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Engine Fuel Consumption Modelling using
Prediction Error Identification and On-road Data

Anil K. Madhusudhanan, Xiaoxiang Na, Daniel Ainalis and RBZebon

Abstract—Engine modelling is an important step in predicting development involved fuel consumption estimation usingda
the fuel consumption of a vehicle. Existing methods in the from a portable emission measurement system. In [11], a
literature require dedicated tests on a test track or on a chassis fuel consumption map, as a function of vehicle speed and

dynamometer or they require measurements from several daysfo acceleration. was developed using fuel consumption ang-emi
vehicle operation. This article proposes a new method to model € ! evelop gfue P

fuel flow rate of a diesel engine and a compressed gas engineSion measurements. This fuel consumption map development
using prediction error identification and on-road data collection. required laboratory testing using a chassis dynamometer. |
The model inputs are the engine torque and speed. The on-road [13], data from a vehicle’s on-board diagnostic port, whiaim
vehicle data was collected during normal transport operations. be measured on-road, was used to develop a fuel consumption

The identification data set was approximately99% shorter than del functi f th hicl d lerati d
the baseline method. The proposed method is applicable for other model as a function of the venicle speed, acceleration an

types of vehicles, including electric vehicles. The identified engine 9as pedal position. In [14], a fuel consumption model using
models have less than 1.3% mean error and 2.5% RMS error. vehicle speed and altitude data from a GPS receiver was

Index Terms—Engine model, prediction error identification, proposed. This model development assumed constant engine
vehicle fuel consumption. efficiency. In [16], a framework to develop computationally
efficient vehicle energy consumption models was propoged. |
|. INTRODUCTION considers vehicle parameters, drive cycles in which thécleh

SSESSING fuel consumption benefits of different in(-)mpoet(r)?t;soggﬁ vehicle mass. But it does not use an engine or

terventions, e.g. aerodynamic features, low rolling re- . . . .
, . . Some of the methods in the literature do consider engine
sistance tyres and cruise control systems, is a necessary, 2], [8]. [12], [15]. These engine models are mainl
decarbonisation activity in the transport sector. For gxem tLY ' ) 9 y

evaluating the effects of semi-trailer modifications onlfuein the form of steady state engine maps, which are empirical

. . . [ook-up tables of fuel consumption as a function of engine
consumption and carbon emissions of heavy goods vehic

es . X )
[1], and analysing the effects of biomethane as a truck fu%?eed :.and torque. In [8],  fuel cons.umpnor? model, mclgdm_

S o . an engine map, was developed using dedicated tests, which

on carbon emissions and lifetime vehicle cost [2]. In the . : : :

.required the vehicle to be taken out of business operations.

recent years, there have also been several work on exploit|n o, ) :

. . .In addition to the vehicle speed and acceleration, the model

autonomous driving technologies to reduce fuel consumptio

and carbon emissions [3]-[5]. A vehicle fuel consumptioﬁroloosed in [12] uses a steady state engine map, creategl usin
. . st data from a chassis dynamometer. In [15], a commercial
model is often required for such analyses. To develop fue]

. . . power train simulation software, AVL Cruise, was used to
consumption models, there are several methods in thetiirera . . o
2], [6]-[16]. develop a fuel consumption model using the longitudinal

ost oftrese mthod co ot model he enin in eS0T TGr, 1 e enane map. Th vk et
using empirical methods [6], [7], [9]-[11], [13], [14], [16 y 9

In [6], second order polynomials were proposed to predigfap‘ To reduce the experimental cost, the number of data

. . L points in the engine map was limited to less thi#n In [2],
fuel consumption. The effect of different driving patterors fHeI consumption models of Compressed Gas (CG) and diesel

fuel consumption was studied in [7] using a polynomial bas% . :
. .frucks were developed using on-road data, which was cellect
model. ‘In [9], a vehicle mass dependent fuel consumpti rnom the vehicles’ Fleet Management System (FMS) interface

model was developed using statistical data. Fuel consomptb . .
. : feady-state engine maps, using data from several days of
factors such as engine speed and torque, road elevatian, aﬁr

. . . . o ansport operations, were developed in this work.
dynamic drag and rolling resistance were ignored in thiskwor . : .
. X . Having an engine model can improve the accuracy of a fuel
A model with the fuel consumption rate as a function of ve-

. . . mption model. However, m f the engine modellin
hicle speed and acceleration was proposed in [10]. The mogg[>! p;o Qde owever, OSt. of the engine modelling

methods in the literature require dedicated tests [8],,[[1H],
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engine modelling method to address these problems. coordinates of the vehicle using its internal GPS sensar. Fo
The main contributions of this article are: the vehicles used in this work, the FMS interface reported

« A method to model fuel flow rates of a diesel enginéhe engine torque as a percentage of the maximum torque.
and a Compressed Gas (CG) engine using Predictibperefore, it was multiplied by the maximum torque, which
Error Identification (PEI) and on-road data collection i¥/as extracted from the On-Board Diagnostic (OBD) port.
proposed. The method is also applicable to other vehicle
types, including electric vehicles.

« Dynamic models of a diesel engine and a CG engine were
identified and validated using different data sets.

« The identified diesel engine model and CG engine model
were compared against the baseline models in [2], which
were also developed using on-road data.

This article is structured as follows. Section Il describes
how the vehicles were instrumented and how the on-road
data was collected. Data preprocessing before identiftlieg
engine models is explained in Section Ill. In Section IV, the
model identification method is described. The identificatio
and validation results are shared in Section V. It also dosta
comparisons between the identified engine models and ﬁ
baseline models in [2]. Finally, the conclusions and future

work are mentioned in Section VI. The identified diesel eegin As the FMS data from the CG truck (a Scania P340 Gas)
model and CG engine model are given in the article Appendifiy ot include the fuel flow rate, it was instrumented with
a MASS-STREAM D-6300 gas flow meter and a Bluetooth
[I. INSTRUMENTATION AND DATA COLLECTION data logger (see Fig. 1). The gas flow meter uses a constant

The propsed method was used to model two differefRmperature anemometer principle. It can measure in thgeran
articulated heavy goods vehicles with maximum gross vehid®-5, 125] kg/h within 2% full scale accuracy and comes with
masses oft4 t. One had a tractor unit with a Eu® diesel @ factory calibration certificate. Its output signal is ireth
engine, while the other had a spark ignition engine that ran &2nge [0, 10] V. The fuel flow meter was connected to an

Compressed Gas (CG). The vehicles were measured in-ser@galog input of the Bluetooth data logger, BTH-1208LS, whic
with a Comprehensive data |Ogg|ng System_ communicated via Bluetooth with the SRF Logger. For the

diesel truck (a Scania P320 Diesel), the fuel flow rate was

8. 2: One of the instrumented vehicles, a Scania P340 Gas.

Data Transmission via Gas Flow Meter available from the vehicle’s FMS interface. _
. The vehicles were manufactured by Scania AB and are part
Mobile Internet (Only for CG Truck) . -
of a fleet operated by the John Lewis Partnership Plc, UK.

The data collection was performed during normal transport
operations and did not require any intervention from theedri
Bluetooth Data Logger | Once the vehicles began to move, the SRF Loggers acquired

Smartphone < (Only for CG Truck) and automatically uploaded the data via 3G or 4G mobile
' data connection and sent the data to a database server at the
f University of Cambridge.

Vehicle FMS Bluetooth
.>

Interface | | Dongle Il1. DATA PREPROCESSING
The engine models have two inputs, the engine speed and
SRF Logger torque. The model output is the fuel flow rate. As men-

Fig. 1: A schematic diagram of the vehicle instrumentatiorfioned in the introduction, many researchers have usedheehi
speed, longitudinal acceleration, vehicle mass or tleq@ddal

Fig. 1 shows a schematic diagram of the instrumentatigosition as an input for the fuel consumption model. But
and Fig. 2 shows one of the instrumented vehicles. Tlige model's complexity, i.e. the order, non-linearitiesdan
instrumentation uses an SRF Logger, developed at the Centneertainties, may increase if these inputs are used thstea
for Sustainable Road Freight (SRF) at the University aff the engine torque and speed. This increase in complexity
Cambridge. It consists of a smartphone, a software appenrittis caused by the additional vehicle dynamics and effects of
for the smartphone and a VIACONT Bluetooth dongle. Thexternal time varying factors such as road slope and wind
Bluetooth dongle connects to the vehicles Fleet Managemapeed. As a consequence, using the vehicle speed, acoelerat
System (FMS) interface and transmits the FMS data to theass or throttle pedal position as an input, it will be difficu
smartphone. The FMS data includes the accelerator pettaidentify a model that meets the cross-correlation and-aut
position, brake pedal position, vehicle speed, engine dspeeorrelation criteria, which are discussed in the next secti
engine torque and fuel flow rate. The smartphone obtains GBS the other hand, considering the engine speed and torque
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as the model inputs, it is feasible to identify a dynamic niode
that meets these criteria.

The input and output measurements were preprocessed
before identifying a model. The identified models are Linear
Time Invariant (LTI) and the engine idling state with an U(z)
engine speed o600 rpm was chosen as the linearisation
point. Therefore, average values of the input and output
measurements, when the engine was idling, were subtracted
from the respective measurements. The selected ideritficat
data set was approximately.5 hrs long with a sampling Gl 0) -
interval of0.3 s. The diesel truck’s identification data set with '
the preprocessed input and output measurements is shown in
Fig. 3. Fig. 4 shows the validation data set for the dieselktru
which is clearly different from the identification data sefig. Héﬁ)
3.

GQ(Z)

Similar to Fig. 3 and Fig. 4, identification and validation #5(%9)

data sets for the CG truck were also preprocessed before o o
identifying a dynamic model for the CG engine. Fig. 5: A schematic diagram of the prediction error model.

IV. M ODEL IDENTIFICATION . .
. ) ) i o An estimate of the parameter vector with data samples,
This section describes the model identification method. The  is found by solving the following optimisation problem

following system model is considered: to minimise the sum of squares of prediction error values:
Y (z) = Go(2)U(2) + Ho(2)E(z). 1) ) 1 XN ,

HereY (z) is the z-transform of the system output (fuel flow by = argénm N kilE(kJ,G) ©)

rate),Go(z) is the true discrete-time transfer function between N

the system inputs (engine speed and torque) and outjfus, — argmin 1 Z [y(k) — (k. 0)] 2 7

is the z-transform of the system inputBly(z) is the true s N ’

discrete-time transfer function to shape white noise, Bxe)

) . . To identify an engine model, the following Box-Jenkins
is the z-transform of white noise. In (1), the second term an !
: S : ... model structures were used for the parametric transfer-func
the right hand side is to consider the effect of noise in the )
) ions, G(z,0) and H(z, 0):
measurements so that an accurate transfer function between

the system inputs and output can be identified. Gl2,0) = 2z~ " B(z,0) and ®)
In the identification method used, i.e. in Prediction Error ’ F(z,0)
Identification (PEI), candidate parametric transfer fiord, C(z,0)
G(z,0) and H(z,0), are chosen for the true transfer func- H(z0) = D(z,0)’ where ©)
tions, Go(z) and Hy(z). Here # is a vector, containing the ’
model parameters. Using the parametric transfer functitbies 0 =[bo . buy—1 f1 o fry €1 v g dy e dy], (10)
following prediction model is used:
Y(z,0) =H(z,0)"'G(z,0)U B(z,0) = bo+biz""+ .. +by127 ™ (11)
(2,0) =H(z,6) (= }1 (2) 2 F(z,0) = 14 fiz7 '+ .+ fo,27 ", (12)
+ (1= H(z,0)7)Y ().
HereY (z, 6) is the z-transform of the prediction model output. C(2,0) = l+az '+ . +epz7 " and  (13)
Using the true model in (1) and prediction model in (2), D(z,0) = 1+diz7 "+ .. +dp,z " (14)

a prediction error model, i.e. a model for the error between

measured and predicted outputs, is shown in Fig. 5 and ca s the engine madel has two inputs and one output, the

be calculated as: parametric transfer function fo,(z) is a matrix transfer
function:
E(z,0) = Y(z2)—Y(z,0 3
(2,0) (2) _1( ,9) 3) G(z,0) = [Gw(z,ﬁ) GT(Z,G)] (15)
H(z,0)"" [Y(2) - G(z,0)U(x)] . (4) . .
2z~ " By, (2,0) 2z~ "T Br(z,0) (16)
Fu(2.0) Fr(z0) |-

Here£(z,0) is the z-transform of the prediction error.
The time domain equivalent of (3) is: Here G.,(z,0) is the transfer function between the engine
N speed and fuel flow rate, artelr(z, #) is the transfer function
(k. 0) = y(k) = y(k,0). ) between the engine torque aEnd )fuel flow rate. These two
Here ¢(k, 0) is the prediction error at sample y(k) is the transfer functions include the system dynamics,(z,0)
system output at sampleand{(k, #) is the predicted systemwas parameterised so thd&, has 4 parameters,F,, has
output at samplé:. 5 parameters and,, = 3. Gr(z,6) was parameterised so
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Fig. 3: The diesel truck’s model identification data set.
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Fig. 4: The diesel truck's model validation data set.
that Br and Fr have5 parameters each, andr = 0. The E(2)
candidate engine model is of the following form:
[ gi is wing W(2) H(z0)
—> Gw(za 9)
. B W(z) .
F(z,0) = [Gw(z, 0) Gr(z, 9)] [T(z)] (17) F(z)
+ H(z,0)E(2).
T(z)
— GT(Z7 9)
Here F'(z, ) is the z-transform of the predicted fuel flow rate,

W (z) is the z-transform of the engine speed ahg) is the Fig. 6: The candidate model form.
z-trasnform of the engine torquél(z, §) was parameterised

so thatC and D havell parameters each. The model form is

shown in Fig. 6. are met if the following two inequalities are true [17], [18]
The optimisation problem in (7) was solved with the identi- 2(0

fication data set using thaolyest command in MATLAB. The ‘Re(h)‘ < 958 R(0) and (18)

identified transfer functions7,,(z,0), Gr(z,0) and H(z,6), N

have the same model structure as the true system transfer X ) ]:26(2’) Ry (i)

functions if the auto-correlation of the prediction errand the )Rw(h)‘ < 2.58 == ~ (29)
cross-correlation between the prediction error and théerys

inputs, are in thei®9% confidence region. These conditionHereRe(h) is the auto-correlation of the prediction error with
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a sample lag of, Reu(h) is the cross-correlation between the Fig. 8 compares the measured and modelled diesel flow
prediction error and the system inputs with a sample lah,of rates for the identification data set in Fig. 3. Fig. 9 shows
and R, (¢) is the auto-correlation of the system inputs with &avo zoomed in versions of Fig. 8. As mentioned in Fig. 8,
sample lag ofi. The numbers of parameters in the numeratdor the identification data set, there is9a% fit (normalised
and denominator of7,,, Gy and H were tuned so that theseroot mean square fitness) between the identified LTI model

two conditions are met. and measurements, which is quite good given the internal
combustion engine is a non-linear system. In Fig. 9a, the
V. RESULTS model output deviates from the measurements at multiple
This section shares the model identification and validatigif@ks around = 130 s and? = 170 s. These deviations
results for the diesel and gas engines. are probably due to the engine non-linearities associatdd w

gear shifts. In Fig. 9b, the model output correlates well
A. Diesel Engine with the measurements. When the fuel flow rat.e is close
' to zero or negative, the model output deviates slightly from
The identified dynamic model of the Scania P320 diesgle measurements. This behaviour is mostly caused by the
engine is given in the Appendix. For the identified modegngine non-linearities that are not captured by the idextifi
Fig. 7 shows the auto-correlation of the prediction errad an T| model.
cross-correlation between the prediction error and théesys  |n theory, choosing more model inputs will facilitate inclu
Inputs. sion of the engines fuel consumption dependencies on other
factors such as air temperature, air pressure, vehicledspee
Residue Correlation vehicle acceleration, etc. However, as mentioned in Sectio
AutoCor ___ XCorr (Engine speed) ~ XCarr (Engine torque) lll, the models order and uncertainties may increase ifeéhes
dependencies are considered. In system identificatiormytheo
the aim usually is to use the lowest number of inputs and
lowest model order to obtain a model that meets the cross-
correlation and auto-correlation criteria in (18) and (19)
with the chosen number of inputs and model order, these
criteria are not met, then the next step is to consider anfiti
or other model inputs to consider their dependencies. Betygi
these criteria are met with the chosen model inputs and model
structure, and the time domain comparison h83$% fit, from
a system identification point of view, the model is sufficignt
accurate. However, considering more model inputs may educ
the deviations arountl= 130 s and¢ = 170 s in Fig. 9a. But
it may also require a higher order linear model structure or
require a non-linear model structure to capture the additio
Fig. 7: Auto-correlation of the prediction error and crossdynamics. But given the cross-correlation and auto-catice
correlation between the prediction error and the modeltmpucriteria are met, and the time domain comparison HaAfit,
for the diesel engine model. it is an unnecessary step for the scope of this article. Hewev
considering more model inputs is an interesting step faréut
In Fig. 7, the99% confidence regions, described by (18) andesearch.
(19), are highlighted in blue. From the auto-correlatioot gin Fig. 10 compares the measured and identified model’s diesel
the left, it is clear that the prediction error’s auto-ctation flow rates for the validation data set in Fig. 4. Fig. 11 shows
values for all non-zero lag are within the confidence regiotwo zoomed in versions of Fig. 10. As mentioned in Fig. 10,
i.e. the criterion in (18) is met. for the validation dataset, there is%.2% fit between the
In Fig. 7, in the cross-correlation plot in the middle foidentified LTI model and measurements, which is similar to
engine speed, the cross-correlation values between tidéprethe fit in Fig. 8 for the identification data set. In the zoomed
tion error and engine speed are within the confidence regimnversions in Fig. 11, similar to Fig. 9, the LTI model output
for all lag values, i.e. the criterion in (19) is met. In thedeviates from the measurements around gear shifts and when
cross-correlation plot on the right for engine torque, thass- the fuel flow rate is close to zero or negative, probably cduse
correlation values between the prediction error and engibg the engine non-linearities.
torque are within the confidence region for all non-negative The identified LTI diesel engine model was compared
lag values. This is indeed acceptable as the cross-caorelatagainst the baseline diesel engine model in [2]. The baselin
values between the prediction error and a system input candmgjine model was developed using on-road data from the
outside the confidence region for negative lag values ifethesame diesel truck, which was collected as described inasecti
is feedback in the system [19], i.e. if the current diesel floW. The baseline model takes the form of a two dimensional
rate (system output) can affect future engine torque (one lobkup table (engine map) with ‘steady-state’ values of the
the system inputs), which indeed is the case for an interreaigine speed and engine torque as the inputs, and ‘steady-
combustion engine. state’ values of the diesel flow rate as the output.

Amplitude
e@Diesel flow rate

-01

-20 0 20 -20 0 20
Lag
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Fig. 8: The measured diesel flow rate and the identified medeé€l flow rate for the identification data set.
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Fig. 9: Zoomed in versions of Fig. 8, showing the measuredrandelled diesel flow rates for the identification data set.
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Fig. 10: The measured diesel flow rate and the identified nwdadsel flow rate for the validation data set.
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Fig. 11: Zoomed in versions of Fig. 10, showing the measuretimodelled diesel flow rates for the validation data set.
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The lookup table data points were obtained from on-roaddBLE I: Comparison of the identified and baseline diesel

measurements by locating data segments of three second§Tgfine models.
longer for which the vehicle speed was essentially constant__ _ _
Whenever such an operating condition was found. the CO.'Dnve Cycle Baseline Model Error [%]  Identified Model Errc¥o]

responding engine speed, engine torque and diesel flow rate ; _gﬁl _2;;11
were saved as a data point in the lookup table. This procedure 3 —6.8 -1.7
was performed over all data collected for a period of one g :g'g _2159
week. As mentioned in Section Ill, it is worth noting that 6 -89 —0.5
the proposed modelling method used an identification ddta se 7 =77 —0.7
of 1.5 hrs, which is approximatel§9% shorter than the one g :g:g f’f’G
week of data used by the baseline method. For intermediate 19 ~15.2 0.0
input data points, the baseline model interpolates theelies 11 —6.2 —3.6
flow rate. For more details about the baseline model, see [2]. '\R"f/fg‘ ZsI _2045
This baseline model was chosen as its development, simitar

to the proposed method, did not require chassis dynamometer

tests or dedicated tests on a test track, which prevented e Residue Correlation

costs for the truck operator. Table | shows the comparis 4 huoCor - XCorr (Engine speed) - XCorr (Engine torque)

between diesel consumption error of the baseline model &
the identified model foil 1 on-road drive cycles from multiple
days. Each drive cycle las$) minutes. The diesel consump-
tion was calculated by integrating the model output, i.e. tt
diesel flow rate, with respect to time. For each drive cydie, t
error was calculated using the following equation.

fot fmodel(t)dt - f(f fmeasured(t)dt
fot fmeasured(t)dt

Here, fioder 1S the model's fuel flow ratef,,cqsureq IS the e
measured fuel flow rate andis the drive cycle duration. As
shown in Table I, the identified model's mean error is clos 2 0 20 20 0 20 20 0 20
to zero, whereas the baseline model's mean errdr.i8o. <29
The identified model's RMS error is approximat&ly% lower Fig. 13: Auto-correlation of the prediction error, and &os
than that of the baseline model. The identified model is mogerrelation between the prediction error and model inplots,
accurate than the baseline model because it was identifiad gas engine model.
considering dynamic characteristics of the diesel engsiegu
optimisation, whereas the baseline model was developgd onl
using steady state values. Fig. 12 compares the measured and modelled gas flow rates
for a sample data set. There is&i%o fit between the identified
gas engine model and measurements, which is quite good

B. Gas Truck given the gas engine is a non-linear system. Arotird2560

The proposed methods for on-road data collection, degathe model output deviates from the measurements. This
preprocessing and model identification are applicable floero is probably caused by the engine non-linearities that ate no
vehicle types. To demonstrate this, a spark ignition gasnengcaptured by the identified LTI model.
model was identified. The model identification was done The identified gas engine model was compared against the
using the Compressed Gas (CG) truck data, collected dvakeline gas engine model in [2]. The baseline engine model
preprocessed as described in Section Il and Ill. A dynamigas developed using on-road data from the same CG truck,
LTI model of the Scania P340 gas engine was identified usimgnich was collected as described in section Il. Similar t® th
the same method, described in Section IV. baseline diesel engine model, the baseline gas engine model

Fig. 13 shows auto-correlation of the prediction error, arid in the form of a two dimensional lookup table (engine
cross-correlation between the prediction error and system map) with ‘steady-state’ values of the engine speed anchengi
puts, for the identified gas engine model. TI986 confidence torque as the inputs, and ‘steady-state’ values of the fya)(
regions are highlighted in blue. From the auto-correlapitot  flow rate as the output. For more details about the baseline
on the left, it is clear that the prediction error’s autoretation model, see [2].
values for all non-zero lag are within the confidence region, Table Il shows the comparison between gas consumption
i.e. criterion (18) is met. In the cross-correlation platstile error of the baseline model and the identified model for
middle and right, the cross-correlation values between tba-road drive cycles. For each drive cycle, the error was
prediction error and system inputs are within the confidencalculated using the same equation, which was used for the
region for all lag values, i.e. criterion (19) is met. diesel engine and is shown in (20). Similar to the dieselmmgi

Amplitude
e@Gas Flow Rate

X 100% (20) -0.04

Error =
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Fig. 12: The measured and identified model's gas flow rates fomomed-in version of the identification data set.

TABLE II: Comparison of the identified and baseline 93%hay be needed.
engine models.

VI. CONCLUSIONS ANDFUTURE WORK

Drive Cycle Baseline Model Error [%] Identified Model Errd¥o]

1 —44 —4.3 A method to model fuel flow rate of an internal combustion
g :}1:2 :g:g engine using on-road data collection and Prediction Error
4 21 —0.3 Identification is proposed in this article. The model inputs
5 —-1.8 11 are engine speed and torque. Unlike the existing methods, th
0 23 e proposed method does not require dedicated tests on a grovin
8 55 ~13 ground or chassis dynamometer, which are expensive and time
9 —0.5 —0.3 consuming.

L I — In this work, the on-road data from a diesel truck was

RMS 3.5 2.1 collected during normal vehicle operation, without affiegt

the vehicle operator. The identification data set was only
1.5 hours long. On the other hand, it took a full week
case, these drive cycles are from multiple days and eachobfdata collection to develop an engine map for the same
them lasts30 minutes. The gas consumption was calculated wehicle [2]. The identified diesel engine model is Linear &im
integrating the model output, i.e. the gas flow rate, witlpees Invariant (LTI). The prediction error's auto-correlatisalues
to time. As shown in Table Il, the identified model’s mean andre within the99% confidence bounds for all non-zero lags.
RMS errors are lower than those of the baseline model. Thle prediction error’'s cross-correlation values with theded
identified model is more accurate than the baseline mod¢l agputs are within the99% confidence bounds for all non-
was identified considering dynamic characteristics of the gnegative lags. In the time-domain, the LTI model output has
engine using optimisation, whereas the baseline model wa91% fit with the output measurements in the identification
developed only using steady state values. data set. The identified diesel engine model was validated
The results for the diesel and gas engines demonstrateng a validation data set, different from the identifioati
the applicability of the proposed method for on-road datiata set. The LTI model output ha®a 2% fit with the output
collection, data processing and model identification totipiél measurements in the validation data set. For theon-road
vehicle types. The identified dynamic models of the diesdl adrive cycles, the diesel consumption of the identified model
gas engines are given in the Appendix. For another vehidiee. time integral of the model output) has an RMS error of
with the same engine and fuel injection system, the idedtifi@.4%, compared t&.1% for the baseline model [2]. For these
engine model should be valid. But for a vehicle with a différe drive cycles, the diesel consumption’s mean error{55%.
engine or fuel injection system, a new model should be A gas engine model was also identified using the proposed
identified using on-road data, which can be collected with anethod for on-road data collection, data processing anceimod
SRF Logger. It is thought that the same modelling method catentification. The identified gas engine model's mean and
be used to identify models of other vehicle types, e.g. toehodRMS errors,—1.2% and 2.1% respectively, are lower than
the electric motor of an electric vehicle. For electric wis, those of the baseline model [2].
instead of fuel flow rate, electric power will be used in the It is thought the the proposed modelling method is ap-
modelling process. As electric motors have faster dynamipbcable to model power train components in other types
than internal combustion engines, a lower data sampling tiraf vehicles, e.g. to model inverters and motors of electric
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vehicles. Using the proposed method for on-road data collec

tion, data processing and model identification, identifyamd

(1]

validating a dynamic model for an electric vehicle’s motor
is a next step. The next steps also include design of an

online engine/motor modelling tool at https://data.esruk/

(2]

using the proposed method. Such a tool will facilitate amlin

fuel/electricity consumption modelling for different typ of

vehicles using on-road data, collected and uploaded toteaten 3]

server.

APPENDIX

is:
A W(z
F(Z):{Gw(z) GT(Z)] (=) +H(z)E(z), where (2]_)
T(z)
Gulz)= 0.0011712~3-0.0019282~%40.0019292—5-0.0010952—6 (22)
WA/ T 1 2.0422—142.4152—2 -1.782—340.5512—4-0.10252—5 "'
_0.08494+40.055122— 1 —0.038542—2—-0.060772 "3 —0.031142 %
GT(Z)_170.59712*170.57822*270.20392*3+D.36112*4+0.038232*5' (23)
_Hn(2)
H(z)=7%3. (24)
H, (2)=1-3.4552"144.74272-3.9482 % +3.7582*
—3.86427°42.36276—0.69512"7+0.25162 "% (25)
—0.264327°40.16832710-0.0487527 ! and
Ha(2)=1-4.5472"148.628272-9.61327248.9992*
—9.03927°47.537276—4.1042 " " +1.5842 % (26)

—0.630427940.2132710—0.027282 11,

(4]

The identified LTI model of the P320 Scania diesel engin%]

(6]

(7]

(8]

El

(20]

(11]

[12]
The identified LTI model of the P340 Scania gas engine is:
[13]
. w
Fe=[u) o] | |+ HE) ), where (27)
T(z)
[14]
___0.0018872—3-0.0012042—%40.001189-—5-0.00036142—6
Gu(z)= 1—1.5912—140.95632—2+40.59422—3 —0.97172—440.50442—5"' (28)
[15]
_ 0.050991»0.0424527170.01672,272%»0.()06218273#»0.02182274
GT(Z)i171.0382_170,024352_2+U.8159z_370.6473z_4+0,1803z_5' (29)
[16]
H(z)=52&, (30)
[17]
H,(2)=1—0.18982 "' —0.30462~2—0.36042 ~®—0.36392 4 [18]
40.121227540.41042 =% —0.58192~7+0.28842 8 (31)
+0.051582794-0.066192'° and (19]
Hg(2)=1-1.3792"140.114427240.10472 3 -0.067142 4
+0.44227°40.15392 70~ 1.0872"+1.12 78 (32)

—0.3445272—-0.0315z 10,

For both models, the sampling time (s3s.
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