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Abstract: Global change impacts including climate change, increased CO2 and nitrogen deposition
can be determined through a more precise characterisation of Land Surface Phenology (LSP) parame-
ters. In addition, accurate estimation of LSP dates is being increasingly used in applications such
as mapping vegetation types, yield forecasting, and irrigation management. However, there has
not been any attempt to characterise Middle East vegetation phenology at the fine spatial resolution
appropriate for such applications. Remote-sensing based approaches have proved to be a useful tool
in such regions since access is restricted in some areas due to security issues and their inter-annual
vegetation phenology parameters vary considerably because of high uncertainty in rainfall. This
study aims to establish for the first time a comprehensive characterisation of the vegetation pheno-
logical characteristics of the major vegetation types in the Middle East at a fine spatial resolution of
30 m using Landsat Normalized Difference Vegetation Index (NDVI) time series data over a temporal
range of 20 years (2000–2020). Overall, a progressive pattern in phenophases was observed from
low to high latitude. The earliest start of the season was concentrated in the central and east of the
region associated mainly with grassland and cultivated land, while the significantly delayed end of
the season was mainly distributed in northern Turkey and Iran corresponding to the forest, resulting
in the prolonged length of the season in the study area. There was a significant positive correlation
between LSP parameters and latitude, which indicates a delay in the start of the season of 4.83 days
(R2 = 0.86, p < 0.001) and a delay in the end of the season of 6.54 days (R2 = 0.83, p < 0.001) per degree
of latitude increase. In addition, we have discussed the advantages of fine resolution LSP parameters
over the available coarse datasets and showed how such outputs can improve many applications in
the region. This study shows the potential of Landsat data to quantify the LSP of major land cover
types in heterogeneous landscapes of the Middle East which enhances our understanding of the
spatial-temporal dynamics of vegetation dynamics in arid and semi-arid settings in the world.

Keywords: vegetation phenology; Middle East; Landsat; Land Surface phenology; remote sensing

1. Introduction

Vegetation phenology, the annual life cycle of plant species that occurs through spe-
cific biological phases (cycles) under the influence of environmental factors as seasons
proceed [1], is considered one of the global climate change indicators [2–6]. The biological
phases include, but are not limited to, spring phenophase (i.e., the onset of flowering
associated with ‘greenness’) and autumn phenophase (leaf colouring associated with senes-
cence’) [1]. Local and global environmental factors particularly climatic conditions, for
example, temperature and precipitation, depending on the spatial distributions and types
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of the vegetation, are primary controls of vegetation phenology [6,7]. As such, in the
temperate eco-region’s temperature is one of the key climate conditions that influences
the phenological cycles of vegetation [8,9]. On the other hand, in arid and semi-arid re-
gions (e.g., the Middle East), precipitation is one of the key determinants regulating the
phenological cycles of plants [10].

Apart from the significant role of plant phenology in tracking climate change, it also
plays a key role in monitoring and managing agricultural practices and understanding
ecosystem processes (e.g., functions, gas and energy fluxes, structure, and heath) [2,11–14].
As such, the dynamics of vegetation phenology (i.e., spatial pattern variability) over spaces
and time provide a unique opportunity for estimating the changes in the ecosystem pro-
cesses and functions based on which current and future investigations can be assessed.

Phenological studies are conducted using various observation approaches, namely,
ground-observed phenology (e.g., traditional human visual surveillance via established
phenology networks [15,16], near-surface observations via fixed phenology cameras (Phe-
noCams) [17,18], drones (unmanned aerial vehicles (UAVs) [19,20], and satellite-estimated
phenology [21,22]). Measurements obtained from satellite sensors are better known as
Land Surface phenology (LSP) because the field view of the sensors may capture a mix-
ture of spectral profiles (phenological cycles) from a variety of vegetation types [23]. In
other words, LSP measures the dynamics of cyclic patterns of land surface vegetation.
Ground and near surface approaches (i.e., human surveillance, PhenoCams, and drones)
are rather limited to a certain range of applications, with inconsistencies in their spatial
and temporal coverage [24]. Satellite-estimated measurements from polar-orbiting and
geostationary satellite sensors provide consistent datasets (products) on the dynamics of
LSP at larger spatial and temporal extents [25,26]. In the last decades, various satellite
sensor-based products have been developed for estimating and monitoring LSP across
a wide range of landscapes and regions (e.g., Europe). The most widely used sensors
include (but are not limited to) Landsat [27,28], Advanced Very High-Resolution Radiome-
ter (AVHRR) [29,30], Moderate Resolution Imaging Spectroradiometer (MODIS) [31,32],
Sentinel-2 [33,34], MERIS (Medium Resolution Imaging Spectrometer) [35–37], and Satellite
Pour l’Observation de la Terre (SPOT) VGT (Vegetation) [38–40]. These sensor products, de-
pending on their spatio-temporal characteristics offer various opportunities and challenges
in LSP explorations. For example, products from AVHRR and MODIS sensors provide
high temporal resolutions (i.e., capable of capturing changes in plant development) but
are insufficient to capture specific phenological cycles (characteristics) due to their low
spatial resolutions [41]. Alternatively, medium and high spatial resolution sensor datasets
with consistent multi-temporal coverage (such as Landsat), particularly in areas where
cloud cover is not an issue (e.g., Middle East), could provide a unique opportunity in
LSP investigation.

Satellite-estimated measurements in LSP studies usually undergo a transformation
from normal spectral bands into so-called vegetation indices (VIs), based on which phe-
nological cycles (or chemometrics, e.g., the onset of greenness, season length, and end of
senescence) can be characterised [42,43]. So far, the most common indices used in LSP
studies include Normalized Difference Vegetation Index (NDVI) [44], EVI (Enhanced Vege-
tation Index) [45], Difference Vegetation Index (DVI) [46], and Terrestrial Chlorophyll Index
(MTCI) [47], and Normalized Difference Phenology Index (NDPI) [48].

In the Middle East (ME) region as a whole (including seventeen countries), the veg-
etation and other land cover types are under immense pressure from both natural and
anthropogenic drivers, for example, extreme drought episodes [49–52] and political instabil-
ities (war, social and economic unrest in multiple countries, e.g., Yemen, Iraq, Syria) [53]. A
recent example can be seen in Egypt where population growth has already caused environ-
mental disturbances by exhausting water reservoirs for food production and agricultural
practices [54]. In addition, in the ME until the end of the 20th century, rainfed agricultural
land areas have decreased by more than 170,000 km2 due to climate change (from drought
and infrequent precipitation) [55]. The negative impact of these drivers could exacerbate
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in the wake of climate change. Sufficient information on spatiotemporal variation in veg-
etation dynamics and phenology can be crucial to surrogate the impact of natural and
man-made disasters.

In the ME as a whole, studies on LSP are limited or non-existent and are often con-
centrated on a single country as case-study investigations. For example, in Iraq despite
the long ongoing political, social, and economic instabilities (and this is true for many of
the ME countries) several studies have been conducted on spatio-temporal variations of
phenological characteristics in relation to elevation [31], forecasting crop (e.g., wheat and
barley) productions [56], climate change [57], phenometric-based classification of vegeta-
tion [58], and cultivated land change estimation based on crop phenology [59]. Similar
studies have also been performed within the boundaries of the ME, such as in Iran [60–62],
Turkey [63–66], Egypt [67,68], Jordan [69,70], Israel [71,72], Saudi Arabia [73], and northern
Fertile Crescent [74]. The majority of these studies have employed coarse spatial resolution
datasets and they are at the country level. Therefore, at the ME regional level, there is a
need for generating detailed phenological maps that depict spatio-temporal dynamics of
vegetation changes from moderate-resolution satellite datasets (e.g., Landsat). Finer spatial
resolution (30 m) phenological information provides better insight into the local variations
of the vegetation characteristics. In addition, detailed LSP characterisation help scientists
and policy makers to derive accurate crop type classifications, land-use change measure-
ments, yield prediction and yield gap quantification in the Middle Eastern smallholder farm
system. Furthermore, such studies benefit agricultural practices (e.g., applying fertilisers
efficiently, and establishing efficient irrigation systems) and further provide useful insights
into the influence of climate change on the dynamics of LSP in the ME region.

2. Data and Methods
2.1. Study Area

The term “Middle East” (ME) as used in this paper refers to the areas covered by
17 countries (Figure 1a). According to World Atlas, ME consists of 17 countries (Iran, Iraq,
Bahrain, Egypt, Cyprus, Jordan, Israel, Kuwait, Oman, Lebanon, Palestine, Saudi Arabia,
Qatar, Turkey, The Syrian Arab Republic, Yemen, and the United Arab Emirates) [75]. The
ME is a predominantly semiarid region that contains a strong north to south precipitation
gradient [76]. Annual precipitation may reach more than 1000 mm in humid regions of
Turkey and Transcaucasia, while the deserts south of the Euphrates River may receive up
to 100 mm/year [76]. According to the recent GlobeLand30, cultivated land, grassland,
shrubland, and forest are occupying 11.11%, 9.47%, 2.69%, and 2.69% of ME land area in
2020 (Figure 1b) [77]. Bare land covers by far the largest proportion (72%), while around
1.05% of the ME area is covered by artificial surfaces (Figure 1b) [77]. The contributions of
other landcover types such as Wetland, Waterbody, and Permanent snow are less than 1%
(Figure 1b) [77].
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Figure 1. Maps of (a) country boundaries of the study area [78] and (b) land cover type with a spatial
resolution of 30 m for 2020 [77].

2.2. Dataset
2.2.1. GlobeLand30

To represent the land cover of ME, the GlobeLand30, which is a 30 m resolution global
land cover data product, was developed by the National Geomatics Center of China, and
was obtained from the GlobeLand30 website [77]. The 2010 version was released in 2014
and its 2020 version was released recently [77,79]. To cover the entire ME, 48 tiles were
downloaded and mosaiced. The GlobeLand30 datasets comprise 10 land cover classes
in total, including grassland, cultivated land, shrubland, forest, wetland, water bodies,
artificial surface, tundra, ice, perennial snow, and bare land [79].

2.2.2. Landsat Land Surface Reflectance Data

We use country boundaries provided by DIVA-GIS [78] to define the area which is
later segmented into 22 processing tiles (see Figure 2) in order to comply with the batch
processing quota defined by the Google Earth Engine which is the computing platform
employed for data acquisition and processing [80]. For each tile, we acquired surface
reflectance level2 images from Landsat 5 and Landsat 7 with timestamps ranging from
1999 to 2021 in order to extract phenology parameters for the years 2000 to 2020. The
combination of both Landsat 5 and 7 increases the probability of obtaining cloud-free data
covering the area of interest [81].

Landsat 5 carried Thematic Mapper (TM) to capture the Earth’s surface reflectance
in visible and infrared bands covering 0.45 to 2.35-micron wavelengths [82]. This satellite
operated effectively from March 1984 to May 2012 collecting images with 30 m resolution,
185 km swath width and an average revisit time of 16 days. Carrying the improved instru-
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ment named Enhanced Thematic Mapper (ETM+), Landsat 7 has been in operation since
May 1999. The responsivities of both TM and ETM+ are consistent with each with a differ-
ence of less than 2% in red and near-infrared bands [83]. Thus, data from those instruments
can be utilised in tandem without any adjustment. However, due to the permanent failure
of the Scan-Line Correlator (SLC) since 2003, defects are present in the Landsat 7 data prod-
ucts [84]. There are gaps in the images (22% unread area per scene) produced by Landsat
7 while some pixels have invalid values due to duplicate measurements. Some algorithms
have been developed to overcome the problem (e.g., [85]), but we do not implement any
spatial gap-filling algorithm to correct the defects. Images from Landsat 5 are expected
to be the complement. Instead, we identified and corrected invalid pixel values due to
duplicate measurements based on the variation in the temporal domain.
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zoomed in to show how Landsat portrays medium-sized wheat crops in this region.

Time variability of the normalized difference vegetation index (NDVI, [86]) becomes
the key variable to extracting the phenology in this study. This index is calculated using
the following formula:

NDVIraw =
B4 − B3
B4 + B3

(1)

where B3 and B4 are images/data acquired in red (0.63–0.69 micron) and near-infrared
(0.77–0.90 micron) bands. We use surface reflectance data which were atmospherically
corrected using LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System)
software [87]. Quality assessment bands wherein (pixel_qa band) include cloud and shadow
masks produced using the CFMASK algorithm [88] were also considered to mask out the
pixels covered by high confidence clouds or cloud shadows. We masked pixels which are
flagged as cloud shadow (bit 3) and cloud (bit 5) with high confidence indication (bit 7).

2.2.3. Phenology Extraction

For every year, we collected and processed around 2-year long data ranging from July
year y − 1 to February year y + 1. By using a wider time window, more data points can be
used in the process to establish the time series and to capture growing seasons that cross a
calendar year. The process itself consists of three main stages, namely, outlier correction,
harmonic extraction, and the extraction of phenological parameters.

The first stage aims to correct the unreasonably high NDVI mainly caused by the
SLC failure in Landsat 7 products. The outliers are identified as data points that deviate
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more than 0.2 from the moving average values calculated along with a 40-day window.
Such outliers are replaced with the moving average value. When the time series data is
sufficiently dense, a moving average can be obtained such that this approach successfully
corrects the outliers. Conversely, outliers in sparse time series data remain uncorrected. To
relieve this issue, we relied on the two-year persistent pattern to capture the variability of
NDVI. In other words, two-year data were averaged to identify the seasonal variability in a
specific year.

After outlier correction, we fitted the following harmonic function [89,90]:

NDVIsmoothed = f(t) = A + Bt +
n=nH

∑
n=1

Cn sin
(

2π
nt
T

)
+

n=nH

∑
n=1

Dn cos
(

2π
nt
T

)
(2)

where t is time expressed in year fraction, T is the harmonic period, while the A, B, Cn,
and Dn are the regression coefficients. Basically, this method is similar to the Fourier
analysis where periodic signals are identified through Fourier transform and the smoothed
signal is generated by inverse transform after eliminating high-frequency variations. In
Google Earth Engine, the fitting was performed using multivariate linear regression with
variables associated with t, namely t, sin

(
2π t

T
)
, cos

(
2π t

T
)
, sin

(
4π t

T
)
, etc. To capture the

variability more accurately, we used T = 2 years and the number of harmonics nH = 6. In
principle, this parameter choice enables us to identify seasons with an overall duration of
four months or more while interannual variability (e.g., growing in one year, no growing in
the next year) can still be accounted for. We implemented an upper envelope fitting scheme
in order to correct the sudden drops in NDVI due to cloud cover or some other factors.
In this scheme, we applied more weights to data points with higher NDVI during the
iterative least square regression of the harmonic function. In the first iteration, regression
was performed to the raw NDVI, and the drops were replaced with the values from the
regression solution. These adjusted values were then used for the next iteration. Three
iterations were performed to obtain a reasonable upper fit. Examples of the fitting results
are presented in Figure 3. The implementation of upper envelope fitting successfully
corrects the drops, but overestimation of local minima becomes an inevitable consequence,
especially while dealing with the narrow valley of NDVI between two seasons as depicted
in the bottom panel of Figure 3.

From Figure 3, It is evident that the intervals between two consecutive data points are
not homogeneous such that identification of phenological parameters can be problematic.
To overcome this issue, the fitted harmonic function was calculated for a list of dates with
10-day intervals starting from the start of July year y − 1 to February y + 1. These limits
were selected according to the typical crop calendar in the ME countries. The temporal
resolution of 10 days is approximately half of the average revisit time of Landsat 5 and 7.
Derivative-based phenology extraction (see [2] for review) was performed to this consider-
ably homogeneous time series data. Time derivative, which is the difference of NDVI on
two consecutive dates, was computed and the local minima (valley) and maxima (peak)
were identified according to the sign change of the derivatives. This method is also known
as the inflection point method [35] where the valley is identified as the point where the
derivative changes from negative to positive. Conversely, the peak is the inflection point
where the derivative changes from positive to negative. Valid start and end of the season
should be valleys with NDVI less than 80% of the associated peak while the valid peak
should be more than 60% of the global maximum. Peaks with a maximum NDVI of less
than 0.2 were ignored. The start, peak, and end of the season for a specific year were
recorded where peak time should be in that year while the start and end can be outside. If
there is more than one season observed in the data, then we also recorded the phenology
for the second season. The maximum value of NDVI in a specific season was also recorded.
The outputs for these processes are stored as 8-bit raster images with specific multiplication
factors. Covering an area of about 10 million square kilometres, we produced at least five
10-gigapixel rasters for each season (see Table 1) each year from 2000 to 2020 summing
to ~200 Gigabyte’s data. For the purpose of this study, we have only employed the major
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phenological parameters including the start of the season (SOS), end of the season (EOS)
and length of the season (LOS).
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along the solid curve as shown in the bottom panel (b).

Table 1. Extracted phenological parameters.

Parameter Description

Start of season (SOS) Valid valley before the peak of season
Peak of season (tmax) Time at which NDVI reaches maximum in a single year
End of season (EOS) Valid valley after the peak of season

Length of season (LOS) Time difference between EOS and SOS
Maximum NDVI Maximum value of NDVI between SOS and EOS

It is noteworthy that the coverages of Landsat 5 and 7 are not homogeneous and the
SLC failure leaves stripes in the NDVI maps and subsequent outputs. Some errors/outliers
were corrected in the above-mentioned processes, but some others remain. To alleviate
this, we masked out pixels with incomplete seasons (e.g., pixels without EOS) and pixels
with intermittent phenology detection (e.g., there are only detections for four years or less).
Such erroneous detection is likely caused by uncorrected pixel values.
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2.2.4. Statistical Analysis

To demonstrate the significant impact of the Latitudinal gradient on LSP parameters,
the majority of LSP parameters (SOS and EOS) were estimated per degree increase in
latitude between 15◦ to 45◦. The simple linear regressions were fitted for different latitude
degrees and the slope and coefficient of determination (R2) were calculated as well as the
significance of the model.

To demonstrate the inter-annual variability of LSP parameters from 2000 to 2020 over
the entire ME, the temporal standard deviation (STD) values for each LSP parameter in each
pixel were computed. A large magnitude of STD can highlight areas that have unstable
seasons in ME. In addition, to determine the spatial distribution of each of the phenological
parameters for major land cover types, including cultivated land, shrubland, grassland and
forest, boxplots were generated.

3. Results
3.1. Spatiotemporal Variation in Phenological Parameters

Figure 4 shows the median start of the season (SOS), end of the season (EOS), and
length of the season for the study period 2000–2020 across ME. SOS dates are widely
distributed from 9 (September) to 16 (April), later SOS dates were seen at higher latitudes
and vice versa (Figure 4a). In general, a large amount of variation in the SOS dates across
the region was observed (Figure 4a) since the majority of the region directly relies on rainfall
to plant or indirectly recharge the surface water. The earliest SOS (September–November)
was observed in Egypt, Northwest Syria, West Turkey, middle and south of Iraq, north
and west of Iran, north Jordan, Palestine, and Lebanon. These areas are predominantly
irrigated cropland. However, in areas associated mainly with rainfed croplands, slightly
later SOS (November–December) was observed (some parts of Iraq, Iran, and Syria). The
SOS of the majority of shrubland cover types in the west of Iran seems to range between
January and February, while in Yemen shrubland cover type has slightly late SOS dates
(February–March). Grassland and forest cover types are mainly located in high altitude
parts of ME (Turkey, north of Iraq, and north of Iran) and their SOS dates fall approximately
between January and mid-March. For some areas in Yemen and other parts of ME, the SOS
was delayed to May–July. This is an indication of growing summer crops in these areas.

The EOS dates range from 13 (January) to 24 (December) and their spatial variation
is smaller than SOS (Figure 4b). This might be due to a lack of moisture and facing a hot
summer across the region. The earlier SOS is generally a coincidence with an earlier EOS
and vice versa. Areas with a later EOS exhibit a longer growing season than areas with an
earlier SOS (Figure 4b). However, this might not be applicable to the majority of Grassland
cover types as it has slightly late SOS and EOS compared to cultivated land, but its growing
season is shorter.

LOS result is presented in Figure 4c. Shorter growing seasons (approximately 3 to
4 months) are associated with shrublands in west Yemen and west Iran. Maximum LOS
values (approximately 10 months to a year) can be seen in the north and west of Turkey
and north of Iran associated with forests.
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3.2. Variability in LSP Parameters

Figure 5 shows the standard deviation of LSP estimates to highlight the inter-annual
variability of SOS, EOS, and LOS across ME over the 20-year period (Figure 5). In general,
greater variability values were observed in SOS compared to EOS. This is because the
majority of the ME region is reliant on rainfall for starting the growing season directly in
rainfed areas or indirectly to recharge the source of water for irrigation. Some areas in
Egypt, Iraq, Syria, Jordan, Palestine, and Iran, mainly cultivated lands, produced small
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STDs for SOS (<45 days) (Figure 5a). For the same areas, a smaller STD was observed for
EOS (<30 days) (Figure 5b) due to a lack of moisture as the area consistently approaches hot
summer. However, the largest EOS values up to 60 days were observed in north Turkey and
north Iran, mainly associated with forest land cover type. Similar high STD values can be
seen in the small proposition of cultivated lands due to mainly heterogeneous agricultural
management and crop practising.
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3.3. Latitudinal Variation of LSP Parameters

The trends and variations in LSP indicate that LSP is dependent on latitude (Figure 6).
As we can see from the results, latitude had more influence on SOS than EOS. Approxi-
mately 86% of SOS dates and 83% of EOS dates can be explained by latitude (p < 0.0001).
The relationship between SOS and latitude was significant. It indicates a delay in SOS of
4.83 days (R2 = 0.86, p < 0.001) per degree of Latitude increase. A significant relationship
was also found between EOS and latitude. A degree increase in latitude will result in an
approximately 6.54 days delay in EOS dates (R2 = 0.83, p < 0.001) (see Table 2).
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Table 2. The coefficient of determination (R2), slopes, and y-intercept of the linear regression between
LSP parameters and latitude during.

LSP Parameters R2 Slop y-Intercept p (Sig.)

SOS 0.86 4.83 188.6 <0.0001
EOS 0.83 6.54 325.89 <0.0001

3.4. Characterising of the LSP of Major Land Cover Types in ME

The spatiotemporal variation of vegetation phenological patterns in ME is largely
driven by different climatic factors (rainfall and temperature). Different patterns were seen
in the LSP parameters across the four types of land cover in ME (Figure 7). In general,
cultivated lands and grassland present the earliest SOS dates, starting mainly around
September, followed by shrublands for which SOS starts from early November. The latest
SOS dates were recorded for the forest which start around December. The majority of SOS
dates for cultivated lands, grassland, shrublands, and forests are falling into relatively
the same window for which SOS dates start around October until mid-January. There
is greater variability in SOS dates among the landcover types compared to EOS dates
except for forest. The earliest EOS were recorded for shrublands from mid-May until
mid-June. Sightly later EOS dates were observed for cultivated lands starting from late
May until early July, followed by grasslands for which EOS dates start from June until
late July. The latest EOS dates were recorded for the forest for which EOS dates start from
mid-June until mid-November. Regarding the LOS, forests recorded the longest growing
season (between ~5 to 10 months, followed by cultivated lands (~5.2 to 6.3 months),
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grasslands (between ~5 to 6.3 months), and the shortest growing season was recorded for
shrublands (between ~5 to 5.6 months). The above records were based on the majority of
the observation. However, due to the lack of accuracy of the used land cover types in some
areas, a possible mixture of different land cover types might have occurred which resulted
in inaccurate LSP estimates.
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4. Discussion

Accurate characterisation of LSP parameters can be used as a useful tool to investigate
global change impacts including climate change, increased CO2, and nitrogen deposi-
tion [91,92]. In addition, the precise estimation of LSP parameters could be crucial for
other applications including mapping of vegetation types, yield forecasting and irrigation
management [56,58]. The current research was based on the estimation of the date of
different LSP parameters using Landsat 5 and 7 time-series data, providing a description
of how SOS, EOS, and LOS changes for major land cover types across ME. These results
provide a description of Middle Eastern vegetation phenology for the last two decades and
help better understand future investigations of vegetation dynamics of various biomes,
particularly in relation to climate change. It is worth noting that this is the first attempt
to map and characterise vegetation phenology at the ME regional level, using data from
Landsat 5 and 7 from 2000 to 2020, at the spatial resolution of 30 m. This work only used
Landsat 5 and 7 data despite the availability of Landsat 8 over the study period. One reason
for not including Landsat 8 is that some studies have highlighted the differences in the val-
ues of average reflectance for each band between the two datasets [93,94]. Therefore, only
Landsat 5 and 7 were employed to keep the consistency over the study period. Meanwhile,
a detailed comparison between LSP parameters derived from Landsat 5 and 7 and Landsat
8 in arid and semi-arid regions will be investigated in future work.
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Although, coarse resolution LSP estimates such as MODIS are available at the global
scale [95], our finer resolution LSP estimates can offer much more granular information
which can be used for many policies making decisions. In the Middle Eastern complex
smallholder landscape, coarse-resolution data may not be able to capture the local variation
among farmlands (Figure 8(a1) vs. Figure 8(a2)), whereas these variations were captured
well in the Landsat based estimates (Figure 8(a2)). In addition, individual MODIS-500 m
pixel covers several agricultural fields, while 30 spatial resolution datasets can better
represent small agriculture field sizes in ME (Figure 8(a3)). Furthermore, considerable areas
have been left without LSP estimates in the coarse-resolution dataset due to insufficient
spatial resolution compared to medium-resolution data (Figure 8(b1,b2)). Finally, besides
its significant improvement compared to coarse LSP estimates, our outputs can be vital to
enhance many applications in the region, including (i) crop type classification (Figure 8(a2)),
(ii) urban expansion over time and urban phenology (Figure 8(c1,c2)), (iii) land-use change,
(iv) monitoring crop rotation and map cropland fallows which are widely practised in some
areas in ME (Figure 8(d2)), and (v) crop yield estimation and yield gap modelling at the
farm level.
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Figure 8. The difference between LSP parameters obtained from MODIS-500 m (MCD12Q2) [94] and
our Landsat-30 m estimated in the year 2006. (a1) MODIS-500 m green-up, (a2) Landsat-30 m SOS,
(a3) different in spatial resolution and spatial coverage between the two datasets, (b1) Large area in
MODIS-500 m were left without LSP estimates, (b2) Landsat-30 m provided LSP estimates in the same
areas, (c1) MODIS-500 m inaccurately estimated LSP parameters in an urban area, (c2) Landsat-30 m
accurately masked out urban area, (d1) MODIS-500 m estimated LSP regardless of being planted
or not, (d2) Landsat-30 m able to highlight cropland fallows. Note that the figures in each pair are
mapped in the same area.
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In arid to semi-arid regions, spatial and temporal variations in LSP parameters are
largely driven by changes in water availability, climate condition, vegetation composition,
and soil type [96–99]. Using traditional approaches to map vegetation phenology at the
regional scale is a great challenge due to their inconsistencies, lack of adequate spatial
information, cost-inefficiency, and being time-consuming [100,101]. However, remote
sensing monitoring systems are faster, can provide information over a large spatial scale on
a systematic basis, and can monitor their changes over time at a low cost [21,100,102,103].
In addition, these remotely sensed monitoring systems are highly important in the context
of ME where access is restricted in some areas due to insecurity issues. This factor among
other limitations has made the validation of LSP parameters derived from remotely sensed
data in this region even harder. In addition, based on our knowledge, ground phenological
stations do not exist across the region. Furthermore, there has not been any attempt to
characterise ME’s vegetation phenology at fine spatial resolution and, generally, a very
limited number of studies are available at the local scale.

The overall findings from this study are in line with the expected vegetation phenology
patterns across ME. However, there were difficulties and limitations that might have
impacted the overall accuracies of estimating the LSP parameters. This study employed
the GlobeLand30 for 2020 [77] to discriminate major land cover types, assuming that there
were no changes in all major land cover types during the study period. In addition, all the
cultivated lands are classified as one class and there is no discrimination between irrigated
and rainfed croplands, whereas the previous study showed that irrigated and rainfed
croplands had different growing seasons and their phenological patterns are relatively
different in Iraq [31]. Regarding the accuracy of the dataset, it has been claimed that the
overall accuracy of GlobeLand30 2020 is 85% and the Kappa coefficient is 0.78 [77], however,
the product might not be able to provide accurate mapping at the regional level for some
land cover types. Although we did not find any studies that assessed the accuracy of
the recent version (2020) of the product, the older version of the dataset was assessed
in a similar environment. For instance, six study sites around larger cities representing
dissimilar eco-regions spanning rural and urban areas were selected in Iran to assess the
accuracy of GlobeLand30 and the result showed an overall accuracy of 77% [104]. In central
Asia, classification accuracy for GlobeLand30-2010 was quantified using error matrix and
Kapa coefficient and the outputs represented an overall accuracy of 46% [105]. The lack of
classification accuracy may result in mixing different land cover types which can lead to
inaccurate LSP characterisation for individual land cover types presented in this study.

The STD was used to determine the most unstable locations over the last two decades
in terms of LSP parameters including SOS, EOS, and LOS. Based on the observation, the
most unstable land cover type in terms of LSP parameters over the study period was a
forest. This variation was greater in EOS compared to the other LSP parameters. Possible
explanations for this result include (i) the occurrence of deforestation and reforestation over
the study period (2000–2020) [106], (ii) natural and man-made disasters such as fire [107],
(iii) limitation of the method to capture the phenological parameters correctly due to lack
of data, and noises that might come from cloud coverage and snow, and (iv) difficulties
in the extraction of autumn LSP parameters due to their high uncertainties and greater
complexity. In addition, previous studies indicated that vegetation cover and heterogeneity
are also vital factors that could cause difficulties in LSP retrieval in arid and semi-arid
regions [108]. However, our findings are consistent with the results that are shown in [31].
For instance, The STD of SOS for most of Iraq ranged between 0 and 72 days, while the
STD of EOS for the majority of the country ranged between 0 and 32 days [31]. In some
cultivated lands, higher STD values were observed due to mainly human interactions such
as the application of heterogeneous agricultural management, practising different crop
growing systems over the years, and implementation of the traditional biennial system to
recharge the depleted soil [109,110].

As it can be seen in Figure 6, the LSP parameters along with latitudinal gradients
correlated significantly with each other (p < 0.01). To our knowledge, this is the first study
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that investigates the latitudinal variation of vegetation phenology in the ME using moderate
resolution satellite data. Previous studies at the country scale have evaluated the altitudinal
variation of vegetation in Iraq [31] and the study found that an increase in elevation delayed
the SOS and EOS. Similar patterns were recorded in our study since elevation generally
increases from the south to the north of the region with increasing latitude. The availability
of the water at the beginning of the season (irrigated cropland) in the middle and south of
the region advanced the SOS dates, while rainfall and temperature constraints as a function
of variation in altitude delayed the SOS in the northern parts of the region. In addition,
the temperature has long been considered to be the major controlling factor of vegetation
phenology at the middle and high altitudes. Other studies have also achieved similar
results in a similar environment. For example, in North Africa, Adole et al. [111] reported
that a one-degree increase in latitude will result in an approximately 5 days delay in SOS
and 5 days advance in EOS dates.

Comparisons of the LSP parameter dates in this work with those from previous studies
could improve our understanding of the spatial patterns of vegetation phenology across
ME. Although several studies have used different approaches to investigate the vegetation
phenology in different parts of ME, most of them are related to phenology trends or changes
across time, rather than the characterisation of LSP parameters (73, 72, 63, 70, 65, 2012, 59,
64, 58, 74, 61, 68, 66, 56, 69, 60, 57, 62, 67, 71). Therefore, a direct comparison between the
results was not possible, but the overall phenological patterns presented in these studies
were consistent with our findings.

5. Conclusions

This study shows the capacity of time series Landsat data to map and characterise the
phenology of major land cover types along a latitudinal gradient in ME. For the first time,
this research established the most comprehensive characterisation of the LSP of the major
land cover types from GlobeLand30 and NDVI derived from Landsat 5 and 7 at a moderate
resolution of 30 m over a long temporal range of 20 years (2000–2020). The generated maps
of LSP parameters in this study represent the most up to date, the finest spatial resolution
and most detailed characterisation of the vegetation phenology in ME. In addition, for the
first time, the inter-annual variability of all LSP parameters for all of ME was quantified.

The proposed method performed well for deriving LSP parameters for major land
cover types in ME. Different phenology patterns were captured in derived phenology
maps despite heterogeneous vegetation types in the study area. Based on the median LSP
parameters of the time series from 2000 to 2020, we observed inter-annual variation in
vegetation phenology in the study area fluctuated to a different degree. Spatially, the SOS
shows a delaying trend from south to north. With an increase in latitude, this trend was
more evident (high altitude). A stronger delaying trend in SOS was observed alongside
the latitudinal gradient. Temporarily, the inter-annual changes in LSP parameters were
quantified and the results can be used to investigate land cover change over the study
period in ME.

Future research should be dedicated to validating the LSP parameters when ground
data become available. In addition, more research will be needed to understand the major
driver of vegetation phenology in ME.
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