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We demonstrate spontaneous formation of a nonlinear vortex cluster state in a microcavity
exciton-polariton condensate with time-periodic sign flipping of its topological charges at the GHz
scale. When optically pumped with a ring-shaped nonresonant laser, the trapped condensate ex-
periences intricate high-order mode competition and fractures into two distinct trap levels. The
resulting mode interference leads to robust condensate density beatings with periodic appearance
of orderly arranged phase singularities. Our work opens new perspectives on creating structured
free-evolving light, and singular optics in the strong light-matter coupling regime.

Optical vortices [1], are phase-singular solutions of
quantized optical angular momentum, also known as
a topological charge, in paraxial electromagnetic fields.
Their topological charge defines integer values of the ac-
cumulated phase going around the vortex core, charac-
terized by vanishing density of the field. Investigation
of vortices and their realization in different optical sys-
tems has led to the establishment of the research field
of singular optics [2, 3]. This field has quickly devel-
oped from early realizations of optical vortices [4], com-
plex states with fractional vorticity [5], to modern ap-
plications [6]. It includes optical tweezers [5], parti-
cle manipulation in 3D [7, 8], DNA structure modifica-
tion [9], optical microscopy overcoming the Rayleigh res-
olution limit [10], entanglement based quantum cryptog-
raphy [11], and multiplexed communication systems [12].

Lattices of optical vortices (or so called vortex crys-
tals) are elusive and complex photonic states which have
been realized in solid-state lasers [13, 14], diode lasers and
VCSELs [15, 16]. Unlike conventional vortex lattices in
turbulent electron fluids [17], rotating equilibrium super-
fluids [18] or Bose-Einstein condensates (BECs) [19, 20],
optical vortex crystals are stabilized by an intricate bal-
ance of transverse modes which synchronize over the laser
gain. Being a weakly interacting photonic system, they
are ill placed to study hard-to-reach physics compared to
rotating atomic condensates, such as bosonic fractional
quantum Hall effects [21, 22].

A system which lies at the boundary between the pho-
tonic systems and atomic BECs are exciton-polariton
condensates. Exciton-polaritons (from here on polari-
tons) are composite bosons appearing in the strong-
coupling regime in semiconductor microcavities that can
undergo a power-driven phase transition into a macro-
scopic coherent state known as a polariton conden-
sate [23]. Their strong interactions and small effective
mass (∼ 10−5 free electron mass) makes them an exciting
testbed to study superfluidity [24–27] and vorticity [28–
36] far from equilibrium. Moreover, the two-component

σ± pseudospin structure of polaritons opens pathways to
investigate polarization sensitive vorticity [37, 38], vec-
tor beams and optical skyrmionic textures [31, 39] in the
strong-coupling regime. Theoretical proposals suggested
that complex structured resonant lasers could be used
to imprint a polariton condensate vortex lattice [40, 41]
which was later experimentally confirmed [42, 43]. How-
ever, a spontaneously self-arranging vortex lattice under
nonresonant excitation [44], a signature of U(1) symme-
try breaking and free-evolving polariton dynamics, has
only been reported in the weak tails of multiple spatially
overlapping and interfering condensates [45], and thus,
remains elusive.

A well-known method to generate polariton conden-
sates that can display exotic (large nonlinearity) and
high-order states is through optical trapping where annu-
lar shaped nonresonant excitation beams create complex-
valued potentials which provide gain and confinement
to polaritons [46, 47]. The advantage of this method
is that the condensate can undergo stimulated scatter-
ing to populate higher-order modes [48, 49] instead of
just the ground state, including vortices [35, 50, 51], and
even become fractured across multiple modes [52] with
consequent nonstationary density self-oscillations.

In this Letter, we demonstrate spontaneous formation
of a polariton condensate vortex cluster undergoing cyclic
dynamical evolution (indicating a limit cycle) in an op-
tically imprinted trap. The nonresonantly excited con-
densate state corresponds to a nonstationary superpo-

sition of even Ince-Gaussian modes Ψ = IG
(e)
31 e

i∆t/2ℏ +

IG
(e)
33 e

−i∆t/2ℏeiϕ [53, 54] with weak mode splitting ∆ due
to slight ellipticity in the trap. The condensate dynamics
is characterized by periodic disappearance and reappear-
ance of the vortex cluster with flipped signs of topological
charges at the GHz scale. This is confirmed with time-
delay interferometric measurements, from which we ex-
tract the time-resolved spatial first-order coherence func-
tion g(1)(r, τ) as a function of time delay τ . We observe
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FIG. 1. (a) Schematic image of the driven polariton conden-
sate (blue-orange surface) trapped in a nonresonantly pump
induced annular potential (blue-red surface). (b) Normalized
time-integrated measured real-space polariton photolumines-
cence at pump power of 1.2×Pthr, white dashed circle indi-
cates the position of the excitation ring. (c) Normalized corre-
sponding wave function density of two Ince-Gaussian modes

⟨|Ψ|2⟩ = ⟨|IG(e)
31 e

i∆t/2ℏ + IG
(e)
33 e

−i∆t/2ℏeiϕ|2⟩ where ⟨.⟩ de-
notes t → ∞ time-average. White and blue arrows denote

the probability currents for the instance IG
(e)
31 + iIG

(e)
33 indi-

cating the vortices positions.

coherence oscillations of period T ≈ 200 ps, indicating
robustness in the dynamical oscillations and corroborat-
ing the presence of a limit cycle behaviour. Moreover,
by means of a homodyne interferometric technique [55],
where a weak resonant “seed” laser locks the conden-
sate phase with respect to reference wave, we directly
reconstruct the energy resolved condensate spatial inten-

sity and phase maps, corresponding to the split IG
(e)
31

and IG
(e)
33 modes. Unlike previous works [45], our non-

resonant optical approach realises vortices in the dense
center of the driven polariton fluid. Our techniques do
not imprint any phase or vorticity onto the condensate
which rather spontaneously forms and self-organizes, and
no trap rotation is implemented to generate a vortex lat-
tice like in superfluids [18] or atomic condensates [22, 56].

We use a 2λ GaAs-based microcavity with three pairs
of embedded InGaAs quantum wells [57], excited non-
resonantly at the energy of 1.5578 eV with a single-
mode continuous-wave laser chopped (at 5 kHz and 1%
duty cycle in all time-integrated measurements) with an
acousto-optical modulator to avoid heating. The mi-

crocavity is cooled down to a temperature of ≈4 K
in a closed-cycle cryostat. In order to create an exci-
tation laser profile with ring-shaped intensity distribu-
tion, as shown schematically in Fig. 1(a), we use a pro-
grammable phase-only spatial light modulator. At pump
power P = 1.2Pthr, where Pthr = 44 mW is the con-
densation threshold power, we collect the near-field po-
lariton photoluminescence (PL) using a charge-coupled-
device camera and observe the trapped polariton con-
densate with density structure [see Fig. 1(b)] belonging
to higher-order modes of the trap. We note that the
imprinted optical trap inherits finite geometric elliptic-
ity from the pump profile. We find good agreement by
theoretically constructing the polariton PL in Fig. 1(c)
using a linear superposition of two even Ince-Gaussian

modes ⟨|Ψ|2⟩ = ⟨|IG(e)
31 e

i∆t/2ℏ + IG
(e)
33 e

−i∆t/2ℏeiϕ|2⟩ =

|IG(e)
31 ± iIG

(e)
33 |2. Here ⟨.⟩ denotes t → ∞ time-average.

The Ince-Gaussians are the natural solutions in systems
separable with elliptical coordinates [53]. Overlaid col-
ored arrows in Fig. 1(c) indicate the polariton current j =

Re[−iΨ∗∇Ψ] for the example instance Ψ = IG
(e)
31 +iIG

(e)
33

which reveals vortices of topological charge ±1 (blue and
white arrows, respectively). We note that such ellipti-
cal solutions were already reported for polaritons in the
linear regime in etched microcavity mesas [58].

We next extract the polariton condensate density
through a homodyne interferometric technique [55]. We
use a Mach-Zehnder interferometer, where the cavity
emission is collected in transmission geometry and in-
terfered with a resonant plane reference wave. The refer-
ence wave source is a single-mode external cavity diode
laser (the linewidth ≈ 100 kHz), tuned to the energy of
the condensate, which is additionally locally seeded by
a focused weak resonant beam (FWHM ≈ 2 µm). It
is worth noting that both, the reference wave and the
weak seed beam originate from the same laser and, there-
fore, are phase-locked sources. The energy of the refer-
ence wave can be precisely controlled with a wavemeter
with an accuracy of ≈ 2.5 µeV, smaller than the conden-
sate linewidth. The reported typical PL linewidth for
the trapped condensate is ≤ 25 µeV [59]. We point out
that this number approximately coincides with a spectral
resolution of our spectrometer and therefore, limits the
direct linewidth measurements and an observation of any
fine energy splitting.

The experimental results on the extracted condensate
density and phase are shown in Figs. 2(a-c) and 2(d-
f), respectively, where the reference laser was scanned
in energy by ≈ 25.5±7.5 µeV. In contrast to time-
integrated results, these images are extracted from corre-
sponding interference (with a plane reference wave) pat-
terns recorded in a “single-shot” excitation regime. In
this regime the polariton system is excited only with
an individual pulse with increased pulse width to 50
µs (compared to 2 µs pulses arriving every 200 µs in
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FIG. 2. (a,b,c) Normalized experimentally measured real-
space polariton condensate PL, and (d,e,f) corresponding
real-space phase maps, extracted at different energies. (g,i)
Normalized spatial intensity distributions of absolute value for
the complex functions described by even Ince-Gaussian modes

IG
(e)
31 and IG

(e)
33 with an ellipticity parameter ϵ=2, and (j,l)

corresponding arguments (phase maps) of the functions. (h)
Normalized density and (k) argument for a superposition of

the Ince-Gaussians IG
(e)
31 + iIG

(e)
33 . Scale bar in all panels cor-

responds to 5 µm. All phase distributions (d-f, j-l) plotted for
the phase range from −π to π.

time-integrated measurements) to detect enough photo-
counts but avoid detrimental sample heating. Therefore,
each recorded “single-shot” interferogram corresponds to
a single realization of the condensate. Next, by means of
off-axis digital holography [61, 62] we extract both the
energy-resolved polariton phase and density maps. Fig-
ure 2(a-c) shows several distinct condensate states which
can be theoretically reconstructed using Ince-Gaussian
modes, as shown in Figs. 2(g-i), with good agreement.

The results evidence that the individual IG
(e)
31 and IG

(e)
33

modes are split in energy and become picked up by the
homodyne technique when the seed laser is resonant with
each mode. We note that minor differences between the-
ory and experiment can be explained by the weak pres-
ence of higher-order states. When the energy of the seed
laser is tuned to be exactly in between the modes [see
Figs. 2(b,e)] the visibility contrast of the correspond-
ing interferogram lowers (see Supplemental Material) and
only a small portion of the condensate mode populations
that overlap with the seed laser frequency become par-
tially synchronized π/2 out of phase [63, 64]. The cor-
responding extracted phase map in Fig. 2(e) reveals an
arrangement of phase singularities in qualitative agree-
ment with our modelling in Fig. 2(k), evidencing a con-
densate vortex cluster state matching a specific superpo-

sition of Ψ = IG
(e)
31 + iIG

(e)
33 . The reason the conden-

sate picks π/2 phase difference is attributed to various
hard-to-avoid symmetry breaking effects such as sample
disorder, pump inhomogeneity, and/or different overlap
of the seed beam profile with the Ince-Gaussian modes.
The effect of the resonant stimulation is well-known from
earlier work [63], where coherent control of the wave func-
tion of trapped polaritons has been studied. We note that
typical seed laser power used in our experiments was lim-
ited by 0.016% of Pthr value for nonresonant excitation.
Moreover, we emphasize that across all scanned ener-
gies the time-integrated condensate PL remained quali-
tatively the same to the one presented in Fig. 1(b), un-
derlining that the system always populates the two dom-

inant modes IG
(e)
31 and IG

(e)
33 .

To confirm that the condensate is coherently populat-
ing both modes at the same time and undergoing robust
dynamical self-oscillations (i.e., nonstationary evolution)
we measure the time-resolved spatial first-order coher-
ence function g(1)(r, τ). For this, at different time delay
τ , we record the interference pattern between the total
condensate PL with a small uniform spatially expanded
region of itself passing through an optical delay line in
a modified Mach-Zehnder interferometer configuration.
Here, the spatially uniform signal is cut out of the cen-
tre of the polariton PL and, when expanded, plays a
role of a flat phase reference wave. The reconstructed
real-space intensities and phase maps corresponding to
different time delay τ are depicted in Figs. 3(a-j). We
observe periodic flipping of the vortex signs (charges) in
the cluster twice per beating period T ≈ 200 ps. This
period corresponds to an energy splitting of ∆ = 20.7
µeV, similar to our estimate based on the homodyne in-
terferometric technique. The observed oscillations evi-
dence that the condensate is indeed occupying two dis-
tinct energy modes. Such energy-fractured condensation
is typical for nonlinear driven-dissipative systems and has
been observed before in nonresonantly generated polari-
ton condensates [52, 65]. In Supplemental Material, we
additionally demonstrate the experimental results for ex-
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FIG. 3. Measured normalized temporal evolution of real-
space intensity (a-e) and phase (f-j) maps for the trapped
condensate. Corresponding modelled evolution of the wave-
function intensity (k-o) and phase (p-t) for a superposi-
tion of the complex even Ince-Gaussian functions Ψ(r, t) =

IG
(e)
31 (r)e

i∆t/2ℏ + IG
(e)
33 (r)e

−i∆t/2ℏeiϕ with an ellipticity pa-
rameter ϵ=2. Red and blue circles with arrows in (f,h,j,p,r,t)
schematically denote direction of phase winding for generated
vortices which periodically flip their topological charges.

tracted modulus |g(1)(r,−r, τ)| integrated over the con-
densate area versus delay time fitted with a simple model
describing a weakly interacting two-level bosonic gas. We
note that the extracted coherence time of the conden-
sate is tc = 426 ps which is typical for optically trapped
condensates [59]. We note that the excitation beam is
circularly polarized and, through additional polarization-
resolved measurements (see Supplemental Material), we
confirm that the condensate is also strongly circularly
polarized which indicates that spin dynamics (e.g., self-
sustained Larmor precession) cannot be responsible for
the observed oscillations [59, 60].

Figures 3(k-t) show the calculated temporal evolu-
tion of the system described by the nonstationary su-

perposition Ψ = IG
(e)
31 e

i∆t/2ℏ + IG
(e)
33 e

−i∆t/2ℏeiϕ, where
∆ = 2πℏ/T . One can see that the instantaneous inten-

sity distribution in Fig. 3(k,m,o) is self-replicating every
half oscillation period whereas the phase maps, shown in
Fig. 3(p,r,t), display a flip in the sign of the topologi-
cal charges. We conclude on a good agreement between
experiment and model and believe that such optically en-
gineered polariton system can be used for generation of
structured light with arranged phase singularities which
periodically evolve.
In addition, we perform generalized Gross-Pitaevskii

simulations (mean field treatment) where the polariton
condensate wave function Ψ(r, t) is coupled to a driven
exciton reservoir X(r, t) rate equation [66],

iℏ
∂Ψ

∂t
=

[
(iΛ− 1)

ℏ2∇2

2m
+ α|Ψ|2 +G

(
X +

ηP (r)

Γ

)
+
iℏ
2
(RX − γ)

]
Ψ, (1)

∂X

∂t
= −

(
Γ +R|Ψ|2

)
X + P (r). (2)

Here, m is the polariton mass, γ−1 the polariton life-
time, G = 2g|χ|2 and α = g|χ|4 are the polariton-
reservoir and polariton-polariton interaction strengths,
respectively, g is the exciton-exciton dipole interaction
strength, |χ|2 is the excitonic Hopfield fraction of the
polariton, R is the scattering rate of reservoir excitons
into the condensate, Λ is a phenomenological energy
dampening parameter, Γ is the reservoir decay rate, η
quantifies additional blueshift coming from a dark back-
ground of excitons which do not scatter into the conden-
sate, and P (r) is the nonresonant continuous-wave pump.
We base model parameters on the cavity properties [57]:
m = 5.64 × 10−5m0 where m0 is the free electron mass,
γ−1 = 5.5 ps, |χ|2 = 0.4 since our cavity is negatively de-
tuned, and a scaled interaction strength g = 1µeVµm2

corresponding to the 6 GaAs-type quantum wells. Re-
maining parameters are taken similar to those used to
describe past experiments, ℏR = 2.8g; η = 3.6; Λ = 0.05;
and Γ = γ. The results from simulation are shown in
the Supplementary Animation displaying a limit cycle
behaviour in the condensate dynamics, corresponding to
the evolution in Fig. 3(k-t). Here, we use a slightly ellip-
tical trap profile P (r) = P0L

4/[(r2−r20)
2+L4] to emulate

the energy-split mode structure with pump parameters:
r2 = (x/a)2+(y/b)2; a/b = 1.15; r0 = 10 µm; L = 7 µm;
P0 = 22 ps−1 µm2.
In this work, we provided conclusive evidence of spon-

taneous vortex cluster formation in a nonresonantly
driven polariton condensate. Our findings are accurately
reproduced through linear superposition of the trap high-
order Ince-Gaussian modes. We also find, through two
independent techniques, that the condensate is energy-
fractured across two split trap modes which leads to
rapid density self-oscillations and periodic sign flipping
of the topological charges in the generated vortex cluster.
We stress that observed arranged vortices do not appear
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from direct phase imprinting of angular momentum like
in Refs. [29, 31, 32, 42, 43], or any trap rotation like in
atomic Bose-Einstein condensates [20], but rather spon-
taneously form and freely evolve. Our work opens ex-
citing perspectives on designing complex structured light
sources with periodically evolving singular phase patterns
in the strong light-matter coupling regime, beyond the
higher-order modes considered here.

The datasets presented in this paper are openly avail-
able from the University of Southampton repository [67].
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S. Alyatkin, M. Silva, W. Langbein, N. G. Berloff, and
P. G. Lagoudakis, Geometric frustration in polygons of
polariton condensates creating vortices of varying topo-
logical charge, Nature Communications 12, 2120 (2021).

[37] K. G. Lagoudakis, T. Ostatnický, A. V. Kavokin, Y. G.
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