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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
School of Electronics and Computer Science

Doctor of Philosophy

EEG-BASED BRAIN CONNECTIVITY ANALYSIS FOR IDENTIFYING
NEURODEVELOPMENTAL DISORDERS

by Noura Meshaan Alotaibi

This dissertation aims to identify the neurological biomarkers that could assist in pro-
viding reliable, automated and objective prediction of neurodevelopmental disorders
(NDDs) in early infancy. Quantitative electroencephalography analysis (qEEG), mainly
phase synchronisation-based functional brain connectivity estimated using phase lock-
ing value (PLV) and weighted phase lag index (WPLI), were investigated to deduce
whether it can be used for the early prediction of such disorders. The resulting connec-
tivity network was quantitatively characterised using complex graph-theoretical fea-
tures, namely transitivity, global efficiency, radius, diameter, and characteristic path
length. These features were then fed into the machine learning algorithms such as
linear discriminant analysis (LDA), support vector machine (SVM), decision tree and
k-nearest neighbour to examine their discriminant capability in classifying /predict-
ing NDDs. The proposed framework has gained initial validation in classifying autism
spectrum disorders (ASD) from an experimentally obtained EEG data set of 24 children.
Then, the framework was utilised to predict the appearance of cerebral palsy (CP) at
two years of age. The EEG data were recorded within the first week after birth from a
cohort of infants born with hypoxic-ischaemic encephalopathy (HIE). The exploration
results revealed that the proposed analytical methodology successfully predicted the
infants that would develop CP with a performance of 84.6% accuracy, 83% sensitiv-
ity, 85% specificity, 84% balanced accuracy and 0.85 area under the curve (AUC) in the
delta band, with a close result also obtained in the theta and alpha bands. The WPLI
and graph parameters were then used to predict the cognitive scores of infants born
with HIE by developing the regression framework correlating these EEG features and
a cognitive profile completed in a follow-up assessment at two years of age. The regres-
sion analysis showed that the radius feature yielded the best performance (root mean
square error (RMSE)= 16.78, mean absolute error (MAE)= 12.07 and R-squared= 0.24).
Although this study has successfully demonstrated that the qEEG features could be
considered potential biomarkers for identifying the brain deficits causing the NDDs, it
has a certain limitation due to the size of the data set. It needs to be validated on large
trials with a statistically significant population.
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Chapter 1

Introduction

Neurodevelopmental disorders (NDDs) are a group of conditions caused by atypical
brain growth and functions, and their onset occurs in the developmental period (often
in a pre-school age) (Tran & Miyake 2017). According to the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5), NDDs include cerebral palsy (CP),
attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD),
learning disabilities, and communication and motor disorders (Tran & Miyake 2017).
An individual with an NDD could suffer from impairments in cognition, intelligence,
learning ability, social skills, and in certain cases, motor skills. Some of these impair-
ments could be permanent, while others might alter or become more extensive during
an individual’s lifetime (Klimkeit et al. 2008). Although still a matter of some contro-
versy—and not always clear—the causes of NDDs may, in some cases, be associated
with risk factors including genetic, social, environmental, and other factors (Blackburn
et al. 2012). Poor pregnancy outcomes, such as low birth weight and delivery com-
plications, which are influenced by genetic and social factors, are usually associated
with NDDs (Blackburn et al. 2012). Hypoxic-ischaemic encephalopathy (HIE), one of
the most severe birth complications affecting infants, is considered the leading cause of
NDDs (Byeon et al. 2015).

Recent years have seen a rise in the prevalence of NDDs. In the UK, for example, the
prevalence of ASD, ADHD and learning disorders has increased from around 50,000 in
1995 to approximately 210,000 in 2012 (Blackburn et al. 2012). In England in particular,
the prevalence of NDDs among children is estimated to be around 3 - 4% (Blackburn
et al. 2012). This disability has significant impacts on an affected individual’s quality
of life, as well as on the parents, and its increased incidence affects society as a whole.
A disabled individual faces many barriers in health, education, employment and social
participation, including an inadequate environment, insufficient funding for money
and poor attitudes from others (Blackburn et al. 2012). Furthermore, caring for an in-
dividual with NDDs has negative economic impacts as parents and society pay a high
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cost for health care, special education services and losses in productivity. Services cost
the UK between £23.7 and £152.15 per week for each child 1 (Gov.uk 2021)

Early diagnosis of NDDs, mainly in early infancy, is crucial for establishing the appro-
priate early intervention strategies and providing parents with more accurate prognos-
tic information and counselling. Ultimately, early intervention may improve the neu-
rodevelopmental outcomes and prevent severe symptoms in young children. It would
also help to reduce the high financial costs associated with caring for the affected per-
son. The mechanism behind intervention strategies is attributed to the plasticity of the
developing brain could be optimised in early infancy (Glass et al. 2021). Brain plasticity
can be defined as the ability of the brain to modify its structure and functions (Cioni
et al. 2016). The critical period of brain plasticity is during its maturation when the
structural connections in the brain are continually shaped by synaptic modifications to
neuronal growth under the influences of learning and experience (Cioni et al. 2016).
Early intervention, therefore, attempts to utilise this property by providing suitable
learning and behavioural training to alter the developmental trajectory and modify
structural connections.

Traditionally, the diagnosis of an NDD occurs following the manifestation of symp-
toms, which is, on average, at around age 4.5 years and typically after parents or the
child’s school have flagged symptoms, depending on their vigilance (Duda et al. 2016).
The most active brain plasticity period has passed by this time, and so the faulty brain
connections are mostly set, making any changes with behavioural intervention much
more difficult. Clinical assessments that include behavioural tests, developmental tests
and neurological examinations are currently used for diagnosing NDDs. These assess-
ments are usually lengthy, subjective, and they require a multidisciplinary team to as-
sess the behavioural, historical and parental report information (Falkmer et al. 2013).

It follows that in recent years, researchers have sought methods to evaluate brain func-
tion in early infancy, utilising their findings to aid the early prognosis of neurodevel-
opmental outcomes. One technique to feature in several recent studies is neuroimag-
ing, which is utilised to identify infants with neurodevelopmental delay (Ouyang et al.
2020, Potharst et al. 2012, Slaughter et al. 2016). Alongside neuroimaging methods, elec-
troencephalogram (EEG) is a widely used technique for capturing brain activity and
identifying brain deficits because it is relatively inexpensive, portable, non-invasive,
user-friendly and comparatively easy to use. Therefore, EEG analysis is now being
used in predicting neurodevelopmental outcomes in several studies as reported in the
review of Ouwehand et al. (2020). Nevertheless, the interpretation of the prognostic
value of these methods remains subjective, however.

1This statistic was taken from a number of recipients of Disability Living Allowance, which is the UK
state benefit for people needing extra care and support in their daily lives.
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Researchers are therefore keen to find approaches that can identify the neurological
biomarkers of NDDs that could potentially assist in providing an objective prediction
of neurodevelopmental outcomes. Quantitative EEG (qEEG) could provide objective,
reproducible, and reliable biomarkers to characterise the brain activities related to these
disorders. Limited previous studies have, in fact, shown that such qEEG features can
satisfactorily predict the long-term neurodevelopmental outcomes (Hayashi-Kurahashi
et al. 2012, Lloyd et al. 2016). However, this field has yet to find a reliable biomarker
suitable to be introduced into clinical practice. Because detailed explorations of qEEG
for identifying NDDs in infancy age are limited, more studies are needed, with partic-
ular attention given to qEEG features and their efficiency in providing insights into the
brain developmental state.

In the following sections, a brief description of the aim and the objectives, together
with the challenges and overall contributions of this research, are provided. The chap-
ter concludes with an outline of the dissertation.

1.1 Aim and Objectives

This research aims to overcome the shortcomings outlined above by exploring the fea-
sibility of the qEEG features-based machine learning framework to early predict neu-
rodevelopmental outcomes in term-born infants at high-risk (specifically those born
with HIE). The ultimate aim of this proposed framework is to provide the early predic-
tion of NDDs, which in turn facilitate providing the tailored intervention. This aim is
supported by the World Health Organization, which stated that identifying infants at
risk for NDDs is crucial to establishing a close relationship between parents and health
care providers and providing early intervention (Cioni et al. 2016, Organization 2011).
A coherence systematic review provided by Spittle et al. (2015) also showed a signif-
icant association between the early interventions protocol and the positive effects on
cognitive development, but effects tend to disappear after preschool age (Cioni et al.
2016). Mainly, the goal of early intervention is to prevent or reduce the motor, cogni-
tive and emotional impairments in young children, and this would have a significant
improvement in the patient’s quality of life (Cioni et al. 2016, Kiiski et al. 2018). In ad-
dition, the early intervention could provide the promotion of parent-infant interaction,
reduce the parent stress, anxiety and depression, and afford a supportive environment
(Hadders-Algra 2021).

This dissertation tests the hypothesis that the qEEG feature, mainly functional brain
connectivity (FBC), specifically the phase-based connectivity characterised by graph-
theoretical metrics, could be used as a biomarker for identifying the NDDs. This ap-
proach reflects the underlying information flow between different areas in the brain
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network by measuring the functional interactions between the distant and distinct
brain regions. Characterising these interactions using the graph theory parameters
provides a better understanding of the brain functions and topological properties of
the brain network. As developmental delay stems from disruption of the functional
brain network, the FBC with the graph theory analysis is chosen to employ in this re-
search to reveal the individual’s brain network properties and explore the early devel-
opment of the organisational brain paradigm. At the same time, any alteration in these
network characteristics is investigated within the machine learning framework to ex-
amine whether it could be used as a biomarker for identifying the neurodevelopmental
delay. The machine learning techniques were employed in this dissertation as a frame-
work to assess the FBC and complex network measures as predictors of NDDs. These
techniques were utilised to assist in developing EEG-based biomarkers for automated
and objective prediction of NDDs at the individual subject level. The performance of
the machine learning technique was used as a metric to evaluate the diagnostic effi-
ciency of the FBC and complex network measures (Chaitra et al. 2020).

In order to ascertain the validity of the proposed approach, the starting point of this
research is to design a basic framework to classify children with ASD and typically
developing (TD) groups in an experimentally obtained EEG data set of twenty-four
children, twelve with ASD and twelve TD. Even though the aim of this work is the
early prediction of NDDs, this data set is chosen to validate the proposed framework
because it is considered proven data set and has been previously employed in several
studies (Apicella et al. 2013, Jamal et al. 2014, Khuntia et al. 2019). The second phase
involves investigating the utility of this framework in predicting neurodevelopmen-
tal outcomes at two years of age from a neonatal EEG recording at the first week after
birth. The main purpose of the study is to identify the infants who developed CP at two
years of age by validating the neonatal EEG analysis against the clinical labels assessed
at that age. The phase-based FBC is necessarily calculated from the single scale of the
EEG spectra—a complex signal composed of multiple frequency oscillators—to charac-
terise the overlapping time-frequency brain dynamics associated with CP. Thus, some
form of prefiltering into narrowband is necessary before estimating the instantaneous
phase. Traditionally, the digital bandpass filter (DBP) has been utilised for this purpose,
relying on the predefined traditional brain waves. Quantification of phase synchroni-
sation calculated from the DBP filter is compared with the adaptive decomposition
algorithm (without a priori selection of the filter cut-offs), namely noise-assisted multi-
variate empirical mode decomposition (NA-MEMD) in CP prediction. The final part of
the research investigates the effectiveness of the neurological biomarkers—identified in
the previous phase—to predict the cognitive outcome. This can be established by find-
ing the association between neonatal EEG and the individual cognitive profiles that
were completed at a follow-up visit at 24 months of age.
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The dissertation objectives can therefore be restated as follows:

• To investigate the effectiveness of FBC analysis employed within a machine learn-
ing framework in discriminating between children with ASD and TD.

• To inspect the feasibility of quantitative EEG-based FBC on the basis of a machine
learning framework in finding a biomarker that helps in the early prediction of
CP from high-risk term-born infants with neonatal HIE and who were diagnosed
either as having or not having CP at twenty-four months of age.

• To explore whether incorporating the biomarkers identified in the previous step
with the regression-based model could predict the cognitive outcome at twenty-
four months of age.

• To examine the effectiveness of the NA-MEMD algorithm in decomposing EEG
signals into their intrinsic components and compare its results in CP prediction
with the traditional DBP filter.

• To establish the graph-theoretic framework to quantify the topographical char-
acteristics of FBC and identify the highest impact network measures in: 1) dis-
criminating between ASD and TD, 2) classifying between CP and normal, and 3)
predicting the later cognitive outcome at two years of age.

• To identify the association between frequency ranges and dysfunction of FBC in:
1) children with ASD, 2) infants diagnosed later with CP, and 3) infants associated
with cognitive outcome at two years of age.

Figure 1.1 illustrates a schematic diagram giving a generalised view of the blocks re-
quired to achieve the research objectives.

Quantitative graph-

theoretical metrics

ASD classification 

EEG recording EEG analysis Functional brain connectivity

CP prediction

Cognitive outcome

prediction

FIGURE 1.1: Schematic diagram of core issues in the prediction of NDDs, as proposed
in this research. The first step in the proposed prediction framework is the EEG record-
ing from the two populations: children and infants. Then the recorded EEG signals are
preprocessed to enhance the quality of signals and remove the artefacts. After that, the
desired qEE features are extracted using phase-based FBC and graph theoretical fea-
tures. These features are fed into several machine learning algorithms to investigate
their ability in ASD classification, CP prediction and cognitive outcome prediction.
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1.2 Contributions

The contributions of this dissertation are outlined below.

• Validates using the phase-based FBC characterised by global graph-theoretical
attributes as features in a machine learning framework to distinguish between
and classify ASD and TD groups.

• Establishes a novel machine learning framework for predicting, at two years of
age, the neurodevelopmental outcomes from neonatal EEG of infants born with
HIE highlighting a potential approach that could serve as an aiding tool for ear-
lier prediction of neurodevelopmental outcomes; subsequently assisting in es-
tablishing the tailored intervention programme at an early stage to improve the
outcome.

• Shows that the quantitative graph-theoretical features derived from phase-based
FBC networks could provide additional evidence (markers) for early predicting
the long-term outcomes (CP and cognitive deficits). It is hoped that this study
will lay the ground for more research that could provide a direct assessment of
the brain using EEG and lead to new insights into automating the neurodevelop-
mental delay prediction before the prodromal stage.

• Demonstrates, for the first time, that NA-MEMD could be used for defining the
pairwise synchrony between a multiple time-series of infants in order to quantify
the synchronisation across data-driven modes /frequencies that are consistent
across all the signals. Using this algorithm contributes to the existing knowledge
by providing an approach that adaptively decomposes the time-series. All poten-
tially meaningful subject-specific brain dynamics inherent in the signals are thus
included in the analysis, and the issue of variations in neural oscillation ranges
among individuals—particularly in infants—could be settled.

1.3 Dissertation Outline

The remainder of the dissertation is organised as follows: Chapter 2 includes the back-
ground and literature review of EEG analysis, functional brain connectivity, and graph
theory analysis. The chapter also provides the basic concept of the machine learning
framework and its relevant application in diagnosing pathological conditions. Further,
it reviews the current state-of-the-art techniques for predicting neurodevelopmental
disorders and then describes the shortcomings of these techniques that are motivated
for proposing the methodology in this study. Chapter 3 describes the proposed frame-
work based on FBC and complex network measures and its application in diagnosing
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ASD. Chapter 4 goes on to validate the previously established framework in predict-
ing the neurodevelopmental outcome, particularly CP, in newborns affected by HIE.
Chapter 5 presents the sophisticated signal processing technique, namely NA-MEMD,
in order to investigate its efficiency in calculating phase-based FBC. The chapter then
also provides a comparison of NA-MEMD results with the traditional approach DBP
filter used in Chapter 4. The methodology of early predicting the cognitive outcomes in
infants with neonatal HIE and its results are described in Chapter 6. The final chapter
brings together the threads of upon the entire dissertation and highlights the possible
areas for further research.
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Chapter 2

Background and Literature Review

2.1 Introduction

This chapter reviews the theoretical background and the basic concepts regarding brain
functions and EEG signals processing. The background covers the description of the
brain components and their functions, the techniques used for capturing brain activity,
and the fundamental EEG signal analysis. The brain connectivity and its types are also
included. Usually, the brain connectivity network is characterised by graph-theoretical
attributes to provide an abstraction and better understanding of brain network topol-
ogy. Hence, the overview of graph theory analysis is presented to demonstrate its basic
concept. The chapter also explains the machine learning framework and the state-of-
the-art studies of its application in predicting neurodevelopmental outcomes. Since
the first stage in this research focuses on classifying ASD children, a brief description
of ASD symptoms and current diagnosis protocols are provided. An introduction to
HIE, its complications, and the state-of-the-art approaches used for the outcome pre-
diction of newborns at-risk of developing neurodevelopmental deficits later in life are
also provided.

The chapter is structured as follow: section 2.2 demonstrates the components of the
human brain and its functions. The types of brain connectivity and the state-of-the-art
studies that have used brain connectivity in studying brain disorders are reviewed in
section 2.3. The graph theory analysis and its application in investigating the patho-
logical brain functions are described in section 2.4. The basic concept of the machine
learning framework and its application for automating the diagnosis /prediction of the
neurodevelopmental outcomes are provided in section 2.5. Section 2.6 gives the back-
ground of the pathological conditions under investigation in this work and reviews the
studies classifying and predicting them. An overview of the proposed study is illus-
trated in section 2.7.
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2.2 The Human Brain: Introduction and Measurement tech-
niques

Neurons are the basic unit of the brain responsible for triggering the events from out-
side or inside the body, sending motor commands to the muscles, and transforming
information to other neurons at every step in between. The human brain consists of
many neuronal cells connected forming a complex network with an estimated 100 tril-
lion synaptic connections between them (Northcutt 1989). Typical neurons need both
electrical and chemical stimulation for excitation and initiating interaction with other
neurons. An interaction commences when the neuron is triggered by the external or in-
ternal stimulus evoking the physical or physiological response, producing an electrical
impulse. This electrical impulse then travels along the neuron’s axon until it reaches
the dendrite of the next neuron at a synapse. In addition to electrical communication,
the neurons can interact through chemical transmission using neurotransmitters acting
as the chemicals that carry the signals across the synapses between neurons. Figure 2.1
shows the neuron structure.

FIGURE 2.1: Neuron structure and how the neuronal signal transfer along with the
neuron cells. Image was taken from McGuire (2021).

The neural activities can be measured directly by registering the electrical and mag-
netic currents produced simultaneously from each neuron during communication with
others. In addition, they can be measured indirectly by capturing the functional and
physiological effects related to brain activities. EEG is the time-series data of the electri-
cal signals generated by intercommunications between neurons recorded by scalp elec-
trodes (Covarrubias 2017). The electrodes measure the difference of potential between
dipoles formed by axons and dendrites, and a selected reference. The magnetic field is
generated simultaneously with initiated electrical current from each neuron which can
be measured by magnetoencephalography (MEG).

On the other hand, brain activities can be measured indirectly by quantifying the change
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in blood flow. Functional magnetic resonance imaging (fMRI), positron emission to-
mography (PET) or functional near-infrared spectroscopy (fNIRS) are examples of imag-
ing techniques that rely on this mechanism. fMRI measures brain activities by detect-
ing the changes associated with blood flow. PET measures the metabolic change in the
cells of brain tissues by using the tracer (radioactive drug). PET scanning allows see-
ing how the brain is working and detecting abnormalities by identifying the inactive
brain areas that consume energy (glucose) at a lower level than the active ones. fNIRS
measures brain activity by estimating the changes in the light absorption of different
haemoglobin species. Generally, EEG and fMRI are the most commonly used methods
in measuring and studying brain activities; hence, the following sections describe these
techniques in more detail.

2.2.1 fMRI

fMRI is based on the magnetic resonance imaging (MRI) technique that uses nuclear
magnetic resonance coupled with gradients in a magnetic field to show the image of
the brain’s structure. fMRI measures brain activity based on blood oxygenation lev-
els that change in response to neural activity. The active neurons in the brain consume
more oxygen than inactive ones, and the blood flow is increased to this active brain area
to meet this increased demand for oxygen (since the oxygen is delivered to neurons by
haemoglobin in red blood cells). The variation of oxygen concentration in haemoglobin
between the neurons that consume high amounts of oxygen and those that supply it is
called blood oxygenation level-dependent (BOLD). Practically, the BOLD contrast re-
sults from the difference in the magnetic field surrounding the red blood cell depending
on the oxygen state in the haemoglobin (Glover 2011). As a result, fMRI deduces brain
activity by monitoring the brain region with more blood oxygenation, i.e., producing
the brain activation maps showing which parts of the brain are involved in a particular
mental process.

The brain activity can be measured using fMRI during two experimental paradigms:
task-based fMRI (t-fMRI) or resting-state (rs-fMRI). In t-fMRI, the brain activities are
scanned during manipulating different tasks such as visual, auditory or other stim-
uli to induce the different neural states in the brain (Glover 2011). In rs-fMRI, brain
activities are measured during resting-state, i.e., in the absence of external stimuli or
demands of imposed tasks. Generally, fMRI has been widely used for investigating
several brain disorders such as ASD (Assaf et al. 2010, Bos et al. 2014, Chaitra et al.
2020, Doyle-Thomas et al. 2015, Gooskens et al. 2021, Iidaka 2015, Keown et al. 2013,
Lau et al. 2019, Shao et al. 2021), ADHD (Cao et al. 2014, Lake et al. 2019, Luo et al.
2020) and learning disorders (Yin et al. 2020).

The most prominent advantage of fMRI is its relatively high spatial resolution in the
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order of 3 - 4 mm that helps provide an anatomical scanning of the brain with high
resolution in the same session, which makes fMRI is optimal for source localisation
(Glover 2011). Furthermore, fMRI is a non-invasive technique widely available for
clinicians and researchers. However, it has a limited temporal resolution attributed
to haemodynamic response time. Typically, the BOLD response has a width of ap-
proximately 3s and a peak occurring around 5 - 6s after the onset of a neural stimulus
which is much slower than the underlying neural processes, and temporal informa-
tion is thereby heavily blurred (Glover 2011). Additionally, the equipment used in this
technique is large and much more expensive than other neuroimaging techniques.

2.2.2 EEG

EEG is a technique used for a direct measure of brain activities. It registers the electrical
current from the scalp using a set of electrodes. Several electrode system configurations
are used to record the EEG, such as the 10-20 system and HydroCel Geodesic Sensor.
The 10-20 system is a standard electrode system configuration used to record the elec-
trical potentials from the scalp. It uses anatomical landmarks on the skull, as shown
in Figure 2.2. The name of this system is derived from the distance interval between
electrode positions which is determined based on the interval between the subject’s na-
sion and inion; where nasion is the delve at the top of the nose, and inion is the bony
lump at the back of the head (Malmivuo & Plonsey 1995). This long interval is divided
into 10% and 20% segments, and the electrodes are placed at both endpoints of each
segment, as depicted in Figure 2.2. The standard 21 electrodes of 10-20 system can be
extended to incorporate a large number of electrodes, which are placed between the 21
electrodes with the same intermediate 10% interval distance as shown in Figure 2.3.

It should be noted that the EEG signals recorded from the human brain are attenu-
ated due to different factors such as the several brain layers, which they have to pass
through until they reach the scalp. The amplifier is used to resolve this issue and regu-
late the signals in the displaying units.
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FIGURE 2.2: Conventional 10-20 EEG electrode positions for the placement of 21 elec-
trodes (Sanei & Chambers 2013).
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FIGURE 2.3: A diagrammatic representation of the extended version of 10-20 system
using modified combinatorial nomenclature (MCN). It contains 75 electrodes, includ-
ing the reference electrodes. The MCN system renames four electrodes of the 10–20
system: T3 is now T7, T4 is now T8, T5 is now P7, and T6 is now P8 (Sanei & Cham-
bers 2013).

The electrical activity recorded from the brain occurs at different well-known frequen-
cies called brain waves. Traditionally, they are classified into five components differen-
tiated from each other by frequency range, namely: delta (δ), theta (θ), alpha (α), beta
(β), and gamma (γ). Table 2.1 shows the frequency band associated with each type of
brain wave (Sanei & Chambers 2013) and Figure 2.4 shows their wave patterns.

TABLE 2.1: Five traditional EEG wave patterns and their frequency ranges.

Brain Waves Frequency range

Delta 0.5 - 4 Hz
Theta 4 - 8 Hz
Alpha 8 - 13 Hz
Beta 13 - 30 Hz

Gamma above 30 Hz
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FIGURE 2.4: Typical brain normal rhythms.

The characteristics of these brain waves vary with an individual’s age and mental state.
Delta waves are observed in infants and adults during deep sleep (Sanei & Chambers
2013). Theta waves are associated with deep meditation, drowsiness or arousal in older
children and adults. Studying the change of theta wave plays an essential role in mat-
urational and emotional studies. Alpha waves are usually observed during relaxed
awareness when attention or concentration is absent. It is produced in most subjects
when closing eyes. In contrast, it is usually reduced by opening the eyes, by hearing
unfamiliar sounds, by anxiety or mental concentration or attention. Beta waves appear
in typical adults and are associated with active thinking, active attention, focusing on
the outside world, or solving concrete problems. The frequency ranges between 30 - 45
Hz corresponds to a gamma wave. It rarely occurs and is associated with low ampli-
tude (Sanei & Chambers 2013).

Advanced signal processing algorithms can be applied to decompose and separate the
broadband EEG signal into desired waveforms. The most used techniques for this pur-
pose are: DBP filter, short-time Fourier transform (STFT) (Gabor 1946), wavelet trans-
form (Mallat 1989) and empirical mode decomposition (EMD) (Huang et al. 1998).

Event-related potentials (ERPs) are another important neurophysiological feature of
EEG. ERPs measure the response of brain activity that are evoked due to specific events,
stimulus (visual, auditory or somatosensory), cognitive tasks or motor events (Cohen
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2014). They are voltage fluctuations in EEG emanated from the brain as a sum of sev-
eral numbers of action potentials that are time-locked to the events mentioned above
(Sanei & Chambers 2013). The basic concept underlying the computation of the ERPs is
the use of a signal-averaging procedure. Each trial contains signal and noise, and noise
can be cancelled out by averaging several trials; thus, the signal to noise ratio will be
improved.

ERPs can be divided into two categories, exogenous response and endogenous re-
sponse (Sur & Sinha 2009). An exogenous response consists of the early waves or com-
ponents, peaking roughly within the first 100 ms after the stimulus onset. In contrast,
the endogenous response is the wave produced after evaluating the stimulus. On the
other hand, the ERP signals could be either positive represented by the letter P such as
P300, P200 and P50 or negative referred to by the letter N such as N100 (Sur & Sinha
2009). The digits after the letter in those ERP examples indicate the response time in
milliseconds after the stimulus onset (Sanei & Chambers 2013).

Generally, EEG studies rely on the two basic experimental paradigms: resting-state
and task dependant EEG. In the resting-state, the background activity of EEG (such as
the traditional brain waves mentioned above) is recorded in the absence of any task or
stimulus, whereas in the task-dependant, the EEG activity is recorded while presenting
the stimulus. In recent years, utilising EEG analysis in studying neurodevelopmental
disorders has been thriving. For example, several studies have been conducted for in-
vestigating the ASD (Abdolzadegan et al. 2020, Lavanga et al. 2021, Peters et al. 2013,
Righi et al. 2014, Schwartz et al. 2017), ADHD (Barry et al. 2003, Janssen et al. 2017,
Mahmoud et al. 2021, Moghaddari et al. 2020), and learning disorders (Kaisar 2020,
Suchetha et al. 2021, Xue et al. 2020).

The main advantage of EEG compared to the fMRI technique is the high temporal
resolution in the order of a millisecond, providing a high ability for quantifying the
fast, dynamic and temporally sequenced neural oscillations. Further, EEG is inexpen-
sive, portable, non-invasive, user-friendly, and comparatively easy to use. However,
EEG has limited spatial resolution (in order of cm) as it records the signal from the
scalp, which reflects the underlying electrical potentials from a large population of ac-
tive neurons. Thus, EEG is not suited for localising the signal source and studying the
brain’s deep structures (Cohen 2014).

2.3 Brain Connectivity

The human brain is a complex system consisting of regions that are functionally and
structurally connected to process information during either a behavioural /cognitive
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task or in a resting-state (Mohammad-Rezazadeh et al. 2016). This concept is called
brain connectivity, and it was first addressed in the literature in the early 1960s (Adey
et al. 1961). Studying brain connectivity is essential to understand how the brain exe-
cutes its primary functions and what the roles of different brain regions are (Hamedi
et al. 2016). It can be categorised into structural, effective and functional connectivity.

• Structural connectivity
Structural connectivity describes a set of physical connections through synap-
tic contacts between neighbouring neurons (Mohammad-Rezazadeh et al. 2016).
These connections generally refer to the white matter of fibre tracts that connect
the spatially distributed neurons. Usually, the structural connectivity is measured
by MRI, particularly diffusion tensor imaging (Sakkalis 2011). The structural con-
nectivity has been used in studying the brain structure in several brain disorders
such as ASD (D’Albis et al. 2018, Moradimanesh et al. 2021, Valenti et al. 2020),
ADHD (Beare et al. 2017, Bos et al. 2017, Griffiths et al. 2021) and learning disor-
ders (Banker et al. 2021).

• Effective connectivity
With effective connectivity, the effects of one neural system on another can be
understood. Effective connectivity reflects the causal interactions between ac-
tivated brain areas providing both magnitude and directions of the interaction
(Lang et al. 2012), and is usually measured by EEG, MEG and fMRI techniques.
Generally, effective connectivity can be estimated based on the model specify-
ing the causal link known as the model-based approach, directly from the signal
known as a data-driven approach or by using information theory measures. The
model-based approach is a theoretical model that is generated from the neuro-
biological evidence, and it provides insights into the way that the brain regions
interact and influence each other (Sakkalis 2011). The most popular method is
dynamic causal modelling (DCM) (Friston et al. 2003) which measures non-linear
interactions between brain regions (Hamedi et al. 2016). In DCM, the response
of a dynamic system is modelled by a network of discrete but interacting neu-
ronal sources described in terms of a neural mass or conductance-based model
(Sakkalis 2011).

On the other hand, the data-driven approach does not require any assumption of
the underlying model or prior knowledge regarding the spatial and temporal re-
lationships (Sakkalis 2011). Granger causality (GC) (Granger 1969), partial direct
coherence (PDC) (Baccalá & Sameshima 2001) and direct transfer function (DTF)
(Kamifiski & Bfinowska 1991) are the most common methods for this approach.
GC is based on the idea that causes precede their effects in time (Sakkalis 2011).
It investigates whether one time-series can correctly predict another (Mehdizade-
hfar & Fallah 2016). The general forms of GC are PDC and DTF. Both approaches
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can deal with multivariate signals, i.e., they take into consideration an estimate
of the activity flow in a given direction between all channels simultaneously
(Mehdizadehfar & Fallah 2016). The difference between the two methods is that
DTF shows only the direct interactions between channels while the PDC shows
both direct and indirect interactions.

Information theory measure is based on the concept of Shannon entropy (Shan-
non 1948) which measures the amount of the information contained in the vari-
able. The best-known methods in this class are transfer entropy (Schreiber 2000),
partial transfer entropy, mutual information and minimum description length.
Transfer entropy and partial transfer entropy are directed measures of interaction,
while mutual information and minimum description are non-directed measures
of interaction (they are classified as the class of FBC).

Transfer entropy is a model-free measure, and it measures the information flow
from source X into target Y, conditioned on the past of the target (Niso et al.
2013). It is based on transition probability and does not assume any prior kind of
dependence.

Partial transfer entropy measures the amount of directed information flow from
X to Y in the presence of a variable Z. Hence if Z is independent of both variables
X and Y, the partial transfer entropy is equivalent to the transfer entropy (Niso
et al. 2013).

Several studies have been carried out to investigate the effectiveness of effective
connectivity in studying ASD (Rolls et al. 2020), ADHD (Muthuraman et al. 2019,
Wang et al. 2021), and learning disorders (Liu et al. 2010, Morken et al. 2017).

• Functional brain connectivity
FBC measures the temporal correlation among neuronal activities of distant and
distinct brain regions (Mohammad-Rezazadeh et al. 2016). It does not consider
any physical connection between the brain areas as in the aforementioned struc-
tural connectivity, but it measures the statistical dependency between different
neuronal signals. It can be recorded using several techniques: EEG, MEG, PET,
and fMRI (Sakkalis 2011). EEG-based FBC was preferable in this research be-
cause EEG has a high temporal resolution. Hence, it could capture the statisti-
cal dependencies that are highly time-dependent and fluctuate on multiple time
scales ranging from milliseconds to seconds, as in the case of neural activities. In
addition, EEG has other advantages that were mentioned in section 2.2.2. How-
ever, the critical challenge that faces EEG-based FBC is volume conduction. It is
a problem that induces the mixing of signals in electrodes that distort the actual
neuronal activities. The cause of volume conduction is that recording EEG by
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electrodes does not provide direct access to the source of the signal. However,
they record the linear and spontaneous superposition of multiple sources in the
brain (Hamedi et al. 2016). In addition, the electrical field spreads tangentially
through the skull, skin, and scalp, thus affecting adjacent electrodes and leading
to distortions of the electrical signal. As a result, the potential of existing spu-
rious connectivity could be high. Figure 2.5 illustrates the effects of the volume
conduction.

FIGURE 2.5: Illustration of the volume conduction effects. The black/grey rings repre-
sent electrodes; the black arrow represents the measured connectivity; the stars repre-
sent neural sources in the brain; the white arrows illustrate the path of electrical activ-
ity from these sources to electrodes. Panel A shows that each electrode measures only
neural activity below the source; therefore, the measured connectivity between two
electrodes reflects the true connectivity between two physically distinct brain regions.
In panel B, both electrodes measure the activity from the same neuronal source. In
panel C the electrical field spreads horizontally through the skull/scalp; the measured
connectivity is spurious since both neighbour electrodes measure the same signal from
a single source. The image was taken from Cohen (2014).

Computational methods used to measure the FBC can be classified into three
categories: linear, non-linear and information-based techniques (Hamedi et al.
2016). The Linear FBC approach provides a linear measure of FBC, and it con-
sists of three methods: correlation, cross-correlation and coherence (Hamedi et al.
2016). Correlation estimates the linear relationship between two signals using
Pearson’s correlation coefficient, where a higher correlation indicates a stronger
functional relationship between the corresponding brain regions. Similarly, the
cross-correlation calculates the linear dependency, but with respect to the time,
i.e., it recovers to Pearson correlation when the time delay equals zero.

In contrast, coherence measures the linear correlation between two variables as
a function of frequency. It quantifies the relationship between two time-series
based on phase consistency, i.e., if phase change in one signal, the coherence value
would be reduced, while if the phases are stabilised over time between the two
signals, the coherence value would be high (Hamedi et al. 2016). In practice, co-
herence measures the linear relationship between two signals by using a linear
time invariant transformation, i.e., a constant amplitude ratio and phase shift, in
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each frequency band (Duffy et al. 2017). A high coherence indicates strong con-
nectivity between two time-series signals and vice versa.

Generally, the primary advantage of linear FBC is that they are well-known and
computationally fast (Niso et al. 2013). However, they are highly affected by VC
and restricted with the assumption of the stationarity and linearity of the signal.
A large and growing body of literature has investigated the linear FBC in detect-
ing the brain deficits in several disorders such as ASD (Buckley et al. 2015, Carson
et al. 2014, Coben et al. 2008, Murias et al. 2007, Lazarev et al. 2015, Léveillé et al.
2010, Righi et al. 2014), ADHD (Sato et al. 2012), and learning disorders (Gaudet
et al. 2020).

Non-linear FBC methods are designed to measure the dynamics, non-linear and
non-stationary properties of EEG (Hamedi et al. 2016). The most common non-
linear FBC method is synchronisation. It is based on interacting chaotic oscil-
lators (Hamedi et al. 2016), initially introduced by Pikovsky (1984) and Pecora
& Carroll (1990). One of the most significant advantages of synchronisation is
that it provides an amplitude-independent measure of connectivity between cor-
tical regions. Thus it is less susceptible to the effects of artefacts and inter-trial
/inter-subject amplitude variability (Hamedi et al. 2016). It is classified into two
broad categories: generalised synchronisation and phase-based synchronisation
(Hamedi et al. 2016). Generalised synchronisation estimates the coupled interac-
tion between two stochastic oscillators by the specific function F. Considering the
first dynamical time-series Y is the function of another X as Y = F(X) where F is
unknown, maybe complex, and change over time (Niso et al. 2013). The existence
of generalised synchronisation between X and Y indicates that if the temporal
patterns in x(t) at times ti and tj are similar, in like manner, the pattern in y(t) at
these exact times will be similar. Generalised synchronisation can be computed
via several indices, such as S Index, H Index, N Index, M Index and L Index. Niso
et al. (2013) study contained more detail about these indices.

On the other hand, the phase-based synchronisation approach uses to calculate
the strength of phase coupling between two stochastic oscillators regardless of
uncorrelated amplitude (the major EEG characteristic in calculating the linear
FBC) (Niso et al. 2013). The most common phase-based synchronisation meth-
ods used in neuroscientific literature are phase-locking value (PLV), phase lag
index (PLI), and weighted phase lag index (WPLI) (Niso et al. 2013). PLV is a
classical measure of phase-based synchronisation, and it was first described for
EEG by Lachaux et al. (1999). It measures the strength of phase synchronisation
between two time-series based on the absolute phase difference. Although PLV
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can deal with the dynamics of the brain and the non-stationarity of its EEG sig-
nal, it is sensitive to volume conduction. Typically this issue is reflected as the
zero-phase lag between two time-series signals. PLI was proposed by Stam et al.
(2007) to alleviate the effect of volume conduction and other common sources of
noise. It quantifies the extent that the phase leads and lags between signals from
two sources as non-equiprobable, instead of considering the magnitude of the
phase leads and lags. PLI is hindered by the discontinuity of the measure caused
by small perturbation of phases that would change the signs of the phase differ-
ences having small magnitudes; accordingly, the PLI value would be changed.
The most recent method of quantifying phase synchronisation is WPLI. It was
defined by Vinck et al. (2011) as an improved version of the PLI index by weight-
ing the contribution of the observed phase lag or lead with the magnitude of the
imaginary component of the cross-spectrum. Although the WPLI is based on
amplitude in its calculation, it is still classified as a member of the phase-based
synchronisation family. WPLI provides a robust estimation of phase synchroni-
sation against the VC and other sorts of noise.

Although in principle, the WPLI and PLI could be the optimal choices for quan-
tifying phase-based synchronisation based on their characteristics, PLV estimates
absolute phase differences between two time-series, reflecting the meaningful
neurological coupling between them. Thus, there is no evidence about the op-
timal method for quantifying phase-based synchronisation.

The third class of FBC techniques is the information-based measures that cap-
ture linear and non-linear interactions between signals (Hamedi et al. 2016). A
standard method of this group is the cross mutual information which measures
the mutual dependence between two signals by quantifying the amount of infor-
mation gained about one signal by measuring the other as a function of the delay
between them (Sakkalis 2011). It is based on the probability distribution to detect
the correlation between two sources. Another measure is minimum description
length that estimates the interdependency between two sources by measuring the
degree of predictability of the two signals as a function of the other (Hamedi et al.
2016).

2.4 Application of Graph Theory in Characterising Functional
Brain Connectivity

Graph theory is often applied to FBC to describe the network architecture. It provides
the visualisation of the brain network, which facilitates understanding of its properties.
Furthermore, the graph theory gives an abstraction that could reduce the complexity
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in understanding the neural networks and help to identify similarities and differences
in their organisation (Kaiser 2011). In the graph theory analysis, the brain can be rep-
resented as a network where the nodes correspond to distinct brain regions (or EEG
electrodes in EEG-based FBC derivation). The edge is the link between neighbouring
nodes representing the strength of the brain functional connections. The graph can
be categorised as directed or undirected, according to the direction of the edges, and as
weighted or binary, based on the weight of the edges (Islam et al. 2017). In the weighted
graph, each edge has a weight that represents the strength of the correlation, and this
form is the most accurate in the real applications (Kaiser 2011). Figure 2.6 illustrates
these different categories of networks.

FIGURE 2.6: Illustration of different graph categories. The graph is commonly rep-
resented by a matrix. The left panel shows the binary and undirected graph. In a
binary graph, the edge represented by the black entry in the corresponding matrix is
only considered, regardless of the weight of the edge. An undirected graph is a graph
that contains a set of nodes connected with bidirectional links, i.e., the direction is not
important in this type of graph. The middle panel depicts the binary directed graph.
A directed graph is a graph that its nodes are connected through a direct edge. The
right panel represents a weighted undirected graph containing nodes connected with
weighted and directed edges. The greyscale represents the edge weight in the corre-
sponding matrix (Rubinov & Sporns 2010).

The graph theory analysis can adequately characterise the brain network and its topol-
ogy and provide quantitative information about the network properties. The graph-
theoretical parameters measure these topological properties on both local and global
scales. Local attributes identify the topological features of the single node, such as
node degree and centrality. In contrast, the global metrics reveal the information flow
over the whole network and any specialised local processing. Examples of global net-
work attributes are transitivity, global efficiency and characteristic path length.

Graph theory analysis has been used in many studies to investigate brain neurode-
velopmental disorders such as ASD (Barttfeld et al. 2011, Han et al. 2017, Kessler et al.
2016, Lavanga et al. 2021, Zeng et al. 2017), ADHD (Janssen et al. 2017, Kim et al. 2021)
and learning disorders (Xue et al. 2020).
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2.5 Machine Learning Framework

Machine learning can be classified into two categories: supervised machine learning
and unsupervised machine learning. In supervised machine learning, the model is
trained in a known label of observations and known response (output data) to gen-
erate the predictions class of new data. In general, supervised machine learning is
divided into two approaches: classification and regression. In classification, the model
is trained with specific features to predict the corresponding category of a given ob-
servation, while in regression, the model is trained to predict the continuous response.
Various classification and regression algorithms are different from each other based on
the learning functions and underlying assumptions. For example, linear discriminant
analysis (LDA), support vector machine (SVM), decision tree and K-nearest neighbour
(KNN) are the most popular classification algorithms. On the other hand, examples of
well-known regression models are linear regression, regression trees, regression sup-
port vector machines, and ensemble regression trees.

In machine learning frameworks, after training the model on specific features from the
training set, the next step is to validate it in the testing set. In order to mitigate the effect
of overfitting and ensure that the model performs well without bias, it is important to
train and test the model independently, i.e., the testing data set must not be used in
the training process. Another important factor for obtaining an optimal performance
is that the model should train as much training data as possible (Rashid & Calhoun
2020). One known challenge in the clinical realm is getting an adequate sample size,
i.e., the training data size is usually small. To deal with the limited number of instances
in the data set and avoid overfitting, cross-validation is often used to train the model
by dividing the data set into two sets, one for training and another for testing in a re-
peated fashion. K-fold cross-validation and leave-one-out-cross-validation (LOOCV)
are the most common cross-validation approaches. In K-fold cross-validation, the data
set is divided into K partitions, where K-1 partitions are used to train the model, and
the remaining one is used to evaluate its performance. This process is repeated until
each partition has been used as testing data. In LOOCV, K is equal to the number of
instances in the data set, and every instance in the data set is left out once for testing the
model. This procedure is repeated K times, leaving out the data of a different instance
each time. Finally, the model performance is obtained by averaging the K independent
results.

Class imbalance is a common problem in machine learning, where sample distribution
across the classes is biased. The class with large data samples is known as a majority
class, and the one with a small number is a minority class. A typical model would often
be ineffective in classifying the observation that belongs to the minority class. Several
approaches have been proposed to alleviate the problem of imbalanced data. Three
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such approaches are data level, algorithm level, and hybrid level. The data level ap-
proach balances the data distribution by either over-sampling—adding more instances
into the minority class—or under-sampling—removing the instances from the majority
class. Then the conventional classifiers are applied without any changes in the classi-
fier’s logic (Gosain & Sardana 2017). Several techniques have been employed for per-
forming over-sampling and under-sampling. For example, random under-sampling
is the most popular under-sampling technique. Random over-sampling and synthetic
minority over-sampling techniques are frequently used for over-sampling the data. At
the algorithm level, the new classification algorithms are designed, or the existing ones
are modified to handle the class imbalance problem without any prior changes to the
data set. Several algorithms have been designed for addressing the imbalance problem,
such as boosting and bagging algorithms. The hybrid approach combines the data level
approach and algorithm level approach into a single algorithm to obtain an optimal so-
lution for the imbalance problem (Gosain & Sardana 2017). Random under-sampling
boosting (RUSBoost) and synthetic minority over-sampling boosting are examples of
hybrid data sampling with boosting algorithms.

On the other hand, unsupervised machine learning algorithms aim to cluster the un-
labelled input data into different groups according to similarity measures such as Eu-
clidean or probabilistic distance (MathWorks 2018). Common algorithms for unsuper-
vised learning are the k-means algorithm, Gaussian mixture models, and the hidden
Markov model (MathWorks 2018).

In recent years, there has been a great tendency to use machine learning frameworks
to provide an automatic, objective, and robust aiding tool for classifying /predicting
NDDs. In these frameworks, the individual with the developmental delay is automat-
ically discriminated from the TD group. In the literature, these have been extensively
investigated in an attempt to provide diagnostic-focused predictive analysis of NDDs
in general and particularly ASD (Abdolzadegan et al. 2020, Grossi et al. 2017, Jamal
et al. 2014, Kang et al. 2020), ADHD (Ahmadi et al. 2021, Chen et al. 2019, Tenev et al.
2014) and learning disabilities (Dimitriadis 2016, Kaisar 2020).

2.6 Pathological Conditions

As described in section 1.1, the study was conducted on two data sets: firstly, the data
set of children with ASD and secondly, the data set of infants born with HIE. The ASD
data set was chosen as a starting point for this exploration because ASD is one of the
most commonly occurring NDDs. Moreover, the ASD data set used in the investiga-
tion of the proposed framework is well-proven, and it can be viewed as a benchmark
for evaluating the proposed analysis. This section describes the general pathological
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information and symptoms and reviews the current approaches used to diagnose ASD.
The overview of pathophysiology, experimental treatments and complications of HIE
is provided in section 2.6.2. The frequent consequence outcomes of HIE are described
in sections 2.6.3 and 2.6.4.

2.6.1 Autism Spectrum Disorders

ASDs are a group of lifelong neurodevelopmental disorders including the following
subtypes: autistic disorder, Asperger syndrome, childhood disintegrative disorder, and
pervasive developmental disorder-not otherwise specified (PDD-NOS) (Gurau et al.
2017). A lack of social communication characterises them and language acquisition, in
addition to restricted interests and repetitive behaviour (Mohammad-Rezazadeh et al.
2016). Furthermore, people with ASD suffer from stereotypic behaviour and nonverbal
communicative behaviour impairment, which impact social interaction. Symptoms of
ASD may be identified in early childhood but are often diagnosed at school-age (World
Health Organization 2021). The prevalence of ASD has been rising over the last four
decades (Kern et al. 2015, Klimkeit et al. 2008). According to the The National Autistic
Society (2016) report, around 700,000 individuals in the UK had an ASD.

Traditionally, ASD is diagnosed after onset of the symptoms using behavioural as-
sessment techniques. The Autism Diagnostic Interview-Revised (ADI-R), the Develop-
mental, Dimensional and Diagnostic Interview and the Autism Diagnostic Observation
Schedule-Generic (ADOS-G) are widely adopted by clinicians to diagnose ASD. More
details of these tools can be found in (Falkmer et al. 2013, Zwaigenbaum & Penner
2018). These clinical diagnostic tools are time-consuming, requiring multidisciplinary
teams (including a psychologist, a physician and a speech-language pathologist), and
the heterogeneity of the ASD symptoms hampers their efficiency.

With advancements in technology, several studies have recently begun to explore the
feasibility of qEEG in diagnosing ASD. Gurau et al. (2017) conducted a systematic re-
view to examine the evidence for the efficiency of qEEG signal analysis in ASD diag-
noses, classifying EEG analysis methods into three classes: spectral analysis, informa-
tion dynamics, and FBC. They found that these analysis methods could be utilised in
characterising ASD. However, different limitations hampered the progress and the pos-
sibilities of using these methods in clinical practice to diagnose ASD. Spectral analysis
is a linear approach that might not be optimal for characterising the non-linear and
non-stationary properties of the EEG. On the other hand, the information dynamics are
non-linear techniques but more challenging to perform and generally less well-known
as signal analysis tools. Moreover, they measure the complexity of each EEG indepen-
dently, providing a deep understanding of the dynamic process underlying specific
brain areas rather than giving a broad view of the neural connectivity over the whole
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brain. Thus, this approach is not adopted well for understanding the dynamical process
underlying ASD that affects the whole brain (Kana et al. 2014). In FBC, most studies
used coherence for estimating neural connectivity (Fingelkurts et al. 2005). Coherence
is a linear measure used with the assumption of signal stationarity, highly sensitive to
volume conduction and limited temporal resolution. Furthermore, coherence is posi-
tively affected by either change in power or phase of signals as it quantifies the stability
of the relationship between two time-series regarding power asymmetry and phase re-
lationship. Indicating coherence does not directly reveal the true relationship between
the two signals.

Phase synchronisation based FBC is a non-linear measure of neural activity capable
of detecting the dynamic and non-stationary characteristics of EEG. It has gained in-
creased attention in neuroscience literature due to evidence suggesting that phase-
based connectivity analysis could reveal information exchange topography in the hu-
man brain, which could offer insight into pathological brain states. Ahmadlou et al.
(2012) used the fuzzy synchronisation likelihood within the machine learning frame-
work to classify the ASD children of age between 7-13 years, and this method was
validated on the EEG data recorded during eye-closed in resting-state condition. Buck-
ley et al. (2015) compared different brain connectivity methods, including PLI between
ASD children, children with developmental delay and TD group of age between 2-
6 years, during the resting-states condition in three states fully awake, drowsy and
sleeping. Han et al. (2017) and Zeng et al. (2017) investigated the brain connectivity
measured via PLI characterised by graph theory attributes with EEG data recorded
during resting-state from ASD children and TD with 3-11 years and 7-13 respectively.
Orekhova et al. (2014), and their replicated study by Haartsen et al. (2019) used a debi-
ased weighted phase lag index to study the EEG-based brain connectivity in high-risk
infants aged between 13-18 months, while the data were recorded during the present-
ing of video streaming. Jamal et al. (2014) proposed a phase synchronisation states
(synchrostates) approach in the machine learning environment for differentiating be-
tween ASD and TD children aged between 6-13 years, while the EEG was recorded
during the presentation of three types of stimuli: happy, fearful and neutral.

Researchers have elucidated that the core deficits of ASD are associated with impair-
ments in sensory processing, which is related to deficiencies in social cognition that
may define this disorder (Jeste & Nelson 2009). Mainly, ASD children show severe im-
pairment in emotional facial expression processing compared to TD children. Sysoeva
et al. (2018) examined the face processing abnormalities in ASD children compared to
control based on the amplitude and latency of ERP components. Monteiro et al. (2017)
provided a systematic review to examine the EEG-based ERP features in emotional
facial expression processing in ASD and confirmed the deficits of facial emotion pro-
cessing associated with individuals who have ASD.
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A closer look at the literature shows that many studies have investigated the EEG-
based FBC for classifying ASD. Although these studies exist, such phenomenological
evidence is yet to be brought into clinical practice. Moreover, a detailed exploration of
the change in the task-dependent FBC to classify ASD is not that extensive. Notably,
other than the study of Jamal et al. (2014), to the best of the author’s knowledge, no
previous study has investigated the non-linear dynamics of ERP components in emo-
tional facial expression processing. In addition, very few studies have been carried out
on discriminating between the ASD and the control groups using machine learning
techniques.

2.6.2 Hypoxic-Ischaemic Encephalopathy

HIE is one of the most severe birth complications causing neonatal brain damage. The
incidence of HIE has increased in recent years, occurring at approximately 1-6 per 1000
live births (Byeon et al. 2015). It is caused by insufficient blood flow to the infant’s brain
as a result of a hypoxic-ischaemic event during the prenatal, intrapartum or postnatal
periods (Allen & Brandon 2011). The signs of HIE in early postnatal life include abnor-
mal fetal heart rate, poor umbilical cord gas (pH < 7.0 or base deficit > 12 mmol/L),
slow Apgar scores, presence of meconium stained fluid, or the need for respiratory
support within the first several minutes of postnatal life (Allen & Brandon 2011). The
severity of encephalopathy is measured using the Sarnat staging criteria in conjunction
with neuroimaging techniques during the first days after birth. Generally, HIE treat-
ment is limited to supportive medical therapy to maintain cardiopulmonary function
and manage seizure activity (Allen & Brandon 2011, Dereymaeker et al. 2019). The most
prominent treatment is the therapeutic hypothermia technique provided through either
selective head or whole-body cooling of the infant (Allen & Brandon 2011). The pro-
cedure of hypothermia treatment involves decreasing the infant’s body temperature to
between 33°C and 36.5°C for two to three days. Then the infant is rewarmed gradually
to prevent complications such as hypotension. Regrettably, with these treatments, up
to 40% to 60% of infants die by two years or have severe neurodevelopmental impair-
ments including CP, cognitive impairment, behavioural difficulties, visual or hearing
impairment, and epilepsy (Schreglmann et al. 2020). Early prediction of developmen-
tal delay is crucial due to it plays an essential role in providing successful therapeutic
interventions (Doyle et al. 2010). However, it is considered challenging and is tradition-
ally identified by neurological examination. The following sections review the current
approaches used to predict the frequent consequences of HIE being CP, and cognitive
deficits.
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2.6.3 Cerebral Palsy

CP is the most common subsequent neuromotor impairment of HIE. It is a movement
and posture disorder frequently associated with epilepsy, impairment of sensation, cog-
nition, communication, and behaviour (Morris 2007). As a lifelong condition, it has a
severe socio-economic impact on families and health care systems (Tonmukayakul et al.
2018). Early identification of infants with neonatal HIE who are at high-risk of devel-
oping CP later in life is important for appropriate planning of intervention strategies
(Hadders-Algra 2014), which ultimately may lead to improved outcomes.

The most frequently used assessment methods for early prediction of CP are (a) neu-
rological and neuromotor assessments, (b) neuroimaging, and (c) neurophysiological
tests (Hadders-Algra 2014). Even though neurological and neuromotor assessments
have been widely used in diagnosing CP and their prediction value is generally good,
they are subjective and often require longitudinal series of tests to detect the abnormal-
ities.

Alternatively, neuroimaging techniques have been used as promising tools for the early
prediction of CP in infants who are at high-risk (Hadders-Algra 2014), and MRI has
been the preferred imaging technique used for this purpose (Ouwehand et al. 2020,
van Laerhoven et al. 2013). Several studies have employed neurophysiological tests
with infants at risk of adverse neurodevelopmental outcomes. Conventional grading
electroencephalogram (cEEG) and amplitude-integrated electroencephalogram (aEEG)
modalities have been found to predict outcomes well (Hayashi-Kurahashi et al. 2012,
Maruyama et al. 2002, Ouwehand et al. 2020, Pisani & Spagnoli 2016, van Laerhoven
et al. 2013). However, interpretation of the prognostic value of these methods remains
subjective (Dereymaeker et al. 2019).

On the other hand, qEEG analysis could provide objective, reproducible and reliable
biomarkers for characterising the brain activities related to CP. Spectral power, FBC
(particularly coherence) and complexity analysis of EEG signals are the most common
features used in this field (Gao, Jia, Wu, Yu & Feng 2017). These measures have been
suggested to be the gold standard biomarker for identifying CP. Gao, Wu, Feng & Jia
(2017) and Gao, Jia, Wu, Yu & Feng (2017) studied linear-complexity measures to assess
the temporal and spatial correlations of EEG signals in adolescent patients with CP and
the control group. Coherence-based measures and spectral power were used to study
the EEG characteristics in CP children in several studies. Koeda & Takeshita (1998) in-
vestigated the change in spectral power and coherence connectivity in children with CP
from resting-state EEG within a machine learning framework. Kułak et al. (2005), and
Kulak & Sobaniec (2005) performed the studies to investigate the spectral power and
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coherence-based measures in children with CP. Sajedi et al. (2013) carried out the ma-
chine learning study to determine the linear and non-linear changes in brain dynamics
related to CP. Their study employed spectral power as a linear analysis and fractal di-
mension as a non-linear analysis.

However, the detailed exploration of using qEEG to identify CP at the age of infancy
was rarely investigated (George et al. 2020). Moreover, different limitations hampered
the progress of analysing the cognitive process of CP individuals using these method-
ologies. As mentioned in section 2.6.1, EEG is a non-linear and non-stationary signal
in its nature (Sanei & Chambers 2013), and such linear-based measurements are not
well adapted for its analysis. Mainly, volume conduction has been reported to signifi-
cantly affect EEG coherence estimations (Gao, Jia, Wu, Yu & Feng 2017). Thus, there are
still many works required to explore the pathological mechanisms of CP using qEEG
analysis.

2.6.4 Cognitive Outcomes

Neurodevelopmental impairment is a composite outcome that includes cognitive, be-
havioural, educational, and motor impairments. Cognitive deficit is considered one
of the most common outcomes usually associated with NDDs (Slaughter et al. 2016),
featured by slow information processing speed, deficits in working memory, attention,
and executive function. Moderate to severe HIE is one of the leading causes of later
cognitive impairment in children at school-age. Schreglmann et al. (2020) provided a
systematic review, which suggested that up to 60% of children without CP have a cog-
nitive impairment following HIE.

Early identification of infants at high-risk can help to provide targeted early interven-
tion aimed at improving cognitive outcomes by taking advantage of the neuroplasticity
of the developing brain in early infancy. Yet, the accurate diagnosis of cognitive impair-
ments cannot be carried out before 3 to 5 years of age (He et al. 2018). Recently, there
has been increased interest in exploring methods for assessing brain function in early
infancy and using them as an aiding tool for the early prediction of cognitive impair-
ments. Neuroimaging techniques have been used in several studies to identify infants
at high-risk of cognitive impairment (He et al. 2018, Moeskops et al. 2017, Slaughter
et al. 2016).

Along with neuroimaging methods, several studies have used EEG analysis to predict
cognitive outcomes. Kong et al. (2018) conducted a systematic review highlighting the
two basic approaches currently adopted for the early prediction of cognitive outcomes.
One is the analysis of EEG features to identify the biomarkers that could help classify
the subject as either cognitively impaired or normal. Second is the analysis of EEG
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characteristics to estimate the specific scores for the continuous cognitive measure to
predict cognitive performance and deficit level. Compared with binary classification,
prediction of the cognitive development reflects the difference among individuals in
brain functions and level of cognitive impairment, rather than determining the group
as in the classification case, which can be more challenging (Sui et al. 2020).

Limited previous studies have shown that the early quantitative analysis of EEG can
satisfactorily predict the long-term cognitive outcome. Lloyd et al. (2021) employed
serial, multichannel video EEG to predict outcome in preterm infants by finding the as-
sociation between the grading of EEG background activity—where EEG was recorded
soon after birth and continued over the first three days—and the developmental scores,
which were assessed at two years of age. Suppiej et al. (2017) compared spectral EEG
values of infants born near term with infants born at extremely low gestational age,
aiming to investigate whether spectral EEG features were related to neurological out-
comes. The EEG data were recorded at 35 weeks post-conception, and the outcome
was evaluated at one year of age by Griffiths’ scales. Cainelli et al. (2021) also car-
ried out the longitudinal six-year study to evaluate the feasibility of neonatal spectral
EEG in predicting the developmental delay in premature infants. The EEG data were
recorded at 35 weeks post-conception. The outcome was assessed at six years after the
perinatal period (school-age period) using the Wechsler Preschool and Primary Scale
of Intelligence III and neurological test. West et al. (2005) conducted the regression-
based analysis to predict outcomes at 18 months of forty-four preterm infants using
the quantitative measure of EEG continuity recording in the first four days after birth.
Kühn-Popp et al. (2016) investigated the relation between brain maturation processes
and the epistemic language skills (evaluated at 48 months) using EEE coherence mea-
sured at 14 months.

Although these attempts have paved the way to early prediction of cognitive develop-
ment, methodological limitations hinder further progress. The EEG grading system is
still subjective and dependent on interpretation by an expert. Alternatively, the spectral
power, amplitude and coherence-based measures could provide an objective measure
for predicting the associated cognitive outcome. Nevertheless, as mentioned earlier,
its linearity has hampered its progress in this field. Therefore, further works are re-
quired to find the objective and reliable biomarkers for the early prediction of cognitive
outcomes.

2.7 The Basis of this Work

This work is conducted to find the objective and reliable multivariate brain network
features for the early prediction of NDDs. A closer look at the literature reveals some
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gaps and shortcomings. The prognostic value of qEEG analysis in identifying long-
term outcomes at the age of infancy was rarely investigated. Furthermore, the previ-
ously adopted qEEG features (as coherence and spectral analysis) for classifying /pre-
dicting neurodevelopmental outcomes are linear by their nature. They would be more
meaningful under the assumption of stationarity and linearity of the signal. EEG is
non-linear and non-stationary, and dealing with these characteristics (non-stationarity
and non-linearity) is essential for understanding the dynamic process underlying patho-
logical change. Thus, the qEEG features mentioned above are not optimal for capturing
the EEG characteristics. Moreover, adopting the qEEG features in the machine learning
framework for classifying /predicting the NDDs could make considerable progress in
providing automated and objective decisions. However, machine-based identification
studies are limited.

The main purpose of this study is to explore the effectiveness of non-linear qEEG
features within a machine learning framework for identifying neurodevelopmental
outcomes. Mainly, phase synchronisations (PLV and WPLI) characterised by graph-
theoretical parameters are proposed to quantitatively characterise the individual’s brain
connectivity from the EEG, either in task-dependent (in the case of children’s data set
of an ASD study) or resting-state (in the case of infants’ data set of neurodevelopmen-
tal outcomes studies). These chosen features could capture the complex properties of
the EEG signal. They are then used to train and test several machine learning algo-
rithms to show how useful they could be in the practical classification /prediction of
neurodevelopmental outcomes.

2.8 Summary

This chapter reviewed the basic concepts related to NDDs and their current diagnos-
tic approaches. The first part of the chapter offered a brief description of the human
brain and the measurement techniques used for recording brain activities. The detail
of the brain connectivity approach and its crucial role in understanding the dynamics
of the brain system were highlighted. The graph theory analysis is usually utilised to
characterise brain network topology. It facilitates the visualisation of functional brain
networks and provides the abstract of the network architecture, which could help de-
tect the network irregularity; thus, a brief background of graph theory analysis was
provided. This was followed by an overview of the machine learning framework. The
summary of the current state-of-the-art approaches used for classifying /predicting
several pathological conditions were also reviewed. The following chapters illustrate
the proposed approaches to classify children with ASD and predict CP and cognitive
outcome at two years of age from infants’ EEG born with HIE.
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Chapter 3

Classification of Autism Spectrum
Disorders from EEG-based
Functional Brain Connectivity
Analysis

3.1 Introduction

The starting point of this research is an attempt to design and establish a machine
learning framework to classify children with ASD. Specifically, the phase-based task-
dependent functional brain connectivity is investigated to measure the functional cou-
pling of neural populations through the strength of phase synchronisation; hence, the
abnormal synchronisation could be considered a hallmark of several brain disorders.
Evidence has shown that the phase-based FBC analysis could reveal a task-dependent
information exchange topography in the human brain, which could help to give insight
into pathological brain states (Farahmand et al. 2018). Furthermore, the phase-based
connectivity analysis is fast to compute and requires few assumptions and parameter
selections (Cohen 2014).

Thus, the phase-based task-dependent FBC and graph-theoretical measures are adopted
in this research to deduce the characteristics of the brain’s network and then utilise
these characteristics to classify ASD and TD. Specifically, the feasibility of using three
proposed PLV-based FBC—trial-averaged PLV, average trial-averaged PLV and time-
points-averaged PLV— is investigated. Furthermore, the study aims to find the most
discriminating graph metrics (markers) to be used as the features for training a classi-
fication model. The association between frequency bands and brain connectivity dys-
function in children with ASD is also investigated.
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Methodology for the proposed PLV-based FBC consists of the following steps. Firstly
the EEG signals are decomposed into five frequency bands. Then, connectivity maps
are formulated separately by three phase synchronisation approaches trial-averaged
PLV, average trial-averaged PLV and time-points-averaged PLV. Graph theory indices
characterise each connectivity map for every subject in each frequency band. These
graph-theoretical measures are then used as features fed into classifiers to evaluate the
proposed approaches in ASD classification. The results from this chapter have been
reported in (Alotaibi & Maharatna 2021).

This chapter is organised as follows: the experimental design, the data set and prepro-
cessing techniques are described in section 3.2. Formulating phase-based functional
connectivity procedures is illustrated in section 3.3. Fundamental graph-theoretical
measures are reviewed in section 3.4. Section 3.5 describes the proposed feature extrac-
tion schemes. Results analysis is depicted in section 3.7 and discussed in 3.8. Section
3.9 concludes the chapter.

3.2 Experimental Design and Data set

EEG data used in this study were obtained from Jamal et al. (2014)—a modified data set
from that used by Apicella et al. (2013)—which studied EEG characteristics in ASD and
TD children with respect to face perception tasks. It was chosen, in this exploration,
because the impairment in social processing is a core difficulty in ASD, which can be
conveyed by emotions showing on the face. This could be strictly connected to disrup-
tion of the ability to activate specific brain circuits during facial processing (Jamal et al.
2014).

The data were collected from twenty-four subjects, twelve children (seven boys and
five girls) with ASD and twelve TD children (seven boys and five girls). The children
with ASD were aged between six to thirteen years (mean age= 10.2 years), and their
neurotypical peers age-matched group were aged between six to thirteen years (mean
age= 9.7 years). The participants having ASD were diagnosed according to the Diag-
nostic and Statistical Manual of Mental Disorders (DSM-IV-TR) criteria and confirmed
by ADOS-G and ADI-R (Apicella et al. 2013).

Facial images with three types of emotion were displayed for each subject during the
EEG recording. The images showed the standardised emotional facial expressions:
happy, neutral, and fearful. Thirty faces were taken from ten subjects (five male and
five female) acquired from the widely used database of standardised face expressions
(Tottenham et al. 2009). The experiment consisted of three blocks, each composed of
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ten happy faces, ten fearful faces and ten neutral faces. Each stimulus was presented
for 850 ms with an inter-stimulus interval of 150 ms. EEG data were sampled at 250 Hz
and recorded using 128 channels HydroCel Geodesic Sensor Net (HGSN), as shown in
3.1 (Apicella et al. 2013).

FIGURE 3.1: HGSN sensor layout including 128 electrodes (Apicella et al. 2013).

Data were filtered through a finite impulse response (FIR) bandpass filter with the cut-
off frequencies of 0.5 Hz and 50 Hz. FIR filter has a finite response which means that
its response ends at some point (Cohen 2014). It was chosen for filtering the data over
the infinite impulse response (IIF) because it is more stable and less likely to introduce
non-linear phase distortions (Cohen 2014). The filter order was determined according
to the following equation:

f ilterorder = round(3× (srate/lowerFilterBound)) (3.1)

where srate is the sampling rate, which is equal to 250 Hz, and lowerFilterBound is the
lower frequency bound which is equal to 0.5 Hz. Thus, the filter order according above
equation was equalled 1500.
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TABLE 3.1: FIR filter order corresponding to each brain waves.

Brain wave # Filter order
Delta (0.5 – 4 Hz) 1500
Theta (4 – 8 Hz) 188

Alpha (8 – 13 Hz) 94
Beta (13 - 30 Hz) 58

Gamma (30 - 45 Hz) 26

The continuous EEGs were segmented into 1000 ms epochs (150 ms of baseline and
850 ms of stimulus presentation) as 1000 ms is a reasonable epoch length typically used
in ERP research to capture the entire temporal dynamics of the ERP (Apicella et al.
2013). Any segment containing signals above a threshold of 200 µV was considered
contaminated by artefacts such as blinking or eye movement and was not used in fur-
ther analysis (Jamal et al. 2014). Next, the FIR bandpass filter was used to decompose
EEG signals into its five traditional narrowband frequencies, described in section 2.2.2,
namely delta (0.5 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 13 Hz), beta (13 - 30 Hz) and
gamma (30 - 45) (Wang et al. 2016). The filter order corresponding to each traditional
narrowband frequency is shown in Table 3.1. This decomposition step is necessary to
get a proper phase value and obtain its intended physical interpretation.

3.3 PLV-based Functional Brain Connectivity

PLV is a classical approach for quantifying phase synchronisation, which is a key strat-
egy for estimating FBC. The strength of phase synchronisation is measured by the abso-
lute value of the mean of the phase difference between two signals (Aydore et al. 2013).
PLV value ranges between zero and one - 0 when the two signals are totally indepen-
dent and 1 when the two signals are strongly coupled (Aydore et al. 2013). The first step
in PLV calculation is to compute the instantaneous phase Φ(t), often calculated using
Hilbert or complex wavelet transform. Both approaches yielded the same result with
the same efficiency (Bruña et al. 2018). In this study, the Hilbert transform was used for
this purpose, which is defined as:

x̃i(t) =
1
π

PV
∫ ∞

−∞

xi(τ)

t− τ
dτ (3.2)

where, x̃i(t) is the Hilbert transform of the original signal xi(τ), and the transformation
is calculated using the integration of division of the original signal over the time-shifted
by τ (Brunner et al. 2006). PV is the Cauchy principal value used to avoid the error in
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calculation due to improper integration. The instantaneous phase can then be calcu-
lated as:

Φ(t) = arctan
x̃i(t)
xi(t)

(3.3)

where Φ(t) is the phase extracted from each time-point t[1, . . . T], trial n[1, . . . N], and
for each frequency band. Upon completing the phase extraction, the exponentiation
is calculated to obtain the unit phase difference vector between each pair of channels.
Hence, the series of phases difference vectors induce a connectivity matrix as the fol-
lowing equation:

PLV =|
〈
exp(j4Φ)

〉
| (3.4)

In the above definition, 4Φ denotes the phase difference between two signals and 〈〉
is an expectation operator (Brunner et al. 2006). Lachaux et al. (1999) defined PLV as a
time-dependent measure to estimate the inter-trial variability of phase at time t. Hence,
Equation (3.4) can be written as:

PLVt =
1
N

∣∣∣∣∣ N

∑
n=1

exp(j
{

Φ1(t)−Φ2(t)
}
)

∣∣∣∣∣ (3.5)

3.4 Fundamental Graph-Theoretical Measures

After describing the basic concept of calculating brain connectivity, it would be quite
valuable to transform the connectivity matrix into a complex network. This transfor-
mation is an established approach for getting insight into the process of information
propagation amongst the brain areas—the underpinning mechanism of the working
principle of the brain. As described in Chapter 2, in this approach, the electrodes are
represented as nodes in the network, and the edge between two nodes is weighted by
the functional connectivity measures, particularly the phase-based connectivity matrix
entries. Fundamental graph-theoretical measures are used to quantitatively charac-
terise the brain network. They help understand a network’s topology, thus facilitating
the network’s proprieties comparison between typical subjects and those with brain
disorders (Matlis et al. 2015). Typically, these metrics are categorised into two groups:
local metrics and global features. The local features, as described in section 2.4, pro-
vide the view of the characteristics of a single node in terms of its connectivity with
the neighbouring node, and the global network features characterise the network as a
whole in terms of network integration and the ease of information transfer within the
network.

Global network measures are particularly interesting because the neuroimaging re-
sults suggest that ASD children have long-distance hypo-connection and short-distance
hyper-connection (Kana et al. 2014). The global network metrics could adequately cap-
ture these two characteristics. Thus, five global graph parameters—transitivity, global
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efficiency, radius, diameter, and characteristic path length—are preferred for being
adopted into this study because they are expected to provide a great insight into the
essence of information flow disruptions in the brain of children with ASD.

Transitivity represents the ratio of the triangle to triplets in the network and measures
the tendency of nodes to cluster together. The network with high transitivity means it
contains groups of nodes that are densely connected internally. Finding such groups is
significant because they reveal the functional modules. Transitivity is defined as (Ru-
binov & Sporns 2010):

T =
∑i∈N 2ti

∑i∈N ki (ki − 1)
(3.6)

where T is transitivity of the network, N is the set of all nodes in the network, ki is a
degree of node i, and ti is the number of triangles around node i, which is calculated as
follow:

ti =
1
2 ∑

j,h∈N
aijaihajh (3.7)

where aij, aih, and ajh are the connection between node i and j, i and h, and j and h,
respectively. A degree of node i, ki is equal to a number of its neighbours, and it is an
important complex network measure as many graph-theoretical parameters calculated
based on it, such as the transitivity in equation 3.6 (Rubinov & Sporns 2010). It is
computed by the equation:

ki = ∑
j∈N

aij (3.8)

Characteristic path length represents the average shortest path length between all pos-
sible pairs of nodes in the network. It measures the network’s ability to propagate
information rapidly between distributed nodes (Cao et al. 2014). Mathematically, it is
defined as:

L =
1
N ∑

i∈N
Li =

1
N ∑

i∈N

∑j∈N,j 6=i dij

N − 1
(3.9)

where Li is the average shortest path length between node i and all other nodes, and dij

is the shortest path length (distance) between the node i and j, and it is mathematically
described as:

dij = ∑
ast∈li←↩j

f (ast) (3.10)

where li←→j is the shortest path between node i and node j, which means—in a weighted
graph—the path with a minimum weight between node i and j, f is a mapping function
from weight to length (Rubinov & Sporns 2010).

Global efficiency is the mean of the inverse of the shortest path length. It is related
to characteristic path length and used to measure network efficiency by assessing how
efficiently the information is exchanged through the whole network (Liu et al. 2017).
Higher global efficiency refers to higher network efficiency in information exchange.
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Global efficiency can be described by the following equation:

E =
1
N ∑

i∈N
Ei =

1
N ∑

i∈N

∑j∈N,j 6=i d−1
ij

N − 1
(3.11)

where Ei is the efficiency of the node i, and d−1
ij is an inverse of the shortest path length.

Radius is a measure of network shape, and it is defined as the minimum of network ec-
centricity that could be described as the maximum distance (i.e., longest shortest path)
between node i and any other nodes in the network. Mathematically, it can be defined
by the following equation:

R = min(ei) (3.12)

In the above equation ei is a network eccentricity for node i, and it refers to the maxi-
mum value of each row of the dot product of dij. The network eccentricity is defined as
follows:

ei = max
(
dij · dij

)
(3.13)

The diameter is another measure of network eccentricity, and it is defined as the maxi-
mum value of eccentricity:

D = max (ei) (3.14)

3.5 PLV-based Features Extraction Process

A main stage in the proposed machine learning framework is extracting the discrim-
inant features utilised to distinguish between ASD and TD groups. It is presented in
two steps; formulating the connectivity matrices from three proposed PLV-based FBC
approaches (trial-averaged PLV, average trial-averaged PLV, and time-points-averaged
PLV) and deriving the graph parameters from each resulting connectivity matrix sepa-
rately. Then, these graph parameters would be used as features fed into the classifier.
As described in section 3.3, PLV was defined by calculating the phase difference at
each time-point and then the results were averaged over the trials to get one connec-
tivity matrix per time-point to measure the inter-trial variability of phase. The EEG
data set adopted in this study was recorded while presenting a visual stimulus; typ-
ically, in the event-related experiment, the averaging process is carried out over the
trials to enhance the signal to noise ratio. Thus, this study proposed adopting three dif-
ferent approaches to calculating the PLV matrix considering the several characteristics
of EEG. These approaches, namely trial-averaged PLV, average trial-averaged PLV and
time-points-averaged PLV. Detailed descriptions of each of these methods are provided
in the following points. The justification behind adopting them are also clarified.
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• Trial-averaged PLV
In the trial-averaged PLV, the PLV connectivity matrix was computed between
each pair of time-series at a specific frequency (herein, five frequency ranges that
were mentioned in section 3.2 were considered), and the instantaneous phase
was estimated at specific time-points across the various trials. That means, at
each time-point t, the exponent of instantaneous phase difference was calculated
between each pair of time-series over trials N. Then the average phase differ-
ences across trials were obtained. Mathematically, in Equation 3.5, N is a total
number of trials, t is a specific time-point, n is a certain trial, and PLVt indicates
the connectivity matrix at time t. This process was repeated for each time-point
at each frequency band in each stimulus. As a result, M connectivity matrices
were obtained in each frequency band where M was the number of time-points
(in this study, M = 250, which is equal to the sampling rate, i.e. the number
of samples per second). Once connectivity networks were formulated from each
frequency band, in each stimulus, and for each subject separately, the set of the
graph-theoretical parameters (described in section 3.4)—transitivity, global effi-
ciency, radius, diameter and characteristic path length—were extracted from each
network. Brain connectivity toolbox (BCT) in MATLAB environment was used to
extract these parameters (Mika 2010). These features were then used to train a
set of classifiers, and their performance was analysed. A block diagram for this
approach is shown in Figure 3.2.

This approach was applied because the typical protocol followed in task-based
modulations relies on averaging several trials. Hence, this study followed the
same approach in connectivity analysis to get strong evidence regarding phase
synchronisation by calculating connectivity in the same phase configuration on
each trial (Cohen 2014).

• Average trial-averaged PLV
In average trial-averaged PLV, the connectivity matrix was estimated similarly to
the first approach but with slight differences. After getting N connectivity matri-
ces, the average over N was calculated to end up with one averaged connectiv-
ity matrix. Then, the complex network was estimated, and the graph parameters
were extracted from this network, as described earlier. Following that, the feature
selection algorithm was run to find most of the discriminant information needed
for the classification problem. Here, Fisher discriminant ratio (FDR) was em-
ployed as a criterion for ranking the features as it can quantify the ability for each
feature in separation between classes (Theodoridis 2010). The features with high
ranking have a greater discriminability. FDR can be defined as a ratio between-
class distance to scatter within-class. Mathematically, it is computed based on the
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FIGURE 3.2: Schematic diagram of trial-averaged PLV. Each time-series recording from
each electrode was filtered by Hilbert transform to extract the instantaneous phase.
The exponent of phase difference aij between each pair of time-series i and j were
computed at time-points t1 for each trial n, and these yielded N matrices, (from (t1, 1)
to (t1, N)) where N was the number of trials. By averaging a over trials N, PLV was ob-
tained at t1. Repeating this process for each time-point yielded T connectivity matrices
representing synchrony index related to inter-trial variability.

mean and variance of both classes as:

FDR =
(µ1 − µ2)

2(
σ2

1 + σ2
2

) (3.15)

where µ1 is the mean of the first class, µ2 is the mean of the second class, σ2
1

and σ2
2 are the variances of first and second class respectively. The features were

ranked by FDR, and the cross-correlations between the features were calculated
as follows:

ρij =
∑N

n=1 xnixnj√
∑N

n=1 x2
ni ∑N

n=1 x2
nj

(3.16)

In the above equation, xnk is the kth feature of the nth pattern, and ρij is the
cross-correlation coefficient between features i and j. The process of selecting
the best discriminant features was involved the following steps (Theodoridis &
Koutroumbas 2008):
- The features were ranked in descending order according to FDR, and the feature
with the best rank, say xi1 , was selected where i1 is the feature’s index.
- To select the second feature, the cross-correlation coefficient between xi1 and the
remaining features was computed, and it represented by ρi1 j where i1 6= j.
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- The second feature (let say xi2 ) was chosen based on the following equation:

i1 = arg max
j
{α1C(j)− α2 |ρi1 |} , (3.17)

where α1, α2 are weighting factors and their value 0.2 and 0.8, respectively, and C
is the class separability. This study considered the correlation and class separa-
bility in the feature selection process. Prior to commencing the selection process,
the normalisation of features was calculated. It may be beneficial for removing
bias due to features having a high value, may have a strong influence on the cost
function used for designing the classifier (Theodoridis & Koutroumbas 2008). The
features were normalised to zero mean and unit variance according to the follow-
ing:

x̂i =
xi − x̄

σ
, i = 1, 2, ..., N, (3.18)

where x̂i is a normalised value, N is the number of features, xi is the feature i, x̄
the mean, and σ is the standard deviation. The schematic diagram for average
trial-averaged approach is shown in Figure 3.3. This approach was proposed to
investigate whether the graph-theoretical parameters extracted from average con-
nectivity networks could give a refine measure to the global network properties
compared to those extracted from each trial.
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FIGURE 3.3: Schematic diagram of average trial-averaged PLV. Estimating PLV was
carried out in the same manner of trial-averaged PLV with the difference in the final-
ising of estimation process by taking the average across the PLV matrices and ending
up with one PLV matrix.
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• Time-points-averaged PLV
In the time-points-averaged PLV, the connectivity index was computed between
all pairs of time-series for each specific trial at each frequency band. Intending,
at each specific trial n, the exponentiation of the instantaneous phase difference
was calculated between each pair of time-series over the time-points, and then
the average of phase differences over the time-points was estimated. The phase
difference was computed by Equation 3.5 where N is the number of time-points,
which is equal 250. This yielded M connectivity matrices, each one correspond-
ing to one trial. Next, the average over the M matrices was computed, resulting
in one average matrix mapped into the connectivity network. In the final step, the
graph parameters were inferred to find the most discriminant features between
the two populations. Similar to the second approach, five features were extracted:
transitivity, global efficiency, radius, diameter and characteristic path length. The
feature selection algorithm was then used to rank the features and select the most
informative one for feeding into the classifier. The selection process proceeded in
the same manner as the second approach. This approach was proposed to inves-
tigate the variability of phase difference at trial n; if the phase difference slightly
varies across the times, PLV is close to 1; otherwise, it is 0. The block diagram for
the third approach is shown in Figure 3.4. This approach is the classical methodol-
ogy for calculating phase synchronisation and was used to measure the intra-trial
variability of phase and investigate whether it could discriminate between the
two populations of ASD and TD.
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FIGURE 3.4: Schematic diagram of time-points averaged PLV. After extracting instan-
taneous phase by Hilbert transform, the exponents of phase differences (aij) between
each pair of electrodes i and j were computed at trial n1 for each time-point t, yield-
ing T matrices, (from (1, n1) to (T, n1)) where T was time-points length. By Averag-
ing over time-points T, PLV was obtained at n1. Repeating this process for each trial
yielded N connectivity matrices representing synchrony index related to the stability
of phase synchronisation over time.

3.6 Classification Algorithms

The previous section described how to form the features vector from several phase-
based FBC connectivity methods. The features vector was then used to train the classi-
fication algorithm to discriminate between ASD and TD groups. Over the years, several
classification algorithms have been used to separate between classes, each of which has
a different learning approach, advantages and limitations. Choosing the proper algo-
rithm for classification problem is challenging as no best algorithm fits all. Hence, this
study intended to explore several classification algorithms to find the most discrimi-
nant features that can best discriminate between two groups. In particular, the study
evaluated the performance of classifiers that were designed to deal with binary classi-
fication problem. These were chosen according to the needs of the study to assign each
individual in the data set into one of two classes—ASD or TD. This exploration used
LDA, SVM, KNN and decision tree as classifiers. A classification learner app within
the statistics and machine learning toolbox in MATLAB was used to train and test the
classification algorithms.
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• Linear discriminant analysis classifier
LDA classifier separates the data by constructing the hyperplane between two
classes. It estimates the parameter of the Gaussian distribution of each class and
tries to find the hyperplane that makes the distance between the mean values of
the two classes as far apart as possible and the variance within each class as small
as possible—this is called a Fisher criterion described earlier by Equation 3.15.
The goal is to find the weight vector W that minimise the corresponding Fisher
criterion as shown in the following equation:

J(W) =
WTSBW
WTSwW

(3.19)

where J(W) is an objective function, W is weight vector, SB is between-class scat-
ter matrix, and Sw is within-class scatter matrix, which are defined as follow:

SB = (m1 −m2) (m1 −m2)
T (3.20)

Sw =
2

∑
k=1

∑
i∈Nk

(xi −mk) (xi −mk)
T (3.21)

where m1 is the mean of first class, m2 is the mean of the second class and xi is the
feature vector i, i ∈ 1,....,N, Nk denoting to number of training instance in class k.
The weight vector W that minimised the criterion in Equation 3.19 is defined as:

W = S−1
w (m1 −m2) (3.22)

After inference of the discriminant vector W, the predicted class label (y ∈ [−1, 1])
can be computed by the linear discriminant functions:

y = Wx + b (3.23)

where b is the bias. If y ≥ 0 the observation x belongs to class 1, otherwise it
belongs to another class.

Generally, a discriminant analysis classifier is preferred because it is easily com-
puted and interpreted, fast in prediction, and works well in practice (MathWorks
2018).

• SVM
SVM separates two classes by finding the best hyperplane that maximises a mar-
gin between the two classes’ data points. Margin means the maximum distance
between the separating hyperplane and the nearest data point of each class. This
data point closest to the hyperplane is called the support vector. SVM algorithm
works by mapping input data into the features space that can discriminate be-
tween classes using linear or non-linear models based on the kernel function. The
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linear separating hyperplane can be computed as follow:

f (x) = w · x + b =
n

∑
i=1

wi · xi + b = 0 (3.24)

where sign of f (x) is the decision function, n is a number of data points, w and
x ∈ Rl where l is a number of features and b is scalar. The optimal solution w is
that maximise the distance between two support vectors of each class i.e margin
and it obtained by minimising cost function ξn :

L(w, ξ) =
1
2

(
wTw

)
+ C ·

Z

∑
n=1

ξn (3.25)

depending on:
yi ((xi · w) + b) > 1− ξi, i = 1, 2, . . . , n (3.26)

where C is penalised error, ξ is a measure of training error, Z is the number of mis-
classified samples and yi is the class label of sample i. The optimisation Equation
3.25 can be simplified as:

V(α) =
n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyj Ker
(
xi · xj

)
(3.27)

satisfying the constraint:

l

∑
i=1

yiαi = 0, C ≥ αi ≥ 0, i = 1, 2, . . . , l (3.28)

where αi is weight of training instance i as a support vector and Ker
(
xi, xj

)
is

defined as kernel function; it can be linear, quadratic, cubic and gaussian; and the
SVM model is varied based on type of kernel function.

This research investigated four SVM models, linear SVM, quadratic SVM, cu-
bic SVM, and Gaussian SVM. The SVM is most widely adopted for classifying
the data with complex decision boundaries (i.e., non-linearly separable data) as it
can use the higher order of kernel functions. However, the computational cost of
SVM is high. Also, it is time-consuming and hard to interpret (MathWorks 2018).

• KNN
The KNN is a simple supervised machine learning algorithm; it classifies the new
input data based on the similarity measures of its neighbours. The distance func-
tion is used to determine such similarity. Thus, the algorithm assigns the class to
the input instance by the majority voting scheme based on its nearest neighbours.
The first step in calculating the KNN is selecting the number K of the neighbours
(in this research, K is set to 10). Next, the distance between the input instance
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and each K neighbour is calculated. The most widely used distance function is a
Euclidean distance which is calculated as follow:

Euclidian: d(x, y) =

√
n

∑
i=1

(xi − yi)
2 (3.29)

where d(x, y) is the distance between two points x and y, and n is the dimension-
ality of features space. In the final step, the new input data is assigned to the class
that most K neighbours belong to it.

The advantages of the KNN are simplicity, providing good predictive accuracy
in low dimensional space, and not requiring explicit training. However, the KNN
is computationally expensive since it must compute the distance to all samples
from the training set. It also uses a lot of memory and has a longer execution
time, mainly if the data size is too large (MathWorks 2018).

• Decision tree
The decision tree predicts the input data class by following a decision in a tree
from a root node to the leaf node (Sahu et al. 2020). The classification process of a
particular instance starts from the tree’s root. At each decision, the attribute value
(features) specified by the node is examined. Based on its value, moving down
direction is determined (left or right branch). This process is recursively repeated
in each sub-tree until the leaf node is reached, which provides an instance’s class.

The tree can be trained by splitting all input data into subsets based on attribute
values (features). This partitioning is recursively repeated until only homoge-
neous nodes are left. Each splitting tree is evaluated by the optimising function
called Gini’s diversity index, and the best one is selected for building the model
(MathWorks 2018). Gini’s diversity index is used to measure the node impurity
by checking whether all training data points belong to the same split indicating
the node is pure (Sahu et al. 2020). The algorithm of the decision tree is described
in Figure 3.5.
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FIGURE 3.5: Decision tree algorithm. The image is taken from Mayo (2016).

The decision tree is easy to compute, fast to fit and predict and low in memory
usage, but it could provide a low predictive accuracy (MathWorks 2018).

One of the most common problems that affect classification performance and prevent
the generalisation of the model is overfitting. As mentioned in section 2.5, this prob-
lem arises when the model performs well on training data but poorly fits new ones.
Overfitting risk increases for several reasons: the limited amount of available data, the
number of samples used in each class not being well-balanced, or high dimensional
data. LOOCV was employed herein to mitigate the effect of overfitting.

The performance of the classifiers was measured using three conventional metrics: ac-
curacy (ACC), sensitivity (SNS), and specificity (SPC). The ACC measures the percent-
age of correctly classified subjects—either ASD or TD—to the total number of subjects.
The SNS represents the percentage of correctly classified ASD children into the ASD
class—known as a true positive rate (TPR). In contrast, the SPC measures the propor-
tion of TD that is truly classified as typical and is known as a true negative rate (TNR).
Mathematically, these measures are computed as follow:

Sensitivity (TPR) =
TP
P
× 100 (3.30)

Specificity (TNR) =
TN
N
× 100 (3.31)

Accuracy =
TP + TN

P + N
× 100 (3.32)

where TP is a true positive, representing the number of correctly classified children
belonging to the ASD class, and P is the total number of instances of ASD class. TN is
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a true negative, which refers to the number of correctly classified children belonging to
a typical class, and N is the total number of children in the typical class.

3.7 Results

The first stage of this research examined the impact of analysing the PLV-based FBC
within the machine learning framework to classify ASD. The one controversial issue
about PLV performance is its sensitivity to volume conduction. It is a key challenge
for EEG-based brain connectivity. The volume conduction is typically reflected as zero-
phase lag; however, in this analysis, the zero-phase differences between each spatially
closed pair electrode were investigated in order to mitigate the effects of volume con-
duction. The outcomes of employing the three proposed sets of features and the signif-
icance of the results are highlighted as follows.

• Trail-averaged PLV
The features were generated from five network parameters, 250 connectivity ma-
trices, five frequency bands, and three stimuli. The features pool was formulated
using all possible parameters’ combinations to identify which graph-theoretical
parameters are most powerful in distinguishing between the two populations.
The discriminant ability of features is determined by the class separability func-
tion and consequently the classifier result. As a result, 31 different cases in each
frequency band were obtained, as shown in Table 3.2. Thus, the total number
of investigated cases in each stimulus was (155 cases: 31 features × 5 frequency
bands). All of these cases were fed into the classifiers described in section 3.6.

Table 3.3 shows the best classification performance for each frequency band for
each stimulus (happy, neutral and fearful). Using LOOCV, the best classification
accuracy of 95.8% was achieved using the cubic SVM in the theta band calcu-
lated from the happy stimulus in case of feature combinations between transi-
tivity, global efficiency, radius, and diameter with corresponding SNS and SPC of
100% and 92%, respectively. Same classification accuracy using the KNN classifier
was achieved in two other cases: (1) a combination of all features and (2) a combi-
nation between radius, diameter, and characteristic path length. In addition, the
difference between the ASD and TD groups was also observed in the delta band
computed from the happy stimulus. A classification accuracy up to 83.3% was
achieved using the decision tree classifier in multiple cases: (1) a combination of
all features, (2) a combination between radius and diameter, (3) a combination
between transitivity, radius, and diameter, (4) a combination between global ef-
ficiency, radius, and diameter, and (5) a combination between transitivity, global
efficiency, and diameter. To sum up, in the happy stimulus, the best classification
accuracy was achieved within the theta and delta bands.



50
Chapter 3. Classification of Autism Spectrum Disorders from EEG-based Functional

Brain Connectivity Analysis

TABLE 3.2: List of all the cases investigated in the first PLV approach (trial-averaged
PLV) in each frequency band and for each stimulus.

Case Features

1 Transitivity

2 Global efficiency

3 Radius

4 Diameter

5 Characteristic path length

6 Transitivity and global efficiency

7 Transitivity and radius

8 Transitivity and diameter

9 Transitivity and characteristic path length

10 Global efficiency and radius

11 Global efficiency and diameter

12 Global efficiency and characteristic path length

13 Radius and diameter

14 Radius and characteristic path length

15 Diameter and characteristic path length

16 Transitivity, global efficiency and radius

17 Transitivity, global efficiency and diameter

18 Transitivity, global efficiency and characteristic path length

19 Transitivity, radius and diameter

20 Transitivity, radius and characteristic path length

21 Transitivity, diameter and characteristic path length

22 Global efficiency, radius and diameter

23 Global efficiency, radius and characteristic path length

24 Global efficiency, diameter and characteristic path length

25 Radius, diameter and characteristic path length

26 Transitivity, global efficiency, radius and diameter

27 Transitivity, global efficiency, radius and characteristic path length

28 Transitivity, global efficiency, diameter and characteristic path length

29 Transitivity, radius, diameter and characteristic path length

30 Global efficiency, radius, diameter and characteristic path length

31 All features
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TABLE 3.3: Best classification performance in each stimulus using trial-averaged PLV.

Stimulus Band ACC SNS SPC Classifier

Happy

Delta 83.30% 83.00% 83.00% Decision tree

Theta 95.80% 100.00% 92.00%
Cubic SVM

KNN

Alpha 79.20% 75.00% 83.00% Decision tree

Beta 79.20% 75.00% 83.00% Gaussian SVM

Gamma 79.20% 83.00% 75.00% Cubic SVM

Fearful

Delta 75.00%

75.00% 75.00% Cubic SVM

75.00% 75.00% Quadratic SVM

67.00% 83.00% Gaussian SVM

83.00% 67.00% Quadratic SVM

Theta
79.20%

75.00% 83.00% Cubic SVM

67.00% 92.00% Gaussian SVM

Alpha 75.00%
83.00% 67.00% Gaussian SVM

75.00% 75.00% Decision tree

Beta 70.80% 67.00% 75.00% Decision tree

Gamma 79.20%
75.00% 83.00%

KNN
83.00% 75.00%

Neutral

Delta 83.30%
83.00% 83.00%

KNN
92.00% 75.00%

Theta 87.50% 92.00% 83.00% Quadratic SVM

Alpha 83.30% 83.00% 83.00% Cubic SVM

Beta 79.20% 75.00% 83.00% Cubic SVM

Gamma 75.00%

75.00% 75.00% KNN

75.00% 75.00% KNN

67.00% 83.00% Decision Tree

83.00% 67.00% Gaussian SVM

In the neutral stimulus, the best classification performance was obtained using
the quadratic SVM in the theta band with a classification accuracy up to 87.5%,
with 92% SNS and 83% SPC. This result was observed in several cases: (1) a com-
bination of transitivity, global efficiency, and diameter, (2) a combination of tran-
sitivity, diameter, and characteristic path length, and (3) a combination of global
efficiency, diameter, and characteristic path length.

The optimal classification performance was observed for the fearful stimulus in
the theta and gamma bands. However, classification ACC did not exceed 79.2%,
which was obtained in the theta band using two sets of features: (1) the diameter
feature, with 67% SNS and 92% SPC using Gaussian SVM, and (2) a combination
of transitivity and characteristic path length, with 75% SNS and 83% SPC using
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cubic SVM. In the gamma band, the best accuracy was observed using three sets
of features: (1) a combination between transitivity and global efficiency with SNS
and SPC of 83% and 75%, respectively, (2) a combination between transitivity and
characteristic path length, with 83% SNS and 75% SPC, and (3) characteristic path
length, with 75% SNS and 83% SPC.

• Average trial-averaged PLV
The feature pool was generated from five graph metrics, and one averaged con-
nectivity matrix, yielding a features vector consisting of only five features. Here,
the features selection algorithm was applied to rank the features by how infor-
mative they are. The combinations of features based on FDR ranking were in-
vestigated in each frequency band and for each stimulus. In other words, the
combination between the two highest-ranked features was firstly examined, then
the three highest-ranked features, and so on. Consequently, a total of 20 different
cases were investigated. Each was evaluated by feeding into a classifier to deter-
mine which feature set is optimal, which frequency band, and which stimulus.
The cases involved three stimuli, the possible combination of the five highest-
ranking network parameters and five frequency bands. For example, the cases
examined in the happy stimulus in the delta band were (transitivity and global ef-
ficiency), (transitivity, global efficiency, and radius), (transitivity, global efficiency,
radius, and characteristic path length) and (transitivity, global efficiency, radius,
characteristic path length, and diameter). Thus, the overall number of cases in-
vestigated in each stimulus in a specific frequency band was four.

The rankings of the five features investigated in each frequency band correspond-
ing to each stimulus are shown in Figures 3.6 to 3.8. The best classification per-
formances in each stimulus and each frequency band are demonstrated in Figure
3.9. With this approach, the best classification accuracy was 87.5%, with 83% SNS
and 92% SPC. This classification performance was observed in the theta band
within the happy stimulus using the KNN classifier with a combination of all
five features. The same classification accuracy with 100% SNS and 75% SPC was
realised in the neutral stimulus in the theta band using the quadratic SVM clas-
sifier with a combination of global efficiency, transitivity, and characteristic path
length. The optimal classification performance was observed in the alpha band
calculated from the fearful stimulus, which achieved 83.3% ACC, 83% SNS, and
83% SPC using the quadratic SVM classifier with a combination of global effi-
ciency, transitivity and characteristic path length.
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A) Confusion matrix for happy stimulus

C) Confusion matrix for fearful stimulus

B) Confusion matrix for neutral stimulus

FP=3

FIGURE 3.9: Confusion matrices of best classification performance by average trial-
averaged PLV. Panel A, B, and C show each frequency band’s results calculated from
happy, neutral and fearful stimuli, respectively.
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• Time-points averaged PLV
The feature pool contained five features, ranked using FDR. Similar to the second
approach, a total of 60 cases were investigated to find the best feature combina-
tions, frequency band, and stimulus, helping to differentiate between the ASD
and TD groups. Figures 3.10 to 3.12 show the ranking of the five parameters as-
sessed in each frequency band for each stimulus. The best performances in each
stimulus and each band are depicted in Figure 3.13.

The best classification performance was observed using the decision tree classifier
in the alpha band calculated from the fearful stimulus. This result was achieved
using all features and reached 83.3% ACC, 75% SNS and 92% SPC. For the happy
stimulus, the highest ACC did not exceed 75% in the theta band with a combina-
tion of all features. SNS and SPC were 92% and 58%, respectively. Furthermore,
the same ACC was achieved in the delta band with 83% SNS and 67% SPC, with
a combination of characteristic path length and diameter. In neutral stimulus, the
classification performance did not exceed 75% in the alpha and beta bands.
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A) Confusion matrix for happy stimulus

B) Confusion matrix for neutral stimulus

C) Confusion matrix for fearful stimulus

FIGURE 3.13: Confusion matrices of best classification performance using time-points
averaged PLV. Panel A, B, and C show each frequency band’s results calculated from
happy, neutral and fearful stimuli respectively.
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3.8 Discussion

This chapter aimed to characterise the difference in task-dependent functional brain
networks between ASD and TD. Three proposed PLV-based FBC characterised by global
graph-theoretical features within a machine learning framework were explored to find
the biomarker to classify ASD children. These approaches were investigated to find the
best technique to estimate the FBC from EEG acquiring during ERP experiment. The
study found that the three proposed PLV-based FBC—trial-averaged PLV, average trial-
averaged PLV, and time-points-averaged PLV achieved considerable results. The best
classification performance reached 95.8% ACC, 100% SPC, and 92% SNS using trial-
averaged PLV. A comparable result was also observed using average trial-averaged
PLV and reached 87.5% ACC, 100% SNS, and 75% SPC. Classification performance us-
ing time-points-averaged PLV reached to 83.3% ACC, 75% SNS, and 92% SPC. These
results showed a relative superiority of classification performance over the state-of-the-
art studies as summarised in Table 3.4.

Kang et al. (2020) conducted a study on resting-state EEG data set of 49 children with
ASD and 48 TD using a linear EEG feature— spectral power—and their result was
reached up to 85.44% using SVM. Abdolzadegan et al. (2020) explored a set of lin-
ear (spectral power, wavelet, and fast Fourier transform (FFT)) and non-linear (fractal
dimension, correlation dimension, Lyapunov exponent, detrended fluctuation anal-
ysis (DFA) and entropy) EEG features extracted from resting-state EEG data. The
study achieved a classification accuracy up to 90.57% using SVM. Grossi et al. (2017)
carried out a resting-state EEG study using non-linear EEG features based on multi-
scale entropy called multi-scale ranked organising map coupled with implicit func-
tion as squashing time algorithm (MSROM/I-FAST) and obtained classification accu-
racy reached up to 92.8% with a random forest classifier. Ahmadlou et al. (2012) used
non-linear EEG analysis—known fuzzy synchronisation likelihood—extracted from a
resting-state EEG data set. The study successfully classified ASD using an enhanced
probabilistic neural network with classification accuracy up to 95.5%. Khuntia et al.
(2019) and Jamal et al. (2014) used the ERP data set recorded during the execution of
facial perception tasks—the same data set used in this research. Khuntia et al. (2019)
studied the role of face and emotion processing in ASD using multivariate pattern anal-
ysis in both time and time-frequency domains using STFT. Classification performance
reached 84% using classwise principal component analysis. Jamal et al. (2014) provided
the FBC study based on synchrostates analysis and graph theory analysis. Classifica-
tion ACC reached 94.7%, SNS 85.7%, and SPC 100% using SVM.

As can be seen from Table 3.4, apart from Jamal et al. (2014) and Ahmadlou et al. (2012),
most of the studies used linear and non-linear EEG features that were not designed to
capture the neural activity over the whole brain, that is, the problem related to the
ASD. Ahmadlou et al. (2012) used the non-linear synchronisation method to study the
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FBC within and between seven brain regions (prefrontal, frontal, right temporal, left
temporal, central, parietal, and occipital). Jamal et al. (2014) carried out a synchrostate
analysis derived from a high-density EEG system which makes it not applicable to
young children. In contrast, PLV-based FBC, used in this research, can be perfectly es-
timated by considering only a limited number of channels. PLV was used to calculate
the phase synchronisations between each pair of channels and analyse their character-
istics using graph theory parameters. It has several advantages; it is provided a fast
and reliable calculation with mathematical simplicity (Bruña et al. 2018). In addition,
this study investigated the PLV-based FBC from EEG recording during the execution
of face perception tasks, a core deficit in ASD children. Most machine learning-based
studies in the literature, except Jamal et al. (2014) and Khuntia et al. (2019), explored
ASD abnormalities from resting-state EEG.

One of the key findings of this study was that the significant difference between both
populations was observed in the theta and alpha bands. This may be due to the activ-
ity of the theta band usually being associated with cognitive and emotional processing
and modulations of the alpha traditionally related to memory maintenance (Klimesch
1999). In this context, some studies consistently report a close and strong association
between alteration of theta and alpha oscillations and the subject with ASD. Li et al.
(2013) stated that the theta power increases, and alpha power decreases after increased
task demands, such as presenting less frequent target stimuli in an oddball paradigm.
Klimesch (1999) proved that there were changes in the alpha and theta bands in subjects
with various neurological disorders when subjects tried to respond to external stimuli.

Moreover, a significant difference between ASD and TD subjects has been found in
the alpha and theta bands (Larrain-Valenzuela et al. 2017). Yeung et al. (2014) found
that the ASD children had general impairment in recognising facial emotions in the
theta-coherence. Khuntia et al. (2019) observed the difference between ASD and TD in
the alpha and beta bands.

The results of this study also showed that the global network attributes derived from
PLV could effectively classify both groups. However, it is still challenging to generalise
the most discriminative feature because the optimal graph metrics vary between PLV
approaches and the types of stimuli.

The main limitation of this study was the limited number of samples in the data set.
This problem is typical in clinical studies and the medical field. Due to that, the ma-
chine learning community devoted a significant effort to establishing techniques for
such limitations. LOOCV is one technique employed to reduce the effects of the lim-
ited number of samples.
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3.9 Conclusion

The task-dependent functional brain connectivity analysis successfully distinguished
ASD and TD children. Graph-theoretical features derived from three PLV-based FBC
approaches were assessed using several machine learning algorithms—LDA, SVM,
KNN and decision tree. The trial-averaged PLV achieved a high classification perfor-
mance of 95.8% ACC, 100% SPC, and 92% SNS by cubic SVM. Moreover, the global
graph-theoretical features of the theta and alpha connectivity may be considered biomark-
ers for detecting ASD in children.
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Chapter 4

Prediction of Cerebral Palsy in
Newborns with Hypoxic-Ischaemic
Encephalopathy Using EEG-based
Functional Brain Connectivity

4.1 Introduction

Chapter 3 successfully validated the phase-based synchronisation adopted within the
machine learning framework in classifying children with ASD. Due to this success, the
feasibility of this framework in predicting outcomes at two years of age is investigated.
In this chapter, the WPLI-based FBC is employed to quantify the phase synchronisa-
tion. It is used herein because it is robust against the effect of volume conduction and
less prone to other sorts of noise. Hence, it offers a reliable estimation of functional con-
nectivity between different brain regions. WPLI-based FBC is characterised by graph
attributes, which are used to identify the topological difference in the brain network of
the infant born with HIE and developed CP at two years of age.

The experimental work is divided into several parts. First, the DBP filter is used to
decompose the EEG spectra into five traditional brain waves. Then, the WPLI is com-
puted from each frequency range to characterise the overlapping time-frequency brain
dynamics associated with CP. The graph attributes are then derived from the FBC net-
work calculated from WPLI. These graphical attributes are used to train and test the
RUSBoost classifier to show how useful they could be in practical CP prediction. A
schematic outline of the proposed analysis is depicted in Figure 4.1.
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FIGURE 4.1: Schematic outline of the proposed analysis for predicting CP at two years
of age. Each time-series recording from each electrode was preprocessed by several
preprocessing techniques: filtering, removing bad channels, re-referencing, segmen-
tation and artefacts rejection. Then, the EEG signals were decomposed into five tra-
ditional brain waves. After that, the phase-based FBC, particularly WPLI, was calcu-
lated, and then the graph-theoretical features were extracted. The extracted features
were fed into the machine learning algorithm to perform binary classification of an
infant either into CP group or normal ones.

This chapter is organised as follows: section 4.2 describes the EEG data set used in this
part of the research. Section 4.3 illustrates the preprocessing techniques adopted for re-
moving the artifices from EEG signals. The feature extraction and analysis schemes are
described in section 4.4 and section 4.5, respectively. The machine learning algorithm
employed in this chapter is depicted in section 4.6. Section 4.7 presents the analysis
of the results. These results are further discussed in section 4.8. Finally, section 4.9
concludes the chapter.

4.2 Experimental Data Description

Thirty term-born infants with HIE treated with hypothermia were prospectively re-
cruited in this study. EEG data were recorded on the neonatal intensive care unit within
the first week after birth. At twenty-four months of age, the infants were followed up
under the clinical follow-up programme at the University Hospital of Southampton
(UHS). A paediatric neurologist carried out the neurological examination at this age.
The outcomes were categorised into normal, CP (had abnormalities in posture, move-
ments, tone, and reflexes), or had unspecific signs. The infants were diagnosed as CP
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according to the criteria of the Surveillance of CP in Europe Working Group (SCPE
2001). Out of the thirty infants, twenty-nine infants reached two years and completed
the follow-up assessment. In this prospective study, twenty infants had normal neurol-
ogy, six developed CP, and three had unspecific signs at twenty-four months of age, as
illustrated in Table 4.1. Secondary analysis of anonymised, routinely collected clinical
data were approved by the HRA and Health and Care Research Wales, HCRW (Refer-
ence ID 20/HRA/0260; IRAS project ID 278072 University Hospital Southampton R&
D protocol number RHM CHI1047).

TABLE 4.1: Clinical characteristics of thirty neonates born with HIE at twenty-four
months of age. Based on neurology examination the infants were classified into either
normal or having CP.

Subject # Neurology at age 24 months

subj 1 normal

subj 2 normal

subj 3 normal

subj 4 CP

subj 5 normal

subj 6 CP

subj 7 CP

subj 8 normal

subj 9 normal

subj 10 normal

subj 11 normal

subj 12 unspecificic signs

subj 13 normal

subj 14 normal

subj 15 normal

subj 16 normal

subj 17 normal

subj 18 normal

subj 19 incomplete follow-up

subj 20 normal

subj 21 normal

subj 22 unspecific signs

subj 23 CP

subj 24 normal

subj 25 normal

subj 26 CP

subj 27 CP

subj 28 unspecific signs

subj 29 normal

subj 30 normal

The EEGs were recorded from the infants on the neonatal intensive care unit within the
first seven days after birth, during the resting period, with eyes closed for at least 20
minutes. Nineteen surface electrodes (C3, C4, CZ, F3, F4, F7, F8, FZ, FP1, FP2, O1, O2,
P3, P4, PZ, T3, T4, T5 and T6) were applied according to the international 10-20 system,
as shown in Figure 4.2. Recordings were done by either a Nihon Kohden (sampling
frequency 512 Hz, high-pass filter cut-off frequency 0.016 Hz, low-pass filter cut-off
frequency 300 Hz) or XLTEK (sampling frequency 512 Hz, high-pass filter cut-off fre-
quency 0.1 Hz, the low-pass filter cut-off frequency 70 Hz) clinical video-EEG system. A



70
Chapter 4. Prediction of Cerebral Palsy in Newborns with Hypoxic-Ischaemic

Encephalopathy Using EEG-based Functional Brain Connectivity

consultant neurophysiologist examined all of the recorded EEGs and extracted a con-
tinuous clip with minimal artefacts (the average length of the clips is approximately
two minutes).

FIGURE 4.2: The 10-20 international system of 19 EEG electrodes placement.

4.3 Data Preprocessing

A two-minute continuous resting-state clip from each EEG electrode was preprocessed
to improve the quality of the signal and eliminate any remaining artefacts such as eye
movement, muscle, heart activities, line noise, and signal discontinuity. All the data
preprocessing was performed via the EEGLAB, an open-source toolbox in MATLAB.
The details of preprocessing steps carried out in this study are stated below.

• Filtering
FIR bandpass-filter with the cut-off frequencies at 0.5 Hz and 45 Hz was used
to filter EEG signals to mitigate the drifts and direct current components and
diminish the high-frequency noises (the detail about FIR filter was described in
section 3.2). The filter order was set to 3072 according to the equation 3.1.

• Removing bad channels
The bad channels were identified to make the data amenable to the analysis.
EEGLAB automatically picks the bad channels based on two criteria: first, the
flat channels, and second, the channels with a large amount of noise determined
based on their standard deviation. Subsequently, the bad channels (which were
seven) were removed from each subject and not included in further analysis in
any subject in the data set under investigation. The remaining twelve channels
were: C3, F3, F7, Fz, O1, O2, P3, P4, T3, T4, T5, and T6.
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• Re-referencing
A common averaged reference (CAR) was applied to re-reference the data. In
CAR, the electrical potential at each electrode is measured by subtracting the av-
erage signals of all electrodes from its EEG signal. Through the averaging process,
the uncorrelated random noise is minimised as the signal or noise that is common
to all electrodes remains on the CAR, whereas the signal that is isolated on one
electrode does not appear on the CAR (Ludwig et al. 2009).

• Epoching
A continuous EEG signal recorded from each channel was segmented into a series
of epochs (windows) of two-second length according to the typical approaches
followed for EEG resting-state analysis (Kulak & Sobaniec 2005). Since EEG is a
non-stationary signal in its nature and quasi-stationary only within short inter-
vals, two-second epoch is considered an appropriate length of time to capture the
essence of its properties (Sakkalis 2011).

• Artefacts rejection
A semi-automated procedure was performed to remove any epoch contaminated
with artefacts. Ocular artefacts, particularly eye movement, were automatically
detected through the EEGLAB toolbox by setting the threshold value equal to 55
µV since such artefacts were defined by a value greater than this (Apicella et al.
2013). Thus, each epoch containing values above this threshold was marked as
a bad epoch and excluded from further analysis. After this step, the remain-
ing epochs were visually inspected to determine whether they were contam-
inated by high frequency, line noise, or discontinuity. The corrupted epochs
were rejected and eliminated from subsequent analysis. Independent compo-
nent analysis (ICA) was then applied, using the runICA algorithm implemented
in EEGLAB, to remove the remaining artefacts from the signals, such as muscle
artefacts and cardiac activity. Thus, the EEG signals from the twelve channels
were separated into their twelve constituent independent components (ICs), as
the general rule of ICA is to find the N independent components from the N lin-
early mixed-signal (input channel data). These ICs were then projected back to
the EEGs using the estimated separating matrix after the artefact-related ICs were
manually eliminated according to the study of Chaumon et al. (2015).

Finally, a total of thirty artefact-free two-second epochs per subject were used in the
next stage of the analysis.

4.4 WPLI-Based Functional Brain Connectivity

WPLI is a phase-based functional brain connectivity method used in this study for
quantifying phase synchronisation. It was proposed to abate the well-known problem
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of PLI and alleviate the sensitivity to noise. Such a problem might exist in the case of
small perturbation of phase, which could turn phase lags into leads and vice versa. It
would lead to the discontinuity of the measure (Vinck et al. 2011). To overcome this
issue, WPLI gives an improved connectivity estimation by weighting the phase differ-
ence according to their magnitudes of the imaginary component of the cross-spectrum.
Accordingly, the phases differences which are prone to a potential shift in their true
signs, attributed by the small noise perturbations, are assigned to a small weight equiv-
alent to the magnitude of the imaginary component. Consequently, they would have a
lower impact in quantifying connectivity. Mathematically, WPLI can be defined as:

WPLI =

∣∣〈 | =(X) | sign(=(X))
〉∣∣〈

| =(X) |
〉 (4.1)

where =(x) is the imaginary component of the cross-spectrum X for two real-valued
signals Z1 and Z2. The cross-spectrum X is computed as:

X = Z1 ∗ Z∗2 (4.2)

where Z∗1 and Z∗2 are a complex conjugate of Z1 and Z2, respectively. The WPLI value
is either one, denoting the presence of synchronisation, or zero, indicating no synchro-
nisation between two signal sources. WPLI quantifies the strength of phase coupling
between neural oscillators by estimating the instantaneous phase from the time-series
signal. It is crucial to derive the WPLI from narrow-band components in each source to
get the intended physical interpretation of the phase. For that reason, herein, the DBP
was used to decompose EEG signal into five traditional brain waves in the same man-
ner as stated in section 3.2. Then, these components were subjected to instantaneous
phase estimation.

4.5 Extraction of Complex Network Parameters

After calculating the FBC, the graph attributes were derived from the connectivity net-
work. The researchers have suggested that hyper-connection and hypo-connection al-
teration are associated with CP individuals’ brain functions (Gao, Jia, Wu, Yu & Feng
2017). The global network metrics that can capture these two properties are transitivity,
global efficiency, radius, diameter and characteristic path length (detailed descriptions
of these features were presented earlier in the section 3.4). Thus, these five graph pa-
rameters were chosen to be used in this study as they could provide great insight into
the information flow in the brain of infants diagnosed later with CP.

The extraction procedure consisted of the following steps to estimate the multivari-
ate brain network features incorporated into a classifier model and then predict the
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subject’s class accordingly. First, the WPLI connectivity matrix was computed between
the twelve channels for each frequency band and epoch. As a result, in each frequency
band, thirty connectivity matrices were generated, each connectivity corresponded to
one epoch (for example, there were thirty connectivity matrices in the delta band, thirty
connectivity matrices in the theta band, and so on.). The generated WPLI matrices
were averaged over the epochs to get one connectivity matrix for each frequency band.
Then, each connectivity matrix was transformed into a connectivity network, and the
graph-theoretical attributes were calculated to quantify its properties. Thus, five graph-
theoretical features were obtained for each subject and frequency band. These features
were then used to train and test the RUSBoost classifier.

4.6 Classification Techniques for Handling Imbalanced Data
Distribution

The data set used in this study consisted of twenty neonates presenting with normal
neuromotor outcomes and six with CP. Notably, the classes distribution is imbalanced.
This problem is common in the medical domain when instances of one class in the data
set outnumber the other class instances. Most of the efforts in the machine learning
community have gone into solving this problem by proposing several techniques as
described in section 2.5. In this study, the hybrid method called RUSBoost was adopted
to discriminate between the two groups as it efficiently alleviates the class imbalance
problem. RUSBoost combined random undersampling with a boosting approach. A
random under-sampling algorithm works by randomly removing instances from the
majority class until the intended balance is achieved (Seiffert et al. 2010). Boosting is
an ensemble method that constructs a robust classifier from the several week classifiers
(such as a decision tree) by building a model from training data and then formulating
a second model to correct the existing error in the previous models. This process is
repeated until the training set is predicted correctly (Seiffert et al. 2010). The algorithm
of the RUSBoost classifier is depicted in Figure 4.3.
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FIGURE 4.3: RUSBoost algorithm (Seiffert et al. 2010).

RUSBoost has several advantages, such as computational simplicity, reliability, and
short training time, making it a valuable solution for learning from imbalanced data.
The classifier training was performed using the classification learner app within the
statistics and machine learning toolbox in MATLAB. LOOCV was adopted to evaluate
the classifier performance in order to reduce the effect of the limited size of the data set.
The performance of the classifier was measured by conventional metrics ACC, SNS,
SPC, and receiver operating characteristic (ROC) curve. ROC curve is represented by
plotting the SNS versus the (1-SPC). Area Under the curve (AUC) is the area under
the ROC curve that gives an idea about how much the model can distinguish between
the two classes (Gosain & Sardana 2017). A high AUC indicates the better model in
discrimination between two classes and vice versa. In addition, balanced accuracy was
used to evaluate the performance of the classifier. It is especially preferred to use when
the classes are imbalanced. The balanced accuracy is represented by the arithmetic
mean of SNS and SPC.

4.7 Results

This section demonstrates the outcomes of employing the WPLI-based FBC and global
graph attributes to find the biomarker using EEG at early infancy for predicting CP
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and comparing the results with clinical outcomes at two years. The features vectors
were constructed with two different dimensions using the five global graph attributes
(transitivity, global efficiency, radius, diameter and characteristic path length) in order
to find the best features in the practical identification of CP. At first, the features vector
dimension contained each feature from each of the five frequency bands. Each feature
from each band was evaluated separately to infer the association between the frequency
bands and dysfunction in brain connectivity in neonates diagnosed later with CP. The
second features vector dimension involved combining the five graph attributes to in-
vestigate whether they could distinguish between the two populations: infants who
developed CP and those who have normal neuromotor at two years of age.

LOOCV evaluated the performance of the RUSBoost classifier. A summary of the high-
est classification performance in each frequency band is given in Table 4.2. The de-
tails of the results of all cases were provided in the Appendix A. As aforementioned
in section 4.4, the EEG signal was decomposed into narrowband to be subjective for
calculating the phase. The Hilbert transform was used to estimate the phase, which
can apply to the broadband data. Still, the resulting analytical signal may be difficult to
interpret because all the frequencies present in the EEG signal will contribute to the re-
sult. The frequencies with more power will contribute more to the resulting signal than
those with less power. Thus, to interpret the results in a frequency-band-specific man-
ner, it should filter the data into narrowband frequencies before applying the Hilbert
transform (Cohen 2014).

TABLE 4.2: Best classification performance in each frequency bands using WPLI-based
FBC.

Frequency band Case ACC SNS SPC Balanced accuracy AUC

Delta All features 84.60% 67.00% 90.00% 78.50% 0.75

Theta Radius 76.90% 83.00% 75.00% 79.00% 0.78

Alpha Global efficiency 73.10% 50.00% 80.00% 65.00% 0.67

Beta Global efficiency 73.10% 50.00% 80.00% 65.00% 0.51

Gamma Diameter 50.00% 33.00% 55.00% 44.00% 0.34

It can be seen from Table 4.2 that the most promising result in terms of ACC (84.6%)
and SPC (90%) was achieved in the delta band by using the combination of the five
graph attributes. In contrast, the SNS did not exceed 67%. Interestingly, there was also
a good result in the theta band; ACC was reached to 77%, SNS 83%, SPC 75%, balanced
accuracy (79%), and AUC 0.78. Notably, in this case, the regular accuracy was not good
enough, but the SNS and the balanced accuracy were good. Since the data set has an
imbalanced distribution, accuracy might not be the optimal metric for measuring the
performance. The metrics such as sensitivity and AUC could provide a better insight
into the performance of a classifier because SNS measures the TPR representing the CP
class that was a minority class.
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4.8 Discussion

This part of the research carried out a qEEG analysis in a machine learning framework
to identify clinical biomarkers that could distinguish between term-born infants with
neonatal HIE who developed CP by two years and those with normal neuromotor de-
velopment. Early identification of those at the highest risk of adverse outcomes enables
targeted early interventions and provides family psychological and financial support.
WPLI-based FBC of resting EEG signals and graph-theoretical features were explored
to provide a multivariate investigation of the pathological abnormality of CP. These
features have been used to train and test the RUSBoost classifier.

Significant classification results have been achieved using the combination of all five
global graph features and radius calculated from the delta and theta bands, respec-
tively. The highest performance of the classifier reached 84.6% as ACC by combining
all features in the delta band. Furthermore, a promising SNS (83%) was obtained using
the radius feature in the theta band. These results showed the correlation between al-
teration in global network topology in CP infant’s brain and frequencies bands of the
delta and theta. It seems possible that these results are due to the delta and theta bands
considered to be factors of mental consciousness and brain damage (Kulak & Sobaniec
2005). This finding is consistent with Koeda & Takeshita (1998), who reported alter-
ation in FBC featured by the intrahemispheric EEG coherence (HCoh). HCoh in the
CP children group was significantly higher in the left hemisphere compared with the
control in the delta, theta, and beta bands. Kułak et al. (2005) also found a higher inter-
hemispheric coherence (ICoh) in CP children compared with the control group in the
delta and theta bands, involving frontal and temporal regions. Kulak & Sobaniec (2005)
also showed the significant increase in ICoh in CP children’s theta and delta bands.

The methodology and findings of this investigation have been compared to the state-
of-the-art research that used qEEG analysis to detect CP brain abnormalities. The sum-
mary of these comparisons is shown in Table 4.3, which confirms that it is the first time
WPLI-based FBC characterised by graph attributes within the machine learning frame-
work has been used to investigate and predict CP at early infancy. This framework
provides advancement and proves the ability of qEEG to objectively and automatedly
identify the brain deficits soon after birth. There have been multiple attempts to inves-
tigate the brain abnormality associated with CP from EEG, but previous studies never
considered the earlier age. For example, Sajedi et al. (2013) studied the efficiency of a
non-linear method (fractal dimension) in classification the children with CP from the
neurotypical group and their results were significantly better than the results achieved
in this chapter. A further strength of this study was laid in using WPL-based FBC,
a non-linear method providing a reliable estimation of connectivity between different
brain regions. As seen from Table 4.3, most of the reviewed studies used linear qEEG
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methods mainly conceived by coherence-based FBC, spectral power and linear com-
plexity. Coherence was the linear connectivity measure adopted in the CP classifica-
tion; however, it has several limitations. It is a linear measure used with the assump-
tion of signal stationarity, highly sensitive to volume conduction and limited temporal
resolution. Compared to coherence, the WPLI is robust against the effect of volume
conduction, and it is less vulnerable to other sorts of noise. Even though WPLI uses
the imaginary component of coherence (ImCoh) for weighting the phase lag, which is
a minor quantity of coherence, it has been shown that ImCoh can diminish the volume
conduction effects. Only the real coherence part related quantities are affected by the
conduction problem (Hamedi et al. 2016).

Findings of this study demonstrated that FBC features computed at the lower fre-
quency range, mainly the delta and theta bands, could discriminate well between the
infants with CP and normal ones. These features could be used as biomarkers for early
prediction of CP, which enables the possibility of developing an appropriate interven-
tion strategy to improve the outcomes. The study offers insights into the importance
of the global graph parameters in capturing the characteristics of the infants’ brain net-
work deficits.
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TABLE 4.3: Comparison of the qEEG state-of-the-art methods employed for CP classi-
fication.

Authors Data set Features
Evaluation
method

Findings

Gao, Jia,
Wu, Yu
& Feng
(2017)

Adolescent 14-22
years, CP (n=15)
and normal (n=15)

Microstate to
measure temporal
correlation

Statistical
analysis

Microstate: Higher temporal com-
plexity in CPs compared to control

Omega complexity to assess
spatial correlation

Omega complexity: Higher global
omega complexity in CPs at the alpha
band compared to control.

Gao, Wu, Feng &
Jia (2017)

Adolescent 14-22
years, CP (n=15)
and normal (n=15)

DFA to measure temporal
correlation

Statistical analysis
The DFA exponents in alpha and beta
bands were significantly attenuated in
the CPs compared to controls.

Koeda &
Takeshita
(1998)

Children
7-15
years, CP
(n=12)
and
normal
(n=15)

Spectral power
and coherence
measures

Statistical
analysis

Spectral power: No significant differ-
ence in spectral power.

Coherence: Lower ICoh at the occipi-
tal region for alpha-band, higher ICoh
at the frontal region for theta-band,
and Hcoh at the left hemisphere for
the delta, theta, and beta bands in the
CPs compared to controls.

Discriminant anal-
ysis classifier

Performance of 91.7% ACC, 100%
SNS, 83.3% SPC have been reached
using the statistically significant fea-
tures.

Kułak
et al.
(2005)

Children
6-14
years, CP
(n=12)
and
normal
(n=21)

Spectral power
and coherence
measures

Statistical
analysis

Spectral power: Significant differ-
ences between the CP and control
over the left and right hemispheres for
the delta, theta, alpha and beta bands.

Coherence: lower ICoh at the tem-
poral, parietal and occipital regions
for the alpha band, lower ICoh at the
frontal, central, parietal and occipital
regions for the beta band, higher ICoh
at the frontal and temporal regions for
the theta and delta bands and higher
HCoh at right hemisphere for the al-
pha band in CP patients compared to
control.

Kulak &
Sobaniec
(2005)

Children
6-15
years, CP
(n=26)
and
normal
(n=28)

Spectral power
and coherence
measures

Statistical
analysis

Spectral power: Significant differ-
ences between the CP and control
over the left and right hemispheres for
the delta, theta, alpha and beta bands.

Coherence: Lower ICoh at the tempo-
ral, parietal and occipital regions for
the alpha band in the CPs compared
to controls,

Sajedi
et al.
(2013)

Children
4-14
years,
CP(n=26)
and
normal(n=26)

Spectral power
and fractal
dimension to
measure temporal
complexity.

Statistical
analysis

Spectral power: A higher delta and
lower theta and alpha powers were
found in CPs compared to controls.

Complexity: A higher EEG complex-
ity at the interior region for the range
(1-30Hz) in CPs compared to controls.

Enhanced prob-
abilistic neural
network classifier

Performance of 94.8% ACC, 92.5%
SNS, 97.2% SPC have been reached
using the statistically significant fea-
tures.

Current study
Term-born infants
with HIE, CP(n=6)
and normal(n=20)

Graph-theoretical features
of WPLI-based FBC

RUSBoost classi-
fier

Performance of 84.6% ACC, 67% SNS,
90% SPC, and 0.75 AUC have been
reached using the graph-theoretical
features.
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4.9 Conclusion

The analysis of resting-state FBC in the machine learning framework successfully pre-
dicted CP at two years of age from infants with neonatal HIE. The results of this prospec-
tive study revealed that the WPLI characterised by the combination of global complex
network metrics achieved a good classification performance using RUSBoost classi-
fier reached 84.6% ACC, 67% SNS, 90% SPC and 78.5% balanced accuracy in the delta
band. Furthermore, the topological difference in the brain network—particularly in the
radius feature—between infants with CP and their neurotypical peers was observed
in the theta band with high SNS up to 83% and 79% balanced accuracy. These results
indicated that the network attributes could serve as early biomarkers of CP. This part
of the study can be viewed as a promising attempt towards the feasibility of qEEG in
predicting the CP’s brain deficits.
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Chapter 5

Investigation of Using
Noise-Assistant Multivariate
Empirical Mode Decomposition for
Quantifying Phase Synchronisation

5.1 Introduction

Chapter 4 described the proposed analysis of phase-based FBC for predicting CP in
term-born infants at two years of age. Phase synchronisation methods are mainly based
on estimating the phase to quantify the relationship between two time-series. Extract-
ing the phase is considered a crucial step in calculating such phase-based FBC methods.
In order to get the phase’s intending physical interpretation, it is necessary to extract
the phase from the narrowband component (Farahmand et al. 2018). Thus, some form
of prefiltering into narrowband is required to decompose EEG signal, which is complex
and composed of multiple frequency oscillators.

Traditionally, the DBP filter has been utilised to decompose the broadband signal into
discrete predefined frequency ranges. This technique is similar to the methods used in
Chapter 4. Even though this approach is convenient and widely used in EEG analysis,
it has constraints—such as requiring prior information about filter cut-off frequency.
This assumption may raise an issue where the ranges of neural oscillations of interest
may vary among subjects, specifically between infants and older individuals (Saby &
Marshall 2012). For example, the filter cut-off frequency in the alpha band was chosen
to be from 8-12 Hz in (David et al. 2004), from 8-13 Hz in (Breakspear et al. 2004), from
8-14 Hz in (Babiloni et al. 2006), or subdivided into lower-alpha 6-10 Hz and upper
alpha 10-14 Hz ranges in (Stam et al. 2003). Furthermore, some studies have shown
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that the boundaries of corresponding frequency band ranges could be lower in infants
(Saby & Marshall 2012). In addition, using a priori basis is critical for both non-linear
and non-stationary data, as one cannot expect a predetermined basis to fit all the non-
linear and non-stationary dynamics (Huang et al. 1998).

Thus, in response to these variations and constraints, this study proposes an adaptive
analysis approach of phase synchronisation based on EMD algorithms (Huang et al.
1998) precisely NA-MEMD (ur Rehman & Mandic 2011). NA-MEMD is a technique
that adaptively decomposes the EEG signals into finite oscillation scales at a time-
domain called intrinsic mode functions (IMFs) (Zheng et al. 2014). The frequency range
of each scale is varied according to the oscillations inherited in the signal. A prominent
advantage of EMD-based algorithms over other decomposition methods (e.g., DBP fil-
ter, wavelet, and STFT) is that it does not require a priori selection of the filter cut-offs
frequency.

This part of the study aims to examine the effectiveness of NA-MEMD in decompos-
ing EEG signals into their intrinsic components and compare its result in CP prediction
with traditional DBP filter to find the best pre-analysis method of phase-based FBC.
In this approach, the NA-MEMD is initially applied to decompose EEG signals into
narrowband components. Then the WPLI-based FBC is calculated from each intrinsic
component, and the graph attributes are computed from each connectivity network.
The statistical analysis is then used to evaluate each graph-theoretical feature’s capa-
bility to discriminate between two groups (CP and normal). This evaluation is carried
out for each IMF separately, and the features are used to train and test the RUSBoost
classifier. A schematic diagram of the proposed analysis is depicted in Figure 5.1. The
results from this chapter have been published in (Bakheet et al. 2021).

The remaining parts of the chapter include section 5.2 which describes the NA-MEMD
decomposition method. Features extraction scheme based on NA-MEMD is illustrated
in section 5.3. The statistical analysis is described in section 5.4. The results are anal-
ysed in section 5.5 and discussed in detail in section 5.6. The conclusion of the chapter
is provided in section 5.7.
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FIGURE 5.1: Schematic outline of the proposed NA-MEMD-based analysis for pre-
dicting CP at two years of age. Each time-series recording from each electrode was
preprocessed by several preprocessing techniques: filtering, removing bad channels,
re-referencing, segmentation and artefacts rejection. Then, the EEG signals were adap-
tively decomposed into their inherited intrinsic components. After that, FBC was cal-
culated using WPLI, and then the graph-theoretical features were extracted. The sta-
tistical analysis was performed to evaluate each graph-theoretical feature’s capability
in discriminating between two groups (CP and normal). Then extracted features were
fed into the machine learning algorithm to perform binary classification of an infant
either into CP group or normal.

5.2 NA-MEMD-Based EEG Decomposing Analysis

NA-MEMD is an extended version of EMD, and, in this study, it is used to adaptively
decompose the EEG spectra into its intrinsic components. Unlike other traditional de-
composing methods such as short-time Fourier (Gabor 1946), wavelet transforms (Mal-
lat 1989) and DBP filter, EMD-based methods do not require a predefined basis of the
signals. Instead, they are data-driven time-frequency techniques that adaptively ex-
tract the embedded oscillations from the data without determining specific frequency
ranges.

Among the available decomposition methods, the well-established wavelet analysis
is known as one of the best non-stationary data analysis methods (Huang et al. 1998).
However, the predefined basis of, for example, the Morlet wavelet (the most commonly
used wavelet in general and in EEG analysis leads to different issues (Sweeney-Reed &
Nasuto 2007). First, one cannot guarantee that the predetermined window size of the
wavelet will coincide with a stationary period. Good localisation of the low-frequency
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oscillations needs a long-time window to identify them and thus a longer period for
which signal should be stationary. On the other hand, selecting a small window may
lead to missing potential biomarkers in the lower frequency ranges. Such a situation
is known as the uncertainty principle, produced from the trade-off between frequency
and time. Second, the prior selection of wavelet parameters cannot be expected to fit
all the non-linear and non-stationary phenomena. Thus, it could induce spurious har-
monic components to spectrally represent the signals, causing energy spreading and
leading to faulty results.

EMD-based methods satisfy the necessary conditions for the decomposition to rep-
resent a non-linear and non-stationary time series, particularly locality and adaptivity
conditions. The locality is most crucial for non-stationarity, in which all events have to
be identified by the time of their occurrences. Thus, both the amplitude (or energy) and
the frequency are required to be functions of time (Huang et al. 1998). The adaptivity
is important for both non-linear and non-stationary data in which the decomposition
is adapted to the local variations of the data and hence can fully account for the un-
derlying dynamics of the signals (Huang et al. 1998). Different studies proved that the
local and adaptive nature of the decomposition using EMD-based methods is shown
to improve time and frequency precision compared to the Morlet wavelet (Huang et al.
1998, Sweeney-Reed & Nasuto 2007).

Applying EMD in analysing EEG signals has attracted attention recently due to its ef-
ficiency in extracting the oscillation components from non-linear and non-stationary
signals. However, EMD has two main limitations, specifically in analysing multivari-
ate data like EEG, called mode misalignment problems and mode mixing (ur Rehman
& Mandic 2011). Mode misalignment refers to the situation that the generating num-
ber of IMFs is non-identical between channels, whereas the mode mixing indicates the
circumstance when the single IMF contains multi-frequency oscillations. Multivari-
ate empirical mode decomposition (MEMD) algorithm was later proposed to solve the
mode-alignment problem by projecting the n-dimensional input signals into different
directions in n-dimensional space (ur Rehman et al. 2010). NA-MEMD is a recent ver-
sion of EMD developed to settle the remaining problem, mode-mixing, by adding white
Gaussian noise to n-dimensional channels. The resulting multivariate signals (EEG sig-
nals+ white Gaussian noise) are then applied to the MEMD algorithm.

Practically, NA-MEMD decomposes the time-series from high to low-frequency com-
ponents (IMFs) through the Sifting process in an iterative fashion as following steps:

1. Produce the m-dimensional uncorrelated white Gaussian noise sources with the
same length as the input signals.
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2. Combine the multivariate input signals with generated multivariate noise in step
1. This yields new multivariate signals with a total dimension (w = n + m),
which are then applied to the MEMD algorithm.

3. In the MEMD algorithm, w-dimensional input signals are required to be projected
with different directions into w-dimensional space. The procedure of MEMD
starts with choosing a proper set of points for sampling on a (w− 1) sphere.

4. Calculate a projection, denoted by
{

pθk(t)
}T

t=1
, of the input signal {v(t)}T

t=1 along

the direction vector Xθk , for all k (where K is the whole set of direction vectors),

giving
{

pθk(t)
}K

k=1
as the set of projections.

5. Find the time instants
{

tθk
i

}K

k=1
corresponding to the maxima of the set of pro-

jected signals
{

pθk(t)
}K

k=1
, where i indicates the position of maxima point.

6. Get the multivariate envelope curves
{

eθk(t)
}K

k=1
by interpolating

[
tθk
i , v

(
tθk
i

)]
.

7. The mean m(t) of the envelope curves is calculated as m(t) = 1
K ∑K

k=1 eθk(t), for all
set of K direction vectors.

8. Extract the detail d(t) using d(t) = x(t) − m(t). If d(t) satisfies the stoppage
criteria which described in (Huang et al. 1998), apply the above procedure to
x(t) − d(t), otherwise apply it to d(t). This process is repeated until all IMFs
are extracted and only a residue is left; where the residue corresponds to a sig-
nal whose projections do not contain enough extrema to formulate a meaningful
multivariate envelope (ur Rehman & Mandic 2011).

9. From the resulting IMFs, only IMFs related to the n-channel input signal are se-
lected, and those related to noise are discarded.

At the end of the NA-MEMD procedure, the input signal can be mathematically repre-
sented by the following equation:

x(t) = ∑N
i=1 di(t) + rN(t)

where x(t) is the input signal, di(t) is IMF, rN(t) is residue, N represents the total num-
ber of IMFs, and t refers to time.

5.3 Features Extraction based on NA-MEMD

The features were extracted from the infants’ data set described in section 4.2. The data
set was preprocessed with the same procedure illustrated in section 4.3. The scheme
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of features extraction was divided into two parts. The first phase focused on decom-
posing EEG signals into their intrinsic components using NA-MEMD. The second part
involved extracting the fundamental class of features, namely global graph attributes.

• Step1: NA-MEMD analysis

1. A multivariate signal was constructed by combining the data points from all
infants for each channel separately, yielding twelve different matrices (i.e.,
one matrix per channel). Each of them has the dimensions of Ns × Nt ×
Ne, where Ns denotes the number of subjects (which is 26), Nt indicates the
number of temporal samples (which is 1024), and Ne is the number of epochs
of each subject (which is 30).

2. Before decomposing the twelve multivariate signals by the NA-MEMD algo-
rithm, each matrix was set up in a two-dimensional time-series of [Ns × Ne]×
Nt dimensions. Therefore, the alignment among all IMFs across infants and
over epochs was ascertained. A similar approach has been used previously
by Hu & Liang (2011).

3. The resulting IMF components after the decomposition process was slightly
varied between channels. Since the EEG channel that yields the lowest num-
ber of IMFs upon decomposition gives ten modes, the first ten IMFs of each
channel were considered for feature extraction. Figure 5.2 depicts the sample
of extracted IMFs from a channel that gave ten IMFs.



5.3. Features Extraction based on NA-MEMD 87

FIGURE 5.2: An example of a set of IMFs resulted from the NA-MEMD decomposition
of the two-second EEG signal. IMF1 to IMF2 considered noisy, and IMF10 represented
the residue mode. IMF3 to IMF6 frequencies belong to the gamma, beta, alpha and
theta bands, respectively, while IMF7, IMF8 and IMF9 all belong to the delta brain
wave.

4. The frequencies of each IMF were then acquired by the fast Fourier trans-
form (FFT), and it was found that IMF1 and IMF2 were noisy because they
contained different oscillatory components. Thus, these modes were ex-
cluded from further analysis. IMF10 was also ignored as it represented the
residue mode of some EEG channels, which might give unreal information
about the signal. The scales of the remaining IMFs were localised approxi-
mately around the following ranges: IMF3 (30 - 35 Hz), IMF4 (20 - 25 Hz),
IMF5 (10 - 13 Hz), IMF6 (5 - 8 Hz), IMF7 (3 - 4 Hz), IMF8 (2 - 3 Hz), IMF9 (0.5
- 2 Hz).

• Step2: Features extraction

1. Before extracting the five graph-theoretical features, each IMF frequency
scale alignment among channels was checked. Following that, for each IMF,
the instantaneous phases were calculated using the Hilbert transform.
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2. WPLI connectivity matrix was calculated using Equation 4.1 between twelve
channels for each IMF and each epoch.

3. The generating WPLI matrices were averaged over the epochs, yielding one
averaged connectivity matrix for each IMF.

4. Each connectivity matrix was transformed into a complex connectivity net-
work and the graph-theoretical parameters were estimated to quantify its
properties. As a result, the total number of features in each IMF was five,
namely transitivity, global efficiency, radius, diameter, and characteristic path
length. The extracted graph parameters were then used to train and test the
model.

5.4 Statistical Analysis

The statistical test was used to evaluate the discriminatory capability of the graph-
theoretical features in differentiating between the two groups (infants who developed
CP and those who did not). The evaluation was carried out for each feature calcu-
lated from each IMF separately. Kruskal–Wallis (Theodorsson-Norheim 1986) is a non-
parametric test computing the medians of each class in each feature to determine if the
samples have the same distribution. It was selected to use in this research due to the
group samples strongly deviated from the normal because the sample size is small and
unequal (Hoffman 2019). Kruskal–Wallis was conducted to test the null hypothesis for
each feature, stating that samples of the two classes (CP and normal) come from the
same distribution. In general, the difference between groups is statistically significant
when the p-value falls below a threshold known as the level of significance (α), usu-
ally equal to 0.05. Hence, a lower p-value (below the significance level) rejects the null
hypothesis and indicates a significant difference between the two classes. The test was
carried out using the MATLAB statistics toolbox.

Benjamini–Hochberg method (Benjamini & Hochberg 1995) was employed to adjust
the significant threshold of the p-value. Such adjustments are required if several inde-
pendent tests are simultaneously conducted (known as multiple comparisons). Ben-
jamini–Hochberg is introduced to control the false discovery rate that is less stringent
with the increased gain in power. It is used alternative to the Bonferroni correction
(which is control family-wise error in a rigorous criterion and compute the adjusted
P values by directly multiplying the number of simultaneously tested hypotheses) for
a low proportion of false-positive instead of guarding against making any false posi-
tive conclusion (Chen et al. 2017). The index of the corrected p-value was calculated as
follows:

k = max{i : p(i) ≤
i
m

q} (5.1)
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where k is the index of the significant p-value, i is the rank of p-value, m is the total
number of test, and q is the pre-specific upper bound of false discovery rate (herein
q = 0.05).

Practically, the Kruskal-Wallis test was used to assess the discriminant capabilities of
the five graph-theoretical features computed from each IMF (42 p-values: 6 features ×
7 scales). By utilising the false discovery rate correction, the p-value was corrected to
0.02.

5.5 Results

This section outlines the results of employing the NA-MEMD to decompose the spec-
tral components from EEG signals and its application in the early CP prediction among
high-risk infants born with HIE. The effectiveness of the five graph attributes (transi-
tivity, global efficiency, radius, diameter, and characteristic path length) and their com-
bination in discriminating between two populations (infants who developed CP at two
years and the normal ones) were evaluated by the Kruskal-Wallis test and the RUS-
Boost classifier. Table 5.1 summarises the results of the Kruskal-Wallis test for the set of
proposed features. The statistical significant features (have lower p-value) are shown in
boldface. It was seen that the difference between the two groups is particularly distinct
using the diameter feature computed from IMF5. The boxplot presented in Figure 5.3
indicates that the diameter of the CP group was significantly higher than the normal
one.

TABLE 5.1: P-values of the graph-theoretical features. Graph feature that is statistically
significant is indicated in boldface.

Transitivity Global efficiency Radius Diameter Characteristic path length All features

IMF3 0.39 0.43 0.5 0.3 0.39 0.94

IMF4 0.95 0.95 0.5 0.33 0.9 0.86

IMF5 0.63 0.54 0.67 0.02 0.81 0.71

IMF6 0.47 0.47 0.76 0.25 0.67 0.8

IMF 7 0.25 0.3 0.72 0.95 0.36 0.83

IMF8 0.58 0.58 1 0.39 0.62 0.99

IMF9 0.22 0.25 0.25 0.36 0.25 0.99
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FIGURE 5.3: Box plot of the distribution of the diameter feature extracted from IMF5
component of CP and normal infants. The diameter values of the CP show higher
values compared to the normal subjects.

To prevent overfitting, the LOOCV was used to evaluate the performance of the RUS-
Boost classifier. The highest classification performance for each IMF are summarised in
Table 5.2. The detailed results of all cases were provided in the Appendix B. It can be
seen from the data in this table that the best classification performance was achieved
using transitivity and characteristic path length features computed from the IMF8 (2 -
4 Hz) corresponding to the delta band. The highest classification rate reached 84.6%,
SNS (83%), SPC (85%), balanced accuracy (84%), and AUC (0.85) using the transitiv-
ity feature. The same ACC was obtained using the characteristic path length attribute
but with 67% SNS, 90% SPC, 78.5% balanced accuracy, and 0.81 AUC. Good classi-
fication performance was also observed using the global efficiency feature calculated
from IMF8, reaching 80.8% ACC, 67% SNS, 85% SPC, 76% balanced accuracy, and 0.9
AUC. Similar classification performance was obtained from IMF5, IMF6 and IMF7 cor-
responding to the alpha, theta and delta bands, respectively. Particularly, these results
were achieved using the transitivity features calculated from IMF7 and the diameter
attribute computed from IMF6 and IMF7.
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TABLE 5.2: Highest classification performance in each IMF component using WPLI-
based FBC.

IMF Feature ACC SNS SPC Balanced accuracy AUC

IMF3 Charactristic path length 69.20% 50.00% 75.00% 62.5% 0.65

IMF4

Global efficiency 53.80% 33.00% 60.00% 46.5% 0.22

Radius 53.80% 50.00% 55.00% 52.5% 0.74

Characteristic path length 53.80% 33.00% 60.00% 46.5% 0.27

IMF5 Diameter 80.80% 67.00% 85.00% 76.00% 0.72

IMF6 Diameter 80.80% 67.00% 85.00% 76% 0.79

IMF7 Transitivity 80.80% 67.00% 85.00% 76% 0.78

IMF8
Transitivity 84.60% 83.00% 85.00% 84.00% 0.85

Global efficiency 80.80% 67.00% 85.00% 76% 0.90

Charactristic path length 84.60% 67.00% 90.00% 78.5% 0.81

IMF9
Transitivity 69.20% 50.00% 75.00% 62.5% 0.49

Charactristic path length 69.20% 33.00% 80.00% 56.5% 0.44

5.6 Discussion

This study aimed to develop a non-linear analytical methodology using NA-MEMD to
quantify the phase synchronisation among neuronal populations in two groups who
developed CP at two years and the normal neuromotor group. The networks syn-
chrony were compared between two groups within different narrowband frequency
ranges to predict CP early. Mainly, this study employed the global graph attributes
derived from the WPLI as features for the RUSBoost classifier after preprocessing with
NA-MEMD. The main findings of this study indicated that the best discrimination ca-
pability of the graph features was achieved using the diameter attribute. The statistical
test showed an increase in the diameter feature estimated from IMF5 of the CP infants
compared to the controls. This result implies global hypoconnectivity, indicating that
the CP’s brain network is less integrated, and accordingly, the information transfer
across the network is less efficient. This finding is consistent with the previous studies
that found hypoconnectivity between the right and left hemispheres in CP patients us-
ing the coherence-based measures (Koeda & Takeshita 1998, Kułak et al. 2005, Kulak &
Sobaniec 2005).

The statistical test is usually adopted to aid in comparing different features and choos-
ing the significant one. However, the data set under investigation has a limited and
imbalanced number of samples, which may have affected the power of the statistical
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test. Thus, this study investigated the capability of each graph feature and their combi-
nations in classifying between two groups using the RUSBoost classifier to obtain ad-
ditional evidence regarding the more informative features in discriminating between
CP and controls. The best classification performance was obtained using diameter,
transitivity, characteristic path length and global efficiency, indicating the existence of
alteration in the brain network between CP and normal neuromotor groups. This dis-
ruption was featured by the network integration and network efficiency of processing
the local information. Network integration was characterised by the diameter, global
efficiency and characteristic path length, while the local network efficiency was cap-
tured by the transitivity.

Association between frequency range and brain network dysfunctions in infants who
developed CP was observed in the IMF5, IMF6, IMF7, and IMF8. The features cal-
culated from those components were successfully differentiated between infants who
developed CP and the normal groups. The traditional brain waves corresponding to
those components were alpha (IMF5), theta (IMF6) and delta (IMF7 and IMF8) bands.
The findings seem to be consistent with other studies that reported disruption of CP
patient’s brain connectivity in the alpha band (Gao, Wu, Feng & Jia 2017, Koeda &
Takeshita 1998, Kułak et al. 2005, Kulak & Sobaniec 2005), theta band (Koeda & Takeshita
1998, Kułak et al. 2005, Kulak & Sobaniec 2005) and delta band (Koeda & Takeshita
1998, Kułak et al. 2005, Kulak & Sobaniec 2005). This finding also supports the results
of Chapter 4 that found the difference between CP and control group in the delta and
theta bands using a traditional BPF and WPLI based FBC.

In contrast to DBP-based analysis, the NA-MEMD-based analysis showed the differ-
ence between two classes in the alpha band range. A possible explanation for this dis-
crepancy might be that the NA-MEMD produce narrower frequency ranges, based on
the oscillations inherited in the signal, than the DBP filters; hence, it is possible to cal-
culate the WPLI more accurately. On the contrary, although the DBP is a simple digital
signal processing algorithm, its results critically depend on the predefined frequency
range (Cho et al. 2017). Prior selection of frequency ranges may result in potentially
informative brain waves being missed, specifically in the case of infants, due to the
well-known variability between them and older individuals in the neural oscillations
of interest. Moreover, the predefined basis may not be able to fit all the non-linear
and non-stationary phenomena (Huang et al. 1998). This constraint has been settled in
the proposed approach using the NA-MEMD method, which decomposes the signals
adaptively. Thus, with this method, all meaningful brain dynamics were ascertained
to be included in the analysis, and no misleading energy-frequency distribution will
result from analysing the non-stationary and non-linear signals. Nevertheless, the ad-
vantages of the EMD-based methods have a price of being empirical, not theoretically,
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defined. In addition, the NA-MEMD method has a very high computational complex-
ity having a subspace of multivariate independent white noise equal to the original
multivariate signal.

On the other hand, the classification performance of DBP-based analysis is relatively
lower than NA-MEMD-based analysis except for the beta band. The delta band’s best
performance using DBP filter was 84.6% ACC, 67% SNS, 90% SPC, 78.5% balanced ac-
curacy, and 0.75 AUC, while the corresponding performance using NA-MEMD was
84.6% ACC, 83% SNS, 85% SPC, 84% balanced accuracy, and 0.85 AUC. It can be seen
from this result that the NA-MEMD-based analysis achieved higher performance in
terms of SNS, SPC, balanced accuracy, and AUC. The best performance obtained in the
theta band using NA-MEMD-based analysis was reached to 80.8% ACC, 67% SNS, 85%
SPC, 76% balanced accuracy, and 0.79 AUC compared with 76.9% ACC 83% SNS, 75%
SPC, 79% balanced accuracy, and 0.78 AUC achieved using DBP-based analysis. On the
other hand, in the alpha band using the NA-MEMD, the best accuracy reached 80.8%
ACC, 67% SNS, 85% SPC, and 0.79 AUC but did not exceed 73.1% ACC, 50% SNS, 80%
SPC, 65% balanced accuracy, and 0.67 AUC using the DBP filter approach.

In summary, the findings of the study suggested that the NA-MEMD-based analysis
used for quantifying phase synchronisation could significantly discriminate between
the CP and normal infants using transitivity, global efficiency and characteristic path
length in delta band component and diameter in the theta and alpha bands. Further-
more, the results showed that, in general, the NA-MEMD-based analysis gave the high
classification performance (except for the beta band)—in the prediction of CP— slightly
outperformed the DBP-based analysis. However, due to the data set under investiga-
tion has small size and imbalanced, the results of this study are inclusive and need to
be validated in large trials with a statistically significant population.

5.7 Conclusion

This study used a novel methodology merging the adaptive decomposition algorithm
(NA-MEMD), WPLI-based FBC, graph-theoretical features and machine learning algo-
rithm to predict infants at high-risk to develop CP at two years of age from neonatal
EEG. The performance of NA-MEMD-based analysis was compared with DBP-based
analysis. The results suggested that NA-MEMD-based analysis could successfully clas-
sify two groups with significant performance 84.6% ACC, 83% SNS, 85% SPC, and 0.85
AUC in the delta band using transitivity. The same classification accuracy was achieved
using characteristic path length but with with 67% SNS, 90% SPC, 78.5% balanced ac-
curacy, and 0.81 AUC. In addition, good performance was obtained in the theta and
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alpha bands. The study postulates that the merging analysis approach of the FBC, par-
ticularly WPLI and global graph theory attributes quantified from NA-MEMD could
be used to capture the brain deficit related to CP.
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Chapter 6

Prediction of Cognitive Outcome in
Infants with Hypoxic-Ischaemic
Encephalopathy

6.1 Introduction

In the Chapter 4 and 5, the proposed analysis to predict the CP from EEG recording
in the first week after birth by comparing the EEG features with clinical outcome at
two years was validated. The next stage investigates the potential benefits of using
the previous framework to predict the later cognitive outcome at two years of age.
This chapter explores the effectiveness of the phase-based FBC estimated by WPLI and
graph metrics within the regression-based framework to predict the cognitive outcome
in term-born infants with neonatal HIE. The graph-theoretical features derived from
WPLI are utilised to determine the association between neonatal EEG and the individ-
ual cognitive profiles (completed in a follow-up visit at 24 months of age). As described
in Chapters 4 and 5, it is necessary to decompose EEG signals into the narrowband
components to properly estimate the phase. Thus, based on the findings of Chapter
5, the NA-MEMD method is adopted in this study to decompose the EEG signals into
their intrinsic components. Correlation analysis is performed to ascertain the statistical
significance of graph-theoretical parameters of WPLI in finding the association with
cognitive scores. Then, the significant features are used to train and test the tree ensem-
ble regression models: boosting and bagging to evaluate their predictability of later
cognitive development. A schematic outline of the proposed analysis is depicted in
Figure 6.1.
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FIGURE 6.1: Schematic outline of proposed analysis for predicting cognitive outcomes
at two years of age. Each time-series recording from each electrode was preprocessed
by several preprocessing techniques: filtering, removing bad channels, re-referencing,
segmentation and artefacts rejection. Then, the EEG signals were adaptively decom-
posed into their inherited intrinsic components. After that, FBC was calculated using
WPLI, and then the graph-theoretical features were extracted. The correlation analy-
sis was used to evaluate the statistical significance of graph-theoretical parameters of
WPLI in finding the association with cognitive scores. Then extracted features were
fed into the regression models to assess their predictability of later cognitive develop-
ment.

The remainder of the chapter is structured as follows: brief details about the partici-
pants and the recruitment process, followed by a description of the experimental set-
up are provided in section 6.2. The procedure of extracting the desired features is il-
lustrated in section 6.3. Correlation analysis and regression models are depicted in
section 6.4 and 6.5, respectively. Sections 6.6 and section 6.7 present the results and the
discussions of this study, followed by the conclusion in the section 6.8.

6.2 Participants and Experimental Set-up

Thirty term-born infants with HIE treated with hypothermia were recruited into this
study. EEG data were recorded on the neonatal intensive care unit within the first
week after birth for twenty minutes during resting-state condition with eyes closed by
either a Nihon Kohden (sampling frequency 512 Hz, high-pass filter 0.016 Hz, the low-
pass filter 300 Hz) and XLTEK (sampling frequency 512 Hz, high-pass filter 0.1 Hz, the
low-pass filter 70 Hz) clinical video-EEG system. Nineteen electrodes (C3, C4, CZ, F3,
F4, F7, F8, FZ, FP1, FP2, O1, O2, P3, P4, PZ, T3, T4, T5 and T6) placed according to
the 10-20 international system were used. Movement or electrode artefact affected the
EEG in a substantial proportion of the cases. A consultant neurophysiologist visually
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TABLE 6.1: Clinical characteristics at twenty-four months of age of thirty neonates
born with HIE. The cognitive outcome of each infant was evaluated using BSITD-III.
Ten infants were discharged and did not complete the follow-up assessment.

Subject # Cognitive scores at age 24 months
subj 1 145
subj 2 Incomplete follow-up
subj 3 100
subj 4 Incomplete follow-up
subj 5 Incomplete follow-up
subj 6 Incomplete follow-up
subj 7 120
subj 8 95
subj 9 95
subj 10 140
subj 11 100
subj 12 120
subj 13 105
subj 14 Incomplete follow-up
subj 15 105
subj 16 130
subj 17 110
subj 18 140
subj 19 incomplete follow-up
subj 20 74
subj 21 105
subj 22 100
subj 23 Incomplete follow-up
subj 24 100
subj 25 125
subj 26 Incomplete follow-up
subj 27 Incomplete follow-up
subj 28 95
subj 29 Incomplete follow-up
subj 30 90

inspected all recorded EEGs. The first period in the EEG that was long enough without
any clear significant artefact was always selected (the average length of the clips is ap-
proximately two minutes).

A neuropsychological follow-up assessment was conducted at twenty-four months of
age using the Bayley Scales of Infant and Toddler Development III (BSITD-III) was
used for this purpose. The BSITD-III assesses the three major domains: cognitive, lan-
guage and motor. The cognitive scale evaluates the cognitive functions on the basis
of nonverbal activities, including object relatedness, memory, problem solving, and
manipulation (Ouyang et al. 2020). The language scale estimates both receptive and
expressive communication. The motor scale assesses the fine motor (e.g. grasping, mo-
tor planning and speed) and gross motor (e.g., sitting, standing and balance). Among
the thirty infants in this prospective study, twenty infants completed the follow-up as-
sessment when they reached two years of age, as shown in Table 6.1. The BSITD-III
cognitive scores from those twenty infants ranged from 74 to 145. The infants with a
cognitive score of < 80 were considered to have cognitive decline.
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6.3 A Strategic Framework for Predicting Cognitive Score

EEG signals were initially preprocessed using the same techniques described in section
4.3 to improve the quality of EEG signals. The NA-MEMD algorithm was then em-
ployed in the same procedure as illustrated in section 5.2 to decompose EEG signals
into narrowband components. Since the EEG channel that yields the lowest number
of IMFs upon decomposition gives ten modes, the first ten IMFs of each channel were
considered for feature extraction. The FFT was used to determine the frequencies of
each IMF, and it was found that IMF1 to IMF3 are noisy and contain different oscil-
latory components. Thus, these modes were excluded from further analysis. IMF10
was also not considered as it represented the residue mode, which might give unreal
information about the signal. The scales of the remaining IMFs were localised approx-
imately around the following ranges: IMF4 (15 - 26Hz), IMF5 (10 - 13Hz), IMF6 (6 -
8Hz), IMF7 (3 - 4Hz), IMF8 (1.5 - 3Hz), IMF9 (0.5 - 1.5Hz). Figure 6.2 depicts the sample
of extracted IMFs from a channel that gave ten IMFs.
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FIGURE 6.2: An example of a set of IMFs resulted from the NA-MEMD decomposi-
tion of the 2 s EEG signal. IMF1 to IMF3 considered noisy, and IMF10 represented
the residue mode. IMF4 to IMF6 were localized in the beta, alpha, and theta bands,
respectively, while IMF7 to IMF9 belonged to the delta band.

Before extracting the five graph-theoretical features, each IMF frequency scale align-
ment among channels was checked out. The WPLI connectivity matrix was then cal-
culated between twelve channels for each IMF and each epoch. The generating WPLI
matrices were averaged over the epochs, yielding one averaged connectivity matrix for
each IMF. Then, each connectivity matrix was transformed into a complex connectivity
network, and the graph-theoretical parameters were estimated to quantify its proper-
ties. The extracted graph parameters were then used to train and test the regression
models.
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6.4 Statistical Analysis: Correlation Coefficient

Correlation analysis was used to statistically measure the relationship between the pre-
dictor variables (EEG features represented by graph-theoretical parameters) and the
cognitive scores. Pearson correlation coefficient, denoted by r, was adopted herein for
this purpose. Theoretically, the value of r falls in the interval between +1 and -1, with 0
indicates no linear relationship, +1 refers to a perfect positive correlation, i.e., when one
variable increases, the other increases too, while -1 indicates a perfect negative correla-
tion, i.e., when one variable increases, the other decreases. In order to identify the high
influence predictors, the p-value was computed. Generally, the p-value below 0.05 was
considered to indicate a statistically significant relationship between the two variables.

Thus, the Pearson correlation coefficient was utilised in this research to determine the
correlation strength between the five graph-theoretical features and the cognitive scores
in each IMF (30 p-values: 5 features × 6 scales). A proper adjustment is required if sev-
eral independent tests are simultaneously conducted. Thus, Benjamini–Hochberg false
discovery rate was employed to control multiple comparisons, and the p-value was
corrected to 0.04. The correlation analysis was performed using corrcoef function in
MATLAB’s statistics toolbox.

6.5 Regression Model

A regression model was used to predict the later cognitive scores of the infants at high-
risk who born with HIE. The model tries to fit the relationship between the EEG features
(graph metrics) and the cognitive scores with the least possible error. The tree ensemble
regression models were adopted in this study in order to reduce bias and variance in
the imbalanced distribution of the data set under investigation—as the cognitive scores
ranged between 74 and 145, such that most of the scores clustered above 95 (Figure 6.3).

The basic idea of tree ensemble regression is using several combined models to obtain
an improved predictive performance (Moniz et al. 2017). Boosted trees regression and
bagged trees regression were the two ensembles models adopted in this study. Bagged
tree regression randomly sampled the original data set into different subsets with re-
placement. Several homogeneous models run independently on each subset in parallel,
and the final predictive performance is obtained by combining the estimations of sev-
eral models. In contrast, the boosted tree is a sequential ensemble method in which
several homogenous models train adaptively. Each example in the data set is assigned
with weight. The incorrectly classified examples carry more weight than those that are
correctly classified. Thus, the successor classifier focuses more on the example with the
high weight that the predecessor classifier failed to classify correctly. A more detailed
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FIGURE 6.3: Cognitive scores histogram. Each bin of the histogram represents the
number of infants belonging to a specific scores range. The number of bins count of
the histogram represents the broad range of cognitive scores.

description of these models is available in (MathWorks 2021, Moniz et al. 2017). Tree
ensembles regression were trained with proposed sets of features separately. Regres-
sion learner app within the statistics and machine learning toolbox in MATLAB was
used to train the selected models.

LOOCV was used to assess the models’ performance to avoid the biased estimation
of the prediction performance; more details can be found in section 2.5. The perfor-
mance of regression models was evaluated by the traditional measures known as root
mean square error (RMSE), mean absolute error (MAE) and R-squared. RMSE is the
most frequently used metric. It refers to the square root of the averaged squared dif-
ference between the predicted score resulting from the regression model and the actual
one. Lower RMSE indicates the better model’s performance. MAE is the absolute dif-
ference between the predicted value and the target one, and as in the case of RMSE, the
lowest value refers to the best model’s performance. R-squared is another metric used
to evaluate the performance of the regression model. It determines how well the model
predicts the specific score by comparing the learned model with the constant baseline
model. The constant baseline model is built by taking the mean of training data and
drawing the line on the mean. The value of R-squared is usually less than or equal to
one where the higher value refers to a better fit between predicted and actual values.

6.6 Results

This section provides some experimental evaluation of the proposed approach for the
early prediction of cognitive deficits. The effectiveness of qEEG features—global graph-
theoretical attributes derived from WPLI—was evaluated using correlation analysis
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and regression models. Table 6.2 shows the p-value results of correlation analysis be-
tween graph-theoretical features and cognitive scores in each IMF component.

TABLE 6.2: P-values of the correlation analysis of the graph-theoretical features. Sig-
nificant features that less than or equal to the Benjamini–Hochberg threshold (0.04) are
shown in boldface.

Feature IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

Transitivity 0.12 0.93 0.33 0.62 0.03 0.99

Global efficiency 0.11 0.96 0.28 0.66 0.02 0.99

Radius 0.65 0.67 0.89 0.04 0.16 0.21

Diameter 0.26 0.63 0.4 0.76 0.76 0.9

Characteristic path length 0.18 0.87 0.43 0.54 0.04 0.9

In Table 6.2, the features with the smallest p-value with boldface indicate a statistically
significant correlation with the cognitive scores. These features were radius calculated
from IMF7 and transitivity, global efficiency, and characteristic path length computed
from IMF8.

Correlation plots in Figure 6.4 reveal that the radius and characteristic path length
exhibited a significant negative correlation (r = −0.46, p = 0.04) and (r = −0.45,
p = 0.04), respectively. Transitivity and global efficiency showed a high positive cor-
relation (r = 0.48, p = 0.03) and (r = 0.49, p = 0.02), respectively. Considering that
these features have significant correlation coefficient, they could greatly influence in
predicting the cognitive outcome. Thus, these four features were selected to be used in
training and testing the regression models.
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FIGURE 6.4: Scatter plots representing the correlation between the significant graph-
theoretical features and cognitive scores.

LOOCV was used to evaluate the models’ performance to prevent potential bias from
occurring due to overfitting. Table 6.3 summarises the regression models performance
of the four selected features and their combinations. It is apparent from Table 6.3 that
the best performance—in terms of lowest RMSE, MAE and highest R-squared—was
achieved using radius network property from IMF7. The visualisation corresponding
to this result represented by the difference between predicted scores and the actual
scores is shown in Figure 6.5. The error rate between the predicted values and ac-
tual ones of majorities of the individual was generally acceptable as depicted in 6.5.
Other features such as transitivity, global efficiency and characteristic path length cal-
culated from IMF8 also gave comparable results. This result implies that the network
attributes—mainly radius—could provide valuable information regarding cognitive
deficits.

TABLE 6.3: Performance of the tree ensembles regression models using the significant
graph-theoretical features.

Scale Feature RMSE MAE R-Squared Regression algorithm

IMF7 Radius
16.775 12.7 0.24 Bagged trees

18.945 14.2 0.03 Boosted trees

IMF8

Transitivity
17.317 13.64 0.19 Bagged trees

17.802 13.86 0.15 Boosted trees

Global efficiency
17.26 13.64 0.2 Bagged trees

17.71 13.82 0.15 Boosted trees

Characteristic path length
16.98 13.28 0.22 Bagged trees

17.78 13.85 0.15 Boosted trees

Combination of transitivity, global efficiency, and characteristic path length
17.11 13.23 0.21 Bagged trees

17.842 13.897 0.14 Boosted trees
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FIGURE 6.5: Response plot of predicted cognitive scores (represented with yellow
dots) versus the actual one (depicted with blue dots). Regression-based prediction
used the radius graph feature to predict the cognitive scores.

6.7 Discussion

The objective of the present investigation is to explore the effectiveness of employ-
ing qEEG analysis in the early prediction of the cognitive outcome at two years of
age following the neonatal HIE. The early phase of a child’s life is considered a crit-
ical stage for cognition, motor, language and social-emotional development owing to
brain development and maturation of cortical architecture are most rapidly established
in this period (Ouyang et al. 2020). The utilisation of this property helps to provide
a tailored intervention seeking to improve the outcome. This study adopted a set of
graph-theoretical features—extracted from EEG signals of twenty infants with neona-
tal HIE during their first week of birth—for early identification of at high-risk infants to
develop cognitive impairment. The study aimed to predict the later individual’s cogni-
tive functions level assessed at two years of age by BSITD-III. As mentioned earlier, the
cognitive scores of the cohort varied between 74 and 145. The score suggests the level
of impairment developed at two years. Lower scores than 80 indicate cognitive deficit,
and severity worsens with a lower score. While the scores above 80 indicate normal
cognition, the level of cognitive functions increases when the score goes high.

The most significant challenge encountered in this study was that the distribution of
the data set was biased, with most cognitive scores clustered above 95. Most of the
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efforts in the machine learning community have devoted to eliminating current chal-
lenges by designing an algorithm that can deal with bias and variance in the data set.
Tree ensembles regression, employed herein, is one of the efficient algorithms devel-
oped to handle this problem (Moniz et al. 2017). It is designed to train multiple models
and then combine their results to improve the performance of the final model.

To the best of the author’s knowledge, this research constitutes the first analysis on
the impact of graph-theoretical features calculated in the NA-MEMD domain for fu-
ture cognitive decline prediction. Statistical analysis showed a significant correlation
in the delta band connectivity corresponding to IMF7 and IMF8 components using the
radius, characteristic path length, transitivity, and global efficiency attributes. A strong
negative relationship between the radius and cognitive profile was observed, indicat-
ing that the trend of the larger radius was correlated with poor cognitive outcomes.
This result suggested that the brain network of infants who later developed with cog-
nitive impairment was less integrated. On the other hand, the negative correlation was
also revealed in characteristic path length (a measure of network efficiency), displaying
that increase in characteristic path length (i.e., less integrated network) was inversely
associated with cognitive scores. This result indicated that the brain network of in-
fants who developed cognitive deficit by two years of age is less efficient in terms of
the global information transfer (higher characteristic path length). Moreover, the corre-
lation analysis demonstrated the positive relationship between transitivity and global
efficiency and cognitive outcome, i.e., high transitivity and global efficiency, yielding
normal cognitive functions (high cognitive scores). These two characteristics are valu-
able to figure out the plausible configuration of highly efficient brain networks (Fraga
González et al. 2016). Thus, it can be inferred that any abnormality in this network
could cause the alteration of both graph metrics and, consequently, a drop in cognitive
scores. Together with the rest of the results, the proposed analysis suggested that the
global graph-theoretical metrics (except diameter) could be used as biomarkers to iden-
tify the cognitive impairment early. This finding is consistent with the existing stud-
ies of some pathological conditions. Peters et al. (2013) showed increased characteris-
tic path length and decreased global efficiency in children’s brain network with ASD.
However, in this case, the generalisation of the results could not be inferred because
the statistical significance of the results is not sufficient to draw a strong conclusion.
This may be caused by limited data available for analysis. The findings of this study
provided insight into the feasibility of using the qEEG, particularly the phase-based
FBC, as biomarkers for predicting cognitive outcomes. In order to draw the inclusive
conclusion, it requires to validate this study with larger sample size.

WPLI revealed the disruptions of brain characteristics related to a cognitive deficit in
the delta band. This finding is consistent with the study of Suppiej et al. (2017), where
the authors concluded that the high value of the delta spectral power correlated with
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poor outcomes in preterm infants at the first year of age. Increased delta activity in EEG
of children suffering from learning disorders was also confirmed by Martı́nez-Briones
et al. (2020) and further supported by Barttfeld et al. (2011) study that reported the dif-
ference in the delta coherence between children having ASD and the control group.

Two tree ensembles regression models were explored to handle the bias distribution
of the data set. The significant graph-theoretical features (transitivity, global efficiency,
radius and characteristic path length) calculated from IMF components corresponding
to the delta band were used to train and test the regression models. The best perfor-
mance was observed using bagged tree regression with radius feature (RMSE = 16.78,
MAE = 12.07 and R-squared = 0.24).

A key strength of the research was recognised when compared with the state-of-the-
art of qEEG studies, shown in Table 6.4. To the best of the author’s knowledge, this
research is the first prospective study to date performed in neonates (at the first week
of birth) investigating the early non-linear qEEG characteristics of WPLI-based FBC
and their prognostic value for cognitive outcome at twenty-four months of age. Fur-
thermore, all limited studies existing in literature have used the linear qEEG such as co-
herence (Kühn-Popp et al. 2016), EEG continuity (West et al. 2005) and spectral power
(Cainelli et al. 2021, Suppiej et al. 2017), which may not be optimal to capture the com-
plex characteristics of the EEG spectra. Non-linear methods adopted in this study pro-
vided a deep insight into the underlying brain functions and dynamics.

In addition, several studies investigated the overlapping time-frequency activity un-
derlying EEG by analysing the signal using the time-frequency methods that rely on the
predefined frequency of traditional brainwaves, as in (Cainelli et al. 2021) and (Suppiej
et al. 2017). Prior selection of frequency ranges may result in potentially informative
brain waves being missed, specifically in the case of infants, due to the well-known
variability between them and the older individuals in the neural oscillations of inter-
est. This constraint has been settled in our proposed approach using the NA-MEMD
method, which decomposes the signals adaptively. Thus, all meaningful brain dynam-
ics are ascertained to be included in the analysis with this method.
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TABLE 6.4: Comparison of the qEEG state-of-the-art methods employed for predicting
cognitive outcome.

Author Data set Features Evaluation methods Outcome assessment Findings

Lloyd
et al.
(2021)

57
preterm
infants

EEG
grading

Spearman’s correlation coef-
ficient

BSITD-III
Statistically significant negative corre-
lation between abnormal EEG grad-
ing and BSITD-III subscale (r =-0.354)

Suppiej
et al.
(2017)

21
preterm
infants

Spectral
power
analysis

Spearman’s correlation
coefficient

Griffiths Scale of Mental
Development

Negative correlation between the
delta spectral power and Griffiths
scores developmental quotients (r=-
0.68, p=0.015).

Positive correlation between alpha
and beta spectral power and Grif-
fiths developmental quotients (r=0.61,
p=0.032).

Cainelli
et al.
(2021)

26
preterm
infants

Spectral
power
analysis

Bayesian correlation
Wechsler Preschool and Pri-
mary Scale of Intelligence III
(WPPSI-III) test

Significant association between spec-
tral frequency bands and visual and
auditory attention tests.

West
et al.
(2005)

44
preterm
infants

EEG con-
tinuity

Linear regression BSITD-II

Significant correlation between men-
tal developmental indices and conti-
nuity feature of EEG at different am-
plitude setting: 10 and 25 µ V thresh-
olds (r-squared =0.19, P= 0.0032 and
r-squared =0.10, p=0.04 respectively).

Kühn-
Popp
et al.
(2016)

32
infants

EEG co-
herence
measures

Correlation analysis Coding-scheme for mental
state terms

Significant correlation between left
hemisphere coherence and epis-
temic language at 48 months (r=0.59,
p=0.003).

Linear regression

Regression analyses showed, left-
coherence scores are the most impor-
tant predictor of epistemic state talk at
48 months.

Current
study

20
infants
born
with HIE

Graph-
theoretical
features
derived
from
WPLI

Pearson linear correlation
coefficient BSITD-III

Connectivity: Significant correlation
between transitivity, global efficiency,
radius, and characteristic path length
and cognitive outcomes.

Set of regression models
Reasonable regression performance
with radius feature: RMSE (16.775),
MAE (12.702), and R-square (0.24)

6.8 Conclusion

In conclusion, the analysis of qEEG successfully predicted the cognitive outcome at two
years of age from at high-risk infants born with HIE. FBC calculated by WPLI mea-
sures was evaluated by correlation analysis and regression-based machine learning
framework. Pearson linear correlation analysis showed a strong correlation between
graph-theoretical features of WPLI and cognitive scores. The tree ensembles regression
models achieved reasonable performance: RMSE (16.775), MAE (12.702), and R-square
(0.24). Therefore, the findings of this study provided insight into the feasibility of using
graph-theoretical features derived from the delta band as the biomarker for early pre-
dicting cognitive decline. This study can also be considered proof that employing the
qEEG features within regression-based machine learning frameworks could capture
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the individual variability inherited in infants’ developing brains. Moreover, this study
lays the groundwork for future investigations into using these features as the biomark-
ers for predicting individuals at high-risk of developing cognitive impairments-related
disorders such as intellectual disability.
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Chapter 7

Conclusions and Future Directions

This dissertation was set out to explore the utility of qEEG features in the early classifi-
cation /prediction of neurodevelopmental disorders. In this chapter, the main conclu-
sions of this work are drawn together and presented in the section 7.1. The challenges
and limitations of this dissertation are described in the section 7.2. The possible areas
for further research are highlighted in the 7.3. The list of publications is presented in
the section 7.4.

7.1 Dissertation Conclusion

This dissertation investigated the novel proposed analysis based on FBC and graph
theory to characterise brain functions. Specifically, phase synchronisation based FBC
was adopted to show the synchronisation of EEG activity between neuronal networks.
The knowledge that the synchrony level can fluctuate in several neurodevelopmental
disorders became the basis of this dissertation. The main idea of this approach was to
model the resting-state /task dependant brain activity as a network and to compare
its topographical properties within a sophisticated machine learning framework be-
tween the control groups and those with NDDs. Specifically, complex global network
attributes were used to quantify the underlying brain connectivity network topology
as they help provide a general insight into network characteristics. The proposed anal-
ysis was first validated with the children data set to classify children with ASD and
their neurotypical peers using a machine learning classification model. The study of
task-dependent FBC successfully distinguished between ASD and TD children, which
is met the first objective of the research. The PLV was applied to estimate the FBC by
measuring the temporal locking of phases between neural signals, which reflects the
dynamic neural interactions underlying the cognitive process. Before calculating the
phase, the DBP filter, particularly the FIR filter, was used to decompose the whole EEG
spectra into narrowband components. Three different methodologies were adopted for
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calculating PLV to find the optimal approach for capturing the difference between two
populations in the ERP-based experiment. In this part of the study, the EEG recording
was conducted while presenting the face expression stimuli to participants. This ex-
perimental set-up was chosen because the researchers have shown that the individual
with ASD has a deficiency in social cognitions, which could be represented by emo-
tional facial expression processing. The result of this investigation has revealed that
trial-averaged PLV (phase differences calculated at each sample point and then aver-
aging the generated connectivity matrices over the trials) achieved a high classification
ACC up to 95.8%, SNS 100% and SPC 92% by cubic SVM. Another important finding
was that the difference between the ASD and TD groups was observed in the theta and
alpha bands, which met the sixth objective of the research. Generally, the study pro-
vided insight into the possibilities of using the global network attributes as biomarkers
to classify ASD and TD, which is met the fifth objective of the dissertation. Although
the current research comprised a small sample size, it will serve as a base for future
studies for classifying /predicting ASD and other NDDs with larger sample sizes and
different age populations.

Based on the significant findings from applying the proposed framework in classify-
ing children with ASD from TD ones, the framework was extended to be used in the
early prediction of infants who developed CP at two years of age. The resting-state
EEG recorded at the first week of birth was analysed using the WPLI based FBC. WPLI
was employed in this part of the study due to it is robustness against volume conduc-
tion, rendering the phase synchronisation more accurate. The resulting connectivity
network was then characterised using the global graph attributes. These graph fea-
tures were fed into the RUSBoost classifier, which was adopted at this stage to han-
dle the imbalanced data distribution noticed in the infants’ data set. The results of
this exploration showed that the non-linear qEEG features, represented by the WPLI
based FBC, within the machine learning framework could effectively predict the in-
fant who developed CP at two years of age from EEG analysis recording during the
first week after birth, which is met the second objective of this dissertation. Despite its
exploratory nature, this study offered a good prediction performance in terms of classi-
fication accuracy, specificity, balanced accuracy, and AUC (84.6% ACC, 67% SNS, 90%
SPC, 78.5% balanced accuracy, and 0.75 AUC) using a combination of all global graph
attributes. A good performance in terms of sensitivity, balanced accuracy and AUC
was also achieved using the radius feature with 76.9% ACC, 83% SNS, 75% SPC, 79%
balanced accuracy and 0.78 AUC. These results showed that the two cases of feature
vectors gave a good performance when combining all five graph attributes (transitiv-
ity, global efficiency, radius, diameter and characteristics path length) and the radius
feature, and this was met the fifth objective. Regarding frequency bands, the results
of this study revealed the strong association between the delta and theta bands and
dysfunctions of the brain neural network of infants with CP, and this was met the sixth
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objective of this research.

Together, these findings suggested the effectiveness of using FBC and global graph
attributes as biomarkers for the early prediction of CP. This is the first time this frame-
work was investigated for early prediction of brain disorders and can further contribute
to the early, automated and objective prediction of CP to provide tailored intervention
that could improve the outcomes and prevent severe impairments. Even though this
study can be viewed as a promising attempt towards building an aiding tool for early
prediction of CP, more work needs to be carried out with a larger and more balanced
data set. On the other hand, this study used a traditional DBP filter, particularly the
FIR filter, to decompose EEG signals into narrowband components. This filter has con-
straints on the filter cut-offs frequencies, which could vary between subjects (adults,
children and infants). It might be of interest to investigate the usefulness of other fil-
tering approaches. For this purpose, Chapter 5 proposed a new analysis approach for
quantifying the instantaneous phase based on EMD algorithms. Mainly, NA-MEMD
was used to adaptively decompose EEG signals into intrinsic components (IMFs) based
on the oscillations in the signal. Following that, the WPLI was calculated from each
IMF separately. The graph-theoretical features were extracted from the connectivity
network, and the statistical test was then used to evaluate the discriminant capabil-
ity of each graph attribute. After that, the graph features were fed into the RUSBoost
classifier to get the predicted class of given data points. This study found that the
proposed non-linear analytical methodology using NA-MEMD successfully predicted
infants with CP at early infancy with the highest performance reaching 84.6% ACC,
83% SNS, 85% SPC, 84% balanced accuracy, and 0.85 AUC using transitivity feature.
The same classification accuracy but with 67% SNS, 90% SPC, 78.5% balanced accu-
racy, and 0.81 AUC using characteristic path length from the IMF8 corresponding to
the delta band range. Furthermore, a good performance in terms of classification ACC,
SPC and AUC were obtained using the diameter feature calculated from the IMF5 and
IMF6—corresponding to the theta and alpha band, respectively— reaching 80.8% ACC,
67% SNS and 85% SPC, 76% balanced accuracy, and 0.79 AUC from IMF6 and 0.72 from
IMF5. These results confirmed the findings from Chapter 4 which stated that the asso-
ciation between frequency ranges and brain deficits in CP was observed in the delta
and theta bands. One of the more significant findings from this study was that the
NA-MEMD algorithm decomposed EEG into narrower components compared with the
traditional DBP filter, optimising the phase estimation. This part of the study, which in-
vestigated the use of the NA-MEMD algorithm for quantifying the instantaneous phase
and adopted this approach to discriminate between the CP and normal infants, met the
fourth objective of this dissertation.

Using insights gained from these results, the proposed analysis was used to study the
level of deficits by finding the association between the EEG features and the clinical
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scores, mainly focusing on the level of cognitive functions of infants affected by HIE
at birth. The proposed framework was utilised to predict the cognitive scores at two
years from neonatal EEG recording at the first week of birth. NA-MEMD was used
to decompose EEG signals into narrow bands, and the WPLI connectivity matrix was
computed from each component. The graph-theoretical features were calculated from
each matrix, and the Pearson linear correlation coefficient was used to measure the
correlation strength between these graph attributes and cognitive scores. The features
with significant correlation were fed into the regression models. Specifically, the tree
ensemble regression models were employed to mitigate the effect of the imbalanced
distribution of the data set. The results of this investigation showed that the qEEG fea-
tures (WPLI-based FBC and graph parameters) within the regression framework could
offer valuable prognostic information regarding cognitive performance, and this was
met the third objective of this research. A significant correlation has been observed
between radius, transitivity, global efficiency and characteristic path length calculated
from IMF components corresponding to the delta band and the cognitive score, which
was clinically assessed at two years of age. The regression analysis showed that the ra-
dius feature yielded the best performance (RMSE = 16.78, MAE = 12.07 and R-squared
= 0.24). These findings were met the fifth and sixth objectives of this dissertation. This
research adds to existing knowledge of early determination of the cognitive functions
level during the plastic period of human brain development. It could pave the way
for more research that could help provide the tailored intervention that can alter the
developmental deficits.

In summary, four different experimental results showed evidence that the qEEG fea-
tures represented by the FBC and graph theory contain helpful prognostic information
for identifying NDDs. The positive outcomes of this study will open up the opportuni-
ties to do more extensive studies in early prediction NDDs to transition from the proof
of concept stage to being applied clinically in the near future.

7.2 Challenges and Limitations

Undeniably, fulfilling the research objectives—particularly in the EEG analysis— is a
challenging task. As the human brain is undoubtedly a highly complex system, under-
standing the physiology, interconnections, and mapping its connectivity is not straight-
forward. Furthermore, the major challenge associated with EEG analysis is that it is
highly contaminated with artefacts and positively affected by a well-known problem
called volume conduction, which occurs because EEG signals are recorded from differ-
ent electrodes over the scalp, leading to the potential of mixing signals from various
sources (Vinck et al. 2011). Consequently, this may lead to distortion of the actual neu-
ronal activities.
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Another obstacle encountered in this study has been in gathering sufficient and bal-
anced data. This task is particularly problematic in the medical domain due to the
difficulty of finding the required number of participants with the same conditions and
of the same age. Notably, this problem is even more complicated in infants, as finding
neonates who have the same medical condition takes a long time. Furthermore, deal-
ing with infants and recording their EEG signals is technically very challenging. In this
essence, the estimation of sample size that necessary for making the results clinically
usable is a critical step in designing research protocol. The sample size must be big
enough to be able to infer the statistically significant results, draw the generalised con-
clusion and make the prediction model more reliable when applied to new individuals
(Suresh & Chandrashekara 2012, Riley et al. 2020). At the same time, collecting more
experimental data is expensive, time-consuming and exposes more number of subjects
to procedure (Hajian-Tilaki 2014, Suresh & Chandrashekara 2012). In fact, the mini-
mum sample size required varies depending on the objectives of the research study.
There are several studies that provided the guide for estimating the minimum sample
size required in the diagnostic study (Bujang & Adnan 2016, Hajian-Tilaki 2014, Ler-
man 1996, Suresh & Chandrashekara 2012, Riley et al. 2020).

In addition, in order to predict the emerging neurodevelopmental outcomes in chil-
dren of two years old from neonatal EEG, the participants ideally need to be followed
longitudinally for a minimum of two years. The child must complete the follow-up as-
sessments (set of neurological and developmental tests) required to compare the mark-
ers from EEG connectivity at birth with the clinical outcome. Although it helps study
the development changes over the lifespan, this longitudinal study presents several
difficulties. First, it requires a great deal of time, which may often make it expensive.
Moreover, the participant may fail to complete the follow-up assessment due to a vari-
ety of reasons such as death, illness, or a change of location; shrinking the sample size
as a result.

7.3 Future Works

The research of the early prediction of NDDs is still in its infancy. There is ample room
for further progress toward the early and automated identification of such disorders
and establishing the aiding tools into the clinical practice to assist the clinicians in their
decisions. Some of these future directions are highlighted in the following.

In this dissertation, the proposed framework has been validated in a small sample size.
It would be more reliable to ascertain the validity and the efficiency of the framework
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using a larger data set with a statistically significant population. This could help con-
firm the robustness of the models and generalise the outcomes. On the other hand,
the infants’ data set under consideration has an imbalanced distribution, a well-known
problem in the machine learning environment. It would be insightful to further exploit
the proposed framework on a more balanced and consistent data cohort or investigate
another solution to deal with this problem. Moreover, the infants recruited in this dis-
sertation were at high-risk born with HIE. It would be valuable to explore the varying
conditions of birth-time complications such as premature birth.

Further methodological development could be applied to the proposed framework to
validate and improve the overall outcomes. For example, exploring different graph at-
tributes is recommended in order to identify more definitive biomarkers of brain func-
tional deficits. Modularity, small-world network property are the example of the those
graph features.Further improvement is also suggested to explore various sophisticated
machine learning algorithms to determine a model fitting to predict the neurodevel-
opmental outcome. Random forest, neural network and an evolutionary algorithm are
the example of those machine learning algorithms. The proposed framework investi-
gated the statistical correlation between distant brain areas to estimate the functional
brain interactions. It might be worthwhile to study the causal interactions between
those brain regions with effective connectivity and explore their efficiency in predict-
ing brain abnormalities.

Chapter 6 investigated the utility of the proposed framework, specifically, in cogni-
tive prediction scores on continuous scale. It would be interesting to assess the per-
formance of the framework in predicting the various aspects of developmental delays,
such as language and motor skills. Thus, one possible future expansion of this study is
to conduct the regression analysis to predict language delay level and the motor state
from infants at high-risk infants. Another potential area of future research would be to
design the regression model to predict the disorder severity. This might help provide
the tailored intervention according to the severity of the disorders.

7.4 Publications

The list of publications that have arisen as part form this dissertation are listed in this
section.

1. N. Alotaibi and K. Maharatna, “Classification of Autism Spectrum Disorder From
EEG-Based Functional Brain Connectivity Analysis,” Neural Comput., vol. 33, no. 7,
pp. 1914–1941, Jun. 2021.
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2. D. Bakheet, N. Alotaibi, D. Konn, B. Vollmer, and K. Maharatna, “Prediction of Cere-
bral Palsy in Newborns with Hypoxic-Ischaemic Encephalopathy Using Multivariate
EEG Analysis and Machine Learning,” IEEE Access, 2021.

3. N. Alotaibi, D. Bakheet, D. Konn, B. Vollmer, and K. Maharatna, “Cognitive Out-
come Prediction in Infants With Neonatal Hypoxic-Ischemic Encephalopathy Based on
Functional Connectivity and Complexity of the Electroencephalography Signal,” Front.
Hum. Neurosci., vol. 15, no. 1, pp. 1–19, 2022.
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Bosch-Bayard, J. (2020), ‘Working Memory in Children with Learning Disorders: An
EEG Power Spectrum Analysis’, Brain Sciences 10(11), 817.

Maruyama, K., Okumura, A., Hayakawa, F., Kato, T., Kuno, K. & Watanabe, K. (2002),
‘Prognostic Value of EEG Depression in Preterm Infants for Later Development of
Cerebral Palsy’, Neuropediatrics 33(3), 133–137.

MathWorks (2018), Statistics and Machine Learning Toolbox™ User’s Guide, Technical
report, MathWorks, Natick, MA.

MathWorks (2021), ‘Regression Learner App’.

Matlis, S., Boric, K., Chu, C. J. & Kramer, M. A. (2015), ‘Robust disruptions in electroen-
cephalogram cortical oscillations and large-scale functional networks in autism’,
BMC Neurology 15(1), 1–17.

Mayo, M. (2016), ‘Decision Tree Classifiers: A Concise Technical Overview’.
URL: https://www.kdnuggets.com/2016/10/decision-trees-concise-technical-overview.html

McGuire, B. (2021), ‘Nervous System and Spinal Cord’.
URL: https://www.coursehero.com/sg/anatomy-and-physiology/neuron-structure/



128 REFERENCES

Mehdizadehfar, V. & Fallah, A. (2016), ‘Analysis of Brain Connectivity Patterns in
Autistic Children During Watching Emotional Faces’, Iranian Conference on Biomed-
ical Engineering (11), 23–25.

Mika (2010), ‘Brain Connectivity Toolbox’.
URL: https://sites.google.com/site/bctnet/
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Appendix A

Results of the Applications of
WPLI-based FBC from DBP filter

TABLE A.1: Classification performance in each frequency bands using WPLI-based
FBC from DBP in prediction CP.

Frequency bands Feature ACC SNS SPC Balanced accuracy AUC

Delta

Transitivity 76.90% 67.00% 80.00% 73.50% 0.63
Global efficiency 73.10% 67.00% 75.00% 71.00% 0.70
Radius 65.40% 67.00% 65.00% 66.00% 0.49
Diameter 57.70% 33.00% 65.00% 49.00% 0.27
Charactristic path length 76.90% 67.00% 80.00% 73.50% 0.69
All features 84.60% 67.00% 90.00% 78.50% 0.75

Theta

Transitivity 57.70% 33.00% 65.00% 49.00% 0.43
Global efficiency 73.10% 50.00% 80.00% 65.00% 0.48
Radius 76.90% 83.00% 75.00% 79.00% 0.78
Diameter 73.10% 50.00% 80.00% 65.00% 0.66
Charactristic path length 73.10% 50.00% 80.00% 65.00% 0.53
All features 57.00% 33.00% 65.00% 49.00% 0.56

Alpha

Transitivity 57.70% 67.00% 55.00% 61.00% 0.55
Global efficiency 73.10% 50.00% 80.00% 65.00% 0.67
Radius 53.80% 0 70.00% 35.00% 0.31
Diameter 34.60% 33.00% 35.00% 34.00% 0.26
Charactristic path length 69.20% 33.00% 80.00% 56.50% 0.65
All features 61.50% 50.00% 65.00% 57.50% 0.52

Beta

Transitivity 65.40% 50.00% 70.00% 60.00% 0.50
Global efficiency 73.10% 50.00% 80.00% 65.00% 0.51
Radius 46.20% 17.00% 55.00% 36.00% 0.28
Diameter 42.30% 33.00% 45.00% 39.00% 0.30
Charactristic path length 50% 50.00% 50.00% 50.00% 0.38
All features 53.80% 67.00% 50.00% 58.50% 0.46

Gamma

Transitivity 46.20% 50.00% 45.00% 47.50% 0.35
Global efficiency 42.30% 50.00% 40.00% 45.00% 0.35
Radius 42.30% 33.00% 45.00% 39.00% 0.35
Diameter 50.00% 33.00% 55.00% 44.00% 0.34
Charactristic path length 34.60% 33.00% 35.00% 34.00% 0.28
All features 30.80% 33.00% 30.00% 31.50% 0.16
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TABLE B.1: Classification performance in each frequency bands using WPLI-based
FBC from NA-MEMD in prediction CP.

Frequency bands Feature ACC SNS SPC Balanced accuracy AUC

IMF3

Transitivity 53.80% 67.00% 50.00% 58.50% 0.43
Global efficiency 50.00% 33.00% 55.00% 44.00% 0.38
Radius 53.80% 33.00% 60.00% 46.50% 0.44
Diameter 57.70% 33.00% 65.00% 49.00% 0.48
Characteristic path length 69.20% 50.00% 75.00% 62.50% 0.65
All features 38.50% 17.00% 55.00% 36.00% 0.26

IMF4

Transitivity 50.00% 33.00% 55.00% 44.00% 0.30
Global efficiency 53.80% 33.00% 60.00% 46.5% 0.22
Radius 53.80% 50.00% 55.00% 52.5% 0.47
Diameter 42.30% 33.00% 45.00% 39.00% 0.35
Characteristic path length 53.80% 33.00% 60.00% 46.5% 0.27
All features 46.20% 17.00% 55.00% 36.00% 0.32

IMF5

Transitivity 42.30% 33.00% 45.00% 39.00% 0.38
Global efficiency 57.70% 67.00% 55.00% 61.00% 0.53
Radius 38.50% 33.00% 40.00% 61.00% 0.31
Diameter 80.80% 67.00% 85.00% 76.00% 0.72
Characteristic path length 53.80% 67.00% 50.00% 58.5% 0.53
All features 76.90% 83.00% 75.00% 79.00% 0.76

IMF6

Transitivity 30.80% 17.00% 35.00% 26.00% 0.23
Global efficiency 30.80% 17.00% 35.00% 26.00% 0.21
Radius 46.20% 17.00% 35.00% 26.00% 0.22
Diameter 80.80% 67.00% 85.00% 76.00% 0.79
Characteristic Characteristic 23.10% 0 30.00% 15.00% 0.07
All features 57.70% 50.00% 60.00% 55.00% 0.49

IMF7

Transitivity 80.80% 67.00% 85.00% 76.00% 0.78
Global efficiency 65.40% 50.00% 70.00% 60.00 0.67
Radius 38.50% 33.00% 40.00% 36.50% 0.32
Diameter 34.60% 0 45.00% 22.5% 0.14
Characteristic path length 57.70% 50.00% 60.00% 55.00% 0.54
All features 53.80% 17.00% 65.00% 41.00% 0.40

IMF8

Transitivity 84.60% 83.00% 85.00% 84.00% 0.85
Global efficiency 80.80% 67.00% 85.00% 76.00% 0.90
Radius 65.40% 67.00% 65.00% 66.00% 0.64
Diameter 42.30% 33.00% 45.00% 39.00% 0.29
Characteristic Characteristic 84.60% 67.00% 90.00% 78.50% 0.81
All features 76.90% 83.00% 75.00% 79.00% 0.92

IMF9

Transitivity 69.20% 50.00% 75.00% 62.50% 0.49
Global efficiency 65.40% 50.00% 70.00% 60.00% 0.55
Radius 61.50% 33.00% 70.00% 51.50% 0.48
Diameter 46.20% 17.00% 55.00% 36.00% 0.35
Characteristic Characteristic 69.20% 33.00% 80.00% 56.50% 0.44
All features 46.20% 50.00% 45.00% 47.50% 0.40
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