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Doctor of Philosophy

EEG-BASED BRAIN CONNECTIVITY ANALYSIS FOR IDENTIFYING
NEURODEVELOPMENTAL DISORDERS

by Noura Meshaan Alotaibi

This dissertation aims to identify the neurological biomarkers that could assist in pro-
viding reliable, automated and objective prediction of neurodevelopmental disorders
(NDDs) in early infancy. Quantitative electroencephalography analysis (QEEG), mainly
phase synchronisation-based functional brain connectivity estimated using phase lock-
ing value (PLV) and weighted phase lag index (WPLI), were investigated to deduce
whether it can be used for the early prediction of such disorders. The resulting connec-
tivity network was quantitatively characterised using complex graph-theoretical fea-
tures, namely transitivity, global efficiency, radius, diameter, and characteristic path
length. These features were then fed into the machine learning algorithms such as
linear discriminant analysis (LDA), support vector machine (SVM), decision tree and
k-nearest neighbour to examine their discriminant capability in classifying /predict-
ing NDDs. The proposed framework has gained initial validation in classifying autism
spectrum disorders (ASD) from an experimentally obtained EEG data set of 24 children.
Then, the framework was utilised to predict the appearance of cerebral palsy (CP) at
two years of age. The EEG data were recorded within the first week after birth from a
cohort of infants born with hypoxic-ischaemic encephalopathy (HIE). The exploration
results revealed that the proposed analytical methodology successfully predicted the
infants that would develop CP with a performance of 84.6% accuracy, 83% sensitiv-
ity, 85% specificity, 84% balanced accuracy and 0.85 area under the curve (AUC) in the
delta band, with a close result also obtained in the theta and alpha bands. The WPLI
and graph parameters were then used to predict the cognitive scores of infants born
with HIE by developing the regression framework correlating these EEG features and
a cognitive profile completed in a follow-up assessment at two years of age. The regres-
sion analysis showed that the radius feature yielded the best performance (root mean
square error (RMSE)= 16.78, mean absolute error (MAE)= 12.07 and R-squared= 0.24).
Although this study has successfully demonstrated that the qEEG features could be
considered potential biomarkers for identifying the brain deficits causing the NDDs, it
has a certain limitation due to the size of the data set. It needs to be validated on large
trials with a statistically significant population.
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Chapter 1

Introduction

Neurodevelopmental disorders (NDDs) are a group of conditions caused by atypical
brain growth and functions, and their onset occurs in the developmental period (often
in a pre-school age) (Tran & Miyake 2017). According to the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5), NDDs include cerebral palsy (CP),
attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD),
learning disabilities, and communication and motor disorders (Tran & Miyake 2017).
An individual with an NDD could suffer from impairments in cognition, intelligence,
learning ability, social skills, and in certain cases, motor skills. Some of these impair-
ments could be permanent, while others might alter or become more extensive during
an individual’s lifetime (Klimkeit et al. 2008). Although still a matter of some contro-
versy—and not always clear—the causes of NDDs may, in some cases, be associated
with risk factors including genetic, social, environmental, and other factors (Blackburn
et al. 2012). Poor pregnancy outcomes, such as low birth weight and delivery com-
plications, which are influenced by genetic and social factors, are usually associated
with NDDs (Blackburn et al. 2012). Hypoxic-ischaemic encephalopathy (HIE), one of
the most severe birth complications affecting infants, is considered the leading cause of
NDDs (Byeon et al. 2015).

Recent years have seen a rise in the prevalence of NDDs. In the UK, for example, the
prevalence of ASD, ADHD and learning disorders has increased from around 50,000 in
1995 to approximately 210,000 in 2012 (Blackburn et al. 2012). In England in particular,
the prevalence of NDDs among children is estimated to be around 3 - 4% (Blackburn
et al. 2012). This disability has significant impacts on an affected individual’s quality
of life, as well as on the parents, and its increased incidence affects society as a whole.
A disabled individual faces many barriers in health, education, employment and social
participation, including an inadequate environment, insufficient funding for money
and poor attitudes from others (Blackburn et al. 2012). Furthermore, caring for an in-
dividual with NDDs has negative economic impacts as parents and society pay a high
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cost for health care, special education services and losses in productivity. Services cost
the UK between £23.7 and £152.15 per week for each child ! (Gov.uk 2021)

Early diagnosis of NDDs, mainly in early infancy, is crucial for establishing the appro-
priate early intervention strategies and providing parents with more accurate prognos-
tic information and counselling. Ultimately, early intervention may improve the neu-
rodevelopmental outcomes and prevent severe symptoms in young children. It would
also help to reduce the high financial costs associated with caring for the affected per-
son. The mechanism behind intervention strategies is attributed to the plasticity of the
developing brain could be optimised in early infancy (Glass et al. 2021). Brain plasticity
can be defined as the ability of the brain to modify its structure and functions (Cioni
et al. 2016). The critical period of brain plasticity is during its maturation when the
structural connections in the brain are continually shaped by synaptic modifications to
neuronal growth under the influences of learning and experience (Cioni et al. 2016).
Early intervention, therefore, attempts to utilise this property by providing suitable
learning and behavioural training to alter the developmental trajectory and modify
structural connections.

Traditionally, the diagnosis of an NDD occurs following the manifestation of symp-
toms, which is, on average, at around age 4.5 years and typically after parents or the
child’s school have flagged symptoms, depending on their vigilance (Duda et al. 2016).
The most active brain plasticity period has passed by this time, and so the faulty brain
connections are mostly set, making any changes with behavioural intervention much
more difficult. Clinical assessments that include behavioural tests, developmental tests
and neurological examinations are currently used for diagnosing NDDs. These assess-
ments are usually lengthy, subjective, and they require a multidisciplinary team to as-
sess the behavioural, historical and parental report information (Falkmer et al. 2013).

It follows that in recent years, researchers have sought methods to evaluate brain func-
tion in early infancy, utilising their findings to aid the early prognosis of neurodevel-
opmental outcomes. One technique to feature in several recent studies is neuroimag-
ing, which is utilised to identify infants with neurodevelopmental delay (Ouyang et al.
2020, Potharst et al. 2012, Slaughter et al. 2016). Alongside neuroimaging methods, elec-
troencephalogram (EEG) is a widely used technique for capturing brain activity and
identifying brain deficits because it is relatively inexpensive, portable, non-invasive,
user-friendly and comparatively easy to use. Therefore, EEG analysis is now being
used in predicting neurodevelopmental outcomes in several studies as reported in the
review of Ouwehand et al. (2020). Nevertheless, the interpretation of the prognostic

value of these methods remains subjective, however.

I This statistic was taken from a number of recipients of Disability Living Allowance, which is the UK
state benefit for people needing extra care and support in their daily lives.
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Researchers are therefore keen to find approaches that can identify the neurological
biomarkers of NDDs that could potentially assist in providing an objective prediction
of neurodevelopmental outcomes. Quantitative EEG (qEEG) could provide objective,
reproducible, and reliable biomarkers to characterise the brain activities related to these
disorders. Limited previous studies have, in fact, shown that such qEEG features can
satisfactorily predict the long-term neurodevelopmental outcomes (Hayashi-Kurahashi
et al. 2012, Lloyd et al. 2016). However, this field has yet to find a reliable biomarker
suitable to be introduced into clinical practice. Because detailed explorations of qEEG
for identifying NDDs in infancy age are limited, more studies are needed, with partic-
ular attention given to qEEG features and their efficiency in providing insights into the

brain developmental state.

In the following sections, a brief description of the aim and the objectives, together
with the challenges and overall contributions of this research, are provided. The chap-
ter concludes with an outline of the dissertation.

1.1 Aim and Objectives

This research aims to overcome the shortcomings outlined above by exploring the fea-
sibility of the qEEG features-based machine learning framework to early predict neu-
rodevelopmental outcomes in term-born infants at high-risk (specifically those born
with HIE). The ultimate aim of this proposed framework is to provide the early predic-
tion of NDDs, which in turn facilitate providing the tailored intervention. This aim is
supported by the World Health Organization, which stated that identifying infants at
risk for NDDs is crucial to establishing a close relationship between parents and health
care providers and providing early intervention (Cioni et al. 2016, Organization 2011).
A coherence systematic review provided by Spittle et al. (2015) also showed a signif-
icant association between the early interventions protocol and the positive effects on
cognitive development, but effects tend to disappear after preschool age (Cioni et al.
2016). Mainly, the goal of early intervention is to prevent or reduce the motor, cogni-
tive and emotional impairments in young children, and this would have a significant
improvement in the patient’s quality of life (Cioni et al. 2016, Kiiski et al. 2018). In ad-
dition, the early intervention could provide the promotion of parent-infant interaction,
reduce the parent stress, anxiety and depression, and afford a supportive environment
(Hadders-Algra 2021).

This dissertation tests the hypothesis that the qEEG feature, mainly functional brain
connectivity (FBC), specifically the phase-based connectivity characterised by graph-
theoretical metrics, could be used as a biomarker for identifying the NDDs. This ap-

proach reflects the underlying information flow between different areas in the brain
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network by measuring the functional interactions between the distant and distinct
brain regions. Characterising these interactions using the graph theory parameters
provides a better understanding of the brain functions and topological properties of
the brain network. As developmental delay stems from disruption of the functional
brain network, the FBC with the graph theory analysis is chosen to employ in this re-
search to reveal the individual’s brain network properties and explore the early devel-
opment of the organisational brain paradigm. At the same time, any alteration in these
network characteristics is investigated within the machine learning framework to ex-
amine whether it could be used as a biomarker for identifying the neurodevelopmental
delay. The machine learning techniques were employed in this dissertation as a frame-
work to assess the FBC and complex network measures as predictors of NDDs. These
techniques were utilised to assist in developing EEG-based biomarkers for automated
and objective prediction of NDDs at the individual subject level. The performance of
the machine learning technique was used as a metric to evaluate the diagnostic effi-
ciency of the FBC and complex network measures (Chaitra et al. 2020).

In order to ascertain the validity of the proposed approach, the starting point of this
research is to design a basic framework to classify children with ASD and typically
developing (TD) groups in an experimentally obtained EEG data set of twenty-four
children, twelve with ASD and twelve TD. Even though the aim of this work is the
early prediction of NDDs, this data set is chosen to validate the proposed framework
because it is considered proven data set and has been previously employed in several
studies (Apicella et al. 2013, Jamal et al. 2014, Khuntia et al. 2019). The second phase
involves investigating the utility of this framework in predicting neurodevelopmen-
tal outcomes at two years of age from a neonatal EEG recording at the first week after
birth. The main purpose of the study is to identify the infants who developed CP at two
years of age by validating the neonatal EEG analysis against the clinical labels assessed
at that age. The phase-based FBC is necessarily calculated from the single scale of the
EEG spectra—a complex signal composed of multiple frequency oscillators—to charac-
terise the overlapping time-frequency brain dynamics associated with CP. Thus, some
form of prefiltering into narrowband is necessary before estimating the instantaneous
phase. Traditionally, the digital bandpass filter (DBP) has been utilised for this purpose,
relying on the predefined traditional brain waves. Quantification of phase synchroni-
sation calculated from the DBP filter is compared with the adaptive decomposition
algorithm (without a priori selection of the filter cut-offs), namely noise-assisted multi-
variate empirical mode decomposition (NA-MEMD) in CP prediction. The final part of
the research investigates the effectiveness of the neurological biomarkers—identified in
the previous phase—to predict the cognitive outcome. This can be established by find-
ing the association between neonatal EEG and the individual cognitive profiles that

were completed at a follow-up visit at 24 months of age.
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The dissertation objectives can therefore be restated as follows:

¢ Toinvestigate the effectiveness of FBC analysis employed within a machine learn-
ing framework in discriminating between children with ASD and TD.

¢ To inspect the feasibility of quantitative EEG-based FBC on the basis of a machine
learning framework in finding a biomarker that helps in the early prediction of
CP from high-risk term-born infants with neonatal HIE and who were diagnosed

either as having or not having CP at twenty-four months of age.

¢ To explore whether incorporating the biomarkers identified in the previous step
with the regression-based model could predict the cognitive outcome at twenty-
four months of age.

¢ To examine the effectiveness of the NA-MEMD algorithm in decomposing EEG
signals into their intrinsic components and compare its results in CP prediction
with the traditional DBP filter.

¢ To establish the graph-theoretic framework to quantify the topographical char-
acteristics of FBC and identify the highest impact network measures in: 1) dis-
criminating between ASD and TD, 2) classifying between CP and normal, and 3)
predicting the later cognitive outcome at two years of age.

¢ To identify the association between frequency ranges and dysfunction of FBC in:
1) children with ASD, 2) infants diagnosed later with CP, and 3) infants associated
with cognitive outcome at two years of age.

Figure 1.1 illustrates a schematic diagram giving a generalised view of the blocks re-
quired to achieve the research objectives.

EEG recording EEG analysis Functional brain connectivity

7 A ASD classification
‘o ' |
» . ] B
- ’ -_—) " — Quantitative graph- o
w theoretical metrics GF et
4 iy
I Cognitive outcome

prediction

FIGURE 1.1: Schematic diagram of core issues in the prediction of NDDs, as proposed
in this research. The first step in the proposed prediction framework is the EEG record-
ing from the two populations: children and infants. Then the recorded EEG signals are
preprocessed to enhance the quality of signals and remove the artefacts. After that, the
desired qEE features are extracted using phase-based FBC and graph theoretical fea-
tures. These features are fed into several machine learning algorithms to investigate
their ability in ASD classification, CP prediction and cognitive outcome prediction.
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1.2 Contributions

The contributions of this dissertation are outlined below.

* Validates using the phase-based FBC characterised by global graph-theoretical
attributes as features in a machine learning framework to distinguish between

and classify ASD and TD groups.

¢ Establishes a novel machine learning framework for predicting, at two years of
age, the neurodevelopmental outcomes from neonatal EEG of infants born with
HIE highlighting a potential approach that could serve as an aiding tool for ear-
lier prediction of neurodevelopmental outcomes; subsequently assisting in es-
tablishing the tailored intervention programme at an early stage to improve the
outcome.

¢ Shows that the quantitative graph-theoretical features derived from phase-based
FBC networks could provide additional evidence (markers) for early predicting
the long-term outcomes (CP and cognitive deficits). It is hoped that this study
will lay the ground for more research that could provide a direct assessment of
the brain using EEG and lead to new insights into automating the neurodevelop-
mental delay prediction before the prodromal stage.

* Demonstrates, for the first time, that NA-MEMD could be used for defining the
pairwise synchrony between a multiple time-series of infants in order to quantify
the synchronisation across data-driven modes /frequencies that are consistent
across all the signals. Using this algorithm contributes to the existing knowledge
by providing an approach that adaptively decomposes the time-series. All poten-
tially meaningful subject-specific brain dynamics inherent in the signals are thus
included in the analysis, and the issue of variations in neural oscillation ranges

among individuals—particularly in infants—could be settled.

1.3 Dissertation Outline

The remainder of the dissertation is organised as follows: Chapter 2 includes the back-
ground and literature review of EEG analysis, functional brain connectivity, and graph
theory analysis. The chapter also provides the basic concept of the machine learning
framework and its relevant application in diagnosing pathological conditions. Further,
it reviews the current state-of-the-art techniques for predicting neurodevelopmental
disorders and then describes the shortcomings of these techniques that are motivated
for proposing the methodology in this study. Chapter 3 describes the proposed frame-

work based on FBC and complex network measures and its application in diagnosing
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ASD. Chapter 4 goes on to validate the previously established framework in predict-
ing the neurodevelopmental outcome, particularly CP, in newborns affected by HIE.
Chapter 5 presents the sophisticated signal processing technique, namely NA-MEMD,
in order to investigate its efficiency in calculating phase-based FBC. The chapter then
also provides a comparison of NA-MEMD results with the traditional approach DBP
filter used in Chapter 4. The methodology of early predicting the cognitive outcomes in
infants with neonatal HIE and its results are described in Chapter 6. The final chapter
brings together the threads of upon the entire dissertation and highlights the possible

areas for further research.






Chapter 2

Background and Literature Review

2.1 Introduction

This chapter reviews the theoretical background and the basic concepts regarding brain
functions and EEG signals processing. The background covers the description of the
brain components and their functions, the techniques used for capturing brain activity,
and the fundamental EEG signal analysis. The brain connectivity and its types are also
included. Usually, the brain connectivity network is characterised by graph-theoretical
attributes to provide an abstraction and better understanding of brain network topol-
ogy. Hence, the overview of graph theory analysis is presented to demonstrate its basic
concept. The chapter also explains the machine learning framework and the state-of-
the-art studies of its application in predicting neurodevelopmental outcomes. Since
the first stage in this research focuses on classifying ASD children, a brief description
of ASD symptoms and current diagnosis protocols are provided. An introduction to
HIE, its complications, and the state-of-the-art approaches used for the outcome pre-
diction of newborns at-risk of developing neurodevelopmental deficits later in life are
also provided.

The chapter is structured as follow: section 2.2 demonstrates the components of the
human brain and its functions. The types of brain connectivity and the state-of-the-art
studies that have used brain connectivity in studying brain disorders are reviewed in
section 2.3. The graph theory analysis and its application in investigating the patho-
logical brain functions are described in section 2.4. The basic concept of the machine
learning framework and its application for automating the diagnosis /prediction of the
neurodevelopmental outcomes are provided in section 2.5. Section 2.6 gives the back-
ground of the pathological conditions under investigation in this work and reviews the
studies classifying and predicting them. An overview of the proposed study is illus-

trated in section 2.7.
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2.2 The Human Brain: Introduction and Measurement tech-

niques

Neurons are the basic unit of the brain responsible for triggering the events from out-
side or inside the body, sending motor commands to the muscles, and transforming
information to other neurons at every step in between. The human brain consists of
many neuronal cells connected forming a complex network with an estimated 100 tril-
lion synaptic connections between them (Northcutt 1989). Typical neurons need both
electrical and chemical stimulation for excitation and initiating interaction with other
neurons. An interaction commences when the neuron is triggered by the external or in-
ternal stimulus evoking the physical or physiological response, producing an electrical
impulse. This electrical impulse then travels along the neuron’s axon until it reaches
the dendrite of the next neuron at a synapse. In addition to electrical communication,
the neurons can interact through chemical transmission using neurotransmitters acting
as the chemicals that carry the signals across the synapses between neurons. Figure 2.1
shows the neuron structure.
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FIGURE 2.1: Neuron structure and how the neuronal signal transfer along with the
neuron cells. Image was taken from McGuire (2021).

The neural activities can be measured directly by registering the electrical and mag-
netic currents produced simultaneously from each neuron during communication with
others. In addition, they can be measured indirectly by capturing the functional and
physiological effects related to brain activities. EEG is the time-series data of the electri-
cal signals generated by intercommunications between neurons recorded by scalp elec-
trodes (Covarrubias 2017). The electrodes measure the difference of potential between
dipoles formed by axons and dendrites, and a selected reference. The magnetic field is
generated simultaneously with initiated electrical current from each neuron which can
be measured by magnetoencephalography (MEG).

On the other hand, brain activities can be measured indirectly by quantifying the change
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in blood flow. Functional magnetic resonance imaging (fMRI), positron emission to-
mography (PET) or functional near-infrared spectroscopy (fNIRS) are examples of imag-
ing techniques that rely on this mechanism. fMRI measures brain activities by detect-
ing the changes associated with blood flow. PET measures the metabolic change in the
cells of brain tissues by using the tracer (radioactive drug). PET scanning allows see-
ing how the brain is working and detecting abnormalities by identifying the inactive
brain areas that consume energy (glucose) at a lower level than the active ones. fNIRS
measures brain activity by estimating the changes in the light absorption of different
haemoglobin species. Generally, EEG and fMRI are the most commonly used methods
in measuring and studying brain activities; hence, the following sections describe these

techniques in more detail.

221 fMRI

fMRI is based on the magnetic resonance imaging (MRI) technique that uses nuclear
magnetic resonance coupled with gradients in a magnetic field to show the image of
the brain’s structure. fMRI measures brain activity based on blood oxygenation lev-
els that change in response to neural activity. The active neurons in the brain consume
more oxygen than inactive ones, and the blood flow is increased to this active brain area
to meet this increased demand for oxygen (since the oxygen is delivered to neurons by
haemoglobin in red blood cells). The variation of oxygen concentration in haemoglobin
between the neurons that consume high amounts of oxygen and those that supply it is
called blood oxygenation level-dependent (BOLD). Practically, the BOLD contrast re-
sults from the difference in the magnetic field surrounding the red blood cell depending
on the oxygen state in the haemoglobin (Glover 2011). As a result, fMRI deduces brain
activity by monitoring the brain region with more blood oxygenation, i.e., producing
the brain activation maps showing which parts of the brain are involved in a particular

mental process.

The brain activity can be measured using fMRI during two experimental paradigms:
task-based fMRI (t-fMRI) or resting-state (rs-fMRI). In t-fMRI, the brain activities are
scanned during manipulating different tasks such as visual, auditory or other stim-
uli to induce the different neural states in the brain (Glover 2011). In rs-fMRI, brain
activities are measured during resting-state, i.e., in the absence of external stimuli or
demands of imposed tasks. Generally, fMRI has been widely used for investigating
several brain disorders such as ASD (Assaf et al. 2010, Bos et al. 2014, Chaitra et al.
2020, Doyle-Thomas et al. 2015, Gooskens et al. 2021, lidaka 2015, Keown et al. 2013,
Lau et al. 2019, Shao et al. 2021), ADHD (Cao et al. 2014, Lake et al. 2019, Luo et al.
2020) and learning disorders (Yin et al. 2020).

The most prominent advantage of fMRI is its relatively high spatial resolution in the
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order of 3 - 4 mm that helps provide an anatomical scanning of the brain with high
resolution in the same session, which makes fMRI is optimal for source localisation
(Glover 2011). Furthermore, fMRI is a non-invasive technique widely available for
clinicians and researchers. However, it has a limited temporal resolution attributed
to haemodynamic response time. Typically, the BOLD response has a width of ap-
proximately 3s and a peak occurring around 5 - 6s after the onset of a neural stimulus
which is much slower than the underlying neural processes, and temporal informa-
tion is thereby heavily blurred (Glover 2011). Additionally, the equipment used in this

technique is large and much more expensive than other neuroimaging techniques.

2.2.2 EEG

EEG is a technique used for a direct measure of brain activities. It registers the electrical
current from the scalp using a set of electrodes. Several electrode system configurations
are used to record the EEG, such as the 10-20 system and HydroCel Geodesic Sensor.
The 10-20 system is a standard electrode system configuration used to record the elec-
trical potentials from the scalp. It uses anatomical landmarks on the skull, as shown
in Figure 2.2. The name of this system is derived from the distance interval between
electrode positions which is determined based on the interval between the subject’s na-
sion and inion; where nasion is the delve at the top of the nose, and inion is the bony
lump at the back of the head (Malmivuo & Plonsey 1995). This long interval is divided
into 10% and 20% segments, and the electrodes are placed at both endpoints of each
segment, as depicted in Figure 2.2. The standard 21 electrodes of 10-20 system can be
extended to incorporate a large number of electrodes, which are placed between the 21

electrodes with the same intermediate 10% interval distance as shown in Figure 2.3.

It should be noted that the EEG signals recorded from the human brain are attenu-
ated due to different factors such as the several brain layers, which they have to pass
through until they reach the scalp. The amplifier is used to resolve this issue and regu-
late the signals in the displaying units.
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FIGURE 2.2: Conventional 10-20 EEG electrode positions for the placement of 21 elec-
trodes (Sanei & Chambers 2013).
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FIGURE 2.3: A diagrammatic representation of the extended version of 10-20 system
using modified combinatorial nomenclature (MCN). It contains 75 electrodes, includ-
ing the reference electrodes. The MCN system renames four electrodes of the 10-20
system: T3 is now 17, T4 is now T8, T5 is now P7, and T6 is now P8 (Sanei & Cham-
bers 2013).

The electrical activity recorded from the brain occurs at different well-known frequen-
cies called brain waves. Traditionally, they are classified into five components differen-
tiated from each other by frequency range, namely: delta (J), theta (¢), alpha («), beta
(B), and gamma (y). Table 2.1 shows the frequency band associated with each type of
brain wave (Sanei & Chambers 2013) and Figure 2.4 shows their wave patterns.

TABLE 2.1: Five traditional EEG wave patterns and their frequency ranges.

Brain Waves Frequency range

Delta 0.5-4Hz
Theta 4-8Hz

Alpha 8-13 Hz
Beta 13-30 Hz

Gamma above 30 Hz
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Comparison of EEG Bands
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FIGURE 2.4: Typical brain normal rhythms.

The characteristics of these brain waves vary with an individual’s age and mental state.
Delta waves are observed in infants and adults during deep sleep (Sanei & Chambers
2013). Theta waves are associated with deep meditation, drowsiness or arousal in older
children and adults. Studying the change of theta wave plays an essential role in mat-
urational and emotional studies. Alpha waves are usually observed during relaxed
awareness when attention or concentration is absent. It is produced in most subjects
when closing eyes. In contrast, it is usually reduced by opening the eyes, by hearing
unfamiliar sounds, by anxiety or mental concentration or attention. Beta waves appear
in typical adults and are associated with active thinking, active attention, focusing on
the outside world, or solving concrete problems. The frequency ranges between 30 - 45
Hz corresponds to a gamma wave. It rarely occurs and is associated with low ampli-
tude (Sanei & Chambers 2013).

Advanced signal processing algorithms can be applied to decompose and separate the
broadband EEG signal into desired waveforms. The most used techniques for this pur-
pose are: DBP filter, short-time Fourier transform (STFT) (Gabor 1946), wavelet trans-
form (Mallat 1989) and empirical mode decomposition (EMD) (Huang et al. 1998).

Event-related potentials (ERPs) are another important neurophysiological feature of
EEG. ERPs measure the response of brain activity that are evoked due to specific events,

stimulus (visual, auditory or somatosensory), cognitive tasks or motor events (Cohen
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2014). They are voltage fluctuations in EEG emanated from the brain as a sum of sev-
eral numbers of action potentials that are time-locked to the events mentioned above
(Sanei & Chambers 2013). The basic concept underlying the computation of the ERPs is
the use of a signal-averaging procedure. Each trial contains signal and noise, and noise
can be cancelled out by averaging several trials; thus, the signal to noise ratio will be

improved.

ERPs can be divided into two categories, exogenous response and endogenous re-
sponse (Sur & Sinha 2009). An exogenous response consists of the early waves or com-
ponents, peaking roughly within the first 100 ms after the stimulus onset. In contrast,
the endogenous response is the wave produced after evaluating the stimulus. On the
other hand, the ERP signals could be either positive represented by the letter P such as
P300, P200 and P50 or negative referred to by the letter N such as N100 (Sur & Sinha
2009). The digits after the letter in those ERP examples indicate the response time in
milliseconds after the stimulus onset (Sanei & Chambers 2013).

Generally, EEG studies rely on the two basic experimental paradigms: resting-state
and task dependant EEG. In the resting-state, the background activity of EEG (such as
the traditional brain waves mentioned above) is recorded in the absence of any task or
stimulus, whereas in the task-dependant, the EEG activity is recorded while presenting
the stimulus. In recent years, utilising EEG analysis in studying neurodevelopmental
disorders has been thriving. For example, several studies have been conducted for in-
vestigating the ASD (Abdolzadegan et al. 2020, Lavanga et al. 2021, Peters et al. 2013,
Righi et al. 2014, Schwartz et al. 2017), ADHD (Barry et al. 2003, Janssen et al. 2017,
Mahmoud et al. 2021, Moghaddari et al. 2020), and learning disorders (Kaisar 2020,
Suchetha et al. 2021, Xue et al. 2020).

The main advantage of EEG compared to the fMRI technique is the high temporal
resolution in the order of a millisecond, providing a high ability for quantifying the
fast, dynamic and temporally sequenced neural oscillations. Further, EEG is inexpen-
sive, portable, non-invasive, user-friendly, and comparatively easy to use. However,
EEG has limited spatial resolution (in order of cm) as it records the signal from the
scalp, which reflects the underlying electrical potentials from a large population of ac-
tive neurons. Thus, EEG is not suited for localising the signal source and studying the

brain’s deep structures (Cohen 2014).

2.3 Brain Connectivity

The human brain is a complex system consisting of regions that are functionally and

structurally connected to process information during either a behavioural /cognitive
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task or in a resting-state (Mohammad-Rezazadeh et al. 2016). This concept is called
brain connectivity, and it was first addressed in the literature in the early 1960s (Adey
et al. 1961). Studying brain connectivity is essential to understand how the brain exe-
cutes its primary functions and what the roles of different brain regions are (Hamedi
et al. 2016). It can be categorised into structural, effective and functional connectivity.

¢ Structural connectivity
Structural connectivity describes a set of physical connections through synap-
tic contacts between neighbouring neurons (Mohammad-Rezazadeh et al. 2016).
These connections generally refer to the white matter of fibre tracts that connect
the spatially distributed neurons. Usually, the structural connectivity is measured
by MR, particularly diffusion tensor imaging (Sakkalis 2011). The structural con-
nectivity has been used in studying the brain structure in several brain disorders
such as ASD (D’Albis et al. 2018, Moradimanesh et al. 2021, Valenti et al. 2020),
ADHD (Beare et al. 2017, Bos et al. 2017, Griffiths et al. 2021) and learning disor-
ders (Banker et al. 2021).

¢ Effective connectivity

With effective connectivity, the effects of one neural system on another can be
understood. Effective connectivity reflects the causal interactions between ac-
tivated brain areas providing both magnitude and directions of the interaction
(Lang et al. 2012), and is usually measured by EEG, MEG and fMRI techniques.
Generally, effective connectivity can be estimated based on the model specify-
ing the causal link known as the model-based approach, directly from the signal
known as a data-driven approach or by using information theory measures. The
model-based approach is a theoretical model that is generated from the neuro-
biological evidence, and it provides insights into the way that the brain regions
interact and influence each other (Sakkalis 2011). The most popular method is
dynamic causal modelling (DCM) (Friston et al. 2003) which measures non-linear
interactions between brain regions (Hamedi et al. 2016). In DCM, the response
of a dynamic system is modelled by a network of discrete but interacting neu-
ronal sources described in terms of a neural mass or conductance-based model
(Sakkalis 2011).

On the other hand, the data-driven approach does not require any assumption of
the underlying model or prior knowledge regarding the spatial and temporal re-
lationships (Sakkalis 2011). Granger causality (GC) (Granger 1969), partial direct
coherence (PDC) (Baccald & Sameshima 2001) and direct transfer function (DTF)
(Kamifiski & Bfinowska 1991) are the most common methods for this approach.
GC is based on the idea that causes precede their effects in time (Sakkalis 2011).
It investigates whether one time-series can correctly predict another (Mehdizade-
hfar & Fallah 2016). The general forms of GC are PDC and DTFE. Both approaches
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can deal with multivariate signals, i.e., they take into consideration an estimate
of the activity flow in a given direction between all channels simultaneously
(Mehdizadehfar & Fallah 2016). The difference between the two methods is that
DTF shows only the direct interactions between channels while the PDC shows

both direct and indirect interactions.

Information theory measure is based on the concept of Shannon entropy (Shan-
non 1948) which measures the amount of the information contained in the vari-
able. The best-known methods in this class are transfer entropy (Schreiber 2000),
partial transfer entropy, mutual information and minimum description length.
Transfer entropy and partial transfer entropy are directed measures of interaction,
while mutual information and minimum description are non-directed measures

of interaction (they are classified as the class of FBC).

Transfer entropy is a model-free measure, and it measures the information flow
from source X into target Y, conditioned on the past of the target (Niso et al.
2013). It is based on transition probability and does not assume any prior kind of

dependence.

Partial transfer entropy measures the amount of directed information flow from
X to Y in the presence of a variable Z. Hence if Z is independent of both variables
X and Y, the partial transfer entropy is equivalent to the transfer entropy (Niso
et al. 2013).

Several studies have been carried out to investigate the effectiveness of effective
connectivity in studying ASD (Rolls et al. 2020), ADHD (Muthuraman et al. 2019,
Wang et al. 2021), and learning disorders (Liu et al. 2010, Morken et al. 2017).

Functional brain connectivity

FBC measures the temporal correlation among neuronal activities of distant and
distinct brain regions (Mohammad-Rezazadeh et al. 2016). It does not consider
any physical connection between the brain areas as in the aforementioned struc-
tural connectivity, but it measures the statistical dependency between different
neuronal signals. It can be recorded using several techniques: EEG, MEG, PET,
and fMRI (Sakkalis 2011). EEG-based FBC was preferable in this research be-
cause EEG has a high temporal resolution. Hence, it could capture the statisti-
cal dependencies that are highly time-dependent and fluctuate on multiple time
scales ranging from milliseconds to seconds, as in the case of neural activities. In
addition, EEG has other advantages that were mentioned in section 2.2.2. How-
ever, the critical challenge that faces EEG-based FBC is volume conduction. It is
a problem that induces the mixing of signals in electrodes that distort the actual

neuronal activities. The cause of volume conduction is that recording EEG by
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electrodes does not provide direct access to the source of the signal. However,
they record the linear and spontaneous superposition of multiple sources in the
brain (Hamedi et al. 2016). In addition, the electrical field spreads tangentially
through the skull, skin, and scalp, thus affecting adjacent electrodes and leading
to distortions of the electrical signal. As a result, the potential of existing spu-
rious connectivity could be high. Figure 2.5 illustrates the effects of the volume
conduction.

A) Connectivity: OK B) Connectivity: NOT OK C) Connectivity: NOT OK

FIGURE 2.5: Illustration of the volume conduction effects. The black/grey rings repre-
sent electrodes; the black arrow represents the measured connectivity; the stars repre-
sent neural sources in the brain; the white arrows illustrate the path of electrical activ-
ity from these sources to electrodes. Panel A shows that each electrode measures only
neural activity below the source; therefore, the measured connectivity between two
electrodes reflects the true connectivity between two physically distinct brain regions.
In panel B, both electrodes measure the activity from the same neuronal source. In
panel C the electrical field spreads horizontally through the skull/scalp; the measured
connectivity is spurious since both neighbour electrodes measure the same signal from
a single source. The image was taken from Cohen (2014).

Computational methods used to measure the FBC can be classified into three
categories: linear, non-linear and information-based techniques (Hamedi et al.
2016). The Linear FBC approach provides a linear measure of FBC, and it con-
sists of three methods: correlation, cross-correlation and coherence (Hamedi et al.
2016). Correlation estimates the linear relationship between two signals using
Pearson’s correlation coefficient, where a higher correlation indicates a stronger
functional relationship between the corresponding brain regions. Similarly, the
cross-correlation calculates the linear dependency, but with respect to the time,

i.e., it recovers to Pearson correlation when the time delay equals zero.

In contrast, coherence measures the linear correlation between two variables as
a function of frequency. It quantifies the relationship between two time-series
based on phase consistency, i.e., if phase change in one signal, the coherence value
would be reduced, while if the phases are stabilised over time between the two
signals, the coherence value would be high (Hamedi et al. 2016). In practice, co-
herence measures the linear relationship between two signals by using a linear
time invariant transformation, i.e., a constant amplitude ratio and phase shift, in
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each frequency band (Duffy et al. 2017). A high coherence indicates strong con-

nectivity between two time-series signals and vice versa.

Generally, the primary advantage of linear FBC is that they are well-known and
computationally fast (Niso et al. 2013). However, they are highly affected by VC
and restricted with the assumption of the stationarity and linearity of the signal.
A large and growing body of literature has investigated the linear FBC in detect-
ing the brain deficits in several disorders such as ASD (Buckley et al. 2015, Carson
et al. 2014, Coben et al. 2008, Murias et al. 2007, Lazarev et al. 2015, Léveillé et al.
2010, Righi et al. 2014), ADHD (Sato et al. 2012), and learning disorders (Gaudet
et al. 2020).

Non-linear FBC methods are designed to measure the dynamics, non-linear and
non-stationary properties of EEG (Hamedi et al. 2016). The most common non-
linear FBC method is synchronisation. It is based on interacting chaotic oscil-
lators (Hamedi et al. 2016), initially introduced by Pikovsky (1984) and Pecora
& Carroll (1990). One of the most significant advantages of synchronisation is
that it provides an amplitude-independent measure of connectivity between cor-
tical regions. Thus it is less susceptible to the effects of artefacts and inter-trial
/inter-subject amplitude variability (Hamedi et al. 2016). It is classified into two
broad categories: generalised synchronisation and phase-based synchronisation
(Hamedi et al. 2016). Generalised synchronisation estimates the coupled interac-
tion between two stochastic oscillators by the specific function F. Considering the
first dynamical time-series Y is the function of another X as Y = F(X) where F is
unknown, maybe complex, and change over time (Niso et al. 2013). The existence
of generalised synchronisation between X and Y indicates that if the temporal
patterns in x(t) at times t; and ¢; are similar, in like manner, the pattern in y(t) at
these exact times will be similar. Generalised synchronisation can be computed
via several indices, such as S Index, H Index, N Index, M Index and L Index. Niso
et al. (2013) study contained more detail about these indices.

On the other hand, the phase-based synchronisation approach uses to calculate
the strength of phase coupling between two stochastic oscillators regardless of
uncorrelated amplitude (the major EEG characteristic in calculating the linear
FBC) (Niso et al. 2013). The most common phase-based synchronisation meth-
ods used in neuroscientific literature are phase-locking value (PLV), phase lag
index (PLI), and weighted phase lag index (WPLI) (Niso et al. 2013). PLV is a
classical measure of phase-based synchronisation, and it was first described for
EEG by Lachaux et al. (1999). It measures the strength of phase synchronisation
between two time-series based on the absolute phase difference. Although PLV
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can deal with the dynamics of the brain and the non-stationarity of its EEG sig-
nal, it is sensitive to volume conduction. Typically this issue is reflected as the
zero-phase lag between two time-series signals. PLI was proposed by Stam et al.
(2007) to alleviate the effect of volume conduction and other common sources of
noise. It quantifies the extent that the phase leads and lags between signals from
two sources as non-equiprobable, instead of considering the magnitude of the
phase leads and lags. PLI is hindered by the discontinuity of the measure caused
by small perturbation of phases that would change the signs of the phase differ-
ences having small magnitudes; accordingly, the PLI value would be changed.
The most recent method of quantifying phase synchronisation is WPLL. It was
defined by Vinck et al. (2011) as an improved version of the PLI index by weight-
ing the contribution of the observed phase lag or lead with the magnitude of the
imaginary component of the cross-spectrum. Although the WPLI is based on
amplitude in its calculation, it is still classified as a member of the phase-based
synchronisation family. WPLI provides a robust estimation of phase synchroni-

sation against the VC and other sorts of noise.

Although in principle, the WPLI and PLI could be the optimal choices for quan-
tifying phase-based synchronisation based on their characteristics, PLV estimates
absolute phase differences between two time-series, reflecting the meaningful
neurological coupling between them. Thus, there is no evidence about the op-
timal method for quantifying phase-based synchronisation.

The third class of FBC techniques is the information-based measures that cap-
ture linear and non-linear interactions between signals (Hamedi et al. 2016). A
standard method of this group is the cross mutual information which measures
the mutual dependence between two signals by quantifying the amount of infor-
mation gained about one signal by measuring the other as a function of the delay
between them (Sakkalis 2011). It is based on the probability distribution to detect
the correlation between two sources. Another measure is minimum description
length that estimates the interdependency between two sources by measuring the
degree of predictability of the two signals as a function of the other (Hamedi et al.
2016).

24 Application of Graph Theory in Characterising Functional

Brain Connectivity

Graph theory is often applied to FBC to describe the network architecture. It provides

the visualisation of the brain network, which facilitates understanding of its properties.

Furthermore, the graph theory gives an abstraction that could reduce the complexity
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in understanding the neural networks and help to identify similarities and differences
in their organisation (Kaiser 2011). In the graph theory analysis, the brain can be rep-
resented as a network where the nodes correspond to distinct brain regions (or EEG
electrodes in EEG-based FBC derivation). The edge is the link between neighbouring
nodes representing the strength of the brain functional connections. The graph can
be categorised as directed or undirected, according to the direction of the edges, and as
weighted or binary, based on the weight of the edges (Islam et al. 2017). In the weighted
graph, each edge has a weight that represents the strength of the correlation, and this
form is the most accurate in the real applications (Kaiser 2011). Figure 2.6 illustrates

these different categories of networks.

binary undirected networks binary directed networks weighted undirected networks
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FIGURE 2.6: Illustration of different graph categories. The graph is commonly rep-
resented by a matrix. The left panel shows the binary and undirected graph. In a
binary graph, the edge represented by the black entry in the corresponding matrix is
only considered, regardless of the weight of the edge. An undirected graph is a graph
that contains a set of nodes connected with bidirectional links, i.e., the direction is not
important in this type of graph. The middle panel depicts the binary directed graph.
A directed graph is a graph that its nodes are connected through a direct edge. The
right panel represents a weighted undirected graph containing nodes connected with
weighted and directed edges. The greyscale represents the edge weight in the corre-
sponding matrix (Rubinov & Sporns 2010).

The graph theory analysis can adequately characterise the brain network and its topol-
ogy and provide quantitative information about the network properties. The graph-
theoretical parameters measure these topological properties on both local and global
scales. Local attributes identify the topological features of the single node, such as
node degree and centrality. In contrast, the global metrics reveal the information flow
over the whole network and any specialised local processing. Examples of global net-
work attributes are transitivity, global efficiency and characteristic path length.

Graph theory analysis has been used in many studies to investigate brain neurode-
velopmental disorders such as ASD (Barttfeld et al. 2011, Han et al. 2017, Kessler et al.
2016, Lavanga et al. 2021, Zeng et al. 2017), ADHD (Janssen et al. 2017, Kim et al. 2021)
and learning disorders (Xue et al. 2020).
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2.5 Machine Learning Framework

Machine learning can be classified into two categories: supervised machine learning
and unsupervised machine learning. In supervised machine learning, the model is
trained in a known label of observations and known response (output data) to gen-
erate the predictions class of new data. In general, supervised machine learning is
divided into two approaches: classification and regression. In classification, the model
is trained with specific features to predict the corresponding category of a given ob-
servation, while in regression, the model is trained to predict the continuous response.
Various classification and regression algorithms are different from each other based on
the learning functions and underlying assumptions. For example, linear discriminant
analysis (LDA), support vector machine (SVM), decision tree and K-nearest neighbour
(KNN) are the most popular classification algorithms. On the other hand, examples of
well-known regression models are linear regression, regression trees, regression sup-

port vector machines, and ensemble regression trees.

In machine learning frameworks, after training the model on specific features from the
training set, the next step is to validate it in the testing set. In order to mitigate the effect
of overfitting and ensure that the model performs well without bias, it is important to
train and test the model independently, i.e., the testing data set must not be used in
the training process. Another important factor for obtaining an optimal performance
is that the model should train as much training data as possible (Rashid & Calhoun
2020). One known challenge in the clinical realm is getting an adequate sample size,
i.e., the training data size is usually small. To deal with the limited number of instances
in the data set and avoid overfitting, cross-validation is often used to train the model
by dividing the data set into two sets, one for training and another for testing in a re-
peated fashion. K-fold cross-validation and leave-one-out-cross-validation (LOOCYV)
are the most common cross-validation approaches. In K-fold cross-validation, the data
set is divided into K partitions, where K-1 partitions are used to train the model, and
the remaining one is used to evaluate its performance. This process is repeated until
each partition has been used as testing data. In LOOCYV, K is equal to the number of
instances in the data set, and every instance in the data set is left out once for testing the
model. This procedure is repeated K times, leaving out the data of a different instance
each time. Finally, the model performance is obtained by averaging the K independent

results.

Class imbalance is a common problem in machine learning, where sample distribution
across the classes is biased. The class with large data samples is known as a majority
class, and the one with a small number is a minority class. A typical model would often
be ineffective in classifying the observation that belongs to the minority class. Several
approaches have been proposed to alleviate the problem of imbalanced data. Three
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such approaches are data level, algorithm level, and hybrid level. The data level ap-
proach balances the data distribution by either over-sampling—adding more instances
into the minority class—or under-sampling—removing the instances from the majority
class. Then the conventional classifiers are applied without any changes in the classi-
fier’s logic (Gosain & Sardana 2017). Several techniques have been employed for per-
forming over-sampling and under-sampling. For example, random under-sampling
is the most popular under-sampling technique. Random over-sampling and synthetic
minority over-sampling techniques are frequently used for over-sampling the data. At
the algorithm level, the new classification algorithms are designed, or the existing ones
are modified to handle the class imbalance problem without any prior changes to the
data set. Several algorithms have been designed for addressing the imbalance problem,
such as boosting and bagging algorithms. The hybrid approach combines the data level
approach and algorithm level approach into a single algorithm to obtain an optimal so-
lution for the imbalance problem (Gosain & Sardana 2017). Random under-sampling
boosting (RUSBoost) and synthetic minority over-sampling boosting are examples of

hybrid data sampling with boosting algorithms.

On the other hand, unsupervised machine learning algorithms aim to cluster the un-
labelled input data into different groups according to similarity measures such as Eu-
clidean or probabilistic distance (MathWorks 2018). Common algorithms for unsuper-
vised learning are the k-means algorithm, Gaussian mixture models, and the hidden
Markov model (MathWorks 2018).

In recent years, there has been a great tendency to use machine learning frameworks
to provide an automatic, objective, and robust aiding tool for classifying /predicting
NDDs. In these frameworks, the individual with the developmental delay is automat-
ically discriminated from the TD group. In the literature, these have been extensively
investigated in an attempt to provide diagnostic-focused predictive analysis of NDDs
in general and particularly ASD (Abdolzadegan et al. 2020, Grossi et al. 2017, Jamal
et al. 2014, Kang et al. 2020), ADHD (Ahmadi et al. 2021, Chen et al. 2019, Tenev et al.
2014) and learning disabilities (Dimitriadis 2016, Kaisar 2020).

2.6 Pathological Conditions

As described in section 1.1, the study was conducted on two data sets: firstly, the data
set of children with ASD and secondly, the data set of infants born with HIE. The ASD
data set was chosen as a starting point for this exploration because ASD is one of the
most commonly occurring NDDs. Moreover, the ASD data set used in the investiga-
tion of the proposed framework is well-proven, and it can be viewed as a benchmark

for evaluating the proposed analysis. This section describes the general pathological
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information and symptoms and reviews the current approaches used to diagnose ASD.
The overview of pathophysiology, experimental treatments and complications of HIE
is provided in section 2.6.2. The frequent consequence outcomes of HIE are described
in sections 2.6.3 and 2.6.4.

2.6.1 Autism Spectrum Disorders

ASDs are a group of lifelong neurodevelopmental disorders including the following
subtypes: autistic disorder, Asperger syndrome, childhood disintegrative disorder, and
pervasive developmental disorder-not otherwise specified (PDD-NOS) (Gurau et al.
2017). A lack of social communication characterises them and language acquisition, in
addition to restricted interests and repetitive behaviour (Mohammad-Rezazadeh et al.
2016). Furthermore, people with ASD suffer from stereotypic behaviour and nonverbal
communicative behaviour impairment, which impact social interaction. Symptoms of
ASD may be identified in early childhood but are often diagnosed at school-age (World
Health Organization 2021). The prevalence of ASD has been rising over the last four
decades (Kern et al. 2015, Klimkeit et al. 2008). According to the The National Autistic
Society (2016) report, around 700,000 individuals in the UK had an ASD.

Traditionally, ASD is diagnosed after onset of the symptoms using behavioural as-
sessment techniques. The Autism Diagnostic Interview-Revised (ADI-R), the Develop-
mental, Dimensional and Diagnostic Interview and the Autism Diagnostic Observation
Schedule-Generic (ADOS-G) are widely adopted by clinicians to diagnose ASD. More
details of these tools can be found in (Falkmer et al. 2013, Zwaigenbaum & Penner
2018). These clinical diagnostic tools are time-consuming, requiring multidisciplinary
teams (including a psychologist, a physician and a speech-language pathologist), and
the heterogeneity of the ASD symptoms hampers their efficiency.

With advancements in technology, several studies have recently begun to explore the
feasibility of qEEG in diagnosing ASD. Gurau et al. (2017) conducted a systematic re-
view to examine the evidence for the efficiency of qEEG signal analysis in ASD diag-
noses, classifying EEG analysis methods into three classes: spectral analysis, informa-
tion dynamics, and FBC. They found that these analysis methods could be utilised in
characterising ASD. However, different limitations hampered the progress and the pos-
sibilities of using these methods in clinical practice to diagnose ASD. Spectral analysis
is a linear approach that might not be optimal for characterising the non-linear and
non-stationary properties of the EEG. On the other hand, the information dynamics are
non-linear techniques but more challenging to perform and generally less well-known
as signal analysis tools. Moreover, they measure the complexity of each EEG indepen-
dently, providing a deep understanding of the dynamic process underlying specific
brain areas rather than giving a broad view of the neural connectivity over the whole
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brain. Thus, this approach is not adopted well for understanding the dynamical process
underlying ASD that affects the whole brain (Kana et al. 2014). In FBC, most studies
used coherence for estimating neural connectivity (Fingelkurts et al. 2005). Coherence
is a linear measure used with the assumption of signal stationarity, highly sensitive to
volume conduction and limited temporal resolution. Furthermore, coherence is posi-
tively affected by either change in power or phase of signals as it quantifies the stability
of the relationship between two time-series regarding power asymmetry and phase re-
lationship. Indicating coherence does not directly reveal the true relationship between
the two signals.

Phase synchronisation based FBC is a non-linear measure of neural activity capable
of detecting the dynamic and non-stationary characteristics of EEG. It has gained in-
creased attention in neuroscience literature due to evidence suggesting that phase-
based connectivity analysis could reveal information exchange topography in the hu-
man brain, which could offer insight into pathological brain states. Ahmadlou et al.
(2012) used the fuzzy synchronisation likelihood within the machine learning frame-
work to classify the ASD children of age between 7-13 years, and this method was
validated on the EEG data recorded during eye-closed in resting-state condition. Buck-
ley et al. (2015) compared different brain connectivity methods, including PLI between
ASD children, children with developmental delay and TD group of age between 2-
6 years, during the resting-states condition in three states fully awake, drowsy and
sleeping. Han et al. (2017) and Zeng et al. (2017) investigated the brain connectivity
measured via PLI characterised by graph theory attributes with EEG data recorded
during resting-state from ASD children and TD with 3-11 years and 7-13 respectively.
Orekhova et al. (2014), and their replicated study by Haartsen et al. (2019) used a debi-
ased weighted phase lag index to study the EEG-based brain connectivity in high-risk
infants aged between 13-18 months, while the data were recorded during the present-
ing of video streaming. Jamal et al. (2014) proposed a phase synchronisation states
(synchrostates) approach in the machine learning environment for differentiating be-
tween ASD and TD children aged between 6-13 years, while the EEG was recorded
during the presentation of three types of stimuli: happy, fearful and neutral.

Researchers have elucidated that the core deficits of ASD are associated with impair-
ments in sensory processing, which is related to deficiencies in social cognition that
may define this disorder (Jeste & Nelson 2009). Mainly, ASD children show severe im-
pairment in emotional facial expression processing compared to TD children. Sysoeva
et al. (2018) examined the face processing abnormalities in ASD children compared to
control based on the amplitude and latency of ERP components. Monteiro et al. (2017)
provided a systematic review to examine the EEG-based ERP features in emotional
facial expression processing in ASD and confirmed the deficits of facial emotion pro-

cessing associated with individuals who have ASD.
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A closer look at the literature shows that many studies have investigated the EEG-
based FBC for classifying ASD. Although these studies exist, such phenomenological
evidence is yet to be brought into clinical practice. Moreover, a detailed exploration of
the change in the task-dependent FBC to classify ASD is not that extensive. Notably,
other than the study of Jamal et al. (2014), to the best of the author’s knowledge, no
previous study has investigated the non-linear dynamics of ERP components in emo-
tional facial expression processing. In addition, very few studies have been carried out
on discriminating between the ASD and the control groups using machine learning

techniques.

2.6.2 Hypoxic-Ischaemic Encephalopathy

HIE is one of the most severe birth complications causing neonatal brain damage. The
incidence of HIE has increased in recent years, occurring at approximately 1-6 per 1000
live births (Byeon et al. 2015). It is caused by insufficient blood flow to the infant’s brain
as a result of a hypoxic-ischaemic event during the prenatal, intrapartum or postnatal
periods (Allen & Brandon 2011). The signs of HIE in early postnatal life include abnor-
mal fetal heart rate, poor umbilical cord gas (pH < 7.0 or base deficit > 12 mmol /L),
slow Apgar scores, presence of meconium stained fluid, or the need for respiratory
support within the first several minutes of postnatal life (Allen & Brandon 2011). The
severity of encephalopathy is measured using the Sarnat staging criteria in conjunction
with neuroimaging techniques during the first days after birth. Generally, HIE treat-
ment is limited to supportive medical therapy to maintain cardiopulmonary function
and manage seizure activity (Allen & Brandon 2011, Dereymaeker et al. 2019). The most
prominent treatment is the therapeutic hypothermia technique provided through either
selective head or whole-body cooling of the infant (Allen & Brandon 2011). The pro-
cedure of hypothermia treatment involves decreasing the infant’s body temperature to
between 33°C and 36.5°C for two to three days. Then the infant is rewarmed gradually
to prevent complications such as hypotension. Regrettably, with these treatments, up
to 40% to 60% of infants die by two years or have severe neurodevelopmental impair-
ments including CP, cognitive impairment, behavioural difficulties, visual or hearing
impairment, and epilepsy (Schreglmann et al. 2020). Early prediction of developmen-
tal delay is crucial due to it plays an essential role in providing successful therapeutic
interventions (Doyle et al. 2010). However, it is considered challenging and is tradition-
ally identified by neurological examination. The following sections review the current
approaches used to predict the frequent consequences of HIE being CP, and cognitive
deficits.
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2.6.3 Cerebral Palsy

CP is the most common subsequent neuromotor impairment of HIE. It is a movement
and posture disorder frequently associated with epilepsy, impairment of sensation, cog-
nition, communication, and behaviour (Morris 2007). As a lifelong condition, it has a
severe socio-economic impact on families and health care systems (Tonmukayakul et al.
2018). Early identification of infants with neonatal HIE who are at high-risk of devel-
oping CP later in life is important for appropriate planning of intervention strategies
(Hadders-Algra 2014), which ultimately may lead to improved outcomes.

The most frequently used assessment methods for early prediction of CP are (a) neu-
rological and neuromotor assessments, (b) neuroimaging, and (c) neurophysiological
tests (Hadders-Algra 2014). Even though neurological and neuromotor assessments
have been widely used in diagnosing CP and their prediction value is generally good,
they are subjective and often require longitudinal series of tests to detect the abnormal-
ities.

Alternatively, neuroimaging techniques have been used as promising tools for the early
prediction of CP in infants who are at high-risk (Hadders-Algra 2014), and MRI has
been the preferred imaging technique used for this purpose (Ouwehand et al. 2020,
van Laerhoven et al. 2013). Several studies have employed neurophysiological tests
with infants at risk of adverse neurodevelopmental outcomes. Conventional grading
electroencephalogram (cEEG) and amplitude-integrated electroencephalogram (aEEG)
modalities have been found to predict outcomes well (Hayashi-Kurahashi et al. 2012,
Maruyama et al. 2002, Ouwehand et al. 2020, Pisani & Spagnoli 2016, van Laerhoven
et al. 2013). However, interpretation of the prognostic value of these methods remains
subjective (Dereymaeker et al. 2019).

On the other hand, qEEG analysis could provide objective, reproducible and reliable
biomarkers for characterising the brain activities related to CP. Spectral power, FBC
(particularly coherence) and complexity analysis of EEG signals are the most common
features used in this field (Gao, Jia, Wu, Yu & Feng 2017). These measures have been
suggested to be the gold standard biomarker for identifying CP. Gao, Wu, Feng & Jia
(2017) and Gao, Jia, Wu, Yu & Feng (2017) studied linear-complexity measures to assess
the temporal and spatial correlations of EEG signals in adolescent patients with CP and
the control group. Coherence-based measures and spectral power were used to study
the EEG characteristics in CP children in several studies. Koeda & Takeshita (1998) in-
vestigated the change in spectral power and coherence connectivity in children with CP
from resting-state EEG within a machine learning framework. Kutak et al. (2005), and

Kulak & Sobaniec (2005) performed the studies to investigate the spectral power and
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coherence-based measures in children with CP. Sajedi et al. (2013) carried out the ma-
chine learning study to determine the linear and non-linear changes in brain dynamics
related to CP. Their study employed spectral power as a linear analysis and fractal di-

mension as a non-linear analysis.

However, the detailed exploration of using qEEG to identify CP at the age of infancy
was rarely investigated (George et al. 2020). Moreover, different limitations hampered
the progress of analysing the cognitive process of CP individuals using these method-
ologies. As mentioned in section 2.6.1, EEG is a non-linear and non-stationary signal
in its nature (Sanei & Chambers 2013), and such linear-based measurements are not
well adapted for its analysis. Mainly, volume conduction has been reported to signifi-
cantly affect EEG coherence estimations (Gao, Jia, Wu, Yu & Feng 2017). Thus, there are
still many works required to explore the pathological mechanisms of CP using qEEG

analysis.

2.6.4 Cognitive Outcomes

Neurodevelopmental impairment is a composite outcome that includes cognitive, be-
havioural, educational, and motor impairments. Cognitive deficit is considered one
of the most common outcomes usually associated with NDDs (Slaughter et al. 2016),
tfeatured by slow information processing speed, deficits in working memory, attention,
and executive function. Moderate to severe HIE is one of the leading causes of later
cognitive impairment in children at school-age. Schreglmann et al. (2020) provided a
systematic review, which suggested that up to 60% of children without CP have a cog-

nitive impairment following HIE.

Early identification of infants at high-risk can help to provide targeted early interven-
tion aimed at improving cognitive outcomes by taking advantage of the neuroplasticity
of the developing brain in early infancy. Yet, the accurate diagnosis of cognitive impair-
ments cannot be carried out before 3 to 5 years of age (He et al. 2018). Recently, there
has been increased interest in exploring methods for assessing brain function in early
infancy and using them as an aiding tool for the early prediction of cognitive impair-
ments. Neuroimaging techniques have been used in several studies to identify infants
at high-risk of cognitive impairment (He et al. 2018, Moeskops et al. 2017, Slaughter
et al. 2016).

Along with neuroimaging methods, several studies have used EEG analysis to predict
cognitive outcomes. Kong et al. (2018) conducted a systematic review highlighting the
two basic approaches currently adopted for the early prediction of cognitive outcomes.
One is the analysis of EEG features to identify the biomarkers that could help classify

the subject as either cognitively impaired or normal. Second is the analysis of EEG
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characteristics to estimate the specific scores for the continuous cognitive measure to
predict cognitive performance and deficit level. Compared with binary classification,
prediction of the cognitive development reflects the difference among individuals in
brain functions and level of cognitive impairment, rather than determining the group
as in the classification case, which can be more challenging (Sui et al. 2020).

Limited previous studies have shown that the early quantitative analysis of EEG can
satisfactorily predict the long-term cognitive outcome. Lloyd et al. (2021) employed
serial, multichannel video EEG to predict outcome in preterm infants by finding the as-
sociation between the grading of EEG background activity—where EEG was recorded
soon after birth and continued over the first three days—and the developmental scores,
which were assessed at two years of age. Suppiej et al. (2017) compared spectral EEG
values of infants born near term with infants born at extremely low gestational age,
aiming to investigate whether spectral EEG features were related to neurological out-
comes. The EEG data were recorded at 35 weeks post-conception, and the outcome
was evaluated at one year of age by Griffiths” scales. Cainelli et al. (2021) also car-
ried out the longitudinal six-year study to evaluate the feasibility of neonatal spectral
EEG in predicting the developmental delay in premature infants. The EEG data were
recorded at 35 weeks post-conception. The outcome was assessed at six years after the
perinatal period (school-age period) using the Wechsler Preschool and Primary Scale
of Intelligence III and neurological test. West et al. (2005) conducted the regression-
based analysis to predict outcomes at 18 months of forty-four preterm infants using
the quantitative measure of EEG continuity recording in the first four days after birth.
Kiithn-Popp et al. (2016) investigated the relation between brain maturation processes
and the epistemic language skills (evaluated at 48 months) using EEE coherence mea-
sured at 14 months.

Although these attempts have paved the way to early prediction of cognitive develop-
ment, methodological limitations hinder further progress. The EEG grading system is
still subjective and dependent on interpretation by an expert. Alternatively, the spectral
power, amplitude and coherence-based measures could provide an objective measure
for predicting the associated cognitive outcome. Nevertheless, as mentioned earlier,
its linearity has hampered its progress in this field. Therefore, further works are re-
quired to find the objective and reliable biomarkers for the early prediction of cognitive

outcomes.

2.7 The Basis of this Work

This work is conducted to find the objective and reliable multivariate brain network

features for the early prediction of NDDs. A closer look at the literature reveals some
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gaps and shortcomings. The prognostic value of qEEG analysis in identifying long-
term outcomes at the age of infancy was rarely investigated. Furthermore, the previ-
ously adopted qEEG features (as coherence and spectral analysis) for classifying /pre-
dicting neurodevelopmental outcomes are linear by their nature. They would be more
meaningful under the assumption of stationarity and linearity of the signal. EEG is
non-linear and non-stationary, and dealing with these characteristics (non-stationarity
and non-linearity) is essential for understanding the dynamic process underlying patho-
logical change. Thus, the qEEG features mentioned above are not optimal for capturing
the EEG characteristics. Moreover, adopting the qEEG features in the machine learning
framework for classifying /predicting the NDDs could make considerable progress in
providing automated and objective decisions. However, machine-based identification

studies are limited.

The main purpose of this study is to explore the effectiveness of non-linear qEEG
features within a machine learning framework for identifying neurodevelopmental
outcomes. Mainly, phase synchronisations (PLV and WPLI) characterised by graph-
theoretical parameters are proposed to quantitatively characterise the individual’s brain
connectivity from the EEG, either in task-dependent (in the case of children’s data set
of an ASD study) or resting-state (in the case of infants” data set of neurodevelopmen-
tal outcomes studies). These chosen features could capture the complex properties of
the EEG signal. They are then used to train and test several machine learning algo-
rithms to show how useful they could be in the practical classification /prediction of
neurodevelopmental outcomes.

2.8 Summary

This chapter reviewed the basic concepts related to NDDs and their current diagnos-
tic approaches. The first part of the chapter offered a brief description of the human
brain and the measurement techniques used for recording brain activities. The detail
of the brain connectivity approach and its crucial role in understanding the dynamics
of the brain system were highlighted. The graph theory analysis is usually utilised to
characterise brain network topology. It facilitates the visualisation of functional brain
networks and provides the abstract of the network architecture, which could help de-
tect the network irregularity; thus, a brief background of graph theory analysis was
provided. This was followed by an overview of the machine learning framework. The
summary of the current state-of-the-art approaches used for classifying /predicting
several pathological conditions were also reviewed. The following chapters illustrate
the proposed approaches to classify children with ASD and predict CP and cognitive
outcome at two years of age from infants” EEG born with HIE.
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Chapter 3

Classification of Autism Spectrum
Disorders from EEG-based
Functional Brain Connectivity
Analysis

3.1 Introduction

The starting point of this research is an attempt to design and establish a machine
learning framework to classify children with ASD. Specifically, the phase-based task-
dependent functional brain connectivity is investigated to measure the functional cou-
pling of neural populations through the strength of phase synchronisation; hence, the
abnormal synchronisation could be considered a hallmark of several brain disorders.
Evidence has shown that the phase-based FBC analysis could reveal a task-dependent
information exchange topography in the human brain, which could help to give insight
into pathological brain states (Farahmand et al. 2018). Furthermore, the phase-based
connectivity analysis is fast to compute and requires few assumptions and parameter
selections (Cohen 2014).

Thus, the phase-based task-dependent FBC and graph-theoretical measures are adopted
in this research to deduce the characteristics of the brain’s network and then utilise
these characteristics to classify ASD and TD. Specifically, the feasibility of using three
proposed PLV-based FBC—trial-averaged PLV, average trial-averaged PLV and time-
points-averaged PLV— is investigated. Furthermore, the study aims to find the most
discriminating graph metrics (markers) to be used as the features for training a classi-
fication model. The association between frequency bands and brain connectivity dys-
function in children with ASD is also investigated.
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Methodology for the proposed PLV-based FBC consists of the following steps. Firstly
the EEG signals are decomposed into five frequency bands. Then, connectivity maps
are formulated separately by three phase synchronisation approaches trial-averaged
PLV, average trial-averaged PLV and time-points-averaged PLV. Graph theory indices
characterise each connectivity map for every subject in each frequency band. These
graph-theoretical measures are then used as features fed into classifiers to evaluate the
proposed approaches in ASD classification. The results from this chapter have been
reported in (Alotaibi & Maharatna 2021).

This chapter is organised as follows: the experimental design, the data set and prepro-
cessing techniques are described in section 3.2. Formulating phase-based functional
connectivity procedures is illustrated in section 3.3. Fundamental graph-theoretical
measures are reviewed in section 3.4. Section 3.5 describes the proposed feature extrac-
tion schemes. Results analysis is depicted in section 3.7 and discussed in 3.8. Section

3.9 concludes the chapter.

3.2 Experimental Design and Data set

EEG data used in this study were obtained from Jamal et al. (2014)—a modified data set
from that used by Apicella et al. (2013)—which studied EEG characteristics in ASD and
TD children with respect to face perception tasks. It was chosen, in this exploration,
because the impairment in social processing is a core difficulty in ASD, which can be
conveyed by emotions showing on the face. This could be strictly connected to disrup-
tion of the ability to activate specific brain circuits during facial processing (Jamal et al.
2014).

The data were collected from twenty-four subjects, twelve children (seven boys and
tive girls) with ASD and twelve TD children (seven boys and five girls). The children
with ASD were aged between six to thirteen years (mean age= 10.2 years), and their
neurotypical peers age-matched group were aged between six to thirteen years (mean
age= 9.7 years). The participants having ASD were diagnosed according to the Diag-
nostic and Statistical Manual of Mental Disorders (DSM-IV-TR) criteria and confirmed
by ADOS-G and ADI-R (Apicella et al. 2013).

Facial images with three types of emotion were displayed for each subject during the
EEG recording. The images showed the standardised emotional facial expressions:
happy, neutral, and fearful. Thirty faces were taken from ten subjects (five male and
tive female) acquired from the widely used database of standardised face expressions
(Tottenham et al. 2009). The experiment consisted of three blocks, each composed of
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ten happy faces, ten fearful faces and ten neutral faces. Each stimulus was presented
for 850 ms with an inter-stimulus interval of 150 ms. EEG data were sampled at 250 Hz
and recorded using 128 channels HydroCel Geodesic Sensor Net (HGSN), as shown in
3.1 (Apicella et al. 2013).
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FIGURE 3.1: HGSN sensor layout including 128 electrodes (Apicella et al. 2013).

Data were filtered through a finite impulse response (FIR) bandpass filter with the cut-
off frequencies of 0.5 Hz and 50 Hz. FIR filter has a finite response which means that
its response ends at some point (Cohen 2014). It was chosen for filtering the data over
the infinite impulse response (IIF) because it is more stable and less likely to introduce
non-linear phase distortions (Cohen 2014). The filter order was determined according
to the following equation:

filterorder = round(3 x (srate/lowerFilterBound)) (3.1)

where srate is the sampling rate, which is equal to 250 Hz, and lowerFilterBound is the
lower frequency bound which is equal to 0.5 Hz. Thus, the filter order according above
equation was equalled 1500.
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TABLE 3.1: FIR filter order corresponding to each brain waves.

Brain wave # Filter order
Delta (0.5 -4 Hz) 1500
Theta (4 - 8 Hz) 188
Alpha (8 - 13 Hz) 94
Beta (13 - 30 Hz) 58
Gamma (30 - 45 Hz) 26

The continuous EEGs were segmented into 1000 ms epochs (150 ms of baseline and
850 ms of stimulus presentation) as 1000 ms is a reasonable epoch length typically used
in ERP research to capture the entire temporal dynamics of the ERP (Apicella et al.
2013). Any segment containing signals above a threshold of 200 yV was considered
contaminated by artefacts such as blinking or eye movement and was not used in fur-
ther analysis (Jamal et al. 2014). Next, the FIR bandpass filter was used to decompose
EEG signals into its five traditional narrowband frequencies, described in section 2.2.2,
namely delta (0.5 — 4 Hz), theta (4 — 8 Hz), alpha (8 — 13 Hz), beta (13 - 30 Hz) and
gamma (30 - 45) (Wang et al. 2016). The filter order corresponding to each traditional
narrowband frequency is shown in Table 3.1. This decomposition step is necessary to

get a proper phase value and obtain its intended physical interpretation.

3.3 PLV-based Functional Brain Connectivity

PLV is a classical approach for quantifying phase synchronisation, which is a key strat-
egy for estimating FBC. The strength of phase synchronisation is measured by the abso-
lute value of the mean of the phase difference between two signals (Aydore et al. 2013).
PLV value ranges between zero and one - 0 when the two signals are totally indepen-
dent and 1 when the two signals are strongly coupled (Aydore et al. 2013). The first step
in PLV calculation is to compute the instantaneous phase ®(t), often calculated using
Hilbert or complex wavelet transform. Both approaches yielded the same result with
the same efficiency (Brufa et al. 2018). In this study, the Hilbert transform was used for
this purpose, which is defined as:

o1 * xi(7)
%(t) = —PV [ e (3.2)
where, %;(t) is the Hilbert transform of the original signal x;(7), and the transformation
is calculated using the integration of division of the original signal over the time-shifted
by T (Brunner et al. 2006). PV is the Cauchy principal value used to avoid the error in
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calculation due to improper integration. The instantaneous phase can then be calcu-
lated as:

d(t) = arctan ilgg (3.3)

where ®(t) is the phase extracted from each time-point ¢[1,...T], trial n[1,... N], and

for each frequency band. Upon completing the phase extraction, the exponentiation
is calculated to obtain the unit phase difference vector between each pair of channels.
Hence, the series of phases difference vectors induce a connectivity matrix as the fol-
lowing equation:

PLV =[ (exp(jA®)) | (3.4)

In the above definition, A® denotes the phase difference between two signals and ()
is an expectation operator (Brunner et al. 2006). Lachaux et al. (1999) defined PLV as a
time-dependent measure to estimate the inter-trial variability of phase at time ¢. Hence,

Equation (3.4) can be written as:

PLV, = % $ exp(j {1 (1) — ba(H)}) (35)
n=1

3.4 Fundamental Graph-Theoretical Measures

After describing the basic concept of calculating brain connectivity, it would be quite
valuable to transform the connectivity matrix into a complex network. This transfor-
mation is an established approach for getting insight into the process of information
propagation amongst the brain areas—the underpinning mechanism of the working
principle of the brain. As described in Chapter 2, in this approach, the electrodes are
represented as nodes in the network, and the edge between two nodes is weighted by
the functional connectivity measures, particularly the phase-based connectivity matrix
entries. Fundamental graph-theoretical measures are used to quantitatively charac-
terise the brain network. They help understand a network’s topology, thus facilitating
the network’s proprieties comparison between typical subjects and those with brain
disorders (Matlis et al. 2015). Typically, these metrics are categorised into two groups:
local metrics and global features. The local features, as described in section 2.4, pro-
vide the view of the characteristics of a single node in terms of its connectivity with
the neighbouring node, and the global network features characterise the network as a
whole in terms of network integration and the ease of information transfer within the
network.

Global network measures are particularly interesting because the neuroimaging re-
sults suggest that ASD children have long-distance hypo-connection and short-distance
hyper-connection (Kana et al. 2014). The global network metrics could adequately cap-

ture these two characteristics. Thus, five global graph parameters—transitivity, global
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efficiency, radius, diameter, and characteristic path length—are preferred for being
adopted into this study because they are expected to provide a great insight into the
essence of information flow disruptions in the brain of children with ASD.

Transitivity represents the ratio of the triangle to triplets in the network and measures
the tendency of nodes to cluster together. The network with high transitivity means it
contains groups of nodes that are densely connected internally. Finding such groups is
significant because they reveal the functional modules. Transitivity is defined as (Ru-

binov & Sporns 2010):
_ Lien 2ti
Yien ki (ki - 1)

where T is transitivity of the network, N is the set of all nodes in the network, k; is a

T

(3.6)

degree of node 7, and ¢; is the number of triangles around node i, which is calculated as

follow:

ti = % Y aiainaj, (3.7)

jheN

where a;j, a;;, and aj, are the connection between node i and j,i and h, and j and £,
respectively. A degree of node i, k; is equal to a number of its neighbours, and it is an
important complex network measure as many graph-theoretical parameters calculated
based on it, such as the transitivity in equation 3.6 (Rubinov & Sporns 2010). It is
computed by the equation:

ki = Z aijj (38)
jEN
Characteristic path length represents the average shortest path length between all pos-
sible pairs of nodes in the network. It measures the network’s ability to propagate
information rapidly between distributed nodes (Cao et al. 2014). Mathematically, it is
defined as: y p
_ 1 jEN i Bij

L==)Y L= N1 (3.9)
where L; is the average shortest path length between node i and all other nodes, and d;;
is the shortest path length (distance) between the node i and j, and it is mathematically
described as:

dij= ) flas) (3.10)

aerIsz

where ;. is the shortest path between node i and node j, which means—in a weighted
graph—the path with a minimum weight between node i and j, f is a mapping function

from weight to length (Rubinov & Sporns 2010).

Global efficiency is the mean of the inverse of the shortest path length. It is related
to characteristic path length and used to measure network efficiency by assessing how
efficiently the information is exchanged through the whole network (Liu et al. 2017).

Higher global efficiency refers to higher network efficiency in information exchange.
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Global efficiency can be described by the following equation:

YjeN,j#i di;l
N-—-1

1 1

ieEN ieEN

(3.11)

where E; is the efficiency of the node 7, and dl.;l is an inverse of the shortest path length.

Radius is a measure of network shape, and it is defined as the minimum of network ec-
centricity that could be described as the maximum distance (i.e., longest shortest path)
between node i and any other nodes in the network. Mathematically, it can be defined
by the following equation:

R = min(e;) (3.12)

In the above equation e; is a network eccentricity for node i, and it refers to the maxi-
mum value of each row of the dot product of d;;. The network eccentricity is defined as
follows:

e; = max (d;; - d;j) (3.13)

The diameter is another measure of network eccentricity, and it is defined as the maxi-
mum value of eccentricity:
D = max (e;) (3.14)

3.5 PLV-based Features Extraction Process

A main stage in the proposed machine learning framework is extracting the discrim-
inant features utilised to distinguish between ASD and TD groups. It is presented in
two steps; formulating the connectivity matrices from three proposed PLV-based FBC
approaches (trial-averaged PLV, average trial-averaged PLV, and time-points-averaged
PLV) and deriving the graph parameters from each resulting connectivity matrix sepa-
rately. Then, these graph parameters would be used as features fed into the classifier.
As described in section 3.3, PLV was defined by calculating the phase difference at
each time-point and then the results were averaged over the trials to get one connec-
tivity matrix per time-point to measure the inter-trial variability of phase. The EEG
data set adopted in this study was recorded while presenting a visual stimulus; typ-
ically, in the event-related experiment, the averaging process is carried out over the
trials to enhance the signal to noise ratio. Thus, this study proposed adopting three dif-
ferent approaches to calculating the PLV matrix considering the several characteristics
of EEG. These approaches, namely trial-averaged PLV, average trial-averaged PLV and
time-points-averaged PLV. Detailed descriptions of each of these methods are provided

in the following points. The justification behind adopting them are also clarified.
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¢ Trial-averaged PLV

In the trial-averaged PLV, the PLV connectivity matrix was computed between
each pair of time-series at a specific frequency (herein, five frequency ranges that
were mentioned in section 3.2 were considered), and the instantaneous phase
was estimated at specific time-points across the various trials. That means, at
each time-point ¢, the exponent of instantaneous phase difference was calculated
between each pair of time-series over trials N. Then the average phase differ-
ences across trials were obtained. Mathematically, in Equation 3.5, N is a total
number of trials, ¢ is a specific time-point, # is a certain trial, and PLV; indicates
the connectivity matrix at time t. This process was repeated for each time-point
at each frequency band in each stimulus. As a result, M connectivity matrices
were obtained in each frequency band where M was the number of time-points
(in this study, M = 250, which is equal to the sampling rate, i.e. the number
of samples per second). Once connectivity networks were formulated from each
frequency band, in each stimulus, and for each subject separately, the set of the
graph-theoretical parameters (described in section 3.4)—transitivity, global effi-
ciency, radius, diameter and characteristic path length—were extracted from each
network. Brain connectivity toolbox (BCT) in MATLAB environment was used to
extract these parameters (Mika 2010). These features were then used to train a
set of classifiers, and their performance was analysed. A block diagram for this
approach is shown in Figure 3.2.

This approach was applied because the typical protocol followed in task-based
modulations relies on averaging several trials. Hence, this study followed the
same approach in connectivity analysis to get strong evidence regarding phase
synchronisation by calculating connectivity in the same phase configuration on
each trial (Cohen 2014).

* Average trial-averaged PLV
In average trial-averaged PLV, the connectivity matrix was estimated similarly to
the first approach but with slight differences. After getting N connectivity matri-
ces, the average over N was calculated to end up with one averaged connectiv-
ity matrix. Then, the complex network was estimated, and the graph parameters
were extracted from this network, as described earlier. Following that, the feature
selection algorithm was run to find most of the discriminant information needed
for the classification problem. Here, Fisher discriminant ratio (FDR) was em-
ployed as a criterion for ranking the features as it can quantify the ability for each
feature in separation between classes (Theodoridis 2010). The features with high
ranking have a greater discriminability. FDR can be defined as a ratio between-
class distance to scatter within-class. Mathematically, it is computed based on the
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FIGURE 3.2: Schematic diagram of trial-averaged PLV. Each time-series recording from
each electrode was filtered by Hilbert transform to extract the instantaneous phase.
The exponent of phase difference a;; between each pair of time-series i and j were

computed at time-points t; for each trial 1, and these yielded N matrices, (from (#;,1)
to (t1, N)) where N was the number of trials. By averaging a over trials N, PLV was ob-
tained at #1. Repeating this process for each time-point yielded T connectivity matrices
representing synchrony index related to inter-trial variability.

mean and variance of both classes as:

2
FDR = M (3.15)
1 2

where p; is the mean of the first class, y, is the mean of the second class, (712

and 07 are the variances of first and second class respectively. The features were
ranked by FDR, and the cross-correlations between the features were calculated

as follows:

N
1 XniXyi
i = Lzt niXy (3.16)
J N .2 yvN .2
\/anl xm’ anl xnj

In the above equation, x, is the kth feature of the nth pattern, and p;; is the
cross-correlation coefficient between features i and j. The process of selecting
the best discriminant features was involved the following steps (Theodoridis &
Koutroumbas 2008):

- The features were ranked in descending order according to FDR, and the feature
with the best rank, say x;,, was selected where i1 is the feature’s index.

- To select the second feature, the cross-correlation coefficient between x;, and the

remaining features was computed, and it represented by p; ; where i1 # j.
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- The second feature (let say x;, ) was chosen based on the following equation:
ih = argm]ax {1C(j) — a2 |piy |}, (3.17)

where a1, a; are weighting factors and their value 0.2 and 0.8, respectively, and C
is the class separability. This study considered the correlation and class separa-
bility in the feature selection process. Prior to commencing the selection process,
the normalisation of features was calculated. It may be beneficial for removing
bias due to features having a high value, may have a strong influence on the cost
function used for designing the classifier (Theodoridis & Koutroumbas 2008). The

features were normalised to zero mean and unit variance according to the follow-

ing:

,i=1,2..,N, (3.18)

where ¥; is a normalised value, N is the number of features, x; is the feature i, ¥
the mean, and ¢ is the standard deviation. The schematic diagram for average
trial-averaged approach is shown in Figure 3.3. This approach was proposed to
investigate whether the graph-theoretical parameters extracted from average con-
nectivity networks could give a refine measure to the global network properties

compared to those extracted from each trial.
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FIGURE 3.3: Schematic diagram of average trial-averaged PLV. Estimating PLV was
carried out in the same manner of trial-averaged PLV with the difference in the final-
ising of estimation process by taking the average across the PLV matrices and ending
up with one PLV matrix.
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Time-points-averaged PLV

In the time-points-averaged PLV, the connectivity index was computed between
all pairs of time-series for each specific trial at each frequency band. Intending,
at each specific trial 1, the exponentiation of the instantaneous phase difference
was calculated between each pair of time-series over the time-points, and then
the average of phase differences over the time-points was estimated. The phase
difference was computed by Equation 3.5 where N is the number of time-points,
which is equal 250. This yielded M connectivity matrices, each one correspond-
ing to one trial. Next, the average over the M matrices was computed, resulting
in one average matrix mapped into the connectivity network. In the final step, the
graph parameters were inferred to find the most discriminant features between
the two populations. Similar to the second approach, five features were extracted:
transitivity, global efficiency, radius, diameter and characteristic path length. The
feature selection algorithm was then used to rank the features and select the most
informative one for feeding into the classifier. The selection process proceeded in
the same manner as the second approach. This approach was proposed to inves-
tigate the variability of phase difference at trial n; if the phase difference slightly
varies across the times, PLV is close to 1; otherwise, it is 0. The block diagram for
the third approach is shown in Figure 3.4. This approach is the classical methodol-
ogy for calculating phase synchronisation and was used to measure the intra-trial
variability of phase and investigate whether it could discriminate between the
two populations of ASD and TD.
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FIGURE 3.4: Schematic diagram of time-points averaged PLV. After extracting instan-
taneous phase by Hilbert transform, the exponents of phase differences (a;;) between
each pair of electrodes i and j were computed at trial 1y for each time-point ¢, yield-
ing T matrices, (from (1,7) to (T, n1)) where T was time-points length. By Averag-
ing over time-points T, PLV was obtained at 11. Repeating this process for each trial
yielded N connectivity matrices representing synchrony index related to the stability
of phase synchronisation over time.

3.6 Classification Algorithms

The previous section described how to form the features vector from several phase-
based FBC connectivity methods. The features vector was then used to train the classi-
fication algorithm to discriminate between ASD and TD groups. Over the years, several
classification algorithms have been used to separate between classes, each of which has
a different learning approach, advantages and limitations. Choosing the proper algo-
rithm for classification problem is challenging as no best algorithm fits all. Hence, this
study intended to explore several classification algorithms to find the most discrimi-
nant features that can best discriminate between two groups. In particular, the study
evaluated the performance of classifiers that were designed to deal with binary classi-
fication problem. These were chosen according to the needs of the study to assign each
individual in the data set into one of two classes—ASD or TD. This exploration used
LDA, SVM, KNN and decision tree as classifiers. A classification learner app within
the statistics and machine learning toolbox in MATLAB was used to train and test the

classification algorithms.
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¢ Linear discriminant analysis classifier
LDA classifier separates the data by constructing the hyperplane between two
classes. It estimates the parameter of the Gaussian distribution of each class and
tries to find the hyperplane that makes the distance between the mean values of
the two classes as far apart as possible and the variance within each class as small
as possible—this is called a Fisher criterion described earlier by Equation 3.15.
The goal is to find the weight vector W that minimise the corresponding Fisher

criterion as shown in the following equation:

_ WTSzW

J(W)

where J(W) is an objective function, W is weight vector, Sg is between-class scat-

ter matrix, and S, is within-class scatter matrix, which are defined as follow:

Sp = (my — my) (my —my)" (3.20)
2
Sw=Y. ¥ (xi—my) (xi —my)" (3.21)
k=1ieN;

where m; is the mean of first class, 1, is the mean of the second class and x; is the
feature vector i, 7 € 1,....,N, Ny denoting to number of training instance in class k.

The weight vector W that minimised the criterion in Equation 3.19 is defined as:
W =St (my —mp) (3.22)

After inference of the discriminant vector W, the predicted class label (y € [—1,1])

can be computed by the linear discriminant functions:
y=Wx+b (3.23)

where b is the bias. If y > 0 the observation x belongs to class 1, otherwise it

belongs to another class.

Generally, a discriminant analysis classifier is preferred because it is easily com-
puted and interpreted, fast in prediction, and works well in practice (MathWorks
2018).

e SVM
SVM separates two classes by finding the best hyperplane that maximises a mar-
gin between the two classes” data points. Margin means the maximum distance
between the separating hyperplane and the nearest data point of each class. This
data point closest to the hyperplane is called the support vector. SVM algorithm
works by mapping input data into the features space that can discriminate be-

tween classes using linear or non-linear models based on the kernel function. The
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linear separating hyperplane can be computed as follow:

n
f(x):w-x+b:2wi-xi+b:0 (3.24)
i=1
where sign of f(x) is the decision function, n is a number of data points, w and
x € R! where [ is a number of features and b is scalar. The optimal solution w is
that maximise the distance between two support vectors of each class i.e margin

and it obtained by minimising cost function ¢, :

1 Y4
L(w,&) = ~ (wTw> +C-Y & (3.25)
2 n=1
depending on:
yi((xi-w)+b)>21-¢;i=1,2,...,n (3.26)

where C is penalised error, ¢ is a measure of training error, Z is the number of mis-

classified samples and y; is the class label of sample i. The optimisation Equation

3.25 can be simplified as:
n 1 n
Vi) =) aj— 5 Y aajyiyiKer (x; - xj) (3.27)
i=1 ij=1

satisfying the constraint:

!
yl‘le'IO,CZlXiZO,izl,Z,...,l (328)

i=1

where «; is weight of training instance i as a support vector and Ker (x;, x]-) is
defined as kernel function; it can be linear, quadratic, cubic and gaussian; and the
SVM model is varied based on type of kernel function.

This research investigated four SVM models, linear SVM, quadratic SVM, cu-
bic SVM, and Gaussian SVM. The SVM is most widely adopted for classifying
the data with complex decision boundaries (i.e., non-linearly separable data) as it
can use the higher order of kernel functions. However, the computational cost of
SVM is high. Also, it is time-consuming and hard to interpret (MathWorks 2018).

¢ KNN
The KNN is a simple supervised machine learning algorithm; it classifies the new
input data based on the similarity measures of its neighbours. The distance func-
tion is used to determine such similarity. Thus, the algorithm assigns the class to
the input instance by the majority voting scheme based on its nearest neighbours.
The first step in calculating the KNN is selecting the number K of the neighbours
(in this research, K is set to 10). Next, the distance between the input instance
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and each K neighbour is calculated. The most widely used distance function is a
Euclidean distance which is calculated as follow:

Euclidian: d(x,y) = /) (xi — yi)* (3.29)
i=1

where d(x, y) is the distance between two points x and y, and 7 is the dimension-
ality of features space. In the final step, the new input data is assigned to the class
that most K neighbours belong to it.

The advantages of the KNN are simplicity, providing good predictive accuracy
in low dimensional space, and not requiring explicit training. However, the KNN
is computationally expensive since it must compute the distance to all samples
from the training set. It also uses a lot of memory and has a longer execution
time, mainly if the data size is too large (MathWorks 2018).

¢ Decision tree
The decision tree predicts the input data class by following a decision in a tree
from a root node to the leaf node (Sahu et al. 2020). The classification process of a
particular instance starts from the tree’s root. At each decision, the attribute value
(features) specified by the node is examined. Based on its value, moving down
direction is determined (left or right branch). This process is recursively repeated
in each sub-tree until the leaf node is reached, which provides an instance’s class.

The tree can be trained by splitting all input data into subsets based on attribute
values (features). This partitioning is recursively repeated until only homoge-
neous nodes are left. Each splitting tree is evaluated by the optimising function
called Gini’s diversity index, and the best one is selected for building the model
(MathWorks 2018). Gini’s diversity index is used to measure the node impurity
by checking whether all training data points belong to the same split indicating
the node is pure (Sahu et al. 2020). The algorithm of the decision tree is described
in Figure 3.5.
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INPUT: S, where § = set of classified instances
OUTPUT: Derision Tree

Require: S5 # @, num_attributes > 0
1: procedure BUILDTREE
2: repeat
BE maxrGain < 0
1 split A < null
5 ¢ + Entropy(Attributes)
6: for all Attribufes a in § do
Tk gain + InformationGain(a, e)
8: if gain > marGain then
0 mar(Gain + gain
10: splitA + a
11: end if
12: end for

13: Partition(S, splitA)
14: until all partitions processed
15: end procedure

FIGURE 3.5: Decision tree algorithm. The image is taken from Mayo (2016).

The decision tree is easy to compute, fast to fit and predict and low in memory

usage, but it could provide a low predictive accuracy (MathWorks 2018).

One of the most common problems that affect classification performance and prevent
the generalisation of the model is overfitting. As mentioned in section 2.5, this prob-
lem arises when the model performs well on training data but poorly fits new ones.
Overfitting risk increases for several reasons: the limited amount of available data, the
number of samples used in each class not being well-balanced, or high dimensional
data. LOOCV was employed herein to mitigate the effect of overfitting.

The performance of the classifiers was measured using three conventional metrics: ac-
curacy (ACC), sensitivity (SNS), and specificity (SPC). The ACC measures the percent-
age of correctly classified subjects—either ASD or TD—to the total number of subjects.
The SNS represents the percentage of correctly classified ASD children into the ASD
class—known as a true positive rate (TPR). In contrast, the SPC measures the propor-
tion of TD that is truly classified as typical and is known as a true negative rate (INR).
Mathematically, these measures are computed as follow:

Sensitivity (TPR) = % x 100 (3.30)
T

Specificity (TNR) = WN x 100 (3.31)
TP+ TN

Accuracy = PIN x 100 (3.32)

where TP is a true positive, representing the number of correctly classified children
belonging to the ASD class, and P is the total number of instances of ASD class. TN is
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a true negative, which refers to the number of correctly classified children belonging to
a typical class, and N is the total number of children in the typical class.

3.7 Results

The first stage of this research examined the impact of analysing the PLV-based FBC
within the machine learning framework to classify ASD. The one controversial issue
about PLV performance is its sensitivity to volume conduction. It is a key challenge
for EEG-based brain connectivity. The volume conduction is typically reflected as zero-
phase lag; however, in this analysis, the zero-phase differences between each spatially
closed pair electrode were investigated in order to mitigate the effects of volume con-
duction. The outcomes of employing the three proposed sets of features and the signif-
icance of the results are highlighted as follows.

¢ Trail-averaged PLV

The features were generated from five network parameters, 250 connectivity ma-
trices, five frequency bands, and three stimuli. The features pool was formulated
using all possible parameters” combinations to identify which graph-theoretical
parameters are most powerful in distinguishing between the two populations.
The discriminant ability of features is determined by the class separability func-
tion and consequently the classifier result. As a result, 31 different cases in each
frequency band were obtained, as shown in Table 3.2. Thus, the total number
of investigated cases in each stimulus was (155 cases: 31 features x 5 frequency
bands). All of these cases were fed into the classifiers described in section 3.6.

Table 3.3 shows the best classification performance for each frequency band for
each stimulus (happy, neutral and fearful). Using LOOCY, the best classification
accuracy of 95.8% was achieved using the cubic SVM in the theta band calcu-
lated from the happy stimulus in case of feature combinations between transi-
tivity, global efficiency, radius, and diameter with corresponding SNS and SPC of
100% and 92%, respectively. Same classification accuracy using the KNN classifier
was achieved in two other cases: (1) a combination of all features and (2) a combi-
nation between radius, diameter, and characteristic path length. In addition, the
difference between the ASD and TD groups was also observed in the delta band
computed from the happy stimulus. A classification accuracy up to 83.3% was
achieved using the decision tree classifier in multiple cases: (1) a combination of
all features, (2) a combination between radius and diameter, (3) a combination
between transitivity, radius, and diameter, (4) a combination between global ef-
ficiency, radius, and diameter, and (5) a combination between transitivity, global
efficiency, and diameter. To sum up, in the happy stimulus, the best classification
accuracy was achieved within the theta and delta bands.
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TABLE 3.2: List of all the cases investigated in the first PLV approach (trial-averaged
PLV) in each frequency band and for each stimulus.

Case Features
1 Transitivity
2 Global efficiency
3 Radius
4 Diameter
5 Characteristic path length
6 Transitivity and global efficiency
7 Transitivity and radius
8 Transitivity and diameter
9 Transitivity and characteristic path length
10 Global efficiency and radius
11 Global efficiency and diameter
12 Global efficiency and characteristic path length
13 Radius and diameter
14 Radius and characteristic path length
15 Diameter and characteristic path length
16 Transitivity, global efficiency and radius
17 Transitivity, global efficiency and diameter
18 Transitivity, global efficiency and characteristic path length
19 Transitivity, radius and diameter
20 Transitivity, radius and characteristic path length
21 Transitivity, diameter and characteristic path length
22 Global efficiency, radius and diameter
23 Global efficiency, radius and characteristic path length
24 Global efficiency, diameter and characteristic path length
25 Radius, diameter and characteristic path length
26 Transitivity, global efficiency, radius and diameter
27 Transitivity, global efficiency, radius and characteristic path length
28  Transitivity, global efficiency, diameter and characteristic path length

29

Transitivity, radius, diameter and characteristic path length

30

Global efficiency, radius, diameter and characteristic path length

31

All features
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TABLE 3.3: Best classification performance in each stimulus using trial-averaged PLV.

Stimulus Band ACC SNS SPC Classifier
Delta 83.30% 83.00% 83.00% Decision tree
Cubic SVM
Theta 95.80% 100.00% 92.00%
KNN
Happy .
Alpha 79.20% 75.00% 83.00% Decision tree
Beta 79.20% 75.00% 83.00% Gaussian SVM
Gamma 79.20% 83.00% 75.00% Cubic SVM
75.00% 75.00% Cubic SVM
75.00% 75.00% Quadratic SVM
Delta 75.00%
67.00% 83.00% Gaussian SVM
83.00% 67.00% Quadratic SVM
Theta 75.00% 83.00% Cubic SVM
Fearful 79.20%

67.00% 92.00% Gaussian SVM
83.00% 67.00% Gaussian SVM

Alpha 75.00%

75.00% 75.00% Decision tree
Beta 70.80% 67.00% 75.00% Decision tree
75.00% 83.00%
Gamma 79.20% KNN

83.00% 75.00%
83.00% 83.00%

Delta 83.30% KNN
92.00% 75.00%
Theta 87.50% 92.00% 83.00% Quadratic SVM
Alpha 83.30% 83.00% 83.00% Cubic SVM
Neutral Beta 79.20% 75.00% 83.00% Cubic SVM
75.00% 75.00% KNN
75.00% 75.00% KNN

Gamma 75.00%
67.00% 83.00% Decision Tree

83.00% 67.00% Gaussian SVM

In the neutral stimulus, the best classification performance was obtained using
the quadratic SVM in the theta band with a classification accuracy up to 87.5%,
with 92% SNS and 83% SPC. This result was observed in several cases: (1) a com-
bination of transitivity, global efficiency, and diameter, (2) a combination of tran-
sitivity, diameter, and characteristic path length, and (3) a combination of global
efficiency, diameter, and characteristic path length.

The optimal classification performance was observed for the fearful stimulus in
the theta and gamma bands. However, classification ACC did not exceed 79.2%,
which was obtained in the theta band using two sets of features: (1) the diameter
feature, with 67% SNS and 92% SPC using Gaussian SVM, and (2) a combination
of transitivity and characteristic path length, with 75% SNS and 83% SPC using
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cubic SVM. In the gamma band, the best accuracy was observed using three sets
of features: (1) a combination between transitivity and global efficiency with SNS
and SPC of 83% and 75%, respectively, (2) a combination between transitivity and
characteristic path length, with 83% SNS and 75% SPC, and (3) characteristic path
length, with 75% SNS and 83% SPC.

* Average trial-averaged PLV
The feature pool was generated from five graph metrics, and one averaged con-
nectivity matrix, yielding a features vector consisting of only five features. Here,
the features selection algorithm was applied to rank the features by how infor-
mative they are. The combinations of features based on FDR ranking were in-
vestigated in each frequency band and for each stimulus. In other words, the
combination between the two highest-ranked features was firstly examined, then
the three highest-ranked features, and so on. Consequently, a total of 20 different
cases were investigated. Each was evaluated by feeding into a classifier to deter-
mine which feature set is optimal, which f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>