Vertical and Lateral Electrodeposition of 2D Material Heterostructures ### Yasir J Noori¹ Shibin Thomas¹, Nema Abdelazim¹, Sami Ramadan², Victoria Greenacre¹, Yisong Han³, Richard Beanland³, Norbert Klein³, Gill Reid¹, Philip N Bartlett¹, Kees de Groot¹ ¹University of Southampton, Southampton, UK ²Imperial College, London, UK ³University of Warwick, Coventry, UK y.j.noori@southampton.ac.uk #### **Abstract** Developing scalable techniques for growing 2D materials and their heterostructures is a major challenge that needs to be overcome before these materials can make an impact in industries. Electroplating (electrodeposition) is an industrially acceptable deposition technique that offers unique advantages. This work is divided into two main parts. First, we demonstrate controlled electrodeposition of uniform and continuous MoS₂ and WS₂ layers over a large-area and micropatterned graphene electrodes. Second, we present a novel electrode design that enables MoS₂ to be grown laterally over insulating substrates, demonstrating lateral photodetector devices based on TiN/MoS₂/TiN structure. Our goal is to show that electrodeposition can produce competitive quality of 2D materials which can potentially be scaled to wafer sizes in fabrication industries for device applications. # References - [1] Y. J. Noori, S. Thomas, S. Ramadan, et al., IOP 2D Mater., 9 (2022) 15025 - [2] Y. J. Noori, S. Thomas, S. Ramadan, et al., ACS Appl. Mater. Interface, 12 (2020) 49786. - [3] N. Abdelazim, Y. J. Noori, S. Thomas, et al., Wiley Adv. Electron. Mater., (2021) 2100419. - [4] S. Thomas, DE Smith, V. Greenacre, et al., J. Electrochem. Soc., 167 (2020) 106511. ## **Figures** **Figure 1:** (a) Image of a large area MoS₂ that is electrodeposited over graphene (b) Optical microscope image of micropatterned WS₂/graphene heterostructures and a graphene only film. **Figure 2:** (a) Schematic of MoS₂ that is laterally electrodeposited over an insulator from TiN electrodes. (b) Illumination response of a photodetector device based on laterally grown MoS₂.