and not on the in-plane dimensions
of NRs. It is observed that the flexoelectricity effect on
the normalized bending rigidity is size-dependent and it
is more eminent for NRs with a smaller thickness/dia-
meter. For example, the bending rigidity considering
the effect of both flexoelectricity and surface stress and
considering only flexoelectricity is 3.2 and 2.2 times the
bending rigidity without consideration of surface

parameters and flexoelectricity when the NR thickness
is kept 10 nm while 1.89 and 1.05 times greater when
the NR diameter is kept 10 nm. Such a difference is
obvious and for envisaging the electrostatic response of
nanostructures accurately, it cannot be ignored. As the
thickness of NR increases, the flexoelectricity effect
reduces promptly and as the normalized bending rigid-
ity reaches unity, the effect of flexoelectricity again
disappears.

Figures 7 to 18 depict that the flexoelectricity and
surface effect show a significant role in elastic response
of NRs for different BCs and shows the clear difference
during the time of comparison with the results of NR
which considers pure flexoelectricity, combined surface
and flexoelectricity effects, and without consideration
of surface and flexoelectricity effects (classical or

Figure 7. Normalized deflection over the length of SS
rectangular NR.

Figure 8. Normalized deflection over the length of SS circular
NR.

Figure 9. Normalized deflection over the length of FC
rectangular NR.

Figure 10. Normalized deflection over the length of FC
circular NR.
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Figure 11. Normalized deflection over the length of FF
rectangular NR.

Figure 12. Normalized deflection over the length of FF circular
NR.

Figure 13. Normalized deflection over the length of SS
rectangular NR.

Figure 14. Normalized deflection over the length of SS circular NR.

Figure 15. Normalized deflection over the length of FC
rectangular NR.

Figure 16. Normalized deflection over the length of FC
circular NR.
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conventional NR). In case of SS and FF NRs, due to
symmetry, only half of NRs deflections are shown.
From this, it is observed that the deflection of NRs
with consideration of both flexoelectricity and piezo-
electricity is less when compared with results obtained
considering only piezoelectricity. Besides the flexoelec-
tricity effect, the surface stress effect is considered to
examine the elastic response of deflection of NRs. In
case of cantilever (FC) NR, this elastic behavior
depends on the sign of surface stresses (positive t0 . 0
and negative t0 \ 0). In contrast to FC NR, the
deflections of SS and FF NRs are stiffened by the posi-
tive surface stresses. Simultaneously, it is softened by
the negative surface stresses and found in good coher-
ence with earlier conveyed results.25

It can be seen that SS and FF NRs show a stiffer
elastic behavior while FC NR shows a softer elastic
response for t0 . 0 while the converse is correct for
t0 \ 0 as compared to the corresponding NRs without
considering the surface stress and flexoelectric effect
(conventional NR). This may be due to fact that the dif-
ferent curvatures of FC, SS, and FF NRs under the
point load and UDL. Hence, the deflection of FC NR
exhibits the downward curvature (negative curvature)
while the SS NR exhibits upward curvature (positive
curvature) and FF NR exhibits both downward as well
as upward curvature for the same load. The main phe-
nomenon behind the softer elastic behavior of NR is
that the value of imposed point/UDL is identical to the
negative uniformly transverse load in the same direction
because of residual surface stress in cantilevered NR;
else, the enhancement in deflection of NR which is
mechanically deformed opposed by this positive uni-
formly transverse load in case of SS and FF NRs. The
effect of surface stress and flexoelectricity plays a signif-
icant role in the stiffening and softening response of
NRs with different BCs under point and UDL loading
conditions. The sign of residual surface stress becomes

important in the stiffening and softening response of
NRs whereas the flexoelectric effect often stiffens means
reduces the deflection of the nanostructure. In case of
FC NR, surface stress softens the elastic response
though the flexoelectric effect helps to overcome this
softness. In contrast to FC NR, the elastic behavior of
SS and FF NRs stiffens by these surface stresses.

In FE calculations, these NRs are subjected to the
same point load and UDL is defined in a downward
direction. Also, the material properties and geometry
used in the FE calculations are similar to those of the
analytical model. If the load is applied downward then
the FC NR bent with concave downward shape results
in negative curvature. Therefore, the additional corre-
sponding uniform transverse load will be applied by
surface stresses effect and the opposite signs of mechan-
ical load. While the SS and FF NRs are exposed to
downward load, it bent with a concave upward shape
and the additional uniform transverse loads improve
the deflection which is mechanically deformed. As the
sign of curvature of NRs is similar to the surface stress,
the deflection is enriched, and the reverse is true when
the sign of curvature of NRs is opposite to the surface
stress. The FF NR exhibits stiffer behavior when com-
pared to SS NR because FF NR exhibits both down-
ward as well as upward curvature. This is attributed to
the reason that the SS and FF NRs are stiffened by
positive surface stress effect (t0 . 0) while the FC NR
softens by the same effect. Moreover, the results evalu-
ated by the FE simulations are in great accordance with
those of the analytical models. From the above results,
in case of circular NRs, it is also obvious that the com-
bined effect of flexoelectricity and surface shows the
significant enhancement in the reduction of deflection
of NRs.

It is evident from Figures 7 to 18 that due to the
incorporation of graphene as nanofillers, surface stress,
and flexoelectricity result in a reduction of deflection of

Figure 17. Normalized deflection over the length of FF
rectangular NR.

Figure 18. Normalized deflection over the length of FF circular
NR.
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GRHC NRs as that of deflection of conventional NRs
that is, without surface and flexoelectric effects (classi-
cal NRs). The other most important reason behind the
reduction in static bending deflection is nothing but
enriched stiffness/bending rigidity of GRHC due to
consideration of graphene nanofillers which exhibit
excellent electro-thermo-mechanical properties. Despite
the fact, the magnitude of maximum deflection of
GRHC NRs under point load and UDL observed in
the following order: FC . SS . FF while the deflec-
tion of NRs irrespective of edge support conditions
and cross-section gives maximum deflection for point
load as compared to UDL. For instance, the deflection
of GRHC NRs with consideration of pure flexoelectri-
city and considering combined flexoelectricity and sur-
face stress effects are enhanced significantly when
compared to that of deflection of conventional NRs
irrespective of all edge support conditions. But if we
compare the results between pure flexoelectricity and
combine effects, then the deflection of NRs is reduced
significantly due to consideration of later case. From
these Figures 5 to 18, it is noticed that the surface para-
meters and flexoelectricity have a remarkable influence
for smaller thickness and diameter of NRs and hence,
it must be accounted properly. Therefore, it is con-
cluded that the results presented in this work by using
the analytical and FE models are found in excellent
coherence.

Such numerical consequences fundamentally open
up the paths of potential exploitation and enrichment
of the desired electromechanical responses in design
engineering including the factors such as open- and
short-circuit condition, strain/electric gradient, surface
effects, electromechanical loading as well as inverse
piezo- and flexo-electric effects. With the recent
advances in nano-scale manufacturing and experimen-
tal capabilities, this article will offer the essential physi-
cal understandings in modeling the size-dependent
electromechanical coupling in multifunctional materi-
als, systems, and devices for applications in distributed
sensors, actuators, active controllers, and energy
harvesters.

Conclusions and perspective

This article explores the static bending deflection beha-
vior of graphene-reinforced hybrid composite (GRHC)
nanorods (NRs) with flexoelectric and surface effects. In
this, we derived the closed-form solutions for GRHC
NRs using EB theory and linear piezoelectricity theory
by considering surface stress and the flexoelectric effect.
Moreover, the theoretical FE model is derived using
Galerkin residual method to validate the results
obtained from the analytical model under the same
loading and BCs. Based on this, the static bending
deflection of GRHC NRs for different types of BCs is
considered to investigate the role of flexoelectricity and
surface effect. For instance, we considered cantilever

(FC), fixed-fixed (FF), and simply supported (SS)
nanorods subjected to point and UDL loadings. The
reduction in static deflection of GRHC NRs is enhanced
by considering flexoelectricity and surface effect over
the deflection of GRHC conventional NRs. From these
results, it can be concluded that the magnitude of maxi-
mum deflection of GRHC NRs under point load and
UDL observed in the following order: FC . SS . FF
while the deflection of NRs irrespective of edge support
conditions and cross-section gives maximum deflection
for point load as compared to UDL. For instance, the
deflection of GRHC NRs with consideration of pure
flexoelectricity and considering combined flexoelectri-
city and surface stress effects are enhanced significantly
when compared to that of deflection of conventional
NRs irrespective of all edge support conditions. This
current study offers pathways for developing new profi-
cient novel GRHC materials with enhanced control
authority and offers a guideline for the design of nano-
devices in NEMS applications and several other
industries.

The flexoelectricity is found to be more dominant
for thin structures and it cannot be ignored while mod-
eling 1-D, 2-D, and 3-D composite nanostructures. The
novelty of the current study considers the introduction
of graphene nanofillers in evaluating the overall prop-
erties of hybrid piezoelectric composite using the repre-
sentative volume element (RVE) technique in context
to composite laminates to form the different structural
elements (MEMS/NEMS). The overall conclusion of
this work is that the developed analytical and numeri-
cal models herein may provide the theoretical base for
investigating the electrical and mechanical response of
energy harvesters in form of beam and wire/rod. In the
future, the proposed computationally effective method
for electromechanical analysis of composite structures
can be exploited for numerous other materials as well
as structural systems to study their global response.
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