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Engine Fuel Consumption Modelling using
Prediction Error Identification and On-road Data

Anil K. Madhusudhanan, Xiaoxiang Na, Daniel Ainalis and David Cebon

Abstract—Engine modelling is an important step in predicting
the fuel consumption of a vehicle. Existing methods in the
literature require dedicated tests on a test track or on a chassis
dynamometer or they require measurements from several days of
vehicle operation. This article proposes a new method to model
fuel flow rate of a diesel engine and a compressed gas engine
using prediction error identification and on-road data collection.
The model inputs are the engine torque and speed. The on-road
vehicle data was collected during normal transport operations.
The identification data set was approximately99% shorter than
the baseline method. The proposed method is applicable for other
types of vehicles, including electric vehicles. The identified engine
models have less than 1.3% mean error and 2.5% RMS error.

Index Terms—Engine model, prediction error identification,
vehicle fuel consumption.

I. I NTRODUCTION

A SSESSING fuel consumption benefits of different in-
terventions, e.g. aerodynamic features, low rolling re-

sistance tyres and cruise control systems, is a necessary
decarbonisation activity in the transport sector. For example,
evaluating the effects of semi-trailer modifications on fuel
consumption and carbon emissions of heavy goods vehicles
[1], and analysing the effects of biomethane as a truck fuel
on carbon emissions and lifetime vehicle cost [2]. In the
recent years, there have also been several work on exploiting
autonomous driving technologies to reduce fuel consumption
and carbon emissions [3]–[5]. A vehicle fuel consumption
model is often required for such analyses. To develop fuel
consumption models, there are several methods in the literature
[2], [6]–[16].

Most of these methods do not model the engine in detail
using empirical methods [6], [7], [9]–[11], [13], [14], [16].
In [6], second order polynomials were proposed to predict
fuel consumption. The effect of different driving patternson
fuel consumption was studied in [7] using a polynomial based
model. In [9], a vehicle mass dependent fuel consumption
model was developed using statistical data. Fuel consumption
factors such as engine speed and torque, road elevation, aero-
dynamic drag and rolling resistance were ignored in this work.
A model with the fuel consumption rate as a function of ve-
hicle speed and acceleration was proposed in [10]. The model
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development involved fuel consumption estimation using data
from a portable emission measurement system. In [11], a
fuel consumption map, as a function of vehicle speed and
acceleration, was developed using fuel consumption and emis-
sion measurements. This fuel consumption map development
required laboratory testing using a chassis dynamometer. In
[13], data from a vehicle’s on-board diagnostic port, whichcan
be measured on-road, was used to develop a fuel consumption
model as a function of the vehicle speed, acceleration and
gas pedal position. In [14], a fuel consumption model using
vehicle speed and altitude data from a GPS receiver was
proposed. This model development assumed constant engine
efficiency. In [16], a framework to develop computationally
efficient vehicle energy consumption models was proposed. It
considers vehicle parameters, drive cycles in which the vehicle
operates and vehicle mass. But it does not use an engine or
motor model.

Some of the methods in the literature do consider engine
models [2], [8], [12], [15]. These engine models are mainly
in the form of steady state engine maps, which are empirical
look-up tables of fuel consumption as a function of engine
speed and torque. In [8], a fuel consumption model, including
an engine map, was developed using dedicated tests, which
required the vehicle to be taken out of business operations.
In addition to the vehicle speed and acceleration, the model
proposed in [12] uses a steady state engine map, created using
test data from a chassis dynamometer. In [15], a commercial
power train simulation software, AVL Cruise, was used to
develop a fuel consumption model using the longitudinal
equations of motion and an engine map. This work used
test data from a chassis dynamometer to create the engine
map. To reduce the experimental cost, the number of data
points in the engine map was limited to less than40. In [2],
fuel consumption models of Compressed Gas (CG) and diesel
trucks were developed using on-road data, which was collected
from the vehicles’ Fleet Management System (FMS) interface.
Steady-state engine maps, using data from several days of
transport operations, were developed in this work.

Having an engine model can improve the accuracy of a fuel
consumption model. However, most of the engine modelling
methods in the literature require dedicated tests [8], [12], [15],
either on a test track or on a chassis dynanometer, which
requires significant time and cost. The method proposed in [2]
does not require such dedicated tests as on-road data, collected
when the vehicle was performing routine transport operations,
was used. However, it required several days of data and the
engine model only captured the steady-state charactersitics, i.e.
it ignored the dynamic characteristics. This article proposes an
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engine modelling method to address these problems.
The main contributions of this article are:

• A method to model fuel flow rates of a diesel engine
and a Compressed Gas (CG) engine using Prediction
Error Identification (PEI) and on-road data collection is
proposed. The method is also applicable to other vehicle
types, including electric vehicles.

• Dynamic models of a diesel engine and a CG engine were
identified and validated using different data sets.

• The identified diesel engine model and CG engine model
were compared against the baseline models in [2], which
were also developed using on-road data.

This article is structured as follows. Section II describes
how the vehicles were instrumented and how the on-road
data was collected. Data preprocessing before identifyingthe
engine models is explained in Section III. In Section IV, the
model identification method is described. The identification
and validation results are shared in Section V. It also contains
comparisons between the identified engine models and the
baseline models in [2]. Finally, the conclusions and future
work are mentioned in Section VI. The identified diesel engine
model and CG engine model are given in the article Appendix.

II. I NSTRUMENTATION AND DATA COLLECTION

The propsed method was used to model two different
articulated heavy goods vehicles with maximum gross vehicle
masses of44 t. One had a tractor unit with a Euro6 diesel
engine, while the other had a spark ignition engine that ran on
Compressed Gas (CG). The vehicles were measured in-service
with a comprehensive data logging system.

Vehicle FMS

Interface

Smartphone
Bluetooth Data Logger

(Only for CG Truck)

Gas Flow Meter

(Only for CG Truck)

Data Transmission via

Mobile Internet

Bluetooth

Dongle

SRF Logger

Fig. 1: A schematic diagram of the vehicle instrumentation.

Fig. 1 shows a schematic diagram of the instrumentation
and Fig. 2 shows one of the instrumented vehicles. The
instrumentation uses an SRF Logger, developed at the Centre
for Sustainable Road Freight (SRF) at the University of
Cambridge. It consists of a smartphone, a software app written
for the smartphone and a VIACONT Bluetooth dongle. The
Bluetooth dongle connects to the vehicles Fleet Management
System (FMS) interface and transmits the FMS data to the
smartphone. The FMS data includes the accelerator pedal
position, brake pedal position, vehicle speed, engine speed,
engine torque and fuel flow rate. The smartphone obtains GPS

coordinates of the vehicle using its internal GPS sensor. For
the vehicles used in this work, the FMS interface reported
the engine torque as a percentage of the maximum torque.
Therefore, it was multiplied by the maximum torque, which
was extracted from the On-Board Diagnostic (OBD) port.

Fig. 2: One of the instrumented vehicles, a Scania P340 Gas.

As the FMS data from the CG truck (a Scania P340 Gas)
did not include the fuel flow rate, it was instrumented with
a MASS-STREAM D-6300 gas flow meter and a Bluetooth
data logger (see Fig. 1). The gas flow meter uses a constant
temperature anemometer principle. It can measure in the range
[2.5, 125] kg/h within 2% full scale accuracy and comes with
a factory calibration certificate. Its output signal is in the
range [0, 10] V. The fuel flow meter was connected to an
analog input of the Bluetooth data logger, BTH-1208LS, which
communicated via Bluetooth with the SRF Logger. For the
diesel truck (a Scania P320 Diesel), the fuel flow rate was
available from the vehicle’s FMS interface.

The vehicles were manufactured by Scania AB and are part
of a fleet operated by the John Lewis Partnership Plc, UK.
The data collection was performed during normal transport
operations and did not require any intervention from the driver.
Once the vehicles began to move, the SRF Loggers acquired
and automatically uploaded the data via 3G or 4G mobile
data connection and sent the data to a database server at the
University of Cambridge.

III. D ATA PREPROCESSING

The engine models have two inputs, the engine speed and
torque. The model output is the fuel flow rate. As men-
tioned in the introduction, many researchers have used vehicle
speed, longitudinal acceleration, vehicle mass or throttle pedal
position as an input for the fuel consumption model. But
the model’s complexity, i.e. the order, non-linearities and
uncertainties, may increase if these inputs are used instead
of the engine torque and speed. This increase in complexity
is caused by the additional vehicle dynamics and effects of
external time varying factors such as road slope and wind
speed. As a consequence, using the vehicle speed, acceleration,
mass or throttle pedal position as an input, it will be difficult
to identify a model that meets the cross-correlation and auto-
correlation criteria, which are discussed in the next section.
On the other hand, considering the engine speed and torque
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as the model inputs, it is feasible to identify a dynamic model
that meets these criteria.

The input and output measurements were preprocessed
before identifying a model. The identified models are Linear
Time Invariant (LTI) and the engine idling state with an
engine speed of600 rpm was chosen as the linearisation
point. Therefore, average values of the input and output
measurements, when the engine was idling, were subtracted
from the respective measurements. The selected identification
data set was approximately1.5 hrs long with a sampling
interval of0.3 s. The diesel truck’s identification data set with
the preprocessed input and output measurements is shown in
Fig. 3. Fig. 4 shows the validation data set for the diesel truck,
which is clearly different from the identification data set in Fig.
3.

Similar to Fig. 3 and Fig. 4, identification and validation
data sets for the CG truck were also preprocessed before
identifying a dynamic model for the CG engine.

IV. M ODEL IDENTIFICATION

This section describes the model identification method. The
following system model is considered:

Y (z) = G0(z)U(z) +H0(z)E(z). (1)

HereY (z) is the z-transform of the system output (fuel flow
rate),G0(z) is the true discrete-time transfer function between
the system inputs (engine speed and torque) and output,U(z)
is the z-transform of the system inputs,H0(z) is the true
discrete-time transfer function to shape white noise, andE(z)
is the z-transform of white noise. In (1), the second term on
the right hand side is to consider the effect of noise in the
measurements so that an accurate transfer function between
the system inputs and output can be identified.

In the identification method used, i.e. in Prediction Error
Identification (PEI), candidate parametric transfer functions,
G(z, θ) and H(z, θ), are chosen for the true transfer func-
tions, G0(z) and H0(z). Here θ is a vector, containing the
model parameters. Using the parametric transfer functions, the
following prediction model is used:

Ŷ (z, θ) =H(z, θ)−1G(z, θ)U(z)

+ (1−H(z, θ)−1)Y (z).
(2)

HereŶ (z, θ) is the z-transform of the prediction model output.
Using the true model in (1) and prediction model in (2),

a prediction error model, i.e. a model for the error between
measured and predicted outputs, is shown in Fig. 5 and can
be calculated as:

E(z, θ) = Y (z)− Ŷ (z, θ) (3)

= H(z, θ)−1
[

Y (z)−G(z, θ)U(z)
]

. (4)

HereE(z, θ) is the z-transform of the prediction error.
The time domain equivalent of (3) is:

ǫ(k, θ) = y(k)− ŷ(k, θ). (5)

Here ǫ(k, θ) is the prediction error at samplek, y(k) is the
system output at samplek and ŷ(k, θ) is the predicted system
output at samplek.

G0(z)

+
U(z)

+

H0(z)

E(z)

Y (z)

G(z, θ)
-

+

1
H(z,θ)

E(z, θ)

Fig. 5: A schematic diagram of the prediction error model.

An estimate of the parameter vector withN data samples,
θ̂N , is found by solving the following optimisation problem
to minimise the sum of squares of prediction error values:

θ̂N = argmin
θ

1

N

N
∑

k=1

ǫ(k, θ)2 (6)

= argmin
θ

1

N

N
∑

k=1

[

y(k)− ŷ(k, θ)
]2

. (7)

To identify an engine model, the following Box-Jenkins
model structures were used for the parametric transfer func-
tions,G(z, θ) andH(z, θ):

G(z, θ) =
z−nkB(z, θ)

F (z, θ)
and (8)

H(z, θ) =
C(z, θ)

D(z, θ)
, where (9)

θ = [b0 ... bnb−1 f1 ... fnf
c1 ... cnc

d1 ... dnd
], (10)

B(z, θ) = b0 + b1z
−1 + ... + bnb−1z

−nb+1, (11)

F (z, θ) = 1 + f1z
−1 + ... + fnf

z−nf , (12)

C(z, θ) = 1 + c1z
−1 + ... + cnc

z−nc and (13)

D(z, θ) = 1 + d1z
−1 + ... + dnd

z−nd . (14)

As the engine model has two inputs and one output, the
parametric transfer function forG0(z) is a matrix transfer
function:

G(z, θ) =
[

Gw(z, θ) GT (z, θ)
]

(15)

=
[

z−nwBw(z,θ)
Fw(z,θ)

z−nT BT (z,θ)
FT (z,θ)

]

. (16)

Here Gw(z, θ) is the transfer function between the engine
speed and fuel flow rate, andGT (z, θ) is the transfer function
between the engine torque and fuel flow rate. These two
transfer functions include the system dynamics.Gw(z, θ)
was parameterised so thatBw has 4 parameters,Fw has
5 parameters andnw = 3. GT (z, θ) was parameterised so
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Fig. 3: The diesel truck’s model identification data set.
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Fig. 4: The diesel truck’s model validation data set.

that BT and FT have5 parameters each, andnT = 0. The
candidate engine model is of the following form:

F̂ (z, θ) =
[

Gw(z, θ) GT (z, θ)
]

[

W (z)
T (z)

]

+H(z, θ)E(z).

(17)

HereF̂ (z, θ) is the z-transform of the predicted fuel flow rate,
W (z) is the z-transform of the engine speed andT (z) is the
z-trasnform of the engine torque.H(z, θ) was parameterised
so thatC andD have11 parameters each. The model form is
shown in Fig. 6.

The optimisation problem in (7) was solved with the identi-
fication data set using thepolyest command in MATLAB. The
identified transfer functions,Gw(z, θ), GT (z, θ) andH(z, θ),
have the same model structure as the true system transfer
functions if the auto-correlation of the prediction error,and the
cross-correlation between the prediction error and the system
inputs, are in their99% confidence region. These conditions

Gw(z, θ)

GT (z, θ)

+

W (z)

T (z)

+

H(z, θ)

E(z)

F̂ (z)

Fig. 6: The candidate model form.

are met if the following two inequalities are true [17], [18]:

∣

∣

∣
R̂ǫ(h)

∣

∣

∣
< 2.58

√

R̂ǫ(0)

N
and (18)

∣

∣

∣
R̂ǫu(h)

∣

∣

∣
< 2.58

√

∑

∞

i=−∞
R̂ǫ(i)Ru(i)

N
. (19)

HereR̂ǫ(h) is the auto-correlation of the prediction error with
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a sample lag ofh, R̂ǫu(h) is the cross-correlation between the
prediction error and the system inputs with a sample lag ofh,
andRu(i) is the auto-correlation of the system inputs with a
sample lag ofi. The numbers of parameters in the numerator
and denominator ofGw, GT andH were tuned so that these
two conditions are met.

V. RESULTS

This section shares the model identification and validation
results for the diesel and gas engines.

A. Diesel Engine

The identified dynamic model of the Scania P320 diesel
engine is given in the Appendix. For the identified model,
Fig. 7 shows the auto-correlation of the prediction error and
cross-correlation between the prediction error and the system
inputs.

Fig. 7: Auto-correlation of the prediction error and cross-
correlation between the prediction error and the model inputs,
for the diesel engine model.

In Fig. 7, the99% confidence regions, described by (18) and
(19), are highlighted in blue. From the auto-correlation plot on
the left, it is clear that the prediction error’s auto-correlation
values for all non-zero lag are within the confidence region,
i.e. the criterion in (18) is met.

In Fig. 7, in the cross-correlation plot in the middle for
engine speed, the cross-correlation values between the predic-
tion error and engine speed are within the confidence region
for all lag values, i.e. the criterion in (19) is met. In the
cross-correlation plot on the right for engine torque, the cross-
correlation values between the prediction error and engine
torque are within the confidence region for all non-negative
lag values. This is indeed acceptable as the cross-correlation
values between the prediction error and a system input can be
outside the confidence region for negative lag values if there
is feedback in the system [19], i.e. if the current diesel flow
rate (system output) can affect future engine torque (one of
the system inputs), which indeed is the case for an internal
combustion engine.

Fig. 8 compares the measured and modelled diesel flow
rates for the identification data set in Fig. 3. Fig. 9 shows
two zoomed in versions of Fig. 8. As mentioned in Fig. 8,
for the identification data set, there is a91% fit (normalised
root mean square fitness) between the identified LTI model
and measurements, which is quite good given the internal
combustion engine is a non-linear system. In Fig. 9a, the
model output deviates from the measurements at multiple
peaks aroundt = 130 s and t = 170 s. These deviations
are probably due to the engine non-linearities associated with
gear shifts. In Fig. 9b, the model output correlates well
with the measurements. When the fuel flow rate is close
to zero or negative, the model output deviates slightly from
the measurements. This behaviour is mostly caused by the
engine non-linearities that are not captured by the identified
LTI model.

In theory, choosing more model inputs will facilitate inclu-
sion of the engines fuel consumption dependencies on other
factors such as air temperature, air pressure, vehicle speed,
vehicle acceleration, etc. However, as mentioned in Section
III, the models order and uncertainties may increase if these
dependencies are considered. In system identification theory,
the aim usually is to use the lowest number of inputs and
lowest model order to obtain a model that meets the cross-
correlation and auto-correlation criteria in (18) and (19). If
with the chosen number of inputs and model order, these
criteria are not met, then the next step is to consider additional
or other model inputs to consider their dependencies. But given
these criteria are met with the chosen model inputs and model
structure, and the time domain comparison has a91% fit, from
a system identification point of view, the model is sufficiently
accurate. However, considering more model inputs may reduce
the deviations aroundt = 130 s andt = 170 s in Fig. 9a. But
it may also require a higher order linear model structure or
require a non-linear model structure to capture the additional
dynamics. But given the cross-correlation and auto-correlation
criteria are met, and the time domain comparison has a91% fit,
it is an unnecessary step for the scope of this article. However,
considering more model inputs is an interesting step for future
research.

Fig. 10 compares the measured and identified model’s diesel
flow rates for the validation data set in Fig. 4. Fig. 11 shows
two zoomed in versions of Fig. 10. As mentioned in Fig. 10,
for the validation dataset, there is a91.2% fit between the
identified LTI model and measurements, which is similar to
the fit in Fig. 8 for the identification data set. In the zoomed
in versions in Fig. 11, similar to Fig. 9, the LTI model output
deviates from the measurements around gear shifts and when
the fuel flow rate is close to zero or negative, probably caused
by the engine non-linearities.

The identified LTI diesel engine model was compared
against the baseline diesel engine model in [2]. The baseline
engine model was developed using on-road data from the
same diesel truck, which was collected as described in section
II. The baseline model takes the form of a two dimensional
lookup table (engine map) with ‘steady-state’ values of the
engine speed and engine torque as the inputs, and ‘steady-
state’ values of the diesel flow rate as the output.
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Fig. 8: The measured diesel flow rate and the identified model’s fuel flow rate for the identification data set.
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Fig. 9: Zoomed in versions of Fig. 8, showing the measured andmodelled diesel flow rates for the identification data set.
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Fig. 10: The measured diesel flow rate and the identified model’s diesel flow rate for the validation data set.

50 100 150 200 250 300

0

10

20

30

40

50

D
ie

se
l F

lo
w

 R
at

e 
(l/

h)

Measured (Diesel Flow Rate (l/h))
Model: 91.19%

Time (seconds)

A
m

pl
itu

de

(a) From50 s to 300 s.

300 400 500 600 700 800 900 1000

0

10

20

30

40

50

D
ie

se
l F

lo
w

 R
at

e 
(l/

h)

Measured (Diesel Flow Rate (l/h))
Model: 91.19%

Time (seconds)

A
m

pl
itu

de

(b) From300 s to 1000 s.

Fig. 11: Zoomed in versions of Fig. 10, showing the measured and modelled diesel flow rates for the validation data set.
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The lookup table data points were obtained from on-road
measurements by locating data segments of three seconds or
longer for which the vehicle speed was essentially constant.
Whenever such an operating condition was found, the cor-
responding engine speed, engine torque and diesel flow rate
were saved as a data point in the lookup table. This procedure
was performed over all data collected for a period of one
week. As mentioned in Section III, it is worth noting that
the proposed modelling method used an identification data set
of 1.5 hrs, which is approximately99% shorter than the one
week of data used by the baseline method. For intermediate
input data points, the baseline model interpolates the diesel
flow rate. For more details about the baseline model, see [2].
This baseline model was chosen as its development, similar
to the proposed method, did not require chassis dynamometer
tests or dedicated tests on a test track, which prevented extra
costs for the truck operator. Table I shows the comparison
between diesel consumption error of the baseline model and
the identified model for11 on-road drive cycles from multiple
days. Each drive cycle lasts30 minutes. The diesel consump-
tion was calculated by integrating the model output, i.e. the
diesel flow rate, with respect to time. For each drive cycle, the
error was calculated using the following equation.

Error =

∫ t

0
fmodel(t)dt−

∫ t

0
fmeasured(t)dt

∫ t

0
fmeasured(t)dt

× 100% (20)

Here, fmodel is the model’s fuel flow rate,fmeasured is the
measured fuel flow rate andt is the drive cycle duration. As
shown in Table I, the identified model’s mean error is close
to zero, whereas the baseline model’s mean error is7.7%.
The identified model’s RMS error is approximately70% lower
than that of the baseline model. The identified model is more
accurate than the baseline model because it was identified
considering dynamic characteristics of the diesel engine using
optimisation, whereas the baseline model was developed only
using steady state values.

B. Gas Truck

The proposed methods for on-road data collection, data
preprocessing and model identification are applicable for other
vehicle types. To demonstrate this, a spark ignition gas engine
model was identified. The model identification was done
using the Compressed Gas (CG) truck data, collected and
preprocessed as described in Section II and III. A dynamic
LTI model of the Scania P340 gas engine was identified using
the same method, described in Section IV.

Fig. 13 shows auto-correlation of the prediction error, and
cross-correlation between the prediction error and systemin-
puts, for the identified gas engine model. The99% confidence
regions are highlighted in blue. From the auto-correlationplot
on the left, it is clear that the prediction error’s auto-correlation
values for all non-zero lag are within the confidence region,
i.e. criterion (18) is met. In the cross-correlation plots in the
middle and right, the cross-correlation values between the
prediction error and system inputs are within the confidence
region for all lag values, i.e. criterion (19) is met.

TABLE I: Comparison of the identified and baseline diesel
engine models.

Drive Cycle Baseline Model Error [%] Identified Model Error [%]
1 −4.4 2.4

2 −6.1 −4.1

3 −6.8 −1.7

4 −7.5 −1.9

5 −5.6 2.5

6 −8.9 −0.5

7 −7.7 −0.7

8 −6.8 3.5

9 −8.9 −1.6

10 −15.2 0.0

11 −6.2 −3.6

Mean 7.7 −0.5

RMS 8.1 2.4

Fig. 13: Auto-correlation of the prediction error, and cross-
correlation between the prediction error and model inputs,for
the gas engine model.

Fig. 12 compares the measured and modelled gas flow rates
for a sample data set. There is an85% fit between the identified
gas engine model and measurements, which is quite good
given the gas engine is a non-linear system. Aroundt = 2560
s, the model output deviates from the measurements. This
is probably caused by the engine non-linearities that are not
captured by the identified LTI model.

The identified gas engine model was compared against the
baseline gas engine model in [2]. The baseline engine model
was developed using on-road data from the same CG truck,
which was collected as described in section II. Similar to the
baseline diesel engine model, the baseline gas engine model
is in the form of a two dimensional lookup table (engine
map) with ‘steady-state’ values of the engine speed and engine
torque as the inputs, and ‘steady-state’ values of the fuel (gas)
flow rate as the output. For more details about the baseline
model, see [2].

Table II shows the comparison between gas consumption
error of the baseline model and the identified model for10
on-road drive cycles. For each drive cycle, the error was
calculated using the same equation, which was used for the
diesel engine and is shown in (20). Similar to the diesel engine
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Fig. 12: The measured and identified model’s gas flow rates fora zoomed-in version of the identification data set.

TABLE II: Comparison of the identified and baseline gas
engine models.

Drive Cycle Baseline Model Error [%] Identified Model Error [%]
1 −4.4 −4.3

2 −1.3 −0.7

3 −4.6 −2.0

4 2.1 −0.3

5 −1.8 −1.1

6 −2.3 0.8

7 −1.2 1.1

8 −5.5 −1.3

9 −0.5 −0.3

10 −5.7 −3.8

Mean −2.5 −1.2

RMS 3.5 2.1

case, these drive cycles are from multiple days and each of
them lasts30 minutes. The gas consumption was calculated by
integrating the model output, i.e. the gas flow rate, with respect
to time. As shown in Table II, the identified model’s mean and
RMS errors are lower than those of the baseline model. The
identified model is more accurate than the baseline model as it
was identified considering dynamic characteristics of the gas
engine using optimisation, whereas the baseline model was
developed only using steady state values.

The results for the diesel and gas engines demonstrate
the applicability of the proposed method for on-road data
collection, data processing and model identification to multiple
vehicle types. The identified dynamic models of the diesel and
gas engines are given in the Appendix. For another vehicle
with the same engine and fuel injection system, the identified
engine model should be valid. But for a vehicle with a different
engine or fuel injection system, a new model should be
identified using on-road data, which can be collected with an
SRF Logger. It is thought that the same modelling method can
be used to identify models of other vehicle types, e.g. to model
the electric motor of an electric vehicle. For electric vehicles,
instead of fuel flow rate, electric power will be used in the
modelling process. As electric motors have faster dynamics
than internal combustion engines, a lower data sampling time

may be needed.

VI. CONCLUSIONS ANDFUTURE WORK

A method to model fuel flow rate of an internal combustion
engine using on-road data collection and Prediction Error
Identification is proposed in this article. The model inputs
are engine speed and torque. Unlike the existing methods, the
proposed method does not require dedicated tests on a proving
ground or chassis dynamometer, which are expensive and time
consuming.

In this work, the on-road data from a diesel truck was
collected during normal vehicle operation, without affecting
the vehicle operator. The identification data set was only
1.5 hours long. On the other hand, it took a full week
of data collection to develop an engine map for the same
vehicle [2]. The identified diesel engine model is Linear Time
Invariant (LTI). The prediction error’s auto-correlationvalues
are within the99% confidence bounds for all non-zero lags.
The prediction error’s cross-correlation values with the model
inputs are within the99% confidence bounds for all non-
negative lags. In the time-domain, the LTI model output has
a 91% fit with the output measurements in the identification
data set. The identified diesel engine model was validated
using a validation data set, different from the identification
data set. The LTI model output has a91.2% fit with the output
measurements in the validation data set. For the11 on-road
drive cycles, the diesel consumption of the identified model
(i.e. time integral of the model output) has an RMS error of
2.4%, compared to8.1% for the baseline model [2]. For these
drive cycles, the diesel consumption’s mean error is−0.5%.

A gas engine model was also identified using the proposed
method for on-road data collection, data processing and model
identification. The identified gas engine model’s mean and
RMS errors,−1.2% and 2.1% respectively, are lower than
those of the baseline model [2].

It is thought the the proposed modelling method is ap-
plicable to model power train components in other types
of vehicles, e.g. to model inverters and motors of electric
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vehicles. Using the proposed method for on-road data collec-
tion, data processing and model identification, identifying and
validating a dynamic model for an electric vehicle’s motor
is a next step. The next steps also include design of an
online engine/motor modelling tool at https://data.csrf.ac.uk/
using the proposed method. Such a tool will facilitate online
fuel/electricity consumption modelling for different types of
vehicles using on-road data, collected and uploaded to a central
server.

APPENDIX

The identified LTI model of the P320 Scania diesel engine
is:

F̂ (z)=
[

Gw(z) GT (z)
]





W (z)

T (z)



+H(z)E(z), where (21)

Gw(z)= 0.001171z−3
−0.001928z−4+0.001929z−5

−0.001095z−6

1−2.042z−1+2.415z−2
−1.78z−3+0.551z−4

−0.1025z−5 , (22)

GT (z)= 0.08494+0.05512z−1
−0.03854z−2

−0.06077z−3
−0.03114z−4

1−0.5971z−1
−0.5782z−2

−0.2039z−3+0.3611z−4+0.03823z−5 , (23)

H(z)=
Hn(z)
Hd(z)

, (24)

Hn(z)=1−3.455z−1+4.74z−2
−3.948z−3+3.758z−4

−3.864z−5+2.36z−6
−0.6951z−7+0.2516z−8

−0.2643z−9+0.1683z−10
−0.04875z−11 and

(25)

Hd(z)=1−4.547z−1+8.628z−2
−9.613z−3+8.999z−4

−9.039z−5+7.537z−6
−4.104z−7+1.584z−8

−0.6304z−9+0.213z−10
−0.02728z−11.

(26)

The identified LTI model of the P340 Scania gas engine is:

F̂ (z)=
[

Gw(z) GT (z)
]





W (z)

T (z)



+H(z)E(z), where (27)

Gw(z)= 0.001887z−3
−0.001204z−4+0.001189z−5

−0.0003614z−6

1−1.591z−1+0.9563z−2+0.5942z−3
−0.9717z−4+0.5044z−5 , (28)

GT (z)= 0.05099+0.04245z−1
−0.01672z−2+0.006218z−3+0.02182z−4

1−1.038z−1
−0.02435z−2+0.8159z−3

−0.6473z−4+0.1803z−5 , (29)

H(z)=
Hn(z)
Hd(z)

, (30)

Hn(z)=1−0.1898z−1
−0.3046z−2

−0.3604z−3
−0.3639z−4

+0.1212z−5+0.4104z−6
−0.5819z−7+0.2884z−8

+0.05158z−9+0.06619z−10 and

(31)

Hd(z)=1−1.379z−1+0.1144z−2+0.1047z−3
−0.06714z−4

+0.442z−5+0.1539z−6
−1.087z−7+1.1z−8

−0.3445z−9
−0.0315z−10.

(32)

For both models, the sampling time is0.3s.
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