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Abstract
Access to health care is imperative to health equity and well-being. Geographic access to health care can
be modelled by combining different spatial datasets, among others, on the distribution of existing health
facilities and populations. Several population datasets are currently available, but their impact on
accessibility analyses is unknown. In this study, we model the geographic accessibility of public health
facilities at 100-meter resolution in sub-Saharan Africa and explore the effect of six among the most
popular gridded population datasets on coverage statistics at different administrative levels. We found
differences in accessibility coverage of more than 70% at the sub-national level, based on a one-hour
travel time threshold. Differences are signi�cant in large and sparsely populated administrative units,
dramatically shaping patterns of health care accessibility at the national and sub-national level. The
results underscore an essential source of uncertainty in accessibility analyses that should be
systematically assessed in policy-making.

Introduction
Geographic access to healthcare is essential to ensure universal health coverage, a key target of the
United Nations Sustainable Development Goals (SDGs)1. While geographic access is only one of many
factors, such as affordability, availability, and acceptability2, 3, 4, that impacts access to healthcare, it is
fundamental to the organization of a health system5, 6. Modelling geographic access to healthcare is
necessary to identify gaps in health system coverage and to support targeted health system optimization
and planning, such as placement of new facilities, deployment of community health workers, or mobile
outreach7. The key components of a geographic accessibility analysis are the population needing access,
the locations of health facilities, and data to help model connectivity and travel time (i.e., road networks,
landcover, streams, elevation and care seeking speci�cities)5, 8. Although data on each of these
components is increasingly available, accurate and current9, there are persistent differences between
regions, hampering accessibility analyses in data-poor regions10. Global advancements in population
modelling have enabled the research community to use several gridded population datasets11, 12, 13, 14, 15,

16, in combination with recent data on health facility location17, opening new avenues for modeling
geographic accessibility to healthcare in data-poor settings. The effects of using different population
data in accessibility analyses to calculate the proportion of the population that can access a health
facility within a given travel time threshold, i.e., accessibility coverage, and thus monitoring indicators
that underpin policy-making at the global, national, and sub-national level, are unknown. This study aims
to shed light on the magnitude and variation of these effects and possible policy implications, by
conducting the �rst comprehensive comparison of six of the most commonly used global gridded
population datasets in a geographic accessibility model at 100-meter resolution for sub-Saharan Africa. 

Gridded population datasets allocate population counts across rows and columns of grid cells either by
using simple techniques to uniformly redistribute census data or by using Earth observations, population
data, and dasymetric modelling techniques, that provide more re�ned estimates18. These datasets
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typically use a country’s most recent census or projected estimates, summarized in available
administrative units or census enumeration areas, to disaggregate population numbers at a higher spatial
and temporal resolution19, 20. Population redistribution techniques vary from dataset to dataset, meaning
that the suitability of each dataset for any spatial analysis is context-dependent. Discrepancies between
datasets do not necessarily re�ect speci�c appropriateness; rather the suitability of each gridded
population dataset is highly dependent on the target scale, context and purpose, and geographic extent of
the analysis18. However, even when two or more gridded population datasets meet some predetermined
criteria, differences in accessibility coverage may be observed. Different population data have been used
in accessibility analyses, exposing potential uncertainty in accessibility coverage estimates and making
comparability across studies di�cult. Some studies have used national censuses21, WorldPop products7,

10, 22, 23, 24, 25, 26, Gridded Population of the World (GPWv4)27, High Resolution Settlement Layer (HRSL)28,
or Landscan29. The scienti�c literature increasingly acknowledges differences between gridded
population datasets18, 19. However, often the focus is on general data properties and assessment of
appropriateness18, 19, 30 or country- or discipline-speci�c implications of using the various data
products20, 31, 32, 33. In addition, the motivation and implications of using a particular population dataset
are usually neglected in accessibility studies33, 34. The choice of any speci�c population layer is likely
driven by user personal preferences, lack of knowledge of other sources, or ease of access and use. 

Here, we systematically assess differences between estimates of geographic healthcare accessibility for
all of sub-Saharan Africa using the most popular gridded population data products: 1) WorldPop top-
down constrained, 2) WorldPop top-down unconstrained, 3) HRSL, 4) GPWv4, 5) Landscan, and 6) Global
Human Settlement Population (GHS-POP). Healthcare accessibility is modelled at 100-meter resolution
using the most recent release of the geo-coded health facility inventory of 50 countries in sub-Saharan
Africa to enable a fair comparison across models17. We contrast accessibility coverage statistics derived
from the six population datasets (Supplementary Table 1), across countries at national and sub-national
scale. Travel time to the nearest health facility was calculated by developing a friction layer representing
the estimated time required to reach the nearest health facility. We intersected various gridded population
datasets with our travel time estimates to determine accessibility coverages within various travel time
thresholds (i.e., 30, 60, 90, 120, 150, and 180-minutes). Our accessibility coverages vary widely between
the different datasets and estimates on the sub-Saharan African level mask larger sub-national
variations. Differences are most pronounced in scarcely settled regions, where administrative units are
large. Datasets that distribute population over larger land areas rather than limiting to building footprints
can drastically change accessibility patterns. The results provide useful clues for policy-making and
critically re�ecting on earlier estimates of accessibility to health care and their associated uncertainties.

Results
Accessibility coverage estimates

Sub-Saharan Africa
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Estimates of accessibility coverage, modelled by constructing a travel time grid at 100-meter resolution
for all of sub-Saharan Africa (Supplementary Fig. 1), show greatly divergent results using the six different
population datasets (Fig. 1A and B). For all of sub-Saharan Africa, the population that has access to
healthcare is highest when using HRSL, followed by GHS-POP (Fig. 1B). Differences in accessibility
coverage are larger at 30- and 60-minute catchments and logically decrease as travel times increase. An
estimated 88.2% of the HRSL-derived population has access to a health facility within 30 minutes travel
time. This value drops to 60.5% when GPWv4 is considered. Access to healthcare is in general
substantially lower when statistics are derived using GPWv4 and WorldPop top-down unconstrained
datasets (Fig. 1B). These two datasets also present the largest differences in accessibility coverage as
compared to the other datasets (Fig. 2). Although the differences between the other datasets are smaller,
there are still coverage differences of up to 9.5% among the other population products at 30 minutes
travel time (Fig. 2). The relative differences are smallest between Landscan and WorldPop top-down
constrained and between HRSL and GPWv4. Accessibility coverages at the sub-Saharan African level
already show strong variation, but continental summary statistics substantially mask variations at the
national and sub-national level. 

National

Moving from sub-Saharan African to national coverage statistics, we �nd new patterns, with varying
results between and within countries (Fig. 3 and Supplementary Table 2). Strongly divergent trends are
particularly evident in some countries, including Chad, Sudan, Eritrea, South Sudan, Central African
Republic, Republic of the Congo, Democratic Republic of the Congo, Equatorial Guinea, and Gabon (Fig.
3). In these countries, we observe lower coverage statistics for GPWv4 and WorldPop top-down
unconstrained, sometimes followed by signi�cant discrepancies between the coverage values for the
other datasets. The differences in accessibility coverage can exceed 60% and would affect any
conclusion drawn from one of the individual population datasets. In the Republic of the Congo, for
example, accessibility coverage at 30 minutes travel time ranges from 28.8% to 88.9%. Using GPWv4 or
WorldPop top-down unconstrained suggests that 71.2% or 65.5% of the population in the country is
unable to reach the nearest health facility within half an hour travel time. In contrast, using GHS-POP,
HRSL, Landscan, or WorldPop top-down constrained indicates that 11.1%, 13.9%, 15.8%, or 27.3% of the
population is unable to reach healthcare within half an hour. This discrepancy between the datasets may
have a strong impact on the conclusions drawn from monitoring global and national indicators of access
to healthcare, and thus on decision making for resource allocation. 

Sub-national

Figure 4 illustrates accessibility coverage within 1-hour catchments at the sub-national (i.e.,
administrative 1) level. Supplementary data 1 presents accessibility coverage for 30, 60, 90, 120, 150, and
180 minutes travel time at administrative level 2. Despite the similarities in overall accessibility patterns,
with low access in northern and central sub-Saharan Africa and higher access in southern sub-Saharan
Africa and coastal regions, sub-national differences between the datasets are clearly evident. Low
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accessibility coverage is particularly widely spread for GPWv4 and WorldPop unconstrained. In Figure 5
we present the average percentage point difference between the datasets we observe at the sub-national
level. The average difference between all datasets can be as high as 45.4%. However, when comparing
individual datasets, the sub-national average difference can exceed 70% (Fig. 5B).  

Explaining discrepancies in coverage estimates

Most of the observed discrepancies in accessibility coverage can be explained by the characteristics and
quality of the input data and the redistribution approach used for creating the gridded population
datasets. More speci�cally, the main differences in accessibility coverage that we observe can be
explained by 1) the use of settlement data to conditionally constrain population to buildings, 2) the
quality and resolution of the settlement data used, and 3) the granularity of the smallest publicly
available unit for population data. In Figures 4 and 5, the differences in accessibility coverage are
particularly evident between datasets that constrain population to settlements (i.e., WorldPop top-down
constrained, HRSL, GHS-POP, and Landscan) and the other datasets that allocate population based on
dasymetric weighting or other areal interpolation techniques. Constrained population datasets typically
use building footprints or settlement feature data derived from satellite imagery to constrain the
distribution of population to grid cells in which buildings have been detected. The datasets based on
settlement data have a large proportion of zero cells in areas where no buildings are detected31. This
means that population is commonly distributed over smaller areas and therefore more concentrated in
regions with human activity and health facilities. In contrast, datasets that do not contain information on
settlements have a small proportion of zero cells. This is a natural consequence of using approaches that
spread population over vast areas of land where few or no people are likely to reside, including extremely
uninhabitable areas such as deserts or dense forests where there are no health facilities. These distorted
distributions ultimately result in longer travel times for some of the population and therefore smaller
overall accessibility estimates. 

In northern Chad, for example, accessibility coverage is between 58.1% and 72.4% at 30 minutes travel
time using HRSL, GHS-POP, Landscan, or WorldPop top-down constrained, and drops to almost 0% when
GPWv4 or WorldPop top-down unconstrained is considered. Similar patterns were also observed in
northern Niger and other regions south of the Sahara desert. This region is sparsely population and has
large differences in accessibility patterns between the datasets. Figure 6 shows an example of the
observed visual differences between the datasets. The same is true for some regions in central sub-
Saharan Africa, such as the Republic of the Congo, Gabon, and the Democratic Republic of the Congo
where large areas of land are characterized by dense and closed forests with very few detected
settlements (Supplementary Fig. 2). In Ogooué-Maritime, a province in western Gabon characterized by
dense forests, accessibility coverage within 30 minutes ranged from 87.9% to 96.3% when using
WorldPop top-down constrained, Landscan, HRSL, or GHS-POP, in ascending order of coverage. However,
accessibility coverage decreases to 11.1% and 3.8% when WorldPop top-down unconstrained and GPWv4
are used. Comparisons of accessibility coverage between the settlement-based population data also
show discrepancies (Fig. 2 and Fig. 5), as their accuracy appears to be highly dependent on the complete
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identi�cation of individual building structures. The quality of the underlying satellite data containing
information on built environments and the applied methodology to automatically extract built features
involves omission and commission errors, leading to an under- or overestimation of uninhabited areas20,

35, 36. While WorldPop top-down constrained uses polygon building footprint data and HRSL uses high
resolution satellite imagery (~50 cm), GHS-POP extracts built features from Landsat 8 imagery with a
resolution of ~30 meters30. Due to the di�culty of interpreting built-up areas from coarser satellite
imagery, GHS-POP and, to a lower extent, Landscan have previously been found to overestimate
uninhabited zones and thus underestimate people in sparsely populated sub-urban and rural areas20, 37,

38. We found similar patterns in two rural areas in Garissa and Nakuru counties in Kenya, where divergent
patterns of settlement detection between the gridded population products were seen (Supplementary
Figures 3 and 4). Particularly GHS-POP did not seem to allocate population in small settlements that were
included in the other datasets (Supplementary Figure 4). When no population is allocated to small rural
settlements, a relatively large proportion of the population is distributed into larger built areas where
facilities are located, this likely contributes to higher accessibility coverage statistics for GHS-POP and
Landscan as compared to HRSL and WorldPop top-down constrained.  

An important challenge for all gridded population datasets is the quality and granularity of the input
population data. Even though census data is often collected at the household level or in smaller
enumeration areas, countries usually release aggregated data at speci�c administrative levels to protect
privacy18. The scale at which the latest population census is made publicly available varies widely across
sub-Saharan Africa (Figure 7A) and ranges on average from about 2 km2 to 182,211 km2. Figure 7B
illustrates the association between population input unit size (km2), relative coverage difference between
the datasets at 1-hour travel time, and average total population per administrative unit (level 1). The
�gure shows that in areas where there are large differences in accessibility coverage between the
datasets, the size of the population input unit is generally large, and the total population living in these
units is small, mostly in the �rst or second quantile (Fig. 7B, top right corner). This means that when
population counts in thinly populated areas are aggregated into large units, differences between the
datasets are greatest. Figure 5 and Figure 7 show similarities between areas with high accessibility
coverage differences and regions with large population input sizes, such as the northern- and central
parts of sub-Saharan Africa. Sangha, for instance, a region in the Republic of the Congo has one of the
highest average accessibility coverage differences between all datasets (45.4%). The average total
population of 45,281 people is spread out over approximately 57,686 km2 land and the landscape
primarily exists of dense forests, complicating building detection. The same is true for an area that we
described before, Ougooué-Maritime province in Gabon, where the average coverage difference is 45%,
the average total population is 44,230, the population input unit size is 7,528 km2, and the landscape is
dominated by dense forests (Supplementary Figure 2). 

The aggregated nature of the input population data masks the spatial variability in population
distribution at �ner scales and therefore causes uncertainty when total population counts are reallocated
into grid cells. Our analysis suggests that particularly in thinly populated areas where population data is
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made available at a coarse scale, the different distribution techniques between the datasets cause the
most varying reallocation patterns and thus translate into widely ranging accessibility coverage
estimates.

Discussion
Data on population distribution is the main denominator for almost all public health interventions. The
effectiveness of evidence-based health planning, such as the distribution of health facilities or the
implementation of vaccination campaigns, largely depend on accurate population estimates39, 40 to
calculate resource needs and measure the impact of interventions41, 42. Moreover, the SDGs and other
international health targets are based on indicators that re�ect the proportion of the population that has
access to certain services. Knowing how many people live where is essential for these calculations41.
Here we show that estimates of healthcare coverage vary widely depending on the gridded population
dataset chosen and that they can lead to con�icting conclusions. 

Our results show notable variations and tend to diverge most in regions with a low population density
where administrative units are large, and land cover classes such as dense forests and deserts indicate
scarce population distribution. The large variability in our results would also hold true for coverage
estimates of other types of services for which similar accessibility models can be used, such as school
access for children within a prede�ned threshold or for estimates related to the people at risk of
infectious diseases43, 44, people living in disaster prone areas31, or modelling vaccination coverage45, 46. 

The use of one population dataset can have strong implications for policy- and decision-making. With
new global targets aimed at improving access to healthcare it is crucial that indicators that monitor
progress are correct and based on realistic input parameter values. For instance, the recently adopted
target 4 indicator of the World Health Organization (WHO)’s Ending preventable maternal
mortality (EPMM) strategies states that by 2025 (1) at least 60% of the global population should be able
to access the closest functional emergency obstetric care (EmOC) health facility within two hours travel
time, and (2) 80% of countries should have a 2-hour accessibility coverage greater than 50%47. A United
Nations (UN)-led guidance to help countries model this indicator will be released in 2022. In that context,
our results can provide useful quanti�cation of the expected relative differences for and thus the
sensitivity of this indicator based on various population datasets. Taking again the Republic of the Congo
as an example, we �nd that when using different population datasets, accessibility coverage at 2-hour
travel time ranges from 44.7% to 95.0%. Coverage statistics are highest when using GHS-POP (95.0%),
HRSL (93.2%), Landscan (93.4%), or WorldPop top-down constrained (84.3%). However, when using
WorldPop top-down unconstrained or GPWv4, coverage was considerably lower at 51.5% and 44.7%
respectively. This means that our observed differences could lead to very different conclusions when
considering thresholds for accessibility coverages, such as EPMM. Supplementary Figure 5 shows the
sub-national discrepancies in accessibility coverage at a 2-hour travel time threshold at administrative
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level 1. Although the differences are smaller than those in Figure 4 (1-hour travel time), the unconstrained
datasets show markedly different patterns than the constrained datasets. 

In light of previous research and policy documents, that have relied on a single gridded population
dataset for coverage estimates, our results also provide interesting clues for comparison for the same
region or country. For example, studies on geographic access to care in Mozambique have used GPW27,
WorldPop top-down unconstrained48, and HRSL28, leading to different estimates. In addition, Weiss et
al.34 reported an accessibility coverage of 78.7% in a 1-hour catchment in Madagascar, yet our coverage
estimates range from 58.7-76.6% in the same catchment. The same holds true for other countries where
estimates from Weiss et al.34 were either outside our range of estimates or showed large intervals around
the reported estimate. While any comparison of coverage is also in�uenced by other input data used in an
accessibility analysis, such as travel scenarios, road networks, and health facility coordinates, our results
can be used to get a sense of the potential uncertainty in the coverage estimate as a result of the
population denominator chosen. 

Gridded population datasets heavily rely on the recency and quality of population censuses, which
countries commonly conduct every 10 years, however many countries in sub-Saharan Africa have not
conducted a full population census in more than 15 years due to �nancial constraints, political instability,
or remoteness18, 49. In the Democratic Republic of the Congo, the last complete census was carried out in
1984 and policy-makers and gridded population data providers therefore rely on imprecise estimates of
current population through linear population projections50. The growing number of bottom-up population
estimation approaches overcomes this challenge by conducting micro-censuses in small areas which are
then extrapolated to larger administrative units using ancillary satellite data41. In January 2022,
WorldPop released bottom-up population estimates for seven provinces (i.e., Haut-Katanga, Haut-
Lomami, Ituri, Kasaï, Kasaï Oriental, Lomami and Sud-Kivu) in the Democratic Republic of the Congo51, 52.
Interestingly, comparing the relative coverage estimates of the bottom-up and top-down datasets in these
seven provinces did not lead to different patterns than earlier observed (Supplementary Table 3), meaning
that the relative bottom-up coverage fell within the range of the constrained top-down datasets. However,
absolute comparisons were markedly different, with generally lower total population counts in the
bottom-up dataset and thus proportionately lower numbers of people falling within the 1-hour health
facility catchment. Even though it is impossible to indicate the best gridded population dataset, objective
comparisons of population products can improve our understanding of the differences and the
implications of using one dataset in particular19. 

In terms of �tness for use, population datasets that constrain population, based on high resolution
settlement data (i.e., HRSL, WorldPop top-down constrained), to settlements are more suited for
accessibility modelling assuming acceptable levels of accuracy42. Most accessibility models need to
consider the population at their place of residence (i.e., de jure/de facto population)19, because the aim is
to capture the complexity of the patient’s journey to reach a health facility from their home, so that health
system improvements can be targeted, and microplanning of outreach is possible39, 40. This is



Page 10/25

complicated when datasets do not constrain population to buildings or when ambient population is
modelled and thus make GPWv4, WorldPop top-down unconstrained, and Landscan less favorable.
However, the interpretation of built-up areas from satellite imagery is not without error. This means that in
the absence of complete settlement data, these unconstrained datasets are still important and useful in
ensuring that no population is overlooked in health estimates. Resolution and recency are other important
factors that weigh in this decision. Accessibility models are dependent on a more local target scale for
analysis, the unconstrained population datasets cannot provide this analytical scale because the
population is distributed over larger units. Constrained models focus more explicitly on the units of
interest relevant for accessibility (areas) and therefore the estimates are more plausible. The HRSL and
WorldPop top-down constrained datasets seem the best �t for use when it comes to accessibility
modelling to healthcare. Our advice would be to, where possible, consider both datasets and construct a
plausible range of coverage statistics, comprising the mean, and a lower and upper bound around the
statistics. 

There are a number of caveats related to our accessibility analysis which are explained in more detail in
the Methods. In brief, our travel time raster was developed while making large scale assumptions on the
speeds- and modes of transports which may not appropriately re�ect local contexts. We think that by
keeping the speeds and modes constant per country, we were able to more concretely discuss the
differences in coverage as a result of the population datasets. In addition, we did not reallocate
population falling on barriers (i.e., rivers and lakes), however percentages are overall small and not
expected to change any of the patterns we observed. 

Despite an increasing global availability of data on numerous geographic objects, we still face challenges
in precisely and accurately locating population, especially in low- and middle-income countries and areas
sparsely populated. Yet, data on population density and distribution are vital inputs for research and
policy-making53. The results presented in this study show how valuable and critical a comparative
analysis between population datasets is for the derivation of coverage statistics that inform local policies
and monitor global targets. Our results show that large differences exist between the datasets. This is
evenly true for datasets informed by building footprints, even though to a smaller extent. Caution should
be taken when drawing conclusions from any single gridded population dataset and potential
uncertainties and limitations should increasingly be acknowledged in accessibility studies. A critical
comparison of the results provided here shines a light on the reliability and plausibility of coverage
statistics.

Methods
Accessibility model: 

Accessibility to healthcare was modelled in terms of travel time to the nearest public health facility. This
calculation was made by overlaying health facility coordinates on top of a friction raster. Each grid cell in
the friction raster represented a unique land cover class which was assigned a travel speed. On-road
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travel represented motorized speeds whereas for off-road travel walking speeds were used. The
accumulated time it takes to traverse all cells to the nearest health facility was then calculated for each
grid cell, representing the travel time raster. This calculation was done on the eight-directional least-cost
path algorithm8, 54 and was isotropic, meaning that no corrections were made for slopes. 

The friction raster represents information about potential impacts on a patient’s journey to healthcare,
including land cover type, barriers to movement, and the road network. All this information was extracted
from open data sources (Table 1). We fully automated the entire work�ow in an R and Python
environment. In brief, road networks, rivers, and lakes were extracted from OpenStreetMap (OSM) using
the osmextract55 library in R56 (version 4.0.4). The land cover for sub-Saharan Africa was downloaded at
100-meter resolution from Copernicus57. Health facility coordinates were extracted from a geocoded
database for sub-Saharan Africa17. Administrative boundaries for all African countries were taken from
the database of Global Administrative Areas (GADM)58. 

Table 1

Overview of data sources for accessibility analysis.

Dataset Producer Resolution Year Citation

Landcover Copernicus ~100
meters

2019 57

Roads OpenStreetMap vectorized 2021 55, 59

Waterbodies (lines and
polygons)

OpenStreetMap vectorized 2021 55, 59

Health facilities Maina et al. (2019) vectorized 2018 17

Travel scenario Adapted from Weiss et al. (2020) - - 34

Administrative boundaries Global Administrative Areas
(GADM)

vectorized 2020 58

Data preparation was done on a per-country basis and optimized to minimize computation time as
detailed in the Supplementary Figure 6, implying that land cover data was �rst downloaded for the entire
African continent and then processed for each country, separately. In summary, and as shown in
Supplementary Figure 6, data processing included cropping to the bounding box of each country to
minimize computation time in the masking step. Then rasters were clipped to exact country borders.
Lastly, the land cover raster was projected in the country’s coordinate system (Supplementary Table 4). 

The process was parallelized using the doParallel60 and foreach61 R libraries. All necessary data
processing steps were done using the terra package62. Scripts for data processing and analysis can be
sourced from Zenodo [will be created after �nalization of article]. 
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Vector data representing road networks and barriers to movement were fetched using the osmextract55

library in R56 (version 4.0.4) and projected in the country’s coordinate system (Supplementary Table 4). All
road classes that are o�cially classi�ed by OSM were included for analysis63. Barriers to movement
(unless a road crosses over) included hydrographic lines classi�ed as river and hydrographic polygons.
Streams and smaller waterbodies were excluded from the analysis since they can be traversed with
ease63. 

The geocoded inventory of public health facilities in Sub-Saharan Africa17 assembled between 2012 and
2018 was downloaded and projected to match the spatial coordinate system of the other datasets by
country (Supplementary Table 4). We included all health facilities irrespective of type (e.g., primary,
secondary, health centers, etc.). 

Finally, all data were combined in a friction raster at 100-meter resolution. This resolution offered the best
compromise between computational e�ciency, spatial detail to address �ne-scale disparities in
healthcare access, and consistency with the assembled spatial data described above. The vector data
were rasterized at 100-meter resolution. All raster cells were aligned, and layers merged to create one
comprehensive land cover raster, to which travel scenarios (Supplementary data 2) were applied. The
travel scenarios for all sub-Saharan African countries were taken from Weiss et al. (2020)34 but adapted
to the context of this paper (Supplementary data 2). When a travel scenario from Weiss et al. (2020)34 did
not indicate a speed for a speci�c road class in a given country, we used the African average travel speed
for that road class (Supplementary data 2). 

Data processing of population grids: 

Population rasters were clipped to country borders and reprojected to each country’s projection system
(Supplementary Table 4). Population that was lost from the original �les, due to these data processing
steps, were equally smoothed out over the rasters so that total population counts remained the same as
in the original �les. This was done by comparing the summed population at administrative level 2 for the
original and projected rasters. Due to the different resolutions of the datasets, and to avoid resampling
population raster data, all population grids were transformed into spatial points representing the
centroids of the grid cells. 

Extraction of accessibility coverage statistics:

 To assess the spatial variation in national and sub-national accessibility coverage statistics, we overlaid
the six gridded population datasets onto the travel time rasters for each country. We extracted the travel
time and the administrative boundary (level 1 & 2) for each population point feature. We then calculated
the accessibility coverage statistics, by means of zonal statistics, to output the population able to reach
the nearest health facility within a certain travel time. Both relative and absolute coverage statistics were
obtained per administrative unit (level 1 and national). Population falling on barriers (i.e., water bodies or
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just outside country borders) were not included in the extraction of coverage statistics. The absolute and
relative number of people falling on barriers is indicated in the Supplementary data 2. 

Limitations of method: 

We note that to derive the presented coverage statistics, our travel time raster capturing accessibility to
the nearest health facility served as the main input data. However, we recognize that realistic estimates of
geographic access to healthcare require local knowledge of healthcare seeking behaviors, such as travel
modes and speeds, and information about (seasonal) barriers to mobility. Although we have used local
expert knowledge to inform accessibility models in previous studies26, 28, 64, the scale and context of the
presented analysis did not allow us to use such local knowledge. Such detailed input was beyond the
scope of this study that is intended to re�ect important differences between the population datasets.
Thus, while our travel time maps and associated accessibility coverages estimates should not be used
for health system planning at national and sub-national scales, our methodology can be adapted to the
local context, informed by expertise from various stakeholders at the national and sub-national level,
notably on modes and speeds of transport. 

One limitation of the current study is that the unconstrained datasets had a proportionately higher
number of people falling on areas considered as barriers (i.e., water bodies or areas falling outside of
country borders). On the full sub-Saharan African scale this proportion was only 0-2% of the total
population, however nationally and sub-nationally these numbers were higher, especially in small island
nations. 

In addition, modelling geographic accessibility presents challenges other than differences between
gridded population datasets. For example, uncertainties in travel modes and speeds can lead to under- or
overestimation of accessibility. If travel speeds are assumed to be higher than they actually are, the
accessibility model results will incorrectly indicate a higher accessibility coverage. This also applies to
uncertainties in road network data when some roads maybe missing or when roads may actually present
dirt tracks that in reality cannot be traveled by motorized vehicles. Realistic modelling of access to
healthcare therefore depends heavily on reliable and locally agreed-upon model inputs. One nascent area
is the use of Google map APIs to characterize travel time that has been shown to estimate near to reality
travel times in urban areas. The approach potentially accounts for tra�c, weather conditions, difference
in speeds, road conditions and other predisposing factors. However, the approach is still at its early
stages of development and more applicable in urban areas where through volunteered geographic
science, the coverage of data is better relative to remote and rural areas where the majority of the people
live. Therefore, the use of least-cost path algorithms still remains feasible but requires improved
parameterization65. 
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Figures

Figure 1

Accessibility coverage at the sub-Saharan African level. Absolute (a) and relative (b) continental
accessibility coverage for the six different gridded population datasets: HRSL, GHS-POP, GPWv4,
Landscan, WorldPop top-down constrained, WorldPop top-down unconstrained. Total population is lower
for HRSL because Ethiopia, Somalia, Sudan, and South Sudan are not included in the dataset released in
2018. Legend indicates the total population falling on barriers (i.e. permanent waterbodies) and thus not
included in the analysis.
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Figure 2

Relative difference in accessibility coverage estimates. The matrix shows the relative difference in
accessibility coverage statistics at a) 30, b) 60, c) 90, and d) 120 minutes travel time for the six gridded
population datasets for the full Sub-Saharan African region.
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Figure 3

Accessibility coverage for all sub-Saharan African countries. National plots for all sub-Saharan African
countries comparing relative accessibility coverage statistics at 30, 60, 90, 120, 150, and 180 minutes
travel time for the six gridded population datasets. Each plot corresponds to the relative geographical
location of the country. Legend indicates the total population falling on barriers (i.e. permanent
waterbodies) and thus not included in the analysis.
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Figure 4

Sub-national accessibility coverage maps for sub-Saharan Africa. Relative accessibility coverage at a 1-
hour travel time limit for a) WorldPop top-down constrained, b) WorldPop top-down unconstrained, c)
GPWv4, d) Landscan, e) GHS-POP, and f) HRSL. Boundaries re�ect administrative level 1. 
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Figure 5

Maps of relative difference in accessibility coverage estimates. Maps show the average relative
difference in accessibility coverage statistics at 1-hour travel time between a) all datasets, b) WorldPop
top-down unconstrained and WorldPop top-down constrained, and c) HSRL and WorldPop top-down
constrained for full sub-Saharan Africa. 
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Figure 6

Visual comparison of gridded population datasets. Visual differences between a) HRSL, b) WorldPop top-
down constrained, c) WorldPop top-down unconstrained, d) Landscan, e) GHS-POP, and f) GPWv4 for
Borkou, a northern region in Chad. Google satellite imagery (2022) as background. White transparent
color represents low numbers of population density.
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Figure 7

Association between size of population unit and difference in accessibility coverage. a) Spatial variation
of the size of the smallest publicly available population unit. b) Association between population input
unit size and average relative difference in accessibility coverage between the datasets. The size of the
points indicates the total population averaged for all datasets at administrative level 1.
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