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Self-force in hyperbolic black hole encounters

by Oliver Francis Long

Self-force methods can be applied in calculations of the scatter angle in two-body hy-
perbolic encounters, working order by order in the mass ratio (assumed small) but with
no recourse to a weak-field approximation. This, in turn, can inform ongoing efforts
to construct an accurate description of the general-relativistic binary dynamics via an
effective-one-body description or other approaches. Existing self-force methods are to
a large extent specialised to bound, inspiral orbits. Here we derive the first-order con-
servative self-force correction to the scattering angle, show its agreement with recent
post-Minkowsian results, and develop a technique for (numerical) self-force calculations
that can efficiently tackle scatter orbits. In the method, the metric perturbation is
reconstructed from a Hertz potential that satisfies (mode-by-mode) a certain inhomoge-
neous version of the Teukolsky equation. The crucial ingredient in this formulation are
certain jump conditions that the (multipole modes of the) Hertz potential must satisfy
along the worldline of the small body’s orbit. We present a closed-form expression for
these jumps, for an arbitrary geodesic orbit in Schwarzschild spacetime. To begin de-
veloping the numerical infrastructure, a scalar-field evolution code on a Schwarzschild
background (in 1+1D) is developed. Following this, results for the conservative scalar
self-force corrections to the scatter angle are calculated. We continue by constructing
a Teukolsky evolution code on a Schwarzschild background. This produces numerically
unstable solutions due to unphysical homogeneous solutions of the Teukolsky equation
at the horizon and null infinity being seeded by numerical error. This can be resolved
by a change of variables to a Regge-Wheeler-like field. We then present a full numeri-
cal implementation of this method for circular and scatter orbits in Schwarzschild. We

conclude with a discussion of the outlook for self-force calculations on scatter orbits.
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Chapter 1

Introduction

1.1 Gravitational waves

The early belief in the existence of gravitational waves (GWs) varied, much like the
waves themselves. They were discussed by Heaviside [1] in the late 19th century and
later proposed by Poincare in 1905 through analogies of electromagnetic and gravita-
tional fields [2]. The first mathematical proof within General Relativity (GR) came
from Einstein himself who discovered three separate types of waves which were later
categorised by Hermann in 1922 [3]. In the same year, Eddington found that two of
these were artefacts of the coordinate system used by Einstein but did not rule out
the existence of the third [4]. Gravitational waves were again put into doubt when
FEinstein, with Rosen, concluded that they could not exist in GR due to the presence
of a singularity. Robertson realised that this was only a coordinate singularity which
lead to Einstein concluding that gravitational waves do in fact exist [5]. The confusion
due to coordinate systems was finally settled several decades later when Pirani used the

coordinate independent Riemann curvature tensor to reach the same conclusion [6].

With the scientific community agreed on their existence, there became an invested in-
terest in attempting to observe the phenomenon. In 1969, Weber announced the first
detection of gravitational waves [7], using resonant mass detectors which became known
as Weber bars. However, doubt was cast on the validity of the discovery due to the
frequency of reported detections originating from the galactic centre. The timescale for
the Milky Way to emit all its energy via GW emission was significantly smaller than
the widely accepted age of the galaxy. Further uncertainty came due to other indepen-
dent groups failing to detect the same signal with their own Weber bars. This led the

scientific community to come to the consensus that Weber’s results were spurious.

The detection of the first binary pulsar PSR B1913+16 by Hulse and Taylor [8], which

won them the 1993 Nobel Prize in Physics, allowed a unique viewpoint into the weak-field
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regime of the two-body problem in GR using electromagnetic observations. The loss of
energy and angular momentum of the system, observed using pulsar timing over several
years, precisely matched the predicted losses in GR due to GW emission [9,10]. This
provided the first indirect evidence of the existence of gravitational waves. Observations
of the pulsar have continued for many years and observations continue to closely match

the theory as shown in Figure 1.1.
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FIGURE 1.1: Orbital decay of the Hulse-Taylor pulsar (PSR B1913+16). The data
points indicate the observed change in the epoch of periastron with date while the
parabola illustrates the theoretically expected change in epoch for a system emitting
gravitational radiation, according to GR. Image courtesy: [11].

The indirect detection only fuelled the race to directly detect a gravitational wave. In
spite of Weber’s discredit, some groups continued to improve on his design while others
toyed with laser interferometers. These measure the relative changes in the length of
two perpendicular arms due to the propagation of a GW using the interference of light
beams which travel down each arm. Several laser interferometers were constructed
including GEO600 (British-German collaboration), Laser Interferometer Gravitational-
Wave Observatory (LIGO; USA), and Virgo (Italy) but these lacked the sensitivity
required to detect the minuscule changes in length required for the detection of GWs.
Undeterred, LIGO and Virgo sort to remedy this with upgrades to “advanced” detectors
aimed to increase the sensitivity of the detectors by a factor 10 relative to the original

designs.

On 15th September 2015, the newly upgraded advanced LIGO (aLIGO) detected the
first gravitational wave signal, GW150914, at both Livingston and Hanford sites [12].
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The detected signal, shown in Figure 1.2, lasted 0.2 seconds and had a peak strain of
102!, which corresponds to the length of the 4 km LIGO arms differing by 107'® m.
Match filtering the signal against the library bank of theoretical waveforms determined
that the collision consisted of two black holes with masses 35J_rg M and 301’2 M which
formed a single black hole of mass 62J_r§ Mg with 3.0 + 0.5 Mg, worth of energy being
emitted as gravitational waves. The event was revolutionary as it was not only the first
gravitational wave signal detected but also the first direct detection of a black hole (BH),
the first observed binary-black hole (BBH) collision, and one of the best tests of strong-
field GR to date [13]. The LIGO Scientific Collaboration announced the discovery on
11th February 2016 which was widely celebrated and commended, including with Barry
Barish, Kip Thorne, and Rainer Weiss receiving the 2017 Nobel Prize in Physics “for
decisive contributions to the LIGO detector and the observation of gravitational waves.”

The detection of GW150914 began a new age of gravitational wave astronomy.

Hanford, Washington (H1) Livingston, Louisiana (L1)

— L1 observed -
H1 observed (shifted, inverted)
T I

Strain (1072%)

-1.0 H — Numerical relativity — H — Numerical relativity -
Reconstructed (wavelet) Reconstructed (wavelet)
I Reconstructed (template) | | I Reconstructed (template) | |
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L 256 £
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v 4 o
3 N
o 64 2 ©
- £

32 05
0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45 =
Time (s) Time (s)

F1cURE 1.2: The gravitational-wave event GW150914 as observed by LIGO Hanford
(H1, left column panels) and LIGO Livingston (L1, right column panels). Times are
shown relative to September 14, 2015 at 09:50:45 UTC. Image courtesy: [12].

A second type of GW source, a binary-neutron star (BNS) collision, was detected by
both LIGO sites and the newly operational advanced Virgo on 17th August 2017 [14].
The signal, dubbed GW170817, had a lower amplitude than previous BBH signals but
lasted significantly longer such that the signal-to-noise ratio (SNR) integrated over the
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entire signal was within detectible levels. Mere seconds after the GW event, a short
gamma ray burst (GRB), designated GRB 170917A, was detected. The probability of
incidental near-simultaneous temporal and spatial observations was so minute that it
was concluded that they originated from the same event and thus BNS mergers were
confirmed as a progenitor of short GRBs [15]. The improved sky localisation of the GW
signal due to Virgo allowed other electromagnetic (EM) telescopes to detect the first EM
counterpart to a GW event in the galaxy NGC 4993. Over the following days signals
from radio to X-rays were detected from the galaxy. The combination of the GW and
EM signal has allowed significant breakthroughs including the restrictions on neutron

star equations of state [16].

With BBH and BNS mergers both observed it was only a matter of time before we
observed a neutron star-black hole (NSBH) collision. The first confirmed NSBH signal
was detected during the first part of observing run 3 (O3a) on 5th January 2020 with a
second detection 10 days later [17]. Detections of the three types of binary merger are
becoming much more frequent with the addition of more detectors, including KAGRA
(Japan) in 2020, and continued upgrades to the existing observatories. By the end of
observing run 3 there have been a total of 90 observed gravitational wave events as

shown in Figure 1.3.

Masses in the Stellar Graveyard

ack Holes LIGO-Virgo-KAGRA Neutron Stars

FIGURE 1.3: The masses of all compact binaries detected by LIGO/Virgo/KAGRA
up to the end of O3b, with black holes in blue and neutron stars in orange. The
objects are arranged in order of discovery date. Image courtesy: LIGO-Virgo/Aaron
Geller /Northwestern.

Looking to the future, there are many exciting plans for gravitational wave astronomy.
As well as the continued upgrade of the current detectors, there are a series of potential
3rd-generation ground-based detectors proposed including LIGO Voyager (at the current
LIGO sites) as well as the Einstein Telescope (ET; Europe) and Cosmic Explorer (CE;
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USA). These improved designs will not only let us see some of the earliest mergers in
the universe but also the potential to detect continuous wave sources including accreting
neutron stars [18]. The future space-based Laser Interferometer Space Antenna (LISA)
detector, due for launch in 2034, will allow us to detect GW signals within the milli-
hertz range such as supermassive black hole (SMBH) binaries. One exciting prospect
is multiband GW astronomy where loud ground-based sources are detected earlier in
their inspiral by LISA. This allows a prediction of the time of merger for the ground-
based observatories and sky localisation for the detection of EM counterparts [19]. The
stochastic background of GW is expected to consist of a history of SMBH mergers with
frequencies ranging from microhertz to nanohertz. We can detect in this range using
millisecond pulsar timing arrays such as the future Square Kilometre Array (SKA). The
propagation of a GW alters the distance between Earth and the pulsar causing the ob-
served time of the pulsar signal to be offset by tens of nanoseconds. Figure 1.4 shows
the noise curves of several GW detector as well as the characteristic strains of sources
that they intend to observe. The future of gravitational wave astronomy will continue

to push our understanding of the universe around us.

107"
Stochastic
background
10 SKA
10 ¢
Massive binaries
£
£
) 10 ' LISA
L
7]
= aLIGO
2 Extreme mass
E 10 2 ratio inspirals GW150914 ET
©
=
(3]
B
10 %
10 % Pulsars
10 %
10" 10 10 104 1072 10° 102 10* 10°

Frequency / Hz

FIGURE 1.4: Noise curves of current and future gravitational wave detectors including
the characteristic strain of various GW sources. Image courtesy: [20].

1.2 Extreme-mass ratio inspirals

One interesting source of gravitational waves are extreme-mass ratio inspirals (EMRISs).

These binary systems consist of a stellar mass black hole (or neutron star) of mass pu
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slowly inspiraling into a supermassive black hole with mass M of order 10° — 10" M. On
short timescales, the small compact object (CO) follows the standard geodesic motion
of the large central black hole with constants of motion energy F, azimuthal angular
momentum L, and Carter constant (). This motion is ergodic such that the trajectory of
the CO will trace out an entire region of space as shown in Figure 1.5. There exists special
orbits where two of the three orbital frequencies (radial, azimuthal, and longitudinal)
have an integer ratio. In these cases the motion is no longer ergodic and are instead

confined to a 2-dimensional surface, also shown in Figure 1.5.

N

\
N

,._‘4

FIGURE 1.5: Left: A typical geodesic in Kerr spacetime. The orbit fills the space
within the torus-shaped region. Right: A resonant orbit that has a 3:2 ratio between
the radial and longitudinal periods of the orbit. Images courtesy: [21].

The evolution of the orbit is driven by the “back-reaction” from emitted gravitational
waves which modifies the trajectory on timescales much larger than the orbital fre-
quencies. This slow “adiabatic” effect causes the trajectory of the CO to slowly evolve
through background geodesics. The timescale of the change of the constants of motion
is given by E/ E ~ M? /i, which is commonly referred to as the radiation-reaction time.
The transition between geodesics is generally smooth except where the motion passes
through an orbital resonance. In this case, the repeated regular motion can cause large
changes in the orbital parameters on timescales much shorter than the radiation-reaction

time.

Astrophysical EMRIs are expected to emit gravitational waves in millihertz frequencies
which puts them at the prime sensitivity of the LISA detector (see Figure 1.4). A typical
LISA EMRI will emit 105 — 10° detectable gravitational-wave cycles over time periods of
the order of years. During this time, the slowly evolving geodesic nature of the trajectory
means that CO will map out the spacetime surrounding the central black hole in extreme
detail. This will give us one of the most comprehensive tests of GR in the strong-field
regime to date. Studies have shown that EMRI signals can be used to determine the
central object’s mass and spin with high accuracy as well as confirm if it is a Kerr black
hole or tightly constrain any alternative theories to GR. A study [22] estimates that we
can expect to observe up to 100 EMRIs during LISA’s lifetime. However, the amplitude
of even the strongest EMRI signals will be drowned out by LISA’s detector noise. We
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will require a template bank of highly accurate theoretical waveforms in order to extract

the signal.

In order to construct theoretical waveforms we need to solve the two-body problem of
GR, where the spacetime metric is determined as a solution of Einstein’s field equations:
a notoriously complicated set of 10 coupled nonlinear second-order partial differential
equations (PDEs). The mainstay approach employs the methods of Numerical Relativity
(NR), in which the field equations are solved numerically as an initial-value problem
using finite-difference or spectral schemes. This is extremely computationally expensive,
especially when there are multiple scales involved, as when the two objects are very far
apart. In the large distance regime we can utilise weak-field approximations such as the
post-Newtonian (PN) and post-Minkowskian (PM) theories which expands quantities
order by order in G/c? and G respectively. The combination of PN in the weak-field
transitioning to NR in the strong-field is the currently favoured method for producing
waveform template banks for ground-based observatories. However, this method is not
suitable to construct EMRI waveforms. The large disparity in the two masses means
that the scales required to resolve the areas surrounding each object are vastly different.
This, combined with the increased number of orbits in the strong-field regime, vastly
increases the computational requirements such that the run time of NR calculations
scales as (M/u)?. Tt is possible to still utilise PN (or PM) expansions in the weak
field for EMRI calculations, however, we would lose the ability to probe the strong-field
regime. Fortunately, there is a natural small parameter in EMRI systems: binary mass-
ratio n := pu/M. Self-force (SF) theories use a perturbative approach via order by order
expansions in the mass ratio to model EMRIs. A schematic plot of the relative domains
of NR, PN, PM, and SF methods is shown in Figure 1.6.

o0
T post-Newtonian &
post-Minkowskian methods ~ ___.---
5
o 1
© 1
o 1
© 1
Q. 1
(] 1
(7] 1
1
1
1
i Perturbation theory,
Numerical Relativity : self-force
0 1
1 Mass ratio —» 0

FIGURE 1.6: Domains of the techniques for solving two-body problem in GR. Cartoons
illustrate the principle behind each approach: PN expands about flat space, SF expands
about the exact fixed geometry of a central black hole, and NR tackles the full nonlinear
dynamics. Image and caption courtesy: [21].
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1.3 Self-force theory

In this section we present a brief overview of the self-force theory including formulation
of the problem and a discussion of the various computational methods and current
progress. When discussing the computational method we will focus on first-order SF
and then detail the approach to second-order calculations in Section 1.3.6. More detailed
discussions can be found in the review by Barack & Pound [21] or for a more technical
description we refer to [23-25] for self-force formulation and [26,27] for computational

methods.

1.3.1 Expanding in the mass-ratio

The fundamental principle in self-force theory is the expansion of quantities in terms
of the small mass ratio n = /M. The exact metric of the binary system g, can be
expanded such that

8uv = G + hia) + ) + O(P). (1.1)
The zeroth order term g, is the metric of the central object, known as the background
metric, and h,(ﬁ)(oc n™) are metric perturbations created by the CO. The full metric

must obey Einstein’s field equations (EFE)
Guvlgl = 81T, (1.2)

where G, is the Einstein tensor and T},, is the stress-energy tensor. Substituting (1.1)
into EFE gives the left-hand side of Eq. (1.2) as

Guwle) = Guuslg) + 0Gu V) + (660 W] 462G (b)) + OWP).  (13)

Here 0G,,, [h(™] is linear in hfﬁ,) and 62G,, [hV] is quadratic with the (schematic) form
8h,(}u)0h(lg + h,(},,)82h8[3. Consider the case that the energy-momentum tensor is approx-

o

imately that of a point-particle such that it takes the form
T, =T + T2 + 0@, (1.4)

where T 1". We can form the linearised FEinstein equation by taking only the terms

proportional to ' in the expansions of each side of Eq. (1.2) to give
G [hV] = 8T (). (1.5)
The method of matched asymptotic expansions can be used to determine an effective

equation of motion for the compact object. This is done by performing a perturbative

analysis of solutions to the EFE in two asymptotic regimes: body zone (dominated by
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the effects of the compact object) and far zone or external universe (dominated by the
effects of the central object). However, there is a so-called “buffer region” where both
expansions are valid as shown in Figure 1.7. Matching the two perturbative solutions in
the buffer zone allows us to form an equation of motion for the compact object in the

far zone limit.

m
body zone
(r~m)

buffer
region

external universe (1 ~ M)

FIGURE 1.7: Regions involved in matched asymptotic expansions specialised to an
EMRI. The body zone and external universe correspond to distances r ~ p(= m) and
r ~ M respectively. The buffer region corresponds to 4 < r < M lying between the
other two regions. Image courtesy: [21].

The analysis shows that at first-order in 7, the compact object is ezxactly described by

a point-particle in the background spacetime g, [28]. It also shows that the metric

perturbations can be split into two (non-physical) parts such that h,(fﬁ) = h,S;(Vn) + h,%n).

The singular field hﬁ&”) contains the divergent nature of the solution near the compact

object whereas the regular field hf:é”) is smooth and homogeneous. The (first-order)
equation of motion for the compact object in the far zone is entirely encapsulated in
a particular choice of regular field, known as the Detweiler-Whiting regular field, such

that we can write the change in the particle’s trajectory z}, with proper time 7 as

W28 iy L (PED (@) - 2ED(@) ) wu” = Fi(a,) (1.6)
dr? a—zp 2 pov vee ‘ pr '
where u# := dz},/dr is the particle’s four-velocity, D/dr = u'V, is the covariant

derivative along the worldline and a semi-colon represents a covariant derivative. This

equation of motion defines the first-order self-force F'*. We can rewrite this equation of

motion in terms of an effective metric defined by g, := g + nh,%l) such that

12
Dz},

G =00, (1.7

where 7 (etc.) are defined in the effective spacetime. This result is the geodesic equation
of motion in the effective spacetime hence we can treat the first-order source as a point-

particle test body moving in the effective spacetime.
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1.3.2 Conservative and dissipative self-force

We can split the self-force into the (time-symmetric) conservative Fi®"® and (time-
antisymmetric) dissipative F ﬁ“ss pieces. The dissipative piece drives the evolution through
the geodesics and removes energy and angular momentum from the binary system. We
can view this as the “work done” on the particle is balanced by the emitted radiation.
However, the lack of a notion of local energy within GR prevents us from comparing
these in a momentary sense. We can instead form “time-averaged” balance laws in terms

of the asymptotic fluxes of energy £ and angular momentum £ which take the form
(F u'y = (Exo) + (En), —(Fg™/u) = (Loo) + (L), (1.8)

where subscripts oo and H represent the fluxes at infinity and the horizon respectively,
(-) represents time averaging and an overdot denotes a derivative with respect to Boyer-
Lindquist time d/dt. It is important to consider how long we need to average over for
the balance laws to hold. For generic orbits in Kerr we have to average over infinite time
but for intrinsically periodic orbits (i.e. any orbit in Schwarzschild or circular, equatorial
or resonant orbits in Kerr) we can average over a single orbit [29-32]. An interesting
observation comes from observing the signs of the various terms of the balance laws.
The left-hand sides of Egs. (1.8) and fluxes at infinity are always positive but in certain
cases in Kerr (€y) and (L) terms can be negative. This corresponds to superradiance
where some of the central black hole’s rotational energy and angular momentum are
transferred to the orbit [33-35]. So far we have ignored the third constant of motion in
Kerr spacetimes, the Carter constant (). There exists a simple formula for <Q) which
requires information not only from the asymptotic radiation but also quantities that are
locally defined as integrals along the orbit [30,31,36,37]. Formulae for the three time-
averaged rate of change of the three constants of geodesic motion allows us to calculate
full generic EMRI inspirals in Kerr, to leading order, without having to directly evaluate
the SF.

The conservative piece of the self-force does not drive the inspiral but it does have mea-
surable effects, such as altering the rate of periastron advance [38]. These conservative
effects can be cumulative and effect the long-term evolution of the system. Hinderer and
Flanagan [39] found that the generalised angle variables ¢* = {q*,q", ¢°, ¢*} (associated
with the Boyer-Lindquist ¢, r,  and ¢ motions) can be expanded in the mass-ratio such
that

1
=+ (dfty +nasy + 00) (1.9)

For LISA waveforms we will require the phase evolution accurate to the precision of ra-

qM

dians across the entire inspiral hence we require the sub-leading term in the expansion.
Ref. [39] also showed that while the leading “adiabatic” order term (OPA) can be deter-

mined purely from the time-averaged dissipative piece of the first-order SF, we need the
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full first-order force plus the time-averaged dissipative piece of the second-order SF to in-
clude the “post-adiabatic” (1PA) sub-leading term. This has been the main motivation

for the formulation of second-order self-force.

1.3.3 Practical computation schemes: mode-sum and puncture meth-
ods

Practical calculations of the self-force rely on taking the singular field away from the full
physical field during formation of the problem, as done in puncture methods, or post-
calculation of the metric as done in mode-sum regularisation. The latter, introduced by
Barack and Ori [40], is done at the level of the self-force by introducing the full and
singular parts of the first-order self-force defined by

Fla(ay) = lim pV*2 (), F(xy) = lm o050 (), (110)
respectively, where V#*P represents the operator appearing in Eq. (1.6). Mode-sum
regularisation involves decomposing each of the forces into spherical harmonic Yy, modes
using Boyer-Lindquist coordinates (t,7,0,¢) such that F* = >"° F KE where FH =
S Fj (t,7)Yen (0, @), and similarly for Ff!, and F§'. We can now write the self-force

m=—/{

as
00

Fh(a,) = lim 3 [Ffﬁ;ﬁ(x) — ()] (1.11)
/=0

Ref. [40] showed that the divergent parts of the fields can be removed using a simple

f-mode expansion such that

Fh(ay) = lim > {ngfl(:c) ~F Lo - Fl (1.12)
/=0

where F[‘:L  are “regularisation parameters” and £_; := 2¢ 4 1. In practical calculations
we can only compute a finite number of /-modes. For a summation up to finite £ = lyax,
Eq. (1.12) converges linearly with 1/¢,,,x. We can increase the convergence through the

use of higher-order regularisation parameters such that

Zl'l'l}l)(
Fh(ay) ~ Jim 3 [Ffﬁ‘fl(x) —F' Lo - Fl
/=0

—6
— FlyLy = FlyLa -0 ()], (1.13)
where L,, are certain polynomials in ¢ which decay as =™ in the large-¢ limit [explicit

definitions are given in Eq. (5.5)]. The higher-order terms are are absent from Eq. (1.12)
as the form of the expansion in £ is chosen such that Y ,° L, =0V n > 0.

The mode-sum regularisation scheme has several benefits. One of the remarkable parts
of this scheme is that the regularisation parameters are finite quantities. This, along

with the smoothness of the regular field, ensures that we only ever have to perform
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finite subtractions during our calculations even though we are subtracting a singular
field. Another advantage is that many of the (often numerical) calculations of the met-
ric perturbations are performed mode-by-mode hence the necessary inputs are readily
available with no extra input. Mode-sum regularisation has been the primary method for
self-force calculations and its various implementations have been used to obtain many
breakthrough results. These include generic bound orbits in Kerr [41] and the work
detailed in this thesis.

The puncture (or effective source) method addresses the subtraction of the singular field

by performing the regularisation at the level of the field equation. This involves solving

directly for a (local) approximate form of h%l) known as the residual field which is

defined such that

h, = by — hl, (1.14)

P
jn%

brevity. The puncture field is an analytic approximation to the singular field that satisfies

where we have introduced the puncture field i/, and omitted the (1)’ superscript for

wlLrgp(hEV — 1) =0, lerImlp(V“Vphfp — VHPHS ) =0, (1.15)
near the particle. We can form an equation for the residual field by substituting Eq.

(1.14) into the linearised Einstein equation (1.5) to give
0Gw[hR] = 87T, — 6G,w[h7] = Try. (1.16)

This new “effective source” Tﬁg lacks the delta function in the original source with its
smoothness determined by how well the puncture field approximates the singular field.
We can extract the SF directly from the residual field such that

FH(zp) = xlggp PV PR (). (1.17)
In practical calculations the puncture scheme is usually only applied in a region local
to the particle such that we can neglect the behaviour of the puncture and effective
sources at large distances from the particle. We can solve for the residual field within a
“worldtube” which surrounds the particle’s worldline and for the full field elsewhere, with
changes on the boundary of the worldtube being determined by the analytic puncture
field.

1.3.4 Choice of gauge

When performing calculations in GR we have a choice of gauge. Self-force theory,
including much of the above, was originally formulated in the Lorenz gauge where we
define the gauge condition V’%W = 0 using a new “trace-reversed” variable }_LW, =

hyw — %guygaﬁhag. This new variable allows us to write the linearised Einstein field
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equation (1.5) in a simple hyperbolic form
1 _ _
0Guw[h] = =5 VOV phyu, — R,*Phas = 87T, (1.18)

where RMO‘,/B is the Riemann tensor of the background metric. One important thing to
note is that the SF is not a gauge invariant quantity. The change in the self-force § F'*
relative to the Lorenz-gauge definition due to a continuous gauge transformation of the

form z# — x# + &F is
OFH = —u (g“” + uMuV) (51/;04,8 + §7R7au,8) uauﬁ7 (119)

where £ is continuous and a semi-colon represents a covariant derivative [42]. In fact,
it is possible to completely nullify the SF with a specific choice of gauge. However,
in this case the information of the physical effects of the SF is encoded in the metric
perturbation [43]. It is the combination of the self-force and the metric perturbation

which contain the physical gauge-invariant information.

Performing direct calculations in the Lorenz gauge is difficult. There are no known ba-
sis to perform decoupled mode decompositions in Kerr hence the full 10 coupled PDEs
have to be solved in the time-domain (TD) as 341D or 241D calculations, which are ex-
tremely computationally expensive. In Schwarzschild, the problem can be decomposed
using tensorial spherical harmonics but this system still involves solving the set of 10
equations which involve coupling between tensorial components [44]. Additionally, the
Schwarzschild field can be further decomposed into Fourier modes allowing for calcula-
tions in the frequency domain (FD) [45,46]. Evolutions in the Lorenz gauge can excite
pure-gauge modes which grow linearly with time [47] in the TD and there are difficulties
associated with resolving low-frequency modes in the FD [45]. These have been over-
come in select cases (see [47-49] for TD and [45] for FD) but finding general solutions

continues to be an open problem.

The complications associated with calculations in the Lorenz gauge prompted signifi-
cant efforts to extend the SF formulation to alternative gauges [42,50-54]. The Regge-
Wheeler-Zerilli gauge [55,56] in Schwarzschild and the radiation gauges in Kerr [57, 58]
have been traditionally favoured gauges for black hole perturbation theory. In these
gauges calculations can be reduced to solving vastly simpler differential equations for cer-
tain scalar quantities, from which we can reconstruct the full metric perturbation. How-
ever, these alternative gauges are not naturally well-suited for a point-particle source.
The radiation gauge solution has a 1-dimensional “string-like” singularity which plagues
the reconstructed metric perturbation. In the most general case the singularity emanates
from the particle in both radial directions. This is commonly referred to as the “full-
string” solution. However, we can utilise a spare gauge freedom to reduce the impact
of the singularity. It is possible to remove the singularity either interior or exterior to

the particle (relative to the central object) [42]. These “half-string” solutions both have
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regular and singular regions. Ref. [53] showed that it is possible to combine the regular
regions of the half-string solutions to form a “no-string” solution which is smooth ev-
erywhere, except on the boundary between the two solutions. Figure 1.8 shows graphic
representations of the three types of string solutions. We present a more technical expla-
nation of these string solutions in Section 7.1.4. The method of calculating the self-force
in this no-string radiation gauge has been widely successful including van de Meent’s

calculations of the first-order SF for generic bound orbits in Kerr [41].

F1cUre 1.8: Illustrations of the “string” solutions of the metric perturbation in a ra-
diation gauge with the string singularity shown in red. We show the full-string solution
(left), two half-string solutions (centre) and the no-string solution (right). The no-string
solution is constructed by combining the regular regions of each half-string solution.

1.3.5 Time and frequency domain calculations

As briefly mentioned earlier, when performing calculations we can choose to do so in the
time or frequency domains. FD calculations use Fourier transforms to separate quantities
by frequencies of the positional elements of the orbit, such as radial and azimuthal
frequencies. This simplifies PDEs to ODEs as all time derivatives are replaced with
factors of the frequencies forming a discrete spectrum. This method is useful for bound
orbits which naturally have a periodic nature with well defined orbital frequencies but
there has been interest in formulation for other type of orbits [59,60]. Additionally, FD
calculations become increasingly computationally expensive for highly eccentric orbits
where high-frequencies modes have larger contributions [61]. The reliance on orbital
frequencies also makes it difficult to evolve the orbit (relative to a TD calculation) as
is required for a full inspiral calculation. TD calculations involve explicitly evolving the
equations in time using methods such as finite-differencing. These methods are often
computationally more expensive than their FD counterparts but offer more freedom in

the types of orbits that can be calculated.
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1.3.6 Second-order self-force

Let us now focus on the second-order self-force. We can form the equation of motion up

to second-order through matched asymptotic expansions to give

D2$5 1 n2 v R R P, 3
W = 5 (g - hR ) (hpa;u — 2h‘up;o’) u"u + 0(77 ), (120)
where hf}u = nh,}},sl) + 172h5,£2) [62]. As with the first-order case, we can define an
effective metric g, = g + hl}},/ and rewrite the equation of motion in terms of the
effective metric to give
D2zl
=O0(n®). 1.21
2 = o) (121)

Once again we find that the object moves as a test body in the effective metric.

Consider taking only the second-order terms in the expansion of EFE (1.2) which gives
0Guw[hP] = 87T 2) — 62G (W), (1.22)

The nonlinearity of the field equations means that in a general gauge this form is not
well defined. The second-order Einstein tensor has the schematic form 62G(h) ~ h0*h +
Ohoh. This means that when it acts on the first-order metric perturbation (and its 1/r
singularity near the worldline), the second-order Einstein tensor diverges as 62G[h(1)] ~
1/r%. As a result $2G[hM)] is not locally integrable at the worldline and does not have
a unique definition of a distribution which intersects the worldline. The consequence of
this is that it is impossible to define a unique stress-energy tensor at second-order and

Eq. (1.22) is not a well defined equation.

Fortunately, there exists a class of “highly-regular” gauges which offers a fine-tuning
solution that removes the most singular term of h,(fl,) and reduces the divergence of the
source such that §2G[h(V)] ~ 1/r? [63]. This reduced divergence allows us to construct a
unique source as a distribution and thus construct a field equation for hfl,) valid for all

r >0 [64].

The no-string construction that has been highly successful at first-order is no longer
valid at second-order. The spatially extended source means that it is not possible to
perform calculations in vacuum regions as they do not exist. Green, Hollands and
Zimmerman (GHZ) [65] proposed an alternative formulation to the no-string gauge
where the singularities associated with the metric perturbation are removed by a certain
“corrector tensor” during reconstruction of the metric (from curvature scalars) rather
than at the formulation level. Recent work [66] has shown how the GHZ formalism can
be applied to self-force calculations and provides a promising method for performing

second-order calculations.
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Current calculations at second-order have been restricted to quasi-circular orbits in
Schwarzschild. These have included the gravitational binding energy [67], gravitational-

wave energy flux [68] and the inspiral waveform [69].

1.3.7 Interfaces with other two-body GR models

Figure 1.6 shows a schematic plot of the relative domains of various techniques for solving
the two-body problem in GR. These boundaries are fairly fluid which allows interfaces,
collaborations, and comparisons between the models including the combination of PN
and NR data being combined to construct the waveforms for LIGO/Virgo/KAGRA data

analysis.

It is possible to determine where SF has sufficient accuracy for data analysis purposes by
comparing with the “exact” results of NR. This was first done in Ref. [70] who showed
that one can get remarkable agreement, even up to mass ratios of 1 : 1, if you replace
with the symmetric mass ratio v := uM/(u+ M)? = n+O(n?). The accuracy of results
calculated using SF methods with expansions in v in the comparable mass regime is
further increased at second-order, as shown in Figure 1.9, where the post-adiabatic
waveform closely matches the NR result for much of the inspiral. This agreement with
NR results at comparable mass ratios when expanding in the symmetric mass-ratio is

yet to be theoretically explained.

04F
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FIGURE 1.9: Second-order waveform for a mass ratio 1 : 1 nonspinning binary (orange).
Also included for comparison is the waveform for the same binary produced using an
NR simulation (black) [71]. The inset shows a zoomed region near the merger and also
shows the corresponding first-order waveform (blue). The waveforms are aligned in
time and phase at t = 170M. Image courtesy: [69].

Recent work [72] has shown how SF and NR could be used in harmony to tackle the
problem of intermediate-mass-ratio inspirals (IMRIs) which have mass ratios 1072 <
n < 107*. The method excises a region around the smaller black hole such that the
disparity in the length scales is decreased alleviating some of the computational burden.
Boundary conditions calculated using SF methods can be applied to the excised region

and used within the NR calculations.

Interfaces between different perturbative methods of the two-body problem have also

proved extremely useful. Expansions valid in different regimes can be used to check the
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convergence of other methods such as using an analysis of how the PN terms depend on
7 to test the convergence properties of the SF expansion. Similarly, it is also possible to
predict higher-order terms using the other expansion. SF information has been used in
such a way to determine the 5PN equation of motion through 4PM order [73] as well as
the resolution of ambiguities in, and inconsistencies amongst the first derivations of the

4PN equation of motion [74].

1.4 Black-hole scattering

The modelling of binary-black hole scattering has been largely neglected (relative to
bound orbits) due to the fact that the brief encounters are unlikely strong enough to
be directly detected by LISA. However, there is still strong motivation to study the

unbound systems.

Let us consider timelike geodesic motion around a Kerr black hole. Scatter orbits can
have much higher energies and angular momenta than bound orbits. This means that
scatter geodesics can have smaller points of closest approach without transitioning to a
plunge orbit and thus can probe much deeper into the gravitational potential. Figure
1.10 highlights this fact for a geodesics around a Schwarzschild black hole. These strong-
field self-force calculations of scatter orbits can provide a benchmark for (semi-)analytic
models such effective one-body (EOB).

19l — E=11
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FIGURE 1.10: The periastron distance R,;, of a geodesic around a Schwarzschild black
hole as a function of impact parameter b for 4 different values of orbital energy E. Also
shown is the Innermost Stable Circular Orbit (ISCO). The minimal value of impact
parameter b (obtained for £ — 00) is 3v/3M =~ 5.196M. The minimal value of Rpin
(also obtained for E — o) is 3M. Note how efficient scatter orbits are in probing the
sub-ISCO part of spacetime, even at relatively low energy. Explicit definitions of Ry,
b and FE are given in Chapter 2.
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There has been a new approach for solving the binary-black hole problem using methods
from high-energy physics. This “amplitudes” approach is based on the study of (classical
or quantum) scattering amplitudes in unbound gravitationally interacting two-body sys-
tems such as those involving the Feynman diagrams in Figure 1.11. The idea is to map
information about scattering observables (like the scattering angle) into some form of a
two-body gravitational potential [75]. This provides a strikingly fast route to the formu-
lation of an equation of motion for inspiralling binaries in GR. These efforts culminated
with the recent breakthrough work of deriving the conservative part of the two-body
equation of motion at 4PM order [76,77]. Additionally, there have been results which
reverse the process where the scattering of waves within a GR context have been used
to calculate quantities from quantum field theory (QFT), such as scattering cross sec-
tions [78]. This extraordinary connection between high-energy and gravitational physics
provides unique opportunities for progress in both fields and provides strong motivation
to study the self-force scatter problem. Direct calculations of the self-force corrections
to the scatter angle can provide comparison data for the amplitude calculations as well

as the potential to extract QFT results from the gravitational calculation.

(a) (b) () (d) () (f)

FIGURE 1.11: Sample of Feynman diagrams needed for the computation of the scatter-
ing angle in the effective field theory (EFT) approach to 3PM order. Only the diagrams
to one-loop order in (a)-(c) are needed to calculate 2PM order. Image courtesy: [79].

Previous results which have utilised SF information to inform other methods (such as
those presented at the end of the previous section) were all obtained as a byproduct of
EMRI-motivated calculations. It has been advocated by several authors that direct SF
calculations of scattering observables would provide a most powerful handle on the PM
dynamics and lead to transformative improvement in EOB models. Damour recently
showed that a first-order (second-order) SF calculation of the scattering angle determines
the complete two-body Hamiltonian through 4PM (6PM) order to all orders in the mass
ratio [80]. This opportunity to extract information on bound motion across all mass-
ratios provides the strongest motivation yet to tackle the binary-black hole scattering

problem with self-force methods.

The standard FD domain methods for bound EMRI calculations are a priori unsuitable
for scatter calculations due to their reliance on a discrete spectrum of frequencies. While
there has been some work to formulate the scatter problem in the FD [59,60], the ma-
jority of progress has been in the TD. The first unbound problem considered was the

case of a marginally bound orbit where the particle follows a parabolic-like trajectory
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starting at rest at infinity [81]. This TD calculation gave insight on how to formulate
gauge-invariant quantities for unbound orbits and showed that the Lorenz-gauge im-
plementation is too computationally inefficient for precision scatter orbit calculations.
My numerical calculations, also presented in this thesis, tackled hyperbolic orbits in
Schwarzschild taking the alternative route of using a TD implementation in the radia-
tion gauge [82]. More recently, Gralla & Lobo presented an analytical calculation of SF

corrections to the scatter angle at leading PM order [83].

1.5 This thesis

In this thesis we focus on the largely unexplored case of unbound self-force calculations.
We develop an alternative TD method designed to tackle the scatter case and present

implementations for both scalar and gravitational self-force calculations.

We begin in Chapter 2 with a review of scattering geodesics in Schwarzschild, includ-
ing different possible parameterisations and a derivation of the geodesic scatter angle.
Chapter 3 analyses the self-forced equations of motion and derives the self-force cor-
rections to the geodesic orbital parameters. The main result of this chapter are two
independently derived formulae for the conservative self-force correction to the scatter
angle. We expand these equations within the PM regime showing that the relations are

equivalent to, and agree with, the recent PM results of Gralla & Lobo [83].

Chapter 4 starts with the formulation of our 141D numerical method with calculations
of a scalar field on a Schwarzschild background for the vacuum case. The code em-
ploys a finite—difference scheme on a characteristic grid based on Eddington—Finkelstein
coordinates—a simple tried-and-tested architecture. We extend our implementation
with the addition of a point-particle source for both circular and scatter orbits. In
Chapter 5 we present scalar self-force results for a scatter orbit in the strong-field regime
and extract new physics including post-periastron undulation, which we attribute to
quasinormal-mode excitations. We use these SF results to perform first-of-their-kind

(numerical) calculations of the correction to the scatter angle.

We continue in Chapter 6 with a review of vacuum metric reconstruction and a for-
mulation of an initial-value problem for the Hertz potential. We then present an ex-
tension of our 1+1D code for the numerical integration of the Bardeen-Press-Teukolsky
(BPT) equation. We demonstrate, however, that a naive implementation of this stan-
dard scheme fails when applied to the Teukolsky equation with spin parameter s = 42,
due to divergences that develop at late time (an exponential divergence for s = +2 and
a ~ t* divergence for s = —2). We attribute these divergences to certain growing modes
of the Teukolsky equation. These modes violate the physical boundary conditions, but
since boundary conditions are not actively imposed in our characteristic scheme, they are

allowed to grow. We explain why the issue is not encountered in existing time-domain
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Teukolsky codes based on hyperboloidal slicing with compactification [84-86]. Here,
restricting to the Schwarzschild case, we opt for a simpler solution. We circumvent the
problem of growing modes by transforming to a new field variable (using a time-domain
version of the Chandrasekhar transformation), which, in the vacuum case, satisfies the

Regge—Wheeler (RW) equation, for which the problem does not occur.

Chapter 7 begins by detailing how introducing a source causes the standard metric
reconstruction procedure to fail. We present our attempts to circumvent this problem
and summarise the non-vacuum metric reconstruction procedure proposed by Green et
al. [65]. Continuing, we review metric reconstruction in a no-string gauge, specialising
to a Schwarzschild background and casting the procedure in a form suitable for a time-
domain implementation. In the no-string construction, the spacetime outside the central
black hole is split into two vacuum domains, » > R(t) and r < R(t), where r and t are
Schwarzschild coordinates and r = R(t) along the particle’s trajectory. The crucial
ingredient in our formulation are jump conditions that the Hertz potential, RW variable
and their derivatives must satisfy on the (time-dependent) two-sphere r = R(t). These

conditions are derived for an arbitrary timelike geodesic trajectory.

In Chapter 8 we finally present a full numerical implementation of our method, first
for a circular orbit. We evolve the field equation for the RW variable, and from it
compute (multipole mode by multipole mode) the no-string IRG Hertz potential. Our
results show agreement with analytic solutions for static modes and those of Barack &
Giudice [87]. We extend our implementation to the scatter case and present the first
calculations of the no-string Hertz potential for an unbound orbit, both at .#* and
along the scatter trajectory. We thus numerically construct the necessary input for a

calculation of the self-force along the orbit.

We conclude in Chapter 9 by summarising the main results presented in this thesis and
reviewing the extra steps needed to carry our the calculation of the self-force from the
Hertz potential. We also discuss potential interfaces with other two-body GR models

and the prospects of extending our method to the case of a Kerr background.

The conventions used in this thesis are a (— + ++) metric signature and geometrized
units with G = ¢ = 1. Commas and semi-colons represent partial and covariant deriva-
tive respectively. Complex conjugation is denoted by an overbar. For quantities that
arise in the Newman-Penrose formalism we follow the sign conventions of Ref. [88], as
summarised in Appendix A therein; for ease of reference we review the relevant details

here, in Appendix A, specialised to the Schwarzschild case.
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Chapter 2

Review of scattering geodesics in

Schwarzschild spacetime

In this chapter we will review scattering timelike geodesics of a Schwarzschild black hole.
We present several parameterisations as well as calculate important quantities such as

the periastron and the scatter angle.

2.1 Equation of motion and parametrisation

With motion in the equatorial plane we have the first integrals

i = E/f (2.1)
¢ = L/, (2.2)
io= +E2-V(r;L), (2.3)

where an overdot is d/dr, f := 1 —2M/r, E and L are specific energy and angular

momentum, and

V(r;L) = f(r) (1+ L?/r?). (2.4)

For hyperbolic encounters we require £ > 1. For such orbits, F is just the usual v factor
of special relativity where the energy is ymc?, so the specific energy (taking ¢ = 1) is 7.
This can also be confirmed with a direct calculation. Letting v, be the 3-velocity at

infinity, we have

Foo E?—1 (r¢)s  TL/T?
T:_i:j:77 SOOO: 0 = :O, 25
Yoo too E (ro”) too E/f lr— (2:5)
and so
E? -1
Voo = [Voo| = V/(V5.)2 + (rv#)2, = ; (2.6)
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giving
y=(1-v3 )2 =E. (2.7)

We will use v as one of the two (pseudo-)invariant orbital parameters.

The particle actually scatters back to infinity (and does not fall into the black hole)
only if L > Lqit(E), where the critical value of the angular momentum is the (relevant)
simultaneous solution of 9,V (r; L) = 0 and E? = V(r; L). This gives

M
Leit(E) = u—\/(27E4 +9aFE3 — 362 — 8aF +8)/2, (2.8)

where o := v9E2 — 8 and
Uso = [Foo| = VE?2 — 1 = v E.

Instead of L, we can use as a second parameter the more geometrically motivated “impact

parameter”, b, defined as

b:= rlirgorsin lo(r) — (c0)]. (2.9)

A graphical illustration of this definition is shown in Figure 2.1. From Egs. (2.2) and

(2.3) we have at large r

"o L
— = =dr’ ~ ——— 2.1
o(r) = plo0) = | Lar' = ———, (2.10)
giving
L L L
b= — = = ) (2.11)

Uoco E?2 -1 Voo B

For a scatter orbit we need b > beyiy where berit := Leit(E)/too. The minimal possible
value of b is
bin = lim beie (E) = 3v/3M ~ 5.196M. (2.12)
E—oo

We henceforth use the pair {vs, b} as a (pseudo-)invariant parametrisation of the scatter
orbit.

2.2 Geodesic equation in terms of its roots

For the geodesic orbit we can form an expression for radial geodesic motion utilising the

turning points of the radial first integral (2.3). We can write

E? - Vir;L) = (E2 —1D)(r—rp)(r—ri)(r— r3)/r3, (2.13)
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FIGURE 2.1: A visualisation of the definitions of the impact parameter b and the scatter
angle d¢ [to be defined in Eq. (2.30)] for a geodesic scatter orbit. The orbit shown has
parameters (Voo,b) = (0.7, 15M/2) with r, ~ 4.78 M and dp ~ 125°.

where for scatter orbits the roots satisfy 11 < 0 < r3 < 1, and are given explicitly by [89]

6M 6M 6M

Tla(Eog T Txa(Grg P Treme

Tp

with

C= VTTTIPIE, €= Larecos (LHESTMEINEIEY

These roots are not independent. We can solve the first two equations in (2.14) for
{cos¢,sin¢} in terms of {r,,r;}, and subsequently express rz explicitly in terms of

{rp,r1} such that
2Mryr
_ _ 2.16
" rpr1 — 2M (rp 4+ 11) (2.16)

2.3 The e, p parametrisation

It is convenient to represent the radial motion in the form

Mp

= 2.17
" 14 ecosy ( )

where e > 1, and x is a new parameter along the orbit, taking the values x € (—Xoo, Xoo)
with
Xoo = arccos(—1/e). (2.18)
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The roots r, and 7 correspond to x = 0 and x = 7/2 which gives the results

Mp Mp

_ _ , 2.19
T re M1 e (2.19)

and thus using Eq. (2.16) we can write

_ 2Mp

et (2.20)

T3

In the bound-orbit case, the orbit oscillates between 7, < r < r; and the relation between
{E,L} and {e,p} is uniquely determined from the two conditions E? = V(r,, L) and
E? = V(r1,L). In the scatter case, 7 is unphysical (negative) so e(E, L) and p(FE, L)
are a-priori ambiguous [this is equivalent to the ambiguity in x(¢) or x(7)]. However, it
is convenient to still impose the extra condition imposed by r; which fixes the relations
e(E, L) and p(E, L) to be as they are in the bound-orbit case:

(p—2)2—462 2 _ p2M2

E? = ==
plp—3—e?)’ p—3—¢?

(2.21)
To invert these relations we need to solve cubic equations, and the result is cumbersome.
However, it is relatively simple to express {e, p} in terms of {L,r,} or {E,r,} [where r,

itself can be obtained from (E, L) using the expression in Eqs. (2.14)]:

L2ry = 2Mr2 + \[LA(r} + 4Mr, — 12M?) — 16M>L?1

= 2.2
’ 2M (L2 + 12) ) (2.22)
or
o _ V(B = 1) + 2M][(ry + 2M)*(r, (B? — 1) + 2M) — 165> M?r,)
2E2Mr,
r2(E* — 1) 4+ 4M?
4 ) (2.23)

oE?Mr,
with p = (r,/M)(1 + e).

Once {e, p} are fixed in terms of {F, L}, the relation between x and ¢ is also fixed, and

it as in the bound-orbit case:

(2.24)

- p—6—2ecosy’

dt  idr Mp? (p —2)* —4e?
dxy 7dxy (p—2—2ecosy)(1+ ecosy)?

Here we have used Eqgs. (2.1)—(2.3) and then substituted from (2.17) and (2.21).
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2.4 Scatter angle

An expression ¢(x) along the orbits can be found by integrating

do _pdr _ P (2.25)
dy 7dy p—6—2ecosx’ ’

where we have used Egs. (2.1)—(2.3) and then substituted from (2.17) and (2.21). This

equation has an explicit integral in terms of an Elliptic function:

p(x) = ¢(0) + k\/p/eEl (g —k:Q), (2.26)

and El; is the incomplete elliptic integral of the first kind:

where

)
Eli(p; k) = / (1 — ksin® )~ 2da. (2.28)
0

From Eq. (2.2) we see that ¢ — 0 for r — 00, so ¢ — const for x — £x0. Let i and
©Yout be the asymptotic values of ¢ for x — —xoo and x — Xoo, respectively. Eq. (2.26)

shows that the difference between them is given by

Ap = Qout — Pin = k\/ﬂ [Ell (%, _k2> — El <_X?°O; _kQ)}

= 2k+\/p/e Ely (%‘) —k2> . (2.29)

We define the scatter angle as
dp:=Ap — . (2.30)

A graphical represtentation of the scatter angle is shown in Figure 2.1.

2.5 Post-Minkowskian expansion

Consider an orbit that lives entirely in the weak-field zone, i.e. for which r, ~ b > M.
We want to obtain dp as an expansion in powers of M/b at fixed E. Since FE and b are
“invariant” parameters, this should facilitate comparison with other PM calculations
(such as Gralla & Lobo [83]).

To this end, we first expand r,. We can use the relation L = bu, in Egs. (2.14) and
expand in M /b to give the result

M (1—40%\ M? 4\ M3 M*
n=t-g(faee) 5 () w oo () e

[e.9]
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We can use this in Eq. (2.22) and re-expand in M /b to get

b 11EY —20E2 +8\ M M3

2

_ _ &M el 2.32
e="v ( N >b+(9( >, (2.32)

which also gives

T 1 M (17E*-30E? +12\ M? M\°
Xoo = arccos(—1/e) = 2+v2b+< 306 >b3+0<b) . (2.33)

Next, we use p = r,(1 + e) /M with the expansions (2.31) and (2.32) to obtain

b2 4 M2
_ .2 Y | = e
P=Voqpm (E2 8>+(’)<b> . (2.34)

Note that p o< b% at large b and that p and e have, respectively, even and odd expansions
in M/b.

Combining (2.32) and (2.34) in Eq. (2.27) gives

M M 23F* — 282 M? 1E4 —68E2 + 10\ M3 M\*
. [2+2+<3 8 +6) <6 68 +o)+0< |

b b 203 E4 b2 203 E* b3 b
(2.35)
Finally, we put all these expansions into
0p =2k+/p/e Ell(%;—kQ) — . (2.36)

We can choose to expand the Elliptic functions in its index —k? about k = 0 or in its
argument, Xoo/2, about 7/4. Both methods should give the same result. If we use the

general formula
1 . 3 . ) 2
Ely (m, /1) =z + §[2x —sin(2x)]k + 2—56[12x — 8sin(2z) + sin(4x)|x

+ 30%[601: — 45sin(2z) + 9sin(4z) — sin(6z)]k> + O(k?), (2.37)

to expand about k = 0 with x = x/2 and x = —k?, we obtain

o 1 1 , 3 . .
El (2555 k) = Jxo0 = 5 (Yoo — 10 Xo0) k? + 222 [6Xo0 — 85in Yoo + sin(2xcc )

30X 00 — 45510 Yoo + 95IN(2X00) — SiN(3X00))]E® + O(K®).
(2.38)

B 3072[
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Substituting this in (2.36) and using the expansions for k, p, e and oo, gives

5¢—<2(2E2_1)> M <37r(5E2—1)> 2

uZ, b 4u2, b2
2(64E5 — 120E* 4+ 60E? — 5)\ M3 M\*
—+ O = 2.39
+ < 3ub, Ea b )’ (2:39)

or

5¢:<M) %_1_ <37T(4+U<2>o)> M2

vZ, b 42, b2
2(508, + 4504 + 1502, — 1)\ M3 M\*
—+0(=—) . 2.40
* < 308, T b (2:40)

Alternatively, we can use the expansion about Yoo /2 = /4 which is given by

Xoo o U (Xoo — 7/2) kz(Xoo - 77/2)2
el (X2, —12) = (T -#%) + o B[ S s
F (oo — 7/2)°

ot e T O T/ (2.41)

_l’_

and again we can substitute in (2.36) and use the expansions for k, p, e and Xo. When

we do this we again arrive at Eq. (2.40).
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Chapter 3

Conservative self-force correction

to the scatter angle

In this chapter we calculate the motion of a particle on a scatter orbit around a
Schwarzschild black hole using first-order self-force expansions of the orbital parame-
ters, considering only conservative effects. The zeroth-order results are geodesic motion
as detailed in Chapter 2. We show two separate derivations of formulae for the con-
servative self-force correction to the scatter angle, both of which involve integrals of
the temporal and azimuthal self-force components along the orbit. Post-Minkowsian

expansions of the formulae reproduce the results of Gralla & Lobo for a scalar field [83].

3.1 Self-forced equations of motion

Consider endowing the particle with a small charge q. The particle experiences a self-
force, whose conservative piece we denote unkF,, where y is the particle’s mass and F,
is the corresponding self-acceleration per 1 := ¢?/(uM). Note that in the gravitational
case ¢ = p hence 1 becomes the usual mass ratio n = u/M. If we assume that n < 1
then we can perform a perturbative expansion using n for order counting. Our goal is

to calculate the resulting change in d¢, for fixed {vo, b}, to order O(n).

The equation of motion is now

L = nky, (3.2)
g LoV (3.3)
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where E(7) := —u; and L(7) := u, are now functions along the orbit. The conservative

self-force components have the symmetry relations

Fy(r,7) = —Fy(r,—7), Fo(r,7) = —Fu(r,—7), FE.(r,7) = F.(r,—7). (3.4)

Given the self-force, Egs. (3.1) and (3.2) can be integrated immediately to give

E(1) = Ex +nAE(T), L(1) = Lo +nAL(T), (3.5)
where
Fa = E(r — —00) = —— Loo i= L(1 — —00) L (3.6)
o = E(T —00) = ) oo -= LAT —0) = ) :
V1—v V1-vZ
and - r
AE(T) = —/ F,dr, AL(T) := / F,dr. (3.7)
3.2 Self-force correction to 7,
We write
rp = Runin + 17", (3.8)

where 777";()1) is the self-force perturbation of r, defined for fixed {E, Loo} (or, equiva-

lently, fixed {veo, b}). More precisely,

Runin = 1im 7(vo0, b, ),
or
O . P
Ty 71712%) o (3.9)

where the limit is taken with fixed {vs,b}. Beware that taking the limit while fixing

any other set of parameters (e.g., {e,p}) will generally give a different rz(,l). From Eq.

(2.14) we have the geodesic limit

6 M
Rpin = ) 3.10
M1 - 2¢sin (£ - ¢) (3-10)
with ¢ and & given in Egs. (2.15).
To obtain r;,(,l), we note the normalisation equation u,u® = —1 still holds for the per-

turbed orbits, and from it we get

i = ++/E(1)2 — V(r; L(1)), (3.11)
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where V' is the same function as in Eq. (2.4). At the periastron we have
E(r(rp))* =V (rp, L(7(1))). (3.12)

The linear perturbation of this equation with respect to 7 is

oV (r,L)

W 4 oV (r,L)
or

2B AE, = K o7

ALy, (3.13)
0

where the partial derivatives are evaluated at (r, L) = (Rmin, Lo), and

T(Rmin)
AE, = AE(T(Rum)) = — / F,dr, (3.14)
T(Rmin)
AL, := AL(T(Rmin)):/ F,dr. (3.15)

Solving Eq. (3.13) for rl(,l) gives

1) _ Ruin(Rmin — 2M)Loo AL, — R}

r ( min

P L2 (Rpmin — 3M) — M R?

min

ExAE,

(3.16)

3.3 Self-force correction to p and ¢

We represent the SF-perturbed radial motion again using the form (2.17) such that Eqgs.
(2.18) and (2.19) are still valid. By virtue of the normalisation (3.11), Eq. (2.19) implies

Mp
E}=V|(——,L 1
D 4 <1 + 67 p) ) (3 7)
which gives one relation between the perturbed {p,e} and {E,,L,}, where E, :=

E(7(rp)) = Ex +nAE, and similarly for L,. As a second relation we choose
Mp
2 _

which resembles the choice made in the geodesic case (replacing £ — E, and L —
L,), and guarantees that the resulting {e,p} are O(n) perturbations of their geodesic
counterparts. Since the perturbed {e, p} are now related to { E, Lo} exactly as {e,p}
are related to {E, L} in the geodesic case, the former relations are described by Eq.
(2.21) with E — E, and L — L;:

2 (p—2)° —4¢? 2 p*M?

g TR 2=_£= 3.19
Poplp—3—e2)’ Pp—3—e¢? (8.19)

We now write
e=e® 4 pel), p=p® +npW, (3.20)
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where the perturbation is defined for fixed {Fs, Loo}. The perturbations e(V) and p(!)
are determined by varying Egs. (3.19) with respect to n at fixed {Foo, Lo }:

—92)2 _ 4¢2 —2)2 — 4¢?
2B AE, = 2 (09);) 042 (M) o),
Op \p(p—3—¢€*) ) |0 ) de \p(p—3—¢€*) ) |0 c0)
(3.21)
2M2 2M2
2L ALy = 2 (PZ> oy 2 <P2> {D. (3.2)
Op \p—3—¢*) |0 c0) de \p—3—e*) |0 c0)
Solving simultaneously for e and p(*) we obtain
pd) = 2p=3-¢) [(p= 4)2L AL, — p’E- AE (3.23)
(p—6)2 —4e2 | pM2 TP i :
2 2 2
W pe3- (@ Dp-p-0 44,
’ e[(p—6>2—4e2][ P20 Bl t PP =07 2B RS |
(3.24)
where here we have dropped the superscripts ‘(0)’ off e and p to reduce clutter.
3.4 Self-force correction to dp: Method I
For the perturbed orbit we have

dy  Fdx  r(0)2VEX)? - V(r(x), L) (1 +ecosx)?

where r(x) = Mp/(1 + ecos x), and we now think of F and L as function of y instead

of 7. It is convenient to write

E(x) = Bo+nAE(x) = E,+n(AE(x) — ALy),

L(x) = Lo +nAL(X) = Lp +1(AL(x) = ALp). (3.26)
If we substitute this in (3.25), expand in 7, and then use Eq. (3.19) to replace {E,, Ly}
with {e,p}, we find that the O(n") term has the same form as in the geodesic case,

Eq. (2.25). But there is now an O(n) correction coming from the O(n) term in (3.26).
Altogether we have

dp _ P
dx p—6—2ecosy

+nfe(x;p.e) (AE(x) — AEy) +nfr(x;p,e) (AL(x) — ALy) /M, (3.27)
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where here, and henceforth, e and p take their geodesic values and

pVp =3 —/(p —2)? —4e?
e2sin? x (p — 6 — 2ecos x)3/2 '
Vp—3—¢[e?(p—6)+p—2+2e(p—3—e?)cosy]

= . 3.28
Ju VP e?sin? x (p — 6 — 2e cos x)3/2 (3:28)

fe =

The total accumulated phase is

Xoo d
Ap = Yout — Pin = / djdx
—Xoo X

— 2k+/p/e E|1(%’°; —k;2)
X oo X , , ] Xoo X / /
—n Je(X) ; Fy(X')Tyrdx'dx + i fr(x) ; Fyo(X')medx dx
e

oo
= 2k+/p/e EI1<%; - 2)
Xoo

X Xoo X
—2n fe(x) / Ft(X/)Tx’dX,dX‘FQ% / fr(x) / Fo(X')ryedx dx,
0 0 0 0
(3.29)

where we have recalled Egs. (2.29) and (3.7), and where the Jacobian 7, := d7/dx can
be evaluated along the background geodesic:
Mp\/p(p — 3 —¢?)

= . 3.30
x (1+ecosx)?y/p—6—2ecosx (3:30)

The equality between the 2nd and 3rd lines of (3.29) follows from F,,(—x) = —F,(x) for
a=t,p [ctf. Egs. (3.4)].

We write the perturbed deflection angle do = Ap — 7 as
5o =600 4+ o), (3.31)

where the split between background and perturbation is, as always, defined with fixed
{E~, L }. The background value is

50 = 2k+\/pJe Ely (’%’" —kQ)

-, (3.32)
(p0),0)

where we recall that & and xo also depend on p and e [recall Egs. (2.27) and (2.18)].
The self-force perturbation is obtained by taking the linear perturbation of (3.29) with
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respect to n at fixed {Foo, Loo }:

Xoo X X oo
-2 ; fe(x )/0 Fy(x ) /dx dx—i—— fr(x / F TX/dX dx,
(3.33)

where all e, p, k, xoo are to take their geodesic values.

In the first line of Eq. (3.33) the coefficients of p(!) and e(!) can be written in terms of

incomplete elliptic integrals of the 1st and 2nd kinds, using the identities

OBl (g3 k) _ 1 (3.34)
dp V1= ksinZo
OEl1(p; k) 1 k cos o sin
= — (k= 1)El — El .
ok 2k(k —1) \/m (k JEl1 (e, k) 2(0, k)| (3.35)
where B
Ely(¢; k) :/ (1 — ksin®z)'/2du, (3.36)
0

is the incomplete elliptic integral of the second kind. Substituting for p*) and e from
Egs. (3.23) and (3.24), the first line of (3.33) then takes the form

ap(e,p)ExAE, + ar(e,p)LooAL,/M?, (3.37)

where, we find

2(p —3 - e*)p?
= T a6 3| PO 6+2e)E|1(7 _k2)
+(p? — 12p + 126 +36)E|2(7 —k2>
16e* — (p — 6)%(p — 4) + 4e?(p? — 11p + 24)
V(e =1)(p—4)(p —2¢ - 6) ’
(3.38)
0 = 2(p -3 —¢*)
LT — 6+ 20)2(p— 6 — 232
[(p —6+2¢) [(p—2)(p— 6) + *(p® — 8p+ 24) — 4¢*] Ely (’%’O —kQ)
-0 =2 -6 = Pp— 27— 24) + 4 (0~ )] B (7 4?)
+ \/W [—(p—2)(p — 6)* — 2¢*(p — 4)(p + 6) + 8¢"] (3.39)
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The second line of Eq. (3.33) involves double integrals of the self-force, which would
make evaluation inconvenient. We can do away with this using integration by parts. For

example, defining the functions

X X
.rE<x>:=L/’ fEO¢)dy, Ji(x)vzt/m FL0¢)dX (3.40)
Xoo X oo
we have
Xoo X ! / X / / xee Xeo ! ! /
OQMMAEWWWWZGMMABWMW> - [ RO ROy
0
. X ! ! Xoo ! / !
= — lim fE(X)/ Fi(x )TX/dX — Fr(x')Fi(x )TX/dX .
X—)D 0 0

(3.41)

Here we note that the limit y — 0 evaluates to zero: For y < 1 we have fr ~ 1/x? and
therefore Fg ~ 1/x, but on the other hand F; ~ x (with 7, a smooth function of x),
SO fox Fy(xX')1ydx' vanishes at least as ~ x2. Similar considerations apply to the second

integral in the second line of (3.33), which therefore gives

Xoo

X oo X
; fr(x) /0 Fo(x')ryedx'dx = — i FLX)Fo(xX)myrdx'. (3.42)

Collecting the above results, we can write Eq. (3.33) in the form

580(1) = OéE(eap)EooAEp + aL(evp)LOO/M2ALp

+2 /0 T FR OG0 — FLOOFo(x0)/M] mydy, (3.43)

or, recalling Egs. (3.14) and (3.15),

wngmwmnMM—%uwmm&m, (3.44)

where

Ge(x) =2Fe(X) + apEs,  Gr(x) = 2FL(x)/M + apLoo/M>. (3.45)

The functions Fg(x) and Fr(x), defined in Egs. (3.40), can be written explicitly in
terms of incomplete Elliptic functions of the first and second kind. However, these are
cumbersome and we found it more practical to evaluate them numerically. The constants
ap and oy, are given in Egs. (3.38) and (3.39) explicitly in terms of incomplete Elliptic

integrals.
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3.5 Self-force correction to dp: Method II

In the second method we avoid {e,p} and parametrise directly in terms of {Foo, Loo}
(or, equivalently, {voo,b}). Integrations are done with respect to r instead of x. The

derivation is somewhat simpler but the final result seems to be of comparable complexity.

For the geodesic orbit, the scatter angle is
0) . > H(r)
dpV) =2 (p/r)dr —m =2 ————dr —m, (3.46)
Rmin Rmin r—= len

with
H(r):=H(r;E,L) =

: (3.47)

V(E?2 = Dr(r —ri)(r —r3)
where we have used the relation (2.13). Recall that 7,, r1, and r3 are roots of 7 = 0
given in Eqs. (2.14). In this section we evaluate all radial integrals on the outbound leg
of the orbit, i.e. with # > 0. For the SF-perturbed orbit, Eq. (3.46) still applies, but
with E, L, rp, r1 and r3 all becoming slow functions of r along the orbit: E — E(r),
L — L(r), rp = 7p(E(r), L(r)) and 71 3 — 71,3(E(r), L(r)). We use 7, to distinguish this
function-along-the-orbit with the constant SF-perturbed value of the periastron distance
calculated in Section 3.2, 7, = Ruyin + m”](yl). We have the relation r, = 7,(E(r}), L(1p)).

To obtain the perturbation dp(!) we need to vary the integral in (3.46) with respect to
7 at fixed {Fwo, Lo }, and for this we need to evaluate the derivative of the integral with
respect to E(r), L(r), r, and 3. Varying with respect to r, is subtle, because of the
singularity at the turning point. To overcome this complication, we first integrate by

parts:

* H(r) dr
Sp =4\/r — T H(r —4 \/r— —Ldr — .
<p /r. Tp mln /mln mln \/ T‘ - Tp dr 7T
(3.48)

The function H(r) is bounded at r = Ruyin, and falls off like r3/2 at infinity, so the
surface terms in Eq. (3.48) vanish. We are left with

o __(0H OHF(r) _ OH F,(r)
= 4/mm Al Tp<ar 8E . +778L - dr

T T

aTth Uy ) ‘i’” . (3.49)

2
+ n/lmn\/r—rp< oL

where 0, is taken with fixed {FE, L}, O is taken with fixed {r, L}, and 0y, it taken with
fixed {r, E}. We have used dE/dr = ndAE/dr = —nF;/7 and dL/dr = ndAL/dr =

nE, /7. The geodesic limit of this expression is

o0 H,
0 = —4/ /" = Runin 8(%0 dr — m, (3.50)

Rmin
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where Hy := H(r, Ex, Loo) and Ruin(Eoso, L) is the geodesic relation for 7, given in
Eq. (2.14). It can be checked that this gives the same geodesic scatter angle as the
expression (3.32).

Varying 0 in Eq. (3.49) with respect to n at fixed { Fso, Loo} We obtain

o 1 OHy ( ORm; OR.:
() _ 0 (ORuin i
" Ruin VT — Biin 07 <8E () + 5 AL ) dr
6 HO 82H0
_4 m1n AL d
/mm \/7 (8 8E ( ) + arraLoo (T)> r
Hy Fy(r H, F,
o[ R (PR 0GB
= HO 8Rmin 8Rmin dr
? - F Fo ) —- 51
! /Rmin r *Rmin < 6Eoo a aLoo <p> 7 (3 i) )

The first two lines here involve double integrals of the self-force. These can be turned

into single integrals using integration by parts. For instance,

[e.e]

o0 1 9H,
Rmin v r—= Rmin ar

o0 1 OHy
AE(r)dr = ==
(r) " < Rmin T, - len ar, Rmin

- /OO " L oHy, )\ (_FY,
mll’] mln v mln ar 7:‘ T.

1 o F
2/ Gy( tdr (3.52)

dr/> AE

where
r 1 0Hy

Rmin V r’— Rmin or’

The surface terms in (3.52) both vanish: For r — Ry, AE is bounded, as is %, SO
3/2

Gr(r) =2 dr'. (3.53)

the term goes like ~ (1 — Rpin) — 0. For r — oo, the conservative SF for bound
motion behaves as Fy ~ 1/r% hence we expect that unbound orbits should fall off as at
least Fy ~ 1/r%2. This means that for the slowest fall-off AE(r) ~ rF; ~ 1/r, so the

surface term vanishes like 1/7 at least.

Similarly, for the first term in the second line of (3.51) we write

82H0 0? Ho >
/mm VT mma 6E d’l”— (/mm VT mm ’8E >AE(T)R A
o 82H0 , F,
/mll] </ mln mln /aE > <_,f‘> dr.

(3.54)
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The surface term again vanishes. In the remaining term we apply another integration

by parts:
OHy ., _ OHy 1
/ . Ruin gy’ = V7= Ry = G0, (3.55)
where , ) oH
Gp(r) =2 O dr'. (3.56)

Rmin V r— Rmin 8-Eoo

Equation (3.54) then becomes

92H 0 OH, 1 F

8 aE Rmin

Similarly, we can write

0?2 Ho B o0 —0Hy 1 Fy
/ \/7““8 oL rydr = —/ <\/r—RmmaLm 4GL(7“)> - dr,

Rmin Rmin
(3.58)
with . . -
0 4
=2 . .
GL(T) R maLoo dr (3 59)
With these substitutions, Eq. (3.51) becomes
RO 5 d
5o = [ [G)Fr) - Gur)Fotr)] (3.60
Ruin
where
5 . 2H0('f‘> 8Rmin
Gu(r) =Ge(r) + (Gilr) - 2L ) O (3.61)
> _ 2HO(T) O Rmin
Gr(r) =Gr(r) + <Gr(7“) - = Rmin> oL (3.62)

It should be possible to confirm that this expression is equivalent to Eq. (3.44). Note,
however, that we can not expect the corresponding G coefficients in the integrand to be in
agreement: Gp(r(x)) # Ge(x) and Gr(r(x)) # Gr(x). That’s because Eq. (3.60) differs
from Eq. (3.44) by some surface terms that are only zero if the self-force satisfies certain
vanishing conditions at the integration’s boundaries. However, the integrals should be
equal, assuming the self-force satisfies these conditions. In the next section we perform
a post-Minkowkian expansion on Egs. (3.44) and (3.60) to confirm that the formulae

agree in the large-b limit.
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3.6 Post-Minkowskian expansion

We derive here expressions for 6o() (in terms of the conservative self-force) through the
first subleading order in a PM (M/b) expansion for both Egs. (3.44) and (3.60). This
allows us to compare the formulae and confirm that they produce the same results in

the large-b limit. In this section we replace vy, with v for brevity.

3.6.1 Jo": Method I
First, we copy relevant results from Section 2.5, restricted to first subleading order:

M
ry = b——+0(b—1),

b
= 2
e = M—i—O(b b,
p = v° 2 +O(b"),
M
Xoo = gt +O07),
M M
k= ,/? [2 +25- O(b‘Q)] . (3.63)
Expansions for Ely (— —k‘z) and Ely (’%"7 —kz) can now be obtained using the expan-
sion formulae (2.37) or (2.41), and the equivalent formulae for El;. We get
T, M oo 2 MR e 3
EI1( =k ) T o (2 2]+ s [ — 8 — 8]+ 0(7Y),
Xoo, 42\ _T M _ 2 ﬂ _ 2 -3
Elo (5% —#7) = T+ oz [(m = 2002 +2] + T [(57 — 8)0 + 8] + O(677).

(3.64)

Here we keep subsubleading terms, as it turns out they are needed for a subleading-order

calculation of ag and «ap, due to a cancellation of the leading-order terms.

Using these expansions we obtain

2 6M _9
Ge(x) = -2 ©© tx + QEbCSCX+O(b ),
2 2M (v? + 2) 3
Gr(x) —@cotx—wcscx+0(b ), (3.65)
and )
—_ 2 _
Tx = g SeC X + == 3 5¢C x(v? = 2sec® x) + O™ 1Y), (3.66)
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and substituting into (3.44) then gives

Xoo [ 2b M _
s :/O L?’EQ t 5 (v? cos(2x) + Tv? — 4)sec x + O(b 1)] csc x sec x Fy(x) dx

[ 2 oM ,
—75 T 5757, N F, . .
—i—/o |:1)2E2 + 257 (secx + cosx) + O(b )} csc xsec xFo(x)dx.  (3.67)

The leading PM term is

4 7T/2 )
(54,0%)1\/[ = 1}2EZ/0 [(b/v)F; 4+ F,| dx/ sin(2x). (3.68)

Here care must be taken near the integration boundaries because of the ‘0/0 singularities

there. Recall F; ~ x for x = 0 and F; ~ 7/2 — x for x — 7/2, and similarly for F,.

3.6.2 Jp: Method II
Using the expansions for e and p and Egs. (2.19) and (2.20), we obtain

M
o= b——5+ om™,

M ,
T = —b — ’1)72 + O(b ),
8M3 4
rg = 2M+ +00b™%). (3.69)

From b = L/v/ E? — 1 then also follows, at leading order,

ORwin  OB(E,L) b

OE  OE B v2E’

ORmn OWE.L) 1

oL ~ oL  _ oE (3:70)

Since for b > M we have r > 1, ~ —r; ~ b > r3, the function Hy(r) takes the

leading-order form
b

Hy = .
0r7“+b

(3.71)
The integral G, (r) becomes

" 1 OH 1 [r?+br —2b°
OHo pr_ 1 L—i—arctan (r/b)2 =1, (3.72)

Gy =2 [ ———
M=2) o T | e
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and using (3.70) we also obtain the leading-order integrals

[T 1 9Hy,, 1
Culr) = 2/b 3 0E " T T wE

r—+

—b
Lb + arctan /(r/b)? — 1] ,

" 1 O0Hy ., 1 r—b
_ 5 _ 221, @3
Gr(r) /b N dr o " + arctan /(r/b) ] (3.73)
Finally, at leading order,
r=vE\/1—(b/r)2. (3.74)
Putting everything together in Eq. (3.61) we find
- 2b ~ 2
g = P g = — T 375
P vV2EVr? —b? g vEVT? — b2 (8.75)
and substituting in Eq. (3.60) finally gives
Qo 2 o0 rdr
0popy = B2 /b [(b/v)F; + F] o (3.76)

It can be checked that Eqs. (3.68) and (3.76) are in agreement. To see this, note the

leading-order relations

b . dx b
CosX =, siny = /1 —b?/r2, g Sk (3.77)

leading to

2dx rdr
sin(2y) 72— b2’ (3.78)

3.6.3 Comparison with Gralla & Lobo [83] for a scalar field

Gralla & Lobo (GL) [83] consider a scalar charge ¢ with mass p moving in a straight line
in flat space. In Cartesian coordinates (t,z,y, z), the straight line is x* = (¢, b,0, z(t)),
where z = vt = /2 — b2. The four-velocity is u* = E(1,0,0,v), where E = (1—v?)"1/2,
The charge now moves in the gravitational field of a mass M located at the centre of
coordinates (z = y = z = 0). There is a “small charge” assumption ¢?/(ub) < 1 and a
“weak-field” assumption M/(bv?) < 1.

To keep with our conventions established in the first paragraph of Section 3.1 we write
the self-force as unF,, with n = ¢?/(uM), such that F, is the self-acceleration per p.
GL obtain the leading PM term of the full (dissipative and conservative) scalar-field
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self-acceleration experienced by the particle:

2M
Fx = *fA?),
F, = 0,
2M
Fz = —f(EQ'UAl + AQ),
F, = uF, (3.79)

where )
_ Mub (2r2v3 — rz(1 + 30v?) — (v — 3)vz?)

As = 2r(r —vz)d

(3.80)

Expressions for A; and Ag are given in Egs. (39) and (40) of GL, but will not be needed

here. From this we obtain

2M 2M
F = ""2(E%A + 4y), F,= S (2 A3 — bE*0A; — bAy), (3.81)
(the latter with the help of g—i = —% and 8—‘5 = -%), and from this, in turn,
2M
F = (b/v)Fi + F, = =24, (3.82)

[c.f. the integrand of Eq. (3.60)]. The conservative piece Feons(z) = 1 [F(z) — F(—2)] is
given by

2M2bv22 (7’61)2 + 7t (101}4 — &2 — 1) 22 + 5r2yp? (v4 — 4% + 2) 24 4t (7 — 41}2) 26)

cons —

E (r2 — v222)°
(3.83)

We express Feons as a function of r only using z = v/r2 — b2, and then substitute in our
leading-PM formula (3.76). The integral can be evaluated analytically, and the result is

T (M\?
5<PSP)M =73 (b) ) (3.84)

in complete agreement with Eq. (2) of GL.

This agreement between the PM expansions of Egs. (3.44) and (3.60) with GL provides
a robust check of both formulae. In the rest of the thesis we focus on producing self-
force data needed to calculate the correction to the scatter angle for strong-field scatter

orbits.



43

Chapter 4

Time-domain code development:
Scalar field

In the last chapter we determined the components required to calculate the first-order
conservative correction to the scatter angle. Here we start to develop the computational
infrastructure that would enable the calculation of the self-force components required
for the correction to the scatter angle. The feasibility of the proposed 141D method
is tested with a scalar-field toy model. We consider the vacuum case followed by a

point-particle on circular and hyperbolic orbits.

4.1 Multipole decomposition

The equation for a scalar field ¥ in a vacuum spacetime with metric g, is given by

1
V.,V = ——09, (v/—g 0*¥) =0, 4.1
where g is the determinant of g,,. The scalar field can be modally decomposed by

expanding in terms of spherical harmonics Yy, such that

9] l
U= 3 it ) Vin(0, ) (42)
=0 m=—4

We can show that in Schwarzschild spacetimes the radial and angular parts of the modal

decomposition separate. The angular part reduces to Yy, hence we can write

1 2M 1 /2M
bt Lo B - S (B e ) o) Ym0 =0, @3

where the ¢m subscripts on the field have been dropped for brevity. We can write

this in a simpler form using the null coordinates u = t — r, and v = t + r, where
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r« =7+ 2M In[r/(2M) — 1] is the tortoise coordinate. Rewriting Eq. (4.3) gives a wave

equation of the form

v+ V(r) =0, (4.4)
where oM
V(r):= 4% (r + (0 + 1)) : (4.5)

Our convention is that when acting on a function of v and v, 9, and 9, are always taken

with fixed v and fixed u, respectively.

4.2 Vacuum implementation

Our numerical implementation is a simple finite-difference solver based on 1+1D char-
acteristic evolution in u,v coordinates. The numerical domain is depicted in Fig. 4.1.
We use a fixed characteristic mesh, with uniform grid-cell dimensions h x h, where h is a
small fraction of M (typically ~ M /10 to ~ M /100 in our test runs). Characteristic ini-
tial data are set on two initial rays u = up and v = vy (see the figure). Specifically, we use
an artificial seed of a narrow Gaussian centred on the initial apex (uo,vo) = (0,0). The
data is evolved using a finite-difference version of Eq. (4.4) that has a local discretisation
error of O(h%), leading to a quadratic convergence globally (i.e., the accumulated error
scales like h?). A detailed description of our scheme is provided in Appendix C.1. Our
code takes as input the modal numbers ¢, m, as well as a range of numerical parameters

such as h and the coordinate ranges, and returns the scalar field modes g, (¢, 7).

Since our characteristic numerical domain has no timelike boundaries, there is no need
to impose boundary conditions, and no way to actively control violations away from
the desired retarded solution. This is not a problem when all “nonphysical” vacuum
solutions of the field equation decay at late time, but can become a problem when
there exist nonphysical solutions that fail to decay, or worse, grow at late time. One
purpose of this vacuum calculation is to check there are no nonphysical modes which

could contaminate future calculations.

Figure 4.2 demonstrates the behaviour of the vacuum scalar field )y, for various ¢, m
modes. The early time behaviour is reminiscent of the initial conditions. The next region
is the typical quasi normal mode decay of perturbed black hole spacetimes. These quasi
normal modes decay exponentially to leave a late time behaviour where the field falls
off as t7273 [90,91]. This behaviour is exactly as expected hence we can conclude that

future implementations will not contain non-decaying nonphysical vacuum solutions.
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F1GURE 4.1: Sketch of the 141D characteristic grid used in our vacuum numerical
evolution of the scalar field g, (¢, ) outside a Schwarzschild black hole. The grid lines
are uniformly spaced in Eddington-Finlkelstein coordinates w,v. Initial conditions are
set on the rays u = ug and v = vg. The evolution proceeds along successive u = const
rays.
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FIGURE 4.2: A plot of the vacuum scalar field vy, for various (¢,m) modes. The data
shown is taken along a slice of constant 7, = 0. The dashed lines (cons x =3 and
cons x t~%) represent the expected decay rate of the £ = 0, 1 tails (respectively) and are
shown for reference. The (2,0) data becomes dominated by numerical round-off error
before the late-time tail appears.
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4.3 Point-particle source

If we introduce a point-particle source Sy then the scalar field equation takes the form

1 o0
—0 —g0°V) = —47rq/ — ! —ah(7)) dr =: Sy, (4.6)
(v "Lt ape)
where ¢ is the scalar charge of the particle, 2}, (7) := (t,(7), R(7),0,(7), op(7)) is the
particle’s worldline, 7 is proper time and ¢4 is the four dimensional Dirac delta function

[92]. We can expand the source using the relation
0 (9 -0 ) (P SOP Z Yém Yém epa @p)v (47)

and g = —r*sin? 0 to give

:—47qu / (t — (1) 8 (r ~ R(7)) 5 Yim (0, 0)Tim (6y(7), () . (4.8)

We can evaluate the integral using the relation dr = dt dr/dt = dtfr(7)/E where
fr(1):=1—2M/R(7). This gives the result

So(r) = =) 5 (1~ R S Vom0, im0 (7). (49
2

The scalar field can be expanded in terms of spherical harmonics such that

00 l
Z Z Vo (&, 7) Yo (0, ©). (4.10)
=0 m=—

Note the extra factor of 2mq relative to Eq. (4.2). We can utilise the orthogonality of
the spherical harmonics to remove the angular dependence of the equation to give the

result
&
2FER

This is the form of the scalar field equation that we will implement in the following

Vo + Vip =

8 (r = R) Yem(0p, #p)- (4.11)

sections.

In our point-particle implementations the domain gets split into two vacuum regions S<
and 8~ which are defined by r < R(t) and r > R(t) respectively. The boundary between
these regions is the 1D surface & which corresponds to the worldine of the particle (i.e.
r = R(t)). Figures 4.3 and 4.5 show the locations of S and S< within the numerical grid

for circular and scatter orbits respectively.
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4.4 Circular-orbit implementation

First we consider the simple bound case of a point-particle on an equatorial circular
orbit. This simplifies the problem by restricting the orbital parameters such that xf =
(t, R,m/2,0t) where R is the (constant) radius and  := /M/R3 is the orbital angular
velocity. In fact, we can remove all the time dependence when considering only the static
(m = 0) modes using the relation Yo(6p, ¢p) = Yio(6p,0). In this case we can obtain
analytic solutions for Eq. (4.11) using Legendre polynomials of the first and second

kinds, denoted P, and )y respectively. The solution can be written as
b= ArP, (p) ©(r — R) + BrQy (p) O(R — ), (4.12)

where © is the Heaviside step function, p := (r — M)/M and A, B are constants to be
determined. This form comes from the behaviour of each term in the asymptotic limits.
rPy(p) diverges at radial infinity but is finite at the horizon. Similarly, 7Q(p) diverges
at the horizon but is finite at radial infinity. The use of the Heaviside theta functions

ensures that we obtain the physically relevant finite solutions.

We can determine the values of the constants by substituting Eq. (4.12) into the field
equation (4.11) and comparing coefficients of the Heaviside and Dirac delta functions,
which gives

ARPy (pr) = BRQ (pr) = 0, (4.13)

(AP () = BrQu (o), | = —¥io(n/2,0). (4.14)

Solving these equations gives the analytical solution as

Qe (pr) Pr(p) O(r — R) + Py (pr) Qi (p) O(R — 1)
Py, (pr) Qe (pr) — Pr(pr) Qur (PR) '

Yuo = —%Yéo(ﬂ/lo) (4.15)

The non-static, m # 0, modes do not have known analytic solutions. For these, we
implement a numerical method to solve the scalar field equation (4.11) sourced by a
circular equatorial orbit. The basis of the numerical method is an extension of the
vacuum implementation detailed in Section 4.2. Here we choose the initial apex of the
grid (u,v) = (up,vp) to correspond to the point (t,7) = (0, R). This ensures that the
particle passes directly through the cells centred on r = R and does not pass through any
other cells, henceforth known as vacuum cells, as shown in Figure 4.3. The characteristic
initial conditions are set such that 1 (u,vg) = ¥(ug,v) = 0 (i.e. all field values along
the initial rays are zero) and the evolution is purely sourced by the source of the field
equation. Our finite-difference scheme (detailed in Appendix C.2.1) has global quadratic
convergence. The code has inputs of the orbital radius R, modal numbers ¢, m (plus

various numerical parameters) and returns the scalar field modes 1y, (¢,7). We have
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produced two identical implementations, one in Mathematica and another in C++, to

enable cross-checks.

FIGURE 4.3: Sketch of the 1+1D characteristic grid used in our circular orbit numerical
evolution of the scalar field s, (t,7) outside a Schwarzschild black hole. The grid is
centred along the worldline S corresponding to r = R (dashed). S 2 are the vacuum
regions of the numerical domain with » 2 R.

Figure 4.4 shows the behaviour of the field vy, along the particle’s worldline, chosen
to be at r, = 9M. Early time results are dominated by junk radiation from non-
physical initial conditions. This radiation behaves in the same way as the compact
vacuum perturbations discussed previously hence we expect a t=2(=3 decay. The late-
time behaviour of the field approaches the true solution. This is explicitly shown for the

static modes in Figure 4.4 where the numerical data tends to the analytic solutions.
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FIGURE 4.4: A plot of the scalar field 1y, for the circular orbit case showing various
(¢,m) modes. The data shown is taken along the particle’s wordline at constant r, =
9M. Dashed lines represent the analytic solutions of the static modes as determined
by Eq. (4.15). The early part of the data is contaminated by initial junk radiation,
and it is to be discarded. The junk radiation decays away quicker for increasing ¢ as
expected. The inset shows a detail from the 19 (blue) curve for a sequence of runs

with decreasing grid spacing, h = {é, 1—16, 31—2} M. Notice how the runs converge towards

the analytic solution with increasing resolution.

4.5 Hyperbolic-orbit implementation

Here we extend our implementation to be able to calculate the scalar field for unbound
orbits. The primary difference between this and the circular orbit case is the trajectory
of the particle through the numerical domain. The 1D worldline S no longer passes
directly through the vertices of the cells, as shown in Figure 4.5. The particle’s trajectory
is calculated through integration of the geodesic equations of motion (2.1) — (2.3) with
initial conditions R(t = 0) = Rmin and ¢, (t = —00) = 0 and is then used to determine
which cells the particle enters. This information is fed into the numerical evolution as
the entry and exit coordinates of the wordline through each particle cell and is applied
through the finite-difference scheme detailed in Appendix C.2.2. The numerical domain
is constructed such that the evolutions starts with the initial apex at the point R = Rinit
(a user input) and finishes when the particle returns to R = Rjp;; after being scattered.
The code takes as inputs the modal numbers ¢, m, orbital parameters v, b, various

numerical parameters (including Rinit) and returns the scalar field modes g, (t, 7).

A more detailed version of the numerical algorithm (as applied to the gravitational case)

is presented in Section 8.2.1.
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FIGURE 4.5: Sketch of the 141D characteristic grid used in our scatter orbit numerical
evolution of the scalar field 1, (t,7) outside a Schwarzschild black hole. The grid is
centred along the maximal value of the particle’s radius within the numerical domain
7 = Rinit.

For the numerical demonstration to be presented below we have picked a sample strong-

field scatter geodesic with
Voo = 0.2, b=21M, (4.16)
corresponding to

Rpin >~ 4.98228M, E ~1.02062, L ~ 4.28661M,
e ~ 1.1948, p ~10.9351, dp ~ 301°. (4.17)

The orbit is depicted in Figure 4.6.

Figure 4.7 demonstrates the behaviour of the field vy, (t,r) along the worldline of the
particle, for a sample of ¢, m values. The evolution begins (and ends) when the particle
is at Rinit = 100M. We have performed convergence tests to confirm that our code
exhibits a quadratic global convergence rate in h, as it is designed to do. An example is

shown in Figure 4.8.
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FIGURE 4.6: The sample scatter geodesic orbit used for our numerical illustration,
with parameters given in Eqs. (4.16) and (4.17). The orbit is plotted in the equatorial
plane using Cartesian-like coordinates (z,y) = (rcosp,rsiny). The location of the
innermost stable circular orbit (ISCO) is shown for reference. The deflection angle of
this strong-field orbit is dp ~ 301°.
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FIGURE 4.7: The scalar field 1y, along the particle’s worldline for the orbit shown
in Figure 4.6 for a sample of (¢,m) modes. Here we show |wg,,,(t, R(t))| as a function
of time ¢ (lower scale) and orbital radius R (upper scale). The periastron location at
t = 0 is indicated with a vertical line. The early part of the data is contaminated by
initial junk radiation, and is to be discarded.
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FIGURE 4.8: Convergence test for the (¢,m) = (2,2) numerical solution. The inset
shows a detail from the |t)22] (blue) curve in Figure 4.7, for a sequence of runs with
decreasing grid spacing, h = {%, %, 3—12} M. The main plot quantifies the convergence
rate: It shows the ratio R := |¢s — ¥16| / |16 — ¥32] as a function of ¢ along the orbit,
where a subscript ‘8’ (e.g.) denotes a calculation with grid spacing h = M/8. A ratio
of R = 4 is indicative of quadratic convergence.

Figure 4.9 illustrates how, reassuringly, the “clean” part of the data appears to be
insensitive to the value of Rju, up to a small decaying difference. The decay rate of
compact vacuum perturbations at late time ¢ > |r,| is given to leading order in M/t
and M /u by

1
(GHeS WTPZ (P) (4.18)

where we recall Py is the Legendre polynomial of the first kind and p = (r— M) /M [91].
We are interested in the late-time behaviour along the worldline » = R o t hence we

can expand the Legendre polynomial to give Py(p) r¢ and can write

1
As the figure demonstrates, this is the decay rate we see in the difference of the field
calculated using different values of Rjni;. This means that we can use Rinjt as a control

parameter enabling us to evaluate the level of residual contamination from initial junk.
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FIGURE 4.9: Numerical results for |¢s2| on the particle’s worldline, as calculated with
Rinit = 100M (blue) and with Rj,i; = 200M (orange). The comparison illustrates how,
reassuringly, the “clean” portion of the data is insensitive to Rinjt, up to a small error
that dies off in time. The inset displays the relative difference between the two curves,
showing a t~* fall-off at late time, consistent with the theoretically predicted decay

rate.
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Chapter 5

Scalar self-force on hyperbolic

orbits

In this chapter we calculate first-of-their-kind results for the scalar self-force for a hy-
perbolic orbit. We then present preliminary results for the calculation of the self-force

correction to the scatter angle.
The equation of motion for a particle with mass p and scalar charge ¢ is given by

2, .1
D?xy,
dr?

= F", (5.1)

where we recall 7 is the proper time, D/dr := u*V, is the covariant derivative along the
worldline z,,, which has an associated four-velocity u* = dz}, /dr. We obtain the scalar

self-force F'* via
Fr = ¢ (oF, + utuy,) F”, (5.2)

where F), is constructed from the gradient of the scalar field using mode-sum regulari-

sation, as follows.

First, we introduce the £-mode contribution

Fil = or Z \P < Vo (t,7) Yo (0, <p)> (5.3)

m=—{

Tp

Note that this is only defined along the worldline of the particle. Ref. [40] showed that

we can perform mode-sum regularisation at the level of this new function:

= 3 [ B = Ble oy - B B — B, - FfL -0 ()], (5.9)
=0
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where we recall £_1 = 2¢ 4+ 1 and define

Ly := ! Ly:= :
2T @e—1)@20+3) YT 20=3) 20— 1) (20 + 3)(20 + 5)
Lo = ! (5.5)
0 (20—5)(20—3) (20— 1)(20+3)(20 + 5) (20 + T) '
The first few regularisation parameters are given by
Fon__ EER sl ____ EE
! 2fr(L? + R?)’ " 2fr(L*+ R?)’
N ERR - ERR
£ = K—¢&), FY—= K — 26),
! Lme/m( ) 7 frm(L2+ R2)3/2( )
A (2E2R? — fr(L*+ R?)) € — (E®R? + fr(L* + R?)) /c’ (56)
frRm (L2 + R?)3?
with ) )
T L 2 L

We recall that E and L are the energy and angular momentum of the orbit (respectively),
R(t) is the radial coordinate of the orbit, fr = 1—2M/R, El; and Ely are the incomplete
elliptic integrals of the first and second kind respectively [c.f. Egs. (2.28) and (3.36)] and
an overdot represents a derivative with respect to t. The 4+ sign in the expressions
for Ft[_l] and Fl Y corresponds to whether the derivative of the field at the worldline
[as used in Eq. (5.3)] is taken in S~ (+) or < (—). The higher-order regularisation
parameters are cumbersome so we refer the reader to Section V.C. of Ref. [93] or the

RegularizationParameters package of the Black Hole Perturbation Toolkit [94].

5.1 Sample results

The results displayed here are constructed from the data presented in Section 4.5 for
the orbit shown in Figure 4.6 with parameters given in Eqs. (4.16) and (4.17). The SF
was calculated using Egs. (5.2) — (5.4) with scalar field modes up to ¢ = 18. We investi-
gated how the solution converged when using high-order regularisation parameters. An
example is shown in Figure 5.1. The results initially converge quicker with an increasing
number of regularisation parameters until there is a plateau. This suggests that there
is another source of dominant error in the data and using regularisation parameters of

even higher-order will not improve the accuracy of the results.
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FIGURE 5.1: The regularised radial derivative of the scalar field F! as a function of
¢ for a hyperbolic orbit. The data converges quicker with ¢ when additional analytic
regularisation parameters are subtracted. The data fails to converge when using FT[nZQ]
due to other dominant errors in the data.

Figure 5.2 shows the behaviour of the non-zero components of the regularised self-force.
Notable features include (i) the small lag between the peak of the field and the periastron
passage and (ii) the small undulation in the field amplitude not long after periastron
passage. The periastron lag has been observed before in calculations along eccentric
orbits (see, e.g., [95]); it is attributed to the effect of “tail” contributions to the self-
field, which peak in amplitude soon after periastron. The undulation, we suggest, is a
weak manifestation of the quasinormal-mode excitation phenomenon observed in self-
field calculations for highly eccentric orbits [96,97]. Both features are associated with
“tail” contributions to the self-field, and are less visible at larger ¢, where the “direct”
part of the field is more dominant. We have not conducted here a more detailed study

of the above physical features.
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FIGURE 5.2: Numerical results for the regularised scalar self-force F; (top), F, (middle),
and F, (bottom) for the orbit shown in Figure 4.6 as a function of time ¢ (lower scale)
and orbital radius R (upper scale). The periastron location at ¢ = 0 is indicated with
a vertical line. The insets show the same data rescaled by a factor (R/M)3. The
force exhibits the lagging peak and post-periastron undulation features discussed in the
text. The multiplication by (R/M)? makes the undulation features more prominent
compared with the main plots.
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5.2 Correction to the scatter angle

With the scalar SF results we can now calculate the conservative scatter angle correction
5™ using either of Egs. (3.44) or (3.60). For clarity we denote the correction calculated
with method T (3.44) as (5(,0%1) and with method II (3.60) as &pﬁ).

In order to perform the calculation we must obtain the conservative part of the SF using

Fgons(t) _ % [Fa(t) _ Fa(_t)} , Frcons(t) — [F,,.(t) + Fr(—t)] ) (5.8)

[N

for a = t, . We now have the necessary inputs to calculate the SF correction to the
scatter angle using either of Eqs. (3.44) or (3.60).

Table 5.1 shows the value of the correction to the scatter angle for a variety of orbits.
The results show that there is good agreement between the values as calculated using
methods I and II. Figure 5.3 gives a graphical representation of the same data. There is
a clear blow up of values (which scales as ~ 1/b%) near the critical value of the impact
parameter bei;. This is not unexpected as the orbit penetrates deeper into the strong-
field for an increased amount of time as b — b, hence we expect a larger correction.
The inset plot of Figure 5.3 shows that our results do not match well with the PM results.
However, our results do seem to be tending towards the PM value as we approach the

large-b regime.

bIM | Run/M | 500 | 6oV ool | | (6l = 6e) sl
20.383 | 3.89720 | 13.8325 | —319.307 —319.043 0.0827%
20.4 4.01885 | 9.93644 —17.3432 —17.3474 0.0244%
21 4.98228 | 5.25737 | —0.535591 —0.535503 0.0164%
22 5.95946 | 4.05494 | —0.199893 —0.199869 0.0120%
24 7.64287 | 3.11464 | —0.081656 —0.081661 0.00612%
26 9.25543 | 2.63589 | —0.045992 | —0.0460113 0.0419%
28 10.8670 | 2.32189 | —0.0293214 | —0.0292618 0.204%
30 12.4959 | 2.09184 | —0.0201692 | —0.0201483 0.104%
35 16.6697 | 1.70280 | —0.0091889 | —0.0092003 0.124%
40 20.9833 | 1.44954 | —0.0048744 | —0.0048748 0.00821%

TABLE 5.1: Results for the conservative scalar self-force correction to the scatter angle
calculated using methods I (&p%l)) and 1T (wﬁ)) as detailed in Sections 3.4 and 3.5
respectively. All of the orbits shown have vy, = 0.2. We show the geodesic values of
the periastron Ry, and scatter angle 5g0(0) as well as the relative difference between
the results of the two methods for reference. Recall that the full scatter angle is given
by ¢ = 60 +népM + O (n?) [c.f. Eq. (3.31)].

To explore the PM regime we need to satisfy the assumption v2 b > 1, however, this is
extremely computational expensive. The evolution time of our scalar field code gradually
increases with larger Ry, and/or larger voo. In large- Ry, runs we are penalised by the

longer evolution time, and in the large-vo, case the slower decay of initial junk along
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FIGURE 5.3: The conservative scalar self-force correction to the scatter angle for the
orbits shown in Table 5.1. Here we show |5<p§11 ) /3¢ as a function of impact parameter
b. The vertical line represents the critical value of b at which the orbit is marginally
bound beiy = 20.382M. The inset plot shows the first-order correction |6<p§11 )| scaled
by (b/M)? as a function of b — bei;. The red dashed line represents the 2PM solution

&pélP)M = —7/(2b)? of Gralla & Lobo [83]. The data decays as a 1/b% power law, as
shown by the black dashed reference line.

the orbit requires a larger value of Rjni; (and again a longer run). We estimate that a
run with (veo,b) = (0.5,400M) [corresponding to v2 b = 100] would take timescales of
months to years with our current capabilities. Our code is far from being optimal so
the computational burden could be drastically reduced with appropriate computational
techniques. An alternative method would be to use approximate initial conditions to
reduce the amplitude of the junk radiation and thus the time they need to decay. This
could be achieved by performing an initial low resolution run from which we extract the

required initial conditions that feed into a high resolution run.

We performed some tests to determine the dominant source of numerical error. Table
5.2 shows the values of the corrections as calculated for the orbital parameters given in
Egs. (4.16) and (4.17), whose orbit is depicted in Figure 4.6. The largest difference, by
over a magnitude, is when we increase the size of the numerical domain (i.e. increase
Riynit), due to the large-R contributions of the SF. One possibility to reduce the error
would be to simply increase the value of Rjy¢ in our numerical runs. However, this

2
init "

would come with a large computational cost as the runtime of the code scales as ~ R
An alternative method would be to fit an analytic tail to the SF data such that we can
extended our SF results to the limit R — oo and thus perform the entire integrals (3.44)
or (3.60). Preliminary tests show that adding the analytic tail alters the result of the
correction to the scatter angle by ~ 3%. We use this value as a tentative estimate of

the error bar on our results for dp(1).
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lmax ‘ M/h ‘ Rinit/M ‘

501" | Rel diff

15
18
15
15

128
128
256
128

100
100
100
150

—0.535503 -
—0.535564 | 0.0114%
—0.53527 | 0.0435%
—0.541908 | 1.20%

TABLE 5.2: The conservative self-force correction to the scatter angle using a variety
of numerical parameters for the orbit shown in Figure 4.6. The numerical parameters
shown are maximum modal number calculated I ax, grid spacing h, and initial radius
of the particle in the numerical domain Rj,;;. The correction to the scatter angle was
calculated using method II as described in Section 3.5. In the last column we show the

relative difference in the values of 5(,0%11 ) relative to the top row results, for reference.

These results present a significant step in the calculation of the scatter angle correct

to first order in the mass ratio. We have successfully implemented both methods for

calculating the SF correction to the scatter angle and shown that they produce the same

results. With this numerical framework in place the only requirement for the calculation

of the gravitational SF correction to the scatter angle is the SF along a scatter orbit. We

continue by extending our 1+1D scalar field solver to be able to calculate gravitational

perturbations.
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Chapter 6

Time-domailn reconstruction of

the metric perturbation: Vacuum

We now move on from the scalar toy model and tackle the gravitational case. We start
by reviewing vacuum metric reconstruction and then formulate an evolution scheme for
the vacuum no-string Hertz potential in 1 + 1-dimensions. A numerical implementation
shows that there are non-physical modes which quickly dominate the results. We discuss
their cause and suggest several ways to mitigate the modes including a transform to a

Regge-Wheeler-like equation.

6.1 Metric reconstruction in a radiation gauge

In this section we review essential results concerning the reconstruction of vacuum metric
perturbations from curvature scalars first prescribed by Chrzanowski [57] and Cohen and
Kegeles [58], but we follow here the concise presentation by Wald [98]. From a certain
point we will specialise to a Schwarzschild background, introducing a decomposition of
the various fields into multipole modes, but refraining from a further frequency-mode
decomposition and instead remaining in the time domain. Our purpose here is to remind
readers of the relevant theory, introduce notation, and set up the relevant technical

background for the rest of the analysis.

We adopt the Kinnersley null tetrad ef = {¢* n® m® m} [see Eq. (A.1)], where
boldface Roman indices run over 1,...,4 and denote tetrad components such that
Aa = e0A,. The legs e5 are all mutually orthogonal except for ¢“n, = —1 and
m®*mq = 1. An overbar denotes complex conjugation. (Covariant) directional deriva-
tives along the tetrad legs are denoted Dy, = (*V,, D, = n*V,, D,, = m*V, and

Dy = m*V, (corresponding to the more customary but less transparent D, A, § and
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J, respectively). In what follows hatted sans-serif symbols (IAE,'T', ...) represent linear

differential operators on tensors.

Suppose hqg is a solution of the vacuum Einstein equation linearised about the Kerr

metric (1.5) which we recall has the form
Eh :=dG(h) = 0. (6.1)

Here 0G|, is the linearised Einstein tensor, thought of as a differential operator E acting
on hag, and we have omitted tensorial indices for brevity. To this perturbation there
correspond Weyl curvature scalars W =: ¥, and o~ *W¥y =: U_ [see Eq. (A.3); o = —1/r

for Schwarzschild]. ¥ are derived from hyg via
Tih =0, (6.2)

where the operators T4 are given explicitly in Eqgs. (A.4). Let S, be the operators that
take the linearised Einstein equation into the Teukolsky equations with spins 4+2 such
that

S.Eh=0,0, (6.3)

where O, is the Teukolsky operator given in Egs. (A.6) and S, can be read off the
source side of the Teukolsky equation (A.5); these operators are given explicitly in Egs.
(A.9) and (A.10). From (6.2) and (6.3) there follows the operator identity

SLE=0.T.. (6.4)

Now let ® be (any) solution of the adjoint' vacuum Teukolsky equation,
0L @y (= 0:P4) = 0. (6.5)
Noting E is self-adjoint (E = E'), we then have
EST o, = (SiE)foy = (0L To)foL =TLOLao, =0, (6.6)

where in the second equality we have used Eq. (6.4). Thus h* := glfbi are (complex-
valued) solutions of the vacuum Einstein equation. A real-valued reconstructed solution
is given by

R := ReSLO.. (6.7)

The explicit form of the reconstruction operator §:rt is given in Eqs. (A.12). It returns

R in an ingoing radiation gauge (IRG) and A in an outgoing radiation gauge (ORG)

'For a linear operator I:Ataking an @-rank tensor field ¢ to an m-rank tensor field v, the adjoint [
takes 1) to ¢ and satisfies (LT¢)¢ = 9 (L#) (up to a divergence of an arbitrary vector field).
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which obey the relations
hist =0 (IRG), hys~ =0 (ORG), (6.8)

with both perturbations being traceless.

For h® and h®° to each reproduce the original perturbation h, we must have 'T'ihffc =
¥, and 'i'ihr_ec = U, leading to

TiReSl®, = W, (IRG), (6.9)
TiReST®_ = WL (ORG). (6.10)

These are the fourth-order “inversion” equations. A Hertz potential &, satisfying both
the adjoint Teukolsky equation (6.5) and either of the two inversion relations (6.9) or
(6.10) will reproduce h up to some perturbation Ak, that is in the Kernel of er; and a
Hertz potential ®_ satisfying both (6.5) and either of the two inversion relations (6.9)
or (6.10) will reproduce h up to some perturbation Ah_ that is in the Kernel of T_.
That is,

h = R 4+ Ahyg, (6.11)

where
TLAhy =0. (6.12)

Wald [99] explored the Kernel of 'T'i, and hence the space of Ah4, for vacuum pertur-
bations in Kerr. He found that Ahy is spanned by pure gauge perturbations (which
are also in the Kernel of IAE), in addition to exactly four types of stationary and axi-
ally symmetric (algebraically-special) vacuum perturbations: a mass perturbation, an
angular-momentum perturbation, and perturbations away from Kerr into the Kerr—NUT

or the C-metric solutions.

6.2 141D evolution scheme for the Hertz potential in vac-

uui

From this point onwards we specialise to a Schwarzschild background. The Schwarzschild
reduction of the Teukolsky equation with s = £2 is sometimes known as the Bardeen—
Press equation. Here we refer to it as the Bardeen—Press—Teukolsky (BPT) or Teukolsky

equation interchangeably.

6.2.1 Multipole decomposition

As with the scalar case, we perform a multipole decomposition of the Hertz potential
to get the Teukolsky equation in a 1+1D form. We recall the IRG fields ¢, and ORG
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fields ®_ have spin weights s = —2 and s = +2 respectively. We thus expand &4 in

s = F2 spin-weighted spherical harmonics such that

Aﬂ 00 l .
q)i = r Z Z qb:tm (t7 T) 3F2}/£m (07 ‘P), (613)
=2 m=—/

The normalisation factor A*2/r, where A := r(r —2M), is introduced (following [87]) to
regulate the behaviour of the time-radial fields ¢4 at infinity and on the horizon. It is
such that the physical (point-particle) solutions (satisfying physical boundary solutions)
generally approach constant nonzero values at both ends. A more involved discussion of
this choice of normalisation is discussed in Section 6.2.3. The spherical basis functions

+9Yy, can be derived from standard spherical harmonics Yy, (6, ¢) via

(€ —2)! [0*Yy, cosf £ 2m\ 0Yy, m? + 2m cos
+oYom = - +

(+2) | 062 00 sin’ @ )YE’”] (6.14)

sin 0

They satisfy the differential equation

1 Yom ? + 2mis cos §
0 (Sme@ ¢ )+<_m+m_32c0t29+s+(e—s)(z+s+1)>sYemzo,

sin 6 90 00 sin? 0
(6.15)
and the symmetry relation
1Yo = (=1)" 52V}, . (6.16)
We also note the symmetry under reflection by the equatorial plane,
iQnm(ea SD) = (_1)£:|:2%,—M(7T - 9) 90)1 (617)

to become useful further below.

In what follows we frequently drop the labels £, m off of ¢§™ for notational economy. It
should be remembered that ® is the full 4D fields, while ¢ is the corresponding 141D

reduction.

6.2.2 Bardeen-Press-Teukolsky equation in 141D

With the substitution (6.13), the adjoint vacuum BPT equation (6.5) separates into ¢, m

modes, with each modal function ¢ (t,7) satisfying the 14+1D wave equation
G+ Us(r) g + Va(r) & + Wa(r)o™ =0, (6.18)
with s = F2 for ¢4. Here

Vi(r) = —, (6.19)
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(6.20)

l+s+1)f—s 2(1+s)M
(ot D) | 20 I

WS(T)=4<

where we recall f =1 —2M/r = A/r2.

6.2.3 Initial/boundary-value formulation

Our strategy is to solve the 141D vacuum hyperbolic equation (6.18) directly as a
time evolution problem from initial data outside the black hole. The specific form of
boundary conditions for ¢4 is inherited from that of the reconstructed metric A, For
the applications we have in mind (e.g., a self-force calculation) it is the retarded (hereafter
“physical”) perturbation that we are after, i.e., the one corresponding to the boundary
conditions of having no radiation coming in from .#* or out of .#". These requirements
can be translated into asymptotic conditions on the behaviour of ¢4 at infinity and on

the horizon. This analysis was carried out in Ref. [87], and we quote the results here.

For a monochromatic physical perturbation that has the asymptotic form ~ e=®%/r
at T (in a suitable Lorentzian frame) and ~ =Y on #* (in a suitable horizon-
regular frame), for some frequency w > 0, the corresponding Hertz potential modes
admit solutions
Gi(r — 00) ~ e ™% (physical),
¢+(r —2M) ~ e ™Y (physical). (6.21)

Note ¢+ generically approach constant nonzero values at #+ (r — oo with constant u)
and on the ST (r — 2M with constant v). To achieve this convenient behaviour was

the purpose of introducing the radial prefactors in Eq. (6.13).

For the interpretation of numerical results in Sec. 6.3, it will be useful to also have at hand
the asymptotic behaviour of “nonphysical” monochromatic modes, which correspond to
waves coming in from .=, h¢ ~ e~ /1 or to waves coming out of S, h&¢ ~ e~ Wu,

For such solutions, the asymptotic analysis in Ref. [87] finds

pi(r — o0) ~ rTie™v (nonphysical),

di(r —2M) ~ AF2e™™"  (nonphysical). (6.22)
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6.3 Time-domain evolution of the Teukolsky equation: prob-

lem of growing modes

6.3.1 Numerical method

In this subsection, we implement a simple finite-difference Teukolsky solver based on
1+1D characteristic evolution in u,v coordinates. The architecture of the code is vir-
tually identical to that of the vacuum scalar field case detailed in Section 4.2. Here
we can evolve both the IRG (s = —2) and the ORG (s = +2) Hertz potentials. The
finite-difference scheme used is precisely identical to the one used in [87] (as detailed
in Appendix B therein) when applied to circular orbits and has global quadratic con-
vergence. Our code takes as input the spin s = +2, modal numbers ¢, m as well as
a range of numerical parameters such as h and the coordinate ranges and returns the
Hertz potential modes ¢, (¢,7) (IRG) or ¢, (t,7) (ORG). As with the scalar case, we
have produced two identical implementations, one in Mathematica and another in C++,

to enable cross-checks.

The main reason for implementing the vacuum case is to ensure there are no nonphysical
vacuum modes which could contaminate future results. As we demonstrate below, the
situation with the |s| = 2 Teukolsky equation is less fortunate than the scalar case. In
our evolution, nonphysical modes of the equation, seeded by numerical error, will grow
unbounded at late time, spoiling the evolution. We will discuss the origin of the problem
and suggest ways around it but an important question to ask is why has this growth
not been seen before, especially in Ref. [87], which used the same numerical method?
Our new code, when run with a circular-orbit source and s = —2, does reproduce the
numerical results of [87] in the early stage of the evolution, before the onset of growth as
shown later in Figure 8.2. It appears that the evolutions performed in that study were
simply too short to reveal the problem. The calculation of the Hertz potential along
circular orbits did not require very long runs, and evolutions were always terminated
before the relatively slowly growing mode (~ t* for s = —2; see below) had a chance to
manifest itself in the data. Calculations for scatter orbits require much longer evolutions,
so here we must deal with the problem. The problem must be dealt with anyway if one
is interested in an ORG reconstruction (s = +2), where, as discussed below, the blow-up

is exponential.

In what follows we illustrate the problem of growing modes with numerical examples
and describe the range of tests we performed to understand its origin. We then discuss

possible remedies.
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6.3.2 The s = —2 case

Figure 6.1 shows a typical output from an s = —2 numerical evolution in vacuum.
After the initial spike of radiation (not shown in the figures), the field decays with
characteristic quasinormal ringing. However, at around ¢ ~ 250M the solution becomes
dominated by a noisy component, whose amplitude appears to grow approximately like
~ t4. The growth seems to continue indefinitely towards future timelike infinity (t — oo
with fixed r > 2M), but the solution settles to a finite value approaching null infinity
(v — oo with fixed u) and also approaching the event horizon (u — oo with fixed v). A
similar behaviour is observed for all values of £ and m and irrespectively of the choice
of compact initial data. The evolution up to the onset of growth is numerically stable
and the solution there converges quadratically in grid spacing h, as expected. The
growing component, however, is not numerically stable. It displays noisy features on
grid-size scale, and its amplitude appears to increase with decreasing h (finer resolution).

However, the ~ t* behaviour seems to be persistent and universal.

R T N TR T TR
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FIGURE 6.1: Results from evolution of the (¢,m) = (2,0) mode of the vacuum 1+1D
BPT equation with s = —2. The evolution is seeded with a narrow Gaussian near
(t,r«) ~ (0,9M). We show, on a log-log scale, the field amplitude |¢5,| sampled along
slices of constant r. = 10M (top), u = 500M (lower left) and v = 500M (lower right).
The dashed lines (const x t4, const x v* and const x u?, respectively) are shown for
reference.

We have performed a series of tests in attempt to understand these results. First, as
mentioned, we have tried a variety of initial data, including a point seed at the initial
vertex, smooth Gaussians of various configurations and data corresponding to an exact
static solution of the BPT equation. Second, we have tried a range of alternative finite-
difference formulas and stepping schemes. Third, we have used our code to solve for

the Weyl scalar modes 9~ (¢,7) with jump conditions on S corresponding to a circular
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geodesic orbits (the necessary jump conditions are derived in Appendix B); we have
done so both with “zero” initial data and with data corresponding to an exact static
solution (for an m = 0 mode). In all these tests, the t* growing mode developed just the
same. Fourth, we note that the troublesome ¢* behaviour is observed [100] also in the
application to the Teukolsky equation of the recently introduced approach by O’Toole et
al. [101], in which the Green function (rather than the field itself) is evolved from exact
characteristic initial data. Finally, we observe that we are able to successfully suppress
the t* growth using our Mathematica implementation with very high working precision
(albeit at considerable computational cost). All this supports the conclusions that (i)
the t* behaviour has a genuine dynamical origin and (ii) the ¢* component is seeded by

numerical roundoff error.

We suggest that the t* mode represents nonphysical incoming radiation sourced by
numerical roundoff error near .# . This can be seen from the following heuristics.
First, recall from Eqgs. (6.21) and (6.22) the asymptotic form of monochromatic s = —2
solutions in the “wave zone” (r > M with v > u): ¢ ~ e ™% for physical solutions

4= for nonphysical solutions representing purely

(purely outgoing waves) and ¢ ~ r~
incoming waves. More generally, the time-domain solutions are superpositions of such
monochromatic modes, and have the forms ¢ ~ F(u) (physical) and ¢ ~ r~*G(v)
(nonphysical) for some functions F'(u) and G(v) that depend on the initial data. [These
forms can be confirmed more directly by substituting the anséitze ¢ = r*F(u) and
¢ = rPG(v) into the BPT equation (6.18) and solving at leading order in M/r under
the wave-zone assumptions F’(u) > F(u)/r and G'(v) > G(v)/r, to obtain o = 0 and
B = —4.] Consider an outgoing ray u = const shortly after the start of the evolution. The
field on this ray is composed mostly of outgoing radiation ¢ ~ F'(u), which approaches
a constant value at large v. However, roundoff error in the numerical data along this
ray will inevitably source a small component of nonphysical high-frequency incoming
radiation ¢ ~ r~4G(v). Since the sourcing field is asymptotically constant at v — oo,
the amplitude of the seeded incoming radiation is also expected to be asymptotically
constant on the u = const ray, i.e. 7~4|G(v)| ~ const for v — co. This implies |G (v)| ~
v ~ (t 4+ 7)* at large v, and it follows that the incoming-wave component has an
amplitude |¢| ~ v*/r* ~ (t+7)*/r*. At fixed r, this will exhibit a ~ t* growth, at least
in the wave zone where our heuristic analysis applies. (To show that this wave-zone
behaviour might lead to a t* growth elsewhere at late time, as evident in the numerical
data, would require a more detailed asymptotic matching analysis, which we have not

attempted.)

This heuristic description explains the results of our various experiments. The t* be-
haviour arises dynamically from roundoff error seeds, so it is persistent, universal and
independent of initial data. The amplitude of the t* component can be suppressed by
increasing the precision of the floating-point arithmetic, which reduces the roundoff er-

ror. For a fixed floating-point precision, increasing the grid resolution (decreasing h)
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enhances the amplitude of the incoming radiation component, by seeding more of its

modes at higher frequencies.

It is also possible to explain why the t* growth does not appear to plague other time-
domain treatments of the s = —2 Teukolsky equation reported in the literature. In the
241D Cauchy evolution approach of Khanna et al. (legacy of [102,103] and many works
since), boundary conditions are actively imposed, which presumably suppress the growth
of the unphysical component. In the compactified hyperboloidal slicing approaches of
Refs. [84-86], we suspect it is the compactification of £ that averts the problem, since
the wavezone for incoming waves is vastly underresolved on the compactified grid. In
contrast, our simple u, v-coordinate-based approach resolves the wave-zone equally well
for both outgoing and incoming waves. Unfortunately, as we have seen, the resolution

of incoming waves near null infinity is harmful in our case.

6.3.3 The s = +2 case

Figure 6.2 shows a typical output from an s = +2 numerical evolution in vacuum. In this
case, after a short phase of quasinormal decay (harder to discern on the semilogarthmic
scale of Figure 6.2), there commences a rapid exponential growth, ¢ ~ exp[t/(2M)].
Again, the growth seems to continue indefinitely towards future timelike infinity (¢ — oo
with fixed r > 2M), but the solution settles to finite values towards .#* and s#*. A
similar behaviour is observed for all values of ¢ and m and all choices of initial data we
have tried and the blow-up exponent (1/2M) seems universal. The growing component
is not numerically stable, increasing in amplitude with decreasing h (finer resolution).
We have performed similar tests to the ones described above for s = —2 and with
similar results. The exponential growth is persistent, universal, and can be moderated

(in amplitude) only with high-precision arithmetic.

We again argue that the culprit is a nonphysical growing solution of the BPT equation
seeded by roundoff error, this time an exponential mode of the s = +2 equation. We
can see this most instructively from a simple asymptotic analysis near the horizon, as
follows. Working at leading order in A, and assuming ¢, ¢, and ¢, are all of the same
order in A near the horizon [this is true of the r — 2M asymptotic expressions in Eqgs.
(6.21) and (6.22)], the BPT equation (6.18) reduces to

Qs,uv —k ¢,u - 0, (6.23)

in which k := s/(4M), and where we have retained the s dependence to enable us to

compare the situation between the two spin values. The general solution is

¢ = C1(u)er + Co(v), (6.24)
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FIGURE 6.2: Results for the evolution of the (¢,m) = (2,0) mode of the vacuum 141D
BPT equation with s = +2. Other details are as in Figure 6.1, except here the scale is
semilogarithmic. The dashed lines are for reference.

where C(u) and Cz(v) are arbitrary functions. Solutions of the form ¢ = Cy(v) represent
physical perturbations that are purely ingoing at the horizon [compare with Eq. (6.21)],
while solutions of the form ¢ = Cj(u)e*” represent nonphysical perturbations coming
out of the past horizon [compare with Eq. (6.22), noting A% ~ (2M)2$e?F7 ~ (2M)?3ekv
near the horizon]. For s = +2 the nonphysical solution blows up exponentially in v

along the horizon, while for s = —2 it is exponentially suppressed.

The situation now mirrors what we had near null infinity for the s = —2 growth. As
the main physical perturbation, of the form ¢ = Cs(v), reaches the horizon, roundoff
error along the incoming ray seeds a nonphysical component ~ Cj(u)e*”, which, for
s = 42, blows up exponentially along the horizon. The predicted rate of exponential

sv/(AM) _ v/(2M)

growth is consistent with that observed in the numerical data: ~ e
To understand the propagation of this exponential growth into other areas of the black
hole’s exterior would require a detailed asymptotic matching analysis, but it would not
be surprising to find a similar exponential growth in time anywhere outside the black
hole, as seen in the numerics. We note the fortunate situation in the s = —2 case,
where all nonphysical modes are exponentially suppressed in a dynamical manner, with

no need to actively impose boundary conditions.

There are in the literature several successful time-domain numerical methods for the
s = +2 Teukolsky equation (e.g., [86,104-106]), all incorporating horizon-penetrating
coordinates in some form. The use of such coordinates (effectively a compactification of
our u,v coordinates) under-resolves any outgoing component of the perturbation field

near the horizon, thereby avoiding the problem encountered here.



6.4. Reformulation in terms of a Regge-Wheeler-like variable 73

6.3.4 Mitigation

Although initially surprising to us, it is clear that a standard uni-grid characteristic
evolution based on wu,v coordinates does not work well for either s = +2 or s = —2
Teukolsky equations. A remedy based on the use of very high precision arithmetic is
clearly impracticable. The preceding discussion and evidence from the literature suggest
that compactification of the two asymptotic domains (.#+ and 1) can offer a solution
that is both computationally efficient and practicable. This has already been achieved,
e.g., by Harms et al. [86], using asymptotically null compactified spacelike slices. It is
perceivable that the same could also be achieved within the convenient framework of a

fully double-null architecture. This approach is worth exploring.

Here we choose to apply a different strategy. Instead of tackling the BPT equation
directly, we will introduce a transformation of the Hertz potential to a new field vari-
able, which satisfies a field equation free of the above difficulties. From the preceding
discussion it is clear that the culprit term in the BPT equation (in both s = —2 and
s = +2 cases) is the one involving ¢ ¢, so we seek a transformation that eliminates that
term. The simplest such transformation is a time-domain version of the familiar Chan-
drasekhar transformation [107], which takes solutions of the BPT equation to solutions
of the Regge-Wheeler (RW) equation. Tthe RW equation evolves without a problem
on a simple uniform mesh based on u,v coordinates (see, e.g., [108]), so this approach

would require no radical architectural changes to our numerical method.

In the next section we reformulate the 141D evolution problem in terms of a RW-like
variable. Then later we demonstrate a full numerical calculation of the Hertz potential

for circular and scatter orbits in Sections 8.1 and 8.2 respectively.

6.4 Reformulation in terms of a Regge-Wheeler-like vari-
able

Let the field X (¢,r) be a solution of the vacuum Regge-Wheeler equation

F (M 6M
X+ L (222220 x —, 6.25
o+ 4 \ r2 r3 ( )

where A\ := ¢(¢+ 1) and we recall f =1 — 2M/r. Then, as can be easily checked,

1 -~ _ r—3M
and 5 3
T r—3M
qbi = f4 D%('I"X) = 7"4 <X,U’U + T X,’U) 5 (627)
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are solutions of the vacuum BPT equation (6.18) with s = —2 and s = 42, respectively.
This means that we can use the RW variable X as a generating function for both IRG
Hertz potential ¢ and ORG Hertz potential ¢_. The advantage, of course, is that the
RW equation (6.25), unlike the BPT equation (6.18), does lend itself to a straightforward
characteristic evolution in u,v coordinates. The idea now would be to formulate a
suitable characteristic initial-value problem for the RW variable X, from which the no-
string Hertz potential ¢4 [or ¢_] can be obtained by applying the transformation (6.26)
[or (6.27)] to vacuum RW solutions X.

Let us consider boundary conditions. In both asymptotic regions »r — oo and r —
2M, monochromatic solutions of the RW equation (6.25) are superposition of modes
X ~e ™% and X ~ e~V (with some generally nonzero constant coefficients at leading
order). The “retarded” monochromatic solution has the behaviour X ~ e~™% near
F* and X ~ e @Y near #*. It it easily seen that this retarded solution generates
the physical IRG Hertz potential ¢4 ~ e ™% near .#* and the physical ORG Hertz
potential ¢_ ~ e~V near J* [here we recall Eq. (6.21)]. It is harder to show that
the retarded RW solution necessarily generates the physical field ¢, near S or the
physical field ¢_ near .# 7 (this would require a higher-order asymptotic analysis), but
we can circumvent this with the following observation: From Eq. (6.22) we see that
nonphysical modes of the the IRG potential ¢, diverge (like A=2) near #*, and that
the nonphysical modes of the ORG potential ¢_ diverge (like 7*) near .#+. Thus, in
either case, a nonphysical Hertz potential announces its presence loudly in the form of a
strong asymptotic divergence. This is a point made already in Ref. [87]: A solution ¢
that is regular (bounded) at 7 is automatically the physical one, and so is a solution
¢_ that is regular (bounded) at #T. We can establish a posteriori that our numerical
solutions ¢ or ¢_ satisfy physical boundary conditions simply by checking they are

bounded.

We do not present an explicit implementation this new method for the vacuum case due
to previous calculations of stable RW evolutions in the literature (see, e.g., [108]). A full

implementation for both circular and scatter orbits will be presented in Chapter 8.
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Chapter 7

Time-domain reconstruction of
the metric perturbation: Particle

formulation

In this chapter we introduce a point-particle into the implementation. First we show
how the standard vacuum reconstruction procedure (presented in Section 6.1) fails with
the introduction of a source and suggest possible remedies including a summary of the
new procedure by Green et al. [65]. Continuing, we formulate a 141D evolution scheme
for the no-string Hertz potential and derive closed-form ODEs for the jump conditions
of the Hertz potential and the Regge-Wheeler-like field.

7.1 Non-vacuum metric reconstruction

7.1.1 Failure of standard non-vacuum metric reconstruction

Let hop be a solution of the non-vacuum equations
Ehas = Tap, (7.1)

where T3 is the energy-momentum tensor (absorbing an 87 factor). The corresponding

Teukolsky equation now reads
01y =S.Bhop =S:T0s = Ta, (7.2)

where 71 are the source terms for the s = 42 Teukolsky equations. The operator

equality (6.4) still applies.
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Now let 1 be a solution of the adjoint sourced Teukolsky equation
Oldr =001 = Sy, (7.3)
where the source Si will need to be determined. It can be written that
ESLo. = EfSLo, = (5.E)for = (0T oL = TLOLa. = Tl 5. (7.4)

Thus h4 = élfbi + h™P are solutions of the sourced Einstein’s equation (7.1) if Sy

are chosen such that
(-ll\—;ftsi)aﬁ + T;%mp = Tug, (7.5)

where T;%mp := ERCOmP ig the energy-momentum associated with the completion piece

of the perturbation.

However, it can be shown that (7.5) cannot be satisfied in general. The explicit form of
the operators -ﬁt [Egs. (A.14) and (A.15)] gives

0T =0 =m-T1, (7.6)
n-Th =0 =m. T (7.7)
This means that (7.5) is consistent only if (*(Tag — T,3™") = 0 = m*(Top — T55™")
for s = +2 or if n*(T,p — T;%mp) =0=m"Tuas — T;(/;mp) for s = —2. However, this

is generally not the case, and it is never the case for a T(,3 corresponding to a massive
point particle. Thus Eq. (7.5) cannot be solved, and the naive reconstruction procedure

described here fails.

7.1.2 Alternative non-vacuum metric reconstruction procedure

Here we describe our proposed alternative reconstruction procedure designed to circum-
vent the issues associated with the presence of a source. This work was conducted in the
early stages of my research project and while there were promising preliminary results
the decision was made to abandon this line of research due to work of Green et al. [65].
Their method of non-vacuum metric reconstruction solved the issue that we were also
tackling. For completeness we include the progress we made on the problem but our
work is far from a full formulation. We will give a summary of Green et al.’s method in

the proceeding section.

Consider an alternative choice of S1 such that
(Th:8)as + (TL9 )ag + T5H™ = Tap. (7.8)

Note that this new choice of St is still a solution to the adjoint sourced Teukolsky

equation (7.3).
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As T,p is real, it is convenient to take the real part of the left-hand side of (7.8). This
is because the imaginary parts of (TiSi)a/B would have to be completely cancelled
by T;%mp hence no information is added by keeping the imaginary parts. From here

onwards, Re ('T'lS’i)ag and Re T ;%mp refer to the real part of the tensors.

Consider the explicit form of the operators Ti as given in (A.14) and (A.15). We
can see that (T+5’+)a5 € {11,13,33} and (TT,S_)ag € {22,24,44}, where we recall
that boldface Roman indices denote Kinnersley null tetrad components. Taking the
real part of ('ﬁiSi)aﬁ can be done by adding the complex conjugate and halving the
result. Re (fLS+)a5 contains the null vector m® hence adding the complex conjugate
will add m® terms. This means that Re ('T'TFS;)O‘/B € {11,13,14,33,44}. Similarly,
Re ('ﬁ_S_)ag € {22,23,24, 33,44} as it has m® terms added by the complex conjugate.
This means that Re ('T'LSi)ag are not in independent spaces.

comp

Re ('T' S+)ap and T3 are both symmetric hence Re T must also be symmetric.

This means that there are a total of 14 unknowns in the problem: the 10 independent

comp

components of Re T, and 4 unknowns from the complex Sy. Eq. (7.8) contains 10

independent equatlons which are given by

(T15 )ab + TS™ 4 ce. = 2T, (7.9)

(T18 )ea + T™ + c.c. = 2Teq, (7.10)

(T1 8 et + (TS )et + TX™ .. = 2T, (7.11)
TComp +cc = 2gn. (7.12)

for ab € {11,13,14}, cd € {22,23,24}, ef € {33,34} and gh € {12,34} and where

+c.c. represents adding the complex conjugates of the preceding terms.

However, with only (7.9) — (7.12) the system is underdetermined. The solution to this
is to act on (7.8) with Si. Acting on -/I\_LSJ,_ with S, gives

8,715, =8, 11010, — 8,887 0, — 0, 7,610, — 0. T, hy — 0,0, = T2
(7.13)
It is also known from (7.2) that §+Ta5 = 7T, hence the two terms cancel when acting
upon (7.8) with S, . Similarly, the ('T'T_S_)ag and T3 terms cancel when acted upon

(7.8) with §_. Combining the two results gives the scalar equations
5. (Thss) + 5+ (T3™) = 0. (7.14)

This added set of four equations means the system can be defined uniquely through Eqgs.
(7.9) — (7.12) and (7.14).

There is an alternative method for determining just the source term Sy which vastly

reduces the number of equations that have to be solved. Consider acting on the IRG
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inversion relation (6.9) with O which gives the left-hand side as

A

éifigi(h - §iIAE§ILcI>+ =S5 (54B)10, =5.(0,T) 0y = g:t_/]\—lélq)—l— = g:ﬁ:T]—Ll-S-‘r
(7.15)

hence we can be write
S.Tls =T, (7.16)

where we have used Eq. (7.2). Similarly, acting with O on the ORG inversion relation
(6.10) gives
S, Tls =75 (7.17)

Egs. (7.16) and (7.17) form four equations which can be solved to give the four compo-
nents of the complex S1 uniquely. This alternative method is useful if we only require

the source term as it vastly reduces the number of equations that need to be solved.

7.1.3 GHZ metric reconstruction procedure

In recent work [65], Green et al. prescribed a modification of the above naive approach,
based on adding a certain “corrector tensor” x such that the metric perturbation in the
IRG is given by

hab = hfy + Tap + (™) abs (7.18)

where h%”™ is the standard completion part in vacuum satisfying ERS™ = 0. This

means to ensure that the left relation of (7.6) is satisfied it must be true that
(T — Exgp)® = 0. (7.19)
With the ansatz
Tab = 2M (M) T — 20 (0 M) Trm — 26(aMp) T, + lalpTin, (7.20)

Zap has 4 real independent components as Znm = ZTnm hence we can solve Eq. (7.19) for
the different components by taking different tetrad components. Taking the {* compo-

nent gives a second order ODE of the form
A T = Ty, (7.21)

where A, and all future calligraphic operators, represent a second-order differential op-
erator. Taking the m® component of Eq. (7.19) gives another second order ODE of the
form

B1 T = Ty + Ba T (7.22)
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Finally, taking the n® component of Eq. (7.19) gives a third second order ODE of the
form

él Tnn = Tin + é? Tmm + éS Tnm- (723)

This means that given the source of the Einstein field equations, we can obtain the
corrector tensor by integrating a certain hierarchical set of ordinary differential equations
along null directions. There is ongoing work to demonstrate the applicability of this non-

vacuum metric reconstruction method in practice [66].

7.1.4 Metric reconstruction in a no-string radiation gauge

A more acute question is whether the standard vacuum reconstruction procedure works
in vacuum regions of spacetime in the presence of sources elsewhere. It has long been
known, from analysis of the point-particle source example [42], that this was not the
case: a perturbation A'S® reconstructed as in Eq. (6.7) (with or without a completion
piece Ahy) develops singularities in the vacuum region away from the particle. This
can be appreciated already from the simple example of a static particle in flat space (see
Section V.C. of [42], or the more detailed analysis in Section VI of [53]). What one finds is
that hI°¢ exhibits string-like singularities that emanate from the particle along radial null
directions. By adjusting the residual gauge freedom (within the class of radiation gauges)
one can arrange to confine the string to either outgoing or ingoing directions, but no
choice of a radiation gauge can rid of the strings altogether. The leading-order singular
form of the string is described in Table I of [53]. The singularly is sufficiently strong that
the perturbation field fails to be (absolutely) integrable over a two-dimensional surface
intersecting the string, with the result that a multipole decomposition of the field is not
even well defined. Thus a mode-by-mode reconstruction procedure cannot work in the
entire vacuum part of spacetime containing the string. It should be presumed that an
analysis based on the new corrector-tensor method of [65] would reproduce this basic

picture when applied to the point-particle case.

Let us describe the situation more precisely. We are interested in the case of a pointlike
particle of mass i, moving outside a Kerr black hole (to be specialised to Schwarzschild
further below) with mass M > p. We assume the particle’s stress-energy is given by
the distribution

Ty = ,u/ w0t (2 — xg(T))(—g)_l/sz, (7.24)

—o0
where we recall x5 () describes the particle’s timelike worldline (7 being proper time),
ut := daf /dr and, as usual, indices are lowered using the background metric g, with
determinant ¢g. In Boyer-Lindquist coordinates we write zp(t) = (¢, R(t), 0, (%), op(t)),
so that R(t) is the radial location of the particle at time ¢. We denote by S the 2+1-

dimensional closed surface r = R(t); this is a 2-sphere through the particle at each
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given time.? The surface S splits the exterior of the black hole into two disjoint regions,
r > R(t) and r < R(t), which we call §~ and S<, respectively.

As we have described, a reconstructed radiation-gauge metric h’S® generically exhibits a

string singularity in both S~ and S<: it is a “full-string” solution, in the terminology
of [53]. It is not known how to calculate the physical self-force in such a pathological
gauge, so the full-string reconstruction is not useful in the present context. As also
described, there is a way to choose a radiation gauge such that the string is confined to S~
and the reconstructed perturbation, denoted here h$, is regular (smooth) anywhere in
S<. Similarly, there is a choice of radiation gauge for which the string is confined to S<,
and the perturbation, denoted h7, is regular (smooth) anywhere in . These are the
two “half-string” solutions. Ref. [53] showed how the physical self-force may be computed
from either of the two half-string solutions using a procedure that involves taking a
directional (radial) limit to the particle from its “regular” side. This procedure may be
suitable for frequency-domain calculations, where one could (in principle) integrate the
relevant radial ODE from boundary conditions either on the event horizon or at infinity,
towards the particle, working in the regular side of spacetime. However, the half-string
reconstructions are not suitable for time-domain calculations, where one evolves the field

equations as PDEs on the full exterior of the black hole.

This brings us to the “no-string” reconstruction, first advocated in a series of papers
by Friedman and collaborators [109,110], and later formulated in detail (and received
its name) in [53]. The idea is simple: Take the two regular sides of the two one-string
solutions, and glue them together at S. The resulting, no-string perturbation is given
by

hYS = h$O(R(t) — ) + h30(r — R(t)), (7.25)

where O(+) is the Heaviside step function. The perturbation A% is regular (smooth)
in both < and 8~, where it solves the linearised vacuum Einstein’s equations. On S
itself h1°® is not a vacuum solution, even away from the particle, and even when allowing
arbitrary completion pieces Ah,g in and out of S [see Section VI.B.1. of [53], where it is
shown that, at least in the flat-space example, the completed no-string solution differs
from a vacuum solution by a singular perturbation with a distributional support (a delta
function) on S]. However, this failure of the no-string solution to be regular (or even
a valid solution) on & turns out to be inconsequential in practice. Ref. [53] obtained
a formulation of the physical self-force, complete with a practical mode-sum formula,
from a no-string metric perturbation. This formulation requires information about the
perturbation field (and its derivatives) only in the one-sided radial limits r — R(t)¥,

which avoid S. It is this formulation that forms the basis for Ref. [41]’s calculation of the

*Here we use S to represent the 241D sphere r = R(t) in spacetime, while in Section 4.3 it was
introduced as the curve r = R(t) in the r,¢ plane. Throughout this work we will continue to use S in
both ways; the relevant meaning in each instance should be clear from the context. A similar remark
applies to S< and S~.
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gravitational self-force for generic orbits in Kerr spacetime, using a frequency-domain
method.

Importantly for us here, the no-string reconstruction also, in principle, enables calcula-
tions in the time domain. The idea is to solve the relevant evolution equation in each
of the two vacuum regions S< and S~, with suitable jump conditions across S. In our
method, we solve directly for the Hertz potential in the two vacuum regions, ®5 in S<
and ®7 in 8~, with suitable jump conditions that relate between ®5 and 7 on S. The
key ingredient in this formulation are, indeed, the particular jumps necessary for @i to

reproduce the no-string perturbation via

h

HA

= Re él@ .

H-AV

(7.26)

The derivation of the required jumps, for generic geodesic orbits in a Schwarzschild

geometry, will be described in Section 7.3.

First, however, we present a formulation of the evolution problem for @i via a 1+1D

decomposition, henceforth specialising to the Schwarzschild case.

7.2 141D evolution scheme for the no-string Hertz poten-
tial

7.2.1 Modal decomposition of the Weyl scalars

For metric reconstruction we will need a decomposition of the Weyl scalars in the same

basis. Recalling W1 have spin weights s = 2, we introduce

A:F2 - : Im
Uy = — ;;mzzgq/}i (t,7) £ om (6, ). (7.27)

As with the Hertz potential, the modal functions 14 (¢, 7) of the Weyl scalars satisfy the
vacuum 141D BPT equations

Wy + Us(r) 97 + Va(r) 7y + Wa(r)gs = 0, (7.28)

away from the wordline where the explicit forms of the potentials are given in Egs. (6.19)
and (6.20) with s = £2 for 9.

7.2.2 Inversion relations in 1+1D

In our method we solve for the (modal) Hertz potential ¢ directly, making use of neither

the BPT equation (7.28) for 1, nor the inversion relations that link ¢ to ¢. However, we
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will make use of the inversion relations in deriving jump conditions for ¢ across S (this
will be done in Section 7.3), and for that purpose we need these relations in a 1+1D

form.

The inversion relations for the vacuum solutions ®; and ®_ were given in Egs. (6.9)
and (6.10), respectively. We recall there are two alternative relations for each of the
two gauges, one linking (each of) ®1 to ¥, and another linking them to W_. In the

Schwarzschild case, the relations read

D}, = 20, (7.29a)
A’DIN*G . = 320, (7.29D)
(“radial” inversion), and
0_1000102®, — 12MO,®, = 8V_, (7.30a)
01000_10_2®_ +12MO;®_ = 8V, (7.30b)

(“angular” inversion). The differential operators D, and l~7n, whose general definition

is given just below Eq. (A.6), are, in the Schwarzschild case,
D, = (2/f>8v7 Dn = _(2/f)au (7'31)

The operators 0, and 05 are the “spin raising” and “spin lowering” angular operators
defined in Eq. (A.7), whose action on Yz, (0, ¢) is described in Eq. (A.8).

To separate the radial inversion relations (7.29) into multipole modes, we first take the

complex conjugate of Eq. (6.13) to obtain
_ A:ﬁ:Q 0 —m .
B =——D 60 " (=1)"£Vtm, (7.32)

where use was made of the symmetry relation (6.16). The expansions (7.27) and (7.32)
then separate Eqs. (7.29) to give, for each ¢, m, the fourth-order ODEs

rA2D? (A%ﬁm /r> = o(—1)mgh ™, (7.33a)

rD? (&m /r) = 32(—1)mP-™, (7.33b)

These relations can be written in a tidier form when the perturbation possesses a sym-
metry of refection about the equatorial plane, as in the setup to be considered in this
thesis: a particle source moving in the equatorial plane of the Schwarzschild black hole.

In this case we have the symmetry relation

P = (~1)tlm, (7.34)
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which follows from the following argument. First, we note that under the reflection
transformation § — 7w — 6 (with fixed ¢, r, p) the tetrad legs £* and n® remain invariant,
while m® — —m® and m® — —m® [see Egs. (A.1)]. Inspecting Eqgs. (A.3), we see this
implies U4 — U, , assuming the perturbed Weyl tensor Capys is invariant under such

reflection. Thus, using (6.17), we have
ATF? - -
Ui(0) =TVs(m—0) = ——> 2V (m — 6)
r
4m
AF? —0—m
== Z¢i (=1) 1Yo (0), (7.35)
4m

and a comparison with (7.27) then leads to (7.34). Using Eq. (7.34) we now write the

141D radial inversion relation (7.33) in their final form,

rA2D} (A%ﬂm /r) = opyptm, (7.368)
rD? (qs{m/r) — 32, (7.36b)

where
p = (-1, (7.37)

is the “parity” factor. We note (7.36) implies the 141D Hertz potentials share the same
refection symmetry as the 1+1D Weyl scalars:?

¢ = (~1)'glm (7.38)

Let us next separate the angular inversion formulas (7.30). Using (A.8) with (7.32) and
(7.38), we have

o A2
5_1605152(1)4_ = 7 Zp)\Q ¢ﬂ_m_2}/gm, (7.39&)
lm
_ A2 ),
010001028 = =—> Ao ¥im, (7.39b)
lm
where (« )
+mn)!

With this substitution, Eqs. (7.30) separate to give, for each ¢, m, the first-order ODEs

m m 2 m
5t¢ft :Fpa¢ft ::ngMT/JfF ) (7.41)

3More precisely, Egs. (7.36) alone imply (7.38) only up to homogeneous solutions of (7.36). However,
no homogeneous solution of (7.36) satisfies the BPT equations as required, so such solutions can be
excluded.
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where

Pyp— AQ
RERETIVA

(7.42)

We note that it is obviously possible to solve (7.41) in closed form in terms of a time
integral involving 1+ (this was the main result of [111]). That, however, would not serve
our purpose here. Recall that the inversion relations (7.41) are only valid in vacuum,
and cannot be used (despite temptation) to relate the distributional contents of 1)+ on
S to these of the no-string Hertz potentials ¢+. The idea, instead, is to use the inversion
relations evaluated in the two vacuum domains S~ and S< in order to get information
about the jumps in ¢4 across S, given the known jumps in 9-. As we show in the next
subsection, with some further manipulation [which also involves the radial inversion
relations (7.36)] this procedure can completely determine the jumps in ¢+ and all of

their derivatives on S.

We also note the relation (7.41) means that (given <) all time derivatives of ¢4 are
determinable algebraically from ¢y itself. For example, taking 0; of (7.41) and then
substituting for d;¢ back from Eq. (7.41), we find

Ot = &’py F —— (Opbs £ parhy) . (7.43)

3M
Taking 0, of (7.41) similarly determines 0y-¢+ algebraically from ¢+ and 9,¢+. With
the help of the vacuum BPT equation (6.18), we can then iteratively express 0,r¢+ and
all higher derivatives of ¢4 algebraically in terms of ¢+ and 0,¢+ alone. The significance
of this in the context of this work is as follows: It means we need only determine the
jumps across S of ¢+ and of its first r derivative. The jumps in all ¢, » and mixed

derivatives to all orders are obtainable algebraically from these two alone.

7.3 Jump conditions for the no-string Hertz potential

Ref. [87] sketched a method for obtaining the jumps across S for a generic geodesic orbit
in Kerr spacetime, but the actual jumps were only calculated for circular orbits in the
Schwarzschild case. In the general case (and even in the Schwarzschild limit) the method
requires the solution of a complicated set of coupled fourth-order ODEs for the jumps
in ¢ and in ¢, along the orbit. There was no attempt to solve these equations (neither
analytically nor numerically), except in the circular-orbit case, where they reduce to

algebraic equations.

Here we describe a different method for obtaining the jumps, and apply it to generic
orbits in the Schwarzschild case. The method yields a single first-order ODE for the
jump in ¢ along the orbit, which can be solved in closed form. The jumps in all partial
derivatives of ¢, at any order, are then obtained algebraically from that solution. There

were two key advances that made possible this much simpler and more effective approach:
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First, we have found a way of utilizing both radial and angular inversion formulas in
tandem, in a particular way that simplifies the calculation. Second, we have observed

certain algebraic simplifications that were overlooked in Ref. [87].

We consider here only the IRG Hertz potential ® (as also in [87]), but the jumps for
the ORG potential ®_ can be worked out in just the same way. We henceforth omit
the label ‘4’ for notational economy, taking ® = ®, and ¢"™(t,r) = qﬁm(t, r). We let
the interface S be described by the smooth function » = R(t), and denote the jump in
o(t,r) across S by

(@] := lim [67 (¢, B(t) + €) — ¢=(t, R(t) — €)] , (7.44)

where ¢< are the vacuum fields in S. The jumps in other 141D fields are similarly
defined: [¢,], [¢4], [¥+], etc. We think of [¢] as a function of coordinate time ¢ along

the orbit, and note the relation

6] = [6.] + Rlo], (7.45)

where we recall that an overdot denotes d/dt.

In what follows we assume that the jumps across S of the modal Weyl scalars {7 (¢, )
and of their first 3 derivatives are already known and are given. These jumps can be
obtained in a straightforward way from the source of the Teukolsky equation. We carry
out this calculation in Appendix B for generic (geodesic) orbits, and for both ¢_ and
14 (as both will be needed in our approach even if we restrict to the IRG potential ¢ ).

7.3.1 Expressions for [¢;] and [¢,] in terms of [¢]

Our task is to express each of [¢ ] and [¢ ;] in terms of [¢] alone (and possibly the known
jumps in the Weyl scalars). Substitution into Eq. (7.45) would then give a first-order
ODE for [¢]. The second half of this task can be accomplished immediately thanks to
the angular inversion formula (7.41). By applying Eq. (7.41) in both vacuum sides of S
in the limit to S, we obtain relations between the jumps [¢ 4], [¢] and [¢)_] (the latter
assumed known). These relations are obtained by simply replacing ¢ — [¢] etc. in Eq.
(7.41) and setting r — R(t) there to give

2

[94] = palg] — o7 [¥-]- (7.46)

The jump [¢p_] is given in Eq. (B.17) of Appendix B, and recall & = A2 /(12M). To obtain
[¢.r] in terms of [¢] is harder, and utilizes the fourth-order radial inversion (7.36a), using

a procedure we now describe.
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First, we write (7.36a) more explicitly in terms of coordinate derivatives. Using D, =
2(r2/A)d, (taken with fixed u), a calculation yields

2 1
rp + 72(37“ —5M)d3¢ + T—4(9r2 — 26M7r + 15M?)02¢
1

+ 275

(6% — 2L M7 + 16M2)y¢p = %m. (7.47)

We now act with 9, (fixed v) on both sides of (7.47), and use the vacuum BPT equation
(6.18) to substitute for each mixed derivative ¢ 4, in terms of ¢ ,, ¢, and ¢. In the

resulting expression we then substitute for 92¢ from Eq. (7.47). We arrive at a third-
order ODE of the form

3

1
Y A(r)d}e = Bu(r)ois, (7.48)
n=0

n=0

where A, (r) and B, (r) are certain (rational) functions. Notably, no u derivatives occur
on the left-hand side. Repeating this procedure with a second application of 9,,, this
time replacing 93¢ from Eq. (7.48), yields a second-order ODE of the form

2

2
D An)Oyo = Bu(r)diy, (7.49)
n=0

n=0

with some other (rational) functions A, (r) and B, (r). Again, we find that no u deriva-
tives occur on the left-hand side. One last application of 9, reduces the inversion relation
to a first-order differential equation, which, however, is now a PDE, since it features both
¢ and ¢,. We can, however, reduce this to an ODE by first converting to 7, and ¢
derivatives using ¢, = %(qb,t +¢,.) and ¢, = %(qf)’t — ¢r.), and then eliminating ¢ ¢
using the angular inversion relation (7.41). This leads to a first-order ODE for ¢, which
has the form ,

G, +A(r)d =Y Bu(r)Oivy + B(ryy_. (7.50)

n=0

An explicit calculation gives

2M (21 — 3)r — 6M]

Alr) — — 7.51
(r) “ r2(Ar — 6M) ’ (7.51)
for odd-parity modes (p = —1), and
M [4r3a?(2A1 + 3) + 2r2aX; (A +4) + M (3r — 2M
A(r) =+ [4r3a? (21 + 3) + 2r2aXi (A1 +4) + A3 (3r )] (7.52)

12 [202r2(Air + 6 M) + M A1 (6ar + A1) ’
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for even-parity modes (p = +1). The other radial coefficients in Eq. (7.50) are found to
be given by

By = M3\ +3MMr+6M%)/C(r)

Bi = [18aAMr* +8M*rPa(9 — TA) + M?r?(4X% — 9N% — 31\ + 24)
+2M3r(A + 3)(TA — 13) + 12M* (A + 5)] /C(r) ,

By = 12Mr*[a\r® — a(A —5)Mr?® +2(1 — 2Ma)Mr — AM?]/C(r) ,
By = AMr® [ar®(Ar+6M) + 3Mrf] /C(r) ,

B = —Af*M*r?*[6ar'(a®r? + X) — r ]A(N? — 4) + OIMr?(1 — 6Ma) — 36 M>*(r — M)] /C(r),

(7.53)
with
C = 18M° f3rta [—2a%r" — Ar? + 2Mr (X — 1) + 6]M7] . (7.54)

Here we have introduced
A=/ AN =L+2)({—-1), (7.55)

and we remind A\; = £(£ + 1) and a = Ay /(12M).

Using Eq. (7.50) (imposed in the limit to S on both sides of S) we can finally express
the jump [¢ ] = f(R)[¢,] in terms of the jump [¢] (and the known jumps in the Weyl
scalars ¢4 ):

(6] = +pZB NOu+] + B(R)[y-]. (7.56)

7.3.2 First-order ODE for [¢] and its solution

Substituting Eqgs. (7.46) and (7.56) in (7.45) now gives a simple first-order ODE for [¢]

as a function along the orbit:
9]+ (AR — pa) (] = F (7.57)

where R, = R/f(R). The source term here is

F =i Y- BRI+ (B - 37 ) -1 (7.58)
n=0

Equation (7.57) admits simple homogeneous solutions, given by (any constant multiple

of)
(6 = <R8f2 ]\fff )> x el (7.59)
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for odd-parity modes, or

R3X2\1 + 6 M R?)\2 + 36 M2 R\ + 72M3 a(t—R.)
[P]n = < R(R— 200)2 > X e (7.60)
for even-parity modes. The general inhomogeneous solution of (7.57) reads
tf t/
[¢] = [¢]n ) dt', (7.61)
to [Qﬂh

where tg is an a-priori arbitrary integration constant. We determine tg from the physical
requirement that [¢] remains bounded for ¢ — +o00. Observing that [¢], blows up like
et at t — 4oo (+ for even parity modes, — for odd-parity modes), while F(t) is at
worst polynomial in ¢, it is easy to see that the requirement of boundedness necessitates

to = +oo for p = £1. Hence, the unique physical solution of (7.57) is

6= [oh [ fqﬁ]?dt' (for p = +1). (7.62)

Equation (7.62) gives the jumps across S that the no-string Hertz potential modes must
satisfy, for an arbitrary orbit in Schwarzschild spacetime. (It requires as input the jumps
in the modes of the Weyl scalars, which in Appendix B we give explicitly specialised
to geodesic orbits; but given the Weyl scalar jumps, there is no further assumption on

whether the orbit is geodesic.) This is one of the main results of presented in this thesis.

We recall that the jumps in the field’s derivatives, [¢¢] and [¢,] (or [¢,]), can be ob-
tained algebraically from [¢], using Eqgs. (7.46) and (7.56), respectively. In principle,
knowledge of the jumps in the field and its first derivatives should suffice in our for-
mulation. However, in practice it is also useful to have at hand the jumps in higher
derivative, which eases the formulation of finite-difference schemes that have high-order
convergence properties. Once the jumps in the field and its first derivatives are known, it
is straightforward to obtain the jumps in higher derivatives in an iterative manner using
the procedure described in the last paragraph of Section 7.2.2 [the paragraph containing
Eq. (7.43)]. The application of this procedure up to third derivatives is illustrated in
Appendix B.3 (as applied to modes of the Weyl scalars).

7.3.3 Large-R asymptotics for scatter orbits

We were not able to evaluate the integral in (7.62) analytically for a generic orbit, but it
is straightforward to compute [¢](¢) numerically for any given geodesic orbit. In practice
we find it easier to obtain [¢] by (numerically) solving the first-order ODE (7.57). For
the class of scatter orbits of interest to us in this paper, we need to integrate the equation
over —oo < t < 0o. We choose to do so forward in time for for odd-parity modes but

backward in time for even-parity modes, in each case going “against” the direction of
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exponential growth of the homogeneous solutions (7.59) and (7.60). This prevents the
growth of nonphysical modes from numerical error. We now derive the leading-order
asymptotic form of [¢] at ¢ — +00. One of these two asymptotic values will be used as
an initial value for the ODE solver, and the other will be used to check the result of the

numerical integration.

We consider a timelike scatter geodesic orbit in Schwarzschild spacetime, parametrised

by specific energy E > 1 (“gamma factor”) and angular momentum L. We let

E? -1

Roo :::I:‘R(t—>:|:oo)‘::|: I

(7.63)
be the “velocity at infinity” (with respect to coordinate time t), so that Rs is negative
(positive) for the inbound (outbound) asymptotic states (Note that |Reo| = vs). We
formally expand [¢] as a power series in 1/R at large R(t), and seek to obtain the leading

term of that expansion.

To this end, we first obtain the large-R asymptotic form of F in Eq. (7.58). Using as
input the asymptotic expressions derived in Appendix B.4 for [¢_] and [0]!Y4] (n =

0,...,3), a direct calculation leads to
F=coR3+0O(R™), (7.64)

where

~ Amp(l+ Ry)

0 3o

[i(L/M))\g (ag — m) Vi + 6ERy, (899 — 2mdy + (m? — 2)) _mm} .
(7.65)

Here all angular functions are evaluated at § = 7/2 and ¢ = @i, (or ¢ = @out), With
©in (pout) being the asymptotic value of the particle’s azimuthal phase at t — —oo
(t = 400). Equation (7.65) takes a neater form when written in terms of spin-0 spherical
harmonics. With the aid of (6.14), we find

 drp(1 4 Reo)

0= [(6MEROO - imAL)Y - MLYQ} : (7.66)

where Y := Yv@m(%7 @in/out) and YG = 3917&71(%, (Pin/out)-

The asymptotic form of [¢] can now be obtained either by evaluating (7.62) with the
asymptotic form (7.64), or directly from the ODE (7.57) using a power-law ansatz.

FEither way, we arrive at

167‘-# 1 + Roo - < . 7 ', — —
(lrsoe =~ (1 TE ) [GMROOEY + ML(YQ - mY)}R 3L O(R™). (7.67)
2 (o.¢]
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We note Yy = 0 for even-parity modes, and Y = 0 for odd-parity modes. Our result
(7.67) can be checked against the m = 0, circular-orbit expression given in Eq. (87) of
Ref. [87], by setting Roo = 0, 70 = R, Q@ = \/M/R3 and Yy = —\Yp/v/Aa. We find an

agreement.

In the next section, for reasons that will become clear there, we will require also the
asymptotic forms of the jumps [¢,] and [¢ ). The jump [p.] = 2([¢.] + [¢]) is
obtained using Egs. (7.46) and (7.56) with the known asymptotic expressions for [¢],
[¢_] and [014]. The result is

6] _ ApmB(1+ Ryo)
ZWIR—o00 — \/E

YR +O(R™). (7.68)

The asymptotic form of [¢,] is obtained in a similar way. The jump [¢ ], in turn,
can be written in terms of lower-derivative jumps as explained in the last paragraph of
Section 7.2.2, and, substituting the asymptotic expressions already obtained for these,

one finds

4umE(2 + Ryo)

[$ 00 Rsoo = — T YR™*+O(R™®). (7.69)

7.4 Jump conditions for the Regge-Wheeler-like variable

It remains to translate the jumps in ¢ and its derivatives across S, obtained in Section
7.3, to jumps in X and its derivatives there. For brevity we only discuss here the IRG

case, but jumps for the ORG case can be obtained in a similar manner.

We could not find an explicit inverse of the transformation (6.26), but (given ¢4 ) it
is easy to obtain two independent algebraic relations between X, X, and X ,, which
will suffice for our purpose. First, taking 9, of (6.26), and using (6.25) and (6.26) to

substitute for X ., and X 4, respectively, leads to

X, /

=— 7  (3MX — 8Mr¢, — 4ri¢p. , )
s T'()\T‘—FGM) (3 8 r ¢+ T ¢+, )7 (7 70)

where, recall, A = (£ + 2)(¢ — 1). Second, taking 0,, of (6.26), then using the u and v
derivatives of the RW equation (6.25) to replace for X y,, and X 0, and finally using
(6.25) and (6.26) again to replace for X ,, and X ,,, we obtain

- 3Mf 8Mr(\ + 3) 4r3[Ar + (A + 9) M| 4ot
KXo == <a + r(r + 6M)> 3(\r + 6M) O+ 3M (Ar + 6M) ot gy Sov
(7.71)

By applying Egs. (7.70) and (7.71) in both vacuum sides of S in the limit to S, we

obtain relations between the jumps [X ,] and [X ,] on the one hand, and the jumps [X],
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[0+], [¢4,0] and [@4 4y] (the latter 3 assumed known) on the other hand; these relations
are obtained by simply replacing X — [X] etc. in Egs. (7.70) and (7.71), and setting
r +— R(t) there.

Now, along the orbit we also have the relation
[(X] = [X] + Ra[X.0], (71.72)

where, recall, an overdot denotes d/dt. Using [X ;] = [X ,] + [X 4] and [X .| = [X ] —
[X ,] and substituting [X ,] and [X,] from Egs. (7.70) and (7.71), we thus obtain a
simple first-order ODE for the jump [X] along the orbit, of the form [compare with
(7.57)]

[X] + (AX(R)R* + a) [X] = Fx. (7.73)

The coefficient Ax here is given by

6M(R — 2M)
Ax = N o 74
X = RORE6M)’ (7.74)

and the sourcing function Fx involves the known jumps in the Hertz potential and its

derivatives:

8M [GM (fR - R) +R (A(fR +R) +6R>}

Fx = 3fr(AR + 6M) [#+] +

AR'(fr + R)
3Mfr

[‘b—l—,vv}

N 4AR?
3M fr(AR + 6M)

[6M2(fr — B) + AR(OM + R)(fr+ ) + 6MR(fr + 2R)] [6+.0],
(7.75)

recall that fp =1—2M/R.

Equation (7.73) admits simple homogeneous solutions, given by (any constant multiple
of)

[X]n = (A + 6?5) et R (7.76)

Note that all these homogeneous solutions (except the trivial zero one) blow up expo-
nentially at ¢ — —oo. There is a unique particular solution of the full inhomogeneous

equation (7.73) that remains bounded; it is given by

(X] = [X]n /_ f[))"((]i) d'. (7.77)

This describes the jump in the RW variable needed for it to reproduce the no-string
Hertz potential.

In practice we find it easier to calculate [X] not from Eq. (7.77) but via a numerical
integration of the first-order ODE (7.73). It is best to integrate forward in time from ¢ —

—o00, going “against” the direction of exponential growth of the homogeneous solutions
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(7.76), in order to prevent the growth of such nonphysical modes from numerical error.
For this integration we need an initial condition at ¢ — —oo, which in the case of a
scatter orbit corresponds to R — oo (with Ruy < 0). The condition is obtained from a
simple asymptotic analysis of the ODE (7.73): Assuming [X] has a power-law behavior
at infinity, we have [X] < [X] at large R, so the derivative term in (7.73) may be
dropped at leading order. Then, using the R — oo limits Ax — a and

 16muE
3M/Xs

[obtained with the help of Egs. (7.67)—(7.69)], we arrive at

Fe o (1+ Bao)Y, (7.78)

Xrsoe = b Gy (2. funjout) (7.79)
Ay

which applies with i, for t — —o0, and with @gyt for ¢ — +o00. In our implementation

we use (7.79) to set the initial value of [X] at t — —oo, integrate the ODE (7.73) forward

in time, and then use (7.79) again to check the result of integration at ¢t — +oo. Figure

7.1 illustrates the result of applying this procedure along a particular strong-field scatter

orbit (the one depicted in Figure 4.6).
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FIGURE 7.1: The modulus of the jump [Xy,,] in the “no-string” field Xy, along the
geodesic scatter orbit depicted in Figure 4.6, for the (¢,m) = (2,0) and (2,2) modes.
This is obtained by numerically integrating the first-order ODE (7.73) forwards in time
with the initial condition (7.79) at large negative ¢ and ¢i, = 0. As a check, the
solution approaches the asymptotic value given in (7.79) with @ou =~ 481° (obtained
by integrating the geodesic equation). The inset plot demonstrates this for the real
part of [Xao], with dashed lines indicating the analytical asymptotic values. This jump
function inputs into our 141D characteristic evolution scheme, whose application is
illustrated in Sections 8.1 and 8.2.
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Once we have [X], it is straightforward to get jumps in derivatives of the field, also
needed for our 141D evolution scheme. This can be done algebraically. From Eqs. (7.70)
and (7.71) one immediately gets [X ,] and [X ,], and using the RW equation (6.25) one
gets [X 4] The jump [X ,,] is subsequently obtained from the transformation equation
(6.26), and [X ,,] can be found from the v derivative of Eq. (7.71). The jumps in third

and higher derivative can be found recursively in a similar manner.

In the chapter we showed how the vacuum metric reconstruction procedure fails with the
addition of a source and how this can be overcome for a point-particle using a “no-string”
radiation gauge by only solving in vacuum regions. We developed a 1+1D evolution
scheme capable of calculating the no-string Hertz potential. The crucial ingredient for
this implementation is the jump conditions across the worldine of the particle. We derive
closed-form equations for jumps in the Hertz potential and the RW variable, as well as
their derivatives. This gives us all the required inputs to perform a calculation of the

Hertz potential for a point-particle source, which will be undertaken in the next chapter.
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Chapter 8

Time-domain reconstruction of
the metric perturbation: Particle

implementation

In this chapter we implement our 141D method formulated in the last chapter. In
our circular-orbit implementation we show that the new method produces the correct
solutions for the IRG Hertz potential by comparing to static analytic solutions and the
results of an implementation which directly solves the Teukolsky equation (but contains
the t* IRG non-physical mode). We extend our implementation to the scatter orbit
case and present first-of-their-kind calculations of gravitational self-force quantities for

unbound orbits.

8.1 Circular-orbit implementation

Here we present an implementation of our new method for a circular equatorial orbit.
This allowed us to compare our new method against known analytic solutions for static

modes and the previous work of Barack & Giudice [87].

8.1.1 Jumps across S

In order to numerically evolve the Regge-Wheeler equation (6.25) we first need to obtain
the jump conditions [X] along S. For this we need jumps in the Hertz potential, and its
derivatives, which in turn require the jumps in the Weyl scalars, and their derivatives.
[¢], and jumps in the derivatives, can be obtained from the results in Appendix B by
using the simplifications R = 0 and the fact that any time derivative is taken using

0y — —1mf2, due to the fact that the only time dependence comes from ¢, = 2t in the
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spherical harmonics. [¢] can be obtained by using the same simplifications when solving
Eq. (7.57), which reduces the ODE to an analytic equation. Explicit expressions for the
jumps in the Weyl scalar (for s = —2) and IRG Hertz potential for the circular orbit

case are given in Appendix A and Section IV of [87] respectively.

Similarly, we can apply the circular orbit simplifications to Eq. (7.73) to obtain an

analytic equation for the jumps in the RW field:

16

[X] = Xo — 12imMQ

(202 [94] + R*(M + R) [p1 0] B! [610]) . (81)
With this result we can easily obtain jumps in the fields derivatives as detailed in the
last paragraph of Section 7.4. Using this method gives the higher-order jump conditions
needed for the finite-difference scheme (see Appendix C.3.1) as

X =~ rgies iy (BM 1X] = M (9] = 4R 6..,]) (52
[X,uv] = % <]A%12 - 6;?) [X] ) (83)
(X uu] = —imQ[X ] — [X uo) - (8.4)

8.1.2 Analytic solutions for static modes

As with the scalar field on a circular orbit case, we can obtain analytic solutions for the

fields ¢ and X in the static case where m = 0. The analytic solution for both fields

consists of a superposition of two independent vacuum solutions, one valid for the regime

r < R and the other valid for » > R. The independent solutions for the Hertz potential

are given by

AP} (p) o> — B0 (.5)
fr 0 fr '

where P, and ()}* are the associated Legendre polynomials of the first and second kinds

< _
buy =

respectively, A and B are constants and we recall p = (r — M)/M. The solutions have
this split form across & due to their asymptotic behaviour. q§£<0 is finite at r — 2M but
is divergent in the limit » — oo. Conversely, (bZ) diverges in the limit » — 2M but is

finite at r — oo.
The independent solutions for the RW field are

X5 = Ca'haR(—0—2,—0+2;-262), (8.6)
X2 = Dzl oFy(0—1,0+3,20+2;2), (8.7)

where z := 2M/r, C and D are constants and oF} are hypergeometric functions defined
by
2(1 = 2)02 y(@) + (c — (a+b+1)2) &, y(x) — aby(a) = 0, (3.8)
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with y(z) = 2F1(a, b;c;x). Again, the split across S is chosen due to their asymptotic
behaviour as X5 (X)) is finite (divergent) as » — 2M and divergent (finite) as r — oo.

We can determine the constants of the solutions by taking the difference of the solutions
(and one of their derivatives) at the wordline r = R and then use the appropriate jump
conditions to form a set of simultaneous equation. The solutions for the constants are
cumbersome hence we are not writing them here. For the explicit form of the IRG Hertz

potential solutions we refer the reader to Section IV A of [87].

8.1.3 Numerical method

Our numerical implementation has the same setup to that of the scalar field with a
point-particle source as described in Section 4.4, but here we evolve the RW equation
(6.25). We centre the grid on the orbital radius of the particle » = R such that S passes
directly through a set of field values. However, this creates an issue as the field values
are not defined on the worldline. To overcome this we shift S to an infinitesimally larger
r > R such that we calculate X< along » = R. Given X< we can trivially obtain
the field value corresponding to the S~ limit to the worldline using the definition of
the jump conditions X~ = X< + [X]. We set the field values on the initial rays as
X<(u,v9) = X~ (up,v) = 0 and let the evolution be sourced by the jump conditions

across the surface S.

This is done at the level of the finite-difference scheme as detailed in Appendix C.3.
Our code takes as input the radius of the orbit R, multipolar numbers ¢, m as well as
various numerical parameters, and returns the generating-function fields X fm(t7 r) and
the IRG no-string modal Hertz-potential fields wfm(t,r). A more detailed description
of our numerical algorithm, as applied to the hyperbolic-orbit case, is given in Section
8.2.1.

8.1.4 Sample results

Figure 8.1 shows the behaviour of the field X along the worldline of the particle,
chosen to be at r, = 9M, for a selection of modes. X shows similar behaviour. The
early-time behaviour is dominated by junk radiation which decays in time (as an inverse
¢-dependent power law). The late time solution approaches the true analytic solution, as

shown explicitly by comparing the numerical and analytic solutions of the static modes.

We can form a solution for the IRG Hertz potential modes ¢y, by applying the Chan-
drasekhar transformation (6.26) to the generating function Xpy,,. The behaviour of
the Hertz potential along the worldline is shown in Figure 8.2. The late-time results
produced by our new method were compared with those from an implementation that

directly solves the Teukolsky equation (using the method detailed in Ref. [87]) and were
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FIGURE 8.1: The behaviour of the Regge-Wheeler-like field | X5 | along the particle’s
(chosen to be at r, = 9M) for various (¢,m) modes. The early part of the data
is contaminated with initial junk radiation, which is to be discarded. We show the
analytic solutions for static modes (dashed) for comparison. The inset shows how the
| X55| results converge to the analytic solution (dashed) with decreasing grid spacings
bk 5 M.

found to be in good agreement before the comparison data becomes dominated by the
t* growth. From this we can conclude that our new method can successfully obtain

the no-string IRG Hertz potential without the presence of non-physical modes of the
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F1GURE 8.2: The IRG Hertz potential |¢Z<m| along the particle’s worldline for an orbit
of r, = 9M for a selection of (¢,m) modes. Dashed lines represent analytic solutions
(obtained from Sec. IV A of [87]) and are shown for reference. The inset shows a subset
of the |¢5;| data as calculated by our method (blue) and directly from the Teukolsky
equation (yellow) using the method of [87], which shows evidence of the t* growth
discussed in Section 6.3.2.
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8.2 Hyperbolic-orbit implementation

We now present a full implementation of our method for a strong-field geodesic scatter
orbit. Our code takes as input the parameters of the geodesic orbit, along with multipolar
numbers ¢, m, and returns the generating-function fields X fm(t, r) and the IRG no-string
modal Hertz-potential fields wfm(t, r).

8.2.1 Numerical algorithm

Our method is based on a characteristic numerical evolution in u,v coordinates, as
described in Section 4.5—only here we are evolving the Regge-Wheeler-like equation
(6.25) instead of the scalar field equation, and we impose suitable jump conditions along
S (see Figure 4.5) compatible with the no-string IRG solution for our sample scatter
orbit. A detailed description of our finite-difference scheme is given in Appendix C.3,
where we also explain how the jump conditions are incorporated into the scheme so as
to achieve a (global) quadratic rate of numerical convergence. Here we lay out the main

steps of the numerical algorithm.

Input. The code takes as input the two orbital parameters vy, and b, the orbital radius
r = Rinit at the start (and end) of the numerical evolution, the field’s multipole numbers

¢, m, and the finite-difference interval h := Au = Awv.

Step 1: Calculate geodesic orbit. Given vs, and b, the code calculates £ and L and
from these e and p, as well as Rmin. The functions R(t) and ¢p(t) are then derived
in the range Ryin < R < Rjnit by numerically integrating R and ¢p [as obtained from
Egs. (2.1)-(2.3)], with initial conditions R(0) = Ruyin and ¢p(—o00) = 0. The code also
calculates tiot, the time it takes the particle to get from Rjy;; back to R after being

scattered.

Step 2: Set characteristic grid. The code then prepares a 2 x 2 array of u, v coordinate
values representing the nodes of the characteristic mesh shown in Figure 4.5. For the
initial rays we take vo = —tio/2 + R and ug = —tior/2 — Ry with RY, := ry(Rinit)-
This is so that the initial vertex (u,v) = (ug,vg) is crossed by the particle at (¢,r) =
(—ttot/2, Rinit). The stepping interval is set at h, and the grid’s dimensions are taken
such that the final characteristic rays are at u = tyo1/2 — R}, and v = tyo1/2+ R}, such
that the particle crosses the upper vertex at (¢,7) = (ttot/2, Rinit) on its way out. Finally,
the coordinate values of all intersubsections of the orbit with grid lines are calculated

and stored.

Step 3: Obtain [¢] along the orbit. Using the analytical expressions in Appendix B, we
calculate the jumps in the Weyl scalars 1+ and their derivatives along the orbit, for the
¢,m mode in question. Specifically, we compute [¢)_] and [0]}¢4] for n = 0,...,3, and
from these, using (7.58), we analytically construct the source function F(t) in Eq. (7.57).
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We next numerically integrate the first-order ODE (7.57) with the initial condition
(7.67), to obtain the jump [¢4] in the Hertz potential along the orbit. From [¢4], we
algebraically obtain [¢, ,] and [¢ ., ] using the procedure described in the last paragraph
of Section 7.2.2.

Step 4: Obtain [X] along the orbit. We now construct the source function Fx using Eq.
(7.75), and then numerically solve the first-order ODE (7.73) for [X] with the initial
condition (7.79). From [X] we algebraically obtain also [X ], [X 4], [X ], [X u] and
[X wu), using the procedure described in the last paragraph of Section 7.2.2. The jump
values are computed at all intersubsections of the particle’s worldline with grid lines,

and stored as vector datasets.

Step 5: Obtain the generating function Xfm. We evolve the RW equation (6.25) using the
second-order-convergent finite-difference scheme described in Appendix C.3. The scheme
requires as input the field jumps calculated in the previous step at intersubsections of
the worldline with grid lines. The evolution starts with zero initial data along v = vy
and u = ug and proceeds along successive lines of u = const. The outcome is a finite-
difference approximation to the generating field X in each of the vacuum regions S~
and S<.

Step 6: Derive the Hertz potential ¢§m. Given X, the Hertz potential mode ¢ is calcu-
lated in each of the two vacuum regions using Eq. (6.26), where derivatives are taken

numerically.

Qutput. In principle, the code can make available the Hertz potential ¢ anywhere in the
computational domain. For our initial tests and for the purpose of illustration in this
thesis, we output both X and ¢ as functions of ¢ along the orbit (on either of its sides)

and as functions of u along the final v = const ray (approximating # ).

8.2.2 Sample results

For the numerical demonstration to be presented below we use the same sample strong-
field scatter geodesic as in Section 4.5 whose parameters are given in Eqs. (4.16) and
(4.17). The orbit is depicted in Figure 4.6.

Figure 8.3 demonstrates the behaviour of the field X ;m along the worldline of the particle,
for a sample of £, m values (the field X5 has a similar behaviour). The evolution begins
when the incoming particle is at Rj,;x = 100M, and ends when the outflying particle is
back at 100M.

We have performed convergence tests to confirm that our code exhibits a quadratic
global convergence rate in h, as it is designed to do. An example is shown in Figure 8.4.

The global rate of convergence is very sensitive to the implementation details of the jump
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F1cURE 8.3: The RW field Xy, along the particle’s worldline for the orbit shown in
Figure 4.6 for a sample of (¢,m) values. Here we show | X (¢, R(t))| as a function of
time ¢ (lower scale) and orbital radius R (upper scale). Curves are labelled with their
(¢, m) values, with ¢ = 8 data shown amplified by a factor x600. The periastron location
at t = 0 is indicated with a vertical line. The early part of the data is contaminated by
initial junk radiation, and it is to be discarded.

conditions in the finite-difference scheme (see Appendix C.3), so the observed quadratic

convergence provides important reassurance that these jumps are implemented correctly.

As can be seen in Figure 8.3, initially the data is contaminated by junk radiation which
decays over time to reveal the true, physical solution. The decay appears faster for higher
values of ¢, as expected from theory. Figure 8.5 illustrates how the “clean” part of the
data appears to be insensitive to the value of Ry, up to a small decaying difference.
As the figure demonstrates, using Ri,it as a control parameter enables us in practice to

evaluate the level of residual contamination from initial junk.

Figure 8.6 shows the no-string IRG Hertz potential ¢5, derived from Xs5,, as a function
along the orbit. The gravitational case has similar notable physical to the scalar case
including: (i) the small lag between the peak of the field and the periastron passage, and
(ii) the small undulation in the field amplitude not long after periastron passage. (Both
features are visible already at the level of the generating function X, and are numerically
stable.) As with the scalar case, we suggest these are both features associated with “tail”
contributions to the self-field, and are less visible at larger ¢, where the “direct” part of

the field is more dominant.

Finally, Figure 8.7 shows the behaviour of ¢35, near .# T, as a function of retarded time
u. The periastron lag and post-periastron undulation are also visible in the radiation

field in this domain.
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FIGURE 8.4: Convergence test for the (¢,m) = (2,2) numerical solution. The inset
shows a detail from the |X5;| (green) curve in Figure 8.3, for a sequence of runs with
decreasing grid spacing, h = {%, %, 3—12} M. The main plot quantifies the convergence
rate: It shows the ratio R := |Xg — Xi5|/ | X1 — X352/ as a function of ¢ along the
orbit, where a subscript ‘8’ (e.g.) denotes a calculation with grid spacing h = M /8. A
ratio of R = 4 is indicative of quadratic convergence.
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FIGURE 8.5: Numerical results for | X3,| on the particle’s worldline, as calculated with
Rinit = 100M (blue) and with Ry, = 200M (orange). The comparison illustrates how,
reassuringly, the “clean” portion of the data is insensitive to Rinjt, up to a small error
that dies off in time. The inset displays the relative difference between the two curves,
showing a t=* fall-off at late time, consistent with the theoretically predicted ¢t=¢—2

decay rate for compact vacuum perturbation along a curve r = R o t [see, for instance,
Eq. (89) of Ref. [91]].



8.2.

Hyperbolic-orbit implementation 103

>
22|

[

50

RIM

0.04 -

30

10 10 30 50 70 90
30 10 10 30 50 70 90

1.2
0.03/ 101 mﬁ“\\\jf%iﬁijfl :
— 0.8 :
06 :
0.02! 0.4}
i 0.2
, 2100 0 100 200 300
0.01
0.00
2200 -100 0 100 200 300

tIM

FIGURE 8.6: The modulus of the “no-string” IRG Hertz potential ¢35, along the parti-
cle’s worldline. The field falls off as X ~ ¢~2 at large R. The inset shows the same data
rescaled by a factor (R/M)?. The field exhibits the lagging peak and post-periastron
undulation features discussed in the text. (The multiplication by (R/M)? makes more
distinct the undulation feature, only barely visible in the main plot.)
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FIGURE 8.7: The modulus of the Hertz potential ¢35, as a function of u at v = const =

499M (approximating £ 1).

The vertical line represents u at periastron. The inset

shows the same data rescaled by a factor (u/M)? to again highlight the post-periastron
undulation feature.
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In this chapter we implemented our new method to calculate the mode decomposed
141D IRG Hertz potential. The comparison of our circular-orbit results with known
analytic solutions and other implementations shows that our method calculates the Hertz
potential without the nonphysical modes which are present in other similar methods.
We then extended our implementation to be able to produce the first calculations of
certain self-force quantities for a hyperbolic encounter. Our results showed evidence of

new physics including a post-periastron peak and undulation in the field amplitude.
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Chapter 9

Concluding remarks

The main results of this work are fivefold. First, we derived two separate formulae
to calculate the conservative self-force correction to the scatter angle (at fixed initial
velocity v and impact parameter b) as certain integrals of the self-force along the
orbit. Second, we calculated the scalar self-force correction to the scatter angle for a
strong-field orbit, the first calculation of its kind. Third, we have provided the details
of a practical method for a time-domain calculation of the Hertz potential for point-
particle metric perturbations in Schwarzschild spacetime. The main ingredients were
jump conditions that the Hertz potential must satisfy along the particle’s worldline (in
a 1+1D multipolar reduction of the problem), which we derived in explicit form for
generic geodesic orbits. Fourth, considering the numerical implementation strategy, we
have demonstrated that a straightforward approach based on evolution of the Teukolsky
equation in (u,v) coordinates does not work (even for vacuum problems), and explained
the reason for that failure. Fifth, we have proposed a way around the problem and
demonstrated its applicability with an end-to-end numerical calculation of the Hertz

potential for a scatter orbit.

Since this work primarily concentrates on method development, we have not explored
in detail the performance of our code near the extremes of the parameter space for
scatter orbits. Relevant asymptotic domains of interest are that of large Ry, (weak-
field regime) and that of large v, (ultrarelativistic regime), where useful comparisons
can be made with analytical approximations. Preliminary experiments suggest that, as
expected, the performance of our code gradually deteriorates with larger Ry, and/or
larger vo,. In large-Rpin runs we are penalised by the longer evolution time required,
and in the large-vo, case the slower decay of initial junk along the orbit requires a larger
value of Rt (and again a longer run). We estimate, nonetheless, that our current
(admittedly suboptimal) method and code can comfortably handle Ry, < 50M and
Vo < 0.6. Note that we virtually have no limit on how large the impact parameter b
can be taken to be (indeed, in the marginally-bound case studied in [81] via a similar

time-domain method one has b — o).
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9.1 Outlook

Here we discuss possible followups to the work presented in this thesis. This includes
completing the calculation of the gravitational self-force for an unbound orbit in a
Schwarzschild background and the possible interfaces with other two-body GR mod-
els. We continue by discussing extending our calculation to a Kerr background and

adding in second-order self-force effects.

9.1.1 Gravitational self-force

Let us review here the additional steps necessary towards a calculation of the grav-
itational self-force correction to the scatter angle, starting from the baseline of the

computational method and code developed here.

e Given the Hertz potential, the no-string radiation-gauge metric perturbation is
reconstructed (mode by mode) via Eq. (6.7). This involves taking two derivatives
of the numerical variables ¢y, (and hence four derivatives of Xj,,) along the orbit,
on either side of it. For the eventual self-force calculation one requires the gradi-
ent of the metric perturbation, which therefore requires three derivatives of ¢z,
(and hence five derivatives of Xy,,). The computational implications are discussed

further below.

e One has to separately compute the “completion” piece of the metric perturbation,
which is not accounted for by the Hertz potential [88,112]. In the Schwarzschild
problem this corresponds precisely to the determination of the £ = 0, 1 perturbation
modes. Of these, the axially-symmetric modes (I,m) = (0,0) and (1,0), which
describe mass and angular-momentum perturbations, are easily determinable using
the results of [88]. The modes (I,m) = (1,+1), which regulate the centre-of-mass
location, require a more careful analysis, similar to the one performed in [81] for

marginally-bound orbits.

e Once all the modes of the metric perturbation and its gradient are available, the
self-force along the orbit is straightforwardly obtained via the no-string radiation-
gauge version of the mode-sum formula, prescribed in [53]. It is also easy to
separately extract the dissipative and conservative components of the self-force,
utilising the symmetries of the geodesic scatter orbit about the periastron point

[e.g. using Eqgs. (5.8) to determine the conservative SF].

e One can then calculate the self-force correction to the scatter angle by using Eq.
(3.44) or Eq. (3.60). Additional physical quantities, such as the time delay in-
duced by the self-force, or the integrated particle’s spin precession and tidal-field

invariants, may also be calculated, though the latter two would require evaluating
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higher derivatives of the metric perturbation. The self-force information allows

calculation of all these effects with or without dissipation.

We have noted above that a calculation of the metric perturbation and self-force involves
taking high-order derivatives (fourth and fifth, respectively) of the numerical evolution
field Xy,,,. This is an obvious computational disadvantage of our approach. It can be
mitigated if a method is employed that allows a direct evolution of the Teukolsky equa-
tion for the Hertz potential ¢y,,, which would reduce the required number of derivatives
to only two for the metric perturbation, and three for the self-force. As mentioned in
Section 6.3, there already exist such methods, based on compactification of .# T and the
use of horizon-penetrating coordinates—which appear to automatically eliminate the
problematic non-physical growing solutions of the Teukolsky equation. Existing codes
employ asymptotically null (hyperboloidal) Cauchy slicing of the numerical domain. We
propose that, in our context, it might be advantageous to retain the convenience and
simplicity of a fully double-null treatment, taking advantage of the domain split across
S. What we have in mind is a scheme where on ST we use the original Eddington-
Finkelstein coordinate u with a compactified v coordinate, while on S~ we use the
original v coordinate with a compactified u. The coordinate discrepancy along § is then

incorporated into the jump conditions.

9.1.2 Interfaces with other two-body GR models

With full results of the gravitational self-force for unbound orbits we can inform and

compare with a variety of other methods of modelling two-body systems within GR:

e One of the most exciting prospects utilises the results that the self-force correction
to the scatter angle can be used to inform bound two-body models. As discussed
earlier, information of scattering dynamics at first-order (second-order) in the mass
ratio determines the complete two-body Hamiltonian through 4PM (6PM) order
to all orders in the mass ratio [80]. This opportunity to extract highly accurate
information about BBH collisions will allow us to form models capable of meeting

the requirements for the next generation of GW detectors.

e The highly penetrating nature of scatter orbits, as shown in Figure 1.10, makes
them uniquely positioned to provide information about the ultra-strong-field. We
can use this data to callibrate EOB calculations without the weak-field approx-
imation that the current benchmarks rely on. This is another way that scatter

calculations can inform bound waveform models for GW observations.

e Comparisons with other two-body scattering calculations with GR, such as PM,
PN, and NR, gives us the opportunity to test the relative merits of each model in

different regions of the parameter space shown in Figure 1.6.
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e Methods from high-energy physics are being used to calculate quantities with grav-
itational physics by mapping information about scatter observables into some form
of two-body gravitational potential [75]. We can compare our classical GR models
with the results from these QFT/EFT methods. Additionally, the use of scattering
data from GR to calculate quantities within QFT (see Ref. [78]) suggests that it
may be possible to extract high-energy information from gravitational scattering.
This connection between high-energy and gravitational physics provides unique

opportunities for progress in both fields.

9.1.3 Extension to a Kerr background

It is natural to ask about the prospect of an extension to orbits in Kerr geometry. This
has been discussed in some detail in Ref. [87]. A 1+1D treatment of the Teukolsky
equation in Kerr is still possible, albeit with the additional complication of coupling
between ¢ modes. The field equation, together with jump conditions on S, can be recast
in a narrow band-diagonal matrix form, and solved for all £ modes simultaneously (with
a cutoff at a sufficiently high /). The application of this mode-coupling approach
has been demonstrated in vacuum problems [87,113], but it is yet to be applied with
a particle source, and the appropriate no-string jump conditions are yet to be derived.
In the Kerr case there is no known way of transforming to a RW-like variable in the
time domain (the Sasaki-Nakamura formulation achieves that in the frequency domain
only [114,115]), which further motivates an approach based on a direct evolution of the

Hertz potential with a suitable form of domain compactification.

9.1.4 Extension to second-order self-force

Another extension would add corrections that are second-order in the mass ratio. While
second-order SF theory is now well developed, the case of hyperbolic motion presents
unique theoretical issues that have not been considered so far. The current formulation
of second-order SF calculations is motivated by EMRI observations and thus is highly
specialised to bound orbits. These calculations are based on a two-timescale expansion
which separates quantities into those that evolve on the timescale of the radiation-
reaction time and those that evolve on much shorter timescales, such as the orbital
frequencies [67,116]. This expansion is not valid in the scatter problem. There is also
a great deal of subtlety in the behaviour of the spacetime metric at large distances in a
scatter scenario; the spacetime does not possess the usual asymptotically flat structure
and thus there are potential repercussions regarding the source of the second order

Einstein field equation (1.22), which will need to be explored.
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The outlook for black-hole scattering is promising. The revelations that unbound en-
counters can inform bound waveforms has launched the “scattering revolution”. The
scientific community are now tackling the problem from multiple angles and developing
new techniques to produce groundbreaking results that will shape the future of gravita-

tional wave astronomy.






Appendix A

Bardeen—Press—Teukolsky

equation and metric
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We give here a more detailed technical account of the background material presented

in Section 6.1, and in particular we give explicit expressions for the operators T4, 04

and éi, and their adjoints. Our sign conventions for the Newman—Penrose formalism

are adopted from Ref. [88]; Appendix A therein gives a useful summary.

In this paper we use Kinnersley’s null tetrad basis on a Schwarzschild background with

metric gog and mass parameter M. In Schwarzschild coordinates (¢,7,6, ¢), the tetrad

legs are given by

e§ = m® = (0,0,1, (A.1)
where A := r(r—2M), and overbars denote complex conjugation. We have gagege’g =0
for all @ and b, except £*n, = —1 and m*mn, = 1. The corresponding spin coefficients

are Yape ‘= glt,\eﬁezvyeg. Up to trivial index permutations, the only nonzero coefficients
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in the Schwarzschild case are

0= —Y314 = ——,
r

o A
pi= T4 = T5 0

1
7= —= (7212 + 7342) =

2 2r2’
1 cot 0
= —— «|» = —
B 2(7213 Y343) 22
1 cot 6
o= —= + = - : A2
2(7214 Y344) ol (A.2)

The Weyl curvature scalars ¥ and ¥4 are defined in terms of the Weyl tensor Cog5 as

Wo = Coprs (OmPOm?,
Uy = Capys nemPnrmd. (A.3)

Both ¥y and ¥4 vanish in the Schwarzschild background, and so, for the sake of economy
but in a slight abuse of notation, we use these symbols to represent the linear pertur-
bations in these quantities. We define ¥ := ¥y and ¥_ := o~4U, for notational ease.
In terms of the metric perturbation h,g, we have 'T'ihag = W, [Eq. (6.2)], where the

second-order differential operators T4 are given by
A 1
(T,)# . (Z(C“mﬁ)ﬂ“ﬂf‘s —memP O — 2 PmIm? + m(aﬁﬂ)ﬁm‘s) VsVs,

(F-)°% =3

: <n("‘m5)m7n5 — mmPnIn® — nnPmmd + m(o‘nﬁ)n’ym‘;) VsV, (A4)

Here V, is the covariant derivative compatible with the Schwarzschild background metric

9ap, and parenthetical indices are symmetrised, as in A,g) = %(Aa/g + Agq)-

The perturbation fields W satisfy the Teukolsky equation with spin parameter s = +2,
whose Schwarzschild reduction is sometimes referred to as the Bardeen—Press equation.

Here we refer to it as the Bardeen—Press—Teukolsky (BPT) equation. It has the form
6:|:\I/:|: = 7;:7 (A5)

where the differential operators on the left are

N — M ~ — M _
OL=A <D4 + 2TA> <Dn + 4T‘A) + 0109 — 670,

0. =A <Dn p _AM ) Dy +9_19_5 + 670;. (A.6)
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Here D, := (°V,,, D,, := n®V,, D,, := —(2r?2/A)D,,, and we have introduced the “spin

raising and lowering” operators, respectively

0 := —0p —icsc B0, + scot 0,

05 := —0p +icsch0, — scot 0, (A.7)

whose action on spin-weighted spherical harmonics Y7, (0, ¢) is described by

Os Xom = +\/(€ - 5)(£ + s+ 1) s—i—l}/Zma

Bs &Yom = V(U +8) (0 — s+ 1) s_1Yem. (A.8)

The source terms 73 in (A.5) are obtained from the energy-momentum tensor 7,3 using

To = 8, Tap = 8712 [(Dm — 28)DyTh1 — (Di — 50)(Dy — 28) T3
— (D — 2B8) (D¢ — 20)T13 + (D¢ — 50) (D¢ — 0)T33|,
(A.9)

T =8 Top = 81" [(Dm — 28) D Tas — (Dy + 2y + 51) (D, — 28)T2a

— (D — 28) (D, + 27y + 2u)Togq + (D, + 2y + 5u) (D, + 1) Taa|,
(A.10)

where T71 = Taﬁe?ef, etc., and we have also introduced D,, := m®*V, and Dy :=

m*Vy.

As described in Section 6.1, the metric reconstruction procedure involves the operators
adjoint to (A)+, 'T'+ and §+.4 These adjoint operators can be obtained by integrating
each operator against a suitable test function and manipulating using integrations by

parts. In this fashion it is straightforward to show that
0l = O+, (A.11)

i.e., solutions ®. to the adjoint BPT equation with spin s = +2 are also solutions to
the standard BPT equation with spin s = F2. For the metric reconstruction operators

[see Eq. (6.7)] a calculation gives

St = —20,05 (Dy +28) (D, + 48) + 2mamg (Dy — 0) (Dy + 30)
—2L(amp) | (D +48) (De + 30) + D¢ (D + 48) (A.12)

4Rec§ll that for a linear operator I;taking an Zl—rank tensor field ¢ to an m-rank tensor field v, the
adjoint LT takes ¢ to ¢ and satisfies (LT¢))¢ = ¢(L¢) (up to a divergence of an arbitrary vector field).
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S = —2*nang (D + 28) (D + 48) + maing (Dy + 5 — 27) (Dy + 1 — 47)
—n(aing) ( (D +48) (Do + g — 49) + (Dy + 4 — 47) (D = 26) )|
(A.13)

Finally, for the “source reconstruction” operators [see Eq. (7.4)] one finds

(11)7 = LDy +28) (D +48) — gm®m® (Dy — 0)?
45 0Cm?) Dy (D +46) + (D +48) (De —0) |, (A1)
(1)%0 = —2n"n(Dy+28) (D +48) — 5 (Do 4~ 29)(Do + p— )

%n(amﬂ) [(Dn — 47) (Dyy, + 4B) + (Dsy + 48) (Do + p1 — 47) } . (A.15)
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Appendix B

Jumps in the Weyl-scalar modes
w:l:
m

In this appendix we derive the jumps across S in the Weyl-scalar modal fields Q/me(t, T)
and their first 3 derivatives, for a generic geodesic orbit in a Schwarzschild background.
We do so analytically, and for both spins s = £2. These jumps are necessary input for
the calculation of the no-string Hertz-potential jumps [¢+] in Section 7.3. In our method
we require both [¢4] and [¢)_] for either [¢4] (IRG potential) or [¢_] (ORG potential);
cf. Eq. (7.57) with (7.58). At the end of this appendix we derive asymptotic expressions
for [¢)4] at large radii in the case of scatter orbits which are used in the asymptotic

analysis of Section 7.3.3.

B.1 BPT equation with a point-particle source

Let U, = ¥, and U_ = r*W, be the Weyl scalars associated with the physical metric
perturbation sourced by a geodesic point particle with stress-energy as in Eq. (7.24).
We recall our notation: f is the particle’s mass, and a# = x5 (7) describes its geodesic
worldline, with proper time 7 and four-velocity u® := dx,/dr. For convenience, we set
the Schwarzschild coordinates so that the orbit lies in the equatorial plane (6, = 7/2),
and write R(7) = 7p(7). The conserved (specific) energy and angular momentum of
the orbit are E = fru' and L = r?u?, respectively, where fr := 1 — 2M/R. The

Schwarzschild components of the four-velocity are

ult = (E/fr, (B fR)R,0,L/r?), (B.1)
where an overdot denotes d/dt.

The Weyl scalars W satisfy the s = 2 BPT equations (A.5), where the source 7. is
derivable from 7% by means of Eqs. (A.9) and (A.10). Expanding both ¥4 and 7% in
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s = %2 spherical harmonics, as in Eq. (7.27), separates the BPT equation into modal
equations for each of the time-radial fields wgtm(t, r). The modal equations are (dropping
the indices ¢m for brevity)

o+ Us (M)W + Va(r)os + Wi(r)w® = T (t,7), (B.2)

where the radial functions on the left are those given in Egs. (6.19) and (6.20), with

s = 2 for 4. The modal source term T+ can be written in the form
Te(t,r) = 55 (£)6[r — R(t)] + 57 ()3'[r — R(8)] + 55 (1)6"[r — R(2)], (B.3)

where a prime denotes a derivative with respect to the argument, and the source func-

+

£(t) are certain functions along the orbit. The explicit expressions for s (t) are

tions s
rather unwieldy, unfortunately, but they are essential within our method, so we give

them here. They are

s¢ :%L{ — L*mfER (i¢p + m@3) + Lfr [L(1 + 2y) — 2imER] R
+2LfR [z'Lm ((2 Fy)fr—(1+ zy)R) +m*ER(fg — R)} o
+ [~2iLEm + 8L%*y*/R — (m* — 2)E*R| R?
s [ — (L2/R)y(6y + 7) + 2iLmE(1 + 3y) + (m? — 2)E2R} R

- fIQ% [—12(L2/R)y + 2iLmE(l + 4y) + (m2 _ 2)E2R] }y+(t)
+ WM{QR(fR — R)m |Lfr¢p — E(fr — R)}

+ 2L ~ frRE— B2+ 2fp(1+ 3y)Fe — [3(1 + 4y)] }yJ(t)

— TuER(fr — R)*Ygy(t), (B.4)

st =2irpuLfrR(fr — R) [(fR — R) [V, (t) + mYT(t)] - mfR(L/E)‘:bpy+(t)]

+ W(LQ/E)fR[ — fRRR —2(1 + 2y)R* + 2fr(3 + 5y) R — 4fR(1 + y)}lﬁ(t),
(B.5)

s3 = mu(L?/E)fRR(fr — R)*YT (1), (B.6)



B.1. BPT equation with a point-particle source 117

and

_ T o . .
sy =— 7§9 L*mfiR® (m@? +i¢y) + LfrR® (3Lfr — 2iEmR) R
1Ef2R

—2LmR’ fx [EmRR + fr (EmR +il (3R ro- 5y) )} o
+ R <1202 + ER(B (m? — 2) R+ 2iLm(3 - 4y) ) | &2
+2R"| = L3(8 = 25y) f + ER(E (m* = 2) Rfn + 2Lm(3 — Ty) fr) | &

+ R [ CAL2(1 - 5y)f3 + ER(E (m? — 2) Rf% + 2iLm(3 — sy)fg)] }y(t)

+ %{m}%‘l(]‘p{ +R) (E(fR +R)- LfR<Pp)
—iLR® | [RRE ~ (3~ 4y) % = 2fp(3 — Ty) R — (3~ 8y) f3] }ye_(t)
T ?)2
_ Wye_@(t)v (B.7)
- W [(fR +R) [V, (t) —mY~(1)] + mfR(L/E)sbpy*(t)}
+ Zgg { — RR+6R?*+2(5—13y)R+ 4fr(1 — 3y)} Y= (1), (B.8)

> (fR + R> 2

Sy = AR Y (b). (B.9)
Here we have introduced
M + —_ T
yim e VEO) = sV (So000) (B.10)

with ygt and y;'fg being the first and second derivatives of 1oy, (6, pp(t)) with respect
to 6, evaluated at 6 = /2.

Note that in Egs. (B.4)—(B.9) we have not yet specialised to a timelike geodesic. With
such specification, the time derivatives featuring in these expressions can be expressed

in terms of R(t) alone (as well as F and L), as follows:

R=+(fr/E) [E® - fr(1 + L*/R})]"?, (B.11)
i Ja(l=5y)L? “‘Rg};ZfR@EZ —3/r) (B.12)
. L . 2L(1 —3y)R
Pp = %7 Pp = —(Eng)~ (B.13)

The sign in (B.11) is (—) for the incoming leg of the orbit and (+) for the outgoing leg.
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B.2 The jumps in ¢ and their first derivatives

The jumps in the 14+1D Weyl-scalar fields ¢4 are determined by requiring that Eq. (B.2)

is satisfied as a distributional equation, with the ansatz
Ve =07 (t,7)0[r — R(t)] + ¢F (t,7)O[R(t) — r] + ¢y (1)6[r — R(t)]. (B.14)

Here ©[] is the Heaviside step function, and wgt(t) is to be determined. Balancing
the coefficients of O[r — R(t)] and O[R(t) — r] imply that 7 (¢,r) and ¥5(¢,r) are
homogeneous solutions of Eq. (B.2). The remaining terms are supported on r = R(¢)

only, and are each proportional to either d, 8’ or §”. We use the distributional identities
F(r)d(r—R) = F(R)o(r—R),
F(r)§'(r—R) = F(R)Y(r—R)—-F'(R)i(r—R),
F(r)d"(r—R) = F(R)Y"(r—R)—-2F(R)§(r— R) + F"(R)6(r — R), (B.15)
[valid for any smooth function F(r)] to eliminate the r dependence of the coefficients of

each of these terms, and then compare the coefficient values across the two sides of Eq.
(B.2), recalling the form of T in Eq. (B.3).

From the coefficient of §” we immediately obtain

455 (t)
+ 2
t) = —————. B.16
The coefficient of §’ then determines the jump:
[1+] S S O (t) + 20E R + [—2f (s(1—y)+3y) +2s(1—3 )R+RR] vs
+ f12% _ R2 1 ) R y y y R I
(B.17)

with s = +2 for ¢1. Finally, comparing the coefficients of § gives a relation between the
jumps [wﬂ and [wﬂ we get

s(t) = —g R[wE] — (3 + B2 [02) + Pa(r), (3.15)
where
Py _[E] [QfR(s(l —y) +y) —2s(1 - 3y)R - RR] + %Lg[ + %(1 — 3y)i
+
+ Zli‘;z[)\f3+2+s — 52+ 2y(1 + 5% — 4s) + 8% (s — 2) — 2s(1 — 6y)R|, (B.19)

with s = £2 for Py. Recall A= (I +2)(l —1).
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A second relation between [wﬂ and Wﬂ is obtained by writing

i) = [WT] + R [wE], (B.20)

where we recall an overdot represents a time derivative d/dt. Solving (B.18) and (B.20)

as a simultaneous set then gives

APy — sT) — 2R[yy]

[@b,:ﬂ = 72— 22 ) (B.21)
R
and £\ 2 523
Wﬂ _ —4(Pr — 5 }fj‘g;bz +R )Wi]_ (B.22)
R
The corresponding jumps in the u and v derivatives are
o _ A(Pe — s5) + (fr — R)[¢4]
[wi] _ _4(Pi — S(:;:) + (fR + R)[wﬂ:] ) (B.24)

2(fr — R)

Equations (B.17), (B.23) and (B.24) give the jumps in 11 and its first derivatives for a

generic geodesic orbit.

B.3 Jumps in the second and third derivatives of .

We can get [@bfw] directly from the vacuum BPT equation:

[ﬂ}fw} = —Uia(R) Wﬂ — Via(R) [Tl)ﬂ — Wia(R) [th+], (B.25)

where the jumps [w’iv], [@bﬂ;] and [)*] can be substituted for from Egs. (B.23), (B.24)
and (B.17). Then [¢%,] and [¢7%,] can be obtained from the chain rules

L, UV

] = o fuk] vk,
[WE] = o[v] +alvt,], (B.26)

where

v=1+R/fr, u=1-R/fr. (B.27)

The jumps in the third derivatives are obtained in a similar fashion: First, we obtain

[ jfwu} and [ fwv] from the v and v derivatives of the vacuum BPT equations. Then,
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[1/Ji ] and [wi ] are determined from the appropriate chain rule; e.g.,

,UUU LUVV

o .
(V] = ] ;[ ], (B.28)

where the jumps on the right-hand side are known from previous steps. We may pro-
ceed in this recursive manner to determine the jumps in all higher derivatives. In the
calculation performed in this paper we require jump information only up to the third

derivatives.

B.4 Large-R asymptotics for scatter orbits

For our asymptotic analysis in Section 7.3.3 (where we derive initial conditions for the
Hertz potential’s jump equations), it is useful to have at hand the large-R asymptotic
form of the Weyl-scalar jumps calculated above, in the case of a scatter orbit coming from
infinity (i.e., the class of geodesic scatter orbits described in Chapter 2). Specifically, we
need the asymptotic forms of [¢+] as well as [¢1], [¢1,] and [¢7,.].

RN LUUU

As input for this calculation, we need the asymptotic form of the source coefficients s;-
in Egs. (B.4)-(B.9). Specializing to scatter geodesics and working at leading order in
y=M/R (at fixed E, L), we find

st = ofR+O(R),
s, = o0, R>+O0O(R™), (B.29)

3

for n = 0,1,2. The coeflicients needed for our purpose are given explicitly by

of = —pEm(l—Re)® [(m? =20V +2mY; + Vg
of = F2pLr(l - Reo)® (m¥T+ V7). (B.30)
and
oy = %wL(l +Roo)? (mY™ =Yy, (B.31)

where subscripts ‘co’ imply an evaluation at ¢ — 400, depending on whether it is the
“in” or “out” states being considered. In the expressions for af and o, the upper sign
is for the out state (Roo > 0) and the lower sign is for the in state (Rso < 0).

A straightforward leading-order calculation now gives

[i] = —4o]E’R+ O(RY), (B.32)
-] = —4o] E°R™®+O(R™), (B.33)
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as well as
(V3] = =B [U}] = 407 E* Foc R + O(R”), (B.34)
2 +
[v75] = ——%—R+O(R), (B.35)
’ 1— Ry
208 (2 — 3Rs) _
+ 0 oo 1
wl =——————F=+0[R ), B.36
] = -2 o (.35
qf@u—szy+M1+Rw) » L
(V) = . R+ O(R™?). (B.37)

2(1 — Roo)?
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Appendix C

Finite-difference scheme

In this appendix we detail the finite-difference (FD) schemes employed for solving the
141D field equations associated with the scalar field (4.11) and the Regge-Wheeler-like
field (6.25). Here we focus on the FD scheme itself, at the grid-cell level. We detail

schemes for field equations of the form
Xuw +V(r)X = Sx, (C.1)

where W (r) is a generic radial potential. The source Sx can be zero (vacuum), an
explicitly known point-particle source which is localised to the particle’s 1D worldline &
(scalar field) or have information on the source available through known jumps conditions
across a 1D surface S associated with the particle’s worldline (RW-like field). In deriving
the schemes we follow the method of Ref. [49] (which itself builds on a long history of

time-domain work in the self-force literature, e.g. [95,117]).

Recall Figure 4.1, which shows the 141D numerical grid for the vacuum case, based
on u,v coordinates with uniform cell dimensions A x h. Consider an arbitrary grid
point ¢ with coordinates (u,v) = (uc,v.), and in reference to that point denote by
X, the value of the numerical field variable X at the grid point with coordinates
(u,v) = (ue—nh,v. —kh), as shown in Figure C.1 for a field sourced by a point-particle.
Our goal is to prescribe a FD expression for Xy (the field at ¢), given the values X,
for all n,k > 0, assumed to have been obtained in previous steps of the characteristic
evolution. We wish to achieve a global quadratic convergence, i.e. an accumulated error
in X that scales as h%. Since the total number of grid points over which the error
accumulates is oc h~2, this demands a local (single-point) FD error not larger than
O(h*) in general.

In the non-vacuum cases, our grid is traversed by the curve S representing the timelike
geodesic trajectory of the particle, recall Figure 4.3 for circular orbits and Figure 4.5 for

hyperbolic orbits. The curve is fixed and known in advance, and the coordinates of all
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FIGURE C.1: A particle cell is traversed by the particle’s worldline (dashed curve).
The apex of the cell is the point ¢ at (u,v) = (u.,v.) and the field point X, is at the
grid point with coordinates (u,v) = (u. — nh,v. — kh). The particle enters (exits) the
cell at time ¢t =¢; (t = ty).

of its intersections with grid lines are calculated in advance of the numerical evolution.
In reference to the grid cell C' with top vertex ¢, we distinguish between two scenarios:
Either C is traversed by S (“particle cell”) or it is not (“vacuum cell”). We deal with

each of these two scenarios separately below.

C.1 Vacuum cells

First we consider the simplest case where the field equation is homogeneous or the
particle’s worldline does not cross the integration cell. Then a sufficiently accurate FD
approximation for Xyy can be written based on the three value Xy1, X190 and X711 alone.
Integrating each of the two terms on the left-hand side of Eq. (C.1) over the grid cell C,
we have

/ Xy dudv = Xoo — Xo1 — X10 + X11 (C.2)
C

(exactly), and
/ V()X dudo = %hQV(TC) (Xo1 + X10) + O(h%), (C.3)
c

where 7. is the value of r at point ¢. The homogeneous version of Eq. (C.1) then gives

Xoo = X171+ (X(]l + XIO) <1 - };QV(TC)) + O(h4), (04)

which we use as our FD formula for vacuum points.
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C.2 Particle cells from a source

The vacuum formula (C.4) does not work for cells that are traversed by the worldline
as there is also a contribution from the source of the field equation. We calculate this

contribution by integrating the source over the cell such that the FD scheme is given by

h2
Xoo = —X11 + (Xo1 + X10) <1 -5 Ve > / Sx dudv + O(h%). (C.5)

C.2.1 Scalar point-particle on a circular orbit

In the scalar point-particle case we know the source of the field equation (4.11). For a

circular equatorial orbit at r = R it has the form

Ij
2ER

Sy = §(r— R) Yy (n/2,01), (C.6)
where R is the (constant) radius and Q := /M/R3 is the orbital angular velocity. Due
to the simplicity of the orbit we can integrate this source analytically over a single h X h
cell to give the contribution to the FD scheme. In our implementation the particle
passes directly through the cells centred on r = R and does not pass through any other
(vacuum) cells. The contribution from the source to the particle cells is obtained by
integrating the source over the cell to give

17 __ifr —imQh)
/2335 R) Vi (n/2,900) dudv = =8 (21 4 7m0 ¥y, (/2,08),(C7)

where t. is t evaluated at point ¢ and we have used the relations dudv = 2f~" drdt and
Yo (7/2,Qt) = Y (1/2,0)e” ™, Including this contribution gives the FD for a scalar

particle on a circular orbit as

1
Yoo = =11 + (Yo1 + Y10) (1 — 2h2V> + Z, (C.8)
where
0 if particle does not enter cell
Z = , , _ (C.9)
E:T{BR (—1 + e_zmQh) Yo (7/2,0t.) if particle does enter cell

C.2.2 Scalar point-particle on a generic orbit

Recall the form of the source of the scalar field equation (4.11)

ZE%( 70 (= R(1)) Yom(7/2, 0(1)), (C.10)
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where now we use fr := 1 — 2M/R(t). Integrating this source over the FD cell for a
generic orbit is more complicated as in general we do not have an analytic expression for
the worldline. This does not cause any issues for integrating over the radial derivative
as we can directly integrate the delta function of the source of the field equation (4.11)

to give
Sy dud VIR g 20 dt C.11
/Cwuv—/tiER(t)Zm(W/u@p()) ) (C.11)
where t; (t;) are where the particle enters (exits) the cell as shown in Figure C.1.

For a generic orbit we cannot evaluate this integral analytically so we must use other
methods. One possibility would be to numerically integrate the source term for all of
the particle terms. We take the alternative approach of expanding the integrand of Eq.
(C.11) about the point ¢ which gives

(R, — AM) R, + imf.R2p.
ER?

Je

ER, Vo (7/2, 0c) (t — to) + O(t2), (C.12)

Yfém(ﬂ'/za ‘Pc) -

where subscript ¢ represents the quantity evaluated at point ¢ and we recall that an
overdot represents a time derivative d/dt. We can integrate this result analytically to
give the source’s contribution to the FD scheme as
R — 4M)R. + imf.R2p, -
(R — 4M) e bimfeRetey, (/2. 00 (2t — ty —ti).
ER?

(C.13)

We can show that this contribution is O(h?®) as ty —t; ~ h and 2t —ts —t; ~ h®. As the

worldine is a 1D surface the total number of particle cells scales as h hence the global

Je

7 =
ER,.

YVZm(W/Z ‘PC)(tf —t;) +

convergence of Z is quadratic as required.

The second-order convergent FD scheme for a scalar particle on a generic orbit is given
by Eq. (C.8) with Z = 0 for vacuum cells or Z given by Eq. (C.13) for particle cells.

C.3 Particle cells from field jumps

In this section we address the case where we do not know the source but we have
information about the source through jumps in the field and its derivatives. Here we
have a discontinuity in the field across the 1+1D worldline & which corresponds to
r = R(t). The worldline splits C' into two disjoint vacuum regions, C~ and C'<. Since
X is smooth on each of the two vacuum regions, we can expand it piecewise in a Taylor

series about point ¢, in the form

2

N
cCoo. .
X2 =) L' + 0N, (C.14)
!
i+35=0
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where 4 := u — u., ¥ := v — v,, and different expansion coefficients apply on each side of
S: ci<j are used in C<, and ci>j are used in C~. The idea now is to derive the values of c?j
based on a sufficient number of data points Xf , plus the analytically known jumps in
X and its derivatives on S. We note that, since the total number of particle cells scales
as h™!, it is acceptable for our local FD scheme to have an error as great as O(h3) (but

not greater) at each particle cell.

To achieve such accuracy we take N = 2 in Eq. (C.14), leaving us with 12 coeffi-
cients ci%j to determine. We use the 6 data points {Xoo, Xo1, X10, X11, Xo2, X20} to
supply 6 constraints, and 6 additional constraints are obtained from the known jumps
{IX], [ Xu)s [X 0], [X wul, [X wv)s [X 0]}, imposed at the point where the worldline exits
the cell C. Solving the 12 simultaneous equations for cfj and then substituting these
coefficients back in (C.14), gives an expression for X<, accurate through O(h?) in the
vicinity of point ¢, in terms of the above 6 field points (which include the unknown Xgo)

and above 6 jumps.

Considering first the principal part of the Eq. (C.1), we thus obtain,

X5 = ¢5 +0(h)
=h"%(Xoo — Xo1 — X10 + X11 + J{) + O(h), (C.15)

where the explicit form of Jf‘ will be discussed for the circular and hyperbolic cases
below. For the potential term of Eq. (C.1) we wish to obtain a FD approximation that
does not involve Xgg. The form of (C.15) implies that we only require a leading-order,
O(h®) approximation for this term. We choose to achieve this by taking N = 1 in Eq.
(C.14), and then solving for the six coefficients c?j (i + 7 < 1) using the 3 data points
{Xo1, X10, X11} and 3 jumps {[X], [X 4], [X ]}, again evaluated when the particle leaves

)

the cell. This gives

XZ =5+ O(h)
= Xo1 + X10 — X11 + J5' + O(h), (C.16)

where again we will consider the form of J3' in later sections. Hence we can write

VXZ =V (re)(Xor + X10 — X11 + J31) + O(h). (C.17)

Imposing finally the vacuum field equation X ,,, +V X = 0, we obtain, using (C.15) and
(C.17),

Xoo =(Xo1 + X10 — X11) (1 = B*V (1)) — J{t = 12V (re)J3 + O(h?), (C.18)

which is our FD formula for particle cells.
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Note that our second-order-convergent FD scheme, consisting of Eq. (C.4) for vacuum
cells with Eq. (C.18) for particle cells, requires as input only the three field data points
Xo1, X10 and X;; (as well as the known jumps). This is convenient, as it means that
at each characteristic evolution step we require data on a single previously calculated

characteristic ray.

C.3.1 Circular orbit

As described in Section 8.1.3 we construct the grid such that the worldline passes directly
through cells centred on r = R as shown in Figure C.2. However, it is not possible to
calculate the field directly on the worldine due to the discontinuity. Instead we shift
the worldline to an infinitesimally larger r > R such that we calculate the field points
X< along r = R. This setup results in two kinds of cells which cannot use the vacuum
FD formula (C.4). These cells correspond to cells centred on r = R (‘P’ cells) and
r =R+ h/2 (‘R cells). The additional terms from these cells to the FD scheme (C.18)

are given by

TF = ~[X] 4 B ] = (X ]+ [X)

= —[X]+ g[X,u]@ + ihmQ), (C.19)
JP =0, (C.20)
JR=[X] = —J3. (C.21)

Recall that all the jumps are evaluated where the particle exits the cell (i.e. (uc,vc) for
P cells and (uc,v. — h) for R cells). The simplification of the J{ expression arises from
using the chain rule to rewrite jumps in higher derivatives in terms of lower derivatives
(see Appendix B.3) and the relation [X] = —im$[X] for a circular orbit with orbital

frequency Q = /M /R3.
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XOl X10

X

FIGUuRE C.2: Particle cells are traversed by the particle’s worldline (dashed curve)
either directly through the centre of the cell (e.g. cell with Xyg at the apex) or through
the leftmost corner of the cell (e.g. cell with X4 at the apex) which are known as ‘P’
and ‘R’ cells respectively. A different variant of the FD formula applies in each case, as
described in the text. The vacuum portions of the cell left and right of the worldline
are C< and C~ respectively, as shown for the uppermost P cell.

C.3.2 Generic orbit

For a generic timelike geodesic the worldline splits C' into two distinct vacuum regions,
C< and C~, as shown in Figure C.3, which shows the four possible scenarios. We
impose the jump conditions where the particle exits the cell [i.e. referring to Figure C.3,
either the point (uy,v.) or the point (uc,vs), depending on the case]. The additional
contributions to Eq. (C.18) are given by

PV = WX ]+ h(ue — up)[X ] — h; (2[X o] + [X o)) 5 (C.22)
TV = =h[X ] = h(ve = vp)[X ] + ’;2 (2K o] + [Xu]) (C.23)
TPV = K]+ (h— e+ o) [Xa] = 50— v+ )X ], (C21)
JVY = [X] = (h—ue +up)[X ] + %(h — e+ ) [X ] (C.25)

and

JIWV=—o=u0yV, JYV=[x]=-2Y. (C.26)
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Xo1 X0

X()l XlO

X1

FIGURE C.3: A particle cell is traversed by the particle’s worldline (dashed curve) in
one of four possible ways: cases ‘UU’, ‘VV’ ‘UV’ and ‘VU’, illustrated here. A different
variant of the FD formula applies in each case, as described in the text. The apex of
the cell is the point ¢ at (u,v) = (uc,v.), and the particle exits the cell at (us,v.) or
(uc,vy), depending on the case. The vacuum portions of the cell left and right of the
worldline are C< and C~ respectively.
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