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Abstract 111 

Background: There is an unmet need for accurate non-invasive methods to diagnose 112 

non-alcoholic steatohepatitis (NASH). Since impedance-based measurements of body 113 

composition are simple, repeatable and have a strong association with non-alcoholic 114 

fatty liver disease (NAFLD) severity, we aimed to develop a novel and fully 115 

automatic machine learning algorithm, consisting of a deep neural network based on 116 

impedance-based measurements of body composition to identify NASH (the LEARN 117 

algorithm). 118 

Methods: A total of 1,259 consecutive subjects with suspected NAFLD were 119 

screened from six medical centers across China, of which 766 patients with biopsy-120 

proven NAFLD were included in final analysis. These patients were randomly 121 

subdivided into the training and validation groups, in a ratio of 4:1. The LEARN 122 

algorithm was developed in the training group to identify NASH, and subsequently, 123 

tested in the validation group. 124 

Results: The LEARN algorithm utilizing impedance-based measurements of body 125 

composition along with age, sex, pre-existing hypertension and diabetes, was able to 126 

predict the likelihood of having NASH. This algorithm showed good discriminatory 127 

ability for identifying NASH in both the training and validation groups (AUROC: 128 

0.81, 95%CI 0.77-0.84 and 0.80, 0.73-0.87, respectively). This algorithm also 129 

performed better than serum cytokeratin-18 neoepitope M30 level or other non-130 

invasive NASH scores (including HAIR, ION, NICE) for identifying NASH (p-value 131 

<0.001). Additionally, the LEARN algorithm performed well in identifying NASH in 132 
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different patient subgroups, as well as in subjects with partial missing body 133 

composition data. 134 

Conclusion: The LEARN algorithm, utilizing simple easily obtained measures, 135 

provides a fully automated, simple, non-invasive method for identifying NASH. 136 

Keywords: NAFLD, NASH, LEARN algorithm, body composition. 137 
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Introduction 155 

Non-alcoholic steatohepatitis (NASH) is a major public health concern worldwide 156 

and, compared with hepatic steatosis alone, the annual incidence of hepatocellular 157 

carcinoma in patients with NASH-related cirrhosis is as high as 1-2%.(1,2) NASH is 158 

more likely to lead to advanced liver fibrosis, cirrhosis and eventually liver-related 159 

illness and death.(3-5) Therefore, due to its high prevalence and increased health 160 

risks, NASH is a significant economic and healthcare burden. The current definitive 161 

diagnosis of NASH is based not only on hepatocyte fat accumulation (steatosis), but 162 

also on histological evidence of hepatocyte ballooning and lobular inflammation.(6) 163 

Given that the majority of patients with NASH are asymptomatic, the acceptability of 164 

liver biopsy (i.e. the gold standard) is relatively low and, because of liver biopsy-165 

associated morbidity and even mortality, developing screening strategies to identify 166 

those individuals at risk of progressive NASH, remains an unmet need. Furthermore, 167 

non-invasive tests that may accurately predict disease progression (as part of the 168 

natural history of NASH), or identify regression (in response to treatment), are 169 

urgently needed to decrease the reliance on repeat liver biopsies.(7-9) 170 

 171 

Machine learning techniques require uploading a large amount of data to a computer 172 

program, and then selecting a model to "fit" these data for computer prediction, which 173 

creates new possibilities in medicine for diagnosing diseases.(10-12) In previous 174 

studies, machine learning has facilitated success in cancer diagnosis and diagnosis of 175 

liver fibrosis.(13,14) Recently, in Sagimet's NASH FASCINATE-2 Phase 2b Clinical 176 
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Trial, stain-free artificial intelligence (AI)-based digital pathology was incorporated as 177 

secondary and exploratory efficacy endpoints. These advances would have been 178 

unimaginable without machine learning. To date, however, there is no a validated, 179 

non-invasive, simple, machine learning-based algorithm (MLA) for diagnosing 180 

NASH. 181 

 182 

Bioelectrical impedance analysis (BIA) is a simple, commonly used, non-invasive and 183 

inexpensive method for assessing body composition.(15) This method can 184 

provide >20 parameters on different dimensions of body composition, such as body 185 

fat content, muscle mass, bone mineral content and metabolic rate. Interestingly, there 186 

is evidence that body composition in NAFLD is different from that of non-steatotic 187 

control subjects.(16-19) However, the abundant body composition outputs from BIA 188 

have not yet been fully evaluated and exploited in the diagnosis and treatment of 189 

NAFLD.  190 

 191 

Therefore, the main aim of our multicenter cross-sectional study was to establish and 192 

validate a novel MLA, referred to as a deep neural network algorithm for non-193 

invasively identifying NASH by impedance-based measures of body composition 194 

(named as the LEARN [bioeLectrical impEdance Analysis foR Nash] algorithm).  195 

 196 

 197 

 198 
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Materials and Methods 199 

Study subjects and design 200 

A total of 1,259 consecutive subjects with suspected NAFLD were initially screened 201 

from six medical centers across China from September 2016 to April 2021. Inclusion 202 

criteria were as follows: (1) elevated serum aminotransferase concentrations and/or 203 

evidence of hepatic steatosis on imaging methods (irrespective of serum 204 

aminotransferase levels); (2) agreement to undergo a liver biopsy; (3) agreement to 205 

undergo BIA method within 1 month of liver biopsy; and (4) age range from 18 to 75 206 

years. A total of 493 subjects were excluded due to the following criteria: (1) 207 

excessive alcohol consumption (more than 20 and 10 grams per day for men and 208 

women, respectively); (2) other coexisting chronic liver diseases, such as viral 209 

hepatitis, autoimmune hepatitis, or drug-induced liver injury; (3) absence of hepatic 210 

steatosis on histology (steatotic hepatocytes ≤5%); and (4) no BIA measurement. As a 211 

consequence of these exclusion criteria, 766 Chinese adults with biopsy-confirmed 212 

NAFLD were included in the final analysis (Figure 1). The study was approved by 213 

the local ethics committee of each medical center. Written informed consent was 214 

obtained from each participant.  215 

 216 

Clinical and laboratory data 217 

For every patient, demographic data, anthropometry, clinical biochemical parameters 218 

and concomitant diseases were measured and collected during liver biopsy, at each 219 

center, within 48 hours from liver biopsy. Hypertension was defined as blood pressure 220 
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≥130/85 mmHg or current use any of anti-hypertensive drugs. Presence of diabetes 221 

was defined as self-reported physician diagnosis of diabetes, use of anti-222 

hyperglycemic drugs, fasting glucose levels ≥7 mmol/L or hemoglobin A1c (HbA1c) 223 

≥6.5% (≥48 mmol/mol). Homeostasis model assessment (HOMA-IR) was used to 224 

estimate insulin resistance, and body mass index (BMI) ≥25 kg/m2 was diagnosed as 225 

overweight/obese. The specific methods for assessing HOMA-IR and BMI have been 226 

described in our previous study.(20) 227 

 228 

Measurement of cytokeratin-18 neoepitope M30 (CK-18 M30) 229 

Serum CK-18 M30 level was measured only in the Wenzhou cohort. Serum CK-18 230 

M30 level was determined by a commercially ELISA kit (Herui Biomed Company 231 

Limited, Suzhou, China), according to the manufacturer’s recommendation. The 232 

specific detection details have been described in our previous study.(21) 233 

 234 

Body Composition Measurement 235 

Each patient was examined for body composition (within 48 hours of the liver biopsy) 236 

by professionally trained personnel at each center in accordance with uniform 237 

operating instructions. Specifically, BIA (InBody 720; Biospace, land Seoul, Korea) 238 

was employed to measure body composition. According to operating instructions, the 239 

subjects took off their shoes and removed their belongings and coats and stood on the 240 

designated electrodes. The thumb of both hands was placed on the thumb electrode 241 

button, and the other four fingers were all placed on the electrode, under the handle, 242 
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with arms straightened. The impedance of left arm, right arm, trunk, right leg and left 243 

leg were measured at six frequencies (1, 5, 50, 250, 500, and 1000 kHz). Based on the 244 

aforementioned impedances, the system automatically produced information of body 245 

composition, which included 20 parameters, such as intracellular water, extracellular 246 

water, total body water, soft lean mass, fat free mass, weight, skeletal muscle mass, 247 

body fat mass, percent body fat, waist-hip ratio, right arm, left arm, trunk, as well as 248 

right leg, left leg, visceral fat area, body cell mass, bone mineral content, basal 249 

metabolic rate, arm circumference and arm muscle circumference. 250 

 251 

Liver biopsy 252 

Liver biopsies were performed using a 16-gauge needle under ultrasound guidance as 253 

previous described.(21) All liver biopsy specimens were interpreted by an 254 

experienced pathologist from each center. Diagnostic criteria for NAFLD were the 255 

evidence of steatotic hepatocytes >5% on histology. NASH was diagnosed only when 256 

the NAFLD activity score (NAS) was ≥4 and each component of its three histological 257 

features (i.e. steatosis, ballooning and lobular inflammation) was ≥1.(22) Liver 258 

fibrosis stage was graded from 0 to four, according to the Brunt’s histologic criteria. 259 

 260 

Development of the LEARN algorithm 261 

An experienced AI team used neural network algorithms to build a prediction model 262 

that provided clinicians with an individual's probability of having NASH. As shown in 263 

the Figure 2, the data from our 766 patients with biopsy-proven NAFLD were first 264 
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subdivided randomly into a training set (613 patients) and a validation set (153 265 

patients), in a 4:1 ratio. The data included in the LEARN algorithm included age, sex, 266 

diabetes and hypertension status, as well as 20 body composition parameters obtained 267 

by BIA. The MLA process is currently the subject of a patent application. In 268 

particular, we normalized processing, and inputted these data to the input layer 269 

composed of the full connection network. In this layer, we further analyzed the 20 270 

body composition parameters. Each parameter was automatically assigned to a 271 

different weight in the neural network model, and the best choices of the first six body 272 

composition information parameters (i.e., arm circumference, body fat percentage, 273 

bone mineral content, basal metabolic rate, body cell mass and visceral fat area) for 274 

prediction of NASH were selected after the method of exhaustion (as shown in 275 

Figure 2). The six body composition parameters along with age, sex, and prior history 276 

of diabetes or hypertension were re-sent into the input layer, to extract the feature 277 

matrix. The feature matrix was then inputted into the residual network layer, 278 

composed of four residual modules, which can also be called the hidden layer. Each 279 

fully connected residual module consists of three fully connected modules and 280 

residual structure. The first two fully connected modules include the fully connected 281 

layer, the batch normalization layer and the Tanh activation function, and the last 282 

module removes the activation function compared with the previous two modules. A 283 

single fully connected residual module may be expressed as: 284 

𝑥௠ = 𝐹(𝑥, {𝑊ଵ,  𝑊ଶ,  𝑊ଷ} ) 285 

𝑦 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑇𝑎𝑛ℎ(𝑥௠ + 𝑥)) 286 
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where 𝑥 is the input feature, 𝑦 is the output feature, 𝑊 indicates the weight of the 287 

fully connected module and 𝐹 indicates the combination of three fully connected 288 

modules. For the feature 𝑥 of the input fully connected residual module, the module 289 

firstly uses three fully connected modules to extract feature successively to generate 290 

intermediate feature 𝑥௠. Then add 𝑥 as residuals to 𝑥௠, and use the Dropout 291 

function to generate 𝑦 after Tanh activation. Four fully connected residual modules 292 

can increase the depth of the model while suppressing the disappearance of gradient, 293 

thus improving the performance of the model. Finally, the extracted features are 294 

inputted into the output layer, composed of the fully connected network and softmax 295 

activation function, to calculate the probability of having NASH. 296 

 297 

Other widely used non-invasive NASH scores 298 

As liver biopsy can be fraught with major acute complications, there are some widely 299 

used non-invasive scores for diagnosing NASH, such as ION, HAIR, NICE and 300 

model, which are based on combinations of laboratory indicators and metabolic 301 

factors.(23-25) In particular, these three non-invasive NASH scores can be calculated 302 

as follows: 303 

The index of NASH (ION) =1.33 waist-to hip ratio +0.03 × triglycerides (mg/dl) + 304 

0.18 × ALT (U/L) +8.53 ×HOMA-IR – 13.93 in men; 0.02 × triglycerides (mg/dl) + 305 

0.24 × ALT (U/L) + 9.61 × HOMA-IR – 13.99 in women. 306 

The NICE model = -5.654 + 3.780E-02 × ALT (IU » L) + 2.215E-03× CK18 fragment 307 

(IU » L) + 1.825 × (presence of metabolic syndrome = 1) 308 
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The HAIR score was calculated by adding hypertension =1, ALT > 40 U/L = 1, and 309 

HOMA-IR index > 5.0 = 1 for each patient (0–3). 310 

 311 

Statistical analysis 312 

Continuous and categorical data were expressed as means ± standard deviations, and 313 

medians (1st quartile, 3rd quartile), or proportions, respectively. For the purpose of 314 

determining statistical differences between the training and the validation groups, the 315 

unpaired Student's t-test (for normally distributed continuous data), the Mann-316 

Whitney U-test (for non-normally distributed continuous data) and the chi-square test 317 

(for categorical variables) were used. PASS15 was used to estimate the sample size. 318 

The area under ROC curve was 0.80, α=0.05(bilateral), β=0.1 (test efficiency was 319 

0.9), and the ratio between groups was 3:2. It was found that a minimum of 42 320 

subjects, including 25 patients and 17 controls, needed to be enrolled. A sample size 321 

of 776 is completely sufficient. The process of establishing the deep neural network 322 

algorithm (the LEARN algorithm) was summarized in Figure 2. The area under the 323 

receiver operating characteristic (AUROC) curve was calculated to evaluate the 324 

discrimination of the machine learning intelligent diagnostic model. Cut-off values for 325 

the diagnosis of NASH were identified in the training group, corresponding to 90% 326 

sensitivity and 90% specificity, respectively. At the same time, the specificity, 327 

sensitivity, negative predictive value (NPV), positive predictive value (PPV) and the 328 

gray zone were also calculated corresponding to each cut-off value in the training and 329 

validation groups. Statistical significance was two sided, set at p-value less than 0.05. 330 
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All statistical tests were performed by R (http://www.r-project.org) and SPSS version 331 

22.0 (SPSS Inc). 332 

 333 

Results 334 

Patient characteristics 335 

A total of 766 Chinese adult patients with biopsy-confirmed NAFLD from six 336 

hospitals were randomly assigned to the training (n = 613) and validation groups (n = 337 

153) in a ratio of 4:1. As shown in Table 1, there were no statistical differences in 338 

demographic and biochemical measurements, body composition data, as well as other 339 

widely used non-invasive NASH scores (ION, HAIR, NICE model) and individual 340 

features of liver histology between the two groups. It is worth noting that a complete 341 

body composition examination report included 20 parameters, involving also skeletal 342 

muscle mass and abdominal fat area. However, due to the loss of data during the 343 

collection process, some patient’s body composition examination reports were 344 

incomplete and reported between 12 and 19 measurements, which we referred to as 345 

subjects with partial missing data on body composition (PMBC). The baseline 346 

clinical, biochemical and BIA characteristics of patients stratified by those without 347 

missing BIA data (WMBC) (n=690) and those with partial missing BIA data (PMBC) 348 

(n=76) are summarized in supplementary Table 1. Supplementary Table 2 shows 349 

the baseline characteristics of patients with biopsy-proven NAFLD, stratified by 350 

NASH or non-NASH, both in the training and validation groups. Compared with 351 

those with non-NASH, patients with NASH differed in terms of age, BMI, percent 352 
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body fat, visceral fat area, fasting glucose, plasma lipid profile and serum 353 

transaminases. Notably, LEARN algorithm, ION, HAIR, and NICE model, as well as 354 

histological stages of fibrosis also significantly differed between NASH or non-355 

NASH patients, both in the training or validation groups. 356 

 357 

LEARN algorithm development 358 

As shown in Figure 2, we have developed a novel and automatic machine learning 359 

model, called the LEARN algorithm, which included age, sex, prior hypertension, 360 

prior diabetes, as well as six body composition parameters (namely arm 361 

circumference, percent body fat, bone mineral content, basal metabolic rate, body cell 362 

mass and visceral fat area). Biochemical parameters were not included in the LEARN 363 

algorithm. The individual probability of having NASH was calculated via the LEARN 364 

algorithm. For example, for a patient who has undergone BIA-based measurements of 365 

body composition and who provides data on age, sex, and prior history of 366 

hypertension or diabetes, it is possible to calculate her/his probability of having 367 

NASH. 368 

 369 

Diagnostic performance of LEARN algorithm in the training and validation 370 

groups 371 

The AUROC for LEARN algorithm in the training and validation groups were 0.81 372 

(95%CI: 0.77-0.84) (Figure 4a), and 0.80 (95%CI: 0.73-0.87) (Figure 4c), 373 

respectively. In both patient groups, the LEARN algorithm performed well for 374 
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diagnosing NASH. To more accurately identify NASH, we chose 0.492 (sensitivity = 375 

0.90) and 0.531(specificity = 0.91), as dual cut-off values in the training group 376 

(Figure 4b). As shown in Table 2, when we chose these two cut-off values obtained 377 

by the LEARN algorithm, there was a NPV of 0.70 to rule out NASH and a PPV of 378 

0.93 to rule in NASH in the training group, respectively. Similarly, in Figure 4d and 379 

Table 2, when we used the same dual cut-off values in the validation group, the cut-380 

off values of 0.492 (sensitivity = 0.91) and 0.531 (specificity = 0.89) gave a NPV of 381 

0.71 to rule out NASH and a PPV of 0.90 to rule in NASH in the training group, 382 

respectively. The diagnostic efficiency in the validation group also showed the same 383 

level of discrimination as that in the training group. Also, Figure 3 shows the 384 

boxplots of the LEARN algorithm vs. histopathological severity of NAFLD in the 385 

training group. We observed that the prediction probability, as calculated by the 386 

LEARN algorithm, increased progressively with the histological severity of lobular 387 

inflammation, ballooning, steatosis and presence of definite NASH. 388 

 389 

Subgroup analyses 390 

We tested the diagnostic performance of the LEARN algorithm in different patient 391 

subgroups, in both training and validation groups. As shown in Table 3, the LEARN 392 

algorithm performed well in all subgroups both in the training group and in the 393 

validation group, regardless of sex, age, serum ALT levels and the presence or 394 

absence of liver fibrosis, hypertension, diabetes, or obesity (AUROCs ranging from 395 

0.77 to 0.82). In particular, it should be noted that the LEARN algorithm performed 396 
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well among patients with or without liver fibrosis (AUROCs ranging from 0.77 to 397 

0.83), in both the training and validation groups.  398 

 399 

Diagnostic performance of the LEARN algorithm vs. other widely used non-400 

invasive scores or biomarkers for NASH 401 

As shown in Table 4, the LEARN algorithm showed a better diagnostic performance 402 

for identifying NASH (AUROC 0.80, 95%CI: 0.77-0.84) compared with other non-403 

invasive NASH scores and the biomarker CK-18 M30. The AUROCs of these non-404 

invasive scores or biomarkers were all less than 0.75 in the whole cohort; in 405 

particular, serum CK-18 M30 had an AUROC 0.73 (95%CI: 0.69-0.77); HAIR, 0.63 406 

(95%CI: 0.59-0.67); ION, 0.67 (95%CI: 0.63-0.72); and the NICE model, 0.73 407 

(95%CI: 0.69-0.77).  408 

 409 

Diagnostic performance of the LEARN algorithm in the PMBC group 410 

As shown in supplementary Table 1, there were 76 NAFLD patients with PMBC in 411 

the whole cohort. In order to improve the applicability of the LEARN algorithm in the 412 

real world where incomplete BIA data may occur, we adopted the strategy of 413 

replacing partially missing data of BIA values by mean values for the group. 414 

Supplementary Table 3 shows that the diagnostic performance of the LEARN 415 

algorithm in the PMBC group, and the AUROC was 0.82 (95%CI: 0.72-0.92). As 416 

shown in Supplementary Figure 1, in the PMBC group, the LEARN algorithm 417 

showed a greater AUROC compared with ION and HAIR for predicting NASH. The 418 
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diagnostic performance of the LEARN algorithm in the PMBC group also performed 419 

well despite partially missing data. 420 

 421 

Discussion 422 

In this large cross-sectional multicenter study, we have developed a novel, fully 423 

automatic MLA, referred to as the LEARN algorithm (patent-pending, 424 

2021110501603) to non-invasively diagnose NASH. For patients with biopsy-proven 425 

NAFLD who undergo impedance-based measures of body composition and provide 426 

simple information on age, sex, diabetes status and hypertension, it is possible to 427 

predict their probability of having NASH on histology with acceptable certainty. Our 428 

newly developed LEARN algorithm performed well in both the training and 429 

validation groups, and across a range of clinically relevant subgroups of patients. To 430 

our knowledge, this is the first multicenter study to develop a prediction model based 431 

on body composition, for non-invasively identifying NASH. 432 

 433 

Besides clinical features of the metabolic syndrome (including hypertension and 434 

diabetes), there are other risk factors for a faster progression of NAFLD to NASH. A 435 

large number of studies suggested that body composition may be different in NAFLD 436 

from that in people without NAFLD, and that there is metabolic dysfunction in 437 

NAFLD.(16-19) Increased dietary calorie intake and lack of physical exercise may 438 

increase the amount of adipose tissue, and accumulation of fat mass may induce 439 

insulin resistance and exacerbate liver damage in NAFLD.(26-28) Otgonsuren et al. 440 
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showed that anthropometric measures, such as arm circumference and body fat 441 

percentage, were significantly higher in NAFLD than in non-steatotic controls.(29) 442 

Ko et al. found that ultrasound-detected NAFLD was associated with higher BMI, 443 

larger waist circumference, and greater body fat mass, through a large sample analysis 444 

involving 2,759 participants.(30) Idilman et al. showed that visceral adipose tissue 445 

alone could be a modest risk factor for predicting NASH (AUROC, 0.64).(31) In 446 

addition, arm circumference, percent body fat, BMI, waist circumference, visceral 447 

adipose tissue, skeletal muscle mass (sarcopenia) may be also risk factors for greater 448 

NAFLD severity.(32) Filip et al. reported that osteoporosis (as measured by bone 449 

mineral content) may also increase the risk of NAFLD.(33) In our study, the LEARN 450 

algorithm highlights the utility of body composition measurements for the diagnosis 451 

of NASH and this algorithm may help in reducing the number of unnecessary liver 452 

biopsies for diagnosing NASH. The value of impedance-based measurements of body 453 

composition may also be even greater if the full cost of liver biopsies is to be taken 454 

into account (allowing for biopsy-associated complications). 455 

 456 

Prediction models lacking transparency and predictability have the potential to cause 457 

harm. Our research overcomes this shortcoming. Choosing machine-learning models 458 

with high transparency rather than black box models, with high decision-making risk 459 

is preferred. Our study uses the classical algorithm of deep learning to develop a new 460 

deep neural network for processing big data that includes impedance-based 461 

measurements of body composition. In the LEARN algorithm, residual networks were 462 
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used to prevent gradient disappearance and strengthen the ability of the deep neural 463 

network to extract features, thus improving the classification performance of the deep 464 

neural network; the dropout method was used to address the over-fitting issue and 465 

improve the generalization ability of the deep neural network; fully connected layers 466 

were added to analyze the relationship between features more clearly and intuitively, 467 

and reduce the influence of feature position on classification. Finally, we re-cycled the 468 

residual network to further improve the non-linear expression ability and complexity 469 

of the deep neural network. By following this design approach, the LEARN algorithm 470 

was optimized. 471 

 472 

It is important to underline that in our study we included not only NAFLD patients 473 

with elevated serum transaminase levels, but also those without normal serum 474 

transaminases who had evidence of hepatic steatosis at recruitment as diagnosed by 475 

imaging techniques. For the LEARN algorithm, we used double cut-off points to 476 

identify NASH, as shown in Figure 4 and Table 2. For the purpose of excluding 477 

NASH, a lower cut-off value was chosen. For diagnosing NASH, a higher cut-off 478 

point was selected. For the LEARN algorithm, the lower cut-off value of 0.492 479 

showed a high sensitivity (90%) and a NPV of 0.70, while the upper cut-off value of 480 

0.536 showed similar specificity (90%) and a PPV of 0.93 in the training and 481 

validation groups.  482 

 483 

The choice of cut-off values conducive to optimum sensitivity or specificity depends 484 
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on the purpose of detection. Shown in Table 2, there is a gray zone of 39% when dual 485 

cut-offs were used to identify NASH. However, it should be noted that there is always 486 

a “gray zone” for all non-invasive tests that use two cutoff thresholds.(34) On the 487 

other hand, approximately 60% of NAFLD patients were able to avoid liver biopsies 488 

using our LEARN algorithm when dual cut-offs were chosen. 489 

 490 

Currently, treatment of NASH is a major focus of drug development 491 

worldwide.(35,36) Early, non-invasive identification of NASH for possible drug 492 

treatment will be an important medical challenge in the next few years. However, 493 

patients with NAFLD, especially those with normal serum ALT levels, and those who 494 

are nonobese or do not have diabetes are often ignored in further assessment of 495 

NAFLD severity. Therefore, we have also analyzed the diagnostic performance of our 496 

newly proposed LEARN algorithm in identifying NASH in different patient 497 

subgroups, stratified by obesity, diabetes or serum ALT levels (Table 3). Interestingly, 498 

our LEARN algorithm performed well in the non-obese, non-diabetic, or serum 499 

normal or abnormal ALT (ALT＞40 U/L) subgroups, in both the training and 500 

validation groups. Importantly, NASH patients with or without fibrosis did not 501 

influence the diagnostic performance of the "LEARN" algorithm. Both in the training 502 

and the validation groups, the diagnostic performance of the "LEARN" algorithm was 503 

above 0.75 among patients with or without liver fibrosis. In the whole cohort, we also 504 

compared the diagnostic performance of LEARN algorithm, serum CK-18 M30 level, 505 

HAIR, ION and NICE models in identifying NASH, and found that these latter non-506 
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invasive scores had moderate accuracy in our cohort, although this finding might be 507 

partially affected by differences in the prevalence of NASH among different study 508 

populations.(24,25,37,38) As shown in Table 4, the diagnostic performance of the 509 

LEARN algorithm in identifying NASH had an AUROC of 0.80, which is 510 

significantly better than other non-invasive NASH scores mentioned above.  511 

 512 

In our study, PASS15 was used to estimate the sample size. Each patient was 513 

examined for body composition by professionally trained personnel at each center in 514 

accordance with uniform operating instructions, and the data were extracted at each of 515 

the 6 participating sites by trained data collectors and compiled into spread sheets. 516 

Then an experienced AI team used neural network algorithms to build a prediction 517 

model that provided clinicians with an individual's probability of having NASH as 518 

described above. 519 

 520 

Our BIA data were extracted at each of the 6 participating sites by trained data 521 

collectors and compiled into spread sheets. The data collection process was checked 522 

repeatedly, to reduce the chance of document errors. However, some of our patient’s 523 

body composition examination reports were incomplete and reported between 12 and 524 

19 measurements, which we referred to as subjects with ‘partial missing BIA data’. 525 

We did not exclude these subjects from the analysis in order to improve the utility of 526 

our LEARN algorithm in the real world. In the process of building the LEARN 527 

algorithm, the artificial intelligence algorithm has used an average value to replace 528 
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missing data for those patients who had ‘partial missing BIA data’. Specially, we 529 

adopted the strategy of replacing PBMC group values by mean values, as this can 530 

improve the utility of the LEARN algorithm in the real world where missing data is 531 

relatively common. In the PMBC group, the diagnostic performance for identifying 532 

NASH performed well with an AUROC of 0.82. 533 

 534 

There are some important limitations that should be mentioned. Firstly, the 535 

participants were all Chinese of Han ethnicity, so our results might not be applicable 536 

to other ethnic groups. Secondly, when comparing results from our cohort with other 537 

published studies that used non-invasive scores or biomarkers for diagnosing NASH, 538 

the heterogeneity between studies might at least in part contribute to the different 539 

diagnostic performances of these non-invasive tests for NASH (e.g., serum CK-18 540 

M30 level, HAIR, ION, NICE models). Specially, the HAIR score system is a non-541 

invasive score for predicting NASH based on hypertension, ALT levels and insulin 542 

resistance. When the score is ≥2, the AUROC for predicting NASH is 0.9, and the 543 

sensitivity and specificity are 80% and 89%, respectively. However, this model is 544 

currently only applicable to patients with BMI>35 kg/m2.(23) So the applicability is 545 

not widespread. In our study, the Han- population was mainly included, and BMI 546 

generally concentrated in 24-29 kg/m2.Therefore, HAIR had a low AUROC in this 547 

study. Finally, there was a “gray zone” and 39% patients couldn’t be identified with 548 

NASH or NAFL. This latter problem is a common limitation for all non-invasive tests 549 

where two cut-off thresholds are used.(39) In addition, a two-step approach has been 550 
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also recently reported. By using this two-step approach, patients in the “gray zone” 551 

were re-evaluated in combination with other non-invasive diagnostic tests and the 552 

need for liver biopsy was reduced significantly without much effect on the percentage 553 

of misclassifications.(40) In future studies, we will evaluate whether the combination 554 

of our LEARN algorithm with other non-invasive NASH scores contributes to the 555 

improved stratification of severity of NAFLD. 556 

 557 

In conclusion, we have developed a fully automatic LEARN algorithm utilizing 558 

impedance-based measurements of body composition along with age, sex, and prior 559 

history of hypertension or diabetes, which shows good predictive ability for non-560 

invasively identifying NASH in a large multi-center study across China. Our results 561 

suggest that routine measurement of body composition for the assessment of patients 562 

with NAFLD may be helpful in staging severity of liver disease and identification of 563 

NASH.  564 

 565 
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 567 
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 572 

 573 



 

27 

 

Reference 574 

1. Younossi Z, Tacke F, Arrese M, et al. Global Perspectives on Nonalcoholic Fatty Liver Disease 575 

and Nonalcoholic Steatohepatitis. Hepatology (Baltimore, Md) 2019;69:2672-82. 576 

2. Chalasani N, Younossi Z, Lavine J, et al. The diagnosis and management of nonalcoholic fatty 577 

liver disease: Practice guidance from the American Association for the Study of Liver Diseases. 578 

Hepatology (Baltimore, Md) 2018;67:328-57. 579 

3. Brunt E, Janney C, Di Bisceglie A, et al. Nonalcoholic steatohepatitis: a proposal for grading and 580 

staging the histological lesions. The American journal of gastroenterology 1999;94:2467-74. 581 

4. Diehl A, Day C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. The New 582 

England journal of medicine 2017;377:2063-72. 583 

5. Alkhouri N, Tincopa M, Loomba R, et al. What Does the Future Hold for Patients With 584 

Nonalcoholic Steatohepatitis: Diagnostic Strategies and Treatment Options in 2021 and Beyond? 585 

Hepatology communications 2021. 586 

6. Younossi Z, Stepanova M, Rafiq N, et al. Pathologic criteria for nonalcoholic steatohepatitis: 587 

interprotocol agreement and ability to predict liver-related mortality. Hepatology (Baltimore, Md) 588 

2011;53:1874-82. 589 

7. Zhou Y, Zheng K, Targher G, et al. Non-invasive diagnosis of non-alcoholic steatohepatitis and 590 

liver fibrosis. The lancet Gastroenterology & hepatology 2021;6:9-10. 591 

8. Zhou Y, Wong V, Zheng M. Consensus scoring systems for nonalcoholic fatty liver disease: an 592 

unmet clinical need. Hepatobiliary surgery and nutrition 2021;10:388-90. 593 

9. Rios R, Zheng K, Targher G, et al. Non-invasive fibrosis assessment in non-alcoholic fatty liver 594 

disease. Chinese medical journal 2020;133:2743-5. 595 

10. Obermeyer Z, Emanuel E. Predicting the Future - Big Data, Machine Learning, and Clinical 596 

Medicine. The New England journal of medicine 2016;375:1216-9. 597 

11. Beam A, Kohane I. Big Data and Machine Learning in Health Care. JAMA 2018;319:1317-8. 598 

12. Fralick M, Colak E, Mamdani M. Machine Learning in Medicine. The New England journal of 599 

medicine 2019;380:2588-9. 600 

13. Chen K, Nie Y, Park S, et al. Development and Validation of Machine Learning-based Model 601 

for the Prediction of Malignancy in Multiple Pulmonary Nodules: Analysis from Multicentric 602 

Cohorts. Clinical cancer research : an official journal of the American Association for Cancer 603 

Research 2021;27:2255-65. 604 

14. Feng G, Zheng K, Li Y, et al. Machine learning algorithm outperforms fibrosis markers in 605 

predicting significant fibrosis in biopsy-confirmed NAFLD. Journal of hepato-biliary-pancreatic 606 

sciences 2021;28:593-603. 607 

15. Pietrobelli A, Rubiano F, St-Onge M, et al. New bioimpedance analysis system: improved 608 

phenotyping with whole-body analysis. European journal of clinical nutrition 2004;58:1479-84. 609 

16. Ariya M, Koohpayeh F, Ghaemi A, et al. Assessment of the association between body 610 

composition and risk of non-alcoholic fatty liver. PloS one 2021;16:e0249223. 611 

17. Miyake T, Miyazaki M, Yoshida O, et al. Relationship between body composition and the 612 

histology of non-alcoholic fatty liver disease: a cross-sectional study. BMC gastroenterology 613 

2021;21:170. 614 

18. Schmitz S, Schooren L, Kroh A, et al. Association of Body Composition and Sarcopenia with 615 

NASH in Obese Patients. Journal of clinical medicine 2021;10. 616 



 

28 

 

19. Samala N, Desai A, Vilar-Gomez E, et al. Decreased Quality of Life Is Significantly Associated 617 

With Body Composition in Patients With Nonalcoholic Fatty Liver Disease. Clinical 618 

gastroenterology and hepatology : the official clinical practice journal of the American 619 

Gastroenterological Association 2020;18:2980-8.e4. 620 

20. Li G, Rios R, Wang X-X, et al. Sex influences the association between appendicular skeletal 621 

muscle mass to visceral fat area ratio and nonalcoholic steatohepatitis in patients with biopsy-622 

proven NAFLD. British Journal of Nutrition 2021. 623 

21. Zhou Y, Ye F, Li Y, et al. Individualized risk prediction of significant fibrosis in non-alcoholic 624 

fatty liver disease using a novel nomogram. United European gastroenterology journal 625 

2019;7:1124-34. 626 

22. Newsome P, Sasso M, Deeks J, et al. FibroScan-AST (FAST) score for the non-invasive 627 

identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a 628 

prospective derivation and global validation study. The lancet Gastroenterology & hepatology 629 

2020;5:362-73. 630 

23. Dixon J, Bhathal P, O'Brien P. Nonalcoholic fatty liver disease: predictors of nonalcoholic 631 

steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 2001;121:91-100. 632 

24. Anty R, Iannelli A, Patouraux S, et al. A new composite model including metabolic syndrome, 633 

alanine aminotransferase and cytokeratin-18 for the diagnosis of non-alcoholic steatohepatitis in 634 

morbidly obese patients. Alimentary pharmacology & therapeutics 2010;32:1315-22. 635 

25. Younes R, Rosso C, Petta S, et al. Usefulness of the index of NASH - ION for the diagnosis of 636 

steatohepatitis in patients with non-alcoholic fatty liver: An external validation study. Liver 637 

international : official journal of the International Association for the Study of the Liver 638 

2018;38:715-23. 639 

26. Després J, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006;444:881-7. 640 

27. Kuk J, Katzmarzyk P, Nichaman M, et al. Visceral fat is an independent predictor of all-cause 641 

mortality in men. Obesity (Silver Spring, Md) 2006;14:336-41. 642 

28. Nobarani S, Alaei-Shahmiri F, Aghili R, et al. Visceral Adipose Tissue and Non-alcoholic Fatty 643 

Liver Disease in Patients with Type 2 Diabetes. Digestive diseases and sciences 2021. 644 

29. Otgonsuren M, Stepanova M, Gerber L, et al. Anthropometric and clinical factors associated 645 

with mortality in subjects with nonalcoholic fatty liver disease. Digestive diseases and sciences 646 

2013;58:1132-40. 647 

30. Ko Y, Wong T, Hsu Y, et al. The Correlation Between Body Fat, Visceral Fat, and Nonalcoholic 648 

Fatty Liver Disease. Metabolic syndrome and related disorders 2017;15:304-11. 649 

31. Idilman I, Low H, Gidener T, et al. Association between Visceral Adipose Tissue and Non-650 

Alcoholic Steatohepatitis Histology in Patients with Known or Suspected Non-Alcoholic Fatty Liver 651 

Disease. Journal of clinical medicine 2021;10. 652 

32. Habig G, Smaltz C, Halegoua-DeMarzio D. Presence and Implications of Sarcopenia in Non-653 

alcoholic Steatohepatitis. Metabolites 2021;11. 654 

33. Filip R, Radzki R, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver 655 

disease and osteoporosis. Clinical interventions in aging 2018;13:1879-91. 656 

34. Boursier J, Guillaume M, Leroy V, et al. New sequential combinations of non-invasive fibrosis 657 

tests provide an accurate diagnosis of advanced fibrosis in NAFLD. Journal of hepatology 658 

2019;71:389-96. 659 

35. Newsome P, Buchholtz K, Cusi K, et al. A Placebo-Controlled Trial of Subcutaneous 660 



 

29 

 

Semaglutide in Nonalcoholic Steatohepatitis. The New England journal of medicine 661 

2021;384:1113-24. 662 

36. Dufour J, Caussy C, Loomba R. Combination therapy for non-alcoholic steatohepatitis: 663 

rationale, opportunities and challenges. Gut 2020;69:1877-84. 664 

37. Wieckowska A, Zein N, Yerian L, et al. In vivo assessment of liver cell apoptosis as a novel 665 

biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology (Baltimore, Md) 666 

2006;44:27-33. 667 

38. Poynard T, Ratziu V, Charlotte F, et al. Diagnostic value of biochemical markers (NashTest) for 668 

the prediction of non alcoholo steato hepatitis in patients with non-alcoholic fatty liver disease. 669 

BMC gastroenterology 2006;6:34. 670 

39. Zhou Y, Gao F, Liu W, et al. Screening for compensated advanced chronic liver disease using 671 

refined Baveno VI elastography cutoffs in Asian patients with nonalcoholic fatty liver disease. 672 

Alimentary pharmacology & therapeutics 2021;54:470-80. 673 

40. Gao F, Huang J, Zheng K, et al. Development and validation of a novel non-invasive test for 674 

diagnosing fibrotic non-alcoholic steatohepatitis in patients with biopsy-proven non-alcoholic 675 

fatty liver disease. Journal of gastroenterology and hepatology 2020;35:1804-12. 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 



 

30 

 

Table Legends 692 

Table 1. Baseline characteristics of patients with biopsy-proven NAFLD. 693 

Table 2. Diagnostic performance of the LEARN algorithm. 694 

Table 3. Diagnostic performance of LEARN algorithm in different patient subgroups. 695 

Table 4. Pairwise comparisons between AUROCs for the LEARN algorithm and 696 

other non-invasive NASH scores or biomarkers for identifying NASH. 697 

Supplementary Table 1. Baseline characteristics of patients with or without partial 698 

missing data of body composition. 699 

Supplementary Table 2. Baseline characteristics of patients, stratified by NASH or 700 

non-NASH on histology in the training or validation groups. 701 

Supplementary Table 3. Diagnostic performance of LEARN algorithm in groups of 702 

patients with or without partial missing data of body composition. 703 

 704 
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Figure Legends 714 

Figure 1. Flowchart of the study. 715 

Figure 2. Flowchart of the deep neural network algorithm for prediction of NASH 716 

(namely the LEARN algorithm). 717 

Input layer: input the normalized data into this layer consisting of four modules. First, 718 

a Full Connected (FC) layer, to synthesize the features extracted from the previous 719 

section. Second, a Batch Normalization (BN) layer, to simplify the calculation and 720 

make the data retain its original expression ability as far as possible after the 721 

normalization processing. Third, Tanh function, a nonlinear function to help machines 722 

learn complex mappings. Last, the Dropout layer, reducing overfitting, extract a 723 

matrix containing 1536 features. Hidden layer: the matrix containing 1536 features is 724 

input into this layer, and the data needs to be looped four times through the residual 725 

module. Output layer: the output layer is consisted of a FC layer and a Softmax 726 

function. Through the Softmax function, we can map the output values to the interval 727 

(0, 1) for the final classification. 728 

Figure 3. Boxplot of the LEARN algorithm versus histopathological severity of 729 

NAFLD in the training group: (a) steatosis grade, (b) ballooning grade, (c) lobular 730 

inflammation grade, and (d) presence of definite NASH. 731 

Figure 4. Diagnostic performance of LEARN algorithm and sensitivity, specificity of 732 

the dual cut-off values in the training and validation groups. (a, b) training group;(c, 733 

d) validation group. Abbreviations: LEARN algorithm: deep neural network model for 734 

identifying nonalcoholic steatohepatitis. 735 
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Supplementary Figure 1. Pairwise comparison of ROC curves between the deep 736 

neural network model for identifying NASH (LEARN algorithm) and ION and HAIR 737 

models in the group of patients with partial missing data of body composition. 738 


