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KEY POINTS  36 

1) State-of-the-art climate models are used to study African hydroclimate during the early 37 

Eocene (approximately 50 million years ago). 38 

2) With increasing levels of CO2, there are changes to African precipitation, due to dynamical 39 

changes such as low level circulation. 40 

3) A comparison between the models and newly-compiled climate estimates shows a marginally 41 

better match at lower levels of CO2. 42 

 43 

ABSTRACT 44 

The early Eocene (~56-48 million years ago) is characterised by high CO2 estimates (1200-2500 45 

ppmv) and elevated global temperatures (~10 to 16°C higher than modern).   However, the response 46 

of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with 47 

sparse data coverage (e.g. Africa).  Here we present a study of African hydroclimate during the early 48 

Eocene, as simulated by an ensemble of state-of-the-art climate models in the Deep-time Model 49 

Intercomparison Project (DeepMIP).  A comparison between the DeepMIP pre-industrial simulations 50 

and modern observations suggests that model biases are model- and geographically dependent, 51 

however these biases are reduced in the model ensemble mean.  A comparison between the Eocene 52 

simulations and the pre-industrial suggests that there is no obvious wetting or drying trend as the CO2 53 

increases.  The results suggest that changes to the land sea mask (relative to modern) in the models 54 

may be responsible for the simulated increases in precipitation to the north of Eocene Africa.  There is 55 

an increase in precipitation over equatorial and West Africa and associated drying over northern 56 

Africa as CO2 rises.  There are also important dynamical changes, with evidence that anticyclonic 57 

low-level circulation is replaced by increased south-westerly flow at high CO2 levels.  Lastly, a 58 

model-data comparison using newly-compiled quantitative climate estimates from palaeobotanical 59 

proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2. 60 

 61 

PLAIN LANGUAGE SUMMARY 62 

Approximately 50 million years ago, a period known as the early Eocene, atmospheric carbon dioxide 63 

levels were significantly higher than today, and were more similar to what they could be in the future, 64 

if efforts to reduce human greenhouse gas emissions are unsuccessful. However, rainfall changes 65 

during this period are less well understood, especially over data-sparse regions such as Africa. Here, a 66 

collection of state-of-the-art climate models are used to study African rainfall during this period, 67 

comparing the simulations firstly to present-day African rainfall (to validate the models), secondly to 68 

varying levels of atmospheric carbon dioxide, and lastly to newly-compiled reconstructions of early 69 

Eocene rainfall (from plant fossils). The main findings are that although the models can reproduce 70 

present-day rainfall over Africa, and compare reasonably well with the reconstructions, there is no 71 

clear rainfall signal when atmospheric carbon dioxide is increased. Nevertheless, the combination of a 72 
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different continental configuration, vegetation, topography and atmospheric carbon dioxide leads to 73 

changing rainfall patterns, connected to temperature and low level wind changes. 74 

  75 
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1.  INTRODUCTION 76 

One of the ways to better understand future anthropogenic-induced climate change is to simulate past 77 

climates, using these as partial analogues for the future and allowing the testing of climate models to 78 

simulate climates very different from today (Braconnot et al. 2011, Tierney et al. 2020).  Simulating 79 

past climates allows not only an interrogation of the mechanisms of past climate change (Haywood et 80 

al. 2020, Lunt et al. 2021), but if a robust comparison with available proxy data can be produced, this 81 

allows confidence in future climate change projections that are often based on models tuned to a 82 

modern climate state (Harrison et al. 2014, Taylor et al. 2011, Williams et al. 2020, Williams et al. 83 

2021, Zhu et al. 2020). 84 

 85 

It has long been known that African precipitation, and in particular that over West Africa, is of vital 86 

importance to the more than one billion people in sub-Saharan Africa who survive predominantly on 87 

rain-fed agriculture and, concurrently, are highly vulnerable to extreme precipitation events causing 88 

both flooding and drought (Williams and Kniveton 2011).  However, a lack of weather and climate 89 

data across much of the continent has resulted in a high level of uncertainty concerning both present 90 

day and future climate trends (Salerno et al. 2019), and although it is expected that both average 91 

temperature and precipitation will increase across Africa along with the rest of the world (IPCC 92 

2021), regional variation is particularly high across Africa. 93 

 94 

Due to their particular relevance to African precipitation, two Quaternary time periods have recently 95 

been investigated by Williams et al. (2020) under the Palaeoclimate Modelling Intercomparison 96 

Project (PMIP, Braconnot et al. 2007), now in its 4th phase and itself under the umbrella of the 97 

Coupled Model Intercomparison Project, now in its 6th phase (CMIP6, Eyring et al. 2016).  These 98 

time periods are the mid-Holocene (6000 years ago, 6 ka) and Last Interglacial (127 ka).  However, 99 

excess warmth and enhancement of the Northern Hemisphere during these periods is caused primarily 100 

by changes to the orbital configuration of Earth, rather than elevated greenhouse gases (Kageyama et 101 

al. 2018).  To investigate substantial greenhouse gas-induced warming, and its result on regional 102 

hydroclimate such as across Africa, periods further back in time are needed, and two such candidates 103 

in the context of PMIP are the mid-Pliocene (~3 million years ago, 3 Ma) and the early Eocene 104 

(~56.05-47.8 Ma).  However, with CO2 levels ranging from 316-420 ppmv during the mid-Pliocene 105 

(Martínez-Botí et al. 2015), this is more similar to modern levels rather than being a suitable analogue 106 

for future projections by the end of the 21st century; using the previous RCP 8.5 scenario, this could be 107 

over 1000 ppmv (IPCC 2013).  The early Eocene, with CO2 levels ranging between 1200-2500 ppmv 108 

(Anagnostou et al. 2016, Anagnostou et al. 2020, Lunt et al. 2021), is comparable to the current future 109 

projections, and in particular for the extended high-emissions/low-mitigation scenarios such as in the 110 

year 2300 under SSP5-8.5 (Arias et al. 2021).  As a result of this high CO2, the early Eocene was a 111 

period characterised by temperatures up to ~5°C higher than today in the tropics (e.g. Cramwinckel et 112 
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al. 2018, Gaskell et al. 2022, Inglis et al. 2020, Pearson and Wade 2007), and much greater polar 113 

amplification with temperatures reaching ~20°C warmer than today at terrestrial high latitudes (e.g. 114 

Huber and Caballero 2011, Naafs et al. 2018, van Dijk et al. 2020). 115 

 116 

Despite being a partial analogue for future climate change, until the last few years climate model 117 

simulations of high CO2 periods such as the early Eocene have not been evaluated within a consistent 118 

framework (Lunt et al. 2017); the closest to this was an informal model-data comparison, considering 119 

four climate models, known as the Eocene Model Intercomparison Project (EoMIP), undertaken by 120 

Lunt et al. (2012).  This work focused on temperature-based metrics, however another study by 121 

Carmichael et al. (2016) used the same EoMIP ensemble to look at the hydrological cycle and 122 

hydroclimate changes in response to the elevated CO2 levels in the early Eocene.  The results focusing 123 

specifically on Africa are discussed in more detail below but, globally, when compared to proxy data 124 

it was found that the models generally underestimated precipitation over high latitudes, and those 125 

models showing the most warming in these regions gave the best match to the data (Carmichael et al. 126 

2016).  Concerning the impact of elevated CO2, it was found that all early Eocene simulations showed 127 

a more intense hydrological cycle (relative to the pre-industrial era, hereafter PI), with enhanced 128 

global precipitation and evaporation, and that this was generally directly related to the elevated 129 

temperatures resulting from higher CO2 (Carmichael et al. 2016).  At any given level of CO2, global 130 

precipitation changes varied widely between models, and certain regions (such as tropical Africa, 131 

discussed further below) were found to be sensitive to which model was assessed (Carmichael et al. 132 

2016). 133 

 134 

However, a disadvantage (albeit unavoidable) to EoMIP was that there was no consistent framework 135 

to the models' experimental design; each used different boundary conditions (e.g. palaeogeography) 136 

and different levels of CO2 (Lunt et al. 2012).  To resolve this problem, therefore, more recently the 137 

Deep Time Model Intercomparison Project (DeepMIP) was envisaged and conducted, using CMIP3 138 

and CMIP5 models as well as some of the most recent state-of-the-art CMIP6-class models (Lunt et 139 

al. 2017).  The large-scale features coming out of the simulations are discussed in Lunt et al. (2021), 140 

with several conclusions being drawn.  Firstly, boundary conditions other than CO2, discussed in 141 

Section 2.1, contributed between 3-5°C of the global mean early Eocene warming, relative to the PI 142 

(Lunt et al. 2021).  Secondly, the DeepMIP simulations showed less of a temperature spread than the 143 

models in EoMIP, and an increase in climate sensitivity (Lunt et al. 2021).  Lastly, when compared to 144 

proxy SST data, most models reproduced the large-scale spatial patterns of the reconstructions but 145 

still struggled at the regional scale, such as in the south-west Pacific (Lunt et al. 2021). 146 

 147 

Similar to Lunt et al. (2012), Lunt et al. (2021) only focused on temperature and CO2-based metrics.  148 

The majority of recent studies looking at Eocene hydroclimate have focused on reconstructing 149 
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evidence for the Asian monsoon (e.g. Farnsworth et al. 2019, Ma et al. 2019, Licht et al. 2014, Quan 150 

et al. 2012, Xie et al. 2019).  There are very few studies, and in particular modelling studies, focusing 151 

on Africa.  The aforementioned study by Carmichael et al. (2016) using the EoMIP ensemble found 152 

that tropical Africa was particularly sensitive to the model in question, and that the models varied in 153 

skill (when reproducing precipitation, relative to observations) in regions of relatively low 154 

precipitation such as over northern Africa’s Sahel region.  Moreover, although some models showed 155 

similar PI precipitation over tropical Africa, under early Eocene conditions they were quite different 156 

(Carmichael et al. 2016).   It should be noted, however, that this study did not actually include any 157 

early Eocene mean annual precipitation (MAP) reconstructions from Africa, only some Lutetian 158 

samples (~41-47 Ma).  More recently, Carmichael et al. (2018) ran several CO2 simulations using just 159 

the UK Met Office Hadley Centre model HadCM3L, finding an increase in both the size and 160 

frequency of extreme precipitation events over equatorial and East Africa.  Although MAP changes 161 

were relatively small, extreme rainfall increased by up to 70% over parts of tropical Africa, with 162 

summer precipitation events dominating the regime over southern Africa (Carmichael et al. 2018).  163 

Another example of Eocene African work is that of Liu et al. (2019), who looked at the Asian, 164 

African and Australian monsoons across five different time periods and found that precipitation from 165 

the African monsoon existed as early as the mid-Paleocene.  Keery et al. (2018) found the variability 166 

of Asian and African precipitation during the Eocene was predominantly accounted for by orbital 167 

configuration changes such as the precession and obliquity; in DeepMIP, however, these were kept at 168 

PI values and so, here, the impact on African precipitation will only be down to the CO2 or the other 169 

boundary condition changes. 170 

 171 

In this paper four main questions are addressed: 172 

1) How well do the DeepMIP models’ PI simulations reproduce modern observations of African 173 

precipitation? 174 

2) What is the impact of CO2 and other early Eocene boundary conditions on African 175 

precipitation in the DeepMIP models’ early Eocene simulations? 176 

3) What are the physical mechanisms behind this precipitation response? 177 

4) How do the DeepMIP models’ early Eocene simulations compare with proxy data of African 178 

precipitation? 179 

 180 

Section 2 of this paper briefly describes the experimental design followed by the DeepMIP models, 181 

gives a brief introduction to the models themselves, and describes the observational and proxy data 182 

used for comparative purposes.  Section 3 presents the results, addressing each of the above questions.  183 

Section 4 summarises and concludes. 184 

 185 

2. EXPERIMENT DESIGN, MODELS, AND PROXY DATA  186 
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2.1.  Experiment design 187 

The full experimental design, which all DeepMIP modelling groups were required to follow as closely 188 

as possible, is detailed extensively in Lunt et al. (2017) and so will only be briefly outlined here.  In 189 

addition to the various CO2 experiments, all modelling groups were required to carry out a PI 190 

simulation for comparison purposes, which was to be as close as possible to the CMIP6 standard 191 

piControl simulation (Eyring et al. 2016). 192 

 193 

For the early Eocene simulations, a number of boundary conditions needed to be changed, the key 194 

ones for the African region of which are shown in Figure 1.   195 

 196 

 197 

Figure 1 – Main boundary conditions changed in DeepMIP simulations, where top row = PI and bottom row = 198 

early Eocene: a) Land sea mask; b) Topography/bathymetry; c) Vegetation, expressed as megabiomes according 199 

to Harrison and Prentice (2003) (where 1 = Tropical, 2 = Warm-temperate, 3 = Temperate, 4 = Boreal, 5 = 200 

Savanna, 6 = Grassland and 7 = Desert).  The PI topography/bathymetry is taken from ETOPO5, re-gridded to 201 

1°x1° resolution, whereas the other fields are from Herold et al. (2014) 202 

 203 

Firstly, the land sea mask (LSM) was based on the palaeogeographic heights (discussed further 204 

below), with possible manual manipulation required in some models to maintain the various gateways 205 

(Lunt et al. 2017).  The new LSM produced a geographically smaller Africa relative to the PI, with 206 
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much of the present-day landmass north of 20°N being ocean in the early Eocene due to the increased 207 

sea level (Figure 1a).  Secondly, the palaeogeography (including topography and bathymetry) was 208 

based on the digital reconstruction of the early Eocene from Herold et al. (2014), with the topography 209 

(and sub-grid scale topography) being applied as an absolute value rather than as an anomaly (Lunt et 210 

al. 2017).  Over Africa, the most pronounced changes were over southern and eastern Africa, with 211 

generally larger areas of raised topography in the early Eocene, relative to the PI (Figure 1b).  This 212 

can be seen more clearly in the Supplementary Material, where the differences in topography are 213 

shown; there is clearly a large increase in elevation over western Africa where there is land in the 214 

early Eocene but ocean in the PI, but apart from this (where the landmasses coincide) the largest 215 

changes are over southern and eastern Africa (Figure S1).  Thirdly, concerning the land surface, 216 

vegetation and river run-off routing was also based on the dataset of Herold et al. (2014), using an 217 

appropriate lookup table to convert the vegetation megabiomes into whatever format was required by 218 

the model (Lunt et al. 2017).  The early Eocene vegetation was created by running the dynamic 219 

vegetation model BIOME4 (Kaplan et al. 2003), with the resulting 27 biomes being consolidated into 220 

10 megabiomes following the procedure of Harrison and Prentice (2003); please see Table 3 in 221 

Harrison and Prentice (2003) for a distinction between these megabiomes.  BIOME4 itself was forced 222 

by Eocene topography, bathymetry and CO2 coming out of an early Eocene simulation from the 223 

CESM climate model.  Concerning how well the simulated vegetation compares with reconstructions, 224 

Herold et al. (2014) state that it compares well with vegetation inferred from Palaeocene and Eocene 225 

palynoflora (Utescher and Mosbrugger 2007, Morley 2007), and is consistent with geological 226 

indicators of climate (Crowley 2012).  Although Herold et al. (2014) highlight a dry bias in vegetation 227 

over South America, there is no specific mention of Africa, primarily because there is currently little 228 

or no palaeobotanical data for Africa, meaning validation was not possible.  Although it is beyond the 229 

scope of this study to modify the vegetation boundary conditions, previous work has suggested a high 230 

sensitivity to vegetation, showing for example dramatically increased global annual mean 231 

temperatures when interactive vegetation is used, compared to fixed vegetation (Loptson et al. 2014).   232 

 233 

When compared to the PI, over Africa the new vegetation resulted in: i) a loss of the desert regions 234 

over the present-day Sahara, primarily because this is ocean in the early Eocene; ii) a latitudinal 235 

expansion (relative to the PI) of tropical rainforest across central Africa; and iii) an addition of a large 236 

area of tropical rainforest over southern Africa, which is savanna or grassland in the PI (Figure 1c).  237 

However, some features remained similar in the early Eocene relative to the PI, such as the region of 238 

tropical rainforest across central Africa being bordered by savannah to the north and south, and the 239 

Namib Desert (Figure 1c).  The impact on precipitation of these three boundary condition changes is 240 

discussed below.  Soil parameters, including soil dust fields, were given a globally constant value, and 241 

(given the lack of palaeodata) no lakes were prescribed unless dynamically predicted (Lunt et al. 242 

2017).  Concerning greenhouse gas concentrations, the CO2 experiments were divided into a set of 243 
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standard experiments (which all modelling groups should ideally have conducted) and a set of 244 

sensitivity experiments (which were optional).  All of these were expressed as multiples of the PI 245 

simulation, typically with a CO2 of 280 ppmv, and were as follows: 3x and 6x the PI for the standard 246 

experiments, and 1x, 1.5x, 2x, 4x and 9x the PI for the sensitivity experiments (Lunt et al. 2017).  See 247 

Table 1 for which modelling groups conducted which experiments.  All other greenhouse gases were 248 

kept as PI, the justification for which is given in Lunt et al. (2017).  Concerning aerosols, given the 249 

rapid development of representation of aerosols in models the experimental design was flexible here 250 

and allowed modelling groups to either leave these as PI, treat aerosols interactively (if possible), 251 

prescribe aerosols from Herold et al. (2014), or a combination of the above (Lunt et al. 2017).  The 252 

solar constant and astronomical parameters were kept identical to the PI, the justification for which is 253 

again given in Lunt et al. (2017). 254 

 255 

Modelling 

group 

responsible 

 

Model 

Atmospheric 

resolution  

(lon x lat) 

CO2 

experiments 

undertaken 

Run 

length 

(years) 

 

References 

University of 

Michigan, US 
CESM1.2_CAM5 2.5° x 1.89° 1x, 3x, 6x, 9x 2000 

Hurrell et 

al. (2013) 

Alfred Wegener 

Institute, 

Germany / 

Polish Academy 

of Sciences, 

Poland 

COSMOS-

landveg_r2413 
3.75° x 3.71° 1x, 3x, 4x 9500 

Jungclaus et 

al. (2006) 

Stockholm 

University, 

Sweden 

GFDL_CM2.1 3.75° x 3.05° 
1x, 2x, 3x, 

4x, 6x 
6000 

Delworth et 

al. (2006) 

University of 

Bristol, UK 
HadCM3B_M2.1aN 3.75° x 2.5° 1x, 2x, 3x 7800 

Valdes et al. 

(2017) 

University of 

Bristol, UK 
HadCM3BL_M2.1aN 3.75° x 2.5° 1x, 2x, 3x 7800 

Valdes et al. 

(2017) 

National 

Academy of 

Sciences, Russia 

INM-CM4-8 2° x 1.5° 6x 1050 
Volodin et 

al. (2018) 

Laboratoire des 

Sciences du 

Climat et de 

l'Environnement, 

France 

IPSLCM5A2 3.75° x 1.89° 1.5x, 3x 4000 
Sepulchre et 

al. (2020) 

University of 

Tokyo, Japan 
MIROC4m 

2.8125° x 

2.79° 
1x, 2x, 3x 5000 

Chan et al. 

(2011) 

University of 

Bergen, Norway 
NorESM1_F 2.5° x 1.89° 2x, 4x 2100 

Guo et al. 

(2019) 
 256 

Table 1 - Models taking part in DeepMIP, including relevant details and references 257 

 258 
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Lastly, the experimental design provided some advice on practical matters such as simulation length 259 

and output format.  The simulations varied in length (see Table 1) but were all at least 1000 years in 260 

length, with the climatologies, comprising the results discussed here, being calculated over the final 261 

100 years.  At that point, all simulations should have had a global mean top-of-the-atmosphere (TOA) 262 

net radiation balance of less than 0.3 W m-2 (or a similar balance to that of the PI) and an SST trend of 263 

less than 0.1°C century-1 (Lunt et al. 2017).   All of the output, details of which are given in Lunt et al. 264 

(2017), were uploaded to a centralised DeepMIP database. 265 

 266 

2.2.  Models 267 

Extensive details on each model, and how the experimental design was implemented in their 268 

simulations, are given in Lunt et al. (2021) and references therein and will therefore only briefly be 269 

discussed here; those aspects likely to affect precipitation (e.g. convection and land-surface schemes) 270 

will be focused upon here.  In total, nine models were included in DeepMIP, although it should be 271 

noted that two of these are different configurations of the same model.  See Table 1 for a list of the 272 

models, along with their atmospheric spatial resolutions and appropriate references (particularly 273 

relating to the atmospheric component of the models and elements relating to hydroclimate, where 274 

available).  In detail, these are as follows. 275 

 276 

• CESM1.2_CAM5: The Community Earth System Model version 1.2 (CESM1.2) is comprised 277 

of the Community Atmosphere Model version 5.3 (CAM5), the Community Land Model 278 

version 4.0, the Community Ice Code version 4.0 and the Parallel Ocean Program version 2 279 

(Hurrell et al. 2013).  CAM5 uses the finite-volume dynamical core and physical 280 

parameterizations of deep convection (Zhang and McFarlane 1995), shallow convection and 281 

moist turbulence (Park and Bretherton 2009), and cloud microphysics (Morrison and 282 

Gettelman 2008).  This version contains new physical parameterisations in the atmosphere, 283 

such as the cloud microphysics, which is critical for the simulation of the large-scale climate 284 

features of the early Eocene (Liu et al. 2017) 285 

• COSMOS-landveg_r2413: For an atmospheric general circulation model, ECHAM5 (the 286 

European Centre Hamburg Model) is used (Roeckner et al. 2003), and this is coupled to the 287 

Max-Planck-Institute for Meteorology Ocean Model (MPIOM) (Marsland et al. 2003); the 288 

coupled model is described by Jungclaus et al. (2006).  COSMOS-landveg_r2413 simulates 289 

cumulus convection using a mass flux scheme.  The orography is represented in spectral 290 

domain by surface geopotential (see Stepanek and Lohmann 2012 for more details regarding 291 

model description).  The land surface conditions for each biome are based on Hagemann 292 

(2002); additionally, parameters with a seasonal cycle (i.e. leaf area index and vegetation 293 

ratio) in the latitude belt of ~20°S-20°N were smoothed and an annual average for each biome 294 

was prescribed. 295 
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• GFDL_CM2.1: This uses the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model 296 

(Delworth et al. 2006), with modifications as described in Hutchinson et al. (2018), and 297 

comprising the Atmosphere Model 2, Land Model 2 and the Sea Ice Simulator 1, coupled to 298 

the ocean component from the modular ocean model version 5.1 (MOM5.1).  The atmosphere 299 

uses a finite-volume discretisation, and a 3° latitude x 3.75° longitude resolution with 24 300 

vertical levels, following the configuration of CM2Mc (Galbraith et al. 2011).  Convection is 301 

parameterised by the relaxed Arakawa-Schubert scheme of Moorthi and Suarez (1992), with a 302 

lower-bound on entrainment as specified in Tokioka et al. (1988).  Cloud microphysics are 303 

parameterised using the scheme of Rotstayn (1997), while cloud macrophysics use the 304 

parameterisation of Tiedtke (1993).  Full details of the convection and cloud 305 

parameterisations are given in Delworth et al. (2006).  Of possible relevance to the simulation 306 

of precipitation, the topography is smoothed using a three-point mean filter to allow a 307 

smoother interaction with the wind field (Lunt et al. 2021). 308 

• HadCM3B_M2.1aN: This Hadley Centre Climate Model (HadCM3) version is documented 309 

extensively in Valdes et al. (2017).  In particular, the model uses a single ‘bulk’ cloud model 310 

to parameterise dry as well as shallow and deep moist convection (Grant 1998). The cloud 311 

scheme uses a statistical parametrization via a probability density function over the grid-box 312 

total water content (Bushell 1998).  Six short-wave and eight long-wave radiation bands are 313 

represented by the scheme of Edwards and Slingo (1996).  Static fields for the nine surface 314 

types of the MOSES2.1 land surface scheme (Cox et al. 1999) are derived from the ten 315 

megabiomes of the DeepMIP vegetation boundary conditions (Herold et al. 2014) via a 316 

lookup table.  The atmosphere uses a Cartesian grid with a horizontal resolution of 3.75 x 2.5° 317 

(longitude x latitude) and 19 hybrid vertical levels.   318 

• HadCM3BL_M2.1aN: The only difference between this version of HadCM3 and the one 319 

described above is the horizontal resolution of the ocean component (Cox 1984), at 1.25° x 320 

1.25° for HadCM3B_M2.1aN and 3.75° x 2.5° for HadCM3BL_M2.1aN, and associated 321 

diffusion parameters (Valdes et al. 2017).  Both versions use 20 unequally spaced vertical 322 

levels in the ocean ranging between 10 and 616 m.   323 

• INM-CM4-8: This version of the Institute of Numerical Mathematics (INM) model is 324 

described in Volodin et al. (2018), but the parameterisations of physical processes are the 325 

same as in the previous version, INM-CM5, and described more detail in Volodin et al. 326 

(2017).  Parameterization of condensation and cloud formation follows Tiedtke (1993), and 327 

cloud water is a prognostic variable.  Parameterization of cloud fraction follows Smagorinsky 328 

(1963); cloud fraction is a diagnostic variable, independent of the calculation of condensation, 329 

and depended on the relative humidity.  Deep and shallow convection is parameterized by 330 

Bets (1986).  The surface, soil and vegetation scheme follow Volodin and Lykossov (1998), 331 
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with the evolution of the equations for temperature, soil water and soil ice being solved at 23 332 

levels from the surface to 10 meters depth (Volodin et al. 2018).  The fractional area of 13 333 

types of potential vegetation is specified, and actual vegetation as well as LAI is calculated 334 

according to the soil water content in the root zone and soil temperature (Volodin et al. 2018). 335 

• IPSLCM5A2: The IPSL-CM5A2 Earth system model from the Institut Pierre Simon Laplace 336 

(IPSL) is documented by Sepulchre et al. (2020), and is based on the previous generation 337 

IPSL Earth system model (IPSLCM5A, Dufresne et al. 2013) but with new revisions such as 338 

a re-tuning of global temperature.  It comprises the LMDZ5 (Laboratoire de Météorologie 339 

Dynamique Zoom) atmosphere model, the Organising Carbon and Hydrology In Dynamic 340 

Ecosystems (ORCHIDEE) land surface and vegetation model and the Nucleus for European 341 

Modeling of the Ocean (NEMOv3.6) ocean model, which includes the LIM2 sea ice model 342 

and the Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCESv2) 343 

biogeochemical model (Lunt et al. 2021).  LMDZ5 runs at a horizontal resolution of 1.9° × 344 

2.5° (latitude × longitude) with 39 hybrid sigma-pressure levels.  The LMDZ5 radiation 345 

scheme is inherited from the European Center for Medium-Range Weather Forecasts 346 

(Fouquart and Bonnel 1980, Morcrette et al. 1986), and the dynamical effects of the subgrid-347 

scale orography are parameterized according to Lott (1999).  Turbulent transport in the 348 

planetary boundary layer is treated as a vertical eddy diffusion (Laval et al. 1981), with 349 

counter-gradient correction and dry convective adjustment, and the surface boundary layer is 350 

treated according to Louis (1979).  Cloud cover and cloud water content are computed using a 351 

statistical scheme (Bony and Emanuel 2001).  For deep convection, the LMDZ5A version 352 

uses the “episodic mixing and buoyancy sorting” scheme originally developed by Emanuel 353 

(1991). 354 

• MIROC4m: This version of the Model for Interdisciplinary Research on Climate (MIROC) is 355 

documented by K-1 model developers (2004) and summarized in Chan et al. (2011).  In the 356 

atmosphere model, cumulus parameterization is based on Arakawa and Schubert (1974), with 357 

some simplifications and the cloud base mass flux is treated as a prognostic variable.  358 

Cumulus convection is suppressed when the cloud-mean ambient relative humidity is less 359 

than the critical value of 0.8.  The land surface model (Minimal Advanced Treatments of 360 

Surface Interaction and Runoff, MATSIRO) is documented by Takata et al. (2003), where 361 

prognostic variables include canopy temperature, canopy water content, snow amount, soil 362 

moisture content and frozen soil moisture content.  Fixed vegetation types are specified over 363 

ice-sheet-free.  The ocean component is version 3.4 of the CCSR (Center for Climate System 364 

Research) Ocean Component Model (COCO), documented in Hasumi (2000).   365 

• NorESM1_F: This version of the Norwegian Earth System Model (NorESM) is described in 366 

detail in Guo et al. (2019) and Li et al. (2020), and differs from the previous version 367 
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(NorESM1-M) in that while it has the same atmosphere-land grid, the ocean and sea ice 368 

components use a tripolar grid (rather than the bipolar grid in NorESM1-M), resulting in a 369 

more realistic Atlantic Meridional Overturning Circulation (Lunt et al. 2021).  NorESM1_F 370 

couples the Miami Isopycnic Coordinate Ocean Model (MICOM) and the spectral 371 

Community Atmosphere Model (CAM4) (Eaton 2010, Neale et al. 2008, Neale et al. 2013).  372 

CAM4 includes the Zhang and McFarlane (1995) deep convection scheme, the Hack (1994) 373 

shallow convection scheme, the nonlocal boundary layer scheme of Holtslag and Boville 374 

(1993) and the representation of cloud microphysics and macrophysics by Rasch and 375 

Kristjánsson (1998) and Zhang et al. (2003).  Instead of using the undiluted convective 376 

available potential energy (CAPE) in the original deep convection scheme, the diluted CAPE 377 

through an explicit representation of entrainment has been used to close the cumulus 378 

parameterization (Neale et al. 2008).  The convective momentum transport has also been 379 

included in the parameterization of deep convection (Richter and Rasch 2008).  Additionally, 380 

NorESM1_F adopts energy updates and energy conservation.  Compared to NorESM1-M, 381 

NorESM1_F has several important improvements on how precipitation is simulated, such as 382 

improvements in seasonality, a reduced wet bias and mitigation of the common double 383 

intertropical convergence zone (ITCZ) problem (Li et al. 2020). 384 

 385 

2.3.  Observational and proxy data 386 

Here the observational and proxy data are described; firstly there is a description of the modern, 387 

satellite-derived data used to assess and evaluate the PI simulations, and secondly there is a 388 

description of the early Eocene proxy data used to evaluate the Eocene simulations. 389 

 390 

2.3.1. Satellite-derived rainfall estimates from the modern period 391 

Even in the 21st century, there is a severe lack of in-situ rain gauge data over Africa; South Africa is 392 

probably the best populated in terms of rainfall measurements, but in other countries such as Angola 393 

or Namibia rain gauge data are sparse or non-existent (e.g. Williams et al. 2007, Williams et al. 2008, 394 

Williams et al. 2010).  The CenTrends precipitation dataset (Funk et al. 2015) contains measurements 395 

going back to 1900, but only for a small number of countries in East Africa.  Likewise, although the 396 

Global Historical Climate Network (GHCN) database (Durre et al. 2008, Durre et al. 2010, Menne et 397 

al. 2012) does contain temperature measurements going back to 1861, precipitation measurements do 398 

not begin until the 1950s and are again relatively sparse in Africa.  Therefore, a possible solution to 399 

the problem of data unavailability is to use satellite-derived rainfall estimates (SREs), which offer 400 

near-uniform coverage at relatively high spatial resolution from the 1980s onwards. 401 

 402 

Several datasets of SREs currently exist, but here the Tropical Applications of Meteorology using 403 

SATellite data and ground-based observations (TAMSAT) is used.  TAMSAT (version 3.1) provides 404 
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daily, 10-daily, monthly and seasonal precipitation estimates over Africa at 4 km resolution, and 405 

extends from 1983 to the present-day.  The data are publicly available; please see Open Research 406 

section, and Maidment et al. (2014), Maidment et al. (2017) and Tarnavsky et al. (2014) for details.  407 

Here, TAMSAT is used as a comparative tool for evaluating the PI simulations of the DeepMIP 408 

models.  A caveat here is that the models are showing precipitation simulated under PI boundary 409 

conditions, whereas TAMSAT is showing precipitation from the late 20th and early 21st century 410 

(referred to here as modern) and will therefore contain an anthropogenic signal; this, however, is 411 

unavoidable given the lack of PI precipitation observations.  It is expected that the biases between 412 

comparing the models to PI precipitation versus comparing them to modern precipitation will be less 413 

than the biases between the models themselves (i.e. the inter-model spread), and indeed much less 414 

than the uncertainty associated with the Eocene reconstructions.   415 

 416 

2.3.2. Palaeobotanical Eocene precipitation estimates 417 

The distribution and physiognomy of land plants are sensitive to precipitation (Wright et al. 2017).  418 

Therefore, the taxonomic affinity and the morphology of leaf fossils can be used to generate palaeo-419 

precipitation estimates (e.g. Utescher et al. 2014, Wilf et al. 1998).  For this study, previously 420 

established Paleocene-Eocene (~41-56 Ma) palaeobotanical records from Africa were compiled (see 421 

Supplementary Material for age ranges for individual sites, Table S1).  The distribution of the nearest 422 

living relatives (NLR) of these taxa was then analyzed using the bioclimatic analysis approach to find 423 

the highest probability precipitation range in which all taxa could co-occur (e.g. West et al. 2020, 424 

Willard et al. 2019).   425 

 426 

Geodetic coordinates of occurrences were obtained for the NLR of each plant group from the Global 427 

Biodiversity Information Facility (GBIF) (see Supplementary Material, Table S2).  These occurrence 428 

datasets were then filtered for uncertain, exotic and superfluous occurrences, as well as subjected to a 429 

random resampling to avoid regional overrepresentation of densely sampled areas.  A climatic 430 

envelope for each plant group (see Table S2) was then generated by extracting precipitation data 431 

(mean annual precipitation (MAP), wettest month (WMP), driest month (DMP), warmest and coldest 432 

quarter precipitation (WQP and CQP, respectively) and the precipitation seasonality coefficient (PS)) 433 

using the DISMO package in R (Hijmans et al. 2005).  A probability density function was then 434 

generated for each co-occurring plant group by testing the likelihood of the plant group occurring at 435 

100,000 unique extant combination of MAP, WMP, DMP, PS, WQP and CQP.  As shown in 436 

Equation 1, the product of probabilities (f) was calculated for each plant group (t) at each climatic 437 

combination (x), using the means (μ) and standard deviations (σ) of their modern-day bioclimatic 438 

envelope, for each climatic variable (c). 439 

 440 
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√2𝜎𝑐
2 × 𝜋

𝑒𝑥𝑐−𝜇𝑐 2𝜎𝑐
2⁄

6

𝑖=1

 441 

Equation 1 442 

 443 

A combined likelihood for all plant groups in the assemblage combined can then be calculated with 444 

the product of all likelihoods (n), shown in Equation 2. 445 

 446 

𝑓(𝑧) =∏𝑡𝑛

𝑛

𝑖=1

 447 

Equation 2 448 

 449 

The combination of MAP, WMP, DMP, PS, WQP and CQP with the highest likelihood is the value 450 

reported here as most representative for the assemblage, and the highest and lowest values of the 451 

metrics with f(z) ≥ 5% of the maximum f(z) is represented as the uncertainty (using the 95% 452 

confidence interval).  453 

 454 

Eleven plant assemblages from South Africa, Tanzania, South Sudan, Cameroon, Côte d’Ivoire, 455 

Ghana and Nigeria were analyzed with the bioclimatic analysis NLR method (Adeonipekun et al. 456 

2012, Atta-Peters and Salami 2004, Cantrill et al. 2013, Chiaghanam et al. 2017, de Villiers 1997, 457 

Eisawi and Schrank 2008, Goha et al. 2016, Okeke and Umeji 2016, Salami 1984, Salard-Cheboldaeff 458 

1979, Uzodimma 2013); see Table S1 for age ranges of individual sites.  459 

 460 

The NLR generated precipitation values were supplemented with an additional value based on leaf 461 

area analysis (LAA) derived data by Jacobs and Herendeen (2004) and Kaiser et al. (2006), also from 462 

Tanzania (from the Lutetian).  In locations where the final results are in the same geographical 463 

location, the reconstructions were averaged.  The final results of this analysis are shown in Table 2, 464 

with Eocene MAP expressed as ranges and modern MAP taken from TAMSAT.  It should be noted 465 

that, for the results other than the model-data comparison, precipitation during June-August (JJA) is 466 

focused upon, rather than using MAP.  Previous work has suggested that for much of the continent, 467 

over 80% of the annual total of precipitation is accounted for by a given region’s wet season and, over 468 

West Africa (the wet season of which is JJA), this increases to 95% or higher (Liebmann et al. 2012).  469 

Given that the primary driver of this wet season is the seasonal progression of the ITCZ, it is likely 470 

that this relationship will hold during the early Eocene.  It was therefore deemed appropriate to focus 471 

on this season for the majority of the analysis (i.e. Sections 3.1, 3.2 and 3.3), only using MAP for the 472 

model-data comparison (Section 3.4), for which seasonal proxy data are not available. 473 

 474 
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Site name Latitude (°N) Longitude (°E) 
MAP (mm year-1) 

Early Eocene  Modern 

Koningsnaas, 

South Africa 
-30.2 17.3 1318-1738 101 

Shagamu, 

Nigeria 
6.7 3.7 1148-2089 1762 

Melut Basin, 

South Sudan 
10 33 1175-1905 757 

Kwakwa, 

Cameroon 
4.5 9.1 1175-1905 2524 

Mwadui, 

Tanzania 
-3.9 33.5 813-1738 754 

Tano,  

Ghana 
4.7 -3 1514-2344 - 

Nanka,  

Nigeria 
6.12 7 1380-2291 1683 

Abidjan margin, 

Côte d’Ivoire 
5 -4.1 1660-1950 - 

Okigwe,  

Nigeria 
5.82 7.34 1175-1862 2311 

Bende - 

Umuahia, Nigeria 
5.47 7.45 1514-2291 2311 

Araromi,  

Nigeria 
7.7 3.5 1072-1738 1179 

Mahenge, 

Tanzania 
-4.79 34.26 720-800 707 

Mahenge, 

Tanzania 
-4.79 34.26 630-690 707 

Mahenge, 

Tanzania 
-4.79 34.26 737-815 707 

Mahenge, 

Tanzania 
-4.79 34.26 644-708 707 

Mahenge, 

Tanzania 
-4.79 34.26 710-790 707 

Mahenge, 

Tanzania 
-4.79 34.26 610-680 707 

Mahenge, 

Tanzania 
-4.79 34.26 610-680 707 

Mahenge, 

Tanzania 
-4.79 34.26 740-820 707 

 475 

Table 2 - Locations and mean annual precipitation (MAP) from early Eocene palaeobotanical records from 476 

Africa, and modern values.  Early Eocene ranges of MAP are expressed as the 95% confidence interval for all 477 

locations except Mahenge, where ranges are expressed as +/- 1 standard deviation.   Modern values of MAP 478 

taken from TAMSAT; missing values indicate ocean regions, as TAMSAT MAP is land only 479 

 480 

3. RESULTS 481 

Here the results of different comparisons are described: i) a model validation exercise, where the 482 

models’ PI simulations are compared to modern observations (Section 3.1); ii) a simulation 483 
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comparison, where precipitation from the models’ early Eocene simulations, at varying levels of CO2, 484 

is compared (Section 3.2); iii) a simulation comparison, where the physical mechanisms behind the 485 

precipitation response are investigated (Section 3.3); and iv) a model-data comparison, where 486 

precipitation from the models’ early Eocene simulations is compared to available proxy data (Section 487 

3.4). 488 

 489 

3.1.  DeepMIP models’ preindustrial simulations versus modern observations 490 

Here the focus is on mean precipitation differences between the various DeepMIP PI simulations 491 

(including the multi-model ensemble mean, MME) and precipitation observations from TAMSAT 492 

(see Section 2.3.1).  Here, the MME is calculated for a given variable as the simple mean across all 493 

available models.   Precipitation anomalies (PI simulations - TAMSAT) during JJA are shown in 494 

Figure 2, where the models have been ordered according to the root mean square error (RMSE), 495 

relative to TAMSAT.  Two observations are noteworthy.  Firstly, the MME is showing by far the 496 

closest agreement to TAMSAT, with a much lower RMSE (by ~10 mm month-1 less than even the 497 

next lowest individual model), highlighting the importance of using the MME to counterbalance 498 

individual models’ biases (whether they be under or overestimating).  The MME will therefore 499 

subsequently be used when discussing the various Eocene simulations.  Secondly, there appears to be 500 

a divide between: a) models such as IPSLCM5A2, INM-CM4-8 and COSMOS-landveg_r2413 that 501 

are underestimating African precipitation (i.e. are showing drier conditions across West Africa at 502 

~10°N), which have relatively low RMS error compared with TAMSAT; and b) models such as 503 

HadCM3BL_M2.1aN, MIROC4m and GFDL_CM2.1 that are overestimating African precipitation, 504 

which have relatively high RMS error compared with TAMSAT.  For example, the model with the 505 

least agreement (GFDL_CM2.1, RMSE = 70.6 mm month-1) is overestimating precipitation over West 506 

Africa by more than 100 mm month-1.   507 

 508 
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 509 

Figure 2 - JJA precipitation climatology differences (PI simulations - TAMSAT), re-gridded to lowest common 510 

spatial resolution (that of COSMOS-landveg_r2413) and ordered according to Root Mean Squared Error 511 

(RMSE, in mm month-1, see insert).  RMSE calculated over 20°W-50°E, 40°N-40°S, land points only 512 

 513 

Concerning the seasonal and latitudinal distribution of African precipitation, Figure 3 shows the 514 

annual cycle of West African (defined here as land points only encompassing 20°W-15°E, 0-20°N) 515 

precipitation and the zonal mean of JJA West African precipitation (Figure 3a and b, respectively).  516 

Outside of JJA, the majority of models are overestimating precipitation throughout the year (Figure 517 

3a), with the model closest to TAMSAT (in terms of the seasonal cycle i.e. precipitation timings) 518 

being CESM1.2_CAM5, although even this model overestimates precipitation during the first half of 519 

the year.  When averaged over this region, only one model (INM-CM4-8) underestimates 520 

precipitation throughout the year, but is nevertheless closer to TAMSAT than those which 521 

overestimate, in agreement with that discussed above and shown in Figure 2.  One model 522 
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(GFDL_CM2.1) greatly overestimates precipitation especially during JJA, and others (such as INM-523 

CM4-8) underestimate precipitation during JJA and therefore do not correctly reproduce the strong 524 

seasonality (i.e. the precipitation curve is flatter); for example, the difference between the wettest and 525 

driest month in this model is 136 mm month-1, whereas it is 161 mm month-1 in TAMSAT and 181 526 

mm month-1 in the MME (Figure 3a).  The MME also overestimates precipitation throughout the year 527 

but is nevertheless closer to TAMSAT in terms of seasonality than many of the wetter models (Figure 528 

3a).  Latitudinally, most models are showing a much wider (in terms of latitudinal extent) rain belt 529 

relative to TAMSAT, with GFDL_CM2.1 and the HadCM3 family in particular not reproducing the 530 

observed rapid drop-off in precipitation either near the Equator or north of 15°N (Figure 3b).  In part 531 

due to some drier models approaching the Equator (such as CESM1.2_CAM5 and INM-CM4-8), the 532 

MME is showing a similar latitudinal extent of precipitation compared to TAMSAT, and while it is 533 

still too wet at low latitudes it does correctly drop off north of 15°N (Figure 3b). 534 

 535 
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 536 

Figure 3 - Precipitation climatology from TAMSAT and PI simulations, averaged over West Africa (20°W-537 

15°E, 0-20°N - land points only): a) Mean seasonal cycle, at each model’s individual spatial resolution; b) Zonal 538 

mean of JJA precipitation, re-gridded to lowest common spatial resolution 539 

 540 

3.2.  DeepMIP models’ early Eocene simulations relative to preindustrial simulations and each 541 

other 542 

Here the focus is on mean precipitation differences between various DeepMIP early Eocene CO2 543 

sensitivity experiments, in which all boundary conditions other than CO2 were kept identical.  The 544 

focus is not only on the precipitation response to varying CO2 concentrations relative to the PI 545 
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simulations, but also from each CO2 experiment individually (relative to each other).  Precipitation 546 

anomalies of all the CO2 experiments versus PI are firstly briefly presented (Section 3.2.1), and then 547 

the experiment results are divided into a CO2 component (Section 3.2.2) and a non-CO2 component 548 

(i.e. the impact of the other boundary condition changes, Section 3.2.3). 549 

 550 

Before these results are presented, however, a brief introduction to the early Eocene precipitation over 551 

Africa is needed.  Mean JJA precipitation over PI and early Eocene Africa (using the 1x CO2 552 

simulation) is shown in the Supplementary Material, where it is clear that, during the PI, all models 553 

are showing a band of precipitation between approximately the Equator and 10°N that extends from 554 

the central equatorial Atlantic all the way across Africa (Figure S2a).  How far east this rainbelt 555 

extends is dependent on model, but the majority (and the MME) show it extending up to 40°E.  556 

During the early Eocene, although this rain belt is still present over West Africa, most models agree 557 

that it does not extend across the continent, instead ending at ~20°E and being replaced by relatively 558 

drier conditions (Figure S2b).  Wetter conditions are shown further east, over the early Eocene Indian 559 

Ocean, but concerning Africa these results would suggest that although the rain belt is latitudinally 560 

similar to the PI, it does not have the longitudinal extent. 561 

 562 

3.2.1. All CO2 experiments versus preindustrial 563 

The precipitation anomalies (early Eocene - PI), for each CO2 experiment and for each model during 564 

JJA are shown in Figure 4.  This is only briefly presented, because the combination of a 565 

palaeogeographic forcing and a CO2 forcing makes interpretation difficult; this is why the results are 566 

broken down into a CO2 component and non-CO2 component below.  It should be noted that when the 567 

MME is discussed below (see Sections 3.2.2 and 3.2.3), only models that participated in the particular 568 

experiment are included. 569 

 570 
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 571 

Figure 4 - JJA precipitation climatology differences (early Eocene - PI), for each CO2 simulation from each 572 

model 573 

 574 

There is no clear linear trend in either wetting or drying across early Eocene Africa as the CO2 575 

concentrations increase (Figure 4).  Although many models show drying (relative to the PI) of up to 576 

~180 mm month-1 across northern and western Africa in the 1x, 2x and 3x experiments, this gradually 577 

disappears as higher CO2 concentrations are applied, with some models showing precipitation 578 

increases of over 200 mm month-1 (Figure 4).  Some models disagree regardless of experiment, such 579 

as GFDL_CM2.1 which shows drying over northern Africa in all CO2 experiments contrasting with 580 

IPSLCM5A2 which shows wetting over northern Africa in all CO2 experiments.  Further south, none 581 

of the models in any of the experiments are showing a large precipitation response.  In very general 582 

terms, however, at the lower levels of CO2 concentrations (i.e. up to 4x) the majority of models are 583 

showing the same region of drying over northern and western Africa. 584 
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 585 

 586 

3.2.2.  Lower and higher CO2 experiments: impact of CO2 587 

To investigate the impact of increasing CO2 on precipitation, when all other boundary conditions are 588 

constant, the experiments have been divided into two samples, each containing a different number of 589 

models going into the MME: i) “lower-level CO2”, namely the 1x, 2x and 3x experiments, comprising 590 

four models (GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m); and ii) 591 

“higher-level CO2”, namely the 3x and 6x experiments, comprising two models (CESM1.2_CAM5 592 

and GFDL_CM2.1); see Table 1.  Note that the MMEs for the two 3x experiments are slightly 593 

different because they contain a different number of models.  Here, both absolute precipitation values 594 

and anomalies are shown, where the anomalies are of a certain CO2 experiment versus another CO2 595 

experiment, rather than early Eocene versus PI. 596 

 597 

The MME absolute precipitation and anomalies for the lower-level sample of CO2 experiments, are 598 

shown in Figure 5a.  When the absolute values are considered (Figure 5a, top row), all experiments 599 

show regions of precipitation maxima over the equatorial Atlantic (north of the Equator) and West 600 

Africa.  Over the same West African region as described above (20°W-15°E, 0-20°N, land points 601 

only), mean JJA precipitation is 192 mm month-1, 201 mm month-1 and 207 mm month-1 for the 1x, 2x 602 

and 3x experiments, respectively, implying a small increase as CO2 increases.  This becomes more 603 

evident when the anomalies are considered (Figure 5a, second row).  If the 1x and 2x experiments are 604 

compared, the largest change is over the equatorial Atlantic, with a small increase in precipitation of 605 

up to 50 mm month-1 over the Equator and a decrease of over 50 mm month-1 further north, suggesting 606 

a southward displacement of the Atlantic ITCZ.  Precipitation is also increased over western Africa.  607 

The same pattern is evident when the 1x and 3x experiments are compared, but more pronounced, 608 

with both the increases and decreases approaching 100 mm month-1 in their respective areas.   609 

 610 
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 611 

Figure 5 – JJA precipitation multi-model ensemble mean (MME) climatology absolutes and anomalies for the 612 

1x, 2x, 3x and 6x CO2 experiments, using both samples: a) Lower-level sample of CO2 experiments (comprising 613 

the four models that conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and 614 

MIROC4m), absolutes (top row) and anomalies (second row); b) Higher-level sample of CO2 experiments 615 

(comprising the two models that conducted these: CESM1.2_CAM5 and GFDL_CM2.1), absolutes (top row) 616 

and anomalies (second row) 617 

 618 
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The MME absolute precipitation and anomalies for the higher-level sample of CO2 experiments are 619 

shown in Figure 5b.  When the absolute values are considered (Figure 5b, top row), the region of 620 

precipitation maxima in the equatorial Atlantic is larger in the 6x experiment.  Over the same West 621 

African region, mean JJA precipitation is 186 mm month-1 and 232 mm month-1 for the 3x and 6x 622 

experiments, respectively, implying a large mean increase as CO2 increases, and this is further 623 

confirmed when the anomalies are considered (Figure 5b, second row).  Precipitation increases of 624 

over 100 mm month-1 are shown over the equatorial Atlantic (north of the Equator) and West Africa 625 

in the 6x relative to the 3x experiment, but the large region of drying seen at the lower levels of CO2 626 

is less evident (Figure 5b, second row).  This suggests that, whilst West African precipitation is still 627 

(and more so here) enhanced as CO2 rises, it is perhaps less related to Atlantic ITCZ displacement and 628 

more related to an increase in south-westerly flow (discussed further in Section 3.3). 629 

 630 

3.2.3. 1x CO2 experiment versus preindustrial: impact of non-CO2 boundary conditions 631 

The 1x CO2 experiment versus PI is of particular interest, because this shows the impact of the other 632 

boundary conditions rather than that from CO2 concentrations.  When CO2 concentrations are kept as 633 

PI (as in the 1x experiment), the boundary conditions (see Section 2.1) likely to have the largest 634 

impact on regional precipitation are the LSM, topography and vegetation (see Figure 1).  Although 635 

land ice changes, the largest of which during the early Eocene were over the Antarctic Ice Sheet 636 

(AIS), do cause a precipitation response (e.g. Kennedy-Asser et al. 2019), this is thought to be a 637 

mainly local signal and further afield, such as over northern and western Africa during JJA, there is 638 

little or no precipitation change when the AIS is either imposed or removed (Kennedy-Asser, pers. 639 

comm.). 640 

 641 

The MME precipitation anomaly for this experiment is shown in Figure 6a; it should be noted that, 642 

although six models conducted this experiment (CESM1.2_CAM5, COSMOS-landveg_r2413, 643 

GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m), only the latter four are 644 

included here in the MME, to be consistent with the analysis of the CO2 component (Section 3.2.2).  645 

From the available DeepMIP results, it is impossible to disentangle the boundary conditions and 646 

ascertain which is dominant in causing the precipitation response; in an ideal world, sensitivity 647 

experiments would be conducted to introduce each boundary condition individually, but this is not 648 

possible with the results currently available on the DeepMIP database.  Nevertheless, based on the 649 

results it is possible to theorise which of these boundary conditions might be causing this MME 650 

precipitation response.  The largest precipitation changes relative to the PI are a small increase in 651 

precipitation to the north of early Eocene Africa and in the western Indian Ocean, and a decrease in 652 

precipitation over western and northern equatorial Eocene Africa (Figure 6a).  It is likely that the 653 

northern increases are caused by the change in the LSM (Figure 1a) as this region comprises the 654 

preindustrial (and modern) Sahara but is ocean in the early Eocene and therefore would have been a 655 



 

27 

 

much greater moisture source.  Likewise, the increase over the western Indian Ocean is likely because 656 

preindustrial Africa extends much further East than during the early Eocene, again giving much less 657 

of a moisture source during the PI (Figure 1a).  Moreover, an examination of SST from the early 658 

Eocene and PI simulations (from each individual model and the MME) shows that these exposed 659 

regions of ocean are characterised by warmer SSTs in the early Eocene; for example, in the Indian 660 

Ocean absolute values are up to 32°C in the early Eocene MME compared to up to 28°C in the PI 661 

MME, thereby providing a greater source of evaporation during the Eocene see (see Supplementary 662 

Material, Figure S3).  Concerning the drying over equatorial early Eocene Africa, this is more 663 

difficult to interpret and does not seem likely to be related to the LSM or the changes in vegetation.  664 

For the LSM, this region of drying coincides with land during both time periods.  For the vegetation, 665 

although there is a shift in biome between the PI and early Eocene, the region of drying (at 666 

approximately 10-20°N) coincides with an increase (or slightly northward shift) in tropical rainforest 667 

during the early Eocene, rather than mostly being savanna and grassland in the PI (Figure 1c).  This 668 

might be expected to result in an increase in precipitation during the early Eocene, rather than a 669 

drying.  However, this response might be explained by the difference in orographic heights over this 670 

region (i.e. over central equatorial Africa), where early Eocene Africa is considerably lower (up to 671 

400 m) than in the PI (up to 1000 m).  Finally, over southern Africa, although there is a large increase 672 

in orographic heights (of over 1000 m) during the early Eocene (Figure 1b and Figure S1 in the 673 

Supplementary Material), this does not appear to be having a large impact on African precipitation, 674 

with minimal precipitation differences in the south (Figure 6a). 675 

 676 

Figure 6 – JJA precipitation multi-model ensemble mean (MME) climatology differences (early Eocene - PI) for 677 

the 1x CO2 experiment (comprising the four models that conducted this experiment, in addition to the others 678 
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considered here: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m): a) Original (i.e. 679 

unrotated) differences; b) Rotated differences i.e. Charlie Eocene precipitation rotated forward to where it is in 680 

the PI.  Note that in a), solid lines show the PI mask and dashed lines show the Eocene mask. 681 

 682 

However, a caveat of the above analysis is that, because of the plate rotation differences during the 683 

early Eocene, Figure 6a is showing precipitation anomalies that may simply be due to differing 684 

geographical locations, rather than any change to the climate state.  Therefore, Figure 6b shows the 685 

same results, but this time with the early Eocene precipitation rotated forwards (based on the rotations 686 

supplied in the Herold et al. 2014 Supplementary Material) to where it is in the PI.  However, despite 687 

these rotational differences, the overall picture remains the same (i.e. increases in precipitation over 688 

northern Africa and a decrease in precipitation over western and equatorial Africa) but much more 689 

pronounced (Figure 6b).  The increases and decreases in precipitation exceed 200 mm month-1 in 690 

some places, suggesting a northward displacement of the Atlantic ITCZ; this difference between the 691 

early Eocene and the PI is in contrast to when the Eocene CO2 experiments are compared with each 692 

other, to assess the impact of increasing CO2 (discussed previously in Section 3.2.2). 693 

 694 

3.3.  Physical mechanisms behind the precipitation response 695 

Here the focus is on the possible dynamic and thermodynamic mechanisms causing the observed 696 

precipitation responses, again using the MME absolute values and anomalies from the aforementioned 697 

lower-and higher level samples of CO2 experiments.   698 

 699 

The MME absolute 1.5 m surface air temperature (SAT) and anomalies for the lower- and higher-700 

level sample of CO2 experiments are shown in Figure 7.  In line with general understanding there is a 701 

clear increase in absolute SAT, everywhere, as the CO2 increases, with the largest signal (of up to 702 

40°C in the 3x experiment) occurring over the main landmass of central and northern Africa (Figure 703 

7a, top row).  This is more obvious when the anomalies are considered, although the largest increases 704 

are occurring further south (Figure 7a, second row).  This is even more pronounced in the higher-level 705 

sample of CO2 experiments (Figure 7b), and in all experiments the largest increase in SAT, either 706 

between the 3x and 1x experiments or the 6x and 3x the experiments, is occurring over southern 707 

Africa, away from the largest precipitation changes discussed above.  Moreover, the largest increases 708 

in precipitation as CO2 increases (Figure 5) are shown over ocean regions, such as the equatorial 709 

Atlantic and off the coast of West early Eocene Africa, whereas the largest increases in SAT (Figure 710 

7) are shown over the landmass.  It is likely that these precipitation increases are connected to the 711 

warmer SSTs (see Section 3.2.3), or changes to the low-level circulation (discussed below), rather 712 

than a direct response to the heating landmass.  The Precipitation - Evaporation (P-E) balance (Figure 713 

8) is positive over West Africa in all experiments regardless of sample, corresponding well with the 714 

region of increased precipitation (Figure 6), as does cloud cover which is also increasing with CO2 715 
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over these regions (not shown).  Further south, over the Atlantic, the balance is negative implying 716 

increased evaporation corresponding to the increased oceanic SAT.  Concerning low level circulation, 717 

as shown by 850 mb vector winds (Figure 9), when the anomalies are considered (and in particular the 718 

3x versus 1x), there is a small (of up to 5 ms-1) increase in northerly and westerly winds (i.e. 719 

clockwise flow) in the equatorial Atlantic north of the Equator (Figure 9a, second row).  However, in 720 

the higher-level CO2 sample (and in particular the anomalies of 6x versus 3x, Figure 9b, second row), 721 

this increase in anticyclonic flow is less evident and is instead replaced by a widespread area of 722 

increased southwesterly flow across most of the equatorial Atlantic and central Africa.  For SAT, P-E 723 

and 850 vector winds from each individual model, rather than the MME, see the Supplementary 724 

Material (Figure S4a, b, and c, respectively); here, similar to Figure 4, there is no obvious linear 725 

change in either P-E or low level circulation as CO2 increases, but a clear increase in SAT from all 726 

models, in line with current understanding (Figure S4a). 727 

 728 

Both the region of enhanced precipitation over West Africa, and the region of drying in the equatorial 729 

Atlantic around 10°N, may be explained by these low-level circulation changes.  Up to 3x that of the 730 

PI CO2, clockwise low-level circulation increases with CO2, drawing in more moisture from the 731 

equatorial Atlantic and causing a relative drying further north, hence the appearance of a southward 732 

displacement of the Atlantic ITCZ.  At higher levels of CO2, however, where increases in West 733 

African precipitation are shown but the region of drying around 10°N is not, the increased clockwise 734 

low-level circulation is replaced by increased south-westerly flow; here, therefore, precipitation is 735 

being enhanced by more moisture being drawn in by this south-westerly flow from the warm South 736 

Atlantic.   737 

 738 
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 739 

Figure 7 – Same as Figure 5 but for JJA 1.5 m surface air temperature  740 

 741 
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 742 

Figure 8 – JJA P-E multi-model ensemble mean (MME) climatology absolutes for the 1x, 2x, 3x and 6x CO2 743 

experiments, using both samples: a) Lower-level sample of CO2 experiments (comprising the four models that 744 

conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m), PI (top row) and 745 

early Eocene (bottom row); b) Higher-level sample of CO2 experiments (comprising the two models that 746 

conducted these: CESM1.2_CAM5 and GFDL_CM2.1), PI (top row) and early Eocene (bottom row).  Note that 747 

the PI panels are identical in each sample because they contain the same models, but are simply replicated here 748 

for ease of comparison 749 



 

32 

 

 750 

 751 

Figure 9 – Same as Figure 5 but for JJA 850 mb wind  752 

 753 

3.4.  DeepMIP models’ Eocene simulations versus proxy data 754 

In this final section, the focus is on comparing precipitation from selected DeepMIP early Eocene 755 

simulations (using the MME from the same two samples as discussed above) with newly-available 756 

precipitation reconstructions (described in Section 2.3.2).  Before the results are presented, however, 757 

several sources of uncertainty in the proxies and models must be noted, aside from analytical 758 

uncertainty that is expressed in the reconstructed confidence intervals.  Firstly, the fossil plant 759 

assemblages analysed here have broad age constraints.  Palaeofloral assemblages may capture a 760 
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snapshot within those age constraints that deviated climatically from the average climatic conditions 761 

of a specific age that the model was calibrated on.  In addition, fossil plant assemblages tend to 762 

preserve better in wetter climates, with drier climates lacking the water bodies needed to preserve 763 

plant fossils.  Secondly, the DeepMIP models are calibrated on atmospheric CO2 proxy 764 

reconstructions to cover the uncertainty of the entire Eocene; the lower CO2 levels may be more 765 

representative of the late Eocene, but that was not the purpose or interpretation when it came to 766 

deciding the experiments.  Independent proxies within those ages produce widely variable 767 

atmospheric CO2 reconstructions (e.g. Rae et al. 2021), with <500 ppmv from some palaeosol and 768 

stomatal reconstructions (Beerling et al. 2009; Hyland et al. 2013) to >2000 ppmv from boron 769 

isotopes and alkenone δ13C (e.g. Bijl et al. 2010; Anagnostou et al. 2020).  It should be noted, 770 

however, that there is high uncertainty in these reconstructions; see Hollis et al. (2019) for a full 771 

discussion.  For example, based on a variety of reconstructions compiled as part of the Palaeo-CO2 772 

project (including phytoplankton, boron proxies, leaf gas exchange, liverworts and nahcolite), 773 

atmospheric CO2 during 55-50 Ma ranges from 500-2000 ppmv (Anagnostou et al. 2020, Hollis et al. 774 

2019, Westerhold et al. 2020).  Potentially, these differences in reconstructed atmospheric CO2 reflect 775 

transient climate states (e.g. Reichgelt et al. 2016), but regardless, the disagreement between proxy 776 

reconstructions makes it problematic to associate a single atmospheric CO2 level for model-data 777 

comparison (Hollis et al. 2019).  Lastly, a major source of uncertainty is the paucity of proxy data 778 

across Africa; as mentioned above, even today there is a lack of long-term climate data over much of 779 

Africa, and the same is true for palaeofloras.  This sparsity, therefore, is likely responsible for some of 780 

the results discussed below, and this is why some of the following results are necessarily partly 781 

speculative. 782 

 783 

With these caveats in mind, MME MAP at each of the individual locations is shown in Figure 10, 784 

ordered according to the reconstructions’ values, including uncertainty estimates for the 785 

reconstructions (as measured by +/- 1 standard deviation for the locations in Mahenge, Tanzania and 786 

the 95% confidence interval for the other 11 locations; see Table 2 for details).  The approximate 787 

geographical locations can be seen in the Supplementary Material (Figure S5).  Firstly it is worth 788 

noting that for the majority of reconstructions, uncertainty is high, with a range of up to +/- 1000 mm 789 

yr-1 at some of the locations such as Mwadui, Tanzania (Figure 10).  Secondly, whether or not the 790 

CO2 experiments over- or underestimate MAP appears to depend heavily on geographical location, 791 

with none of the CO2 experiments (not even the 6x experiment) reproducing the precipitation amounts 792 

of the proxy reconstructions in some locations, such as Koningsnaas, South Africa, Okigwe, Nigeria 793 

or Tano, Ghana (Figure 10).  Elsewhere, the simulations lie within the uncertainty range of the 794 

reconstructions (such as Sagamu or Bende-Umuahia, both in Nigeria), and yet in other places (such as 795 

across Kwakwa, Cameroon, and all of the locations at Mahenge, Tanzania) all of the simulations are 796 

too wet, by between ~760-1040 mm year-1 depending on location and CO2 experiment (Figure 10).   797 
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 798 

 799 

Figure 10 – Annual mean precipitation from reconstructions (black) and CO2 experiments multi-model 800 

ensemble mean (MME, colours) at each individual location.  Uncertainty in reconstructions is measured by 95% 801 

confidence interval for all sites except Mahenge, where they show +/- 1 standard deviation.   Locations have 802 

been ordered according to the reconstructions’ values, lowest to highest.  Note that locations 1-4 and 6-8 are all 803 

in the same location, but from different stages during the Lutetian (~41-47 Ma), and so have been re-sampled 804 

and averaged into one overall mean (location 5) 805 

 806 

Spatially, MME MAP is shown in Figure 11 (see Figure S6 in the Supplementary Material for each 807 

individual model), showing the uncertainty estimates as concentric circles.  As already discussed, the 808 

simulations’ precipitation is clearly too high or too low compared to proxy reconstructions in different 809 

parts of Africa.  Qualitatively, in very general terms all of the CO2 experiments are showing wetter 810 

conditions over Western early Eocene Africa (relative to elsewhere), agreeing with Figure 10 where in 811 

many of these locations the models are either within, or at the higher end of, the reconstructions’ 812 

uncertainty ranges (Figure 11).  Importantly, simulated precipitation over West Africa appears to be 813 

increasing as the CO2 concentration increases and, in particular for the 6x experiment (Figure 11e), in 814 

this region simulated precipitation exceeds even the upper range of uncertainty of the reconstructions.   815 
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 816 

Figure 11 – Annual mean precipitation from reconstructions (circles) and CO2 experiments multi-model 817 

ensemble mean (MME, background gridded data): a) 1x; b) 2x; c) 3x (lower-level CO2 sample); d) 3x (higher 818 

level CO2 sample); e) 6x. Concentric circles show 95% confidence interval for all sites except Mahenge, where 819 

they show +/- 1 standard deviation: outer circle = lower range (or -1 standard deviation), middle circle = average 820 

(or, for Mahenge, mode) and inner circle = upper range (or +1 standard deviation).   Reconstructions have been 821 

rotated forwards to where they are in the PI. Solid lines show the PI mask and dashed lines show the early 822 

Eocene mask. Note that, using the common spatial resolution of the MME, 3 reconstructions are all in the same 823 

location in West Africa (even though they are in different locations in reality); here, therefore, only the top-most 824 

reconstruction is shown 825 

 826 

Quantitatively, the root mean squared error (RMSE) between each model (as well as the MME) and 827 

the reconstructions at every location is shown in Table 3 and, similar to the anomalies from each 828 

model as discussed above, there is no clear relationship between changing CO2 and a better match to 829 

the reconstructions.  Most models suggest a better fit to the reconstructions at lower levels of CO2, 830 

such as CESM1.2_CAM5 where there is a general increase in RMSE as the CO2 increases; however, 831 

this is not the case for every model, with for example GFDL_CM2.1 showing a better fit with 832 

reconstructions at 2x and 4x CO2, rather than higher or lower levels (Table 3).  For many of the 833 

models and the MME, the 3x CO2 experiments are showing the least fit with reconstructions.  The 834 

MME, from the lower-level (but not in the higher-level) CO2 sample, agrees with this conclusion that 835 
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lower CO2 is giving a slightly better match to the reconstructions, with RMSE values of 758 mm year-836 

1, 831 mm year-1, 1385 mm year-1, 889 mm year-1 and 839 mm year-1 for the 1x, 2x, 3x (lower-level 837 

CO2 sample), 3x (higher-level CO2 sample) and 6x experiments, respectively (Table 3).   838 

 839 

 
1x CO2 

1.5x 

CO2 
2x CO2 3x CO2 4x CO2 6x CO2 9x CO2 

CESM1.2_CAM5 681   750  704 822 

COSMOS-

landveg_r2413 
699   1424 713  

 

GFDL_CM2.1 803  762 1027 786 975  

HadCM3B_M2.1aN 796  884 1988    

HadCM3BL_M2.1aN 816  1018 1742    

INM-CM4-8      966  

IPSLCM5A2  744  669    

MIROC4m 614  662 785    

NorESM1_F   1149  1522   

        

MME (lower-level 

CO2 sample) 
758  831 1385    

MME (higher-level 

CO2 sample) 
   889  839  

 840 

Table 3 - Root Mean Squared Error (RMSE) for mean annual precipitation (MAP) between each model (and 841 

multi-model ensemble mean, MME, using both samples) and reconstructions, for each CO2 experiment 842 

 843 

4.  DISCUSSION AND CONCLUSIONS 844 

This study has investigated African precipitation during the early Eocene, as simulated by the 845 

DeepMIP models.  This study is novel, because it investigates the relatively little-studied subject of 846 

African hydroclimate during the early Eocene.  The results of this study have been divided into four 847 

separate sections, corresponding to the four questions posed in Section 1.  Firstly, in Section 3.1 the 848 

DeepMIP models’ PI simulations have been compared to satellite-derived estimates of precipitation, 849 

to ascertain how well the models are able to reproduce African precipitation under ‘modern’ 850 

conditions (please see Section 2.3.1 for a discussion of the caveat that here the term ‘modern’ is 851 

actually a combination of both pre-industrial and 20th-21st century).  Secondly, in Section 3.2 the 852 

DeepMIP models’ early Eocene simulations have been compared to both the PI simulations and each 853 

other, to investigate the impact of CO2 components (i.e. increasing CO2) and non-CO2 components 854 

(i.e. other boundary condition changes, such as to the LSM) on African precipitation.  Thirdly, in 855 

Section 3.3 the CO2 driven response has been investigated further by looking at a number of dynamic 856 

and thermodynamic fields simulated by the models, to ascertain possible physical mechanisms behind 857 

the observed precipitation response.  Lastly, in Section 3.4 the DeepMIP models’ early Eocene 858 

simulations have been compared to newly-available proxy data, to indicate how well the models agree 859 

with current best precipitation estimates from the Eocene. 860 
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 861 

The comparison between the DeepMIP PI simulations and modern observations (from TAMSAT) 862 

suggest that individual models are both underestimating or overestimating the spatial patterns of 863 

African precipitation; this is consistent with Monerie et al. (2020), who analysed a number of 864 

historical simulations from both CMIP5 and CMIP6 and found that the models' ability to reproduce 865 

observations was firstly model dependent and secondly geographically dependent, with many models 866 

underestimating precipitation over the Sahel and overestimating it over the Guinea coast and tropical 867 

Atlantic.  However, here the MME is reducing these biases and is showing the best agreement with 868 

TAMSAT in terms of precipitation spatial patterns, highlighting the utility of the MME as a best 869 

estimate of the actual precipitation.  This has been found elsewhere, such as by Ayugi et al. (2021) 870 

who looked at East African precipitation in both CMIP5 and CMIP6 models and again found a better 871 

performance of the MME relative to individual models, due to systematic errors in individual models 872 

being cancelled out.  Moreover, Rougier et al. (2013) show that it is actually a statistical property of 873 

this type of analysis that the ensemble mean will always provide the best match to the data e.g. have 874 

the lowest RMSE.  It should be noted, however, that a potential caveat of using the MME is that 875 

although it eliminates extreme biases, the same models are then being used to run the Eocene 876 

simulations, for which the correct (i.e. true) precipitation is less well known and based only on 877 

palaeodata, which themselves have uncertainties.  Therefore, even using the MME may be 878 

propagating its own unknown errors.  Concerning the latitudinal extent and seasonal timings of 879 

African precipitation, most models show a much wider (latitudinally) West African rain belt 880 

compared to TAMSAT and are not reproducing the rapid drop-off in precipitation near the Equator or 881 

north of 15°N.  This is somewhat in contrast to Monerie et al. (2020), who noted that the majority of 882 

CMIP5 and CMIP6 models did not have the monsoon extending far enough to the north and were 883 

instead showing a southward displacement of precipitation maxima, relative to observations; however, 884 

that particular study used the models’ historical simulations (as well as a different MME), not pre-885 

industrial as shown here, which may explain the discrepancy.  Outside of JJA most models are too 886 

wet, but within JJA the results suggest that the drier models (i.e. those underestimating African 887 

precipitation) are closer to modern observations than those that are too wet (i.e. overestimating 888 

African precipitation). 889 

 890 

The comparison between the DeepMIP early Eocene simulations and the PI suggests that, when all 891 

individual models are considered separately, there is no obvious wetting or drying trend (relative to 892 

the PI) as the CO2 increases.  This is another reason to focus on the MME, which allows easier 893 

interpretation as the large model spread is removed.  Concerning the non-CO2 component of 894 

precipitation change (i.e. the impact of other boundary conditions when CO2 is kept at PI levels), the 895 

results suggest that changes to the LSM may be responsible for the increases in precipitation (relative 896 

to the PI) to the north of early Eocene Africa and the western Indian Ocean, given that these are 897 
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‘newly exposed’ regions of ocean in the early Eocene, thereby providing a larger moisture source.  In 898 

contrast, it is likely that changes in orographic heights are responsible for the region of drying 899 

(relative to the PI) over equatorial early Eocene Africa, where early Eocene Africa is considerably 900 

lower (up to 400 m) than in the PI (up to 1000 m).  When the early Eocene precipitation is rotated 901 

forwards in time to where it is in the PI, a similar pattern is shown but is more pronounced, and 902 

suggests a northward displacement of the primary rain belt (relative to today), which is consistent 903 

with previous work (e.g. Carmichael et al. 2016).  Concerning the CO2 component of precipitation 904 

change, at the lower levels of increased CO2 (such as 2x and 3x that of the PI) precipitation over the 905 

equatorial Atlantic and West Africa appears to be increasing in response to rising CO2, with the 906 

concomitant decrease in precipitation north of the equator suggesting a possible displacement of the 907 

Atlantic ITCZ towards the south.  This therefore suggests that the boundary condition changes 908 

imposed for the Eocene are resulting in a northward displacement of the primary rain belt, but 909 

increasing CO2 (with the same boundary conditions) is resulting in a southward displacement of the 910 

primary rain belt.  At even higher levels of CO2 (such as 6x that of the PI), precipitation over West 911 

Africa is more enhanced relative to the lower levels, but the region of drying is less evident.  The 912 

enhancement of Northern Hemisphere summer West African precipitation at the highest levels of CO2 913 

is again consistent with previous work, such as that of Carmichael et al. (2016) who showed a 914 

generally more intense hydrological cycle at higher CO2 levels and that of Carmichael et al. (2018) 915 

who demonstrated an increase in precipitation extremes over tropical Africa at higher CO2 levels. 916 

 917 

Consistent with Carmichael et al. (2016), the precipitation increases over West Africa as CO2 918 

concentrations rise are associated with increased SAT, a strongly positive the P-E balance and cloud 919 

cover increases and, concerning temperature, as such are consistent with the idea that a generally 920 

warmer world results in a generally wetter world; the ‘wet-gets-wetter and dry-gets-drier’ hypothesis 921 

(e.g. Held and Soden 2006).  However, the largest increases in SAT shown here are over southern 922 

Africa, not where the largest precipitation increases are seen, suggesting factors other than a generally 923 

warming world (i.e. dynamical changes) are responsible for the localised precipitation response (see 924 

Section 3.3).  A caveat to mention here is that, because the DeepMIP simulations use prescribed 925 

vegetation rather than interactive, there is no impact on the vegetation types or distribution of these 926 

enhanced SATs or precipitation, therefore it is not possible to say whether any enhanced precipitation 927 

would be enough to support a certain type of vegetation in the presence of extreme temperatures.  928 

Whilst it is likely that the impacts of elevated temperatures and precipitation (whether combined or 929 

individually) would be substantial on plant physiology, it is beyond the scope of this study to test this.  930 

Sensitivity studies, using interactive vegetation, are currently underway to address these questions.    931 

 932 

Lastly, the results from the model-data comparison suggests that whether the early Eocene 933 

simulations (regardless of CO2 experiment) over- or underestimate African precipitation is highly 934 
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geographically dependent, with some of the CO2 experiments at some of the locations lying within the 935 

uncertainty range of the reconstructions but others being too wet or too dry.  There is some suggestion 936 

of a latitudinal relationship, with the simulations overestimating precipitation near the Equator and 937 

underestimating precipitation in high latitude regions, such as South Africa; this latter point is 938 

consistent with the findings of Carmichael et al. (2016).  Whether the models are considered 939 

independently or whether the MME is used, the results suggest a marginally better fit with the 940 

reconstructions at lower levels of CO2, and this is in contrast (indirectly) to the findings of Carmichael 941 

et al. (2016) who suggested the warmest models in the regions of increased precipitation best matched 942 

the data; it should be noted, however, that this was a global study.  There is no evidence for this here, 943 

and indeed the finding of a better match at lower levels of CO2 is in contrast to that of Reichgelt et al. 944 

(2021, in prep) who focused on Australia and found that the higher, 6x CO2 experiment was the best 945 

match to reconstructions.  However, given the uncertainties associated with both the reconstructions 946 

(discussed above) and the boundary conditions used to force the models, it is difficult to draw firm 947 

conclusions from a model-data comparison of this type.  Moreover, a particularly big problem is that, 948 

despite the newly-compiled reconstructions presented here, there is still a lack of data across Africa, 949 

hindering any firm conclusions.  The uncertainties discussed above are likely contributing to the lack 950 

of consistency presented in some of these model-data comparisons, such as the MME showing better 951 

agreement with the reconstructions at lower and higher levels of CO2, but not in between (e.g. the 3x 952 

simulation), but this is, at present and given the data sparsity, unavoidable.    953 

 954 

In conclusion, therefore, this study has shown that the DeepMIP models are able to approximately 955 

reproduce the modern African precipitation and, in response to rising CO2, suggest an enhancement of 956 

precipitation in this region associated with increasing temperatures and changes to low-level 957 

circulation.  At very high levels of CO2 the models may be too wet, relative to proxy reconstructions.   958 

However, this might be because the NLR proxy approach has difficulty generating MAP values above 959 

modern, or connected to the relatively few early Eocene-aged data points within the reconstructions 960 

(meaning some of the comparisons here were necessarily made with data from the middle or late 961 

Eocene).  Using the MME provides the clearest suggestion of this, but the large amount of model 962 

spread means that when individual models are considered, either relative to their corresponding PI 963 

simulations or reconstructions, no clear relationship is shown. 964 

 965 

OPEN RESEARCH 966 

TAMSAT data are publicly available to download at https://www.tamsat.org.uk/; please see 967 

Maidment et al. (2014), Maidment et al. (2017) and Tarnavsky et al. (2014).  The palaeobotanical 968 

precipitation estimates compiled here are available as a spreadsheet, available to download at 969 

Williams (2022).  The DeepMIP PI and Eocene simulations are available by following the instructions 970 

at https://www.deepmip.org/data-eocene/; please see Hollis et al. (2019). 971 

https://www.deepmip.org/data-eocene/
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