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Abstract

The arrangement of atoms within a crystal and information on deviations from the ideal lattice is
encoded in the diffraction pattern obtained from an appropriately conducted Bragg coherent
diffraction imaging (BCDI) experiment. A foreknowledge of how specific displacements of atoms
within the unit cell alter the BCDI diffraction pattern and the subsequent real-space image is often
useful for interpretation and can provide valuable insight for materials design. Here we report on an
atomistic approach to efficiently simulate BCDI diffraction patterns by factorising and eliminating
certain redundancies in the conventional approach. Our method is able to reduce the computation
time by several orders of magnitude without compromising the recovered phase information and
therefore enables feasible atomistic simulations on nanoscale crystals with arbitrary lattice distortions.

1. Introduction

Displacements of atoms from their ideal position in the crystal structure of a quantum material can result in
dramatic changes in a range of properties and the emergence of entirely new phases of the material that are often
of considerable technological utility. Novel electronic and magnetic phases can arise as a result of subtle atomic
displacements of a single atom in each unit cell and as a result, there is considerable interest in developing robust
means to control displacements for use in technological applications that require on demand switching between
phases [1-6].

Bragg coherent x-ray diffraction imaging (BCDI) is a lensless imaging technique that encodes information
on the displacement of atoms with Angstrom sensitivity in the associated far-field diffraction pattern [7-11].
BCDI is performed by illuminating an isolated crystal with a spatially coherent x-ray source that exceeds the
dimensions of the crystal. A crystal of the order of a few hundred nanometres is usually required for this
condition to be met. The scattered light from the entire volume of the crystal then interferes in the far-field to
produce a diffraction pattern. The diffraction pattern is then recorded using a pixelated photon counting
detector that records the scattering intensity. The third dimension of the diffraction pattern is then obtained by
rotating the crystal through the Bragg condition while maintaining a largely fixed incident and reflected wave
vector. Information on atomic displacements is then obtained in three dimensions at the surface and in the bulk
of the material by computationally inverting the three-dimensional diffraction pattern using iterative projection
or machine learned neural network phase retrieval techniques [12—-14].

The resolution and accuracy of the recovered three-dimensional image is highly dependent on the BCDI
experimental geometry (oversampling ratio), the presence of noise in the measurement and to some extent, the
sample crystalline quality. A means therefore to calculate the diffraction pattern of a single nanocrystal with
arbitrary atomic displacements can provide useful insight into the experimentally observed diffraction pattern
and can also facilitate in recovery of the associated morphology and phase information.

To date, practical attempts to simulate diffraction from a single crystal with arbitrary atomic displacements
have either exclusively relied on approximating scattering from the atomic structure to the far-field imaging
plane with a Fourier transform or employed random sampling methods [15—-18]. In such a framework, there is
generally no direct means to specify atomic displacements and the associated phase information is instead used
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Figure 1. Diffraction simulation experimental geometry showing the wavevector incident on a nanocrystal (k;), the reflected wave
vector at the centroid (k¢) and a general reflected wavevector at an arbitrary location (kg p). Inset illustrates division of the crystal into
an ensemble of supercells each with dimensions below the measurements resolution (AX 3 in units of nm>).

to approximate atomic displacements. As a result, potential difficulties arise with such approaches when
attempting to correlate specific atomic displacements with the phase information.

The most general approach within the kinematic approximation consists of a summation of each scattering
event from each atom to arrive at the scattering intensity at a single location on the imaging plane. This can result
in a total number of summation of the order of 10° for a pixelated imaging plane. Although this approach is not
always prohibitive on modern accelerated Graphical Processing Unit (GPU) computing facilities or High
Performance Computing (HPC) facilities, there are certain redundancies (outlined below) in the standard
general approach that when removed, further and significantly increases the efficiency of the calculation and
enable its use in more demanding applications such as training data for machine learned phase retrieval
optimisation [19, 20].

In this report a highly accurate and efficient means to simulate diffraction of coherent x-rays from a single
crystal with arbitrary lattice distortions is presented. By doing so, we show that existing implementations based
on summation of scattering intensities can benefit in efficiency when utilising the approach presented herein.

2.Model description

Our method utilises the general scattering amplitude equation within the kinematic approximation to generate a
diffraction speckle pattern by individually considering the contribution of each atom within an isolated crystal
[21,22]. Refinements are then made to this standard scheme. The illumination source is assumed to be larger
than the crystal and fully coherent. Partial coherence effects however are readily incorporated, as previously
demonstrated for a subset of special cases [23, 24].

2.1. Scattering from a nanocrystal supercell ensemble

The description begins by considering a monochromatic beam of light with intensity ®, (photons/m”/s) and
wavelength A impinging on a single nanocrystal. This nanocrystal is located at the origin O which coincides with
the origin in the laboratory frame of reference (figure 1). The primary coherent x-ray beam is oriented in the
positive z-direction in the global co-ordinate system and has no component in the x or y-directions. The unit
vector for the primary beam is denoted by k; . The position of each atom in the crystal is given by

R}’ = R, + 1, whereR,, = nja; + nya, + nsas, a;are unit cell vectors, n; are positive integers and r,,, are
displacements of atom 2 within each unit cell. The reciprocal lattice vector G = ha/" + ka} + [a} is then
obtained in the usual manner and the crystal rotated as needed about the z, § and Z axes in order to satisfy the
Bragg condition (G = Q). The Bragg reflected beam is considered at each global point P(x,, y,;) located at the
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detector in the general direction lAcf, p. We define the wavevector transfer at the centroid as Q = k¢ — k;and the
general wavevector transfer to a point Pas q = k¢p — k;.

The instantaneous scattering amplitude A at a point P, a distance R from the nanocrystal, is then in general
given by:

P -
A(Q) = % > o fa(@e iR €]
R

where r, is the Thompson scattering length and f,,(q) is the atomic form factor. When there is no variation in
atomic arrangements within the unit cell, equation (1) is often divided into contributions from the lattice and
unit cell structure factor S(Q):
10+ Do
R

AlQ =~ S(Q

ZR eiiq'Rn

If atom m is allowed to displace by an amount u,,,(R,,), equation (2) is no longer so easily separated and the
scattering amplitude becomes:

A(qQ) = @Zz.ﬁn(q) e~ Ry +unR,) (3)

R, T,

n Im

The scattering intensity is then given by:
I(q) = A(@A*(q) 4

In general, to obtain a slice of the three-dimensional diffraction pattern (the third dimension and rocking
curve procedure are discussed below), equations (3) and (4) are computed for each detector pixel by varying the
reflected scattering vector k¢ p. The number of photons scattered into a detector pixel of length d,. , is then given
byn, = I(‘l)d;?y-

Computation of equation (3) is often prohibitively challenging due to the summation over each atom in each
unit cell in the crystal which can extend beyond 10” terms. To overcome this challenge, the summation over each
unit cell is instead replaced with a summation over groups of unit cells (or supercells) of a fixed size that are
adjacent within the crystal. To accomplish this, lattice vector displacements #; are replaced by n; d;, where d; are
positive constant integer values for each index i. We then define a supercell lattice vector R}; = R,y + 1, and
R,; = n,d\a, + nydya, + nsdsas. Substituting into the scattering amplitude equation and simplifying yields:

1 \/(}To

A(Q = TZR,,Zrm f,@ e~ 1Ry +uy(Ry,)

ey

r @ 7 m ~
~ % Hi diZRnerm fm (9 e ARG+ 0(Rpa)) )

where 1i,, is the average displacement of atom 1 in the supercell at position R,,;. We will demonstrate below that
grouping unit cells into supercells within the scattering amplitude summation is justified provided the total size
of each supercell remains below the resolution of the measurement which is determined by the experimental
geometry.

2.2. Geometric considerations
In order to determine the appropriate supercell size, geometric considerations largely related to the sample-to-
detector distance and the rocking curve angular width are considered.

2.2.1. Detector scattering
Consider a detector of size X x Y pixels with pixel width of d,. .. If the centroid is pointing at the centre of the
detector at a distance of R, the angles c;, o subtending pixel indices 7, j (in the x and y-directions respectively) are
given by:

«; = arctan(d,,, (i — X/2)/R)

aj = arctan(d,,, (j — Y/2) /R) (6)

Reflected vector k¢ pis then rotated onto each pixel such that:
k@, j)rp = Ma(cvi) Mi(a) ke ()

where M, is the rotation matrix about ﬁi X ﬁf and M, is the rotation matrix about ﬁf — ﬁi.
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2.2.2. Sample to detector distance

The angle o subtended by a single pixel is given by o = d,. ./ R. The fringe spacing wy(1/m) for a given real-space
direction is approximated as wy= 27/(N 1/3 |a]), where a is a lattice vector and N is the total number of unit cells.
To sample the data at an oversampling ratio of 3, each fringe must at least cover 23 pixels such that

wy/(23) = a|k|. The optimal sample to detector distance at the centroid is then given by:

dey20k|  dy,BkIN'fa|

Wf ™

R=d,,/a=

®)

2.2.3. Rocking curve
The third dimension of the diffraction pattern is obtained by incrementally rotating the nanocrystal by an angle
Af while recording the scattering intensity at the detector. This procedure is equivalent to rotating the Q-vector
relative to the nanocrystal. The rocking curve increment Af is the angle subtending w;/(23), normal to the
scattering plane (about k; x k¢)and is given by:

Wi

0=—— 9
261Q )

The rocking curve width 6,,,, is the angular range within which the object crystal must be rotated in order to
acquire the third dimension of diffraction. A good estimate of this can be obtained by considering the
distribution of diffraction intensity as a sinc function with a maximum intensity of I, = ¢ ®,S*(Q)N?/R?and
afringe width of wy. For an exposure time of 7 seconds, the average decay in intensity at a point P with wavevector
k¢ p can be described by the envelope function:

It

E . — 10
D= aiw) + ¢ (1

Where e < (mq/wy)* and is included for practical purposes. We can then evaluate g = q,,, when E(q,.,.)
takes its minimum value of E(q,,,.) = 9 / d,?,y, where 1y = 1 is the minimum photon count at that pixel. Using
equation (10), it is then possible to obtain g, , and hence obtain the total rocking width 0, as:

172

2wr [ I Td?

Oy = SO e Ty (11)
7| Q| no

The resolution AX at which the diffraction data is obtained then becomes
AX = Q21 /wr) [@pax /WF) = 27 /4, in units of metres.

2.2.4. Diffraction pattern coordinate transformation

Diffraction amplitude measurements are in general recorded in the coordinate system of the experimental setup
which is typically not a rectilinear coordinate system. As a result, the amplitude and phase information
reconstructed from diffraction amplitude measurements will also not reside in a rectilinear coordinate system. It
is however possible to transform the experimental coordinate system into a rectilinear coordinate system. We
demonstrate this using the following procedure for a § rocking curve measurement. Analogous procedures
apply for a ¢ rocking curve measurement. If Z, § and Z are unit vectors in a rectilinear coordinate system, unit
vectors for the incident k; and reflected ke wavevectors are generally given by:

ki = {cos(¢)sin(0)} % + sin(¢)§ + {cos(¢)cos(d)}2
ke = {cos(d + By + dy))sin(@ + o + )} 2 + sin(d + ¢y + ¢
+ {cos(¢d + &y + P )cos(0 + Oy + 0y')}2 (12)

where 6 and ¢ are angular rotations about the § and Z axes respectively. This system of rotations is chosen so that
the k; unit vector is aligned along the k vector direction in the absence of rotation. Angles 6 and ¢, are
additional angular rotations about the ¥ and Z axes respectively needed for the k¢vector to adopt the Bragg
condition for diffraction. Angle 6, = a;; — a;and ¢’ = ;1 — ajaresmall increments of 6, and ¢,
respectively which allow each point on the diffraction pattern to be addressed by a general rotation of the k¢
vector about the origin. The unit Q-vector is then given by Q = k¢ — k;/|k¢ — kj|. Inorder to definea
rectilinear coordinate system, we determine, with zero order approximation, the change in Q with, 6y’, ¢, and
0. This is because the rocking-curve rotates about Q.
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Figure 2. x> error of equation (15) plotted against the supercell size for ZnO (101), BTO (101) and LCO (104) reflections (see table 1).
Solid vertical red lines indicate the resolution of each simulation, measured in crystal unit cell units. Dashed vertical lines indicate the
supercell size used in each simulation. The x? error remains below 0.01 where the supercell size is below the resolution (left side of
vertical line). Normalised compute time plotted against each supercell size showing a rapid reduction with an increasing in supercell
size. Points are fitted to an exponential curve.

A

99 _ {cos(dp)cos(00)}2 — {cos(dp)sin(B)}2
00,
2Q . . . . . .
90, —{sin(¢y)sin(Bp) } Z + cos(p,)y — {sin(¢p,)cos(by)}Z
0
2Q . . .
% = {cos(¢p,)cos(By) — 1}Z — {cos(¢p,)sin(bp)}Z (13)

It is then possible to define reciprocal lattice vectors aj-‘ in a rectilinear coordinate system as follows:

9Q
ot = Ik Ady 55

0Q
* = ke AG
a; = |kq 0 90,/

0Q
=k A = 14
ay = |kq 90 (14)

where Af are angular increments in the rocking-curve measurement and A6y, A gy are angular displacements
of the k¢ vector. The coordinates generated will in general differ for each speckle pattern that is obtained from a
unique Bragg reflection. In order to generate coordinate points common to a number of speckle patterns, it is in
general necessary to interpolate onto a regular grid.

3. Results

3.1. Effect of supercell size on speckle pattern
To demonstrate the efficacy of our framework, coherent x-ray scattering from a range of nanocrystal material
systems was calculated first for a range of supercell sizes, in the absence of lattice distortions. The detector is
assumed capable of single photon counting so that one photon detected corresponds to one count on the
detector. Each diffraction speckle pattern was computed using a Nvidia V100 Graphics Processing Unit (GPU)
as provided by the Iridis High Performance Computing Facility at the University of Southampton. The total
compute time varied from approximately 2 hours (without supercell grouping) down to a few seconds, inversely
proportional to the supercell grouping size.

Poisson noise was then added to each diffraction pattern and the XZ error, which has a possible range of [0,
00 |, was then calculated using equation (15). In equation (15), I is the scattering intensity for a supercell of size d
(unit cells) and I, is the scattering intensity in the absence of supercell grouping (i.e. 1 unit cell per supercell,
which is the ground truth). The resulting x* values are plotted in figure 2 using the relevant parameters in table 1.
Results are shown for a single Bragg reflection of each material only as similar results were obtained for other
reflections (See supporting material is available stacks.iop.org/JPCO/6/055003 /mmedia). In each case, a
relatively small x* error (< 0.01) is seen to persist for supercell sizes below the resolution (AX in units of nm)
and rapidly increase at an exponential rate beyond the resolution limit. The normalised compute time is also
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Figure 3. (a), (001) plane of ZnO showing possible paths for Zn diffusion into interstitial sites. (b), BaTiO; conventional unit cell
showing displacement direction for Tiand the O octahedron. (c) (001) plane of LiCoO, indicating the (1120) Burgers vector for
dislocation.

Table 1. Diffraction parameters. Each case has the following parameters in common: Beam flux density
B, = 10%° (photons m s Wavelength A = 0.137760 (nm); Exposure time t = 100 (s); Detector X, Y = 256
pixels; Detector pixel size d,,, = 50 ym

Material hkl No. of Cells Supercell Jé] R(m) AX (nm) AX (cells)
ZnO (101) 25,872,000 10 x 10 X 5 1.5 0.3946 5.12 2,821
BTO (101) 56,325,500 5x5x10 1.5 0.5255 4.56 1,473
LCO (104) 9,477,000 5X5x%5 1.5 0.4749 12.77 21,596

plotted against each supercell size in figure 2. This is shown to rapidly reduce from the initial values (9, 11 and 7
minutes, respectively) down to a few seconds with an increase in supercell size.

o S g W@ — JIo(@)?
‘ > glo(@)

15)

Once a suitable supercell size was established below the resolution threshold, coherent x-ray scattering was
then calculated for the same range of nanocrystal material systems with the addition of predetermined atomic
lattice distortions. Diffraction patterns from nanocrystals of zinc oxide (ZnO), barium titanate (BaTiO; or BTO)
and lithium cobalt oxide (LiCoO, or LCO) were obtained using the parameters shown in table 1. In each case,
the size of the supercell remained below the resolution of the measurement (AX 3.

The nanocrystal electron density and phase information was subsequently reconstructed from the resulting
scattering patterns with the inclusion Poisson noise. Standard iterative phase retrieval techniques were used and
are available in the Interactive Phase Retrieval Suite software package [25]. This typically began with 1000
iterations of the HIO algorithm using a fixed solvent support region and a mask to eliminate amplitude
information below the single photon (per pixel) threshold. This was immediately followed by 5,000 iterations of
the Shrink Wrap algorithm with the HIO Mask constraint, as before. Finally 100 iterations of the Error
Reduction algorithm were performed.

3.2. Zinc vacancies and interstitials in ZnO

Figure 4(a) shows the diffraction pattern of the (101) reflection of a ZnO nanocrystal with nominal dimensions
0f95 x 95 x 200 nm. ZnO has Wurtzite crystal structure (space group P6;mc) with lattice parameters
a="b=0.325nmand ¢ = 0.52 nm. Zn ions are known to migrate to either in-plane or out-of-plane interstitial
sites, as shown in figure 3(a). In this crystal phase information in the reconstructed image results from sinusoidal
displacement of the Zn ion, at the origin of each Wurtzite unit cell, normal to the (002) direction and along the
(110) direction. The period of the displacement was commensurate with the length of the nanocrystal with a
peak-to-peak amplitude of 20%, in Wynckoff fractional units. The total compute time was less than 10 minutes.
The diffraction pattern (figure 4(a), left) clearly shows six fold rotational symmetry as expected from a hexagonal
crystal with some distortions due to the aforementioned atomic deviation from the ideal lattice. Iterative phase
retrieval as performed on the diffraction pattern successfully recovered the morphology of the crystal with the
correct dimensions and also the phase information which is visible in figure 4(a), upper right. A sinusoidal
variation in the phase between = 0.3 radians is observed along the length of the nanocrystal while uniform phase
is observed in transverse planes, in good agreement with the calculated ground truth (figure 4(a), lower right).
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Figure 4. Left; Diffraction pattern iso-surface for the (101), (101), and (104) reflections of ZnO (a), BaTiO3 (b) and LiCoO, (c)
respectively. Insets show the unit cell structure of the material. Right; Ground truth and reconstructed nanocrystals for each material
showing the morphology and phase information. Internal phase information is revealed as a cut plane along the high symmetry axes.

3.3. Ferroelectric phase transition in BTO

Barium Titanate (BaTiO; or BTO) is a ferroelectric material that undergoes a phase transition at T. = 393 K
[26—28]. Below this temperature, ferroelectricity arises from the non-centrosymmetric properties of the lattice
as the Ti cations and O anions are displaced from their equilibrium positions in opposite directions along the c-
axis giving rise to a spontaneous polarization (figure 3 (b)).

A 180° ferroelectric domain structure is considered for a cubic nanocrystal of nominal dimensions
400 x 400 x 400 nm. The Tiions are displaced by 5% in Wyckoff fractional units while the oxygen octahedron
ions are displaced in the opposite direction; the O ion at Wyckoff position (0.5 0.05 0) is displaced by 11% and
the remaining O ions are displaced by 7%. The domain structure is incorporated by using a square wave function
for the displacement of the ions along the (110) direction with a period of 400 nm.

Figure 4(b) shows the simulated diffraction pattern of the (101) reflection with the four-fold symmetry
expected of a cubic crystal.

Reconstruction of the diffraction pattern using iterative phase retrieval has recovered the correct
morphology of the nanocrystal as well as the expected domain structure (4(b), upper right). A sudden shift in the
phase from positive to negative clearly exhibits the 180° shift in the polarization. A region in the centre of the
crystal of zero phase is clearly visible indicative of the formation of a planar domain wall structure.
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3.4. Lithium ion migration in LCO

Lithium Cobalt Oxide (LiCoO, or LCO) has a layered structure consisting of O atoms bonding with Co more
strongly than with the Liion. When an electric field is applied to the LCO crystals within a battery, charging
occurs as the Liions begin to migrate from their original positions towards the anode ([29, 30]). However, the
crystallographic structures can present dislocations in the material. These can prove beneficial for cycling, as the
dislocations could facilitate an energetically improved diffusion path for the Liions to be transported between
their lattice site within the crystal structure and the electrolyte or electrode ([31, 32]). Yet, dislocations are by
definition defects within the lattice, that can eventually initiate mechanical degradations ([33]). To simulate
dislocations, an LCO nanocrystal of 350 x 350 x 200nm nominal dimensions was generated with a slip taking
place along the (1120) lattice directions in the {0001} planes. The resulting diffraction pattern is shown in
figure 4(c) (left) for the (104) Bragg reflection. Iterative phase retrieval algorithms have successfully
reconstructed the nanocrystal’s morphology, including the phase information (figure 4(c) top right). The
morphology of the reconstruction resembles the expected morphology (figure 4(c) bottom right), but the
observed additional surface roughness of the amplitude is likely due to the high aspect ratio unit cell, resulting in
arelatively wider variation in the fringe spacing, and hence in the resolution, both along and normal to the high
symmetry axis of the diffraction pattern. Regarding the phase information within, it is predominantly neutral,
except for the created dislocation along the (1120) direction.

4. Discussions

This work demonstrates an atomistic approach to simulating Bragg coherent diffraction from a single
nanocrystal. We have shown that provided that the unit cells are grouped into supercells with dimensions below
the resolution of the measurement, it is possible to reconstruct the amplitude and phase information from the
scattering intensity alone. Our measure of the resolution is an approximation based on scattering from a small
and perfect nanocrystal. Bragg CDI experiments performed in practice will likely result in lower resolution
measurements due to inherent defects present in most crystals that can reduce visibility in the speckle pattern.

In addition it should be noted that although our framework correctly assumes that the scattering intensity
recorded by each pixel of the area detector results from scattering into a solid angle subtending that pixel, the
phase reconstruction process instead considers each pixel as having recorded intensity from an infinitesimally
small region of reciprocal space. Coupled with the finite boundary of the acquired scattering data, this can result
in aliasing in the reconstruction process. A means to mitigate this effect is to expands the spatial frequency range
by padding the data.

5. Conclusions

In summary, we have demonstrated the feasibility of atomistic computation of Bragg coherent x-ray diffraction
scattering from nanoscale crystals and three-dimensional image recovery that is limited in resolution primarily
by the diffraction experimental geometry. By grouping unit cells into supercells of dimensions below the BCDI
experiment resolution, it was demonstrated that our approach can accurately simulate the coherent x-ray
diffraction pattern of a single nanocrystal on a significantly reduced time scale (typically two orders of
magnitude) and subsequently recover the correct electron density and phase information. Our approach is
therefore of considerable utility for use in BCDI diffraction pattern simulation, data interpretation and materials
design.
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