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Abstract
The arrangement of atomswithin a crystal and information on deviations from the ideal lattice is
encoded in the diffraction pattern obtained from an appropriately conducted Bragg coherent
diffraction imaging (BCDI) experiment. A foreknowledge of how specific displacements of atoms
within the unit cell alter the BCDI diffraction pattern and the subsequent real-space image is often
useful for interpretation and can provide valuable insight formaterials design.Here we report on an
atomistic approach to efficiently simulate BCDI diffraction patterns by factorising and eliminating
certain redundancies in the conventional approach.Ourmethod is able to reduce the computation
time by several orders ofmagnitudewithout compromising the recovered phase information and
therefore enables feasible atomistic simulations on nanoscale crystals with arbitrary lattice distortions.

1. Introduction

Displacements of atoms from their ideal position in the crystal structure of a quantummaterial can result in
dramatic changes in a range of properties and the emergence of entirely new phases of thematerial that are often
of considerable technological utility. Novel electronic andmagnetic phases can arise as a result of subtle atomic
displacements of a single atom in each unit cell and as a result, there is considerable interest in developing robust
means to control displacements for use in technological applications that require on demand switching between
phases [1–6].

Bragg coherent x-ray diffraction imaging (BCDI) is a lensless imaging technique that encodes information
on the displacement of atomswithAngstrom sensitivity in the associated far-field diffraction pattern [7–11].
BCDI is performed by illuminating an isolated crystal with a spatially coherent x-ray source that exceeds the
dimensions of the crystal. A crystal of the order of a few hundred nanometres is usually required for this
condition to bemet. The scattered light from the entire volume of the crystal then interferes in the far-field to
produce a diffraction pattern. The diffraction pattern is then recorded using a pixelated photon counting
detector that records the scattering intensity. The third dimension of the diffraction pattern is then obtained by
rotating the crystal through the Bragg conditionwhilemaintaining a largely fixed incident and reflectedwave
vector. Information on atomic displacements is then obtained in three dimensions at the surface and in the bulk
of thematerial by computationally inverting the three-dimensional diffraction pattern using iterative projection
ormachine learned neural network phase retrieval techniques [12–14].

The resolution and accuracy of the recovered three-dimensional image is highly dependent on the BCDI
experimental geometry (oversampling ratio), the presence of noise in themeasurement and to some extent, the
sample crystalline quality. Ameans therefore to calculate the diffraction pattern of a single nanocrystal with
arbitrary atomic displacements can provide useful insight into the experimentally observed diffraction pattern
and can also facilitate in recovery of the associatedmorphology and phase information.

To date, practical attempts to simulate diffraction froma single crystal with arbitrary atomic displacements
have either exclusively relied on approximating scattering from the atomic structure to the far-field imaging
planewith a Fourier transformor employed random samplingmethods [15–18]. In such a framework, there is
generally no directmeans to specify atomic displacements and the associated phase information is instead used
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to approximate atomic displacements. As a result, potential difficulties arise with such approaches when
attempting to correlate specific atomic displacements with the phase information.

Themost general approachwithin the kinematic approximation consists of a summation of each scattering
event from each atom to arrive at the scattering intensity at a single location on the imaging plane. This can result
in a total number of summation of the order of 109 for a pixelated imaging plane. Although this approach is not
always prohibitive onmodern acceleratedGraphical ProcessingUnit (GPU) computing facilities orHigh
PerformanceComputing (HPC) facilities, there are certain redundancies (outlined below) in the standard
general approach that when removed, further and significantly increases the efficiency of the calculation and
enable its use inmore demanding applications such as training data formachine learned phase retrieval
optimisation [19, 20].

In this report a highly accurate and efficientmeans to simulate diffraction of coherent x-rays from a single
crystal with arbitrary lattice distortions is presented. By doing so, we show that existing implementations based
on summation of scattering intensities can benefit in efficiencywhen utilising the approach presented herein.

2.Model description

Ourmethod utilises the general scattering amplitude equationwithin the kinematic approximation to generate a
diffraction speckle pattern by individually considering the contribution of each atomwithin an isolated crystal
[21, 22]. Refinements are thenmade to this standard scheme. The illumination source is assumed to be larger
than the crystal and fully coherent. Partial coherence effects however are readily incorporated, as previously
demonstrated for a subset of special cases [23, 24].

2.1. Scattering fromananocrystal supercell ensemble
The description begins by considering amonochromatic beamof light with intensityΦ0 (photons/m

2/s) and
wavelengthλ impinging on a single nanocrystal. This nanocrystal is located at the originOwhich coincides with
the origin in the laboratory frame of reference (figure 1). The primary coherent x-ray beam is oriented in the
positive z-direction in the global co-ordinate system and has no component in the x or y-directions. The unit

vector for the primary beam is denoted by k̂ i . The position of each atom in the crystal is given by
R R rn

m
n m= + , whereRn= n1a1+ n2a2+ n3a3, ai are unit cell vectors, ni are positive integers and rm are

displacements of atommwithin each unit cell. The reciprocal lattice vector * * *h k lG a a a1 2 3= + + is then
obtained in the usualmanner and the crystal rotated as needed about the ẑ, ŷ and ẑ axes in order to satisfy the
Bragg condition (G=Q). The Bragg reflected beam is considered at each global pointP(xd, yd) located at the

Figure 1.Diffraction simulation experimental geometry showing thewavevector incident on a nanocrystal (ki), the reflectedwave
vector at the centroid (kf) and a general reflectedwavevector at an arbitrary location (kf,P). Inset illustrates division of the crystal into
an ensemble of supercells eachwith dimensions below themeasurements resolution (ΔX 3 in units of nm3).
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detector in the general direction k̂ Pf, .We define thewavevector transfer at the centroid asQ= kf− ki and the
general wavevector transfer to a pointP as q= kf,P− ki.

The instantaneous scattering amplitudeA at a pointP, a distanceR from the nanocrystal, is then in general
given by:

( ) ( ) ( )·A
r

R
f eq q , 1m
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n
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n
må=

F -

where r0 is the Thompson scattering length and fm(q) is the atomic form factor.When there is no variation in
atomic arrangements within the unit cell, equation (1) is often divided into contributions from the lattice and
unit cell structure factor S(Q):
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If atomm is allowed to displace by an amountum(Rn), equation (2) is no longer so easily separated and the
scattering amplitude becomes:

( ) ( ) ( )·( ( ))A
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n m
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The scattering intensity is then given by:

*( ) ( ) ( ) ( )I A Aq q q 4=

In general, to obtain a slice of the three-dimensional diffraction pattern (the third dimension and rocking
curve procedure are discussed below), equations (3) and (4) are computed for each detector pixel by varying the
reflected scattering vector kf,P. The number of photons scattered into a detector pixel of length dx,y is then given
by ( )n I dq xy

2=g .
Computation of equation (3) is often prohibitively challenging due to the summation over each atom in each

unit cell in the crystal which can extend beyond 109 terms. To overcome this challenge, the summation over each
unit cell is instead replacedwith a summation over groups of unit cells (or supercells) of afixed size that are
adjacent within the crystal. To accomplish this, lattice vector displacements ni are replaced by ni di, where di are
positive constant integer values for each index i.We then define a supercell lattice vector R R rnd

m
nd m= + and

Rnd= n1d1a1+ n2d2a2+ n3d3a3. Substituting into the scattering amplitude equation and simplifying yields:
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where ũm is the average displacement of atomm in the supercell at positionRnd.Wewill demonstrate below that
grouping unit cells into supercells within the scattering amplitude summation is justified provided the total size
of each supercell remains below the resolution of themeasurement which is determined by the experimental
geometry.

2.2. Geometric considerations
In order to determine the appropriate supercell size, geometric considerations largely related to the sample-to-
detector distance and the rocking curve angular width are considered.

2.2.1. Detector scattering
Consider a detector of sizeX×Y pixels with pixel width of dx,y. If the centroid is pointing at the centre of the
detector at a distance ofR, the anglesαi,αj subtending pixel indices i, j (in the x and y-directions respectively) are
given by:

( ( ) )
( ( ) ) ( )
d i X R

d j Y R

arctan 2

arctan 2 6

i x y

j x y

,

,

a
a

= -
= -

Reflected vector kf,P is then rotated onto each pixel such that:

( ) ( ) ( ) ( )i jk M M k, 7P i jf, 2 1 fa a=

whereM1 is the rotationmatrix about ˆ ˆk ki f´ andM2 is the rotationmatrix about ˆ ˆk kf i- .
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2.2.2. Sample to detector distance
The angleα subtended by a single pixel is given byα= dx,y/R. The fringe spacingwf (1/m) for a given real-space
direction is approximated aswf≈ 2π/(N1/3|a|), where a is a lattice vector andN is the total number of unit cells.
To sample the data at an oversampling ratio ofβ, each fringemust at least cover 2β pixels such that
wf/(2β)= α|k|. The optimal sample to detector distance at the centroid is then given by:

∣ ∣ ∣ ∣ ∣ ∣
( )R d

d

w

d Nk k a2
8x y

x y

f

x y
,

, ,
1 3

a
b b

p
= = =

2.2.3. Rocking curve
The third dimension of the diffraction pattern is obtained by incrementally rotating the nanocrystal by an angle
Δθwhile recording the scattering intensity at the detector. This procedure is equivalent to rotating theQ-vector
relative to the nanocrystal. The rocking curve incrementΔθ is the angle subtendingwf/(2β), normal to the
scattering plane (about ˆ ˆk ki f´ ) and is given by:

∣ ∣
( )

w

Q2
9

fq
b

D =

The rocking curvewidth maxq is the angular rangewithinwhich the object crystalmust be rotated in order to
acquire the third dimension of diffraction. A good estimate of this can be obtained by considering the
distribution of diffraction intensity as a sinc functionwith amaximum intensity of ( )I r S N RQsc 0

2
0

2 2 2= F and
a fringewidth ofwf. For an exposure time of τ seconds, the average decay in intensity at a point Pwithwavevector
kf,P can be described by the envelope function:
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Where ( ) q wf
2e p and is included for practical purposes.We can then evaluate q qmax= when ( )E qmax

takes itsminimumvalue of ( )E q n dx ymax 0 ,
2= , where n0= 1 is theminimumphoton count at that pixel. Using

equation (10), it is then possible to obtain qmax and hence obtain the total rockingwidth maxq as:
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The resolutionΔX at which the diffraction data is obtained then becomes
( ) ( )X w q w q2 2f fmax maxp pD = = in units ofmetres.

2.2.4. Diffraction pattern coordinate transformation
Diffraction amplitudemeasurements are in general recorded in the coordinate systemof the experimental setup
which is typically not a rectilinear coordinate system. As a result, the amplitude and phase information
reconstructed fromdiffraction amplitudemeasurements will also not reside in a rectilinear coordinate system. It
is however possible to transform the experimental coordinate system into a rectilinear coordinate system.We
demonstrate this using the following procedure for a θ rocking curvemeasurement. Analogous procedures
apply for af rocking curvemeasurement. If ẑ, ŷ and ẑ are unit vectors in a rectilinear coordinate system, unit
vectors for the incident ki and reflected kf wavevectors are generally given by:

ˆ { ( ) ( )} ˆ ( ) ˆ { ( ) ( )} ˆ
ˆ { ( ) ( )} ˆ ( ) ˆ

{ ( ) ( )} ˆ ( )

k x y z

k z y
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cos sin sin

cos cos 12

i

f 0 0 0 0 0 0

0 0 0 0

f q f f q

f f f q q q f f f
f f f q q q

= + +

= + + ¢ + + ¢ + + + ¢
+ + + ¢ + + ¢

where θ andf are angular rotations about the ŷ and ẑ axes respectively. This systemof rotations is chosen so that

the k̂ i unit vector is aligned along the k̂ vector direction in the absence of rotation. Angles θ0 andf0 are
additional angular rotations about the ŷ and ẑ axes respectively needed for the kf vector to adopt the Bragg
condition for diffraction. Angle i i0 1q a a¢ = -+ and j j0 1f a a¢ = -+ are small increments of θ0 andf0
respectively which allow each point on the diffraction pattern to be addressed by a general rotation of the kf
vector about the origin. The unitQ-vector is then given by ˆ ∣ ∣Q k k k kf i f i= - - . In order to define a
rectilinear coordinate system, we determine, with zero order approximation, the change in Q̂ with, 0q ¢, 0f ¢ and
θ. This is because the rocking-curve rotates about Q̂.
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It is then possible to define reciprocal lattice vectors *aj in a rectilinear coordinate system as follows:
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whereΔθ are angular increments in the rocking-curvemeasurement andΔθ0,Δf0 are angular displacements
of the k̂f vector. The coordinates generatedwill in general differ for each speckle pattern that is obtained from a
unique Bragg reflection. In order to generate coordinate points common to a number of speckle patterns, it is in
general necessary to interpolate onto a regular grid.

3. Results

3.1. Effect of supercell size on speckle pattern
Todemonstrate the efficacy of our framework, coherent x-ray scattering froma range of nanocrystalmaterial
systemswas calculatedfirst for a range of supercell sizes, in the absence of lattice distortions. The detector is
assumed capable of single photon counting so that one photon detected corresponds to one count on the
detector. Each diffraction speckle patternwas computed using aNvidia V100Graphics ProcessingUnit (GPU)
as provided by the IridisHigh Performance Computing Facility at theUniversity of Southampton. The total
compute time varied from approximately 2 hours (without supercell grouping)down to a few seconds, inversely
proportional to the supercell grouping size.

Poisson noise was then added to each diffraction pattern and theχ2 error, which has a possible range of [0,
∞ ], was then calculated using equation (15). In equation (15), Id is the scattering intensity for a supercell of size d
(unit cells) and I0 is the scattering intensity in the absence of supercell grouping (i.e. 1 unit cell per supercell,
which is the ground truth). The resultingχ2 values are plotted infigure 2 using the relevant parameters in table 1.
Results are shown for a single Bragg reflection of eachmaterial only as similar results were obtained for other
reflections (See supportingmaterial is available stacks.iop.org/JPCO/6/055003/mmedia). In each case, a
relatively smallχ2 error (< 0.01) is seen to persist for supercell sizes below the resolution (ΔX3 in units of nm3)
and rapidly increase at an exponential rate beyond the resolution limit. The normalised compute time is also

Figure 2.χ2 error of equation (15) plotted against the supercell size for ZnO (101), BTO (101) and LCO (104) reflections (see table 1).
Solid vertical red lines indicate the resolution of each simulation,measured in crystal unit cell units. Dashed vertical lines indicate the
supercell size used in each simulation. Theχ2 error remains below 0.01where the supercell size is below the resolution (left side of
vertical line). Normalised compute time plotted against each supercell size showing a rapid reductionwith an increasing in supercell
size. Points arefitted to an exponential curve.
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plotted against each supercell size infigure 2. This is shown to rapidly reduce from the initial values (9, 11 and 7
minutes, respectively) down to a few seconds with an increase in supercell size.

( ( ) ( ) )
( )

( )
I I

I

q q

q
15d

dq

q

2 0
2

0

c =
å -

å

Once a suitable supercell size was established below the resolution threshold, coherent x-ray scatteringwas
then calculated for the same range of nanocrystalmaterial systemswith the addition of predetermined atomic
lattice distortions. Diffraction patterns fromnanocrystals of zinc oxide (ZnO), barium titanate (BaTiO3 or BTO)
and lithium cobalt oxide (LiCoO2 or LCO)were obtained using the parameters shown in table 1. In each case,
the size of the supercell remained below the resolution of themeasurement (ΔX 3).

The nanocrystal electron density and phase informationwas subsequently reconstructed from the resulting
scattering patterns with the inclusion Poisson noise. Standard iterative phase retrieval techniqueswere used and
are available in the Interactive Phase Retrieval Suite software package [25]. This typically beganwith 1000
iterations of theHIO algorithmusing afixed solvent support region and amask to eliminate amplitude
information below the single photon (per pixel) threshold. This was immediately followed by 5,000 iterations of
the ShrinkWrap algorithmwith theHIOMask constraint, as before. Finally 100 iterations of the Error
Reduction algorithmwere performed.

3.2. Zinc vacancies and interstitials in ZnO
Figure 4(a) shows the diffraction pattern of the (101) reflection of a ZnOnanocrystal with nominal dimensions
of 95× 95× 200 nm. ZnOhasWurtzite crystal structure (space group P63mc)with lattice parameters
a= b= 0.325 nmand c= 0.52 nm. Zn ions are known tomigrate to either in-plane or out-of-plane interstitial
sites, as shown in figure 3(a). In this crystal phase information in the reconstructed image results from sinusoidal
displacement of the Zn ion, at the origin of eachWurtzite unit cell, normal to the (002) direction and along the
(110) direction. The period of the displacement was commensurate with the length of the nanocrystal with a
peak-to-peak amplitude of 20%, inWynckoff fractional units. The total compute timewas less than 10minutes.
The diffraction pattern (figure 4(a), left) clearly shows six fold rotational symmetry as expected from a hexagonal
crystal with some distortions due to the aforementioned atomic deviation from the ideal lattice. Iterative phase
retrieval as performed on the diffraction pattern successfully recovered themorphology of the crystal with the
correct dimensions and also the phase informationwhich is visible infigure 4(a), upper right. A sinusoidal
variation in the phase between± 0.3 radians is observed along the length of the nanocrystal while uniformphase
is observed in transverse planes, in good agreementwith the calculated ground truth (figure 4(a), lower right).

Figure 3. (a), (001) plane of ZnO showing possible paths for Zn diffusion into interstitial sites. (b), BaTiO3 conventional unit cell
showing displacement direction for Ti and theOoctahedron. (c) (001) plane of LiCoO2 indicating the ¯1120á ñBurgers vector for
dislocation.

Table 1.Diffraction parameters. Each case has the following parameters in common: Beam flux density
Φ0 = 1020 (photonsm−2 s−1);Wavelengthλ = 0.137760 (nm); Exposure time t = 100 (s); DetectorX,Y = 256
pixels; Detector pixel size dx,y = 50 μm

Material hkl No. of Cells Supercell β R (m) ΔX (nm) ΔX (cells)

ZnO (101) 25,872,000 10 × 10 × 5 1.5 0.3946 5.12 2,821

BTO (101) 56,325,500 5 × 5 × 10 1.5 0.5255 4.56 1,473

LCO (104) 9,477,000 5 × 5 × 5 1.5 0.4749 12.77 21,596
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3.3. Ferroelectric phase transition in BTO
BariumTitanate (BaTiO3 or BTO) is a ferroelectricmaterial that undergoes a phase transition at Tc= 393 K
[26–28]. Below this temperature, ferroelectricity arises from the non-centrosymmetric properties of the lattice
as the Ti cations andO anions are displaced from their equilibriumpositions in opposite directions along the c-
axis giving rise to a spontaneous polarization (figure 3 (b)).

A 180° ferroelectric domain structure is considered for a cubic nanocrystal of nominal dimensions
400× 400× 400 nm. The Ti ions are displaced by 5% inWyckoff fractional units while the oxygen octahedron
ions are displaced in the opposite direction; theO ion atWyckoff position (0.5 0.05 0) is displaced by 11%and
the remainingO ions are displaced by 7%.The domain structure is incorporated by using a squarewave function
for the displacement of the ions along the (110) directionwith a period of 400 nm.

Figure 4(b) shows the simulated diffraction pattern of the (101) reflectionwith the four-fold symmetry
expected of a cubic crystal.

Reconstruction of the diffraction pattern using iterative phase retrieval has recovered the correct
morphology of the nanocrystal as well as the expected domain structure (4(b), upper right). A sudden shift in the
phase frompositive to negative clearly exhibits the 180° shift in the polarization. A region in the centre of the
crystal of zero phase is clearly visible indicative of the formation of a planar domainwall structure.

Figure 4. Left; Diffraction pattern iso-surface for the (101), (101), and (104) reflections of ZnO (a), BaTiO3 (b) and LiCoO2 (c)
respectively. Insets show the unit cell structure of thematerial. Right; Ground truth and reconstructed nanocrystals for eachmaterial
showing themorphology and phase information. Internal phase information is revealed as a cut plane along the high symmetry axes.
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3.4. Lithium ionmigration in LCO
LithiumCobalt Oxide (LiCoO2 or LCO) has a layered structure consisting ofO atoms bondingwithComore
strongly thanwith the Li ion.When an electric field is applied to the LCO crystals within a battery, charging
occurs as the Li ions begin tomigrate from their original positions towards the anode ([29, 30]). However, the
crystallographic structures can present dislocations in thematerial. These can prove beneficial for cycling, as the
dislocations could facilitate an energetically improved diffusion path for the Li ions to be transported between
their lattice site within the crystal structure and the electrolyte or electrode ([31, 32]). Yet, dislocations are by
definition defects within the lattice, that can eventually initiatemechanical degradations ([33]). To simulate
dislocations, an LCOnanocrystal of 350× 350× 200nmnominal dimensions was generatedwith a slip taking
place along the ¯1120á ñ lattice directions in the {0001} planes. The resulting diffraction pattern is shown in
figure 4(c) (left) for the (104)Bragg reflection. Iterative phase retrieval algorithms have successfully
reconstructed the nanocrystal’smorphology, including the phase information (figure 4(c) top right). The
morphology of the reconstruction resembles the expectedmorphology (figure 4(c) bottom right), but the
observed additional surface roughness of the amplitude is likely due to the high aspect ratio unit cell, resulting in
a relatively wider variation in the fringe spacing, and hence in the resolution, both along and normal to the high
symmetry axis of the diffraction pattern. Regarding the phase informationwithin, it is predominantly neutral,
except for the created dislocation along the ¯1120á ñdirection.

4.Discussions

Thiswork demonstrates an atomistic approach to simulating Bragg coherent diffraction from a single
nanocrystal.We have shown that provided that the unit cells are grouped into supercells with dimensions below
the resolution of themeasurement, it is possible to reconstruct the amplitude and phase information from the
scattering intensity alone.Ourmeasure of the resolution is an approximation based on scattering from a small
and perfect nanocrystal. BraggCDI experiments performed in practice will likely result in lower resolution
measurements due to inherent defects present inmost crystals that can reduce visibility in the speckle pattern.

In addition it should be noted that although our framework correctly assumes that the scattering intensity
recorded by each pixel of the area detector results from scattering into a solid angle subtending that pixel, the
phase reconstruction process instead considers each pixel as having recorded intensity from an infinitesimally
small region of reciprocal space. Coupledwith the finite boundary of the acquired scattering data, this can result
in aliasing in the reconstruction process. Ameans tomitigate this effect is to expands the spatial frequency range
by padding the data.

5. Conclusions

In summary, we have demonstrated the feasibility of atomistic computation of Bragg coherent x-ray diffraction
scattering fromnanoscale crystals and three-dimensional image recovery that is limited in resolution primarily
by the diffraction experimental geometry. By grouping unit cells into supercells of dimensions below the BCDI
experiment resolution, it was demonstrated that our approach can accurately simulate the coherent x-ray
diffraction pattern of a single nanocrystal on a significantly reduced time scale (typically two orders of
magnitude) and subsequently recover the correct electron density and phase information. Our approach is
therefore of considerable utility for use in BCDI diffraction pattern simulation, data interpretation andmaterials
design.
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