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Abstract  
Current methods for diagnosing acute and complex infections mostly rely on culture-based methods and, 

for biofilms, fluorescence in-situ hybridization. These techniques are labor-intensive and can take 2-4 days 

to return a test result, especially considering an extra culturing step required for the antibiotic 

susceptibility testing (AST).  This places a significant burden on healthcare providers, delaying treatment 

and leading to adverse patient outcomes. Here, we report the complementary use of our newly developed 

multi-excitation Raman spectroscopy (ME-RS) method with whole-genome sequencing (WGS). Four WHO 

priority pathogens are AST phenotyped and their antimicrobial resistance (AMR) profile determined by 

WGS. On application of ME-RS method we find high correlation with the WGS characterization. Highly 

accurate classification based on the species (98.93%), wild-type/non-wild type (99.45%), and presence or 

absence of thick peptidoglycan layers in cell walls (100%), as well as at the individual strain level (99.29%). 

These results clearly demonstrate the potential of ME-RS as a rapid and first-stage tool for species, 

resistance and strain-level classification which can be followed up by WGS for confirmation. Such a 

workflow can facilitate efficient antimicrobial stewardship to handle and prevent the spread of AMR.  

Introduction 
It has been more than 30 years since a new class of antibiotics was introduced to the market. This, 

together with the increased and inappropriate use of existing antibiotics means that we are heading 

towards a world in which many antibiotics are no longer effective. In addition to becoming the third 

leading cause of death1, antimicrobial resistance (AMR) has an enormous impact on worldwide economy. 

Each year the USA is losing US $55 billion and EU/EEA €1.6 billion due to the AMR2. In 2017 the World 

Health Organization (WHO) issued a report where the most critical pathogens were stratified into groups 

based on their threat for the increasing AMR spread and on urgency of action required3. ESKAPE 

pathogens (vancomycin-resistant Enterococcus faecium (VRE), methicillin-resistant and vancomycin-

resistant Staphylococcus aureus (MRSA/VRSA), carbapenem-resistant and third-generation 

cephalosporin-resistant Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and 
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Enterobacter spp.) are included into the critical and high-priority pathogen groups. These pathogens have 

acquired resistance towards many antibiotics, including last-resort antibiotics such as carbapenems and 

colistin and are thus associated with high morbidity and mortality rates4. In 2019, 1.27 million people died 

due to resistant bacteria infections and 73% of them were caused by E. coli, S. aureus, K. pneumoniae, S. 

pneumoniae, A. baumannii and P. aeruginosa1.  

A critical unmet need in the prevention of antimicrobial resistance (AMR) is rapid, accurate, and point-of-

care (PoC) diagnosis to avoid the incorrect use of antibiotics. Without new diagnostics, the appropriate 

use of antibiotics and the treatment of patients with resistant bacterial infections will become increasingly 

challenging, compromising medical interventions such as surgeries, transplants, and chemotherapy. A 

recent retrospective study from a children’s hospital in Madrid (Spain) revealed that on giving at least one 

active antibiotic at the onset of bacteremia caused by carbapenem-resistant bacteria, the survival rate 

was increased by 80 % compared to when no active antibiotics were prescribed5. 

However, current culture-based methods used to detect and identify agents of infection are inadequate 

and slow. Incubation times of 24-48h are necessary to capture the most culturable bacteria associated 

with the disease. Additional time is required for pathogen ID (2-4h) and in the case of expected AMR for 

antibiotic susceptibility testing (AST) (18-24h), although for blood cultures, this time has been recently 

reduced to 4-6 hours using RAST method developed by EUCAST6. Thus, the time interval from collecting 

the patient sample at the ward until the information is available on the antibiotic susceptibility profile is 

in the best case 2-3 days in the clinical routine.  

A plethora of molecular techniques have been developed to reduce the time needed to identify infectious 

agents and their resistance profiles, including PCR-based or microarray-based technologies7. Although 

they save around 24-48 hours compared to classical AST, they only target known/expected organisms and 

resistance mechanisms and thus a panel of tests should be performed on each isolate risking that less 

common pathogens or untargeted resistance mechanisms remain unnoticed. Whole genome sequencing 

(WGS) can overcome this problem since there is no need for targeted primers/probes to be used. With 

the rise of real-time sequencing and its affordability, WGS becomes a potent alternative to time-

consuming culture-dependent traditional methods. We have recently demonstrated that using Oxford 

Nanopore Technologies (ONT) MinION and Flongle sequencing platform, infectious agent and its 

resistance profile can be identified within 10 min – 1 hour after the start of sequencing8. However, around 

3 hours is still required to prepare the sample for sequencing. 

Raman spectroscopy can provide a rapid alternative and overcome many of the problems associated with 

the current techniques. Since it is culture-free, Raman spectroscopy allows results to be obtained in 

minutes, rather than several hours and can thus be significantly faster. Unlike ELISA, mass spectrometry, 

infrared spectroscopy and fluorescence-based techniques, Raman spectroscopy is reagentless and avoids 

complex sample-preparation steps. Like infrared spectroscopy, Raman uses light to probe the molecular 

vibrations within the sample, generating a specific molecular ‘fingerprint’ that can be used to identify 

molecular, biotic, and abiotic components within a sample. However, infrared spectroscopy is highly 

sensitive to the presence of water, which is ubiquitous in biological samples. In contrast, Raman is highly 

water-insensitive, offering it an advantage over its sister technique. 

Previously, Raman spectroscopy has been used to examine a wide range of biological samples, including 

an array of microbiological samples in clinical settings. Kloß et al used Raman spectroscopy to characterize 
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several respiratory pathogens at the species level9, and Ghebremedhin et al also used the technique to 

achieve differentiation of 31 clinical isolates of A. baumanii at the strain level10. 

Surface-Enhanced Raman Spectroscopy (SERS) is a variation of Raman spectroscopy that offers 

advantages over spontaneous Raman spectroscopy in terms of speed and an improved limit of detection. 

In SERS, Raman signals are enhanced by electromagnetic and/or chemical interactions with nanoscale 

metallic structures, such as gold or silver nanoparticles. SERS has been used to distinguish isolates of E. 

coli based on their sensitivity to carbapenem antibiotics11, and to identify  pathogens common in Cystic 

Fibrosis sufferers in pellets with silver nanoparticles12. SERS has also been used to map colonies of 

Pseudomonas aeruginosa via laser scanning and tracking of a P. aeruginosa biomarker13-17Despite being 

sensitive and fast, SERS has several drawbacks. Most importantly it requires the introduction of exogenous 

nanomaterials for signal enhancement. The nanostructures must have consistent enhancements, and 

interact extremely closely and reproducibly with the analyte, which can be difficult to control. Resonance 

Raman Spectroscopy (RRS) overcomes the requirement for exogeneous materials to provide signal 

enhancement. RRS utilizes the principle that the cross-section of Raman-active modes varies with 

wavelength, and improves significantly, as the excitation nears pre-resonance or resonance with an 

electronic state of the sample. RRS has been used to detect cytochrome cd1 in bacteria18, and UV 

resonance has been utilized to study both endospore biomarkers and whole bacteria19. Grun et al studied 

the possibility of using multiple excitation wavelengths to generate 2D spectra20. Their method relied on 

the use of a pulsed Ti:sapphire laser to generate a tunable excitation from 700-940 nm. This light was 

converted to third or fourth harmonics to yield excitation from 210-280 nm. Spectra were recorded at 30 

wavelengths per species, with approximately 1 minute of switching time between excitations. 

Recently we reported the method of multi-excitation Raman spectroscopy (ME-RS) for the strain-level 

detection of pathogens21. This method combined the use of multiple Raman spectra obtained with 

different wavelengths to interrogate bacterial samples. The natural variations in peak intensity ratios due 

to the dependence of the Raman cross-section on wavelength gives a more information-rich dataset with 

only a few minutes of additional analysis time. The combined information was processed by multivariate 

analysis, in the form of a support vector machine (SVM). This ME-RS approach performed better compared 

to use of single-excitations individually, and offered highly accurate, strain-level classification, even inside 

a complex artificial sputum media (99.75% accuracy). Further, an accuracy of 100% was obtained for 

differentiation of methicillin-resistant and methicillin-sensitive S. aureus strains. 

Here, we apply our newly developed multi-excitation Raman spectroscopy21 method to the identification 

of clinical isolates of four WHO priority pathogens (E. coli, K. pneumoniae, S. aureus and A. baumannii) 

with known antibiotic susceptibility phenotypes and resistomes8,22-24. Spectra were concatenated and 

used to train a Support Vector Machine (SVM), resulting in highly accurate strain and species identification 

of the isolates. This work demonstrates the potential for ME-RS technique as a rapid first-stage method 

for informing the prescription of appropriate antibiotics prior to more extensive confirmatory lab-based 

testing by WGS. A combined workflow with ME-RS and WGS could be transformative for the detection 

and identification of infections and AMR in human and animal health. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.08.479540doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479540
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 

Dataset description 
Wild-type (-WT) and phenotypically resistant (-R) strains of Gram-negative Acinetobacter baumannii (INN-

WT, K55-33-R), Escherichia coli (CCUG17620-WT; A2-39-R), Klebsiella pneumoniae (225-R) and Gram-

positive Staphylococcus aureus (NCTC8325-WT; CCUG35600-R) were used for the study. Phenotypic 

information on E. coli, K. pneumoniae and S. aureus strains was previously published in8,22-24. Minimum 

inhibitory concentration (MIC) values of Acinetobacter strains against ciprofloxacin, gentamicin, 

meropenem and colistin were determined by broth microdilution using Sensititre surveillance EUVSEC 96 

well plates (ThermoFisher, USA) as described in23. Isolates were classified as susceptible (wild type) and 

resistant according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 

Breakpoints v 12.0 (December 2021). 

Genome sequencing & Bioinformatics for AMR and resistance 
Genomic background of E. coli, K. pneumoniae and S. aureus used for this study was extensively 

characterized in our previously published work8,22-24. In brief, isolates were sequenced using either 

Illumina23, ONT (MinION and Flongle)8,22 or both24. Regardless of the technology used, sequencing data 

were filtered for quality and length, and subsequently assembled using either SPAdes v 3.13.1 (Illumina) 

or  Unicycler  v 0.4.9 (ONT MinION). In case data from both technologies were available, hybrid genome 

assembly was performed using Unicycler v 0.4.9. 

A. baumannii isolates were processed as described in23, sequenced on a MiSeq Illumina platform using 

MiSeq v3 chemistry. Sequencing reads were demultiplexed, quality-filtered and assembled using SPAdes 

v 3.13.1 following previously published protocol23. 

Genome assemblies were searched for ARGs using Abricate v 1.0.1 which performs mass screening against 

multiple ARG databases (NCBI, ARG-ANNOT, ResFinder, MEGARES). Eighty percent identity and 80 % query 

coverage were used as cutoffs. Plasmids were searched against PLSDB database using 90 % identity as a 

cutoff25. 

Bacterial culture 
Isolates were kept in 25 % glycerol stock at –80 °C. A loop-full of each isolate stock was streaked on BHI 

agar plates and cultured overnight at 37 °C. After visual confirmation of colonies’ homogeneity (shape, 

size, color), 5-10 colonies were picked and transferred to 1.5 ml BHI broth and cultured overnight at 37 

°C. After confirmed growth (OD600 >1.0), 500 µl of bacterial culture were transferred to 500 µl of 50 % 

glycerol solution. The stock was then sent to the Raman spectroscopy lab on dry ice, where they were 

kept at –20 °C until the experiment.  

BHI medium was prepared from the BHI powder (VWR, USA), following the manufacturer’s protocol. 15 

g/l of agar was added to the medium for preparing the plates. 

Raman microspectroscopy 
To prepare samples for spectroscopic analysis, bacterial cultures were washed three times in deionized 

water by centrifugation (4000g, 10 minutes) in a Heraeus Megafuge centrifuge. The resulting pellet was 

applied to a fused quartz slide (UQG Optics, UK), and dried with gentle heating. 

Raman microspectroscopy experiments were conducted using a Renishaw InVia Raman microscope 

(Renishaw, UK), with a Leica DM 2500-M bright field microscope and an automated 100 nm-encoded XYZ 

stage. The samples were excited using 532 nm and 785 nm lasers directed through a Nikon 100× air 
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objective (NA = 0.85), with collection after a Rayleigh edge filter appropriate to each excitation 

wavelength, and a diffraction grating (532nm: 1600 L/mm, 785nm: 1200 L/mm) that dispersed the Raman-

scattered light onto a Peltier-cooled CCD (1024 pixels × 256 pixels). Calibration of the Raman shift was 

carried out using an internal silicon wafer using the peak at 521 cm-1. Spectra were acquired over three 

accumulations of 5 s each. 

Spectral data processing and chemometric analysis 
All spectra were cleared of cosmic rays prior to analysis using Renishaw Wire 5.1 software and then 

imported into iRootLab version 0.17.8.22-d for Matlab28 for further processing. Spectra were truncated 

to the 600−1600 cm−1 spectral region and then background subtracted, wavelet denoised to smooth them, 

and normalized to their maximum intensity. Concatenation of multi-excitation spectra was performed by 

appending the 532nm spectrum to the end of the 785nm spectrum. Wavenumber variables were changed 

to integer ‘observation’ values to prevent issues arising from having multiple intensity values at each 

wavenumber.  

Two-hundred and ten spectra were used to train the SVM classified (30 for each strain), and the same 

number of spectra was used for validation. For this study, iRootLab’s in-built Principal Component Analysis 

(PCA), SVM, and k-fold cross-validation functionality was applied to the processed spectra to classify the 

bacteria by strain. In SVM, the default iRootLab parameters for c and gamma (c = 1, gamma = 1) were 

used. The analytical process is schematically summarized in Figure 1. The full step-by-step methods for 

the SVM have been included as Figure S1. 

 

Figure 1: Diagrammatic representation of the workflow for spectral analysis. Spontaneous Raman spectra 

are recorded at two wavelengths, and then concatenated onto one another. Raman shift (wavelength or 

wavenumber) variables are replaced with a positive integer, termed an observation. The combined data 

of intensity vs observational variables is then fed into a support vector machine for training and testing 

purposes. 
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Results and Discussion: 

Sequencing 
Wild type strains of E. coli (CCUG17620) and A. baumannii (INN) did not possess any antimicrobial 

resistance genes, whereas the S. aureus NCTC 8325 genome contained genome encoded fosB gene. 

Resistant strains, on the other hand, possessed plasmids with a wide variety of genes conferring resistance 

towards penicillins, 3rd generation cephalosporins, carbapenems, tetracyclines, fosfomycin and 

aminoglycosides (Table 1). In methicillin-resistant S. aureus CCUG35600, ARGs were chromosomally 

encoded (Table 1). 

Twenty percent of K. pneumoniae 225 genome aligned to E. coli CCUG17620 and an average nucleotide 

identity (ANI) between these isolates was 84.6%. In case of E. coli A2-39, 18.6 % of K. pneumoniae 225 

genomes were aligned and ANI was found to be 84.4 %. 

Table 1: Overview of isolates’ phenotype and genomic background. 

№ Isolate Phenotype (antibiotic) 
Gram 

staining 
Plasmid  Antibiotic Resistance Genes 

1 
E. coli CCUG 

17620 
wild type negative yes - 

2 E. coli A2-39 
resistant (cefotaxime, 

ceftazidime) 
negative yes 

CTX-M-2; TEM-1B; sul1; 
mdf(A); tetA; dfrA1; aadA1;  

aac(3)-VIa 

3 
Klebsiella 

pneumoniae 225 
resistant (chloramphenicol, 

tigecycline) 
negative yes SHV-187; fosA; oqxA; oqxB32 

4 
S. aureus NCTC 

8325 
wild type positive no  fosB 

5 
S. aureus CCUG 

35600 

resistant (methicillin, 
tetracycline, clindamycin, 

erythromycin) 
positive no 

mecA; tetK; fosB; ant(9)-Ia; 
erm(A); blaI_of_Z; blaR1; 

blaPC1 

6 
Acinetobacter 

INN 
wild type negative no - 

7 
Acinetobacter 

K55-13 
resistant (ciprofloxacin, 

gentamycin, meropenem) 
negative yes 

aph(3”)-Ib; aph(6)-Id; tet(B); 
blaADC-30; blaOXA-66; 

ant(3”)-IIa; aac(3)-Ia; sul2; 
aac(6’)-Ip; blaOXA-72 

 

Raman spectral data 
Using our previously reported method for multi-excitation Raman spectroscopy21 or ME-RS, spectra of 

seven strains of WHO priority pathogens were recorded at 532 nm and 785 nm excitation. Class mean 

spectra (n = 30) for both excitations are presented in Figure 2. In both cases, there is a large degree of 

spectral similarity between the different classes, except for S. aureus 8325 at 532 nm excitation. This strain 

exhibits large peaks at 1157 cm-1 and 1525 cm-1, which are associated with the conjugated -C=C- backbone 

of carotenoids26,27. These molecules are pre-resonantly excited at wavelengths around this region28,29. 

Several other peaks can be observed across both spectra. Within the 532 nm spectra, we assign the 747 

cm-1 peak to the presence of DNA30, along with the 781 cm-1 peak, which arises from ring breathing modes 

of cytosine31. The peak at 1004 cm-1 arises from the ring breathing mode of phenylalanine32. The sharp 

peak at 1128 cm-1 contains contributions from lipid C-C modes and C-N stretches in protein33,34. Lastly, we 

attribute the feature at 1585 cm-1 to olefinic C=C modes in proteins35. Within the 785 nm spectra, many 
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of the features of the 532 nm spectra are preserved, but additional peaks are also seen. We ascribe the 

feature at 1030 cm-1 to a mixture of C-C and C-H modes in phenylalanine32,35. Lastly, we attribute the broad 

peak around 1450 cm-1 to a complex mixture of C-H modes associated with molecules such as proteins, 

lipids, and nucleic acids34,36-38. 

 

Figure 2: Normalized class means (offset for clarity) of the Raman spectra for the 7 bacterial strains used 

in this study, taken using (A) 532 nm excitation, and (B) 785 nm excitation. (n = 30) The presented spectra 

illustrate the changes in peak intensity ratios that arise from changes in the excitation wavelength. 

To determine the ability of the multi-excitation method to elucidate several biologically relevant 

characteristics of the WHO pathogens and to also see their correlation with the sequencing information, 

we utilized SVM with ten-fold cross validation, and performed PCA as a point of comparison. Initially, we 

analysed the samples based on their species and the presence or absence of a thick peptidoglycan layer 

in the cell wall (i.e., Gram-positive versus Gram-negative). The results for the SVM analyses are shown in 

Figure 3 A&B. Using this method, we achieved 100% accuracy for the differentiation of Gram-positive and 

Gram-negative bacteria. PCA for Gram-positive and Gram-negative bacteria also showed clear separation 

of the two classes along PC1 (Figure S2 B), with no overlap of the 95% confidence intervals of the groups. 

It is a very promising result since Acinetobacter is known to be occasionally falsely classified as a Gram-

positive bacterium39, which can impair proper infection treatment40.  
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A mean classification accuracy of 99.93% for species-level classification was also achieved by the SVM 

analysis of ME-RS data. 2 out of 60 A. baumanii spectra were incorrectly classified as K. pneumoniae, and 

1 of 60 E. coli spectra were identified as A. baumanii. In comparison, the species-level PCA exhibited 

significant overlap of the 95% confidence intervals of all species other than S. aureus (Figure S2 A).  S. 

aureus’ separation from the other species is congruent with the species’ structural differences in its cell 

wall. Similarly, all inter-species classification errors in the SVM analyses occurred between Gram-negative 

species. 

 

Figure 3: (A) Classification accuracies for SVM species-level identification of the bacterial strains used in 

this study. (B) Classification accuracies for SVM delineation of gram-positive and gram-negative bacteria. 

The size of green circles corresponds to the number of correct identifications for that species. Red circles 

indicate incorrect classifications. A total of 210 concatenated ME-RS spectra were input into SVM. 

We also attempted to differentiate the bacteria according to their drug resistance phenotype (i.e., 

resistant versus wild type), and to classify each strain in the study as a unique class. For this proof-of-

concept study, we only separated bacteria into resistant (plasmid-mediated or chromosomal resistance 

to any antibiotic) and wild type (susceptible to all antibiotics or chromosomal mediated resistance). A 

mean accuracy of 99.45% was achieved across the two classes, with all misclassifications occurring in the 

wild type class (Figure 4). Whilst any misclassification is undesirable, it is preferable that any 

misclassification be a false positive for drug resistance rather than a false negative, which may have 
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negative consequences in terms of adverse outcomes for patients or animals. On the other hand the PCA 

plot of the phenotype information revealed extensive overlap of the wild type and resistant classes (Figure 

S3 A). Interestingly, although S. aureus NCTC 8325 has fosfomycin resistance gene, it was still separated 

from S. aureus CCUG35600 MRSA strain. The same was true for E. coli isolates, where spectra from an 

ESBL-positive strain were separated from a wild-type E. coli strain. Unfortunately, wild type K. pneumoniae 

isolate was not included in this study. K. pneumoniae are intrinsically resistant to ampicillins, and it will be 

important to include a wild-type K. pneumoniae strain in the follow-up experiments. At this stage, our 

experimental data is rather limited, and it is yet to be established whether ME-RS can distinguish between 

resistance to a given antibiotic. Nevertheless, this study clearly highlights that ME-RS has the potential to 

be used as a rapid antibiotic susceptibility assessment tool.  

Lastly, we tested our method as a means of classifying each strain separately and performed a PCA for 

comparison. The results of this analysis are shown in Figure 4 B and Figure S3 B. In the PCA space, S. aureus 

is well resolved from the Gram-negative species used in the study, with both strains also being resolved 

from one another, suggesting that even PCA can differentiate drug-resistant and drug sensitive strains in 

this species; however, the Gram-negative species exhibit sizeable overlap between both species and 

strains. Clearly, this is highly undesirable. This strain-level classification essentially represents a 

simultaneous classification along both phenotype and species lines, and the SVM model performed 

extremely well, achieving a mean classification accuracy of 99.29%. Within this model, A. baumannii 

strains were classified correctly 100% of the time, as were S. aureus NCTC8325 and E. coli A2-39. 3.33% of 

E. coli CCUG17620 was misclassified as K. pneumoniae 225, and 1.67% of S. aureus CCUG35600 was 

misclassified as S. aureus NCTC8325. E. coli CCUG17620 had 20.3 % of its genome aligned to K. 

pneumoniae 225 genome, whereas E. coli A2-39 shared 18.6 %. Average nucleotide identity (ANI) of these 

strains to K. pneumoniae equaled 84.6 % and 84.4 % respectively. Both the E. coli and S. aureus 

misclassifications result in a misidentification of the sample’s drug-resistance phenotype, which is 

undesirable; however, as both sets of misclassifications incorrectly identified the sample as drug-resistant, 

the clinical decision to change to a different antibiotic to circumvent resistance is unlikely to be 

problematic in treating an infection. Interestingly, comparison of the species and strain level classifiers 

suggests that underlying phenotype may influence species identification. In the species-level 

classification, A. baumannii was misidentified as K. pneumoniae in a small number of instances. This 

misclassification, along with misclassifications of E. coli as A. baumannii disappeared when classifying 

strains independently. It is possible that this is caused by physical changes arising from genetic differences 

between the strains, which may confound the more general species classifier. Given this, and the 

importance of AMR in the modern clinical setting, it may be preferable to classify unknown samples along 

strain lines. 
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Figure 4: (A) Classification accuracies for SVM delineation of bacteria exhibiting drug sensitivity and those 

exhibiting drug resistance. (B) Classification accuracies for SVM strain-level identification of the bacteria 

used in this study. The size of green balls corresponds to the number of correct identifications for that 

species. Red balls indicate incorrect classifications. A total of 210 spectra with 30 spectra of each strain 

were input into SVM. 

Previously, Raman spectroscopy has been used with single excitation wavelengths to detect pathogens 

from patient samples, but exposure times involved in the analysis required photobleaching steps of 15-

30 minutes to allow Raman spectral features to become prominent enough to achieve an accuracy above 

95%41. As we have previously reported, our methodology provides clear spectra in around a minute for 

classification of two species, even in artificial sputum21. Here, we have extended the previous work to 

more species of clinical significance with similar levels of accuracy. Ho et al utilized deep learning to 

identify pathogens based on their Raman spectra, and reported an accuracy if 99.7%, which is comparable 

to the accuracies we obtain in this work. 
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Conclusions 
Here, we have demonstrated the extension of our multi-excitation Raman spectroscopy method to four 

WHO priority pathogens with known antibiotic susceptibility phenotypes and resistomes. Multi-excitation 

Raman combined with multivariate analysis was applied to a variety of biologically relevant classification 

problems. Mean classification accuracies for species, Gram staining, drug resistance phenotype, and strain 

were 99.93%, 100%, 99.45%, and 99.29%, respectively, which is consistent with previously reported 

findings. The classification by ME-RS is well supported by the detailed phenotypic and gene resistance 

profiling data. We observe a small (<1%) number of misclassifications which are explained by phenotypic 

differences and genome alignment.  These findings demonstrate the utility of our method to assist in the 

identification of a range of WHO priority pathogens, and to provide relevant information about 

microbiological samples, which can later be verified by genomics or conventional microbiological assays. 

Our results establish the potential of ME-RS as a rapid first-stage analytical tool that can complement WGS 

for phenotype prediction and resistome analysis. Such a workflow can be hugely impactful to handle and 

prevent the spread of AMR and could lead to potential future use in clinical microbiology. 
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