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The gauge/gravity duality links the fields of string theory and quantum field theory.
The duality states that systems that are strongly coupled in one theory are weakly
coupled in the other. Thus, intractable problems in strongly coupled physics can
instead be calculated using the gravity side of the duality. In this thesis we study three
areas of strongly coupled physics: quantum chromodynamics, condensed matter
theory and (non)-hydrodynamic physics.

First, we study quantum chromodynamics (QCD), where we attempt to gain
insight into the temperature chemical potential QCD phase diagram by extending an
exactly soluble holographic model into imaginary chemical potential. We then look for
structure at small real µ and imaginary µ that help to reconstruct the large real µ phase
diagram. We find that the phase diagram has boundaries of regions where metastable
vacua exist and these boundaries, as well as the phase boundaries, converge at the
holographic QCD critical point.

We then move on to condensed matter theory where we study a top-down
holographic Weyl semi-metal where we find the defining characteristic of a Weyl
semi-metal: a quantum phase transition from a topological state with non-zero
anomalous Hall conductivity to a trivial insulator. Unlike previous models, we find
that the anomalous Hall conductivity is independent of model parameters at zero
temperature and is also first order. At non-zero temperature the transition remains
first order, and the anomalous Hall conductivity acquires non-trivial dependence on
model parameters.

Finally, we study the transition between non-hydrodynamic modes and
hydrodynamic modes in holographic strange metals, where the microscopic
description of the collective excitations is unknown but departs from the standard
weakly-coupled Fermi liquid theory. We find that by including translational
symmetry breaking the propagating non-hydrodynamic modes are damped, until at
sufficiently large symmetry breaking parameters the mode transitions to the purely
imaginary diffusive hydrodynamic mode.
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3

Chapter 1

Motivation

From humanities earliest foray into the study of nature we have always been lured to
an irresistible question - what is the fundamental thing that makes up all else? In every
century of scientific advancement there has always been opposing ideas and opinions,
from the pre-Hellenistic philosophers of whether it is changing or unchanging, to
modern day mathematicians and theoretical physicists who squabble of string theory,
loop gravity and quantum field theory. There may simply be no answer, something
that should be locked away in a vault of metaphysics...but it won’t stop people
pondering - what is our reality?

Some first attempts at defining the Fundamental was with the philosophers of
the Milesian school over two and half thousand years ago. They began with Thales,
who asserted that everything was made of water. His successor Anaximander said
hold on a minute - it isn’t water, it’s the apeiron! a concept of infinity or something
indefinite, and then came Anaximenes who thought it to be of air. After the Militians
came the Ionian Xenophanes (earth and water), and Heraclitus (fire).

Heraclitus was also known for another idea, one that to this day is still of great
interest - he thought everything was in a state of flux - ’you cannot step twice into the
same river for fresh waters are ever flowing in upon you’. His Fundamental fire was
always changing: ’all things come out of the one, and the one out of all things.’ This
goes straight to the heart of the question of what is our reality. Is it changing, or is it
unchanging? At first this might seem bizarre, of course everything is changing, but
what about at the level of the Fundamental, is it in motion or is it fixed? What is its
motion relative to?

Paramenides went against Heraclitus and coined the concept of eternity, that
nothing changes. What we see as many different things is only an illusion of our
senses, that base reality is indivisible and infinite. The different substances making up
the Fundamental were finally combined by Empedocles who said that it was made
from the four classical elements of earth, fire, water and air.

A middle ground was taken up by the atomists near the end of the rein of
Athens; first, in a way, by Anaxagoras who asserted that everything is divisible to the
minute, and second by the original atomists Leucippus and Democritus. They lived
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around the fifth century B.C prior to the Peloponnesian War that annihalited the
power of Athens and with it the city states that had been so important in the rise of
philosophical thought. Their theories were remarkable and of curious interest to any
modern physicist in that they invented the concept that everything was made of
indivisible, indestructible atoms that were composed of mostly empty space. Their
atoms came in different shapes and sizes and were constantly in motion, however
they were deterministic rather than probabilistic. Their atomic theory is balanced
between the changing and unchanging - changing in that the atoms are always in flux,
unchanging in that they are indestructible.

The pre-Hellinistic philosophers had started a process of deductive reasoning
into one of the most profound questions of humanity. They were also arguably the
most scientific of the whole period of antiquity, and after the fall of the city-states and
the rise of Alexander’s empire, the subsequent baseness of the Roman empire and the
beginning of the Christian dark ages, the progress of science, the progress of the
search of the Fundamental, stalled1.

It is testament to how advanced the Grecian civilisation was that it was about
two thousand years later that the idea that the Fundamental was made up of atoms
was again taken seriously with chemist and physicist John Dalton and his atomic
theory. He, like the atomists, theorised that elements are made up of tiny particles,
that atoms of a given element are identical and that they cannot be created or
destroyed nor made smaller. The difference between the two eras was that
mathematical modelling and scientific experiments had become far more advanced,
and with the invention of the kinetic theory of gases the idea that our world was made
up of atoms and molecules was accepted by the scientific community.

But the quest for the Fundamental was not finished.
Next came Thomson’s electron and Rutherford’s nucleus, and at the beginning of

the twentieth century a paradigm shift started to emerge. Planck and Einstein
discretised light energy into quanta and Bohr incorporated it into an early theory of
quantum physics. Shortly after, the fully fledged quantum mechanics was devised by
de Broglie, Schrodinger, Born and co. that among other things showed an early and
intriguing example of duality – that the fundamental quanta could be described as
particle or waves, known as the wave-particle duality. Whatever we thought was
making up our reality, it was proving to be stranger and more counter-intuitive than
we imagined – it was probabilistic, not deterministic.

Quantum mechanics was combined with special relativity utilising the
framework of classical field theory into the quantum theory of fields – a framework
that birthed the standard model: the current best description of what our reality is and
how it interacts. The standard model predicts that the Fundamental is made up of 17
particles obeying various symmetries. It combines the fundamental forces of

1There were other advancements of note in Plato’s mathematical Forms and in Hellenistic Alexandria
in Euclid and others, but not much in the way of the search of the nature of reality (except perhaps for the
Arabic alchemists and the Islamic Golden Age) and this introduction is already long enough.
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electromagnetism, the weak nuclear force and the strong nuclear force into six quarks
(up, down, charm, strange, top, bottom), six leptons (electron, muon, tau plus their
neutrinos), four gauge bosons (gluon, photon, W and Z boson) and one scalar boson
(Higgs).

Surely that was it – the fundamental particles that make up reality, joining
together and falling apart...but a look at history would say that there always seems to
be more to discover – were there issues with the standard model? Or is it complete?
Of course, there are problems.

For a start there isn’t a mention of gravity, either classical general relativity or
quantum gravity. And what of neutrino oscillations, or the hierarchy problem? There
are hints of discrepancies with experiments such as in the g− 2 calculation [2]and B
meson decay [3]. Not to forget that calculations using QFT are notoriously difficult
and can often only be performed using perturbation theory at weak coupling – what
happens at strong coupling? There is lots of interesting phenomena at strong
coupling, such as the QCD phase diagram and exotic materials in condensed matter
physics – how are we to describe them if the calculations are intractable? Perhaps,
when we are far into the strong coupling regime, we are being told by nature that we
are simply using the wrong theory and that there is a better solution.

The potential answer to some of the above questions comes as the foundation of
this thesis. When the standard model was being built a theory to describe the quarks
and gluons was required, one such idea, before quantum chromodynamics was
adopted, was string theory. The Fundamental here is not of point particles but of
strings and their higher-dimensional branes. Something else appeared, notably a
massless spin-2 particle: the graviton – instead of finding a theory of quarks and
gluons, a quantum theory of gravity was discovered! Was this string theory a theory
of everything? Could it be used to describe everything in the universe?

A difficulty appeared (surprise!) – there wasn’t just one string theory, but 5
encapsulated in another theory: M-theory. Moreover, string theory was right at the
pinnacle of the energy scale. That is, it described physics at the smallest known
distances, so how exactly do we go from strings down the energy ladder (and up the
distance ladder) to get to the particles described in the standard model? It turns out
there are a humongous amount of theories that the string theory could describe at the
low energy level, a problem called the swampland – from one string theory model,
many theories can arise at the standard model level. Further, string theory calculations
are just as difficult, if not more so than QFT calculations. So although we have found a
(consistent) theory of quantum gravity, what on earth do we do with it? We can’t test
it, and we struggle to relate it to the standard model even in theory. It looked like
string theory might be an interesting discovery but perhaps of little use to particle
physicists.

Nevertheless, hints appeared as to how to relate string theory to quantum field
theory. The theories that make up the standard model are gauge theories with a
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symmetry group SU(N) and ’t Hooft showed that in the large N limit, and using his
‘double-line notation’ [4], that the large N gauge theory had striking similarities with
string theory. The holographic principle was taken up by Susskind [5], the idea that all
the information of the universe could be held in a boundary of one less dimension
(like a black hole’s entropy). These ideas were combined by Maldecena in 1997 in the
first example of the gauge/gravity duality – a d+1 dimensional string theory is dual to
a d dimensional gauge theory [6].

Therefore there is a route to connect the physics of the standard model with the
physics of string theory via the duality. Moreover, the duality is a strong/weak
duality meaning that if one of the theories is strongly coupled, the other is weakly
coupled – hence it is possible that the intractable calculations of strongly coupled QFT
can instead be performed in the dual string theory and pro bono interpreting that
physics in a geometrical way.

There are unfortunately certain issues with the gauge/gravity duality that will
be fleshed out in later sections, for now we simple state a few. One is that the duality
is only conjectured, that is there is no mathematical robust proof. However there is
enough evidence to secure its claim to reality in academic circles. Another is a
question of what gauge theory do we have exactly? It is not that of the standard
model, nevertheless it is somewhat relatable and there are ways to make it more so.

Finally, we can come to the goal of this thesis: we investigate strongly coupled
physics using the gauge/gravity duality. In section II we outline the formalism of the
gauge/gravity duality. In part II we have new research. In section III we take a look at
the phase diagram of QCD. At large chemical potential and large temperature QCD is
in a state called the quark-gluon plasma where the quarks and gluons are deconfined
and are (approximately) chiral symmetric [7]. In this regime the strong coupling
constant is small and perturbation theory can be used. At low temperature and small
chemical potential the quarks and gluons are instead in a confined state, bound
together into baryons and mesons and chiral symmetry is completely broken.
Therefore there is a phase transition in the T − µ plane of QCD. There is however an
issue. The theory for the mesons and baryons, chiral perturbation theory, does not
extend to the location of the phase transition, nor does perturbative QCD due to the
coupling becoming strong. There is no known theory that can accurately predict the
full phase transition of QCD. The best that can be achieved is using lattice QCD but
due to the sign problem it cannot extend far into the real chemical potential axis [8].
There is however no such problem with lattice QCD working at imaginary chemical
potential and the results can be analytically continued into a small region of the real
chemical potential – such calculations have led to the discovery that at zero chemical
potential the QCD phase transition is a cross-over. Noting that at zero temperature the
chemical phase transition is expected to be first order, there must be a critical end
point to the phase transition[9]. It is one of the outstanding questions of QCD to
predict this end point, as well as to work out when and where confinement and chiral
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symmetry breaking take place – do they occur at the same time, or separately? A
potential answer to these questions was addressed using the gauge-gravity duality
that, as mentioned above, can tackle difficult strongly coupled problems. There have
been many conjectured phase diagrams using the duality all utilising different set ups
and hence with different results. What we aim to do instead is try to gleam universal
behaviour that could be of use in searches for the phase transition. We do this by
extending previous duality phase diagrams into the imaginary plane, motivated by
lattice simulations. Is there information in the imaginary plane that could be used to
predict what is happening in the real plane? We find that the solutions only extend so
far into the imaginary plane before instabilities arise (potentially related to the
Roberge-Weiss transition) – however it is enough for our purpose as we discover that
the phase transition lines are surrounded by bubbles of local minimums of the action.
These local solutions extend out from the phase transition lines and can be used to
track the locations of critical points. That is, by finding the local minimums on the
imaginary side of the phase diagram, the locations and phase content of the real side
can be approximated. It would be of great interest if such minimums can be found
using experiments or lattice QCD.

In section IV we switch gears away from QCD and into condensed matter
physics. Almost one hundred years ago Dirac published his work describing spin-1/2
particles. It was quickly followed up by Hermann Weyl in 1928 with a simplified
massless framework that predicted the existence of Weyl particles. It wasn’t until 2015
until these particles were actually discovered in tantalum arsenide [10, 11, 12, 13]. This
opened up the field of Weyl semi-metals. Weyl semi-metals have numerous
interesting properties. They are topological, meaning that the excited states are
protected from deformations. They also have an anomalous Hall conductivity that can
be thought of as an order parameter – it is zero in the trivial insulating phase (gapped
electron bands) and non-zero in the Weyl semi-metal phase (electron bands touching
forming Weyl points where the Weyl semi-metal excitations are found). The usual low
energy theory that describes these particles is at weak coupling, a question is then
what happens at strong coupling? Does the Weyl semi-metal phase still exist? Do its
properties change? Can it be realised in experiment? Some of these questions have
been addressed using gauge-gravity Weyl semi-metal models [14, 15], and we add to
these discussions with a new top down Weyl semi-metal with probe branes that is
formed using an axial gauge field. Not only do we find a Weyl semi-metal state,
indicated by the presence of an anomalous Hall conductivity, but we also find that the
transition is first order, contrary to previous models. We also find that at low
temperature the anomalous Hall conductivity is independent of certain parameters of
the theory, and that there is strong evidence of a sound mode in the spectrum of
fluctuations. It would be of great interest to construct strongly coupled Weyl
semi-metals in an experiment to test our predictions and those coming from the
gauge-gravity duality in general.
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Finally, in section VI we study the hydrodynamics of probe brane systems. In the
standard probe brane set up there is a propagating mode called holographic zero
sound [16], sharing the name of the zero sound mode found in experiments and
theoretically modelled by Landau – a mode that exists at zero temperature [17, 18].
Zero sound is not a density wave but instead it is a fluctuation of the Fermi-surface.
Although probe brane systems do not exhibit Fermi surfaces the mode found was
dubbed Holographic zero sound as it is also apparent at zero temperature. We add an
important ingredient in modelling real systems, namely that of translational
symmetry breaking, or in more physics language in adding impurities to the system.
We do this via incorporating various previous methods such as massive gravity,
Stueckelberg fields and three-form fields into one model with symmetry breaking
parameters [19, 20, 21, 22]. We find that the system does indeed act as expected.
Increasing the symmetry breaking causes the holographic zero sound mode to stop
propagating and transition to a diffusive mode. We show this in two ways, first via
numerics and second by analytical results. We also comment on the effect TSB has on
the AC and DC conductivities.

Before leaving this motivation section it is worth bringing the discussion back to
the overall goal. We discussed philosophers, mystics, theologians, physicists – all
asking the same question, albeit with different methods – what is the Fundamental of
reality? Only the later can be trusted , formed outside of the environment and society
whims that it finds itself in, whether of plenty or little, war or peace, only in science do
we find true progress. And although our theories have become more complex and
imaginative – a creativity bounded by the laws of physics and maths – the basic
underlying questions and principle has not changed. Perhaps, through the duality of
string theory and field theory, we take a step closer to answering this question, and
perhaps by linking the theoretical predictions of the gauge-gravity duality to
experiments we can take another.

In this thesis we start at the end of the road with the penultimate and ultimate in
quantum field theory and string theory and the miraculous discovery that in fact they
can be seen as two sides of the same coin.
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Chapter 2

Introduction to the Gauge-Gravity
Duality

A duality is the concept that two seemingly disparate things are actually exactly the
same. In physics, this means that two theories can be used to describe the same
system. One of most well known is the particle-wave duality outlined in the
motivation section - that the constituent quanta of the universe can be modelled either
as particles or waves. This isn’t simply the statement that particles can be
approximated or viewed as waves, the duality states that the quanta as waves is a
complete and rigorous way to define the quanta and its dynamics. By discovering and
understanding such dualities concepts that might be difficult to comprehend or
calculate by viewing the quanta as particles might become clear or tractable using the
other theory. For example by viewing the quanta as waves we can use all the
theoretical understanding of wave physics - but now applied to the quanta, such as
the Heisenberg uncertainty principle being a special case of the bandwidth theorem,
or ultilising reflection and transmission properties of waves off boundaries.

Similarly, there is the Montonen-Olive duality [23], or electric-magnetic duality,
that can be seen in Maxwell’s equations when electric sources are neglected under the
change of E→ B and B→ −E, or when magnetic sources are introduced. In the later
case something else of interest occurs, namely that the duality is a strong-weak duality
(or S-duality) - the electric coupling constant is inversely proportional to the magnetic
coupling constant. For now, magnetic monopoles remain undiscovered; however in
mathematical models that are used for their high degree of symmetry we can realise
the electric-magnetic duality [24].

The gauge-gravity duality, like the Montonen-Olive duality, is a strong-weak
duality, but it also exhibits holography: the theories have a different number of
dimensions. Concretely, the gauge-gravity duality maps between a d + 1 dimensional
superstring theory and a d dimension superconformal field theory. That is, there is a
quantum gravity theory on one side of the duality, and a gauge theory without gravity
on the other. This at first might seem startling, however there were hints that such a



10 Chapter 2. Introduction to the Gauge-Gravity Duality

duality could be realised. In section 2.1 we begin with the link between large N gauge
theories and string theory, before stating the first example as given by Maldecena in
1997 [6] in section 2.2, alongside the dualities disctionary and properties. The duality
at this point is still fairly unrealistic and in danger of being confined to mathematical
curiosity. In section 2.3 we introduce some additional properties that can pull the
duality towards the world that we think we reside in.

2.1 From Large N Gauge Theories to String Theory

Gauge theories are all around us. They are the mathematical framework that
physicists use to describe particles and their interactions, in turn they are used to
formulate the fundamental forces of nature. Gauge theories are a subset of a more
general framework called quantum field theory (QFT) where particles are represented
as excitations of some underlying field. QFT combines the subjects of quantum
mechanics and classical field theory such that special relativity and quantum
mechanics can themselves be combined. Four famous examples of gauge theories are
quantum electrodynamics, the weak interaction, quantum chromodynamics and
gravity, where the first three are of ’Yang-Mills’ type and the later under
diffeomorphisms. In what follows in this section we shall generally make use of
standard lecture material such as [25, 26] and textbooks such as [27].

Specifically, Yang-Mills theories have actions of type

SYM = − 1
4g2

YM

∫
d4xFµνaFa

µν (2.1)

where gYM is the coupling constant and Faµν the gauge field tensors. Greek indices
run over spacetime coordinates and latin indices over the generators of the Lie group
of Nc × Nc unitary matrices with determinant 1: the special unitary group SU(Nc).
That is, the action is invariant under the symmetry group SU(Nc) with N2

c − 1
generators indexed by a. To see this we first write out the field tensors,

Faµν = ∂µ Aaν − ∂ν Aaµ + gYM f abc Aµb Aνc (2.2)

which is invariant under the following transformation,

Fµν → UFµνU† U = exp(iωaTa) (2.3)

where Ta are the generators of the Lie group SU(Nc) that span the associated Lie
algebra. They obey the commutation relation,

[Ta, Tb] = i f abcTc (2.4)

with group structure constants f abc.
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The above construction is non-abelian and is the correct formalism for QCD and
the weak interaction, with symmetry groups SU(3) and SU(2) respectively. For QED
we instead have the abelian formalism with symmetry group U(1). Together they
form the standard model SU(3)× SU(2)×U(1) the basis of modern particle physics:
we have 8 gluons as the gauge bosons of QCD, 3 W/Z bosons of the weak interaction
and 1 photon from QED.

Gauge bosons only make up part of the standard model - we still have to include
the fermions. To do this we add the following matter term to our Yang-Mills
Lagrangian,

L f = ∑
f=1

ψ̄ f (iγµDµ −m f )ψ
f (2.5)

where f is the flavour index and ψ f is the fermion of flavour f with corresponding
mass m f . The inclusion of such a term is what accounts for the quarks and leptons in
the standard model 1.

It is worth emphasising what representations the gauge fields and matter fields
transform under. The gauge fields transform as,

Aµ → A′µ = UAµU† − igYM(∂µU)U† (2.6)

which is the adjoint representation of the gauge group: the gauge fields live in the Lie
algebra of SU(Nc) that has the N2

c − 1 generators as its basis. Therefore we can expand
the gauge field as,

Aµ = ∑
a

Aa
µTa (2.7)

where we see that we have a vector fields corresponding to the a gauge bosons. The
generators Ta themselves can be in different representations, however in the standard
model they are given in the fundamental representation, i.e they are Nc × Nc complex
objects.

Finally, the matter fields can be in various representations, some examples are:
electrons in QED are in the trivial representation; quarks in QCD are in the
fundamental representation, and matter fields in supersymmetric Yang-Mills are in
the adjoint representation.

There can be other symmetries associated with the (classical) Lagrangian, for
example if all the matter fields are of equal mass there is a global SU(N f ) symmetry
with N2

c − 1 associated conserved currents and conserved charges, where the charges
are the generators of the global symmetry. Furthermore, if the matter fields are
massless they can be decomposed into left and right handed parts each with a global
symmetry, i.e we have SU(N f )L × SU(N f )R. The left and right handed parts mix to

1Strictly, the mass term should be generated via the Higgs mechanism, but the above will suffice for
our purposes.



12 Chapter 2. Introduction to the Gauge-Gravity Duality

FIGURE 2.1: Example of loops in the calculation of a propagator.

form vector and axial conserved currents of which the aforementioned vector flavour
symmetry SU(N f ) is a subgroup. Indeed, under approximate chiral symmetry
breaking in QCD we have the spontaneous breaking of SU(3)L × SU(3)R → SU(3)V

where the 3 represents the u, d, s quarks only. That is, if we approximate the u, d, s as
being massless they form a SU(3)L × SU(3)R approximate chiral symmetry that is
then spontaneously broken via the formation of a quark-antiquark condensate. More
details of chiral symmetry in QCD are given in section 3.1. Finally, we note that there
is also a global U(1)B baryon symmetry.

We have a gauge field term in our Lagrangian and a matter field term, but what
about interactions and how do we describe them? The probability amplitude for an
interaction to take place is given by a summation of all possible allowed interactions
with given initial and final states. This set of interactions can be ordered using the
coupling strengths of the interaction in terms of loops. The amplitude of a particle to
simply go from one position to another can therefore be given diagrammatically by
fig. 2.1. As the number of vertices increases so does the power of the coupling strength
associated with that diagram. Clearly, as long as the coupling strength is small
perturbation theory will give accurate results in a timely fashion - however if the
coupling strength is large, and we are in the strongly coupled regime of the theory, we
instead have to turn to non-perturbative techniques of which there are few - one such
technique is the gauge/gravity duality that we shall turn to in due course.

For now let’s continue with our discussion of SU(Nc) gauge theories. For such
theories what can we say about the Feynman rules and diagrams? It turns out to be
helpful to first write Feynman diagrams in t’Hooft’s ’double-line’ notation [4] where
we make explicit that the adjoint fields are made up of two fundamental fields i.e one
fundamental one anti-fundamental (just like in QCD where gluons have one quark
and one anti-quark that can be seen by 3× 3̄ = 8 + 1). This is ultimately because for
SU(Nc) gauge theories the Feynman diagrams organise themselves in terms of the
two parameters of the theory: Nc and gYM (also N f ). In fact, when we go to large Nc it
will be convenient to use the t’Hooft coupling λ = g2

YMNc such that the diagrams
organise themselves in powers of λ and Nc.

To see this we consider a simple example. The Feynman rules for SU(Nc)

Yang-Mills are proportional to factors of λ and Nc: propagators are ∼ λ/Nc and
vertex’s ∼ Nc/λ (plus colour factors f abc) that can be calculated from the Yang-Mills
action given previously [25].
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FIGURE 2.2: Gluon self interaction in double-line notation.

FIGURE 2.3: A non-planar diagram. Notice that there is no longer an internal loop.

In fig. 2.2 we sketch the one loop correction to the gluon propagator in
double-line notation. The arrow on the internal circle indicates that there is an internal
colour loop where colour factor indices have been contracted giving a factor of Nc

( f abc fabc = CA = Nc). We have 2 vertices, one colour factor and four propagators
giving a total contribution of ∼ λ2/Nc. Fig. 2.2 is known as a planar diagram,
essentially meaning it can be drawn flat on the page. Instead, in fig. 2.3 we sketch a
non-planar diagram. With 7 propagators and four vertices (but now no colour
contraction) it has a contribution of ∼ λ3/N3

c . Therefore, if we took a large Nc limit,
we see that the non-planar diagram is subleading and can be neglected - a great
simplification. Moreover, if we consider vacuum bubble diagrams (essentially cut off
the external arms and complete the circles in the sketches) the contributions are ∼ N2

c

and λ respectively. In fact, if we drew out more bubble diagrams, we would find that
we can get the correct answer just by counting the number of Vertices, internal colour
loops (Faces) and propagators (Edges):

A = NF+V−EλE−V (2.8)

with the following relation,

F + V − E = 2− 2g = χ (2.9)

The ’number of bridges’ (i.e like the one in fig. 2.3) is g and χ is a topological
invariant (continuous deformations do not affect it while the symmetry of the system
remains unchanged) and is a property of Riemann manifolds. For example, in our first
bubble-ified sketch we have that g = 0, χ = 2 with F = 2, V = E = 0. In the second we
have g = 1, χ = 0 and F = 1, V = 2, E = 3.
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We have therefore found that Feynman diagrams can be related to geometrical
objects.

Concretely, we can write the amplitude as,

A = ∑
g

Nχ
c ∑

n
pg,nλn (2.10)

where pg,n are constants. The Feynman diagram expansion of a SU(Nc) gauge theory
in terms of the t’Hooft coupling λ and Nc can instead be viewed as an expansion in
Riemann surfaces where g corresponds to the genus, or number of holes in the surface.

This is remarkably similar to the expansion of a closed string scattering
amplitude with the identification of gs ∼ 1/Nc. That is, the large Nc limit is now
identified as only considering tree level diagrams.2

Is the similarity of a SU(Nc) gauge theory and a closed string theory just a
coincidence? Can a map, a duality, really be formulated between gauge theories and
string theories?

2.2 Gauge/Gravity Duality

Before answering that question we should first take a closer look at string theory and
some of its properties. The following is a brief discussion of string theory and the
duality, for more details see [6, 28, 29, 30, 31, 32].

2.2.1 String Theory

String theory is the idea that the fundamental constituents of nature are not point
particles but one-dimensional objects called strings. The strings can either be open,
where both ends of the string are free to propagate, or closed, where the endpoints of
two strings are joined together. In the case of open strings the endpoints can have two
types of boundary conditions; Neumann and Dirichlet. Dirichlet boundary conditions
imply that the string endpoint is fixed in the geometry, that is there are potential
hyperplanes that the endpoint is attached to. These hyperplanes are called Dp-branes,
strings that are extended in more than one spatial direction indexed by p.

By studying the solutions to the string fluctuations we can find the spectrum of
the theory. The spectrum is quantised and the various excited states can be separated
into those that are massive and those that are massless. The massive states have mass
proportional to 1/

√
α′, where α′ is the Regge slope, related to the string length by

α′ = l2
s . Therefore, by considering energy scales E� 1/

√
α′ the massive states will

decouple from the theory and we only have to focus on the massless ones. What these
massless fields are depends on what string theory we are considering.

2Although neglected here, fundamental particles can also be included by adding a factor −b to χ that
act as boundaries in the Riemann manifold.
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Specifically, we first note that string theory only contains bosonic fields, and if
we wish to include fermionic fields we need to invoke supersymmetry, leading to
superstring theory. Superstring theory is only consistent in ten-dimensions to avoid
anomalies [28]. Moreover, there are various different types of superstring theory that
are themselves related by another theory, M-theory [33, 34]. There is a choice of 5;
Type I, IIA, IIB, SO(32) and E8 × E8. Type I has both open and closed superstrings,
type IIA and IIB only have closed superstrings, and SO(32) and E8 × E8 have closed
heterotic strings that are composed of one superstring and one bosonic string. In what
follows we will be exclusively interesting in type IIB. The low energy superstring
spectrum is called supergravity and the type IIB supergravity spectrum includes
bosonic fields; the graviton (metric), gµν, an antisymmetric two-form gauge field, Bµν,
a scalar field, φ, called the dilaton, and n-form gauge fields Cn with n = 0, 2, 4 (in type
IIA n is odd) where F5 = dC4 is self-dual, and fermionic fields; the Majorana-Weyl
gravitinos and dilatinos.

The Dp-branes mentioned above are charged under the n-form gauge fields Cn.
Since only n odd/even is allowed for type IIA/IIB we see that only p even/odd
branes are respectively allowed. The Dp-branes can also be massive, and therefore
deform the geometry they reside in, as well as carry a U(1) gauge field. If we stack N
Dp-branes on top of each other we will instead have a U(N) gauge group. As an
example, the solution for a stack of N D3-branes in type IIB is given by [35],

ds2 =

(
1 +

L4

ρ4

)−1/2

ηµνdxµdxν +

(
1 +

L4

ρ4

)1/2

(dρ2 + ρ2dΩ2
5)

C4 =

(
1 +

L4

ρ4

)−1

dx0 ∧ dx1 ∧ dx2 ∧ dx3 F5 = dC4

(2.11)

where dΩ5 is a five sphere with radius ρ that is transverse to the D3 brane, and the
Greek indices run over the coordinates longitudinal to the brane.

2.2.2 The Duality

To show that there is indeed a map between string theory and gauge theory we will
make use of the Dp-branes outlined above.

As we have already mentioned, the Dp-branes can deform the spacetime around
them - that is, they can act as sources for the gravitational field. As an example, let’s
take the stack of N D3-branes above. There are two distinct limits. First we see that far
away from the branes, ρ� L, the metric is that of 10D Minkowksi spacetime. Second
we take the limit, ρ� L, where the metric reduces to,

ds2 =
L2

ρ2 dρ2 +
ρ2

L2 (ηµνdxµdxν) + L2dΩ2
5 (2.12)

This is a specific type of geometry that is called AdS5 × S5, where AdS stands for
anti di-Sitter and S5 labels the 5-sphere with radius ρ. More details on AdS are given
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in the next section, for now it is enough to notice that when the D3-branes backreact
and in the limit ρ� L our theory is reduced to type IIB supergravity in AdS5 × S5.

Instead, if the stack of Dp-branes do not backreact, we can focus on their surfaces
and the attached open strings. The appropriate theory to describe the open strings is
that of four-dimensional N = 4 SYM, the supersymmetric extension of the Yang-Mills
theory introduced in section 2.1. The field content consists of a gauge field, Aµ, that
lies longitudinal to the brane, six real scalar fields, φ, that are transverse, as well as
their supersymmetric partners. These fields can be described by the Dirac-Born-Infeld
(DBI) action [28],

SD3 =
1

(2π)3α′2gs

∫
d4xe−φ

√
−det(g∗ + B∗ + 2πα′F) (2.13)

where g∗ and B∗ are the pullback of the metric and 2-form field on the brane and F is
the gauge field tensor with symmetry group U(N).

We therefore have two ways of picturing D-branes; we can imagine that their
effect is to deform the geometry they reside in, or we can instead imagine that they do
not backreact and inspect the field content on their surfaces. To quantify the difference
between the two pictures it is best to look at the parameters of the theory. First of all
we have Newton’s constant, G, that can be related to the string length scale, ls, by

16πG = (2π)7g2
s l8

s (2.14)

or in terms of N,

G
L3 =

π

2N2 (2.15)

where we have used,

L4

l4
s
= 4πgsN (2.16)

with radius of curvature L.
When gsN � 1 the backreaction of the branes cannot be neglected and we get

the case of a curved geometry. This also implies that ls/L→ 0 which suppresses all
string quantum fluctuations and the theory reduces to the low energy point particle
supergravity description (along with taking gravity to be weak i.e gs → 0 which
implies N → ∞).

Conversely, when gsN � 1 the underlying geometry is unperturbed by the
Dp-branes. However we are now in the limit ls/L→ ∞ which would be in the
non-perturbative string regime. It is therefore necessary to take the low energy
massless limit E� l−1

s such that the open strings ending on the Dp-brane are
described by a supersymmetric gauge theory. As advertised previously, the natural
parameter of a U(N) gauge theory is the t’Hooft coupling λ = g2

YMN that can be
related to the string coupling by g2

YM = 2πgs.
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Since these two limits describe the same underlying object, it is feasible that they
are dual to one another. In fact, the above description is an example of the weak form
of the gauge/gravity duality where classical supergravity (gs → 0, ls/L→ 0) is dual
to a strongly coupled, large N gauge theory. However there is nothing stopping a
more general form, other than intractable calculations, where we relate a full quantum
string theory to a supersymmetric gauge theory with arbitrary N and λ.

Therefore, for the example of D3-branes in type IIB superstring theory we have
the following statement [6, 31, 32]:

N = 4 SYM with SU(N) and coupling gYM is dual to IIB superstring theory with
string length ls and coupling gs on AdS5 × S5 with radius of curvature L.3

In what follows we shall be interested in the weak form of the duality, specifically
the case of D3-branes in type IIB. Although the duality is not proven there is a large
amount of evidence for its existence. As a first step, we should see that the symmetries
on both sides are the same and that the field content can be mapped across.

2.2.3 Symmetries

AdS stands for anti-di Sitter, where the spacetime is hyperbolic rather than spherical
(di Sitter), that is the spacetime has negative curvature rather than positive. A d + 1
dimensional anti-di Sitter spacetime can be represented by embedding it in a d + 2
Minkowksi space Rd,2,

ds2 = −dX2
0 +

d

∑
i=1

dX2
i − dX2

d+1 (2.17)

where AdSd+1 is given by the hypersurface,

− L2 = −X2
0 +

d

∑
i=1

X2
i − X2

d+1 (2.18)

where the radius of curvature of the AdS space is L. One feature of this spacetime is
that it has a conformal boundary, ∂AdSd+1, at large values of X.

A standard coordinate system in the gauge/gravity duality is Poincaré patch
coordinates. These parameterise the spacetime by

X0 =
L2

2ρ

(
1 +

ρ2

L4 (x̄2 − t2 + L2)

)
Xi =

ρxi

L

Xd =
L2

2ρ

(
1 +

ρ2

L4 (x̄2 − t2 − L2)

)
Xd+1 =

ρt
L

(2.19)

3Note both theories also have a region far away from the brane that becomes type IIB on R9,1 that are
matched together.
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where i runs from 1 to d− 1 and ρ only has support R+ such that the coordinates only
cover half of the AdSd+1 spacetime with a second Poincaré patch required to cover the
whole space. In these coordinates the metric becomes,

ds2 =
L2

ρ2 dρ2 +
ρ2

L2 (ηµνdxµdxν) (2.20)

The Ricci scalar and cosmological constant are,

R = −d(d + 1)
L2 Λ = −d(d− 1)

2L2 (2.21)

Therefore the AdS spacetime can be thought of as simply d-dimensional
Minkowski space with an additional warp coordinate ρ [29]. Taking the case of the
D3-brane induced AdS× S5 geometry we have,

ds2 =
L2

ρ2 dρ2 +
ρ2

L2 (ηµνdxµdxν) + L2dΩ2
5 (2.22)

that we previously related to the ten-dimensional D3-brane solution in the ρ� L
limit.

What are the symmetries of the metric in (2.22)? We see that we have a SO(4, 2)
isometry group for the AdS5 part as well as a SO(6) rotation symmetry from the
5-sphere. This SO(4, 2)× SO(6) symmetry is a subgroup of the string
diffeomorphisms. In fact, it is the subgroup of large gauge transformations (and
therefore act as global symmetries) that acts on the near boundary metric.

So far we have only acounted for half of the bosonic symmetries since the theory
is supersymmetric, to include the fermionic contributions we simply have to go to the
double cover, SU(2, 2)× SU(4). Finally, including the conserved supercharges we
arrive at PSU(2, 2|4) [28].

On the other hand we have N = 4 SYM that is both supersymmetric and
conformal. Conformal symmetry enlarges the standard Poincaré symmetry group of a
field theory by including extra generators. Specifically we have the addition of
dilatations and special conformal transformations. Conformal transformations are
coordinate transformations x → x′ that leave the metric invariant up to a scale
factor [36],

gµν(x)→ Ω−2(x)gµν(x) (2.23)

such that, although the length of a spacetime interval is altered, angles are preserved.
Since we are interested in N = 4 SYM in 4d we are interested in the conformal
symmetries in d > 2 dimensions that form the group Conf(3, 1) isomorphic to
SO(4, 2). This group contains the Poincare group of translations, Pµ : xµ → xµ + aµ

and Lorentz transformations, Jµν : xµ → Λµ
ν xν, as well as dilatations D : xµ → λxµ and

special conformal transformations, Kµ : xµ → xµ+bµx2

1+2b·x+b2x2 , the later two of which can be
combined to create an inversion symmetry where xµ → xµ/x2.
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Supersymmetry further enlarges the symmetry group from Con f (3, 1) to
PSU(2, 2|4) by the addition of a SU(4)R group, the bosonic subgroup of which being
SO(6)R that rotates the 6 scalar field of N = 4 SYM, φi, into each other. The other
fields ofN = 4 SYM are four complex Weyl fermions, λa

α, where α labels the spacetime
spinor index and a labels the distinct supercharges a = 1, ...,N , and a gauge field, Aµ;
that with the 6 scalars form a vector multiplet with all fields transforming in the
adjoint representation. The generators of the SU(4)R group are the Poincaré
supercharges Qa

α, Q̄a
α̇ and the special conformal supercharges Sa

α, Saα̇, of which there
are 32 in total.

Therefore we see that the full symmetry group on both sides of the duality is
PSU(2, 2|4) with the various subgroups also matching, notably the bosonic AdS5

SO(4, 2) acts asymptotically as the conformal group on the spacetime coordinates xµ

and the SO(6) as the supersymmetry on the scalars.
Some other properties of the symmetries are worth pointing out. First is that the

asymptotic global symmetries of the gravity side ultimately arise as large gauge
transformations. Therefore there is a gauge/global duality, a general feature of all
gauge/gravity dualities. An immediate question is then what becomes of the SU(N)

gauge group of SYM on the gravity side? It turns out it becomes a flux through the
5-sphere, that is there are N units of 5 form flux on the S5 [28],

∫
s5

F5 = N (2.24)

Second is how do we interpret the radial coordinate on the boundary? A hint can
be given by looking at how the radial coordinate transforms, specifically under
dilations. The field theory coordinates in the bulk transform under D as in the
boundary, D : xµ → λxµ, however for the bulk metric to remain invarient the radial
coordinate must scale as D : ρ→ ρ/λ. That is, it scales as if it were energy. This
implies that short distance physics (UV) in the gauge theory is related to physics near
the boundary of AdS, whereas long-distance physics (IR) takes place in the deep
interior (horizon). However from the point of view of an observer at the horizon in
AdS, the UV physics takes place at the horizon instead, and therefore by the time it
reaches the boundary it is IR. In other words, the gauge/gravity duality is also a
IR/UV duality where the radial coordinate plays the role of a renormalisation group
scale in the gauge theory. We can then picture r-slices of the AdS space as setting a
scale to the gauge theory.

2.2.4 Field/Operator Map

We have seen how to picture the two theories geometrically, we have seen the field
content and symmetries on both sides. But if we wish to make calculations on one side
and match them to the other, then we shall have to match the observables on both
sides. On the field theory side physical observables are correlation functions made up
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of composite operators that can be calculated from varying the generating functional
with respect to the fields it contains. On the supergravity side the physical observables
are the fields. Therefore if we wish to link the two we can instead define the
correlation functions of the field theory in terms of the string fields defined at the
boundary [31, 32]:

〈O(x1)O(x2)...O(xn)〉 =
δ2Ssugra

δφ0(x1)δφ0(x2)...δφ0(xn)
(2.25)

In this way, we read the string fields at the boundary as the sources for the
operators of the field theory. From this we can write a statement of the gauge/gravity
duality,

〈exp(
∫

d4xφ(0)(x)O(x)〉 = ZCFT[φ(0)] ≡ Zstring[φ|∂] ∼ exp(−Ssugra[φ|∂]) (2.26)

where the field φ is a classical solution to the supergravity equation of motion with
boundary conditions φ(x, ρ)→ φ0(x) as ρ→ ∞. Some important examples of this
field/source mapping is the current operator Jµ being sourced from a vector field Aµ

and the energy-momentum tensor Tµν being sourced by the metric gµν. We will see
some of these mappings in action later.

How, precisely, do we find the boundary value of the fields? It is easiest to
consider a toy example with scalar field φ. The action term containing the scalar fields’
dynamics is,

S ∼ 1
2

∫
dzddx

√
−g(gmn∂mφ∂nφ + m2φ2) (2.27)

where we have switched to radial coordinate z and Fefferman-Graham
coordinates [37],

ds2 = gmndxmdxn =
L2

z2 (dz2 + ηµνdxµdxν) (2.28)

where the boundary is now at z = 0. The equation of motion for φ is,

(�g −m2)φ = 0 (2.29)

where,

�g =
1√−g

∂m(
√
−ggmn∂n)

=
1
L2 (z

2∂2
z − (d− 1)z∂z + z2ηµν∂µ∂ν)

(2.30)

Taking a boundary ansatz of φ(x, z) = z∆φ(x) and keeping only the leading
terms as z→ 0 i.e keeping only O(z∆) we find a constraint,
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∆(∆− d) = m2L2 (2.31)

with solutions,

∆ =
d
2
±
√

d2

4
+ m2L2 ≡ ∆± (2.32)

Clearly ∆+ ≥ ∆− and ∆− = d− ∆+. Furthermore, near the boundary the field
φ(z, x) can be expanded as,

φ(z, x) = z∆−φ(0)(x)(1 + ...) + z∆+φ(+)(x)(1 + ...) (2.33)

where ellipses stand for subleading terms in z.
In the boundary theory a scalar operator will have conformal dimension ∆c with

source dimension d− ∆c. In general, to satisfy the conformal unitarity bound for a
scalar field, ∆c ≥ 1/2(d− 2), we define ∆c ≡ ∆+ such that φ+ is related to the operator
for a scalar field with dimension ∆c. Therefore φ0 must have dimension d− ∆c and is
identified as the source of the operator. It is also possible to instead choose ∆c ≡ ∆−,
where the roles of operator/source are then interchanged, as long as the mass range is
− d2

4 ≤ m2L2 ≤ − d2

4 + 1. That m2L2 ≥ − d2

4 is called the Breitenlogner-Freedman bound
and is unique for AdS spacetimes [38, 39, 40].

In this way we can relate the fields in the bulk to sources and operators in the
boundary.

2.3 Towards Reality

The brief introduction to the gauge/gravity duality above gives some credence to the
conjecture, as well as some of the techniques of mapping calculations from one theory
to the other. However, we still lack much of the details we find in a standard field
theory system such as temperature, fields in the fundamental representation and a
departure from the highly symmetric N = 4 SYM. In this section we show how to
bring the gauge/gravity towards reality.

2.3.1 Thermodynamics

A natural object to consider thermodyanimcs with in a theory of gravity is a black hole
with Hawking temperature Th [41, 42]. In supergravity this can be introduced via
non-extremal black branes. For the case of D3 black branes, in the near-horizon limit,
the only part that changes is the AdS metric,

ds2 =
L2

ρ2 f (ρ)
dρ2 +

ρ2

L2 (− f (ρ)dt2 + dx̄2) (2.34)

with the emblackening function given as
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f (ρ) = 1− ρ4
H

ρ4 (2.35)

such that f (ρH) = 0. This is known as the AdS5-Schwarzchild solution. The radial
coordinate is now bounded by [ρh, ∞].

In QFT at finite temperature the object of interest is the partition function
Tr[e−βH ]. A simple way to make use of all the machinery of zero temperature QFT is
to notice that this is exactly the same as a time evolution operator eiHt if t = iβ with
β = 1/T - i.e we consider imaginary times. We therefore move to Euclidean time
τ = it and the trace now signifies that bosons/fermions have to be periodic/
anti-periodic in the time directions with period β = 1/T. In other words we have
compactified Euclidean time.

To connect this to the black hole we should first move to Euclidean time,

ds2 =
L2

ρ2 f (ρ)
dρ2 +

ρ2

L2 ( f (ρ)dτ2 + dx̄2) (2.36)

where there is a conical singularity in the Euclidean time-direction. To make the
metric regular, τ can be made periodic with period β - i.e we compactify the Euclidean
time direction. We can then interpret the field theory temperature with the compact
direction of the black hole,

TQFT =
1

βBH
=

ρ2
H f ′(ρH)

4πL2 (2.37)

where the explicit period can be found by investigating the conical singularity.
Using (2.35) we then find,

T =
ρH

πL2 (2.38)

Note, that by turning on a temperature we have added a scale to the theory and
thus broken the conformal symmetry at the boundary.

Once again we are faced with the question of conjecture - does the
correspondence still hold now that we have turned on a temperature? One possible
check is to calculate the entropy. However, in the boundary theory it isn’t possible to
calculate the strongly coupled entropy, instead we can take a look at the
non-interacting result [43]

S f ree =
2π2

3
N2T3Vol(R3) (2.39)

Since the entropy can run, we do not expect the gravity calculation to be exactly
the same, but it should take the same form. The natural entropy of a theory with a
black hole is the Bekenstein-Hawking entropy, a semi-classical result,

SBH =
A

4G
(2.40)
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where A is the horizon area and G is Newton’s constant. The area of the horizon
can be easily computed to be A = π6L8T3Vol(R3) such that the entropy becomes [41],

SBH =
π2

2
N2T3Vol(R3) (2.41)

Alternatively the same result can be calculated via the free energy S = −∂F/∂T.
We see that the result is very similar to that of the free theory up to a multiplicative
constant,

SBH =
3
4

S f ree (2.42)

This is more than just a check; it is a result - it tells us how the entropy of a
plasma of deconfined gluons runs between the free theory and the theory of infinite
coupling λ→ ∞.

Another important thermodynamic quantity is chemical potential. In the grand
canonical ensemble (GCE), where the potential can be calculated from the
renormalised action Ω = −Sr, there is a term that looks like:

dG 3∑
i

µidNi (2.43)

where the i can run over different chemical species. This term can be explicitly seen in
the GCE partition function in statistical field theory,

Z = ∑
i

e−β(Ei−Niµ) (2.44)

That is, the partition function contains a term that couples the chemical potential
to a number density operator. Such a term can also be introduced to the path integral
of a QFT. If there is some global symmetry associated with the chemical potential, for
example U(1)B baryon symmetry, we will get a conserved charge:

Q =
∫

d3xJt(x) =
∫

d3xd(x) (2.45)

where d(x) is some density like the number density above. Therefore, we can
write:

µQ =
∫

d3xµ(x)d(x) =
∫

d3xµ(x)Jt(x) (2.46)

Recall that a conserved global current in the boundary CFT is sourced by a gauge
field. Taking only the time component we can say that Jt is sourced by At. Comparing
this to what we have above we see that we can associate µ = At at the boundary.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × ×
D7 × × × × × × × ×

TABLE 2.1: D3/D7 brane setup in AdS5 × S5 where × signifies that the brane extends
in that direction.

2.3.2 Flavour

So far we have considered N = 4 SYM with some symmetry breaking via
temperature. However in SYM all the fields are in the adjoint representation. To take a
step toward reality we should include fields that transform in the fundamental
representation. This can be achieved by including N = 2 hypermultiplets that
transform in the N f representation of some gauge group U(N f ) where ’f’ stands for
flavour (also called matter fields) to signify that the fields are fundamental. In this
sense they can then be thought of as ’quarks’. More specifically, the field content of the
hypermultiplet is of a Dirac fermion ψ and a pair of complex scalar fields q and q̃ - the
Dirac fermion plays the role of the ’quark’ or ’electron’. The fields of N = 4 transform
in the singlet representation of U(N f ).

This addition is mapped to the gravity side by the inclusion of a stack of N f D7
branes with gauge group U(N f ), a specific example of a more general technique of
embedding Dq-branes into a Dp-brane background [44, 45]. The symmetries of the
theory change depending on how the Dq-branes are inserted into the background. In
fact, suspersymmetry restricts the possibilities. For our D7-branes we choose to orient
them such that they lie along all of the field theory directions. The set up is
summerised in table 2.1.

We now have additional degrees of freedom. Previously, we only had 3-3 (p-p)
strings with both ends attached to the D3-brane. We now also have 3-7 (p-q), 7-3 (q-p)
and 7-7 (q-q) strings, however the 7-7 strings decouple from the other excitations in
the α′ → 0 limit that we are considering [29]. Since the 3-7 strings have one end on the
SU(Nc) D3 branes and one on the U(N f ) D7 branes, they transform fundamentally
under both groups. Note, the U(N f ) has an important subgroup, the baryon
symmetry U(1)B. Only the fundamental fields are charged (±1) under the baryon
symmetry.

The first obvious change in the symmetry is that the SO(6) of the 5-sphere is now
broken down to SO(4) ∼ SU(2)× SU(2) acting on the x4, x5, x6, x7 directions and
SO(2) ∼ U(1) on the x8, x9. Therefore by introducing the D7 branes we have broken
the SO(6)R → SU(2)L × SU(2)R ×U(1)A where we indicate that the U(1)A acts as an
axial symmetry on the quarks. If the D7 branes are separated in the x8 or x9 direction
the U(1)A is also broken, for example we can choose x8 = lq and x9 = 0. Furthermore
by separating the 3-7 and 7-3 strings in this way we have introduced a mass mq

associated with the separation distance,
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mq =
lq

2πα′
(2.47)

Since the 3-7/7-3 strings are related to the N = 2 hypermultiplet we can say that
by separating the branes we are introducing mass to the ’quarks’. The angle of
separation in the 8-9 plane plays the role of the phase of the hypermultiplet mass.

The D7 brane action is given in part by a Dirac-Born-Infield (DBI) term and a
Wess-Zumino (WZ) term:

SD7 = −N f T7

∫
d8ξe−φ

√
−det(P[G]ab + 2πα′Fab)+

(2πα′)2

2
T7

∫
P[C(4)]∧ F∧ F (2.48)

where T7 = 1/(2π)7α′4 is the tension of the D7 brane, F is the field strength tensor for
a U(1) gauge field living on the brane, P denotes the pull-back of a background field
on the brane and G, C(4) and φ are the background fields outlined previously. We
should, however, be careful here. Since we have included a new term into the overall
systems action, can we still use the type IIB background fields in AdS5 × S5? In
general the D7 branes will backreact and we will have corrections to the background
fields, however the situation is simplified if we instead consider probe branes. The full
action is given by,

S = SIIB + SD7 (2.49)

Given that gs = eφ we have that SD7 ∝ N f /(2π)7α′4gs and
SI IB ∝ 1/2κ2

10 = 1/(2π)7α′4g2
s . If we wish the contributions coming from SD7 to be

small compared to SI IB, and therefore the backreaction can be neglected, then we see
that we want gsN f → 0. During the set-up of the semi-classical formulation of the
correspondence we also took gsNc � 1, hence the probe limit is satisfied when
N f � Nc. In other words, the number of probe branes is small compared to the branes
that originally deformed the geometry.

The second part of this thesis is devoted to such probe-brane systems, therefore it
will be helpful to consider a simple example to showcase some important
features [46]. The metric for a black hole in AdS5 × S5 was given by,

ds2 =
L2

ρ2 f (ρ)
dρ2 +

ρ2

L2 (− f (ρ)dt2 + dx̄2) + L2dΩ2
5 (2.50)

where the boundary is located at ρ = ∞. It will be useful to make explicit the SO(4)
and SO(2) symmetries. We do this by splitting the 5-sphere into a 3-sphere and a
1-sphere with ρ2 = r2 + R2,

L2dΩ2
5 =

L2

ρ2 (dr2 + r2dΩ2
3 + dR2 + R2dΩ2

1) (2.51)
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The separation of the D3 and D7 branes is then given by the field R. It will also
be helpful to make a coordinate transformation,

ρdρ

(ρ4 − ρ4
H)

1/2
≡ dw

w
(2.52)

2w2 = ρ2 +
√

ρ4 − ρ4
H (2.53)

with
√

2wH = ρH and ρH = πL2T. The metric becomes,

ds2 =
w2

L2 (−gtdt2 + gxdx̄2) +
L2

w2 (dr2 + r2dΩ2
3 + dR2 + R2dΩ2

1) (2.54)

where

gx =

(
w4 + w4

H
w4

)
gt =

(w4 − w4
H)

2

w4(w4 + w4
H)

(2.55)

Turning on only the At component of the gauge field (to act as the chemical
potential) the D7 action is, after integrating over the wrapped 3-sphere,

SDBI = −N
∫

d4xdr g3/2
x g1/2

t r3

√
1 + R′2 − Ã′2t

gt
(2.56)

Where the pre-factor is N = N f TD7Vol(Ω3), Ãt = 2πα′At and the WZ term is
zero (in chapter 4 we shall see an example with the WZ term non-zero). Since only A′t
appears in the action we have a conserved charge,

δSDBI

δA′t
= N r3g3/2

x g1/2
t

(2πα′)Ã′t√
1 + L′2 − Ã′2t

gt

≡ d (2.57)

To identify the charge ’d’ recall (2.25) and the argument below (2.46): the density
one point function 〈Jt〉 is sourced by At at the boundary,

〈Jt〉 =
δSDBI

δAt(∞)
(2.58)

If we vary At(ρ) we will find that 〈Jt〉 = d.
Legendre transforming with respect to the conserved charge we can write the

action in terms of the density,

S̃DBI = −N
∫

dr g1/2
x g1/2

t r3
√

1 + R′2
√

g2
x +

d2

gxr6N 2 (2.59)

where we have used,

A′t =
√

1 + R′2√
g2

xN 2 + d2

gxr6

dg1/2
t

g1/2
x r3

(2.60)
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such that the chemical potential is:

µ =
∫ rH

r0

A′tdr (2.61)

Finally the Gibbs free energy will be:

Ω = N
∫

dr g1/2
x g1/2

t r3

√
1 + R′2√

g2
x +

d2

gxr6N 2

g2
x (2.62)

To solve for the chemical potential and free energy we need to find solutions, and
therefore boundary conditions, for R. There are two different boundary conditions
that we should consider [47]. The first are called ’black hole’ solutions where the D7
brane falls into the black hole (or in the case of zero temperature ends at the Poincaré
horizon). The second are called ’Minkowski’ embeddings that do not reach the black
hole horizon. These solutions have different topological origins. In both cases the S3

that wraps the S5 does so equatorially at the boundary. However as we move into the
bulk via the radial coordinate ρ the position of the S3 on the S5 can change. In the case
of Minkowski embeddings the S3 collapses on the S5 before reaching the black hole
horizon, it’s volume has shrunk to zero and we have that ρ > ρH. Alternatively, for the
black hole solutions, the S3 shrinks but never collapses, therefore the D7 brane can
extent to the black hole. We can therefore expect a topology changing phase transition
between the two solutions. Furthermore this phase transition should be evident from
inspecting the density. In the case of Minkowski embeddings the only stable solutions
are those with a constant chemical potential and therefore zero density, whereas in the
case of the black hole embeddings a non-zero density is allowed and is also
thermodynamically favoured. In part II we shall see many examples of free energies
and phase diagrams using this model as a baseline.

As previously mentioned the mass of the field theory hypermultiplets is given by
the separation between the D3 and D7 branes. We can explicitly see this by
considering the embedding function R(r) near the boundary where it takes the
expected form of ’source + operator’,

R(r) = m +
c
r2 (2.63)

where mq = m/2πα′. More specifically the scalar field R is holographically dual to an
operator 〈Om〉 at the boundary,

〈Om〉 = −(2πα′)
δSDBI

δR(∞)
(2.64)

Varying R(r) we find that 〈Om〉 ∝ −c. What is the role of ’c’ here? In the field
theory 〈Om〉 contains a vacuum expectation value 〈ψ̄ψ〉 of the hypermultiplet fields.
We therefore identify ’c’ as a condensate of the hypermultiplets that is sourced by a
non-zero mass term m. In chapter 3 we shall see a case where the D7 branes do not lie
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flat and therefore have non-zero condensate even though the UV mass is zero.

2.3.3 Some Applications: Two-point Functions

It is important in physics to not only understand the static properties of a system, but
to also understand how that system can change when influenced from the outside, for
example, by turning on an electric or magnetic field. In general, it will be difficult to
work out how the system evolves, especially if the influence is time dependent. The
solution is to instead consider small changes and use the theory of linear response
where we consider the response of an operator 〈Oi〉 to small changes in the source of
〈Oj〉 [48],

δ〈Oi(x)〉 =
∫

ddyGij(x, y)δφj(y) (2.65)

where by neglecting terms with O(φ2) and higher we make explicit that we are
working in linear response. The term Gij(x, y) is called the Green’s function and the
retarded part is given by [29],

GR
ij (x, x′) = −iΘ(t− t′)〈Oi(x)Oj(x′)〉+ iΘ(t′ − t)〈Oj(x′)Oi(x)〉 (2.66)

where the heavy-side function Θ ensures causality. In Fourier space the Green’s
function is,

G(ω, k) =
∫

ddxeiωt−ikxGij(t, x) (2.67)

such that (2.65) becomes,

δ〈Oi(ω, k)〉 = Gij(ω, k)δφj(ω, k) (2.68)

or,

Gij =
δ〈Oi〉

δφj
(2.69)

Greens function, such as the ones defined above, are immensely useful in
physics. This is because many properties of a system can be deduced from them - for
example, via Kubo formulas we can calculate transport coefficients like the electric
conductivity,

σ(ω) =
GR

Jx Jx

iω
(2.70)

where the operator 〈Jx〉 is sourced by the spatial component of a gauge field Ax.
Another example is that the poles of the Green’s function tell us about the

allowed modes of the system, defined by their dispersion relation. The Green’s
function takes the approximate form,
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Gij ∼
1

ω−Ω + iΓ
(2.71)

where Ω is the real ’propagating’ part of the mode and Γ the imaginary ’dissipative’
part. Examples of modes are the purely imaginary diffusion mode, ω = −iDk2 and
propagating sound modes, ω = ±vk− iΓk2, where k is momentum and D is the
diffusive constant. Note, we expect to find stable modes only in the negative
imaginary frequency plane, otherwise the mode has unbounded increasing frequency
and is thus unstable.

Clearly exploring Green’s functions holographically will prove to be pivotal in
understanding the systems that we are trying to describe. They will lead the way in
relating what we do holographically to experiment and strongly coupled physics.
How then do we go about calculating holographic Green’s functions? This was first
done using the Schwinger-Keldysh formulism [49, 50]. However here we shall instead
use a technique that follows from (2.69).

First we must introduce fluctuations in the field content,

φi(ρ)→ φi(ρ) + δφi(ρ)e−iωt+ikx (2.72)

Substituting the fields fluctuations into the bulk or DBI action we can then
linearise and find the equation of motion for the fluctuation with appropriate
boundary conditions. At the boundary we have an asymptotic ρ→ ∞ expansion as
in (2.33). At the black hole horizon ρ→ ρH we find that there are in fact two solutions
to the equations of motion that relate to ingoing and outgoing modes. We choose the
regular ingoing mode that corresponds to the retarded Green’s function (the outgoing
mode being unstable and corresponding to the advanced Green’s function).

We can now see how to calculate the Green’s function. Since we are looking for
the source φj of an operator it makes sense to take the leading term of δφ(ρ)j in the
near boundary expansion, δφj(0),

Gij =
δ〈Oi〉

δφj
=

δ

δφj(0)

δSren[φi(0)]

δφi(0)
=

2∆i − d
L

δφi(+)

δφj(0)
(2.73)

where we have instead switched to the renormalised action Sren, that, when varied with
respect to φi(0), results in a factor ∝ φi(+) [51, 52]. More details of holographic
renormalisation are given in the appendices of the chapters in part II.

A simple way of obtaining the dispersion relation is then to look for where
δφj(0) = 0, that is, the poles of the Green’s function. As mentioned, these poles are
ingoing fluctuations about a black hole background, so-called quasi-normal modes.
Since the quasi-normal modes fall into the black hole it is of no surprise that the
modes that we find in the QFT are damped and therefore can decay [53]. In addition,
there are also normal modes that come from the Minkowski solutions that are instead
long-lived excitations.
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In part II we will see explicit examples of calculating quasi-normal modes,
dispersion relations and conductivities.
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Part II

Research
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Chapter 3

Holography and Imaginary
Chemical Potential: A Phase
Diagram

Holography has allowed the exact solution of a small number of large Nc gauge
theories. Amongst these is an N=2 SYM theory of quarks interacting with N=4 gauge
fields. The temperature chemical potential phase diagram for this theory in the
presence of a magnetic field is exactly known and shows first and second order chiral
symmetry restoration transitions and a critical point. Here we extend this phase
diagram to imaginary chemical potential to seek structure at small real µ and
imaginary µ that help to reconstruct the large real µ phase structure. We also explore a
phenomenologically deformed version of the theory where the critical point can be
moved into the imaginary chemical potential plane. In particular we observe that
when the transition is second order in these theories there are naturally two distinct
transitions - one for the onset of density and one for chiral symmetry restoration. In
addition, the phase diagram has boundaries of regions where metastable vacua exist
and these boundaries, as well as the phase boundaries, converge at the critical point.
These observations may point to techniques for the study of the QCD critical point
either on the lattice or using heavy ion collision data.

3.1 Strongly Coupled: QCD

Quantum Chromodynamics, the theory of interacting quarks and gluons, is one of the
three fundamental forces that make up the standard model of particle physics, the
other two being the weak nuclear force and quantum electrodynamics.

Before taking a look at the problems of strongly coupled QCD let’s first discuss
two important properties: confinement and chiral symmetry.

Confinement - Confinement in QCD is the statement that the potential energy
between a static quark-antiquark pair grows linearly with separation up until a certain
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FIGURE 3.1: Quark-antiquark potential at different seperation lengths.

point where it flattens and we enter the deconfined region [54]. We can picture this by
imagining a flux tube between the two quarks that at a certain separation snaps and
produces two new quark-antiquark pairs. More formally what is happening is that
there comes a point in length separation where it is energetically more favourable to
pull two external colour sources in the fundamental representation in from infinity
than it is to continue stretching the tube. In fig 3.1 we plot a cartoon of what the
quark-antiquark potential looks like against separation distance. At small distances
the interaction is Coulombic and goes as V ∼ 1/r where we are in the regime of
asymptotic freedom. At intermediate distance we have a ’confined’ linear potential,
and at large distances we have a flat potential where the flux tube has snapped.

Chiral Symmetry - In QCD the the kinetic terms can be written as [25],

∑
f

q̄ f i /Dq f = ∑
f

q̄L, f i /DqL, f + q̄R, f i /DqR, f (3.1)

where q, q̄ are the quarks/anti-quarks of flavour f, /D = γµ(∂µ − iαs Aµ) is the covariant
derivative, and by projecting out the left and right handed parts we see that there is a
U(N f )L ×U(N f )R ∼ SU(N f )L × SU(N f )R ×U(1)B symmetry. U(1)B is the vector
baryon symmetry and the U(1)A is neglected due to being broken at the quantum
level. This symmetry is known as chiral symmetry. It is an exact symmetry at zero
quark mass, breaks to an exact SU(N f )V symmetry at non-zero but equal quark mass,
and is broken explicitly when the masses are non-zero and not equal.

Even in the case that we have masssless quarks the QCD vacuum spontaneously
breaks the SU(N f )L × SU(N f )R → SU(N f )V due to the formation of a quark
condensate, 〈q̄R, fi qL, f j〉 = Λ3δij where we associate the dimensionfull [Λ] = 1
parameter Λ with ΛQCD

1. The N2
f − 1 broken generators have turned into massless

Goldstone bosons made up of quark-antiquark pairs (i.e mesons) called pions.

1ΛQCD is the only dimensionfull parameter in QCD, furthermore it is roughly the scale where non-
perturbative effects are no longer negligible at around 200− 300MeV.
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However, as we know, the quarks are not massless, so what happens to the
Goldstone bosons?

The point is that the three lightest quarks u, d, s are much lighter than the heavier
quarks t, b, c and have mass well below ΛQCD. We can say that the chiral symmetry
SU(3)L × SU(3)R is approximately obeyed. Furthermore the u, d quarks mass are
noticeable smaller than s and form a stronger chiral symmetry SU(2)L × SU(2)R.
When SU(2)L × SU(2)R → SU(2)V spontaneously breaks due to the condensate we
get 3 massive pseduo-Goldstone bosons - the pions. When
SU(3)L × SU(3)R → SU(3)V spontaneously breaks we instead get 4 kaons, 3 pions
and an eta meson, the eight lightest mesons.

Standard practice of making predictions in QCD follows perturbation theory
where interactions are expanded in loop-order with each order of loop carrying higher
powers of coupling parameter αs. In QCD αs can be calculated from the β function as,

αs =
α0

1 + α0[11/3Nc−2/3N f ]

4 ln| µ2

µ2
0
|

(3.2)

where µ (not to be confused with the chemical potential) is the renormalisation energy
scale, Nc/ f the number of colours and flavours in the theory and α0/µ0 give a
reference scale at some µ0. Following convention, we use the mass of the Z-boson as
the reference scale and relate the renormalisation energy scale to the momentum
transfer Q. The resulting running of αs is plotted in fig. 3.2.

While αs is small we say that we are in the perturbative regime of QCD (i.e with
energies much larger than ΛQCD) and QCD is therefore a good model of the system
that we wish to calculate. However, at low energies we do not find individual quarks
and gluons but instead bound objects like mesons and baryons. This is due to the
aforementioned property of confinement and is reflected in the fact that αs grows with
decreasing energy. Ultimately this means that QCD, a theory of quarks and gluons, is
the wrong effective description at low energy, and instead we should have a theory of
bound particles. This is what is done in chiral perturbation theory (χPT) [55].
However, we then have the opposite problem, when energies are increased we expect
χPT to break down as we transition back to a theory of quarks and gluons. There is
therefore a middle ground where neither an effective field theory description nor QCD
works. It is this middle ground that is of extreme theoretical and experimental interest.

As an example, we take a look at the conjectured phase diagram for QCD in
fig 3.3. There are various different phases of matter. At low temperature and baryon
chemical potential we are in the regime with confinement; the degrees of freedom are
mesons, baryons and other bound pairs of quarks and gluons like tetraquarks,
pentaquarks and even hypothetical glueballs. This is also the regime where chiral
symmetry (χS) is broken and a fermion-fermion condensate has formed. As
temperature or chemical potential is increased the bound pairs ’melt’ (or are so tightly
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FIGURE 3.2: Running of the QCD coupling parameter, αs as a function of energy scale
Q. The Z-boson mass has been used as the reference scale. We see that at high ener-
gies that we are in the regime of asymptotic freedom. At small energies the coupling

parameter increases signaling a breakdown of the theory.

packed they cannot tell which pair they are bound to) and we transition into a phase
of matter called the quark-gluon plasma (QGP). The QGP is a phase of matter where
the quarks and gluons are now deconfined and χS has been restored. The existence of
such a phase has been experimentally verified via the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC) at low µ [7]. At µ = 0 the phase
transition has been calculated using lattice QCD and is found to be a cross-over for
massive quarks and second-order for massless [8]. However since lattice QCD breaks
down in the positive chemical potential regime due to the sign problem it can tell us
little more 2. In the other direction QCD models predict a first-order transition at
lower temperature that is represented by the blue line in fig 3.3 [57, 58]. A critical end
point should therefore link the change in transition order [9].

The location of the phase transition is exactly where neither perturbative QCD or
χPT work - it is in the strong coupling regime. Therefore nearly all the phase diagram
in that regime is merely conjectured. Where is the critial point? Is the phase transition
really first order? Do confinement and chiral symmetry breaking occur at the same
scale, or are they separate?

Furthermore there are theorised exotic phases of matter with high chemical
potential. Moving along the µ axis at low temperature we first encounter a liquid-gas
nuclear phase transition (red line) where the hadronic gas transitions into the normal
liquid-like phase of nuclear matter [59]. What happens beyond that is somewhat of a
mystery and depends on whether the blue first order line does indeed extend all the
way to T = 0. It is possible that χS restoration and confinement/deconfinement
transitions occur at different locations on the phase diagram, as well as for a density
for the quarks to switch on. This could lead to deconfined χSB phases as well as
confined χS ’quarkyonic’ matter [46, 60]. At high µ we enter the the colour
superconducting phase. At low temperatures certain metals can transition to a

2There are some efforts in extending lattice QCD to µR see [56] for details.
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FIGURE 3.3: Conjectured phase diagram of QCD with temperature plotted against
bayon chemical potential. At high temperature and chemical potential we are in the
quark-gluon plasma phase (deconfined + χS). At low temperature and chemical po-
tential we are in the hadronic phase (confined + χSB). At low temperature but growing
chemical potential we first enter a nuclear phase before enevntually reaching a colour
superconductor phase with potential colour locking dynamics. The quastion mark

denotes a potentially new and unknown phase.

superconducting phase where electrons pair up to form a condensate of Cooper pairs.
At high µ and low T it is theorised that quarks can do the same thing, see [61] for
details.

For the middle ground of the QCD phase diagram it looks like we have no
tractable theory. Clearly this is a good place to make use of the gauge-gravity duality.
But before going any further we should set off some alarm bells. In what follows it is
impossible to say that what we are studying is QCD - for a start, in the basic N = 4
SYM theory there is no confinement, nor is there a chiral condensate or fundamental
matter. Instead, the aim must be to look for universalities or expose hitherto unknown
properties and structure of the system that can then be exploited to make progress
with real QCD.

There are various different gauge-gravity duality phase diagrams. Here we make
use of the phase diagram outlined in [46] where the D3/D7 system was used with
zero quark mass in the UV and a magnetic field turned on to spontaneously break
chiral symmetry. The system is outlined in the next section. We then proceed to turn
on an imaginary chemical potential, µI . The goal of doing so is to ask how clearly, if at
all, can we identify the position of the critical point from the study of the phase
diagram at imaginary chemical potential, µI , low values of real chemical potential, µR,
or from isolated data points as if from heavy ion collision data. The hope is that by
asking these questions in a solved theory we might generate new ideas that might
apply to QCD.



38 Chapter 3. Holography and Imaginary Chemical Potential: A Phase Diagram

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
μ/λ1/4

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tλ1/4

FIGURE 3.4: The phase diagram of the N = 2 theory with a magnetic field. T and
µ here are expressed in units of the magnetic field

√
B. The positive µ axis is real

µR whilst negative µ correspond to imaginary µI values. The blue line is the chiral
restoration transition (solid is first order, dashed second order); the purple line is the
second order transition associated with the onset of density. The horizontal red dashed
line shows where the chirally broken vacuum ceases to be a turning point of the ef-
fective potential - in the imaginary µI plane above this line the effective potential is
unbounded. The curved red dashed line shows where vacua with density becomes
unstable - to the left in the imaginary µI plane there are again instabilities. The dotted
lines show the positions of the Roberge Weiss transition for Ncλ1/2 = 10π (blue), 5π

(orange) and 3π (green).

3.2 Spontaneous chiral symmetry breaking in D3/D7

Recall that in the introduction we outlined a basic D3/D7 model: N=2 SYM theory
consisting of a small number of quarks interacting with N=4 gauge fields [44]. For the
particular case of introducing a baryon number magnetic field [62], which breaks the
supersymmetry and conformal symmetry, the phase diagram is precisely known [46]
(see the right hand side, real chemical potential, µR, part of fig 3.4). At low
temperature, T, and density the preferred phase is characterized by a chiral symmetry
breaking quark condensate. Note, the model does not include confinement.

In the holographic model we study the temperature transition is first order
whilst the transition with chemical potential is continuous (in fact it splits into two
continuous transitions one at which the mesons of the theory melt [63] and density
switches on and a second at which chiral symmetry is restored). There are critical
points for each transition. The theory, though distinct in detail from QCD, at least has
some of the generic features of interest.

The following discussion mimicks that in the introduction but now with
non-zero magnetic field. For completeness the whole calculation is presented.
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At zero temperature we use an AdS5× S5 geometry with coordinates

ds2 =
ρ2

L2 dx2
4 +

L2

ρ2

(
dr2 + r2dΩ2

3 + dR2 + R2dΩ2
1
)

(3.3)

where we have split the coordinates into the x3+1 of the gauge theory, the r and Ω3

which will be on the D7 brane world-volume and two directions transverse to the D7,
R, φ. The radial coordinate, ρ2 = r2 + R2, corresponds to the energy scale of the gauge
theory and radius of the space is L4 = 4πg2

uvNcα
′2.

We will introduce a D7 probe brane into the geometry to include quarks - the
probe approximation is equivalent to working in a quenched approximation. This
system has a U(1)A axial symmetry on the quarks, corresponding to rotations in the
angle φ, which will be broken by the formation of a quark condensate.

We seek D7 embedding functions R(r) at some fixed φ. The Dirac Born Infeld
action is

SD7 = −N f T7
∫

d8ξeφ
√
−det(P[G]ab + 2πα′Fab)

= −N f T7
∫

d4x dr r3β
√

1 + (∂rR)2

(3.4)

where T7 = 1/(2π)7α
′4 and T7 = 2π2T7/gs after integrating over the 3-sphere on the

D7. The factor of β appears when a magnetic field is introduced through eg
F12 = B/2πα′ [62]

β =

√
1 +

B2L4

(r2 + R2)2 (3.5)

Note that it enters as an effective dilaton term although it’s origin is in the DBI
action.

The equation of motion for the embedding function is therefore

∂r

[
βr3∂rR√

1 + (∂rR)2

]
− 2Rr3

√
1 + (∂rR)2 ∂β

∂ρ2 = 0 (3.6)

As we have previously seen (2.63), the UV asymptotic of this equation has
solutions of the form

R = m +
c
r2 + ... (3.7)

where we interpret m as the quark mass (mq = m/2πα′) and c is proportional to
the quark condensate.

There is always a solution R = 0 which corresponds to a massless quark with
zero quark condensate (c = 0). However, for forms of β such as that in (3.5) which
grow near the origin there are symmetry breaking solutions that have m = 0 in the UV
but bend off axis (at a particular, symmetry breaking, value of φ) to end on the R axis
with R′(0) = 0. These “Minkowski“ embeddings are the minimum of the effective
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potential (computed by evaluating minus the action on the solution). The R = 0
embedding is a local maximum of the potential.

Temperature can be included in the theory by using the AdS-Schwarzschild
black hole metric as proposed by Witten [32]. The metric is

ds2 = −K(ρ)
L2 dt2 +

L2

K(ρ)
dρ2 +

ρ2

L2 d~x2
3 + L2dΩ2

5 (3.8)

K(ρ) = ρ2 − ρ4
H

ρ2 , ρH := πL2T . (3.9)

where ρH is a dimension one parameter identified with temperature T.
It is helpful to make the coordinate transformation [64]

ρdρ

(ρ4 − ρ4
H)

1/2
≡ dw

w
(3.10)

2w2 = ρ2 +
√

ρ4 − ρ4
H , (3.11)

with
√

2wH = ρH. The metric becomes

ds2 = w2

L2 (−gtdt2 + gxd~x2)

+ L2

w2 (dr2 + r2dΩ2
3 + dR2 + R2dΩ2

1),

(3.12)

where

gt =
(w4 − w4

H)
2

w4(w4 + w4
H)

, gx =
w4 + w4

H
w4 . (3.13)

w =
√

r2 + R2 , r = w sin θ . R = w cos θ , (3.14)

The Lagrangian for the magnetic field case becomes,

L = −T7r3
(

1− w4
H

w4

)√
1 + (∂rR)2

×
√(

1 + w4
H

w4

)2
+ L4B2

w4

(3.15)

The embedding equation for R(r) is straightforward to derive. Minkowski
embeddings exist until the black hole horizon “eats” the central area of the r− R
plane. The flat R = 0 embedding always exists and so there is a first order transition
from Minkowski to flat at a critical value of T [1, 64].
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A chemical potential is introduced through the U(1) baryon number gauge field
At component [65] which enters the DBI action as

L = −T7r3
(

1− w4
H

w4

)√(
1 + w4

H
w4

)2
+ L4B2

w4

√
1 + (∂rR)2)− w4(w4+w4

H)

(w4−w4
H)

2 (2πα′At)2

(3.16)

There is a conserved quantity d (the density) associated with At. We can Legendre
transform the action to write At in terms of d leaving (after rescaling all dimensionful
objects to be in units of L

√
B donoted by the tildes)

L̃ = −T7
w̃4 − w̃4

H
w̃4

√
K(1 + (∂r̃R̃)2) (3.17)

K = r̃6
(

w̃4 + w̃4
H

w̃4

)2

+
r̃6

w̃4 +
w̃4d̃2

w̃4 + w̃4
H

(3.18)

Given a solution for R at some T, d one can then find the chemical potential as

µ̃ = d̃
∫ ∞

r̃H

dr̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (∂r̃R̃)2

K
(3.19)

At small T the appropriate solutions as d begins to grow from zero are solutions
that end on the black hole horizon at the origin but “spike” up to the form of the
Minkowski embedding. There is a corresponding non-zero critical µ for the on-set of
d. There is a continuous transition here as the Minkowski embedding becomes a black
hole ending embedding. As d then increases the black hole solution smoothly evoles
to merge with the flat R = 0 embedding in a second continuous transition (where
chiral symmetry breaking switches off) at a higher critical µ.

The full µ− T phase diagram is discussed in detail in [46]. Here we use two
techniques to find the transition lines that will interest us:

1) To locate first order transitions: At a fixed T, d we seek Minkowski
embeddings and then evaluate the difference in free energy between these and the
R = 0 embedding. We then vary d to locate the first order transition point where these
embeddings are degenerate in energy. One then repeats at all T.

2) To locate second order transitions: at fixed T, d we find embeddings shooting
off the black hole surface from an angle θ and read off the UV asymptotic value of m.
Now varying d we seek points where massless solutions merge with the flat
embedding at θ = π/2 or the Minkowski embedding at θ = 0 or points where two
new solutions emerge. Again one repeats at all T.

Before moving on it is worth pausing to write the phyiscal temperature and
chemical potential in terms of µ, wH and the physical B field that emerge from (3.17)
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and (3.19). We have

Tphys =

√
2w̃H

πL2 L
√

2πα′Bphys =
2w̃H√
πλ1/4

√
Bphys (3.20)

µphys =
µ̃

2πα′
L
√

2πα′Bphys =
µ̃λ1/4
√

2π

√
Bphys (3.21)

Note that these are independent of α′ as they must be since α′ → 0 in the supergravity
limit. In our plots we plot µphys/λ1/4 against λ1/4Tphys and set

√
Bphys = 1.

3.3 The Imaginary Phase Diagram

Imaginary chemical potential solutions are found by simply allowing At → iAt or
d→ id and repeating the process. The lagrangian with imaginary chemical potential is
unchange except in the factor K in equation (3.18) where d2 → −d2.

A previous analysis [66] of the D3/D7 system (without a magnetic field) has
concentrated on the Roberge-Weiss transitions [67] of such theories (see also the
holographic work in [68, 69, 70] and most recently [71]). Here the key physics is that a
spurious U(1)B transformation with parameter α = µI x can remove the chemical
potential from the action. The quark fields are rotated by eiα such that the baryonic
operators have a discontinuity in their boundary conditions around the thermal circle.
In the case where the resulting phase difference is a multiple of 2πT/Nc (with Nc the
number of colours) a gauge transformation that differs around the thermal circle by an
element of the centre of the group can be used to remove µI completely. The µI = 0
and µI = 2πT/Nc theories are therefore identical. The result is that there must be first
order transitions at

µI/T = (2k + 1)π/Nc, k = 0, 1, 2... (3.22)

At very large Nc these become very dense and begin essentially at µI = 0. Our
hope is that at lower Nc near, for example, Nc = 3 they become less dense and pushed
out to large µI so they can be neglected. Nevertheless we hope that Nc = 3 is close
enough to large Nc that aspects of our analysis remain useful. In particular in fig 3.4
the first transition occurs on the line,

λ1/4T =
Ncλ1/2

π

µ

λ1/4 (3.23)

We have plotted the transition line for Ncλ1/2 = 10π, 5π and 3π in fig 3.4 and for
Ncλ1/2 ≤ 5π all the physics we will use is present. This is still strong coupling.

In practice we just concentrate on the role of µI in the DBI action for the probe
branes in Schwarzschild AdS5 describing the quarks. The result is shown on the left in
fig 3.4 - the first order transition extends a little way into the µI piece of the µ− T
plane before the theory becomes unstable. We have checked that the transition line is
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FIGURE 3.5: The phase diagram of the N = 2 theory with B field from fig 3.4 but
now in addition showing regions with metastable vacua. In the orange shaded region
the chirally symmetric vacuum is metastable. In the red region the chirally broken
vacuum with zero density is metastable. There is also a small grey region where a
chirally broken, dense state is metastable which is addressed carefully in Section 3.3.1.
The boundaries of the metastable regions and the transition lines themselves converge
close to the region with the critcal points - the shaded region “points” to the critical

point region.

linear in µ2 across the µ = 0 axis as one would expect. Instabilities exist at µI to the left
or above the red dotted lines in fig 3.4 as we will discuss. Again if Ncλ1/2 > 5π then
the Roberge Weiss transition occurs before any of the instabilities set in and this may
indicate that this is the smallest value of Ncλ1/2 compatible with the large Nc analysis -
this limit is sufficient for our purposes. As shown, at this stage, there is little to be
deduced for the real chemcial potential, µR, region.

The theory, however, contains more information than just the ground state. We
can find all turning points of the effective potential and it’s interesting to track these
and show in which regions of the parameter space there are metastable vacua (also
sometimes called spinoidal regions - for example in [72, 73]). The metastable states
exist in a band around the first order transition. This is shown in fig 3.5 where the
shaded regions indicate the presence of metastable vacua. On the outer edges of this
band the peak in the effective potential between the true vacuum and the false
vacuum merge with the false vacuum (there is some structure to this boundary in this
model that we will elaborate on in the following section) as the metastable vacuum
disappears. These boundaries, which are distinct from the first order transition line,
smoothly become the second order transition line(s) at the critical points. There are
therefore actually three lines we can draw which must converge at, or near, the critical
point. If one can identify these lines at finite µI or at low µR, as one can here, then
extrapolation provides a sensible guess to the position of the critical point (one could
reasonably estimate the T, µ values at the critical point at the 10% level).
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Having just a single theory, of course, makes it hard to learn generic lessons but
equally fully solvable models are scarce. Previously [74] applied some “bottom up”
parameters to this model that allows us to move the position of the critical point and
even change the order of the phase transitions. An example, that we will use here, is a
parameter in the black hole emblackening factor which distorts the horizon from a
sphere to an ellipse. Whilst this is not a full solution of the supergravity equations it
does at least encode the breaking of the symmetry between the directions parallel and
perpendicular to the D7 branes so may be indicative of the behaviour of a backreacted
D3/D7 solution. The parameter can be used to move the chiral symmetry breaking
critical point towards µR = 0 and we show here it can even push it through the axis
into the µI plane leaving the pure temperature transition second order. We repeat our
study in some of these cases to show how generic our conclusions are and to display
some other possible structures.

In the final section we will try to draw lessons on possible structures in both
generic phase diagrams and for QCD. We speculate as to whether regions of the QCD
phase diagram accessible to computation on the lattice might contain metastable
vacua, in which case the boundarries of these regions could be used to point to the
critical point. Also the second order transition line may separate in the µI plane into
several transitions, including one for the onset of density and another for chiral
symmetry restoration - these two lines might point to the critical point. In practice
these transitions will be blurred into the crossover transition though and are likely
very hard to spot even if they exist.

Heavy ion collision data might also be able to identify regions of the phase
diagram with metastable vacua. In such regions there might be events in which the
vacuum becomes caught for a period in the metastable state. It is possible that such
states will hadronize differently and form an identifiably distinct set of events
indicating that the theory is in a region with metastable vacua. This again might help
distinguish boundaries of the regions with metastable vacua. See [75] for a recent
summary of heavy ion collision searches for the QCD critical point.

3.3.1 The Phase Structure

To begin we present a detailed example of how we obtain the phase transitons. We
take the case of T = 0.26 that can be seen in slice 4 in fig 3.8.

We plot example D7 embeddings in the left-hand figure in fig 3.6. In red is the
Minkowski embedding with d̃ = 0; orange is the flat embedding R̃ = 0 with d̃ 6= 0. In
between we plot some black hole embedings. These are found from the right-hand
plot in fig 3.6 - here at a given d̃ we shoot off the horizon at different angles θ and plot
the resulting UV mass value m̃ - we seek solutions with m̃ = 0. As can be seen
between d̃ = 0.03 and d̃ = 0.07 the number of solutions change as the minimum of the
curve passes through the m̃ = 0 axis. This corresponds to the pair creation of two
black hole solutions which we will call BH1 and BH2 - the two solutions emerge as the
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FIGURE 3.7: Detailed plots for the α = 1 theory with T=0.26. (i) the third plot shows
the free energy of the solutions against µ. (ii) the fourth plot shows d vs µ for the

solutions.

closest green and blue black hole solutions in the top plot. By following the evolution
of the two solutions in the second plot it can be seen that one moves to merge with the
Minkowski embedding and the other with the flat embedding - the outer two blue
and green embeddings in the top plot.

Now we can, embedding by embedding, compute µ̃ from (3.19) and the free
energy Ω̃ = −L̃ in (3.16) . We plot Ω̃ against µ̃ for our solutions in the left-hand plot
and d̃ versus µ̃ in the right-hand plot in fig 3.7.

The free energy plot allows us to clearly see the phase structure along the slice,
from left to right. At imaginary µ̃I the Minkowski embedding is the lowest energy
state and the flat embedding is the maxiumum of the potential. The first transition is
where a BH2 solution emerges from the flat embedding - the flat embedding has
become a local minimum of the potential. Next a BH1 solution emerges from thre
Minkowski embedding and has lower energy - there is second order transition to the
BH1 state as density switches on (we do not plot the continuation of the Minkowski
embedding red line in the plot further to the right although it does continue to exist).
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There is then a first order transition from the BH1 embedding to the flat embedding.
The BH1 state is a metastable state briefly although with energy quite near the flat
embedding of the true vacuum. Finally the BH1 solution ceases to exist merging with
a BH1 solution that is the continuation of the BH2 state that is the local potential
maximum. Note that the annihilation of the BH1 and BH2 solution as identified in the
density plots is an innocuous transition when plotted with µ̃.

Repeating the above contruction for all temperature slices we can build the
phase diagram for the model in fig 3.4 (the positive µ axis is µR the negative axis µI).
In the phase including T = µ = 0 the vacuum is characterized by chiral symmetry
breaking and zero density (it is a so called Minkowski embedding in the brane
picture). At high T, µR the vacuum is a chirally symmetric state with generically
melted mesons and non-zero density (these are flat embeddings). At low µR there is a
first order thermal transition between these vacua as T grows. At larger µR there is a
region with a third low T vacuum which has a density of deconfined quarks but
which are still massive due to chiral symmetry breaking (a black hole embedding).
The chiral restoration transition has a critical point where the transition becomes
second order. The transition from the low T, µR phase to the deconfined massive
quark phase is second order. The transition from that phase to the chirally symmetric
phase is also second order.

Our first new results here are that we have extended the phase structure to
imaginary chemical potential, µI . This is shown on the left hand side of fig 3.4. Note
we have checked in all our figures to come that the transition line is linear in µ2 across
the µ = 0 axis as one would expect. The first order chiral transition extends into the
imaginary µ plane before coming to a halt on the line at T=0.311 (shown by a red
dashed line in fig 3.4). Above this value of T the remnant of the low T, µ chiral
symmetry breaking vacua ceases to be a turning point of the effective potential. The
Minkowski embedding can not exist above this value of T because the black hole is
too large and blocks the IR of the solution. Note this is independent of µ since the
Minkowski embedding simply has At = µ which does not contribute to the action. At
real µR this state is no longer the true vacuum and this line simply marks where the
state ceases to be a turning point of the potential. At larger µI though below the
T=0.311 line the Minkowski embedding (chiral symmetry breaking state) is the true
vacuum yet it suddenly vanishes at higher T. The only explanation is that at higher T,
for these µI , the effective potential becomes unbounded at large values of the
condensate. Thus above the line T = 0.311 the theory is ill-defined for µI - we will
henceforth not consider temperature above that value.

In fig 3.4 there is a second dashed red line emerging from the origin and cutting
the T − µI plane. To the left of this line the flat or black hole embeddings do not exist
because the action turns imaginary . To make this explicit consider the parameter K of
(3.18) which is square rooted in the action (3.16) - we can evaluate it near the black
hole horizon. We set wH ∼ T and remember ω2 = r2 + R2, where at the black hole
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horizon we have r ∼ T sin θ and R ∼ T cos θ, we have

K = (T sin θ)6
(
((T sin θ)2+(T cos θ)2)2+T4

((T sin θ)2+(T cos θ)2)2

)2

+ (T sin θ)6

((T sin θ)2+(T cos θ)2)2

− ((T sin θ)2+(T cos θ)2)2d2

((T sin θ)2+(T cos θ)2)2+T4

(3.24)

The final negative term is trying to force the action to become imaginary. The first two
positive terms both go as sin θ so for a given temperature increasing density forces the
minimum value of θ to take on larger values. For large enough d this value becomes
π/2 and above this value of d there can be no further flat or black hole solutions. The
curved red dotted line in fig 3.4 is where this criteria is met. This corresponds to
another instability of the effective potential against moving to larger density. Thus our
analysis will be restricted to the part of the µI plane bounded by the red dashed lines
in fig 3.4. We note that very close to this boundary there are some additional black
hole solutions but we will not investigate these further since we wish to focus around
the critical point. As we mentioned in the introduction if Ncλ1/2 ≥ 5π then the
instability regions are not part of the true vacuum of the theory because to the left of
the Roberge Weiss transitions there are just repeats of the phyiscs to the right of the
transition line in fig 3.4. This may indicate that this value of Ncλ1/2 is the minimum
possible value compatible with the large Nc limit - that minimum value is sufficient
for our discussions here.

Let us now imagine that some theorist can compute at imaginary µI and only
very low µR values and they are hoping to understand the large µR structure to see if
there are one or more critical points in this case. Looking at fig 3.4 there is little to
guide this theorist - he could perform a fit to the first order chiral transition line as it
crosses the T axis and perhaps do a reasonable job of predicting where the transition
contour is at real µ but there is apparently no hint as to where the critical point must
lie.

To gain more insight our putative theorist could make use of more information
that is available to him. In particular the first order transition is associated with a
crossing of two distinct vacua and to either side one or the other is a metastable
vacuum state. We can ask the question where are there metastable vacua in the plane?

The answer in this case is illustrated in fig 3.5. Here the orange region is where
the chirally symmetric vacuum (flat embedding) is metastable. In the red shaded
region the Minkowski embedding (chirally broken, d = 0 phase) is metastable. In the
small gray region a black hole embedding (chirally broken but d 6= 0) is metastable.

To understand this picture better it is helpful to use it to reconstruct the effective
potential of the model across a number of fixed T slices - see fig 3.8 where we zoom in
on the interesting structure.
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FIGURE 3.8: The structure of the effective potential against quark condensate as one
moves from left to right across the phase diagram of the B field theory on a num-
ber of different T slices. Turning points of the potential are marked dependent by
their nature: F (flat, chirally symmetric); BH (black hole, dense massive phase); M

(Minkowski, chirally broken)

Slice one is at low temperature: starting at reasonably large imaginary µI the
chiral symmetry breaking (zero density) phase is preferred (Minkowski embedding).
As we track right a second order transition occurs to the deconfined massive quark
phase (a black hole embedding emerges from the Minkowski embedding) - here we
believe the chiral symmetry breaking vacuum turns into a point of inflection of the
effective potential. Then sequentially a second order transition to the chirally
symmetric (flat embedding) occurs - that is the black hole embedding merges with the
flat embedding and then ceases to exist. Note here at no stage are there metastable
vacua (we assume a point of inflection is insufficient to be visible either through lattice
studies or by noticeable events in a heavy ion collider).

Moving now to large T - slice 2. To the left again the chirally broken vacuum
dominates. As we track left to right the first event is that a peak in the effective
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potential (black hole embedding) emerges from the chirally symmetric state as that
state becomes a local minimum metastable vacuum. The chirally broken and chirally
symmetric vacuum then interchange at a first order transition leaving the chirally
broken phase as the metastable vacuum. The final change is that the chirally broken
vacuum and the maximum of the potential merge to again leave the chirally broken
phase remnant as a point of inflection.

Slices 3 and 4 show some more subtle structure around the critical points. Slice 3
follows slice 2 (moving to the right) until after the first order transition. Now the
chirally broken remnant does not just merge with the potential peak but converts itself
to a point of inflection throwing off a potential minimum that then moves to merge
with the potential peak. In this intermediate region there is a metastable vacuum
which is a deconfined massive quark phase (black hole embedding). Typically these
minima are less deep than when the chirally broken or symmetric vacua are
metastable. We show regions of the phase diagram with these metastable vacua in
grey.

Slice 4 shows a further mixing of these events - the chirally broken vacuum
converts to a deconfined massive quark phase at a second order transition before the
first order transition. Thus the resulting first order transition is from the deconfined
massive quark phase to the chirally symmetric phase.

A key observation is to follow the behaviour of the two boundaries where the
chirally symmetric and chirally broken phase become metastable at high temperature
- the boundaries of the red and orange regions. At each of these a black hole
embedding merges with either the flat or Minkowski embedding. As one moves to
lower T these boundaries become precisely the second order phase lines where again
black hole embeddings merge with flat and Minkowski embeddings. Necessarily
these boundaries of the metastable vacua region must join the transition lines at the
critical points where the order of the transitions change. Further that these boundaries
are distinct at high T naturally transforms to them being distinct at low T producing
the three phases and two second order transitions we see.

The interesting thing about fig 3.5 in comparison to fig 3.4 is that whilst the latter
simply has transition lines that apparently randomly convert their order, fig 3.5
essentially has arrows pointing to the critical points! In particular the boundary where
the chirally broken phase becomes metastable and the transition line itself converge at
the critical point for chiral symmetry breaking. Equally the boundary where the
chirally symmetric phase becomes metastable and the transition line converge is the
critical point on the transition line to the deconfined quark phase. Thus our putative
theorist who can only compute at imaginary µI and low µR relative to T could try to
identify the edges of the metastable regions and then extrapolate them to make an
approximation as to the positions of the critical points.

If the theorist could also access heavy ion collision data from a variety of
experiments then he could hope to identify whether in those experiments µ, T lie in
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the metastable regions - for example one might expect two different categories of
events, one which is ignorant of the metastable vacua and one of which got stuck in
the metastable state for a period. These events could plausibly have different
signatures even after hadronization. One might be able to further map out the
metastable region even if the critical point had not been hit directly.

3.3.2 Horizon Deformed Theories

So far we have only considered a single phase structure so one might wonder how
generic any of the features we see are. In principle it would be good to study many
other such holographic set ups yet the number of fully understood ones are few and
far between. In the future it would be interesting to construct more eg based on the
D4/D6 system [76]. For now, we will add a “bottom-up” parameter to our probe
D3/D7 system with a B field which was first introduced in [46]. Of course
“bottom-up” is synonymous for an incomplete model but the trick we use is
instructive and allows us to rather simply move the critical point.

The trick is to deform the spacetime geometry by making the substitution

w2 → r2 +
1
α

R2, α > 1 (3.25)

into the metric factors in (3.13). This is not a solution of the Einstein equations
but it breaks the r− R symmetry which at least would happen were one to backreact
the D7 branes (they are extended in r but point like in R). More practically by
squashing the black hole horizon onto the R axis it is harder for the black hole to
disturb the Minkowski embeddings that describe the chirally broken vacuum. This
change tends to favour second order chiral transitions with temperature. The test of
the use of this approach is rather in what one learns by doing it. In fig 3.9 we display
(zoomed to the interesting segments) phase diagrams for a variety of α’s.

If one first concentrates on the phase lines then the effect of growing α is to push
the critical point on the chiral line towards the T axis. At α = 1 the critical point on the
chiral transition line lay after the separation of the density onset transition. By
α = 1.12 the critical points on both these lines have moved together. At larger α the
density line shows a period of first order behaviour after separating from the chiral
transition line at the critical point.

Previous analysis [46] had seen that for big enough α one could make the µ = 0
chiral transition second order but now we see that in fact we have pushed the critical
point into the imaginary µI plane. It’s fascinating to think that some deformation
might do this in QCD itself!

The region of metastable vacua broadly speaking moves with the points but
there are some new features which we highlight by sketching the effective potential
for a couple of slices in the α = 1.12 case - see fig 3.10. The first slice just highlights the
meaning of the grey zones around the edge of the full metastable region. Moving
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FIGURE 3.9: T − µ phase diagrams for the deformed theories with α =
1, 1.08, 1.12, 1.137, 1.139, 1.15, 1.16.
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FIGURE 3.10: The effective potential evolution (vs c) from left to right as one moves
along two T slices at α = 1.12.

along slice 5 from the left to right the chirally symmetric embedding must become
metastable from initially being a potential maximum. Previously it did this by casting
out another maximum. Here however a maximum and a minimum pair create away
from the chirally symmetric solution (both black hole solutions) and the minimum
then merges with the chirally symmetric vacuum to convert it to a metastable
minimum. Similarly after the first order transition the chirally broken remnant
vacuum does not simply merge with the potential maximum but casts off another
minimum (becoming a point of inflection) that annihilates the maximum. Thus in the
grey zones there are metastable vacua with a massive deconfined quark phase. Since
these are minima created between the previous maximum and minimum of the
potential (the chirally broken and chiral restored vacua) the metastable vacuum is
typically not very deep which suggest it would be harder to find either on the lattice
or in heavy ion collision events.

Slice 6 shows a remnant of these “pair creation” events forming a “fishtail
crossover” between the two second order transitions. Here after the chiral symmetry
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breaking vacuum has second order transitioned to a massive deconfined quark phase
a maximum and minium pair create. There is then a first order transition (the cyan
line) between two massive deconfined quark phases. Finally the metastable vacuum
annihilates with the maximum to allow a second order transition from the massive
deconfined quark phase to the chirally symmetric phase. This explains the tail
transition between the legs in these plots (which we view as a minor part of the story).

Let us again comment on the broad picture and lessons. The lines that mark the
borders of where the chirally symmetric or chirally broken phases become metastable
continue to play a crucial role. In all these phase diagrams these borders plus the first
order phase line itself join at the critical points - in each case the two lines point at the
critical point. Further these borders are distinct around the first order transition and
then cross as they become the second order lines. Note even in the case where the two
borders both cross at the critical point (α = 1.12) they do not merge but separate again.
This is the origin of the deconfined massive quark phase.

None of the cases we have seen have second order transitions at µ = 0 and first
order at T = 0 as expected in QCD. However, the cases where the critical point lies in
the imaginary µI plane can allow us to speculate. Imagine now a putative theorist
who (somehow) can only compute at real µR but not imaginary µI . In these cases the
theorist would just see a second order chiral transition. In this model, however, if they
could identify both the denisity onset transition and the chiral transition then those
lines can be extrapolated to the critical point in the µI plane where he is ignorant.

3.3.3 General Lessons & Questions for the QCD Phase Strcuture

So far it has been interesting as a purely theoretical problem to investigate the
structure in the phase diagram (extended to imaginary µ) of an exactly solvable gauge
theory and amusing to look for signals of transitions and critical points in one part of
the plane if one only had access to a sub-region. Have we learnt any lessons that could
be applied more widely to a generic set of chiral symmetry breaking models (perhaps
at large Nc) or even to QCD? We have concluded that looking for the regions of the
phase diagram with metastable vacua can be used to identify the positions of the
chiral critical point. Using this insight, in fig 3.11 we propose a number of qualitative
pictures for theories where the transition is first order at at high µR and low T, but
second order transitions at higher T and lower µ or at µI .

Let us begin by simply talking about theories without confinement that seem a
natural extrapolation of the ones we have studied and ask in these worlds what lattice
or heavy ion data could reveal. The first sketch in fig 3.11 shows the most pessimistic
possible conclusion. Here we assume that the second order transitions (chiral cross
over at finite mass) for density switching on and chiral restoration are degenerate and
that the first order transition exists only at large real µ. The metastable region could be
quite tightly positioned around the first order transition. Here there is little hope of
using the lattice to idenitfy anything beyond the position of the second order line
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which provides no information on the position of the critical point. Here one might
hope to use heavy ion collisions at low T to identify T, µ points within the region with
metastable vacua (again assuming that events that get stuck in the metastable vacua
can be distinguished after hadronization).

The second sketch is a more hopeful speculation where the region with
metastable vacua might be wider about the first order line - here one could hope to
find regions of metastability at low T and low µ or even imaginary µ on the lattice.
The second order phase transition line and the edge of the region of metastability
converge at the critical point and could be used to point to it. Here we have also
allowed a boundary region around the metastability region with a metastable massive
deconfined quark phase. Tracking from left to right across the metastability region
would have an effective potential that changes as in slice 5 of fig 3.10. Here the key
question is whether the chirally symmetric vacuum converts from a maximum to a
minimum directly by spitting out a maximum or whether a maximum and minimum
are pair created elsewhere in the potential with that minimum then joining to the
chirally symmetric vauum to make it a minimum. A priori both seem possible.

The third and fourth sketches show the structure one would expect if the chiral
and density transitions separate. The critical line and one boundary of the metastable
region meet at each critical point so could be used to predict its position.

Finally let us tentatively speculate for QCD. The first additional issue we must
consider is confinement that is not included in the model we have used. We already
know that at T=0 the first transition with µ is the first order switch on of baryon
number. This transition might be distinct from the deconfined quark pictures we have
drawn so far in which case the first 4 sketches could all lie to the right of the baryon
onset transition. However, it also seems natural to associate the baryon density
transition with the bottom of the density phase transition we have seen. The chiral
transition is then separate but potentially also first order. We sketch such a set up in
the final picture of fig 3.11. Here we appear to have drawn a deconfined, dense but
chirally broken phase between two phase boundaries all along the transition. On the
other hand we know that on the left hand boundary at low T these quarks should be
confined and we should treat this as the baryonic phase. It is possible that within this
region there is a transition where confinement switches off and a deconfined massive
quark phase is realized (as speculated in [77]), but equally confinement may cover the
whole phase region.

Note in this final picture the left hand red region is where the chirally broken
vacua is metastable and the right most orange region where the chirally symmetric
vacuum is metastable. The orange and red regions on the outer edges, in the language
of our brane model, would be metastable dense and chirally broken vacua. If we
believe our structures then these boundaries would continue beyond the critical
region as further second order boundaries between a variety of dense yet chirally
broken vacua. In QCD the full region between density switching on and chiral
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lines are first order transitions; in the red region the chiral symmetry breaking vacua is
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that might apply to QCD where the density transition is linked to the known nuclear
density onset and the chiral transition is separate (here the outer red and organge

regions are metastable dense massive quark vacua).
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symmetry being restored is the cross over region. Our model suggests there might be
further second order transitions within that cross over region! In reality in QCD these
are likely to be smoothed to cross overs and be very hard to spot if they exist at all. On
the other hand at finite µ this cross over region might widen and allow more structure
to be spotted (Fig 4 in [78] suggest the cross over region may widen at larger µR).

Finally we can again speculate that metastable vacua of some sort might exist
over a wide region of the low T phase diagram that could be hunted for on the lattice
at low µR or even at µI or that might display as new types of event in heavy ion
collisions. Of course both are difficult and expensive technologies to use for such
speculative searches.

To conclude we have seen that investigating the imaginary part of a completely
soluble chiral symmetry breaking theory leads to the possibilities of new structure in
the QCD phase diagram as well as potentially new methods to investigate its
properties.

The first immediate thought to improve the model is to include confinement.
This could be potentially achieved by considering soliton backgrounds where one of
the spatial directions have been compactified. However to fully explore the transition
between a soliton and black-hole background when using D7 branes would require
backreaction. Other possibilities include studying 5D supergravity models as in [79].
Furthermore it would be interesting to explore other regions of the phase diagram
such as in neutron-stars and the colour superconducting phase.

Ultimately the strongly-coupled region of the QCD phase diagram remains
elusive. We hope by studying strongly-coupled theories like the one presented here
that insight can be gained to the properties and structures hidden within the theory of
QCD. Who knows what might be found.
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Chapter 4

A Weyl-Semi Metal with Flavour

We construct a top-down holographic model of Weyl semimetal states using
(3 + 1)-dimensional N = 4 supersymmetric SU(Nc) Yang-Mills theory, at large Nc

and strong coupling, coupled to a number N f � Nc of N = 2 hypermultiplets with
mass m. A U(1) subgroup of the R-symmetry acts on the hypermultiplet fermions as
an axial symmetry. In the presence of a constant external axial gauge field in a spatial
direction, b, we find the defining characteristic of a Weyl semi-metal: a quantum phase
transition as m/b increases, from a topological state with non-zero anomalous Hall
conductivity to a trivial insulator. The transition is first order. Remarkably, the
anomalous Hall conductivity is independent of the hypermultiplet mass, taking the
value dictated by the axial anomaly. At non-zero temperature the transition remains
first order, and the anomalous Hall conductivity acquires non-trivial dependence on
the hypermultiplet mass and temperature.

4.1 Strongly Coupled: CMT

In chapter 3 we saw that there are issues with standard techniques at strong coupling.
These issues are not unique to QCD. Another field that struggles with
non-perturbative physics is condensed matter theory (CMT), the field that aims at
describing the phases of matter in different and often exotic materials. This is
achieved by studying transport coefficients, sound modes and phase diagrams across
the relevant parameter space of the system. In this introduction we give a short review
of CMT and the issues at strong coupling.

CMT is a rich and diverse field with large potential. It has already helped explain
phases of matter such as superconductors, superfluids, electron band structure,
topological metals and more - often with symmetry (breaking) as its center
pillar [17, 18, 80]. However, it relies on the assumption that the systems electrons are
weakly interacting where effective field theory and quasiparticle descriptions are
sufficient [17]. This is not the case when the electrons are strongly coupled. In fact
there are few ways of describing strongly interacting condensed matter systems due to
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the need of computing intractable microscopic Green’s functions 1. These systems
often display exotic and intriguing behaviour making their theoretical understanding
a priority in the field. Some examples include,

• Quantum critical points: Critical points of phase diagrams are of great interest.
They mark the separation of different phase regimes and often have interesting
properties. A quantum critical point (QCP) is one that occurs at zero
temperature, where instead of the phase transition being thermally driven, it is
driven by quantum fluctuations [48]. These points are spatially invariant
(infinite coherence length) and often require strongly-coupled descriptions to
extract important features such as transport. These QCP are also important away
from zero temperature. In fact the phase regime dominated by the QCP can
grow with temperature.

• Non-BCS superconductors: Bardeen-Cooper-Schrieffer theory is often used to
describe superconductors where Fermi liquid theory (a brief introduction to
Fermi liquid theory is given in chapter 5) is sufficient. These superconductors
tend to have low-temperature transition between the superconducting phase
and the normal phase. Non-BCS superconductors are so-called as they cannot be
described using BCS theory [82]. An extreme example is the cuprate
superconductors where the phase transition can occur at high temperatures, and
since Fermi liquid theory (a weakly interacting model) fails it is dubbed a
non-Fermi liquid.

• Strange Metals - Strange metals are a phase in heavy (i.e a very large effective
mass) fermion compounds (and potentially also the cuprates above) that are
realised by a QCP. They have strange non-Fermi liquid properties such as
electrical resistivity scaling linearly with temperature [83]. They are often
synonymous with non-Fermi liquids. More details of strange metals are given in
chapter 5.

Clearly the cuprates, QCP and strange metals can be wrapped up as a single
issue revolving around the break down of weakly interacting quasiparticle theory. It is
also not difficult to imagine that these strongly coupled systems could unlock the next
advancements in material science. Therefore it is of great interest to go beyond the
weakly coupled paradigm and invent new theories that can make headway into
understanding, and then manipulating, strongly coupled systems.

One possible route is to use the gauge/gravity duality. The duality is a good
match for tackling strongly coupled CMT problems as many of the techniques used in
CMT can be reproduced holographically. For example, in chapter 3 we were able to
construct phase diagrams, and as outlined in the introduction transport coefficients

1Aside from holography the memory matrix method can be used, see [81] for details.
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such as the conductivity can be calculated. In addition, the duality often relates to CFT
such as those expected at QCP.

Once again it is worth pointing out that holography is looking for universalities
or new structure. However since CMT utilises many effective descriptions this might
alleviate the difficulty in matching to one theory alone, such as QCD or the standard
model. One can even imagine that it may be possible to know which field theories
admit a holographic dual. An experiment could then be devised whose effective
description takes on a field theory with a known hologaphic dual, thus making
experimental predictions of string theory a reality.

In this chapter we look at a recently-discovered class of materials: Weyl-semi
metals, a sub-class of topological metals, and ask - what happens at strong coupling?

4.1.1 Topological Metals

Topological metals are metals that are...topologically protected.
To make this a little more concrete we consider the example of Weyl-semimetals,

a class of recently-discovered materials in which two electronic bands touch at isolated
points in momentum space at or near the Fermi surface, such that the low energy
excitations near these nodal points are (3 + 1)-dimensional relativistic Weyl fermions,
with the Fermi velocity playing the role of the speed of light [84, 85, 86, 87, 88].

If both parity (or inversion), P , and time reversal, T , are preserved then left- and
right-handed Weyl fermions must appear in degenerate pairs. (For T this is the
Kramers theorem.) Each such pair forms a Dirac fermion. To split the Dirac fermion
into separate left- and right-handed Weyl fermions, either T or P must be broken.
WSMs breaking either P or T have been experimentally discovered:
TaAs [10, 11, 12, 13] and its cousins TaP [89], NbAs [90], and NbP [89, 91] break P and
preserve T , whereas magnetic WSMs like Co3Sn2S2 [92, 93] and Co2MnGa [94]
preserve P and break T .

WSMs are “topological” materials in the following sense. Each Weyl point has an
associated topological invariant: the integral of the Berry curvature over a surface
enclosing the Weyl point is a Chern number ±1, depending on the point’s chirality,
and zero otherwise [95]. This can be given formally as

C =
1

2π

∫
Ω(k) · dS = ±1 (4.1)

where Ω(k) is the Berry curvature in momentum space. The Weyl point can
therefore be thought of as a source (+ chirality) or a sink (- chirality) of the Berry
curvature.

The Weyl fermions are therefore topologically protected, meaning they cannot be
destroyed by any continuous deformation that leaves the discrete symmetries
unchanged.
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In lattice systems, the Nielsen-Ninomiya theorem [96] guarantees zero net
chirality in the Brillouin zone, or equivalently zero net Chern number. In lattice
realisations of WSMs, Weyl fermions will thus always appear in positive and negative
chirality pairs, and a Weyl point can disappear only by annihilating against another
Weyl point of opposite chirality. In particular, a lattice system can never support a
single isolated Weyl fermion.

The presence of Weyl points has (at least) two major phenomenological
consequences. The first is Fermi arcs at the material’s surface, meaning lines at or near
the Fermi energy in the surface Brillouin zone, connecting the projections of the Weyl
points [95]. Given that the bulk Weyl points are topologically protected, the existence
of these Fermi arcs is as well. Fermi arc states can give rise to phenomena such as
quantum oscillations [87]. The second consequence is exotic transport in the WSM’s
bulk, including the chiral magnetic effect, negative magneto-resistance, and the
anomalous Hall effect [97]. These exotic effects arise in whole or in part from the
U(1)A axial anomaly of the Weyl fermions.

As an example, consider a free Dirac fermion ψ, of mass m, with a
non-dynamical background axial vector field A5

j , where j = x, y, z labels spatial
coordinates. In units with h̄ ≡ 1 and the Fermi velocity v f ≡ 1, the Lagrangian L of
such a Dirac fermion is [98, 99]

L = ψ̄
(

iγµ∂µ −m + A5
j γjγ5

)
ψ, (4.2)

where µ = t, x, y, z labels spacetime coordinates, γµ are the Dirac matrices, and
γ5 ≡ iγtγxγyγz. In eq. (4.2), on the right-hand-side the kinetic term and mass term
each preserve P and T , while the coupling to A5

j preserves P but breaks T . If we
choose A5

j to have constant magnitude b/2 (the factor of 1/2 is for later convenience),
and use rotational symmetry to orient it in the z direction, A5

j = b/2 δjz, then the
energy ε of the Dirac fermion is, for spatial momentum k j,

ε = ±
√

k2
x + k2

y +

(
b2

4
±
√

k2
z + m2

)2

, (4.3)

where the ± signs are uncorrelated, so that eq. (4.3) describes four energy levels.
The qualitative form of the spectrum in eq. (4.3) depends on the dimensionless

ratio |m/b|. If |m/b| < 1/2, then two of the four energy levels meet at two points in
momentum space, (kx, ky, kz) = (0, 0,±

√
(b/2)2 −m2). At these points, ε = 0. The

effective theory governing the low energy excitations near these two nodal points is
then a pair of Weyl fermions, and thus for |m/b| < 1/2 the system is a WSM. On the
other hand, if |m/b| > 1/2 then an energy gap appears, and the system is a trivial
insulator. At the critical point |m/b| = 1/2, a single node at (kx, ky, kz) = 0 appears.

The L in eq. (4.2) is invariant under U(1)V vector transformations ψ→ eiαψ with
constant α, and when m = 0 and b = 0 also under U(1)A axial transformations
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ψ→ eiβγ5
ψ, with constant β. The corresponding U(1)V and U(1)A currents are,

respectively,
Jµ = iψ̄γµψ, Jµ

5 = iψ̄γµγ5ψ. (4.4)

However, U(1)A is anomalous: in the presence of a background U(1)V field strength
Fµν, the axial current Jµ

5 is not conserved. Moreover, non-zero m explicitly breaks
U(1)A. To be specific, if m and Fµν are both non-zero, then the divergence of the U(1)A

current is
∂µ Jµ

5 =
1

16π2 εµνρσFµνFρσ − 2m ψ̄γ5ψ. (4.5)

As mentioned above, the U(1)A anomaly gives rise to exotic transport. Our focus
will be the anomalous Hall effect: if we introduce A5

j = b/2 δjz, then a constant,
external U(1)V electric field, E, in a perpendicular direction, say x, induces a U(1)V

Hall current [99, 100],

Jy = σyxE, σyx = −σxy =
1

4π2

√
b2 − 4m2 Θ (|b| − 2|m|) , (4.6)

with Jx = 0 and Jz = 0. In eq. (4.6), the Heaviside step function Θ (|b| − 2|m|) makes
manifest that the anomalous Hall effect occurs only when |m/b| < 1/2, in the WSM
phase.

The free Dirac fermion theory of eq. (4.2) thus has a quantum phase transition as
|m/b| increases. As mentioned above, when |m/b| < 1/2 the system is a WSM, with
P preserved and T broken at low energy, and an AHE with the σxy 6= 0 in eq. (4.6).
When |m/b| > 1/2 the system is a trivial insulator, with both P and T preserved at
low energy and σxy = 0. This quantum phase transition is second order, with a
quantum critical point described by a conformal field theory (CFT), namely a free,
massless Dirac fermion.

A crucial question is: what if the low-energy excitations of a material cannot be
described by the free Dirac fermion theory of eq. (4.2)? In fact, what if the low-energy
excitations cannot be described by band theory at all? What if the low-energy
excitations are not weakly-interacting, long-lived quasi-particles? Are WSM states
possible in strongly-correlated materials, and if so, then what are their properties?

Some phenomena of the free Dirac fermion theory are independent of
interactions, as long as those interactions do not change the discrete
symmetries—specifically phenomena that are topological and/or determined by the
U(1)A anomaly in eq. (4.5). Examples include the presence of Weyl points in the
Brillouin zone and the corresponding Fermi arcs, both of which are topological, and
the anomalous Hall conductivity σxy in eq. (4.6) when m = 0, which is completely
determined by the U(1)A anomaly.

However, practically any other property will be affected by interactions,
including the exact shape and energy dispersion of Fermi arcs, the value of the
anomalous Hall conductivity when m 6= 0, and the thermodynamic equation of state,
which in turn determines the order of any (quantum) phase transition and the critical
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value of |m/b| at which it occurs. Indeed, effective field theory techniques have
shown that with sufficiently strong short-range interactions a WSM will experience
either a first-order transition to a band insulator or a continuous transition to a broken
symmetry phase [101].

An alternative approach to strongly-interacting WSMs is via the gauge/gravity
duality - this is the approach we take here.

4.2 Holographic Weyl-Semi Metal from probe D3/D7

The set-up to achieve a top-down holographic WSM with flavour follows from the
previous chapters. Namely we have probe D7 branes in an AdS5 × S5 background
with N f � Nc. To include the features expected in a WSM we turn on an axial U(1)A

field A5
j = b/2 δjz, that induces a non-zero Wess-Zumino term that, as we shall see,

holographically encodes the U(1)A anomaly. Looking at the free energy of this set-up
we have, as before, three distinct phases: a minkowski embedding, a black hole
embedding and a critical solution. To see if we do indeed have a Weyl semimetal
phase we turn on an electric field perpendicular to the axial field. We choose to align it
along the x direction, Ax = Et + ax(r), where the first term introduces the electric field
E and the second term allows for a non-zero current in the x-direction, 〈Jx〉. We also
turn on Ay = ay(r) to allow for a non-zero 〈Jy〉. From this we can compute the
anomouls hall conductivity, σxy ∼ 〈Jy〉/E and find that it is non-zero for the black-hole
solutions and zero for the minkowski solutions indicating a phase transition between
a Weyl semimetal phase, with T broken, and a trivial insulator phase, with T
preserved - see fig 4.6a.

This set-up borrows some features from previous holographic WSM models.
One such class of models [14, 15, 102, 103, 104, 105] consists of a bottom-up
Einstein-Hilbert metric in 4+1 dimensions in asymptotic AdS, coupled to a complex
scalar field and to U(1) gauge fields, one of which has a five-dimensional
Chern-Simons term. Upon introducing a non-zero m and b, most models in this class
exhibit a quantum phase transition as |m/b| increases. However, some models in this
class have a first order QPT from a WSM to a Chern insulator, for suitable choices of
scalar field couplings [103]. A key feature of these models is an anomalous Hall
conductivity completely determined by the product of the Chern-Simons coefficient
and the U(1)A gauge field’s value at the black hole horizon [14, 15]. Models in this
class have realised edge currents indicating Fermi arcs [106], odd viscosity [107],
chaos [108], and much more [109, 110, 111, 112].

A second class of model that is top-down follows from the D3/D7 set-up we
have seen previously. Using this holographic description, refs. [113, 114] showed that
a U(1)V electric field rotating in space produced non-equilibrium steady states that
were in fact WSMs, among other remarkable properties, such as an effective
temperature and fluctuation-dissipation relation [113].
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Both of the classes above are fully holographic. Another class of WSM models
consists of fermions with strong interactions mediated by a holographic
CFT [115, 116]. Such a mix of non-holographic fermions with a holographic CFT is
called “semi-holographic” [117, 118]. These models behave as undoped WSMs
exhibiting quantum criticality generically with non-integer scaling of the conductivity
in frequency and T [115, 116].

Having reviewed the literature, we find that our model exhibits several
remarkable phenomena distinct from all previous models. For example, when T = 0
we find a first order transition from a WSM to a trivial insulator as |m/b| increases, in
contrast to the second order transitions of most previous models, and to the first order
transition to a Chern insulator of [103].

At T = 0 our small |m/b| phase is a WSM with σxx = 0 and σxy 6= 0, signaling
broken T at low energy, while the large |m/b| phase is a trivial insulator with σxx = 0
and σxy = 0, signaling restored T at low energy. Most remarkably, at T = 0 in the
WSM phase our σxy is independent of m, and in particular retains its m = 0 value,
dictated by the U(1)A anomaly, for all |m/b| in the WSM phase. To our knowledge
such behaviour does not occur in any other model. We also find that at T = 0 in the
WSM phase the low energy effective theory is a CFT, namely N = 4 SYM coupled to
massless probe hypermultiplets. In other words, the non-zero m in the ultraviolet (UV)
is renormalised to zero in the infra-red (IR).

For any T > 0 we again find a first order transition, now from a WSM with
σxx 6= 0 and σxy 6= 0 to a trivial insulator with σxx = 0 and σxy = 0. In other words,
when T > 0 in the WSM phase σxx 6= 0 and σxy 6= 0 both acquire non-trivial
dependence on m and T. We also explore our model’s thermodynamics by computing
our model’s entropy density, heat capacity, and speed of sound. We find various
curious features. For example, at sufficiently low T, in the WSM phase near the
transition we find a rapid increase in the entropy density, presumably arising from the
emergent IR CFT degrees of freedom.

Broadly speaking, individual holographic models can reveal what is possible
with strong interactions, while families of holographic models can reveal what is
universal with strong interactions. Our model shows that first order transitions from
WSMs to trivial insulators are possible with strong interactions, accompanied by
remarkable behaviour of thermodynamics and transport, and our model provides
further evidence that transport properties controlled by anomalies are universal in the
presence of strong interactions.

In the next section 4.2.1 we describe our model in detail. In section 4.2.2 we
present our solutions for the D7-brane worldvolume fields, and use them to study the
thermodynamics of our model. In section 4.2.5 we holographically compute the
longitudinal and Hall conductivities of our model. We conclude in section 4.3 with a
summary and outlook for future research using our model.
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4.2.1 The holographic description

The holographic description follows form the previous sections with the distinction
that by turning on A5

j , Ax and Ay we have a non-zero Wess-Zumino term.

SD7 = −N f TD7

∫
d8ξ
√
−det(P[G] + F) +

1
2

N f TD7

∫
P[C4] ∧ F ∧ F, (4.7)

where the D7-brane tension is TD7 = (2π)−7g−1
s α′−4, ξa with a = 1, 2, . . . , 8 are the

worldvolume coordinates, P[G] and P[C4] denote pullbacks of the bulk metric and
four-form to the worldvolume, respectively, and F = dA is the field strength of the
U(1) worldvolume gauge field A. Note, we have absorbed a factor of (2πα′) into our
F, which is thus dimensionless. The D7-branes’ worldvolume U(N f ) gauge invariance
is dual to the U(N f ) flavour symmetry, and in particular the U(1) gauge field A is
dual to the U(1)V current Jµ.

Furthermore, recall that by seperating the D3 and D7 branes in the (x8, x9)

directions we break the SO(2) ∼ U(1)A symmetry and introduce a hypermultiplet
mass m = R/(2πα′) with phase φ, where R is the seperation length and φ is the angle
of separation in the (x8, x9) plane. In previous chapters φ played a minor role. Here,
however, we shall see that it is pivatol in constructing our WSM model.

Being top-down, our model has the attractive feature that the Lagrangian is
known: see for example refs. [119, 120] for explicit expressions. However, its full form
is lengthy, so we will write only the terms we need, namely terms in the potential V
that involve the complex hypermultiplet mass m eiφ,

V ⊃ mψ̄eiφγ5
ψ−mq†

(
eiφΓ† + e−iφΓ

)
q−mq̃†

(
eiφΓ† + e−iφΓ

)
q̃ + m2

(
q†q + q̃†q̃

)
,

(4.8)
with Γ a complex scalar field formed from two of the six real scalar fields of N = 4
SYM, q and q̄ the N = 2 scalars that, alongside the Dirac fermion ψ, make up the
N = 2 hypermultiplet.

If we transform ψ→ e−iφγ5/2ψ, then the first term in eq. (4.8) becomes m ψ̄ψ.
Moreover, if φ depends on the field theory spacetime coordinates
(x0, x1, x2, x3) = (t, x, y, z) then the derivative in ψ’s kinetic term will act on φ,
producing a new term that we may include in the potential. The terms in V that
depend only on ψ then become

V ⊃ ψ̄

(
m− ∂µφ

2
γµγ5

)
ψ. (4.9)

Comparing to the Dirac Lagrangian in eq. (4.2), in eq. (4.9) the second term on the
right-hand side clearly represents a coupling to an external, non-dynamical U(1)A

gauge field, A5
µ = ∂µφ/2. As in the effective theory of eq. (4.2), to produce a WSM we
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will choose φ = b z.2 In the D-brane intersection, φ = b z corresponds to D7-branes
spiraling around the D3-branes in the (x8, x9) plane as they extend along z.

The operators sourced by m and φ are, respectively,

Om ≡
∂V
∂m

= ψ̄eiφγ5
ψ− q†

(
eiφΓ† + e−iφΓ

)
q− q̃†

(
eiφΓ† + e−iφΓ

)
q̃ + 2m

(
q†q + q̃†q̃

)
,

Oφ ≡
∂V
∂φ

= imψ̄eiφγ5
γ5ψ− imq†

(
eiφΓ† − e−iφΓ

)
q− imq̃†

(
eiφΓ† − e−iφΓ

)
q̃. (4.10)

The operator Om is dimension 3, and when φ is constant is just the SUSY completion
of the Dirac mass operator. The operator Oφ is dimension 4, and obeys Oφ ∝ m, so that
if m = 0 then Oφ = 0.

As before, we parametrise the D7-branes worldvolume at non-zero temperature
to be,

ds2 =
ρ2

L2

(
− g2(ρ)

h(ρ)
dt2 + h(ρ)d~x2

)
+

L2

ρ2

(
dr2 + r2dΩ2

3 + dR2 + R2dφ2) ,

C4 =
ρ4

L4 h2(ρ)dt ∧ dx ∧ dy ∧ dz− L4r4

ρ4 dφ ∧ω(S3), (4.11a)

ρ2 = r2 + R2, g(ρ) ≡ 1− ρ4
H

ρ4 , h(ρ) ≡ 1 +
ρ4

H
ρ4 , (4.11b)

where ρ ∈ [ρH, ∞) with the black brane horizon at ρH and the asymptotic AdS5

boundary at ρ→ ∞. The volume of a unit-radius S3 is given by ω(S3). Noticably, the
pullback of the four-form is now non-zero.

The D7-branes are extended along AdS5 × S3. We parametrise the D7-branes’
worldvolume coordinates as ξa = (t, x, y, z, r) plus the S3 coordinates. The two
worldvolume scalars are then R and φ, where R is holographically dual to Om and φ is
dual to Oφ in eq. (4.10). More specifically, in the near-boundary region on the
worldvolume, r → ∞, the leading asymptotic values of R and φ determine the sources
for Om and Oφ, i.e. the modulus m and phase φ of the hypermultiplet mass,
respectively, while the sub-leading behaviours determine the expectation values 〈Om〉
and 〈Oφ〉.

We will use the simplest ansatz for the worldvolume scalars that introduces the
phase bz in the hypermutiplets’ mass and allows for non-zero 〈Om〉 and 〈Oφ〉, namely
R(r) and φ(z, r) = bz + Φ(r).3 In practical terms, our goal will be to solve for R(r) and
Φ(r), and from these extract the dual flavour fields’ thermodynamic and transport
properties.

2In this model the effect of a U(1)A chemical potential µ5, introduced as φ = 2µ5t, was studied holo-
graphically for example in refs. [121, 122].

3A similar ansatz for φ, in the presence of a magnetic field, has appeared in refs. [123, 124].
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With our ansatz, the pullback of C4 to the worldvolume becomes

P[C4] =
ρ4

L4 dt ∧ dx ∧ dy ∧ dz− L4r4

ρ4

(
b dz +

∂φ

∂r
dr
)
∧ω(S3), (4.12)

and hence the WZ term in the action eq. (4.7) includes a term ∝
∫

AdS5

r4

ρ4 b dz ∧ F ∧ F,
which holographically encodes the U(1)A anomaly.

Plugging our ansatz into the D7-branes’ action eq. (4.7) gives

SD7 = −Nvol(R1,3)
∫

dr r3 g h

√√√√(1 +
L4b2R2

h (r2 + R2)2

)
(1 + R′2) + R2φ′2, (4.13a)

N ≡ 2π2N f TD7 =
λN f Nc

16π4
1
L8 , (4.13b)

where R′ ≡ ∂R/∂r and similarly for φ′, and the factor vol(R1,3) denotes the infinite
volume of Minkowski space, arising from integration over the field theory directions
(t, x, y, z). Starting now we will divide both sides of eq. (4.13a) by vol(R1,3), so that
SD7 will be an action density. Correspondingly, quantities derived from SD7 will be
densities.

For our ansatz, the canonical momentum Pφ conjugate to φ is

Pφ ≡
δSD7

δφ′
= −N r3 g h

R2φ′√(
1 + L4b2R2

h(r2+R2)
2

)
(1 + R′2) + R2φ′2

. (4.14)

The equation of motion for φ is then ∂rPφ = 0, so that Pφ is a constant of motion in the
worldvolume holographic direction, r. We thus write the solution as Pφ = N pφ where
the factor of N is a convenient normalisation, and pφ is a constant.

Plugging Pφ = pφ into eq. (4.14) and solving for φ′2 gives

φ′2 = pφ

[(
r2 + R2)2

+ L4b2R2
] (

1 + R′2
)

(r2 + R2)2 R2
(

R2r6 − p2
φ

) . (4.15)

Subsequently plugging φ′2 in eq. (4.15) into the action eq. (4.13a) and Legendre
transforming with respect to φ then gives an effective action for R(r) alone,

S̃D7 ≡ SD7 −
∫

dr Pφφ′

= −N
∫

dr r3 g h
√

1 + R′2
√

1 +
L4b2R2

h (r2 + R2)2

√
1−

p2
φ

r6g2h2R2 , (4.16)

whose variation gives R(r)’s equation of motion.
The integrand of S̃D7 in eq. (4.16) includes a product of three square roots. For
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both black hole and Minkowski embeddings, the arguments of the first and second
square roots are positive for all r, hence both of these square roots are real-valued for
all r.

However, if pφ 6= 0 then the third square root is never real-valued for all r. At the
asymptotic AdS5 boundary r → ∞ the argument of the third square root is positive
and hence the third square root is real-valued. For black hole embeddings, the
argument of the third square root diverges to negative infinity at rH because
g(ρH) = 0, while for Minkowski embeddings it diverges to negative infinity at r = 0.
In each case the argument of the third square root must change sign at some r between
the asymptotic AdS5 boundary and the horizon or brane endpoint, so for some values
of r the third square root always acquires a non-zero imaginary part. As a result, S̃D7

acquires a non-zero imaginary part, which signals a tachyonic instability with decay
rate ∝ |Im S̃D7| [125, 126, 127].

Similar tachyons appear in other probe brane systems, when a square root factor
acquires a non-zero imaginary part: see for example refs. [128, 129, 121, 122]. In those
cases we can “fix the problem,” i.e. prevent the instability, by adding to our ansatz
non-zero components of the worldvolume gauge field A. These come with their own
integration constants, and typically produce additional factors under the square root
that can be arranged such that the action remains real. Indeed, we will do precisely
this in section 4.2.5, where we will introduce a constant, non-dynamical, external
U(1)V electric field E, and to avoid a tachyonic instability we introduce components of
A. In field theory terms, we will introduce E which will in turn induce U(1)V currents.

However, that strategy does not work when E = 0 and pφ 6= 0. In that case, even
if we introduce all components of A in field theory directions,
(At(r), Ax(r), Ay(r), Az(r)), then the corresponding integration constants cannot be
arranged to keep the square root real for all r. In particular, these integration constants
appear in the Legendre-transformed action under the third square root as terms added
to those in eq. (4.16), but with powers of r sub-leading compared to the pφ term at
small r. As a result, these integration constants cannot be adjusted to keep the square
root real for all r.

The upshot is that we will set pφ = 0 in all that follows, to guarantee that S̃D7 in
eq. (4.16) is always real, and hence no tachyonic instability appears. In appendix 4.3
we perform the holographic renormalisation of our model and find 〈Oφ〉 = Pφ = pφ,
so our choice pφ = 0 means 〈Oφ〉 = 0.

With our choice pφ = 0, the near-boundary asymptotic expansion of R(r) is

R(r) = ML2
(

1− L4b2

2 r2 log(r/L)
)
+ C

L6

r2 +O
(

log(r/L)
r4

)
, (4.17)

where we see a similar relation to what we had in previous sections (4.17) albeit
with an addition factor due to the non-zero b. Indeed, the asymptotic separation
limr→∞ R(r) = ML2 determines m = ML2/(2πα′) = M

√
λ/(2π). In appendix 4.3 we
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show that M and the sub-leading asymptotic coefficient C together determine 〈Om〉 as

〈Om〉 =
√

λN f Nc

8π3

[
−2C +

b2M
2

+ b2M log (ML)
]

. (4.18)

4.2.2 Thermodynamics

In this section we will explore our model’s thermodynamics. Specifically, for different
classes of solutions of R(r), characterised by boundary conditions, we will compute
the hypermultiplets’ contribution to the (Helmholtz) free energy density, f . Given f
we can also compute the thermal expectation value 〈Om〉 = ∂ f /∂m, which in terms of
the near-boundary asymptotic coefficients M and C is given by eq. (4.18), and the
hypermultiplets’ contribution to the entropy density, s, and heat capacity density, cV ,

s = − ∂ f
∂T

, cV = T
∂s
∂T

. (4.19)

In our case, where all chemical potentials vanish, we can also compute the speed of
sound, v, from these thermodynamic quantities, as follows. The entropy density of the
N = 4 SYM fields is sYM = π2

2 N2
c T3 and their heat capacity density is

cYM
V = 3 sYM [130]. The total entropy density and heat capacity density are then

stot = sYM + s and ctot
V = cYM

V + cV , respectively. The speed of sound is then given by

v2 =
stot

T
∂T

∂stot
=

stot

ctot
V

=
sYM + s

cYM
V + cV

= v2
YM + δv2 +O

(
N2

f /N2
c

)
, (4.20)

where in the final equality we expanded in the probe limit N f � Nc, with leading
term v2

YM = sYM/cYM
V , which takes the value required for a (3 + 1)-dimensional CFT,

v2
YM = 1/3, and the O

(
N f /Nc

)
correction due to the hypermultiplets is

δv2 =
sYM

cYM
V

(
s

sYM
− cV

cYM
V

)
. (4.21)

Given f we can thus compute s and cV , and hence δv2.
In holography, f is simply minus the on-shell D7-brane action SD7 in eq. (4.7)

(not S̃D7 in eq. (4.16)) in Euclidean signature [42]. In the appendix for this section we
show that

f =
λN f Nc

16π4L8 lim
rc→∞

[ ∫ rc

dr r3 g h

√
1 +

L4b2R2

h (r2 + R2)2

√
1 + R′2 (4.22)

− r4
c

4
− L8b2M2

2
log (rc/L) +

L8b2M2

4
(1 + 2 log (ML))

]
,

where rc is a large-r cutoff, and the lower endpoint of integration is rH for black hole
embeddings and r = 0 for Minkowski embeddings.
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In the field theory the free parameters are m, b, and T, all with dimensions of
mass. We will plot most physical quantities in units of b, and specifically as functions
of the dimensionless ratios T/b and m/(b

√
λ) = M/(2πb). Most of our results will be

numerical, although we will obtain closed-form results in certain limits.
As mentioned in the introduction, our main result is that for all T/b we find a

first-order transition as m/(b
√

λ) increases. In holographic terms, the transition is
from black hole to Minkowski embeddings. In CFT terms, we find that f is of course
continuous, but has a discontinuous first derivative 〈Om〉 = ∂ f /∂m at the transition.
Our results are summarised in the phase diagram of figure 4.4. In section 4.2.5, by
computing the conductivity we show that the transition is in fact from a WSM to a
trivial insulator.

4.2.3 Phase Transition at Zero Temperature

We start with T/b = 0, in which case the only scale in the field theory is m/(b
√

λ).
When T = 0 we have that g = 1 and h = 1 in eq. (4.11). Taking also pφ = 0, the
equation of motion for R(r) following from the Legendre transformed action S̃D7 in
eq. (4.16) is

R′′ +
(

3
r
− 2L4b2rR2

(r2 + R2) [(r2 + R2)2 + L4b2R2]

)
R′(1 + R′2)

+
L4b2R(R2 − r2)

(r2 + R2) [(r2 + R2)2 + L4b2R2]
(1 + R′2) = 0. (4.23)

Without a horizon, all embeddings reach r = 0. We can divide the embeddings
into two classes, distinguished by whether R0 ≡ R(r = 0) vanishes. In the first class of
embeddings, R0 6= 0. Specifically, by expanding R(r) around r = 0 in eq. (4.23) we
find

R(r) = R0 −
L4b2r2

8R0
(

L4b2 + R2
0

) +O(r4). (4.24a)

These are Minkowski embeddings: at r = 0 we have ρ = R0 6= 0. In the second class of
embeddings R0 = 0, and in fact from eq. (4.23) we find R(r) vanishes exponentially
quickly as r → 0,

R(r) = η
e−L2b/r
√

r
[
1 +O(r2)

]
, (4.24b)

where η is a constant. These are analogous to T > 0 black hole embeddings. These
two classes are separated by a critical embedding, Rc(r), which from eq. (4.23) we find
approaches R0 = 0 linearly in r,

Rc(r) =
r√
3
− 32r3

27
√

3L4b2
+O(r5). (4.24c)
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For any value of b, eq. (4.23) admits a trivial solution, R(r) = 0, which has R0 = 0
and in eq. (4.17) also M = 0 and C = 0. As a result, this solution describes m = 0 and
〈Om〉 = 0, and a straightforward calculation shows that also f = 0.

We can obtain approximate solutions with non-zero m in two limits, large m and
small m. More precisely, large mass means m/(b

√
λ)� 1. In that limit, following

ref. [131] we take R(r) = ML2 + δR(r) and linearise the equation of motion eq. (4.23)
in δR, also keeping only leading-order terms in 1/

(
L4M2 + r2), with the result

δR′′ +
3
r

δR′ +
L6b2M

(
M2 − r2)

(L4M2 + r2)
3 = 0,

m
b
√

λ
� 1. (4.25)

The solution of eq. (4.25) regular as r → 0 and with the large-r asymptotics of eq. (4.17)
is

R(r) ≈ L2M +
L6b2M

4

[
1

L4M2 + r2 −
1
r2 log

(
1 +

r2

L4M2

)]
,

m
b
√

λ
� 1. (4.26)

This solution has R0 = L2M 6= 0, as in eq. (4.24a), and is therefore a Minkowski
embedding. This solution has the large-r asymptotics of eq. (4.17), with

C =
1
4

Mb2 [1 + 2 log(ML)] ,
m

b
√

λ
� 1. (4.27)

Substituting this into eq. (4.18) then gives 〈Om〉 = 0. Integrating 〈Om〉 over m then
trivially gives a free energy independent of m, as expected in the limit m

b
√

λ
� 1 where

the hypermultiplets decouple. Concretely, we find f → −b4N f Nc/(512π4) as
m/(b

√
λ)→ ∞.

Small mass means m/(b
√

λ)� 1, where we may linearise the equation of
motion eq. (4.23) in R(r), finding

R′′ +
3
r

R′ − L4b2

r4 R = 0,
m

b
√

λ
� 1. (4.28)

The solution of eq. (4.28) regular as r → 0 and with large-r asymptotics as in eq. (4.17)
is

R(r) ≈ L4bM
r

K1(L2b/r),
m

b
√

λ
� 1, (4.29)

with modified Bessel function K1. This solution vanishes exponentially as r → 0, as in
eq. (4.24b), with η = L3M

√
πb/2, and hence is analogous to a T > 0 black hole

embedding. This solution has the large-r asymptotics of eq. (4.17), with

C =
1
4

b2M [2 log (bL/2) 2− 1 + 2γE] ,
m

b
√

λ
� 1, (4.30)
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with Euler-Mascheroni constant γE ≈ 0.577. Using m = M
√

λ/2π, eq. (4.18) then
gives

〈Om〉 ≈
N f Nc

4π2 m b2
[

log
(

4πm
b
√

λ

)
+ 1− γE

]
,

m
b
√

λ
� 1. (4.31)

We then obtain f by integrating eq. (4.31) with respect to m, fixing the integration
constant using the fact that the trivial solution R(r) = 0 has f = 0, with the result

f ≈ N f Nc

16π2 m2 b2
[

2 log
(

4πm
b
√

λ

)
+ 1− 2γE

]
,

m
b
√

λ
� 1. (4.32)

We will obtain more general solutions with non-zero m numerically, by shooting
from r = 0, with the boundary conditions in eq. (4.24), towards the asymptotic AdS5

boundary r → ∞. For solutions obeying eq. (4.24a) we impose R′(r = 0) = 0 and
choose the free parameter R0 6= 0. For solutions obeying eq. (4.24b) we impose
R(r) = ηL(2b/π)1/2r−1K1(L2b/r) at small r, with free parameter η.4 In each case, for a
given value of R0 or η, we numerically integrate to large r, and then perform a
numerical fit to the large-r asymptotic form in eq. (4.17), and extract M and C. Since
every solution is determined by a single parameter, R0 or η, the asymptotic coefficient
C will always implicitly depend on M. For given values of M and C, we compute
〈Om〉 from eq. (4.18), and for a given numerical solution for R(r) we compute f by
performing the integral in eq. (4.22) numerically. For the unique, critical solution Rc(r)
obeying eq. (4.24c) we have R0 = 0 and R′c(r = 0) = 1/

√
3, which map to the unique

values
Mc = 0.4875, Cc = −0.07804, (4.33a)

〈Om〉c = 0.04965 b3

√
λ N f Nc

8π3 , fc = −0.02671 b4 λ N f Nc

16π4 . (4.33b)

Figure 4.1a shows examples of our T/b = 0 numerical solutions for R(r)/(L2b).
The dashed blue, solid orange, and dot-dashed black lines correspond to the r = 0
boundary conditions in eq. (4.24a) (R0 6= 0, Minkowski), eq. (4.24b) (exponential,
black-hole-like), and (4.24c) (critical), respectively. The limiting value that each
solution approaches on the right-hand side of figure 4.1a determines m as
limr→∞ R(r) = ML2 = (2πα′)m. Figure 4.1a shows that, broadly speaking, the dashed
blue Minkowski embeddings only exist for large enough m, i.e. they describe large
mass, while the solid orange black-hole-like embeddings only exist for small enough
m, i.e. they describe small mass. Figure 4.1a also shows that both classes of
embeddings produce the same values of m for a range of m near the critical solution,
which will be crucially important when we consider f below.

As previously discussed, the holographic coordinate ρ encodes the field theory
energy scale, with the UV near the AdS5 boundary ρ→ ∞ and the IR near ρ = 0.
Given a value of the UV parameter m/(b

√
λ), the solution R(r) encodes the

4This is the correct small-r behaviour of solutions obeying eq. (4.24b), up to corrections of order
e−3L2b/r.



72 Chapter 4. A Weyl-Semi Metal with Flavour

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(A) Embeddings at T/b = 0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.068 0.0733 0.082
-0.03

-0.025

(B) Free energy density at T/b = 0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.15

-0.10

-0.05

0.00

0.05

0.065 0.0733 0.085
0

0.08

(C) 〈Om〉 at T/b = 0

FIGURE 4.1: (a) Examples of our numerical solutions for R(r)/(L2b) as functions of
r/(L2b), at T/b = 0. The dashed blue, solid orange, and dot-dashed black lines are
solutions obeying the r → 0 boundary conditions in eqs. (4.24a) (Minkowski), (4.24b)
(black-hole-like), and (4.24c) (critical), respectively. (b) Our numerical result for the

free energy density f /(b4 λN f Nc

16π4 ), as a function of m/(b
√

λ), at T/b = 0, with the
same colour coding as (a). The dotted gray line is the small mass approximation in
eq. (4.32). The black dot indicates the critical solution, and the inset is a close-up near
the critical solution, showing the “swallow tail” shape characteristic of a first-order
transition. The first order transition at m/(b

√
λ) ≈ 0.0733 is indicated by the vertical

grey line. The horizontal grey line shows the large m/(b
√

λ) limit of the free energy,

f ≈ −b4N f Nc/(512π4). (c) The expectation value 〈Om〉/(b3 λN f Nc

8π3 ) as a function of
m/(b

√
λ), at T/b = 0, with the same colour coding as (a) and (b). The dotted gray

line is the small mass approximation in eq. (4.31). The inset is a close-up of the spiral
behaviour near the phase transition.

corresponding renormalisation group (RG) flow, where the r → 0 behaviours in
eq. (4.24) encode the IR degrees of freedom.

For example, the Minkowski embeddings obey eq. (4.24a) and hence the S3 ∈ S5

collapses at ρ = R0 6= 0, as described above. As a result, the D7-branes are absent for
ρ < R0. The holographically dual statement is that sufficiently heavy hypermultiplets
decouple at sufficiently low energy, and so disappear from the IR. Indeed, for
Minkowski embeddings we expect the spectrum of linearised worldvolume
excitations to be gapped and discrete [132].

In contrast, the black-hole-like embeddings have the exponential decay of
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eq. (4.24b), so that limr→0 R(r) = 0. The D7-branes thus reach the AdS5 Poincaré
horizon at ρ = 0, as described above. The holographically dual statement is that for
sufficiently light hypermultiplets the RG flow is to a gapless IR. Indeed, for
black-hole-like embeddings we expect the spectrum of linearised worldvolume
excitations to be gapless and continuous [132].

In fact, for the black-hole-like embeddings we can say more: a straightforward
exercise shows that as r → 0 the D7-branes’ worldvolume metric approaches that of
AdS5 × S3, with the same radius of curvature as that of the r → ∞ region. The
holographically dual statement is that the RG flow leads to an emergent conformal
symmetry in the IR, and in fact the IR CFT is simply massless probe hypermultiplets
coupled to N = 4 SYM at large Nc and large coupling.

For the critical solution, which has the linear in r behaviour near r = 0 of
eq. (4.24c), as r → 0 the D7-branes’ worldvolume metric approaches

P[G]abdξadξb ≈ L2 dr2

r2 +
4
3

r2

L2

(
−dt2 + dx2 + dy2)+ 1

4
b2 L2 dz2 +

3
4

L2 ds2
S3 , (4.34)

which we recognise as that of AdS4 with coordinates (r, t, x, y) and radius L, times R

with coordinate z, times S3 with radius L
√

3
4 . The holographically dual statement is

that the RG flow leads to an emergent (2 + 1)-dimensional conformal symmetry in the
IR, dual to the AdS4 isometry, with a non-compact U(1) symmetry, dual to
translations in z, plus an SO(4) symmetry, dual to the S3 isometry. In other words, the
critical RG flow leads to an emergent (2 + 1)-dimensional CFT. The fully holographic,
bottom-up models of refs. [14, 15, 102, 104, 105] have a similar critical solution, but
with IR Lifshitz symmetry in which z scales with a different power from (t, x, y). In
both our model and those models, the choice φ = b z breaks SO(3) rotational
symmetry of (x, y, z) down to SO(2) rotational symmetry of (x, y), allowing for a
lower-dimensional CFT or Lifshitz scaling in the IR.

Since only black-hole-like embeddings exist for sufficiently small m/(b
√

λ), and
only Minkowski embeddings exist for sufficiently large m/(b

√
λ), as we increase

m/(b
√

λ) a transition from black-hole-like to Minkowski embeddings must
necessarily occur. A key question is the nature of that transition, including in
particular its order.

Figure 4.1b shows our numerical results for the free energy density f , in units of
b and normalised by λN f Nc

16π4 , as a function of m/(b
√

λ). The colour coding is the same
as in figure 4.1a, while the black dot represents the critical solution and the dotted
grey line is the small-m approximation in eq. (4.32), showing excellent agreement with
our numerics when m/(b

√
λ)� 1. The horizontal grey line in the figure shows the

analytic approximation for the free energy in the large-m limit,
f ≈ −b4N f Nc/(512π4), which agrees well with our numerics when m/(b

√
λ)� 1.

The inset in figure 4.1b shows f near the critical solution, which clearly exhibits
the “fish tail” shape characteristic of a first-order transition. Specifically, for a range of
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m/(b
√

λ) near the critical solution, f is multi-valued, with both black-hole-like and
Minkowski embeddings available to the system. The thermodynamically preferred
solution is that with the lowest f . As we increase m/(b

√
λ) black-hole-like

embeddings are preferred until m/(b
√

λ) ≈ 0.0733, denoted by the vertical line in
figure 4.1b, after which Minkowski embeddings are preferred. The first derivative
∂ f /∂m is discontinuous at the transition, thus the transition is first order. The critical
solution is never thermodynamically preferred.

Figure 4.1c shows some of our numerical results for 〈Om〉 = ∂ f /∂m, in units of b
and normalised by λN f Nc

8π3 , with the same colour coding as figs. 4.1a and 4.1b. At large
m clearly 〈Om〉 → 0, as discussed below eq. (4.27), and the small-m approximation of
eq. (4.31) appears as the dotted grey line. The transition point m/(b

√
λ) ≈ 0.0733 is

denoted by the vertical line. As expected, near the critical solution 〈Om〉 is
multi-valued, and as m/(b

√
λ) increases, at the transition point 〈Om〉 jumps

discontinuously from black-hole-like to Minkowski embeddings.
In figure 4.1c the inset is a close-up showing that 〈Om〉 executes a spiral when

approaching the critical solution, Rc(r). Such behaviour is familiar for probe branes,
and arises from a discrete scale invariance of near-critical solutions, producing
self-similarity [133, 47, 134, 1, 135, 136]. This discrete scale invariance explains why the
transition is first order: discrete scale invariance of near-critical solutions implies that
〈Om〉 executes a spiral and hence f is multi-valued near the critical solution, which
then guarantees that the transition is first order. We will not use the scaling symmetry
here, so we will just sketch the derivation of the scaling exponents and self-similarity,
leaving the details to refs. [133, 47, 134, 1, 135, 136]. The discrete scaling symmetry is
manifest when we linearise the equation of motion eq. (4.23) in R(r) about the critical
solution, Rc(r), which at small r gives

R(r) ≈ Rc(r) + B rν+ + B∗ rν− , (4.35)

with constant B and ν± = − 1
2 ± i

2

√
23. The near-critical solutions have the scaling

symmetry R(r)→ ζR(r) and r → ζr with real, positive ζ, under which B→ ζ1−ν+B.
Since we have linearised the equation of motion, the map from the r → 0 coefficients B
and B∗ to the r → ∞ coefficients M and C is linear, which implies

M−Mc ≈ κ1 ζ1−ν+ + κ∗1 ζ1−ν− , C− Cc ≈ κ2 ζ1−ν+ + κ∗2 ζ1−ν− , (4.36)

with constants κ1 and κ2. Inserting eq. (4.36) into eq. (4.18) we obtain a curve for 〈Om〉
as a function of m, parametrised by ζ. Re-writing

ζ1±ν± = e(1±Re ν±) ln ζ [cos (Im ν± ln ζ) + i sin (Im ν± ln ζ)] , (4.37)

then shows that if we approach the critical solution by sending ζ → 0, then 〈Om〉 as a
function of m will trace a spiral of decaying amplitude, with period 2π/Im ν±. In
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contrast, real-valued exponents ν± would lead to single-valued 〈Om〉 as a function of
m and hence a transition of second order or higher [135].

4.2.4 Phase Transition at Non-Zero Temperature

When T > 0 the field theory has two free parameters, m/(b
√

λ) and T/b. The
equation of motion for R(r) derived from eq. (4.16) when T/b > 0 and pφ = 0 is
cumbersome and unilluminating, so we will not write it here.

When T/b > 0 we know one exact solution for R(r), namely the trivial solution
R(r) = 0, which is a black hole embedding, intersecting the horizon at r = ρH. The
trivial solution describes m = 0 and 〈Om〉 = 0, but has non-zero free energy density
eq. (4.22),

f = −λN f Nc

16π4
π4

8
T4. (4.38)

Plugging this f into eqs. (4.19) and (4.20), we obtain the corresponding entropy
density, heat capacity density, and correction to the sound speed squared, respectively,

s =
λN f Nc

16π4
π4

2
T3, cV = 3 s, δv2 = 0. (4.39)

These results are the same as for hypermultiplets with m = 0 and b = 0. That is no
surprise: the solution R(r) = 0, and thus the Legendre-transformed action eq. (4.16)
evaluated on R(r) = 0, is independent of both m and b. As a result, for the trivial
solution all physical quantities are proportional to a power of T dictated by
dimensional analysis. Moreover, the sound speed squared v2 must take the value
required by (d + 1)-dimensional scale invariance, v2 = 1/

√
d, explaning why the

O
(

N f /Nc
)

correction vanishes, δv2 = 0.
We obtain solutions for R(r) describing non-zero m numerically as in chapter 3.

Figure 4.2 shows examples of our T/b > 0 numerical solutions for R(r)/(L2b), where
the dashed blue, solid orange, and dot-dashed black lines correspond to Minkowski,
black hole, and the critical embeddings, respectively. Similar to the T/b = 0 case of
section 4.2.3, Minkowski embeddings only exist for large enough m while black hole
embeddings only exist for small enough m, and both classes of embeddings exist for a
range of m near the critical embedding.

Among the black hole embeddings we find solutions whose boundary
conditions approach the exponential behaviour of eq. (4.24b) as T/b→ 0. Examples of
these appear in figure 4.2a for T/b = 0.05, as the three lowest solid orange lines,
corresponding to the three lowest values of m, or in figure 4.2b for T/b = 0.1 as the
lowest few solid orange lines. These solutions describe RG flows to the IR CFT with
non-zero temperature, i.e. massless hypermultiplets with T/b > 0. In other words,
some of the solutions with exponential boundary conditions at T/b = 0, which
describe RG flows to massless hypermultiplets, survive at sufficiently small non-zero
T/b. However, as T/b increases the horizon eventually “hides” any exponential



76 Chapter 4. A Weyl-Semi Metal with Flavour

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(A) Embeddings at T/b = 0.05
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FIGURE 4.2: Examples of our numerical solutions for R(r)/(L2b) as functions of
r/(L2b) when T/b > 0. In each plot, the solid black quarter-circle is the horizon ρH ,
given by ρ2

H = r2 + R2 = π2L4T2/2. The dashed blue, solid orange, and dot-dashed
black lines are Minkowski, black hole, and the critical embeddings, respectively, for

(a) T/b = 0.05, (b) T/b = 0.1, (c) T/b = 0.25, and (d) T/b = 0.5.

behaviour. In CFT terms, once T is sufficiently large compared to m, the IR CFT is
“washed out” in the plasma.

For a given solution R(r) we perform a numerical fit to the large-r asymptotics in
eq. (4.17), extract M and C, and plug these into eq. (4.18) to obtain 〈Om〉. We then
calculate f by performing the integral in eq. (4.22) numerically.

Figure 4.3 shows some of our numerical results for f , normalised by λN f Nc

16π4 , and

for 〈Om〉, normalised by λN f Nc

8π3 , both in units of b, as functions of m/(b
√

λ). Figure 4.3
has the same colour coding as figure 4.2, and the black dot denotes the critical
solution. Our results show clearly that the first-order transition we found at T/b = 0
persists to T/b > 0, with the same qualitative characteristics. In particular, for some
range of m/(b

√
λ) near the critical solution both f and 〈Om〉 are multi-valued, and the

insets in figure 4.3 are close-ups near the critical solution showing that f exhibits a
“fish tail” shape and 〈Om〉 exhibits a spiral shape, similar to the T/b = 0 case in
figure 4.1. Clearly, as we increase m/(b

√
λ) a transition from a black hole to a

Minkowski embedding occurs in which f is continuous but its first derivative
〈Om〉 = ∂ f /∂m is not. In figure 4.3 we denote the transition point with a vertical line.
The critical embedding is never thermodynamically preferred.
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(A) Free energy density at T/b = 0.1.
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(C) Free energy density at T/b = 0.5.
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(E) Free energy density at T/b = 1.
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(F) 〈Om〉 at T/b = 1.

FIGURE 4.3: Our numerical results for the free energy density f /(b4 λN f Nc

16π4 ) and for

〈Om〉/(b3 λN f Nc

8π3 ) as functions of m/(b
√

λ), for (a) and (b) T/b = 0.1, (c) and (d)
T/b = 0.5, and (e), and (f) T/b = 1. As in figs. 4.1 and 4.2, the solid orange and
dashed blue lines correspond to black hole and Minkowski embeddings, respectively,
and the black dots denote critical embeddings. The insets are close-ups near criti-
cal embeddings, showing f ’s “swallow tail” and 〈Om〉’s spiral, both characteristic of
first-order transitions. The vertical gray lines indicate the values of m/(b

√
λ) at the

first-order transitions.
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FIGURE 4.4: The phase diagram of our holographic model. The solid black line is the
critical temperature Tcrit, in units of b, where we find a first-order transition from black
hole to Minkowski embeddings, as a function of m/(b

√
λ). To the left of this line, black

hole embeddings are thermodynamically preferred, whereas to the right of this line,
Minkowski embeddings are thermodynamically preferred. In section 4.2.5 we show
the black hole embeddings are dual to WSM states, while Minkowski embeddings
are dual to trivially insulating states. The dashed gray line shows the b = 0 result
Tcrit ≈ 2.166 m/

√
λ of ref. [1], which our transition line approaches as m/(b

√
λ)→ ∞.

We find that the first-order transition persists to all T/b. Figure 4.4 is the phase
diagram of our model, showing our numerical result for the critical temperature of the
first-order transition, Tcrit, in units of b, as a function of m/(b

√
λ). As we found in

section 4.2.3, at T/b = 0 the transition occurs at m/(b
√

λ) ≈ 0.0733, and as m/(b
√

λ)

increases, Tcrit/b increases. As both m and Tcrit grow, we expect the influence of b to
fade, and the first-order transition to approach that at b = 0 [47, 1]. Figure 4.4 confirms
that expectation: the dashed grey line denotes the b = 0 transition at
Tcrit/(m/

√
λ) ≈ 2.166 [1]5, which our Tcrit indeed approaches as m→ ∞.

To calculate the entropy density, s we have to differentiate the free energy (4.78)
with respect to temperature. It is easiest to do this in steps. First, we have the
contribution coming from the endpoints of integration, and second from the integrand
itself. The upper bound for both the Minkowski and black hole embeddings has no
temperature dependence, nor does the lower bound for the Minkowski solution. This
leaves the contribution from the lower bound for the black hole embedding,
r0 = πL2√

2
T sin θ,

sr0 = −
λNcN f

16π4L8

[
r3

0g(ρ0)h(ρ0)

√
1 +

L4b2R2

ρ4
0h(ρ0)

√
1 + R′2

]
. (4.40)

As g(ρ0)h(ρ0) = 0 this contribution is zero, sr0 = 0. As a result, only the contribution
from the integrand itself contributes:

5The definition of the ’t Hooft coupling λ in ref. [1] is smaller than ours by a factor of 2.
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(A) Entropy density
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(B) Heat capacity density
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(C) Correction to the sound speed squared, δv2

FIGURE 4.5: (a) Our numerical results for the entropy density, s, normalised by its m =

0 value in eq. (4.39), λN f NcT3/32, as a function of m/(b
√

λ), for T/b = 0.05 (solid
black), 0.1 (solid blue), 0.25 (solid orange), and 0.5 (solid pink). (b) Our numerical
results for the heat capacity density, cV , normalised by its m = 0 value in eq. (4.39),
3λN f NcT3/32, as a function of m/(b

√
λ), for the same values of T/b as in (a). (c) Our

numerical results for the O
(

N f /Nc

)
correction to the sound speed squared, δv2 in

eq. (4.21), as a function of m/(b
√

λ), for the same values of T/b as in (a) and (b). In
each case the dashed vertical lines denote a first-order phase transition.

s = − λNcN f

16π4L8

[∫ rc

r0

dr
∂

∂T

(
r3g(ρ)h(ρ)

√
1 +

L4b2R2

ρ4h(ρ)

√
1 + R′2

)]
. (4.41)

All three of ρH, R and R′ have T dependence. We can therefore split the differentiation
into two parts, one where we vary ρH while holding R, R′ constant, and another where
we vary R, R′ while holding ρH constant. The former contribution is

si = −
λNcN f

16π4L8

[∫ rc

r0

dr r3
√

1 + R′2
∂

∂T

(
g(ρ)h(ρ)

√
1 +

L4b2R2

ρ4h(ρ)

)∣∣∣∣
R,R′

]
, (4.42)

where the differentiation can be explicitly performed. The latter contribution is

sii = −
λNcN f

16π4L8

[∫ rc

r0

dr
∂

∂T

(
r3
√

1 + R′2g(ρ)h(ρ)

√
1 +

L4b2R2

ρ4h(ρ)

)∣∣∣∣
ρ0

]
. (4.43)
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Following ref. [1] this term can be simplified by noticing that the differentiation with
temperature can be viewed as a variation δR. Given that the entropy is evaluated
on-shell this means we only have to calculate a boundary term,

sii = −
λNcN f

16π4L8
r3

√
1 + R′2

g(ρ)h(ρ)

√
1 +

L4b2R2

ρ4h(ρ)
R′

∂R
∂T

∣∣∣∣rc

r0

, (4.44)

where we have three cases to consider. First is the case where the lower bound is
r0 = 0, i.e the Minkowksi embedding. We then have the boundary condition
R(0) = R0 where R0 is a constant, hence R′ = 0 and the contribution to the entropy
density is zero. Next we consider the lower bound for the black hole embeddings,
where r0 = πL2√

2
T sin θ. However, as above this implies g(ρ0)h(ρ0) = 0, so the

contribution to the entropy density is zero. Finally we have the upper bound rc. As
this is at the asymptotically AdS5 boundary we can use the embedding’s asymptotic
expansion in eq. (4.17),

R = L2M
(

1− L4b2 log(r/L)
2r2

)
+

L6C
r2 + . . . . (4.45)

This term has no temperature dependence and so ∂R
∂T = 0, and again the contribution

to the entropy density is zero. Ultimately, then, the total entropy density is given by
eq. (4.42),

s = − λNcN f

16π4L8

[∫ rc

r0

dr r3
√

1 + R′2
∂

∂T

(
g(ρ)h(ρ)

√
1 +

L4b2R2

ρ4h(ρ)

)∣∣∣∣
R,R′

]
, (4.46)

From s we then compute heat capacity density cV numerically using finite
differences, and from s and cV we compute the O

(
N f /Nc

)
correction to the sound

speed squared, δv2 via eq. (4.21). Figure 4.5 shows some of our numerical results for s,
cV , and δv2 as functions of m/(b

√
λ) for several values of T/b. Both s and cV take

forms characteristic of a first-order transition, for example cV grows rapidly when
approaching the transition.

Exceptional behaviour appears in s, which at low T/b exhibits a dramatic
increase as m/(b

√
λ) approaches the transition from below: see figure 4.5a with

T/b = 0.05 (solid black) and 0.1 (solid blue). These results arise from solutions with
exponential behaviour at low T/b, namely those we discussed in figures 4.2a and 4.2b.
In CFT terms these are cases where the IR is the massless hypermultiplet CFT.
Recalling that s counts thermodynamic degrees of freedom, the rise in s at T/b = 0.05
or 0.1 presumably comes from these additional massless degrees of freedom. More
generally, such increases or spikes in s may serve as signals of emergent massless
degrees of freedom.

Figure 4.5c shows that in the conformal limits m/(b
√

λ)→ 0 or→ ∞ we find
δv2 → 0, as expected. In most cases, for m/(b

√
λ) near the transition δv2 spikes down



4.2. Holographic Weyl-Semi Metal from probe D3/D7 81

to negative values. However, for some T/b, near the transition δv2 becomes positive:
in figure 4.5c see T/b = 0.1 (solid blue) and 0.25 (solid orange). In those cases the
sound speed squared in eq. (4.20) is greater than the conformal value, v2 > 1/3, thus
violating the bound conjectured for v2 in ref. [137]. The significance of such behaviour,
if any, we leave for future research.

4.2.5 Conductivity

In this section we compute our system’s U(1)V DC longitudinal and Hall
conductivities, σxx and σxy, respectively. To do so, we use the method of
refs. [128, 129], wherein we introduce a non-dynamical, constant U(1)V electric field in
the x direction, E, compute the resulting expectation values of U(1)V currents, 〈Jx〉
and 〈Jy〉, and from these extract σxx and σxy.

As before, we parameterize the D7-branes’ worldvolume coordinates as
ξa = (t, x, y, z, r) plus the S3 coordinates. Our ansatz for the worldvolume fields again
includes R(r) and φ(z, r) = bz + Φ(r). As mentioned in section 4.2.1, the U(1)V

current is dual to the D7-brane’s U(1) worldvolume gauge field, so now our ansatz
also includes two gauge field components. The first is Ax = Et + ax(r), where the first
term introduces the electric field E in the x direction, while the second term, ax(r),
allows for a non-zero 〈Jx〉. We use rotational symmetry in the xy-plane to set E > 0.
Second is Ay(r), which allows for a non-zero 〈Jy〉. The D7-brane action (4.7) evaluated
on this ansatz is

SD7 = −N
∫

dr

(√
w1(r)

(
h + hR′2 + A′2y

)
+ w2(r)φ′2 + w3(r)A′2x − w4(r)A′y

)
,

(4.47a)

w1 ≡ r6

(
h +

L4b2R2

(r2 + R2)2

)(
g2 − L4E2

(r2 + R2)2

)
, (4.47b)

w2 ≡ r6h2R2

(
g2 − L4E2

(r2 + R2)2

)
, (4.47c)

w3 ≡ r6g2

(
h +

L4b2R2

(r2 + R2)2

)
, (4.47d)

w4 ≡
L4r4

(r2 + R2)2 b E, (4.47e)

where R′ ≡ ∂R/∂r, and similarly for the other fields. The action in eq. (4.47a) depends
on φ′, A′x, and A′y and not on φ, Ax, or Ay. As a result, the equations of motion imply
that the corresponding canonical momenta are independent of r. To be explicit, the
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canonical momenta conjugate to φ, Ax, and Ay are, respectively,

Pφ ≡
δSD7

δφ′
= −N w3φ′√

w1(r)
(

h + hR′2 + A′2y
)
+ w2(r)φ′2 + w3(r)A′2x

, (4.48a)

Px ≡
δSD7

δA′x
= −N w2A′x√

w1(r)
(

h + hR′2 + A′2y
)
+ w2(r)φ′2 + w3(r)A′2x

, (4.48b)

Py ≡
δSD7

δA′y
= −N

w1A′y√
w1(r)

(
h + hR′2 + A′2y

)
+ w2(r)φ′2 + w3(r)A′2x

+Nw4, (4.48c)

and the corresponding Euler-Lagrange equations are, respectively, ∂rPφ = 0, ∂rPx = 0,
and ∂rPy = 0. We therefore write the canonical momenta as Pφ = N pφ, Px = N jx and
Py = N jy with constants pφ, jx and jy. In the appendix for this section we show that
these constants determine the one-point functions of the dual operators: we again
have 〈Oφ〉 = N pφ, while

〈Jx〉 = −
(
2πα′

)
N jx, 〈Jy〉 = −

(
2πα′

)
N jy. (4.49)

To obtain an action for R(r) alone, we use a similar strategy to that in
section 4.2.1, eliminating φ, Ax, and Ay in favour of Pφ, Px, and Py by a Legendre
transform. To be explicit, we insert Pφ = N pφ, Px = N jx and Py = N jy into eq. (4.48),
solve for φ′, A′x, and A′y, plug these solutions into the action eq. (4.47a), and then
Legendre transform with respect to φ, Ax, and Ay. The result is

S̃D7 ≡ SD7 −
∫

dr
(

φ′Pφ + A′xPx + A′yPy

)
= −N

∫
dr
√

h
√

1 + R′2
√

w1(r)−
w1(r)
w2(r)

p2
φ −

w1(r)
w3(r)

j2x −
[
jy − w4(r)

]2, (4.50)

Similar to S̃D7 in eq. (4.16) , the integrand of S̃D7 in eq. (4.50) includes a product
of three square roots. The first two of these,

√
h and

√
1 + R′2, are manifestly real for

all r. However the third square root is not necessarily real for all r. To see why in
detail, we re-write the factors under the third square root,

S̃D7 = −N
∫

dr
√

h
√

1 + R′2
√

α(r)β(r)− γ(r), (4.51a)
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α(r) ≡ g2 − L4E2

(r2 + R2)2 , (4.51b)

β(r) ≡ r6

(
h +

L4b2R2

(r2 + R2)2

)
− j2x

g2 , (4.51c)

γ(r) ≡
p2

φ

h2

(
h

R2 +
L4b2

(r2 + R2)2

)
+

(
jy −

L4r4bE

(r2 + R2)2

)2

. (4.51d)

Clearly γ(r) ≥ 0 for all r. However, α(r) and β(r) can change sign. For example, if
T > 0 then each of α(r) and β(r) is positive at the AdS5 boundary, r → ∞, and
negative at the horizon, where g = 0. Each must therefore change sign at some r in
between. If one of α(r) or β(r) changes sign and the other does not, then
α(r)β(r)− γ(r) < 0 for some range of r (until the other also changes sign). In that
case, S̃D7 acquires a non-zero imaginary part, signaling a tachyonic instability, as
mentioned in section 4.2.1. The method of refs. [128, 129] is to adjust pφ, jx, and jy such
that α(r) and β(r) change sign at the same value of r, such that α(r)β(r)− γ(r) ≥ 0 for
all r, thus avoiding the instability. With 〈Jx〉 = −(2πα′)jx and 〈Jy〉 = −(2πα′)jy thus
fixed, we extract the DC conductivities via

σxx = lim
E→0

(2πα′)〈Jx〉/E, σxy = −σyx = − lim
E→0

(2πα′)〈Jy〉/E, (4.52)

where the factors of (2πα′) come from our normalisation of the D7-brane’s
worldvolume gauge field, described below eq. (4.7).

We will thus impose the conditions α(r∗) = 0, β(r∗) = 0, and γ(r∗) = 0 at some
r∗. The location r∗ is in fact a horizon of the open string metric on the D7-brane
worldvolume [138, 139]. This horizon has an associated Hawking temperature,6 in
general larger than the background AdS5 black hole’s Hawking temperature T. The
difference in temperatures signals that these solutions do not describe thermal
equilibrium states, since heat will flow from the D7-brane to the background black
hole. In fact, stationary solutions with E > 0 describe non-equilibrium steady states.
For a review of their physics, see refs. [138, 139] and references therein. We will
ultimately take E→ 0, as in eq. (4.52), so we only use the E > 0 solutions in
intermediate steps. However, the effect of b > 0 on solutions with E > 0 is worth
studying in future research, as we discuss in section 4.3.

Not all D7-brane embeddings have a worldvolume horizon when E > 0. In
particular, in some Minkowski embeddings the D7-brane ends before either α(r) or
β(r) changes sign. Whether a worldvolume horizon appears thus depends on the
boundary conditions, which in turn depend on T. We consider T = 0 first, in
section 4.2.6, and then T > 0 in section 4.2.7.

6Whether any entropy can be associated with this horizon is an open question [140, 141, 138, 139].
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4.2.6 Conductivity at Zero Temperature

If T = 0 then g = 1 and h = 1. We first consider D7-brane embeddings with a
worldvolume horizon at some r∗, the value of which is fixed by α(r∗) = 0. With the
notation R∗ ≡ R(r∗) we have from eq. (4.51b)

1− L4E2

(r2∗ + R2∗)
2 = 0 ⇒ r2

∗ + R2
∗ = L2E. (4.53)

In the (r, R) plane the worldvolume horizon is thus a circle of radius L
√

E. The
conditions β(r∗) = 0 and γ(r∗) = 0 then give, respectively,

r6
∗

(
1 +

L4b2R2
∗

(r2∗ + R2∗)
2

)
− j2x = 0, (4.54a)

p2
φ

(
1

R2∗
+

L4b2

(r2∗ + R2∗)
2

)
+

(
jy −

L4r4
∗bE

(r2∗ + R2∗)
2

)2

= 0, (4.54b)

In eq. (4.54b) the left-hand side is a sum of squares, which vanishes if and only if each
term in the sum vanishes independently. The first term vanishes only if pφ = 0, which
implies 〈Oφ〉 = 0. We thus take pφ = 0 henceforth. In that case eqs. (4.54a) and (4.54b)
determine jx and jy, and thus 〈Jx〉 and 〈Jy〉 via eq. (4.49), giving

〈Jx〉 = (2πα′) r3
∗

√
1 +

L4b2R2∗
(r2∗ + R2∗)

2 , (4.55a)

〈Jy〉 = −(2πα′) L4 b E
r4
∗

(r2∗ + R2∗)
2 . (4.55b)

We now need r∗ and R∗, at least in the limit E→ 0. If E = 0 then clearly eq. (4.53)
implies r∗ = 0 and R∗ = 0, or in other words R0 ≡ R(r = 0) = 0. We thus learn that
when E→ 0 the solutions with worldvolume horizon reduce to the black-hole like
embeddings with the exponential boundary condition in eq. (4.24b). As discussed in
section 4.2.3, these embeddings describe RG flows to an IR CFT, the massless probe
hypermultiplet CFT.

To determine r∗ and R∗ at small E we expand R(r) = R(0)(r) + R(1)(r) + . . .,
where R(0)(r) is the solution at E = 0, R(1)(r) is the first correction at small non-zero E,
and so on. All we will need to know about the terms in this expansion is that R(0)

obeys the boundary condition of eq. (4.24b), and in particular R(0)(r) ∝ exp
(
−L2b/r

)
at small r. At leading order in small E, eq. (4.54a) becomes

r2
∗ + R(0)(r∗)2 ≈ L2E. (4.56)

When E→ 0 we have r∗ → 0, but R(0)(r∗) ∝ exp
(
−L2b/r∗

)
→ 0 more quickly, so to

leading approximation eq. (4.56) gives r∗ ≈ L
√

E and R(0)(r∗) ≈ 0, and hence R∗ ≈ 0.
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Plugging these into eq. (4.55) gives

〈Jx〉 = (2πα′) L3 E3/2 (4.57a)

〈Jy〉 = −(2πα′) L4 b E. (4.57b)

Given that our IR is a CFT, the powers of E in eq. (4.57) are dictated by dimensional
analysis and the fact that 〈Jy〉must be proportional to the T -breaking parameter b.
Plugging eq. (4.57) into eq. (4.52) we obtain

σxx = 0, σxy =
N f Nc

4π2 b. (4.58)

We thus find that the black-hole like embeddings with the exponential boundary
condition in eq. (4.24b) describe RG flows from small values of m/(b

√
λ) in the UV to

massless hypermultiplets in the IR, with vanishing DC longitudinal conductivity,
σxx = 0, and an anomalous Hall conductivity, σxy 6= 0. The latter indicates that T is
broken in the IR.

Remarkably, our σxy in eq. (4.58) is independent of the hypermultiplet mass m. In
fact, it takes the value determined by the U(1)A anomaly when m = 0, but now
extended to cases with small m/(b

√
λ), described by our black-hole like embeddings.

In contrast, σxy of the free Dirac fermion in eq. (4.6) and of previous holographic
models [14, 15, 102, 103, 104, 105] depended on m, and in particular decreased as m
increased, reaching σxy = 0 at a quantum critical point. The reason for this difference
is clear from a holographic perspective. In previous holographic models, σxy was
proportional to the product of the Chern-Simons coefficient and the value of the
U(1)A gauge field at the horizon. Our result in eq. (4.58) has the same form, but in our
case the U(1)A gauge field is ∂µφ/2, as mentioned below eq. (4.9). Our ansatz is
φ(z, r) = bz + Φ(r), and our solution includes pφ = 0, which implies φ(z, r) is actually
independent of r and hence Φ(r) = 0. As a result, our U(1)A gauge field is simply
A5

z = ∂zφ/2 = b/2, leading to our m-independent result for σxy in eq. (4.58). Crucially,
this m-independence is not required by any symmetry, and is not determined by the
U(1)A anomaly alone, but comes from dynamics, and specifically from the fact that
we had to take pφ = 0 to avoid a tachyonic instability, as explained above.

We now consider the case where the D7-brane has no worldvolume horizon.
These embeddings are necessarily Minkowski, and in particular the D7-brane should
reach r = 0 outside of the worldvolume horizon described by the semicircle in
eq. (4.53). Indeed, demanding α(r) ≥ 0 for all r gives r2 + R(r)2 ≥ L2E for all r.
Evaluating this at r = 0 gives R0 > L

√
E. Similarly we demand β(r) ≥ 0 for all r.

Evaluating this at r = 0 gives β(0) = −j2x ≥ 0, which implies jx = 0, so that in fact
β(0) = 0. Finally we demand α(r)β(r)− γ(r) ≥ 0 for all r. Evaluating this at r = 0
gives −γ(0) ≥ 0, where

γ(0) =
p2

φ

R2
0

(
1 +

L4b2

R2
0

)
+ j2y. (4.59)
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Clearly −γ(0) ≥ 0 is possible if and only if pφ = 0 and jy = 0, so that in fact γ(0) = 0.
We thus find that Minkowski embeddings with R0 ≥ L

√
E have pφ = 0, jx = 0, and

jy = 0, implying 〈Oφ〉 = 0, 〈Jx〉 = 0, and 〈Jy〉 = 0, respectively. As a result, σxx = 0
and σxy = 0, so that these embeddings describe trivially insulating states.

If we now take E→ 0, then R0 ≥ L
√

E becomes simply R0 ≥ 0. The E→ 0 limit
of embeddings with no worldvolume horizon thus correspond to the Minkowski
embeddings with the r → 0 boundary condition in eq. (4.24a), describing large values
of m/(b

√
λ). We have therefore learned that the large m/(b

√
λ) phase exhibits no

current flow in response to an applied electric field, as both the longitudinal and Hall
conductivities vanish, σxx = 0 and σxy = 0, respectively. The latter indicates that T is
preserved in the IR.

To summarise, when T = 0 and E = 0 we find that 〈Oφ〉 = 0 and σxx = 0 for all
m/(b

√
λ), while σxy takes the non-zero value in eq. (4.58) at small m/(b

√
λ), dual to

black-hole-like embeddings, but vanishes at large m/(b
√

λ), dual to Minkowski
embeddings. In section 4.2.3 we found a first-order transition from black hole-like
embeddings to Minkowski embeddings at m/(b

√
λ) ≈ 0.0733, so the Hall

conductivity in our model is

σxy =


N f Nc

4π2 b, m/(b
√

λ) . 0.0733,

0, m/(b
√

λ) & 0.0733,

(4.60)

and correspondingly in the IR T is broken when σxy 6= 0 and is preserved when
σxy = 0. Remarkably, σxy when m/(b

√
λ) . 0.0733 is independent of m, in contrast to

the free Dirac fermion in eq. (4.6) and previous holographic
models [14, 15, 102, 103, 104, 105]. This σxy is precisely the value dictated by the U(1)A

anomaly when m = 0, but now extended to m/(b
√

λ) . 0.0733. We thus identify the
m/(b

√
λ) . 0.0733 phase as a WSM and the m/(b

√
λ) & 0.0733 phase as a trivial

insulator, as indicated in our phase diagram, figure 4.4.

4.2.7 Conductivity at Non-Zero Temperature

At T > 0 we first consider embeddings with a worldvolume horizon at r∗, determined
by α(r∗) = 0. Denoting the values of R and g at r∗ as R∗ and g∗, respectively, and
using the definition of α(r) in eq. (4.51b) and g in eq. (4.11), we find

g2
∗ −

L4 E2

(r2∗ + R2∗)
2 = 0, ⇒ r2

∗ + R2
∗ = L2 E/2 +

√
L4 E2/4 + ρ4

H. (4.61)

In the (r, R) plane the worldvolume horizon is thus again a semicircle, which at E = 0
coincides with the AdS5-Schwarzschild horizon ρH, and as E grows, monotonically
moves to larger r. In particular, r2

∗ + R2
∗ ≥ ρ2

H for all r, i.e. the worldvolume horizon is
always coincident with or outside the AdS5-Schwarzschild horizon. In general, when
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T > 0 and E > 0, embeddings with a worldvolume horizon fall into two categories.
The first are black hole embeddings. The second are Minkowski embeddings in which
the D7-brane has a worldvolume horizon but ends before reaching the black hole
horizon.

Denoting the value of h at r∗ as h∗, β(r∗) = 0 and γ(r∗) = 0 give, respectively,

r6
∗

(
h∗ +

L4b2R2
∗

(r2∗ + R2∗)
2

)
− j2x

g2∗
= 0, (4.62a)

p2
φ

h2∗

(
h∗
R2∗

+
L4b2

(r2∗ + R2∗)
2

)
+

(
jy −

L4r4
∗ b E

(r2∗ + R2∗)
2

)2

= 0. (4.62b)

Similar to the T = 0 case, in eq. (4.62b) the left-hand side is a sum of squares, which
vanishes if and only if each term in the sum vanishes independently. The first term
vanishes only if pφ = 0, so we take pφ = 0 henceforth, and thus 〈Oφ〉 = 0. In that case
eqs. (4.62a) and (4.62b) determine jx and jy, and thus 〈Jx〉 and 〈Jy〉,

〈Jx〉 = (2πα′) r3
∗

L2E
r2∗ + R2∗

√
h∗ +

L4b2R2∗
(r2∗ + R2∗)

2 , (4.63a)

〈Jy〉 = −(2πα′) L4 b E
r4
∗

(r2∗ + R2∗)
2 . (4.63b)

We are interested in the limit E→ 0. As mentioned above, when E = 0 the
worldvolume horizon coincides with the black hole horizon, or in other words, only
black hole embeddings have a worldvolume horizon, which is at rH. When E→ 0 we
thus have r∗ → rH and r2

∗ + R2
∗ → r2

H + R(rH)
2 = ρ2

H. Expanding 〈Jx〉 and 〈Jy〉 in
eq. (4.63) in E, and using ρH = πL2T/

√
2, we thus find

〈Jx〉 = (2πα′) r3
H

4E
π4L4T4

√
1
2

π4L4T4 + b2 R(rH)2 +O(E2), (4.64a)

〈Jy〉 = −(2πα′) L4 b E
4r4

H
π4L8T4 +O(E2). (4.64b)

Using eq. (4.52) we then find

σxx =
N f Nc

4π2 r3
H

4
π4L8T4

√
1
2

π4L4T4 + b2R(rH)2, (4.65a)

σxy =
N f Nc

4π2 b
4 r4

H
π4L8T4 . (4.65b)

In general, we must determine σxx and σxy as functions of m/(b
√

λ) numerically. In
particular, as explained at the beginning of section 4.2.4, for black hole embeddings we

choose rH, which determines R(rH) =
√

ρ2
H − r2

H, and impose R′(rH) = 0, numerically
solve the equation of motion, and then from the large-r asymptotics we extract
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m/(b
√

λ).
However, we know one black hole embedding exactly, namely the trivial

solution R(r) = 0, corresponding to m = 0. The trivial solution has rH = ρH, so from
eq. (4.65) we find

σxx =
N f Nc

4π2 πT, σxy =
N f Nc

4π2 b, m = 0. (4.66)

Clearly when m = 0 all b dependence disappears from σxx, which takes the b = 0 and
m = 0 value of ref. [128], and all T dependence disappears from σxy, which takes the
value we found in eq. (4.58) at T = 0 and small m/(b

√
λ).

We now consider the case where the D7-brane has no worldvolume horizon. Our
arguments here are very similar to the T = 0 case, so we will be brief. These
embeddings are necessarily Minkowski, with the D7-brane ending at r = 0 outside of
the worldvolume horizon in eq. (4.61). We demand α(r) ≥ 0 and β(r) ≥ 0 for all
r ∈ [0, ∞). The condition β(0) ≥ 0 is satisfied if and only if jx = 0, so that in fact
β(0) = 0. We also demand α(r)β(r)− γ(r) ≥ 0 for all r ∈ [0, ∞), which when
evaluated at r = 0 becomes −γ(0) ≥ 0, which is satisfied if and only if pφ = 0 and
jy = 0. As a result, embeddings without a worldvolume horizon describe states with
〈Oφ〉 = 0, 〈Jx〉 = 0, and 〈Jy〉 = 0, and hence σxx = 0 and σxy = 0, i.e. trivially
insulating states.

Figure 4.6 shows some of our numerical results for σxx and σxy, normalised by
their m = 0 values in eq. (4.66). Figures 4.6a and 4.6b show σxx/(N f NcT/4π) and
σxy/(N f Nc/(4π2)) as functions of m/(b

√
λ), for sample values of T/b. In both figures

the vertical dashed lines indicate the first order phase transition of figure 4.4. For
small T/b, such as for example T/b = 0.1 (blue in figure 4.6a), as we increase
m/(b

√
λ) we find σxx exhibits a maximum just below the transition. Such behaviour

likely indicates a pole in Jx’s retarded two-point function in Fourier space near the
origin of the complex frequency plane, and may be related to the IR CFT, similar to
what we discussed for the entropy density in figure 4.5. At larger T/b however, σxx

decreases monotonically, reaching σxx = 0 at the transition. In contrast, for all T/b > 0
we find σxy decreases monotonically as m/(b

√
λ) increases, reaching σxy = 0 at the

transition. For m/(b
√

λ) above the transition, σxx = 0 and σxy = 0.
Figures 4.6c and 4.6d show 3D plots of σxx and σxy, normalised by their m = 0

values in eq. (4.66), as functions of m/(b
√

λ) and T/b. These plots summarise all of
our main results. For example, the phase diagram of figure 4.4 is apparent in the plane
of m/(b

√
λ) and T/b, the step-function in σxy of eq. (4.60) is obvious in figure 4.6d at

T = 0, and so on. Figure 4.6c also shows a spike in σxx at low T/b and m/(b
√

λ) near
the transition, consistent with the maximum in figure 4.6a. As mentioned above, this
spike likely comes from a pole in Jx’s retarded two-point function near the origin of
the complex frequency plane.
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(A) Longitudinal conductivity σxx.
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(B) Hall conductivity σxy.

(C) Longitudinal conductivity σxx. (D) Hall conductivity σxy.

FIGURE 4.6: Our numerical results for (a) the DC longitudinal conductivity,
σxx/(N f NcT/4π), and (b) the DC Hall conductivity, σxy/(N f Nc/(4π2)), as functions
of m/(b

√
λ), for T/b = 0.05 (black) 0.1 (blue), 0.25 (orange), and 0.5 (purple). In each

case the vertical dashed line indicates the first order phase transition of figure 4.4. As
m/(b

√
λ) approaches the transition from below, σxy decreases monotonically for all

T/b, reaching σxy = 0 at the transition. In contrast, σxx decreases monotonically for
larger T/b, but exhibits a maximum near the transition at small T/b. For m/(b

√
λ)

above the transition, σxx = 0 and σxy = 0. (c) and (d) 3D plots of our numerical results
for σxx/(N f NcT/4π) and σxy/(N f Ncb/(4π2)), respectively, as functions of m/(b

√
λ)

and T/b.

4.3 Discussion

In this section we studied a top-down holographic model of a WSM, namely probe
D7-branes in the AdS5 × S5 background of type IIB supergravity, dual to probe
hypermultiplets in N = 4 SYM at large Nc and large coupling λ, with worldvolume
fields describing non-zero hypermultiplet mass m and background spatial U(1)A

gauge field b. The latter explicitly breaks time reversal symmetry, T .
At zero temperature, T = 0, we found that sufficiently small values of m/(b

√
λ)

in the UV renormalise to zero mass in the IR, so that the IR is a CFT, namely N = 4
SYM coupled to massless probe hypermultiplets. As we increased m/(b

√
λ) we found

a first-order quantum phase transition, at m/(b
√

λ) ≈ 0.0733. When
m/(b

√
λ) . 0.0733, we found a WSM with σxx = 0 but non-zero anomalous Hall

conductivity σxy, and hence broken T in the IR. Remarkably, this σxy at T = 0 was
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independent of m/(b
√

λ), retaining its m = 0 value, determined by the U(1)A

anomaly, for all m/(b
√

λ) . 0.0733. When m/(b
√

λ) & 0.0733 we found a trivial
insulator with σxx = 0 and σxy = 0, and hence restored T in the IR. The first order
transition survived for all T/b > 0, as summarised in our phase diagram, figure 4.4.
The biggest effect of T/b > 0 was the fact that both σxx and σxy acquired non-trivial
dependence on m/(b

√
λ) and T/b in the WSM phase, though both still vanished in

the trivial insulator phase, as summarised in figure 4.6. We also studied our model’s
thermodynamics, finding among other things a rise in the entropy density at low T/b
for m/(b

√
λ) just below the transition, presumably coming from the emergent IR CFT

degrees of freedom.
Our model had several non-trivial features distinct from previous models, such

as the free Dirac fermion model and previous holographic models that we discussed
in the introduction. Chief among these differences was our first order transition for all
T/b, including T/b = 0, in contrast to the second-order (quantum) phase transitions
of most previous models, as well as the fact that our T = 0 anomalous Hall
conductivity was independent of m.

These results raise many crucial questions for future research on this model. For
example, what is the spectrum of excitations of our model? In particular, how do the
retarded Green’s functions in the probe sector depend on m/(b

√
λ) and T/b? Where

are their poles, representing the excitations of the system? How do the corresponding
spectral functions behave? How does the IR CFT affect these? Does a pole in the
retarded two-point function of the U(1)V current produce the maximum we saw in
σxx at sufficiently small m/(b

√
λ) and T/b in figure 4.6? More generally, the spectrum

of excitations could reveal whether our model has perturbative instabilities, long-lived
propagating modes, the expected Fermi surfaces and associated topological
invariants, and more.

Particularly important excitations characterising the WSM phase are of course
Fermi arcs. Does our model support Fermi arcs? These may be “washed out” at strong
coupling, nevertheless boundary currents required by the U(1)A anomaly, and hence
topologically protected, should still appear [106]. Does our model support such
boundary currents?

Holographic models also revealed an anomalous Hall viscosity in WSMs [107].
Does our model support an anomalous Hall viscosity? From the holographic
perspective this phenomenon arises from a mixed U(1)A-gravitational Chern-Simons
term [107]. The D7-brane WZ terms indeed includes a term of the correct form [142],
which however comes with an additional factor of α′2 = L4/λ compared to the WZ
term we included in eq. (4.7), and hence is suppressed when λ� 1. We therefore
expect that our model indeed exhibits anomalous Hall viscosities, albeit vanishing as
1/λ at strong coupling.

Holographic probe brane models exhibit several special phenomena, especially
in transport. For example, in our model a non-zero electric field, E > 0, can induce
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negative differential conductivity, in which the longitudinal conductivity σxx is a
decreasing function of the electric field [143]. In contrast, in typical metals an increasing
electric field produces a larger current. For a WSM in parallel electric and magnetic
fields, the U(1)A anomaly can induce negative magneto-resistance, in which σxx is an
increasing function of the magnetic field, in contrast to typical metals [144].
Remarkably, our model exhibits negative magneto-resistance already when
b = 0 [145, 146]. How does non-zero b affect these phenomena? Could this model
suggest any unusual transport in real strongly-coupled WSMs?

More generally, this work opens the way for top-down holographic probe brane
models of many semi-metal phenomena, such as type II WSMs, nodal line
semi-metals, nodal loop semi-metals, and more.
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4.A Holographic Renormalisation

On-shell Action

For the purposes of holographic renormalization, it will be convenient to replace r and
R with new coordinates u = L2/

√
r2 + R2 and θ = arctan(R/r). The inverse

transformation is r = L2u−1 cos θ, R = L2u−1 sin θ. It will also be convenient to use
units in which the AdS radius is L ≡ 1, restoring factors of L by dimensional analysis
at the end. In these coordinates, the asymptotically AdS5 × S5 black brane background
in eq. (4.11) becomes

ds2 =
1
u2

[
− g2(u)

h(u)
dt2 + h(u)d~x2 + du2

]
+ dθ2 + sin2 θ dφ2 + cos2 θ ds2

S3

C4 =
1
u4 h2(u)dt ∧ dx ∧ dy ∧ dz− cos4 θ dφ ∧ dsS3 , (4.67)

where in a slight abuse of notation we have defined g(u) ≡ 1− ρ4
0u4 and

h(u) ≡ 1 + ρ4
0u4. The boundary is at u = 0, while the horizon of the black brane is at

u = 1/ρ0.
In this coordinate system, our ansatz for the D7-brane embedding becomes

θ = θ(u), φ = bz + Φ(u). (4.68)

From the near-boundary expansion of R(r) in eq. (4.17) we can find the near-boundary
expansion of θ(u),

θ(u) = M
(

u +
b2

2
u3 log u

)
+

(
C +

M3

6

)
u3 + . . . . (4.69)

Solving eq. (4.14) for φ′ in terms of pφ = Pφ/N and R, replacing (r, R) with (u, θ), and
using θ(u)’s near-boundary expansion in eq. (4.69), we also find φ’s near-boundary
expansion,

φ = bz− pφ

2
u2 + . . . . (4.70)

The D7-brane action evaluated on the ansatz in eq. (4.68) is

SD7 = −N
∫

du
cos3 θ

u5 g(u)h(u)

√(
1 +

b2u2 sin2 θ

h(u)

)
(1 + u2θ′2) + u2 sin2 θ φ′2. (4.71)

If we plug in the near-boundary expansions in eqs. (4.69) and (4.70), then we find that
the integrand diverges near u = 0. We regularize this divergence by introducing a
small-u cutoff at u = ε. We then find that the on-shell action is

S?
D7 = N

[
− 1

4ε4 +
M2

2ε2 + b2M2 log ε +O(ε0)

]
, (4.72)

where the O(ε0) term cannot be determined from the near-boundary analysis.
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To have a well-defined variational principle we need to remove the small-ε
divergences in eq. (4.72) by the addition of counterterms to the action. The full
D7-brane action is then S = SD7 + Sct where the counterterms are given by
Sct = ∑i Sct,i with [147, 148, 122, 149]

Sct,1 = N 1
4
√−γ, Sct,2 = −N 1

2
√−γ|Θ|2, Sct,3 = N 5

12
√−γ|Θ|4,

Sct,4 = N 1
2
√−γΘ∗�γΘ log |Θ|, Sct,5 = N 1

4
√−γΘ∗�γΘ. (4.73)

where Θ ≡ θeiφ, γµν = ε−2ηµν is the induced metric on the intersection of the brane
with the cutoff surface at u = ε, and �γΘ = 1√−γ

∂µ (
√−γ γµν∂νΘ) . Evaluating these

counterterms using the small-u expansions in eqs. (4.69) and (4.70), we find

Sct = N
[

1
4ε4 −

M2

2ε2 − b2M2 log ε−MC +
M2

4
(

M2 − b2)− 1
2

b2M2 log M
]

, (4.74)

where we have suppressed terms that vanish when ε→ 0. The counterterms cancel
the divergences in the bulk action eq. (4.72), as expected, and also provide a finite
contribution to the action.

The contribution of the D7-branes to free energy density in the dual field theory
is given by its on-shell action density in Euclidean signature. Since our solutions are
time-independent, this is just minus the on-shell action density in Lorentzian
signature, f = −S? = −(S?

D7 + S?
ct). The bulk D7-brane action’s contribution may be

found from eq. (4.13a), by substituting our numerical solution for R(r) up to some
large-r cutoff rc,7

S?
D7 = −N

∫ rc

r0

dr r3g(ρ)h(ρ)

√
1 +

b2R2

ρ4h(ρ)

√
1 + R′2, (4.75)

where the lower limit of integration is r = 0 for Minkowski embeddings, and is r = rH

for black hole embeddings.
The contribution from the counterterms may be obtained by exchanging the

small-u cutoff ε in eq. (4.74) for the large-r cutoff rc. To do so, we expand the relation
ε = 1/

√
r2

c + R(rc)2 for rc, making use of R’s near boundary expansion in eq. (4.17) to
find

1
ε
= rc +

M2

2rc
− b2M2

2r3
c

log rc +
M
r3

c

(
C− M3

8

)
+ . . . . (4.76)

Substituting this into eq. (4.74) we find that the counterterm contribution is

S?
ct = N

[
r4

c
4
+

b2M2

2
log rc −

b2M2

4
(1 + 2 log M)

]
. (4.77)

7Since all of our solutions have pφ = 0, they also have φ′ = 0 by eq. (4.14).
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Combining this with eq. (4.75) we find an expression for the free energy density

f = N
[ ∫ rc

dr r3g(ρ)h(ρ)

√
1 +

b2R2

ρ4h(ρ)

√
1 + R′2

− r4
c

4
− b2M2

2
log rc +

b2M2

4
(1 + 2 log M)

]
. (4.78)

Using dimensional analysis to restore factors of L and taking N = λNcN f /(16π4L8)

from eq. (4.13b) then yields eq. (4.22).

Scalar One-point Functions

The one-point functions of the operators Om and Oφ defined in eq. (4.10) are
proportional to the functional derivatives of the on-shell action with respect to the
boundary values of θ and φ,

〈Om〉 = −2πα′ lim
ε→0

ε
δS

δθ(ε)
, 〈Oφ〉 = − lim

ε→0

δS
δφ(ε)

. (4.79)

In order to compute 〈Om〉, let us consider a small variation θ(u)→ θ(u) + δθ(u).
Writing SD7 =

∫
duL, the resulting variation in the action is

δSD7 =
∫

ε
du
[

∂L
∂θ′(u)

δθ′(u)− ∂L
∂θ(u)

δθ(u)
]
= − ∂L

∂θ′(u)
δθ(u)

∣∣∣∣
u=ε

. (4.80)

The second equality is obtained using integration by parts and the Euler-Lagrange
equation for θ. The derivative ∂L/∂θ′(u) may be computed from the action in
eq. (4.71). Inserting the near-boundary expansions in eqs. (4.69) and (4.70) gives a
result that diverges as ε−3. The ε−3 and an ε−1 log ε divergence are cancelled by the
variation of the counterterms in eq. (4.73), so we obtain a finite result from eq. (4.79),

〈Om〉 = 2πα′N L6
[
−2C +

b2M
2

+ b2M log (ML)
]

, (4.81)

where we used dimensional analysis to restore factors of L on the right-hand side.
Using N = λNcN f /(16π4L8) from eq. (4.13b) and L4 = α′2λ then yields eq. (4.18).

Similarly under a small variation φ→ φ + δφ we find

δSD7 = − ∂L
∂φ′

δφ

∣∣∣∣
u=ε

= −N pφ δφ(ε), (4.82)

where we have used ∂L/∂φ′ ≡ Pφ = N pφ. In this case the counterterms do not
contribute to the one-point function, and we can read off 〈Oφ〉 from eq. (4.82) using
eq. (4.79),

〈Oφ〉 = N pφ. (4.83)
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Since pφ = 0 in all the embeddings we consider, all phases of our model have
〈Oφ〉 = 0.

Current One-point Functions

In order to compute the one-point functions of the current, we need to allow for
non-zero Ax and Ay,

θ = θ(u), φ = bz + Φ(u), Ax = Et + a(u), Ay = Ay(u). (4.84)

Non-zero A changes the coefficient of the log ε divergence of the D7-brane action. This
change is cancelled by an additional counterterm [147, 148, 122, 149],

Sct,6 = −N 1
4
√−γFµνFµν log ε. (4.85)

The one-point functions of the currents are given by

〈Jµ〉 = 2πα′ lim
ε→0

δS?

δAµ(ε)
. (4.86)

The calculation proceeds similarly to that of 〈Oφ〉. We find that the the small variation
in the bulk D7-brane action resulting from Aµ → Aµ + δAµ is

δSD7 = − ∂L
∂A′µ(u)

∣∣∣∣∣
u=ε

δAµ(ε). (4.87)

The variation of the counterterms vanishes at leading order in δAµ, so eq. (4.87) is the
only contribution to the one-point function. Using ∂L/∂A′µ = N jµ, we then find

〈Jx〉 = −2πα′N jx, 〈Jy〉 = −2πα′N jy. (4.88)





97

Chapter 5

Translational Symmetry Breaking of
Holographic Zero Sound

We study the sound modes of a probe brane holographic model in 2+1 field theory
dimensions with translational symmetry breaking (TSB). The TSB is introduced in the
simplest possible case, where the metric itself remains translationally invariant while
other fields break translational symmetry, parameterised by the dimensionfull
quantities α1 and α2 with mass dimension [1] and [2] respectively. This system
contains two sound modes at non-zero temperature T and chemical potential µ,
holographic zero sound (HZS, that persists to zero temperature) and the
hydrodynamic diffusive mode. Our goal here is to study the effect that the TSB
parameters α1 and α2 have on these sound modes. We find that the dispersion relation
for HZS takes the form of a damped harmonic oscillator with k-gap given by
kg = 1/2vτ. We also find the analytic form of the relaxation timescale τ by comparing
expressions derived from a gradient expansion electric field, E with a linearised
fluctuation electric field E. We find the expected response of the sound modes, namely
that with increasing symmetry breaking the propagating holographic zero sound
mode transitions to the diffusive mode. Moreover, we study the effect the TSB has on
the k-gap as well as the AC and DC conductivities, where in general we find that with
increasing TSB the conductivities decrease until they saturate a lower bound.

5.1 Strongly Coupled: (non)-Hydrodynamic Fluctuations

We have already seen some aspects of hydrodynamics in preceding sections in the
form of the conductivity transport coefficient. Here, instead, we take a closer look at
the kinds of modes that can be found in a strongly coupled system. The reason for
doing so, and the reason for turning to the duality, follows the same argument as in
chapter 4: weakly coupled systems described by quasiparticle interactions display
collective excitations (we shall see one such example in section 5.2 in the form of
Landua zero sound, when we briefly outline Fermi liquid theory) and since we expect
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the quasiparticle picture to break down at strong coupling we are then left without
theory in a bid to describe the possibilities of strongly coupled propagating modes.
Instead, a good place to start, is by revisiting an old theory - hydrodynamics.

Hydrodynamics [48, 17, 150] is an effective description of a system near thermal
equilibrium at long time times and large distances. In other words, hydrodynamics is
valid when the characteristic energy, ω and momentum, k is small compared to some
scale set by the microscopic theory. Since hydrodynamics is at long times, the system
will be dominated by dynamics that ’survive’ the longest: the conserved quantities of
the system. For a system respecting Poincaré symmetry and a global U(1) we have the
conservation of the energy-momentum tensor and a U(1) current respectively,

∂µTµν = 0 ∂µ Jµ = 0 (5.1.1)

Crucially, in hydrodynamics Tµν and Jµ can be written in terms of a few slowly
varying parameters: a local temperature T(x), a local fluid velocity v(x) and a local
chemical potential, µ(x), also known as the hydrodynamic variables [17]. Without this
simplification the hydrodynamic equations would not be solvable. We then perform a
gradient expansion in these hydrodynamic variables. The reason being that including
gradients will induce dissipation in the system, and since we are at long wavelengths
the gradients will in general be small, allowing for an expansion. The hydrodynamic
expansion of the conserved currents will then order itself into zeroth order O(T, v, µ),
first order O(∂(T, v, µ)), second order O(∂2(T, v, µ)) and so on. An immediate
question is the regime of validity of such an expansion, or more precisely, what is its
radius of convergence? Recently this was answered holographically by studying the
collision of the hydrodynamic and non-hydrodynamic quasi-normal modes [151, 152].

Each term in the expansion will come with some coefficient, called transport
coefficients, that can only be found analytically by studying the microscopic theory,
namely by calculating the two point functions of the conserved currents. Furthermore,
as mentioned in section 2.3.3, the poles of the two point functions give the dispersion
relation related to the long-wavelength fluctuations associated with each conserved
current. For example from the conservation of the longitudinal stress energy
components (T00, T03 and T33) we get sound waves with dispersion relation,

ω = ±vsk− iΓsk2 +O(k3/T3) (5.1.2)

with speed vs and attenuation Γs given by,

v2
s =

∂p
∂ε

Γs =
2(d− 2)η + (d− 1)ζ

2(d− 1)(ε + p)
(5.1.3)

where ε is the equilibrium energy density, p the equilibrium pressure, η is the
shear viscosity and ζ the bulk viscosity.

The shear modes correspond to fluctuations of the T0i and T3i currents. They are
diffusive modes (rather than propagating as in the sound modes) and are given by,
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ω = −iΓpk2 +O(k3/T3) (5.1.4)

with attenuation,

Γp =
η

ε + p
(5.1.5)

From the conserved U(1) current we instead get a longitudinal diffusive mode
associated with the conserved charge,

ω = −iDk2 +O(k3/T3) (5.1.6)

with diffusion constant D. There is also the scalar channel of the stress energy
tensor and the transverse channel of the conserved current.

All of the modes above are in the hydrodynamic limit, ωτ � 1, where τ, the
relaxation timescale, is small. What about in the opposite limit, when ωτ � 1? We
discuss such a limit in the next section where we introduce Fermi-liquid theory and a
collective quasiparticle excitation called Landau zero sound.

5.2 Fermi-Liquid Theory and Landau Zero Sound

To formulate a theory of interacting fermions in a metal is exceedingly difficult -
ultimately this is a many-body quantum problem. However, in 1956 Lev Landau
made use of the non-interacting (ideal) Fermi gas and the Pauli exclusion principle
(PEP) to develop Fermi-liquid theory (LFL) [17, 18].

The ground state of a Fermi gas at zero temperature organises itself according to
the PEP; states fill up all energy levels below the Fermi energy (which at zero
temperature is just the chemical potential) such that in momentum space we have the
notion of a Fermi surface – a surface that separates occupied and unoccupied states.
The Fermi-Dirac distribution function is therefore either 1 inside the surface, or 0
outside. At non-zero temperature a state can then be excited above the Fermi surface
leaving behind a hole in its absence.

We then slowly (adiabatically) turn on interactions such that we get a one-to-one
correspondence between the non-interacting and interacting system, and further
assume that the ground states are also one-to-one. Now, imagine an excitation in the
non-interacting case and slowly turn on the interactions. The bare fermion will start to
interact with its surroundings. Instead of trying to work out the precise details of how
the fermion is interacting, we can instead dress the bare fermion with a renormalised
mass and charge. The fermion is now a quasiparticle. Alternatively we could have
created a hole, in which case we would get a quasihole. To make sure the system has
time to turn interactions on adiabatically the quasiparticles have to be long-lived
τ � 1, which in turn means that quasiparticles are excited only near the Fermi
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surface. We can then imagine the quasiparticle as a deviation from the thermal
equilibrium ground state distribution [18],

np = n0
p + δnp (5.2.7)

where np(t, x) is the distribution function specifying the number of
quasiparticles per unit momentum and obeying the Boltzmann equation.

We can then ask, is it possible for a bunch of the quasiparticles to form collective
excitations? - the answer is yes. There are two cases to consider; hydrodynamic first
sound and Landau zero sound.

First Sound - This mode dominates when there are lots of collisions between the
quasiparticles, that is in the limit ω � v, where v is the frequency of the collisions. It is
a longitudinal wave where an element of the collective excitation has an increase in
density that pushes neighboring particles through collisions. This is essentially when
δnp is small as the quasiparticles are constantly being returned to the equilibrium state.

Zero Sound - In the collisionless regime, ω � v, neighboring quasiparticles are
instead driven by an effective force between the quasiparticles. The effective force is
proportional to δnp and arises because the departure from the Fermi surface can be
equated to a change in the free energy, where the quasiparticles are moving from one
region to another. In other words, zero sound arises due to the fluctuation of the Fermi
surface. The dispersion relation for zero sound is given by,

ω = ±vk− iΓk2 +O(k3/ε3
F) (5.2.8)

where εF is the Fermi energy. We see that it takes the form of a damped
propagating mode.

Since zero sound is in the collisionless regime, we should expect to see it
dominate at low temperatures, whereas as temperature is increased the mode should
transition to first sound. Note, however, that even at zero temperature the zero sound
attenuation is not zero but instead takes on a constant value. This is because of
multipair decay between quasiparticle and quasihole pairs. At low temperatures
collisions from thermally excited quasiparticles are fairly infrequent, this results in the
dominating part of the zero sound attenuation still being from multi-pair decay. This
is the ’quantum collisionless’ regime, 0 ≤ πT/µ < ω/µ, with attenuation Γ ∝ ω2/µ.

As temperature is increased the collisions start to dominate,
ω/µ < πT/µ <

√
ω/µ, with the attenuation proportional to the collision rate

Γ ∝ (πT)2/µ. This is called the thermal collisionless regime. Finally, at high enough
temperatures, the dominante mode switches from zero sound to first sound that has
an attenuation proportional to Γ ∝ µω2/T2. Therefore a peak should develop in the
attenuation of a Fermi liquid as a function of temperature. Indeed, zero sound was
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experimentally found in helium-3 at a temperature of 4k (below this helium-3
becomes a superfluid) and the resulting attenuation showed a peak at the crossover
between the two competing modes [153].

5.3 Holographic Zero Sound

LFLs are examples of compressible matter, meaning the density is a non-zero, smooth
function of the chemical potential µ, with non-zero first derivative. Holography has
also revealed suggestive patterns in strongly-coupled compressible quantum matter.
In such holographic systems sound modes are common, if not
universall [16, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182].

To be specific, sound modes appear in two classes of holographic compressible
quantum matter. The first class is described by charged black holes in Einstein-Hilbert
gravity coupled to a U(1) gauge field, and possibly scalar fields. The central example
is the AdS-Reissner-Nordström solution.

The second class comes from probe branes in holographic spacetimes, such as
the systems we have encountered in previous chapters. In the T = 0, 〈Jt〉 6= 0 scenario
sound modes appear as poles in Jµ’s retarded two-point function.

In both classes of holographic compressible quantum matter the sound modes
appear in states with no broken symmetries, and in particular with neither
Translational Symmetry Breaking (TSB) nor spontaneous breaking of the U(1), i.e. no
superfluidity. As a result, compared to textbook examples of compressible quantum
matter, the microscopic origin of these holographic sound modes is mysterious: they
cannot be phonons, as occur in solids, nor can they be superfluid phonons, as occur in
Bose-Einstein-condensates. Perhaps, then, it is possible that the sound mode is related
to the zero sound found in LFL. However, the holographic sound modes cannot be
LFL zero sound either. Charged black holes can support Fermi surfaces, but with
volume smaller than 〈Jt〉 by powers of N, thus violating Luttinger’s theorem. Many
probe brane models show no signs of a Fermi surface at all. As a result, the
holographic sound modes are called “holographic zero sound” (HZS) to emphasise
their similarity to, but difference from, LFL zero sound.

The differences with LFL zero sound are even more pronounced when T > 0. As
we saw in the introduction there were three regimes of interest in a LFL characterised
by the attenuations dependence on temperature; quantum collisionless (Γ ∝ ω2/µ),
thermal collisionless (Γ ∝ (πT)2/µ) and hydrodynamic (Γ ∝ µω2/T2).
AdS-Reissner-Nordström at low T/µ has a near-horizon AdS2, indicating that the
holographic dual’s effective description is a d = 1 CFT. Correspondingly the sound
mode crossover differs significantly from a LFL. At low T/µ the sound mode has
Γ ∝ T0, similar to the LFL quantum collisionless regime. However, as T/µ increases Γ
scales as a power of T less than the T2 of the LFL thermal collisionless regime, and in
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the high-T/µ hydrodynamic regime Γ ∝ T−1, unlike the T−2 of the LFL hydrodynamic
regime [165].

In probe brane models, although the sound mode behaves identically to LFL zero
sound in the quantum and thermal collisionless regimes [164, 181], the hydrodynamic
regime is strikingly different. In particular, in the probe limit the sound mode appears
as a pole in correlators of Jµ, and not in those of the stress-energy tensor. As a result, in
probe brane systems at high T/µ the crossover is not to the hydrodynamic sound
mode, but to the charge diffusion mode, in stark contrast to a LFL.

To be explicit, the low-T effective theory of the holographic systems is different
from those of solids, BECs, or LFLs. For probe branes in translationally- and
rotationally-invariant backgrounds with Lifshitz dynamical exponent < 2, the low-T
effective theory that describes correlators of Jµ is

∂td + ∂i Ji = 0, (5.3.9a)

∂t Ji + v2∂id = − Ji

τ
, (5.3.9b)

where Ji is the charge current, Jt = d is the charge density, v is the HZS speed and τ is
a coefficient that represents damping due to loss of energy and momentum from the
probe sector into the background. Eq. (5.3.9) describes a current that is
“quasi-conserved” rather than conserved, due to this damping. If we Fourier
transform eq. (5.3.9), using the same symbols for Jt and Ji and their Fourier
transforms, and then solve eq. (5.3.9a) for Ji, plug the result into eq. (5.3.9b), and
demand a solution with Jt 6= 0, then we find

ω2 +
i
τ

ω− v2k2 = 0. (5.3.10)

Eq. (5.3.10) determines the dispersion relation of the longest-lived modes, and in
fact appears in a wide variety of systems, such as damped harmonic oscillators, the
electromagnetic skin effect, the Sine-Gordon model, and more [183]. The key feature
of the dispersion relation that arises from eq. (5.3.10) is a “momentum gap” or
“k-gap”: solving eq. (5.3.10) for ω gives

ω = − i
2τ
± v

√
k2 − k2

g, (5.3.11)

where the k-gap, kg, is

kg ≡
1

2vτ
. (5.3.12)

In the thermal collisionless regime, where k > kg, eq. (5.3.11) describes sound modes:
if we Taylor expand eq. (5.3.11) in k/kg � 1 then we find

ω = ±v k− i
2τ

+O
(

v k2
g

k

)
. (5.3.13)
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As k decreases, the crossover from the thermal collisionless to the hydrodynamic
regime occurs when k = kg. In more detail, as k→ kg, the two sound modes approach
the Im(ω) axis, and collide there when k = kg. When k < kg this double pole splits
into two purely imaginary modes, one of which moves up the Im(ω) axis while the
other remains in place as k continues to decrease. The pole moving up the Im(ω) axis
is the hydrodynamic charge diffusion mode. To be explicit, if we Taylor expand
eq. (5.3.11) in k/kg � 1 then we find

ω =

−
i
τ +O

(
k2

k2
g

)
,

−iD k2 +O
(

k4

k4
g

)
,

(5.3.14)

where the latter mode is the hydrodynamic charge diffusion mode, with diffusion
constant

D ≡ v2τ. (5.3.15)

In short, eq. (5.3.10) describes the crossover from the high-momentum thermal
collisionless regime, which supports sound modes, to the low-momentum
hydrodynamic regime, which supports a charge diffusion mode and a second,
k-independent, purely imaginary mode. The name “k-gap” describes how
propagating modes appear only for sufficiently large k, while at small k both modes
are completely damped.

To summarise, holography provides solvable models of strongly-interacting
quantum compressible matter that can reveal general principles applicable to real
systems. For example, sound modes are common, if not ubiquitous, in holographic
quantum compressible matter, and have microscopic origins and effective descriptions
different from those in solids, BECs, and LFLs. How common are sound modes in real
strongly-interacting quantum compressible matter? What microscopic mechanisms
could produce them? What kinds of effective theories give rise to such sound modes?
To take a small step in understanding the microscopic origins we construct an analysis
on the effect of translational symmetry breaking on holograhpic zero sound.

5.4 Translational Symmetry Breaking

An important element that is missing from the preious analysis is translational
symmetry breaking (TSB). TSB is important in many physical systems to model the
damping that would occur due to the crystaline structure of metals or from doping.
As noted, there is already an attenuation factor in the dispersion relation of HZS
above, however this is from the lack of back-reaction and does not come from any
broken symmetries. In this section we instead wish to study how explicit TSB, affects
HZS in probe brane models. To do so, we will use the simplest models of TSB in
holography, in which the metric itself remains translationally invariant while other
fields break translational symmetry. We restrict to d = 3 although qualitatively we
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expect our results to generalise to any d. Examples include exactly massless scalar
fields linear in a CFT spatial coordinate [21], massless two-form fields linear in a CFT
spatial coordinate [22], or giving the graviton a mass term that breaks the bulk
diffeomorphisms holographically dual to translations [20], some details of these
models are given in appendix 5.A. In all of these cases the metric gµν with
µ, ν = 0, . . . , 3 of the bulk asymptotically AdSd+1 black brane spacetime takes the form

ds2 = gµνdxµdxν =
L2

z2

(
dz2

f (z)
− f (z)dt2 + d~x2

)
(5.4.16a)

f (z) = 1 + α1z + α2z2 −mz3, (5.4.16b)

with coordinates xµ, including time t, CFT spatial coordinates ~x, and the holographic
coordinate z. These metrics describe black brane spacetimes with a planar horizon at
z = zH, given by the smallest zero of the equation f (zH) = 0, and an asymptotic
AdSd+1 region with radius L at z→ 0. Note that compared to previous sections we
have made the transformation r → L2/z with the boundary now located at z→ 0. In
the blackening factor f (z) in eq. (5.4.16), m determines the black brane mass density
while α1 and α2 arise from the TSB. For example, Vegh’s model had α1 6= 0 and
α2 6= 0 [19, 20] while both the Andrade-Withers [21] and Poovuttikul-Grozdanov [22]
models had α1 = 0 and α2 6= 0. We will treat α1 and α2 as free parameters, to
encompass all of the models above. However, we will restrict to d = 3, although
qualitatively we expect our results to generalise to any d.

Our model will be the DBI action that we have seen in previous chapters,

S = −N
∫

dd+1ξ
√
−det(g∗ab + Fab) (5.4.17)

This is, in fact, not the most general choice. For example, in the Andrade-Withers
model, general covariance and U(1) gauge invariance would allow arbitrary functions
of the massless scalars to appear in eq. (5.4.17) multiplying Fab and multiplying the
square root. We restrict to the action in eq. (5.4.17) as a simple starting point.

In our model the probe brane will only “know” about TSB through the metric’s
dependence on α1 and α2. As a result, we are guaranteed to obtain the same effective
theory as eq. (5.3.9), but now with values of v and τ that depend on α1 and α2.
(Crucially, τ is non-zero even when α1 = 0 and α2 = 0, that is, in our model damping
occurs even without TSB, because of the probe limit.) Indeed, our main objective will
be to determine how v and τ depend on α1 and α2.

Intuitively, we can think of α1 and α2 as measures of the strength of TSB. For
example, we can think of α1 6= 0 and/or α2 6= 0 as arising from a concentration of
impurities smeared to produce a continuum. We thus expect non-zero values of α1

and α2 to dampen the HZS. Broadly speaking, we find that this intuition is correct.
The rest of this section is organised as follows. In 5.4.1 we outline the

thermodynamics of the system, finding that the α’s are constrained by temperature
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and null-energy bounds. In 5.4.2 we set out the DBI action and conserved currents, as
well as discuss the holographic renormalisation in appendix B that leads to the Gibbs
free energy. In section 5.4.3 we derive the constituent equations and analytic
dispersion relation that is then compared to the numeric solutions. Finally, in
secion 5.4.4 we calculate the effect the α’s have on the AC and DC conductivities.

5.4.1 Thermodynamics

The black brane with metric in eq. (5.4.16) has the Hawking temperature

T =
| f ′(zH)|

4π
=

1
4πzH

[
3 + 2α1zH + α2z2

H
]

. (5.4.18)

The black brane also has a Bekenstein-Hawking entropy, proportional to the horizon
area, and a free energy, given by minus the on-shell Euclidean action. Via holography
we identify the black brane’s T, Bekenstein-Hawking entropy, and free energy as the
temperature, entropy, and free energy of the dual field theory. For what follows, we
will not need explicit expressions of the black brane entropy or free energy.

Eq. (5.4.18) is a quadratic equation for zH, with solutions (when α2 6= 0)

z±H =
2πT − α1

α2
± 1

α2

√
(2πT − α1)

2 − 3α2 (5.4.19a)

=
1− α1

2πT
α2

2πT
± 1

α2
2πT

√(
1− α1

2πT

)2
− 3 α2

(2πT)2 . (5.4.19b)

Clearly in eqs. (5.4.18) and (5.4.19) some values of α1 and α2 produce T < 0 and/or
zH < 0, which is obviously unphysical. To avoid these and various other pathologies,
we will impose two constraints on α1 and α2, following refs. [20, 19]. First, we will
demand that (2πT)z±H ≥ 0. The resulting allowed values of α1 and α2 appear in
fig. 5.1. In particular, fig. 5.1 (a) shows that (2πT)z+H ≥ 0 only when α2 ≥ 0. In that
regime, z−H < zH+, that is, z−H is the smaller root of f (zH) = 0 and is thus the horizon,
so we can already discard z+H.

Our second constraint will provide an additional reason to discard z+H, and will
further constrain z−H: we impose the null energy condition on the Ricci tensor
computed from the metric in eq. (5.4.16), which gives

α2 +
α1

z
≤ 0. (5.4.20)

We will impose eq. (5.4.20) for all z ∈ [0, zH ], where the endpoints z = 0 and z = zH

produce the most stringent constraints. Eq. (5.4.20) with z = zH is the stability
condition of refs. [20, 19]. Violating this condition causes various pathologies,
including a negative graviton mass squared [20, 19]. The values of α1 and α2 obeying
this stability condition for each of z±H appear in fig. 5.2. Figs. 5.1 and 5.2 show that no
values of α1 and α2 6= 0 can simultaneously satisfy both (2πT)z+H ≥ 0 and the stability
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FIGURE 5.2: The regions in the
(

α1
2πT , α2

(2πT)2

)
-plane obeying the stability condition

given by eq. (5.4.20) with z = zH , for the two branches of solutions in eq. (5.4.19), (a)
z+H , and (b) z−H .

condition of eq. (5.4.20) with z = z+H, so as mentioned above our second constraint
provides another reason to discard z+H. We thus restrict to z−H, and from now on, zH

will refer only to z−H. Finally, eq. (5.4.20) with z = 0 gives α1 ≤ 0, which we will
impose from now on.

Fig. 5.3 summarises our constraints by combining fig. 5.1 (b), fig. 5.2 (b), and
α1

2πT ≤ 0. In what follows, we will restrict to values of α1 and α2 6= 0 in the region
shown in fig. 5.3.

In fact, for simplicity, in all of our numerics we will set one of α1 or α2 to zero,
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FIGURE 5.3: The region in the
(

α1
2πT , α2

(2πT)2

)
-plane where three conditions are simul-

taneously satisfied: (2πT) z−H ≥ 0, the stability condition given by eq. (5.4.20) with
z = z−H , and α1

(2πT) ≤ 0. This region is the overlap of the region in fig. 5.1 (b), the region

in fig. 5.2 (b), and α1
(2πT) ≤ 0. In what follows we will always restrict to values of α1

and α2 in this region.

with the other non-zero. If α1 = 0 then eq. (5.4.20) becomes simply α2 ≤ 0, which is
also sufficient to guarantee (2πT)zH ≥ 0. When α1 = 0 we will thus always restrict to
α2 ≤ 0. If α2 = 0, then eq. (5.4.20) gives α1 ≤ 0, which we will always impose, as
mentioned above.

The nature of the extremal limit, T → 0, depends on whether α1 and α2 are both
zero. If α1 = 0 and α2 = 0, then T = 3/(4πzH), so T = 0 implies zH = ∞, meaning no
horizon is present. In the dual field theory, this means that when T = 0, no entropy is
present. This makes sense, since in those limits the geometry is exactly that of AdS4, so
the dual CFT is in its conformal vacuum. However if α1 and/or α2 is non-zero, then a
horizon survives down to T = 0. In this case, the dual field theory has non-zero
entropy of order N2, even when T = 0, due to the TSB induced by α1 and/or α2. When
either or both of α1 and α2 is non-zero, the location of the extremal horizon is, from
eq. (5.4.19a),

zext = lim
T→0

z−H = −α1

α2

[
1−

√
1− 3α2

α2
1

]
. (5.4.21)

Near the extremal horizon the geometry is approximately AdS2 ×R2, indicating that
in the dual field theory at T = 0 the low-energy effective description is a d = 1 CFT.

An extremal horizon implies a non-zero Bekenstein-Hawking entropy at T = 0,
and hence a large degeneracy of T = 0 ground states. Such a degeneracy is at risk of
instability, since generically any perturbation will break the degeneracy and drive the
system to a new, and presumably unique, ground state. Such instabilities often depend
on the detailed dynamics of the particular (super-)gravity theory. To our knowledge,
the massive gravity and scalar or two-form theories in refs. [20, 19, 21, 195, 22] are
stable, at least under linear perturbations in the regimes of α1 and α2 shown in fig. 5.3,
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so in what follows we will assume that the geometry is stable at T = 0.

5.4.2 The Probe Sector

In the probe sector of the dual field theory we want to introduce a non-zero charge
density, 〈Jt〉 6= 0. The charge density operator, Jt, is holographically dual to At, the
time component of the U(1) gauge field in the DBI action eq. (5.4.17). Since in our
model the DBI action is sensitive only to the metric in eq. (5.4.16), which is
translationally and rotationally invariant, our ansatz for At will depend only on z. We
will also work in the gauge Az = 0, in which case the only non-zero components of the
U(1) field strength are Fzt(z) = −Ftz(z) = ∂z At(z) ≡ A′t(z). With these choices the
DBI action becomes

S = −N
∫ zH

0
dz gxx

√
|gtt|gzz − A′2t (5.4.22)

This action depends only on A′t and not At, hence we have a constant of integration,
which is in fact the charge density in the dual field theory,

〈Jt〉 = δS
δA′t

=
N gxx A′t√
|gtt|gzz − A′2t

. (5.4.23)

We can solve eq. (5.4.23) for A′t, with the result

A′t = d

√
|gtt|gzz

g2
xx + d2 , d ≡ 〈Jt〉/N . (5.4.24)

We define the chemical potential to be the work done to add a unit charge to the
system by moving it from the horizon to the boundary against the electric field,

µ =
∫ 0

zH

dz Ftz =
∫ zH

0
dz A′t =

∫ zH

0
dz

d√
1 + d2z4

(5.4.25)

=

√
d

4
B
(

1
4

,
1
4

)
− 1

zH
2F1

(
1
4

,
1
2

;
5
4

,−d−2 z−4
H

)
, (5.4.26)

where B
( 1

4 , 1
4

)
is a Beta function.

The probe contribution to the grand canonical (Gibbs) free energy density, Ω, is
minus the on-shell probe brane action density. Plugging the solution for A′t from
eq. (5.4.24) into the action density Ŝ in eq. (5.4.22), we find the on-shell probe brane
action density,

Ŝ
∣∣
on-shell = −N

∫ zH

0
dz g2

xx

√
|gtt|gzz

g2
xx + d2 (5.4.27a)

= −N
∫ zH

0
dz z−4

(
1 + d2 z4

)−1/2
. (5.4.27b)
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The integral in eq. (5.4.27) clearly diverges as − 1
3N z−3 at the z→ 0 endpoint,

that is, near the asymptotically AdS4 boundary. To obtain a finite result, and more
generally to guarantee a well-defined variational problem, we must holographically
renormalise the on-shell action [184, 185, 186, 147, 187]. To do so, we first regulate the
divergence by integrating not to z = 0 but to a cutoff surface z = ε, leading to a
regulated action, Sreg. On the surface z = ε we then introduce a counterterm action,
SCT, built from objects invariant under the system’s symmetries, such as the
diffeomorphisms preserved by α1 and α2. These counterterms cancel the ε→ 0
divergences in Sreg and may also contain contributions that remain finite as ε→ 0. We
then define the renormalised action as Sren ≡ limε→0

(
Sreg + SCT

)
, and corresponding

renormalised action density, Ŝren.
We present the details of the holographic renormalisation for the probe brane in

the background of eq. (5.4.16) in Appendix 5.B. Here we will just highlight the main
differences between the cases with and without α1 and α2. When α1 = 0 and α2 = 0,
the ε→ 0 divergence in Sreg is − 1

3N ε−3, as mentioned above, and SCT consists of a
single term proportional to the volume of the z = ε surface, whose only non-zero
contribution as ε→ 0 is + 1

3N ε−3, which precisely cancels the divergence in Sreg [147].
When α1 and/or α2 is non-zero, the ε→ 0 divergence in Sreg is still − 1

3N ε−3, however
the volume counterterm in SCT now acquires new divergences with coefficients that
depend on α1 and α2. Cancelling these requires additional counterterms, which also
make finite contributions to Sren when ε→ 0, which depend on α1 and α2. Ultimately,
for the probe contribution to the grand canonical free energy density we find

Ω = −N 1
12

B
(

1
4

,
1
4

)
d3/2 −N 1

5
1

z5
H d 2F1

(
5
4

,
1
2

,
9
4

;− 1
d2 z4

H

)
(5.4.28a)

−N 5
48

α3
1 +N

1
4

α1 α2 +N
1
6

(
1

z3
H
+

α1

z2
H
+

α2

zH

)
, (5.4.28b)

where B
( 1

4 , 1
4

)
is a Beta function. In eq. (5.4.28), the first line is the contribution from

the bulk integral in eq. (5.4.27). As described above, in Appendix 5.B we show that
SCT cancels the divergent contribution from the z = ε endpoint of the bulk integral,
and also contributes the finite terms in the second line of eq. (5.4.28). In Ω, α1 and α2

enter explicitly in the finite terms in the second line of eq. (5.4.28) and implicitly
through zH, via eq. (5.4.19).

In general, the hypergeometric functions in (5.4.26) and (5.4.28) will prove
difficult to work with, it will therefore be prudent to apply an approximation. Since
the hypergeometric function is a function of d z2

H, the only two options are d z2
H � 1

and d z2
H � 1.

If α1 = 0 and α2 = 0, then zH = 3/(4πT), and so d z2
H ∝ d/T2. As a result,

d z2
H � 1 and� 1 are the high- and low-density limits, respectively. We are interested

primarily in the high-density, or quantum compressible, limit, d/T2 � 1. However,
we will have α1 6= 0 and/or α2 6= 0, in which case zH is not simply ∝ 1/T, but rather is
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the more complicated combination of T, α1, and/or α2 in eq. (5.4.19). As a result,
d z2

H � 1 and� 1 are not necessarily the high- and low-density limits, respectively. In
fact, with the constraints in sec 5.4.1, d2z4

H � 1 will always be a high-density limit, but
when d2z4

H � 1 we can still reach d/T2 � 1. Nevertheless, in what follows we will
primarily be interested in the d z2

H � 1 limit. It would be interesting to explore the
d z2

H � 1 limit in future work.

5.4.3 Spectrum of Fluctuations

Unlike in a back-reacted model we only have access to a subset of the spectrum of
fluctuations, namely we do not have access to the modes found in the sound, shear
and scalar channel, calculated by looking at variations of the metric. Instead, in a
probe brane system we can calculate the holographic zero sound and diffusive mode.
There are multiple ways to do this, for example in [16, 160] the holographic zero
sound dispersion relation at vanishing temperature is found via the fluctuation
method as poles in the two point retarted Green’s function (we will use this method to
calculate the numerics). In [181] a different approach is taken where instead a
quasi-conserved constituent equation is derived using a linearised gradient
expansion. Here we will combine aspects of both methods.

Concretely, we derive the constituent equation (5.3.9b) by comparing two electric
fields, a gauge-invariant electric field derived as a solution to its equation of motion,
that we shall call E, with a solution of the electric field derived from a combination of
field theory gauge fields, E obtained from a zeroth order gradient expansion. As with
previous calculations, the solutions are derived in a near horizon low frequency limit.

We start with the later, where we define E = ∂i At − ∂t Ai. At and Ai can be
calculated by looking for saddle point solutions of the DBI action,

∂a

(√
−det(gab + Fab)(gab + Fab)

−1
)
= 0 (5.4.29)

and taking a gradient expansion in the field theory co-ordinates µ. Noting the gauge
choice Az = 0 we can write the 0th order i and t-components of (5.4.29) as:

∂z

(
A′i f (z)

√
1 + d2z4

)
= O(∂2

µ) (5.4.30a)

∂z

(
A′t√

1− z4A′2t + A′2i f (z)z4

)
= O(∂2

µ) (5.4.30b)

where O(∂2
µ) denotes higher order terms in the gradient expansion.

Alternatively, subbing in the conserved constants, and taking Ji = 0 to be
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infinitesimal, we can instead write:

∂z

(
A′i f (z)

√
1 + d2z4

)
= O(∂2

µ) (5.4.31a)

∂z

(
A′t
√

1 + d2z4

)
= O(∂2

µ) (5.4.31b)

with solutions,

A′t = −
d√

1 + d2z4
A′i =

Ji

f
√

1 + d2z4
(5.4.32)

where Ji is the charge current and d the charge density defined in eq. (5.4.24). To
find At and Ai we now need to integrate both sides of the equations in eq. (5.4.32).
Starting with At we have,

At(z) = A0
t − d

∫ z

0
dr

1√
1 + d2r4

(5.4.33)

where the integral, evaluated at z = zH, is the chemical potential derived in
eq. (5.4.26),

µ =

√
d

4
B
(

1
4

,
1
4

)
− 1

zH
2F1

(
1
4

,
1
2

;
5
4

,−d−2z−4
H

)
(5.4.34)

Near the horizon, for the regime of parameters that we are interested in, d2z4
H is,

in general, large. Hence we can expand the second term,

µ =

√
d

4
B
(

1
4

,
1
4

)
− 1

zH
+ ... (5.4.35)

such that At becomes,

At(z) = A0
t −
√

d
4

B
(

1
4

,
1
4

)
+

1
zH

(5.4.36)

Similarly the Ai term can be derived as,

Ai(z) = A0
i + Ji

∫ z

0
dr

1
f (r)
√

1 + d2r4

= A0
i + Ji

∫ z

0

dr√
1 + d2r4

+ Ji

∫ z

0

dr√
1 + d2r4

1− f (r)
f (r)

= A0
i +

Ji

4
√

d
B
(

1
4

,
1
4

)
− Ji

dzH
+ Ji

∫ z

0

dr√
1 + d2r4

1− f (r)
f (r)

(5.4.37)

Where in the second line we have simply re-written the integral and in the third
used the expansion above. The remaining integral is difficult to compute, however it
turns out that the integral contains a logarithmic divergence near the horizon [181],
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and so by expanding near the horizon, where d2r4 is large, it can be approximated,

∫ z

0

dr√
1 + d2r4

1− f (r)
f (r)

≈ Log
∣∣∣∣ zH

zH − z

∣∣∣∣( 1
dzH(3 + 2α1zH + α2z2

H)

)(
1− 1

2d2z4
H
+

3
8d4z8

H
− ...

)
+ const.

(5.4.38)
For simplicity, we write (5.4.38) as ALog zH

zH−z + D and drop the A0
µ terms. The Ai

component then becomes,

Ai(z) = Ji ALog
zH

zH − z
+

Ji

4
√

d
B
(

1
4

,
1
4

)
+ Ji

(
D− 1

dzH

)
(5.4.39)

We are also interesting in the case with a vanishing horizon - ultimately this
means taking A = D = 0,

Ai(zH → ∞) =
Ji

4
√

d
B
(

1
4

,
1
4

)
− Ji

dzH
(5.4.40)

We can now write down the electric field. For the case with a horizon we have,

E = −ALog
zH

zH − z
∂t Ji −

(
1
2

∂id + ∂t Ji
)(

B( 1
4 , 1

4 )

4
√

d

)
−
(

D− 1
dzH

)
∂t Ji (5.4.41)

where we have a logarithmic piece as z→ zH, terms independent of zH and terms
subleading in zH. From now on we drop the subleading terms for the case with a
horizon.

For the horizonless case we instead have,

EzH→∞ = −
(

1
2

∂id + ∂t Ji
)(

B( 1
4 , 1

4 )

4
√

d

)
+

1
dzH

∂t Ji (5.4.42)

where we now only have terms that go as 1
zH

and a zH-independent term. Keeping
track of the zH dependence will be important later.

We now construct a second electric field E by taking the action to second order in
fluctuation with respect to the U(1) gauge field. The fluctuations are,

Aµ → Aµ(z) + aµ(z, t, x). (5.4.43)

Due to invariance under rotations, and noting as a gauge choice az = 0, we only
have to consider the fluctuations at and ax. It is then easiest to proceed by Fourier
transforming the fluctuations and combining them to create a gauge invariant electric
field, E = ωax + kat. To find solutions for E we have to solve the linearized equations
of motion for the electric field, the action of which, to quadratic order, is [160]
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S =
N
2

∫
dzdωdk

g−1/2
xx g1/2

zz
u

[
E2 +

|gtt|
gzz(u2k2 −ω2)

E′2
]

(5.4.44)

with,

u =

√
|gtt|
gxx

(1 + d2g−2
xx )
−1/2 (5.4.45)

The equation of motion for E can then be written as:

∂z

[ |gtt|
u
√

gzzgxx

ω

(u2k2 −ω2)
E′
]
−
√

gzz

gxx

ω

u
E = 0 (5.4.46)

We will solve this in two ways, first with a finite horizon, and second with a
vanishing horizon (that is, with α1 = α2 = T = 0). In both cases we will solve the
equation of motion in a near horizon, low frequency limit. Using our metric factors
eq. (5.4.46) becomes:

∂z

(
f (z)3/2ω

u(u2k2 −ω2)
E′
)
=

ω√
f u

E (5.4.47)

We first look at the case with no horion where we can set f (z) = 1. In the ‘near
horizon’ limt of zH → ∞ the equation simplifies to:

E′′ +
2
z

E′ + ω2E = 0 (5.4.48)

The solution is of Hankel form,

E = C
(

ωz
2

)− 1
2

H(1)
− 1

2
(ωz) (5.4.49)

where we have chosen the in-going wave solution, E ∼ z−1eiωz. We now take
frequency and momentum small such that the solution becomes,

EzH→∞ = CΓ
(

3
2

)−1

− i
2C
πω

Γ
(

1
2

)
1
z

(5.4.50)

where we see that we have a part that is independent of z and a part that goes as 1
z -

this will come in useful when we match to our previous electric field.
We now look at the case with a horizon. Taking a near horizon expansion we

obtain,

√
f u∂z

(
f 3/2

uω
E′
)
= −ωE

f 2E′′ + E′ f f ′ +
2 f 2

z
E′ = −ω2E

(5.4.51)

We can see that this result reduces to (5.4.48) in the horizonless limit. It would be
interesting to be able to solve this equation in its current form, however for now it will
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suffice to again invoke a near horizon approximation and take only the leading term
in E′

f ∂z( f E′) = −ω2E (5.4.52)

or, by undoing the Fourier transform,

f ∂z( f E′) = ∂2
t E (5.4.53)

To simplify this further, we can expand the emblackening factor near the horizon,

f (z) ≈
(

3
zH

+ 2α1 + α2zH

)
(zH − z) +O((zH − z)2) (5.4.54)

and defining

R =
1

4πT
Log

zH

zH − z
(5.4.55)

where, as in (5.4.18), we use:

4πT =
1

zH
[3 + 2α1zH + α2z2

H ] (5.4.56)

We then have,

∂2
RE = ∂2

t E, (5.4.57)

of which the regular, in-falling, solution is of Fourier form,

E ≈
∫

dωC(ω)eiω(R−t) (5.4.58)

To write this solution for the electric field in a more useful way we Taylor expand
in the limit of small frequency and small momentum,

E ≈ C− ∂tC
4πT

log
zH

zH − z
+O(∂2

t ) (5.4.59)

Where we note there is a part independent of zH and a part that has a
logarithmic divergence as z→ zH.

We now have two electric fields worked out from the fluctuation EOM that we
can now compare to our previous electric field, E . In the vanishing horizon case we
match equation (5.4.42) and (5.4.50), where we match the terms that go as 1/z together
and the terms that are independent of z in the near horizon limit z→ zH:

− Γ( 3
2 )B( 1

4 , 1
4 )

8
√

d
∂id−

Γ( 3
2 )B( 1

4 , 1
4 )

4
√

d
∂t Ji = i

πω

2Γ( 1
2 )d

∂t Ji (5.4.60)

or
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v2∂id + ∂t Ji = −
i
τ

∂t Ji (5.4.61)

where we have defined velocity and dissipation rate as,

v2 =
1
2

1
τ
=

4

B( 1
4 , 1

4 )
√

d
ω2 (5.4.62)

where we see that we have the conformal value 1/
√

2 for the speed of sound. To find
the dispersion relation we combine the above quasi-conserved constituent relation
with the conserved charge equation, ∂µ Jµ = 0, and look for solutions that go as
Jµ ∼ ei(kx−ωt). The result is,

v2k2 = ω2
(

1 +
i

ωτ

)
(5.4.63)

As expect this matches the result of [160], that is, even without a horizon there is
still a non-zero dissipation due to the probe limit.

The constituent equation for the horizon case can be found by matching (5.4.41)
and (5.4.59) and following the same steps as the horizonless case, but now matching
the logarithmic divergent terms together as well as the terms independent of zH. We
have as our dispersion relation,

v2k2 = ω2
(

1 +
i

τω

)
(5.4.64)

where now we have,

v2 =
1
2

1
τ
=

4

B( 1
4 , 1

4 )
√

d
1

z2
H

(5.4.65)

Note, we have again used the conformal speed of sound, however since we have
now included temperature and the symmetry breaking factors it may prove useful to
amend the conformal value. Furthermore, we notice the attenuation clearly vanishes
in the horizonless limit zH → ∞. However, as we have seen in the vanishing horizon
case there is in fact a finite damping factor. Therefore the two solutions will clearly
cross over at some small but finite temperature. Since we are primarily interested in
the thermal colisionless to hydrodynamic crossover, we leave the transition to the
quantum collisionless regime for future work.

The dispersion relation in eq. (5.4.64) can be written as,

ω = − i
2τ
±
√

k2v2 − 1
4τ2 (5.4.66)

where we see that there is a k-gap - a finite, non-zero amount of momentum is
required before the mode begins to propagate. This is not uncommon and is in fact
characteristic of a system that resembles a damped harmonic oscillator, a system with
some form of momentum dissipation.
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FIGURE 5.4: Example of QNM k-dependence for α1/µ = −1/30 and α2/µ2 = 0. As
momentum is decreased the real part of the mode goes to zero thus indicating the

existance of a k-gap.

An example of the quasi-normal mode dependence on momentum is given in
Fig 5.4 for the case of α1/µ = −1/30 and α2/µ2 = 0. The HZS mode starts as a
propagating mode at k/µ = 1/100. As momentum is decreased the HZS modes
collide on the imaginary axis where one pole subsequently moves up the axis until it
reaches ωRe = ωIm = 0, whereas the other pole moves down the axis. In other words,
a propagating mode has turned into a diffusive mode. This means that the sound
modes require a minimum amount of momentum before they can start propagating i.e
a k-gap.

The k-gap can be calculated as,

kg =
1

2τv
(5.4.67)

It explicitly depends on the momentum relaxation scale τ. Therefore with
stronger symmetry breaking factors we should see that more momentum is required
before the sound modes start propagating. The left/right hand plot of Fig 5.5 shows
the analytic k-gap using the values of τ and v at various α1/µ and α2/µ2 values
respectively (note the analytics have also been checked against the numerics in the
subsequent section). For larger values of α1 and α2 the k-gap is pushed to higher
momentum. This intuitively makes sense. With larger symmetry breaking the mode is
pushed further into the diffusive regime, therefore more momentum is required to
transition the mode into the propagating regime.

Before moving on to take a closer look at the quasi-normal modes and the
numerics, we also calculate the analytic diffusive dispersion relation defined by,

ω = −iDk2 (5.4.68)

Where D can be calculated from [188],

D =
√

1 + d2z4
HzH F

(
3
2

,
1
4

,
5
4

;−d2z4
H

)
(5.4.69)

The diffusive constant can also be written in terms of the relaxation scale via the
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FIGURE 5.5: Plot of k-gap against temperature for various values of α1/2. Left plot,
α2 = 0, right plot, α1 = 0. We see that with increasing α1/2 kg is pushed to higher
values, indicating that with more momentum dissipation, more momentum is needed

before the mode starts propagating.
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FIGURE 5.6: Diffusivity constant D plotted as a function of α1/2 at various tempera-
tures. We see that the symmetry breaking pushes the purely imaginary mode towards

the origin.

relation D = v2τ. If we take the limit d2z4
H � 1 in eq. (5.4.69) we that that the result

matches that of τ in eq. (5.4.65) up to the factor v2.
In fig 5.6 we take a look at how the translational symmetry breaking affects the

diffusivity constant D. In agreement with the k-gap, the affect of the symmetry
breaking is to push the mode towards the diffusive pole at ωR = ωi = 0 for any
temperature.

5.4.3.1 Numerics

Now that we have analytic solutions we can proceed to calculate the numerics. The
zero sound mode should show up as the pole of the two point retarded correlator that
can be calculated from the fluctuations:

Gii =
δ2S

δa(ε)2
i
=

(
δE

δa(ε)i

)2
δ2S

δE(ε)2 (5.4.70)

where ε indicates near boundary values of aµ. Thus, numerically solving E’s EOM and
looking for solutions that vanish at the boundary is sufficient to find the quasi-normal
modes. Our numerics follow the shooting/Frobenius method where the solution
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FIGURE 5.7: QNM with α1/µ = α2/µ2 = 0 while varying temperature. The critical
temperature is given by Tc/µ = 0.029.

‘shoots’ out of the black hole horizon with initial conditions specified by a power
series expansion near the horizon.

To keep everything consistent we scale by the chemical potential and, using
k
µ = 1

100 throughout we plot various QNM with different T/µ, α1/µ and α2/µ2. Note
we keep T

µ > 1
100 due to discrepancies in the numeric and analytical results below this

temperature. Future work would be to extend the results to this very low temperature
regime, as well as finding the attenuation cross-over in the analytical solutions.

As a first example we plot the QNM of α1
µ = α2

µ2 = 0 in Fig. 5.7. The holographic
zero sounds (HZS) mode starts at T

µ = 1
100 with a small, but non-zero, imaginary

frequency - it is a long lived excitation with a real frequency dependent only on the
value of momentum and the propagating speed, v, which conformally is given in
(2+1)-dimesions by v = 1√

2
. As temperature is increased we move from the near

quantum regime, into the thermo collisionless regime and finally into the
hydrodynamic regime. We see that the modes become increasing damped until they
collide on the imaginary axis, whereupon one mode moves down the imaginary axis
to become the diffusive mode and the other dissapears up the axis. The temperature at
which the modes collide is the crossover between the thermo-collisionless and
hydrodynamic regimes and henceforth will be called the critical temperature, Tc. The
value of Tc in this case is 0.029 in units of µ. We note that the shape of the evolution, an
approximate semi-circle, is characteristic of a damped harmonic oscillator.

Next we plot a variety of QNM with various fixed α1/2 and T values. In fig. 5.8
we fix α1/µ while varying temperature, in fig. 5.9 we fix temperature while vary α1/µ,
in fig 5.10 we fix α2/µ2 while varying temperature, and finally in fig. 5.11 we fix
temperature while vary α2/µ2.

Let’s take a closer look at fig. 5.8. There are a few features to point out. First, the
location of the low temperature modes, T/µ = 1/100, no longer reach the real
frequency axis when there is explicit symmetry breaking - there no longer exists
near-infinite long lived modes. With increasing symmetry breaking these low



5.4. Translational Symmetry Breaking 119

●●
● ●

● ●

● ●

● ●

● ●

● ●

● ●● ●● ●● ●

●
●

●

●
●
●
●
●
●

●

●
●
●
●
●●
●●
●●●
●●●●

α1 /μ :

● -1/1000

-0.005 0.000 0.005

-0.008

-0.006

-0.004

-0.002

0.000

▲ ▲▲ ▲▲ ▲
▲▲

▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲

▲ ▲
▲ ▲

▲ ▲
▲ ▲▲ ▲▲ ▲▲▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲
▲
▲
▲
▲▲

▲
▲
▲
▲
▲

▲
▲
▲▲
▲▲▲

α1 /μ :

▲ -1/10

-0.005 0.000 0.005

-0.008

-0.006

-0.004

-0.002

0.000

★ ★★★ ★★ ★★
★★
★★
★★

★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★

★ ★
★ ★★ ★

★

★

★

★

★

★
★
★
★
★
★★
★★

★
★
★
★
★

★
★
★★
★★★★

α1 /μ :

★ -3/20

-0.005 0.000 0.005

-0.008

-0.006

-0.004

-0.002

0.000 ●●
● ●

● ●

● ●

● ●

● ●

● ●

● ●● ●● ●● ●

●

●

●

●

●
●
●
●
●

●

●

●
●
●
●
●●
●●
●●●
●●●

▲ ▲▲ ▲
▲ ▲

▲▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲
▲ ▲

▲ ▲
▲ ▲

▲ ▲
▲ ▲▲ ▲▲ ▲▲▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲

▲
▲
▲
▲▲

▲
▲
▲
▲
▲

▲
▲
▲
▲▲
▲▲

★ ★★★
★★
★★
★★
★★
★★

★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★

★ ★
★ ★★ ★

★

★

★

★

★

★

★
★
★
★
★
★★
★

★

★
★
★
★

★
★
★★
★★★
★

-0.005 0.000 0.005

-0.008

-0.006

-0.004

-0.002

0.000

FIGURE 5.8: Various QNM numerics at fixed α1/µ with varying temperature.
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FIGURE 5.9: Various QNM numerics at fixed temperature while varying α1/µ.
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FIGURE 5.10: Various QNM numerics at fixed α2/µ2 with varying temperature.

temperature modes becomes increasingly damped, as expected. We do not know the
precise end point of these semi-circles as we keep T/µ > 1/100 due to numerical and
analytical inconsistency. It would be interesting to see where these modes end and if
there is new behaviour at very low temperature. Secondly, the size of the semi-circle is
reduced as the strength of the symmetry breaking is increased, this indicates that
eventually there will be no propagating modes at any temperature. Thirdly, as the
semi-circle reduces in size the location of the critical temperature is at smaller
imaginary frequency, it is also at a lower critical temperature as can be seen in the
plots. None of this is surprising, with increased symmetry breaking there will be
increased momentum dissipation in any propagating mode, thus turning the mode
diffusive. It is worth noting that if the QNM started on the imaginary axis, i.e those
modes with T/µ > 0.029 for the case with no symmetry breaking, then the effect of
the symmetry breaking is to move one of the modes toward the diffusive pole and the
other further along the imaginary axis.

In fig. 5.9 we instead fix temperature and vary α1/µ. The starting point for each
fixed T/µ semi-circle is with α = −1/1000 in units of µ. We then increase α1/µ, the
effect of which is to move the mode in a semi-circle until it collides on the imaginary
axis at some critical α1/µ. Again, one mode will then move down to the diffusive pole
as the other moves up. This makes clear that with enough symmetry breaking even a
very low temperature mode will eventually move to the diffusive pole.

In fig. 5.10 and fig. 5.11 we repeat the analysis but now with α2/µ2 - the numerics
follow a similar trend, however in the case of fixing α2/µ2 it is clear that smaller values
of α2/µ2 are required to have the same damping effect as α1/µ. We can therefore say
that the effect of α2/µ2 is ’stronger’ than that of α1/µ on the quasi-normal modes.
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FIGURE 5.11: Various QNM numerics at fixed temperature while varying α2/µ2.
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FIGURE 5.12: The purely damped modes for fixed α1/µ with varying temperature.
The lower modes are those that tend to the diffusive pole, whereas the higher are

those that move down the imaginary axis.

It is difficult to see the α/T dependence of the QNM when they have no real part.
In fig 5.12 we plot ωIm/µ against T/µ for various fixed values of α1/µ. Each curve is
plotted with QNM values immediately after Tc, that is there are two modes, one
moves to higher ωIm values and the other to the diffusive pole. We see that at lower
temperatures the value of α1/µ has a distinct effect on the location of the QNM.
However as temperature is increased the QNM begin to overlap, and coincide as the
diffusive pole is neared. In other words, small perturbations around the diffusive
mode are independent of the strength of the symmetry breaking factor.

Finally, it is worth checking the accuracy of our numerics. In fig. 5.13 and fig. 5.14
we plot the real and imaginary parts of the QNM for α1/µ = −1/100,−1/20,−1/10
and α2/µ2 = −1/200,−1/50,−1/20 respectively. The blue dots are the numerics, the
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FIGURE 5.13: Analytic and numeric comparison for α1 = −1
100 , −1

20 and −1
10 . The left-

/right hand plots show the imaginary/real components of the QNM.

orange line is the analytics as worked out via the conserved charge equations, and the
purple line is the diffusive analytics. In both cases we see good agreement between all
of the numerics and analytics in the parameter regime that we have been interested in,
namely T/µ > 1/100. To capture the analytics and numerics at lower temperatures
would require a second numerical method more suited to low temperature analysis,
as well as further investigation into the low temperature/ high α1/2 analytics.
Nevertheless, the conserved charge analytics not only captures the holographic zero
sound regime, but also the crossover (that is around Tc) as well as the diffusive regime
as is confirmed by the overlap with the diffusive results.

To emphasis the accuracy of the conserved charge analytics we plot the critical
temperature versus α1/2 in fig. 5.15. The vertical axis here is taken to be either α1 or α2

in units of µ. The blue dots are the numerical critical temperatures with only α2, the
black triangles are the numerics for α1. The solid orange line is the analytics for α2 and
the dashed red line is the analytical result for α1. Again we note good agreement
between numerics and analytics with T/µ > 1/100. As mentioned previously the
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FIGURE 5.14: Analytic and numeric comparison for α2 = −1
200 , −1

50 , −1
20 . The left/right

hand plots show the imaginary/real components of the QNM.

’strength’ of α2 is greater than that of α1 and the net effect of the explicit symmetry
breaking is to lower the critical temperature. The numerics and analytics presented
here are not restricted to the case of α1/2 = 0. 3D plots can be constructed with both
α1/2, again showing agreement between numerics and analytics.

To summerise, the effect of the explicit symmetry breaking parameters are to
damp the holographic zero mode. With enough symmetry breaking the mode will
stop propagating and move toward the diffusive pole. With larger symmetry breaking
the critical temperature is reduced, and eventually with enough symmetry breaking
there are no propagating modes at any temperature.

5.4.4 Conductivity

In this section we present the effect that explicit symmetry breaking has on AC and
DC conductivity. We start with the AC conductivity:

σAC = − i
ω

Gxx = − i
ω

ω2 δ2S
δE2 = −iωΠ (5.4.71)
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FIGURE 5.15: Numeric and analytic critical temperature. α̃ is the dimensionless α’s,
that is both α1/µ and α2/µ2.

where the Greens function is defined in (5.4.70). From the electric field’s EOM we
can obtain numerical results for the AC conductivity by setting k = 0. In Fig 5.16 we
show the case with no α’s at a temperature of T/µ = 1/50. The left/right plots are the
real/imaginary parts of the conductivity, and the solid blue line is the numerical
result. To confirm our numerics we also include two analytic calculations. The first is
from the analytic DC conductivity (calculated in the next section) that takes a
normalised value of 48.696 and is labelled as a black dot in the figure with excellent
agreement with the numerical solution when ωRe → 0. The second is from a low
frequency, low temperature analytic result for the AC conductivity [160]. At low
temperature and at k = 0 Π is derived as,

Π = −2dΓ( 1
2 )Γ(

3
2 )

π

N
iω3 + ω2β

(5.4.72)

where

β =
d1/2

2π
Γ
(

1
2

)
Γ
(

3
2

)
B
(

1
4

,
1
4

)
(5.4.73)

Therefore the AC conductivity becomes,

σAC = iN 2dΓ( 1
2 )Γ(

3
2 )

π

ω

iω3 + ω2β
(5.4.74)

That can be expanded at low frequency,

σAC

N = i
A

βω
+

A
β2 +O(ω) (5.4.75)

with A =
2d̃Γ( 1

2 )Γ(
3
2 )

π . This low frequency, low temperature result is plotted in dashed
orange in Fig 5.16. We see that the analytic AC results agree with the numerics except
at very small frequency where the analytic result diverges. This confirms the
statement of the different limits in [160]: the ω → 0 and T → 0 limits do not commute.
The DC analytics are calculated taking ω → 0 first (the collision dominated limit
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FIGURE 5.16: Real and Imaginary conductivity for T
µ = 1

50 and no explicit symmetry
breaking. DC conductivity is 48.696.
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FIGURE 5.18: α2 = 0 AC conductivity at varying α1 values at T = 1
50

ω/T → 0) whereas the AC conductivity takes T → 0 first (the collisionless limit
ω/T → ∞). The numerical solution interpolates well between these two limits.

Before turning on the α’s we first take a look at the effect that temperature has on
the AC conductivity in fig. 5.17. We first note that the high frequency limit is largely
independent of the temperature. At lower frequencies we see that as temperature is
increased the imaginary component approaches zero, whereas the real part
approaches a lower bound. For a discussion on lower bounds in probe brane systems
see [189, 190] where it is conjectured that σ ≥ 1 in appropriate units.

We turn on the symmetry breaking factors in Fig 5.18, Fig 5.19 and Fig 5.20.
Fig 5.18 and Fig 5.19 are both at a fixed temperature of T/µ = 1/50 with varying α1/µ
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FIGURE 5.19: α1 = 0 AC conductivity at varying α2 values at T = 1
50

and α2/µ2 respectively. The effect is the same as with increasing temperature, that is
the real and imaginary parts of the conductivity are decreased. In Fig 5.20 we plot
various temperatures with four fixed α2/µ2 values, −1/10,−1/5,−1,−5. At
extremely high α2 values we see that the result is independent of temperature and the
conductivity saturates the bound outlined above.

From [191] the DC conductivity for a probe brane in a (2+1)-dimensional field
theory is:

σDC = N
√

1 + d2z4 (5.4.76)

The left/right plots in fig. 5.21 plot the DC conductivity against α1µ and α2/µ2

respectively at different temperature values. Fig 5.22 shows the opposite, the x-axis is
now temperature and the left/right plots are with various fixed α1/µ and α2/µ2

values. We see that the behaviour is the same as in the AC conductivity: increasing the
symmetry breaking factors and/or temperature lowers the DC conductivity. We have
also checked that in all the AC conductivity plots, the ωRe → 0 limit matches the DC
values in this section.

5.5 Discussion

In this chapter we have investigated the effect that translational symmetry breaking
has on the current-current two point probe sound modes, namely the holographic zero
sound mode and the diffusive mode. Specifically, we have been interested in the
thermo-collisionless to hydrodynamic crossover. We found that the dispersion relation
for HZS mode takes the form of a damped harmonic oscillator with k-gap given by
kg = 1/2vτ. We also found the analytic form of the relaxation timescale τ by
comparing expressions derived from a gradient expansion electric field, E with a
linearised fluctuation electric field E. In section 5.4.1 we also looked at the allowed
values of the α’s, bounded by temperature and null-energy constraints. In appendix
5.B we outlined the necessary holographic renormalisation contributions required to
make the DBI action finite.
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FIGURE 5.21: DC conductivity at k = 0. The left/right plots show the DC conductivity
as a function of α1/µ/α2/µ2 respectively at various fixed temperatures.
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FIGURE 5.22: DC conductivity at k = 0 as a function of temperature. The left hand
plot

In particular, we found that for fixed α’s, kg increases as T/µ increases, as
expected. For fixed T/µ, kg increases as the α’s increase. As a result, even with fixed
T/µ, as the α’s increase, the transition occurs, that is the sound modes stop
propagating. Furthermore the diffusive constant D decreases as the α’s increase, as
does the AC and DC conductivities until they saturate the lower bound. In summary,
all the results we have found agree with the intuition of a momentum dissipating
system.

The results we have found have been focused on the thermo-collisonless to
hydrodynamic crossover. It would also be interesting to study the transition to the
quantum collisionless regime at low temperatures, as well as the zero temperature
result where a horizon would persist due to the α’s contribution to the emblackening
factor in eq. (5.4.16). Since the horizonless case involved the matching of a sub-leading
1/zH terms, it is possible that extending the horizon case to that order would produce
the necessary extra contributions to extend the analytic results into low temperature.
This would most likely require solving eq. (5.4.51) in its full form. Furthermore, we
have used a conformal value of 1/2 for v2 throughout, however at non-zero T, α’s we
might find that we depart from this value. Since the dispersion relation depends on
the value of v2 as well as τ, more accurate analytics could be found. Finally, taking
motivation from chapter 3 it could be of interest to plot the phase diagram for this
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model, this could be achieved by simply including the D7 embedding function in the
DBI action.
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5.A Holographic TSB Models

In this appendix we give some more details of previous holographic translational
symmetry breaking models.

dRGT Massive Gravity

In de Rham, Gabadadze, Tolley (dRGT) massive gravity [192], the graviton is given a
mass term such that it breaks the bulk diffeomorphisms while avoiding the difficulties
normally associated with massive gravity (i.e ghosts). It has subsequently been
studied holographically [20, 19]. For the case of AdS4 dual to a 3d field theory, the
dRGT action is given by an Einstein-Maxwell term plus a massive gravity term,

SBulk =
1

16πGN

∫
d4x
√
−g
[

R− 2Λ− L2

4
F 2 + M2

4

∑
i=1

CiUi

]
(5.5.77)

ds2 =
L2

z2

(
dz2

f (z)
− f (z)dt2 + dx2 + dy2

)
(5.5.78)

f (z) = 1 + C1
LM2

2
z + C2M2z2 −mz3 +

µBz4

4z2
H

(5.5.79)

where Λ = −d(d− 1)/2L2 = −6/L2 is the cosmological constant, F is a
background electromagnetic tensor, R is the Ricci scalar, M is a dimension 1 term that
can be related to the graviton mass and the Ci are dimensionless constants. The
massive gravity term is made up of polynomials Ui,

U1 = [K]
U2 = [K]2 − [K2]

U3 = [K]3 − 3[K][K2] + 2[K3]

U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]

(5.5.80)

where K =
√

gµα
√

f αν and fµν = ∂µφa∂νφbηab is called the reference metric. To
make sure we only break the spatial diffeomorphism, and to keep the model simple,
the scalar fields are set to be φx = x and φy = y, such that the reference metric reads
(0, 0, 1, 1) in the (t, z, x, y) basis. For this model U3 and U4 are zero, U1 = 2z/L and
U2 = 2z2/L2. Therefore the mass term becomes,

M2(C1U1 + C2U2) = M2C1
2z
L

+ M2C2
2z2

L2 (5.5.81)

If we define dimensionful parameters as,

α1 = C1
LM2

2
α2 = C2M2 (5.5.82)
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and set µB = 0 we then get the emblackening factor defined in (5.4.16), with
[α1] = 1 and [α2] = 2.

Stuckleberg Fields

An alternative method [21] is to look at what the stress energy tensor looks like when
massless scalar fields linear in a CFT spatial coordinate are introduced.

∇〈Tij〉 = ∇jψ(0)〈O〉+ F(0)ij〈Ji〉 (5.5.83)

where the first term is the coupling between an operator that is sourced by the
scalar field, and the second term is if a gauge field is turned on in the bulk. The reason
the scalar fields are restricted is to keep the model simple, that is to make sure that the
tensor does not depend on the boundary coordinates and that the metric remains
translationally invariant. The holographic action used is then given by,

SBulk =
1

16πGN

∫
d4x
√
−g
[

R− 2Λ− L2

4
F 2 − L2

2

2

∑
I
(∂ψI)

2] (5.5.84)

ds2 =
L2

z2

(
dz2

f (z)
− f (z)dt2 + dx2 + dy2

)
ψI = β Iaxa (5.5.85)

f (z) = 1− 1
2

β2L2z2 −mz3 +
µ2

Bz4

4z2
H

(5.5.86)

where

β2 ≡ 1
2

2

∑
a

∑
I

β Iaβ Ib (5.5.87)

This looks simlar to the metric we have before but now with α1 = 0 and
α2 = −β2L2/2. The emblackening factor becomes,

f (z) = 1 + α2z2 −mz3 +
µ2

Bz4

4z2
H

(5.5.88)

It should therefore be possible to cast the momentum dissipating term,
α2 = −β2L2/2 , in terms of the notation used in the dGRT model. Noting the
following,
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−L2

2

2

∑
I=1

(
∂ψI

)2

= −L2

2

2

∑
I=1

gµν∂µψI∂νψI

= −L2

2
gµµ

(
∂µ(β1aφa)∂µ(β1aφa) + ∂µ(β2aφa)∂µ(β2aφa)

)
= −L2

2
gµµ

(
β1aβ1a∂µ(φ

a)∂µ(φ
a) + β2aβ2a∂µ(φ

a)∂µ(φ
a)

)
= −L2

2
gµµβ2∂µφa∂µφa

= −1
2

L2β2[gxx∂xφa∂xφa + gyy∂yφa∂yφa]

= α2
2z2

L2

= M2C2U2

(5.5.89)

where we have used that − 1
2 L2β2 = α2 = M2C2,

β1aβ1a + β2aβ2a = ∑2
I β Iaβ Ia = βa · βa = β2 and gii = z2/L2 we do indeed see that the

two models are related.

5.B Holographic Renormalisation

In this appendix we perform the holographic renormalisation of the action S in
eq. (5.4.17) in the background spacetime with metric in eq. (5.4.16). More specifically,
we determine the counterterm action, SCT, localised on the cutoff surface z = ε, as
mentioned in sec. 5.4.1. In principle we could fix SCT by demanding a well-posed
variational problem [184, 185, 186, 147, 187], however, by exploiting a special feature
of our system we have found a simple argument that gives SCT easily, as follows.

The key observation is that when the field strength vanishes, Fab = 0, the action S
of the space-filling brane can be viewed as a contribution to the cosmological constant.
We may thus use known results for the counterterms of a bulk theory that gives rise to
the metric in eq. (5.4.16), split that theory’s cosmological constant into “background”
and “brane” contributions, with the latter proportional to the branes prefactor, N , and
then take a probe limit, meaning expand in N and retain the terms ∝ N . The order N
counterterms that we obtain must be our SCT for the probe brane action S. Since Fab

will play no role in what follows, and in particular our non-zero Fzt makes no
contributions to the z = ε endpoint of integration in S, we will set Fab = 0 in the rest of
this appendix.

The background dRGT massive gravity action (5.5.77) must be amended by two
types of terms at the z = ε surface. First is the Gibbons-Hawking term,

SGH = − 2
16πGN

∫
z=ε

d3x
√−γ K, (5.5.90)
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where γ ≡ det(γij) and K is the trace of the second fundamental form on the z = ε

surface (with outward-pointing normal vector). Second are the counterterms, which
for massive gravity in d = 4 were determined by ref. [193, 194]:

Sgrav
CT = − 1

16πGN

∫
z=ε

d3x
√−γ

[
5

∑
j=1
Lgrav

j

]
, (5.5.91a)

Lgrav
1 =

4
`

, Lgrav
2 = ` Rγ, (5.5.91b)

Lgrav
3 =

`

2
M2 C1 U1, Lgrav

4 = ` M2 C2 U2, Lgrav
5 = − `3

16
M4 C2

1 U2, (5.5.91c)

where Rγ is the Ricci scalar computed from γij. The counterterms in eq. (5.5.91b) are
those required for holographic renormalisation of the Einstein-Hilbert action, while
the counterterms in eq. (5.5.91c) are the “extra” counterterms required for massive
gravity.

As mentioned above, our holographic renormalisation for the probe brane action
begins with the observation that if we split the cosmological constant into two
contributions,

Λ ≡ Λ′ + (16πGN) N , (5.5.92)

then the bulk action of massive gravity becomes

Sgrav =
1

16πGN

∫
d4x
√
−g
(

R−Λ′ + M2 C1 U1 + M2 C2 U2
)

(5.5.93a)

− N
∫

d4x
√
−g, (5.5.93b)

where in the second line we recognise the probe brane action S in eq. (5.4.17), with
Fab = 0. We can correspondingly define a new radius of curvature, L,

Λ′ ≡ − 6
L2 , (5.5.94)

so that eq. (5.5.92) becomes

− 6
`2 = − 6

L2 + (16πGN) N , (5.5.95)

or equivalently,

` = L
(

1− L2

6
(16πGN)N

)−1/2

. (5.5.96)

As mentioned previously, the probe limit consists of expanding in (16πGN)N � 1
and retaining the leading contribution in N . Expanding eq. (5.5.96) in the probe limit
gives

` = L +
L3

12
(16πGN)N +O

(
((16πGN)N )2

)
. (5.5.97)

To obtain the counterterms for the probe brane, we simply plug the probe limit
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expansion for ` in eq. (5.5.97) into the counterterms for massive gravity, eq. (5.5.91),
and extract the terms ∝ N , with the result

SCT = −N
∫

z=ε
d3x
√−γ

[
5

∑
j=1
Lj

]
, (5.5.98a)

L1 = −L
3

, L2 =
L3

12
Rγ, (5.5.98b)

L3 =
L3

24
M2 C1 U1, L4 =

L3

12
M2 C2 U2, L5 = −L5

64
M4 C2

1 U2. (5.5.98c)

The counterterms in eq. (5.5.98b) are those required for holographic renormalisation of
a spacetime-filling probe brane in Einstein-Hilbert gravity [147], while the
counterterms in eq. (5.5.98c) are the “extra” counterterms required for a probe brane in
massive gravity.

The counterterms in eq. (5.5.98) are the main result of this appendix. They are
applicable to any spacetime-filling probe brane with action of the form in eq. (5.4.17),
with Fab = 0, in any asymptotically AdS4 solution of the massive gravity theory of
eq. (5.5.78). They are also applicable to probe branes in solutions of massive gravity
that can be mapped to other systems, such as massless scalar or two-form fields linear
in a CFT spatial coordinate [21, 195, 22], and to probe branes whose Fab is non-zero but
decays sufficiently quickly asymptotically as to not introduce further divergences
when z→ 0.

Restricting the solutions to the case we investigated, that is with a reference
metric of fµν = diag(0, 0, 1, 1) where only U1/2 survive and using the dimensionful
paramters α1 and α2, we have that the regulated on-shell probe brane action is then

Sreg = −N
∫

d4x
√
−g = −N

∫
d3x

∫ zH

ε
dz

L4

z4 = −N
∫

d3x
L4

3

(
1
ε3 −

1
z3

H

)
, (5.5.99)

where, as mentioned in sec. 5.4.2, the term −N L4

3
1
ε3 that diverges as ε→ 0 is

independent of T, α1, and α2. On the z = ε surface we then have

γij =
L2

ε2 diag (− f (ε), 1, 1)ij , (5.5.100a)

(5.5.100b)
√−γ =

1
ε3 L3 +

1
ε2

L3

2
α1 −

1
ε

L3

8
(
α2

1 − 4α2
)
+

L3

16
(
α3

1 − 4α1α2 − 8m
)
+O (ε) ,

and Rγ = 0. Plugging our values for the symmetry breaking factors eq. (5.5.82) as well
as using U1 = 2z/L and U2 = 2z2/L2 into eq. (5.5.98), we thus find the counterterms
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that renormalise the probe brane action in this case:

SCT =
5

∑
j=1

Sj, (5.5.101a)

S1 = −N
∫

d3x
√−γ

(
−L

3

)
(5.5.101b)

= −N
∫

d3x
(
− 1

ε3
L4

3
− 1

ε2
L4

6
α1 +

1
ε

L4

24
(
α2

1 − 4α2
)
− L4

48
(
α3

1 − 4α1α2 − 8m
)
+O (ε)

)
,

S2 = −N
∫

d3x
√−γ

(
L3

12
Rγ

)
= 0, (5.5.101c)

S3 = −N
∫

d3x
√−γ

(
L3

24
M2 C1 U1

)
, (5.5.101d)

= −N
∫

d3x
(

1
ε2

L4

6
α1 +

1
ε

L4

12
α2

1 −
L4

48
α1
(
α2

1 − 4α2
)
+O (ε)

)
, (5.5.101e)

S4 = −N
∫

d3x
√−γ

(
L3

12
M2 C2 U2

)
, (5.5.101f)

= −N
∫

d3x
(

1
ε

L4

6
α2 +

L4

12
α1 α2 +O (ε)

)
, (5.5.101g)

S5 = −N
∫

d3x
√−γ

(
−L5

64
M4 C2

1 U2

)
(5.5.101h)

= −N
∫

d3x
(
−1

ε

L4

8
α2

1 −
L4

16
α3

1 +O (ε)

)
. (5.5.101i)

As mentioned in sec. 5.4.2, the volume counterterm, S1, cancels the divergence in the
bulk action but also includes divergences of lower order in 1/ε whose coefficients are
non-zero when α1 6= 0 and/or α1 6= 0. The latter are cancelled by the other
counterterms, and specifically the order 1/ε2 divergences cancel between S1 and S3

while the order 1/ε divergences cancel among S1, S3, S4, and S5. All of the
counterterms also contribute terms that remain finite as ε→ 0. Adding eq. (5.5.99) for
Sreg and eq. (5.5.101) for SCT, and taking the ε→ 0 limit, we find for the renormalised
on-shell probe brane action

Sren = lim
ε→0

(
Sreg + SCT

)
(5.5.102a)

= −N
∫

d3x
(
−L4

3
1

z3
H
− 5L4

48
α3

1 +
L4

4
α1α2 +

L4

6
m
)

. (5.5.102b)
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Chapter 6

Conclusions

Thales took us to Democritus took us to Dalton took us to Feynman, and in the search
for the Fundamental a most miraculous duality was discovered. If one went looking
for such a duality at the outset, it seems unlikely that it would ever have been found.
It is almost inconceivable 1 that a CFT without gravity in a lower dimension can be
related to a quantum theory of gravity, and moreover that that quantum theory arises
simply from studying what happens to pieces of string. It is hard to imagine what
would be more surreal, that the Fundamental is a piece of string, or that the whole of
string theory mathematically exists but is not realised in nature, that the duality does
not exist.

However, from what we have seen in this thesis there is strong evidence that it
does indeed exist. Leaving the question of what CFT we have aside, we have seen
remarkable cross-disciplanarity that even the most synergy mad politician would be
proud of. We have seen that chiral symmetry can be related to D-branes bulking in the
bulk, Weyl semi-metal phase transitions analogous to whether a D-brane falls into a
black hole or not and simulating momentum dissipation in lattice systems by turning
on a graviton mass. To pull together experts from various fields is one of the dualities
greatest achievments, that string theoriest and black hole experts can feature in the
same conference alongside condensed matter physicists, phenomenologists, quantum
computer scientists and AI magicians. It seems natural to conclude that only with such
an array of expertise will humanity make tractable progress towards the Fundamental.

How then can the duality be improved upon? First, as we have seen in this
thesis, the quest for universalities and exploring the possibilities of duality models
will go on. For example - adding confinement to the model in chapter 3 or exploring
the neutron star phase of the QCD phase diagram, where strongly coupled deconfined
quarks might exist; or that the symmetry breaking model of chapter 5 could be
combined with the analysis of chapter 3 to produce crystalline phase structures; or
exploring the quasi-normal mode spectrum of the Weyl semi-metal of chapter 4 to
quantify the odd peaks seen in the conductivity and the exponentially decaying

1We have checked that this is the correct use of the word.
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solutions. Even if we do not arrive at univeralities, such exploration can nevertheless
pave the way to new ideas and directions of research for theoreticians and
experamentalists alike.

Second, is the study of the duality itself. A major step forward would be to prove
which CFTs (and deformations thereof) give rise to holographic duals [196].
Improving our understanding of string theory and moving away from the vanishing
gs and α′ would also allow for a greater exploration of the parameter space of the dual
field theory, perhaps attainable through the study of bulk amplitudes [197].

Recently, new directions of collaboration have emerged, such as the view that
holography is related to quantum error correction code [198], and that using ideas
from the duality, if not the duality itself, can make progress in old problems such as
the Hawking-Page curve [199, 200].

The duality has proven to be one of the most incredible discovories of the late
twentith century and shows no signs of slowing down in the twenty-first. It once
again shows that we simple do not know where the next advancement might come
from and often stumple across it in our ignorance - hence the everlasting need to
study the elusive Fundamental for its own sake, and from it who knows what might
be found. It is difficult to pose the correct question that will reveal all of nature in one
swoop, instead it is often better simply to be curious and then tenacious.
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