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Abstract—Coupled-mode theory is a powerful tool to under-
stand and control the effects of deployment and fabrication
imperfections on optical waveguides. Although it provides many
advantages compared to the finite element method, it still lacks
the ability to treat geometric and material perturbations when
they act simultaneously on the waveguide. This work fills this
gap, providing a novel framework for a unified treatment
of geometric and material perturbations in the coupled-mode
analysis. The proposed approach consists of, first, applying the
theory of transformation optics to convert geometric deformation
into material perturbations and, second, studying the obtained
waveguide by using a custom-developed coupled-mode theory
able to deal with perturbations of both the permittivity and the
permeability tensor.

The framework is applied to three examples: a solid-core
fiber affected by intrinsic perturbations, a bent solid-core fiber,
and an elliptical hollow-core fiber. Results are validated against
simulations based on the finite element method and compared
with the standard coupled-mode theory most suitable for each
specific example; they show that the proposed unified coupled-
mode theory performs consistently better than standard theories,
confirming it as a general and accurate tool for the design and
analysis of optical waveguides.

Index Terms—Coupled-mode theory, perturbations, deforma-
tions, transformation optics, optical waveguides.

I. INTRODUCTION

ELECTROMAGNETIC waveguides underpin a vast array
of technologies that are crucial to modern life, from

microwave antennae, to the global optical fiber telecommuni-
cations infrastructure, to cutting-edge integrated photonic cir-
cuits. With the development of increasingly advanced systems,
the properties of the electromagnetic (EM) waves traversing
the waveguides must be understood and controlled at an
exceptional level of detail. This is especially true in optical
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systems, like space-division multiplexing transmission and
resonant devices [1], [2], where the waveguides must be
designed and fabricated with a precision better than fractions
of the wavelength of light. To this end, waveguide designers
will usually devise symmetric and translationally invariant
waveguides because, in these simple waveguides, they can
easily find modes that decompose light into its constituent
parts [3], [4]. These modes can be found from the waveguide
cross-section by using, for example, finite element method
(FEM) solvers [5]–[7].

In practice, however, the waveguide differs from the de-
signed one because of imperfect fabrication and environmental
perturbations, both of which can vary randomly and uncontrol-
lably along it. As a result, light may propagate unpredictably,
jeopardizing the functioning of the system [8]. The brute
force approach to study perturbed waveguides would consist in
numerically solving the complete three-dimensional EM prob-
lem. Nevertheless, this task requires in general considerable
computational resources and, even worse, does not provide
clear physical insight on the propagation properties of the
waveguide.

A much more effective approach to the study of perturbed
waveguide is the coupled-mode theory (CMT) [9]–[11]. CMT
expands the EM wave propagating in the waveguide of interest
as a linear combination of modes derived from a reference
waveguide. More specifically, the coefficients of the linear
combination, i.e., the complex amplitudes of the modes, are
free to vary along the longitudinal coordinate to accommodate
for variations of the actual waveguide with respect to the
reference one. Powerful as it is, CMT does not have a unique
comprehensive formulation, but it is typically specialized for
specific classes of waveguides and perturbations. The main
reason preventing a unified approach is the intimate difference
between material and geometric perturbations. Actually, mate-
rial perturbations modify the waveguide’s dielectric permittiv-
ity tensors, whereas geometric perturbations (or deformations)
change the waveguide’s domains and structure and hence
the boundary conditions of the EM problem. Owing to this
conceptual difference, theoreticians have formulated CMTs
that work with either material perturbations [10], [12]–[16]
or specific geometric deformations [17], [18]; yet, a single
theory able to treat both cases simultaneously is still lacking.

A possible workaround to this problem consists in mod-
eling geometric deformations as the difference between the
constitutive tensors of the real waveguide and the reference
one, treating deformations as material perturbations [19]–[21].
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Fig. 1. Schematic representation of the UCMT. (1) The real waveguide has arbitrary geometry and material, while the reference waveguide has regular
geometry and material and supports modes. When compared to the reference, the real waveguide has both geometric and material perturbations. (2) Using
transformation optics, the real waveguide is transformed into an electromagnetically equivalent one with the same geometry of the reference; this results in
further material perturbations. (3) A specific coupled-mode theory for material perturbations is used to describe the equivalent waveguide in terms of coupling
between the modes of the reference waveguide.

This workaround, however, can hardly be implemented in
waveguides with thin and complex structures, such as photonic
crystals or microstructured fibers. More critically, it fails to
properly consider how deformations change the boundary
conditions of the EM field, resulting in poor accuracy [22].

In this work, expanding our preliminary theory presented in
Ref. [23], we present a CMT formulation that works indepen-
dently of the type of perturbation affecting the waveguide,
unifying the treatment of geometric and material perturba-
tions. Whatever the perturbations are, geometric, material, or
geometric and material simultaneously, the proposed unified
coupled-mode theory (UCMT) handles them exactly, without
the need of workarounds that compromise the accuracy. The
proposed formulation uses the theory of transformation optics
(TO) to convert geometric deformations into material pertur-
bations [24], [25], thus treating in the exact way the change in
the boundary conditions. The use of TO, however, induces both
perturbations on the permittivity and the permeability tensor,
a condition not considered by standard CMTs for material
perturbations; therefore, we developed a novel theory to handle
this specific case. The resulting UCMT works seamlessly with
TO and supports anisotropy and both guided and leaky modes.

The remainder of this paper is organized as follows. In
Section II, we present the formulation of the UCMT. In Sec-
tion III, we demonstrate its capability by reporting examples of
use, validating the results against FEM. Finally, in Section IV,
we conclude our work by summarizing the obtained results.

II. THE UNIFIED COUPLED-MODE THEORY

The proposed UCMT is based on the formulation schemati-
cally illustrated in Fig. 1; it takes in consideration three waveg-
uides: the real, the equivalent, and the reference waveguide.
The real waveguide is the one under study, represented with
respect to the coordinate system x = (x, y, z) and described
by its dielectric permittivity tensor ϵ̃(x) and magnetic perme-
ability tensor µ̃(x). The reference waveguide is the one used
as reference for the UCMT, where its modes are employed
to describe the propagation within the real waveguide. To
be suitable for the UCMT, the reference waveguide should

support modes, which means that it must be translationally
invariant (or periodic), and must be reciprocal [4]. The refer-
ence waveguide is represented in the most suitable coordinate
system u = (u, v, s) and is described by its constitutive
tensors ϵ̄(u) and µ̄(u) (note the bars used here and the tildes
used for the tensors of the real waveguide). When compared
to the reference, the real waveguide is usually affected by both
material and geometric perturbations. Finally, the equivalent
waveguide is obtained by using TO to transform the geometry
of the real waveguide into that of the reference one. This is
achieved by a proper coordinate transformation u = σ(x)
and, according to TO, it results in a new set of constitutive
tensors ϵ(u) and µ(u). In this way, the equivalent waveguide
describes exactly both the geometry and the material properties
of the real waveguide while having the same geometry of the
reference one.

Once the three waveguides are defined, the propagation
in the equivalent waveguide can be expressed as a linear
combination of the modes of the reference one. Neverthe-
less, the application of TO leads in general to anisotropic
constitutive tensors; in particular, the fact that the magnetic
one, µ(u), might be non-constant and anisotropic requires
special care, as this eventuality has never been considered in
previous CMTs. There are a few different approaches in which
the coupling coefficients, i.e., the coefficients of the linear
combination, can be calculated leading to the actual CMT.
Since we want the UCMT to be able to describe the guiding
properties, including losses, we implement it using both the
guided and the leaky modes of the reference waveguide. As
shown below, this gives enough flexibility to precisely model
both lossless and lossy waveguides. A consequence of this
choice is that the reference waveguide must be reciprocal, to
guarantee orthogonality relations for both leaky and guided
modes (we discuss this aspect in Section II-B). Reciprocal
waveguides are those with symmetric constitutive tensors [26],
and they comprise almost every class of waveguides with the
only exception of very exotic ones, such as those subjected
to strong magnetic fields or made of magnetized plasmonic
media [27]. We remark, however, that reciprocity is required
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only for the reference waveguide and not for the real one.

A. Definition of the equivalent waveguide

The equivalent waveguide is obtained by mapping the real
one through a proper coordinate transformation, so that, in
the new coordinate system, its geometry is equal to that of
the reference waveguide. We achieve this using the theory
of TO, which allows one to write Maxwell’s equations with
respect to a transformed space [28]. For the details about TO
we defer the reader to the cited literature; here we just recall
the main results. Let {Ẽ, H̃} be the EM field in a volume
with constitutive tensors ϵ̃ and µ̃, expressed with respect to
the coordinate system x = (x, y, z). Let u = σ(x) be a
transformation from the coordinate system x to a new system
u = (u, v, s), and let Jσ be the associated Jacobian matrix.
According to TO, with respect to the coordinate system u, the
following fields

E(u) = J−⊤
σ Ẽ(σ−1(u)), (1a)

H(u) = J−⊤
σ H̃(σ−1(u)), (1b)

satisfy Maxwell’s equations with constitutive tensors [25], [29]

ϵ(u) = (detJσ)
−1

Jσ ϵ̃ J⊤
σ , (2a)

µ(u) = (detJσ)
−1

Jσ µ̃ J⊤
σ , (2b)

where the superscript −1 indicates inversion and superscript
⊤ indicates transposition. Effectively, TO takes the space of
the real waveguide and, by deforming it, maps the waveguide
geometry into a new coordinate system where the waveguide’s
structure is the same as the reference. This transformation
converts any geometrical difference between the real and the
reference waveguide into a material perturbation embedded
into the equivalent one. Consequently, the resulting material
perturbation of the equivalent waveguide is a representation of
both the material and the geometric perturbation of the real
one.

B. The coupling coefficients

The UCMT describes how light propagates through the
equivalent waveguide by using linear combinations of the
modes of the reference waveguide. The mathematical deriva-
tion of the corresponding coefficients is rather cumbersome
and is detailed in the appendix; here, we report only the main
findings.

For convenience, we formulate the theory à la Marcuse [10].
In particular, we describe the equivalent and the reference
waveguide in the same coordinate space u = (u, v, s), to
which we associate the Cartesian reference frame {û, v̂, ŝ},
with ŝ = (0, 0, 1)⊤ pointing at the direction of propagation.
This choice avoids using intricate curvilinear formulations
of Maxwell’s equations [17]. We decompose the constitutive
tensor ϵ as ϵ = ϵtt + ϵts + ϵst + ϵss, where ϵtt, ϵts and ϵst
readϵuu ϵuv 0

ϵvu ϵvv 0
0 0 0

 ,

0 0 ϵus
0 0 ϵvs
0 0 0

 ,

 0 0 0
0 0 0
ϵsu ϵsv 0

 , (3)

respectively, and the only non-zero element of ϵss is ϵss
in position (3, 3). Similar decompositions are applied to all
the other involved tensors. Regarding the modes, we denote
them by using Greek letters, and we indicate their propagating
direction by using superscripts surrounded by parenthesis, e.g.,
ν(p) identifies the mode ν propagating towards p, where p
can be either forward (+) or backward (−). We indicate the
complex amplitudes of the modes as a

(p)
ν (s). As common

to any CMT, the dependence on s of these amplitudes is
described by a set of linear differential equations, which are
more conveniently expressed in vector notation, leading to the
coupled-mode equation [12]

da
ds

= −j [D+X(s)]a(s), (4)

where D is the constant diagonal matrix of the (possibly
complex) mode propagation constants, and X(s) is the cou-
pling matrix whose elements are the coupling coefficients.
Matrix D describes how the modes propagate in the reference
waveguide, whereas X(s), the coupling matrix, describes the
local coupling (or interactions) that occurs among the modes
in the equivalent waveguide because of the perturbations. The
explicit expression of X(s) depends on the specific way in
which the CMT has been formulated; therefore, it represents
the most interesting and distinctive aspect of each CMT.

As noted, our approach requires the development of a new
CMT able to deal with both permittivity and permeability
perturbations. Following the common approach, we use the
superposition principle to describe the combined effect of both
perturbations as the sum of the effects that each perturbation
would have if it were acting alone, which is correct up to
a first order of approximation. Therefore, the matrix X(s) is
expressed as

X(s) = −Q (K(s) +C(s)) , (5)

where the matrices K(s) and C(s) account for the permittivity
and the permeability perturbation, respectively. The constant
matrix Q is related only to the orthogonality of the modes of
the reference waveguide and hence does not depend on the
perturbations. Considering two generic modes ξ(q) and ν(p),
the corresponding elements of K(s) are given by

K
(q,p)
ξ,ν (s) = ω

∫∫ (
Te

(q)
ξ

)⊤
M(s)

(
Te(p)ν

)
dA, (6)

where e is the electric field of the indicated mode, ω is the
angular frequency, T and M(s) are 3 × 3 matrices, and the
integration is extended to the entire waveguide cross-section.
T is a function of the reference waveguide’s dielectric profile
ϵ̄ (thus is independent of s) and is given by

T = I3 +
ϵ̄st
ϵ̄ss

, (7)

where I3 is the 3 × 3 identity matrix. M(s) is a function
of both ϵ̄ and the equivalent waveguide’s dielectric profile ϵ
given by Eq. (2a), which may depend on s according to the
perturbations; its exact expression reads

M(s) = ϵtt − (ϵ̄ − ϵ̄ss)
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+
ϵ̄ss
ϵss

(ϵ − ϵtt − ϵ̄ss)−
(
ϵts ϵst
ϵss

− ϵ̄ts ϵ̄st
ϵ̄ss

)
. (8)

Regarding matrix C(s), similar expressions hold for its coeffi-
cients, but this time they involve the magnetic field h and the
permeability tensors µ̄ and µ of the waveguides. The exact
expressions can be calculated using the duality theorem for
EM fields [26], and they read

C
(q,p)
ξ,ν (s) = −ω

∫∫ (
Sh

(q)
ξ

)⊤
N(s)

(
Sh(p)

ν

)
dA, (9)

where
S = I3 +

µ̄st

µ̄ss
, (10)

and

N(s) = µtt − (µ̄ − µ̄ss)

+
µ̄ss

µss
(µ − µtt − µ̄ss)−

(
µts µst

µss
− µ̄ts µ̄st

µ̄ss

)
. (11)

As shown by Eqs. (6) and (9), the expressions of the cou-
pling coefficients are, as typical for CMTs, overlap integrals
involving the two coupled modes and quantities related to
the perturbations. In general, the complete formulas are quite
cumbersome, but for small perturbations they simplify to (see
App. B for details):

K
(q,p)
ξ,ν (s) ≈ ω

∫∫
e
(q)
ξ

⊤ (ϵ − ϵ̄) e(p)ν dA, (12)

C
(q,p)
ξ,ν (s) ≈ −ω

∫∫
h
(q)
ξ

⊤ (µ − µ̄) h(p)
ν dA, (13)

which have the typical form of overlap integrals between the
modes fields and the perturbation more commonly encountered
in the literature [20], [30].

Matrix Q contains the orthogonality coefficients that de-
scribe the relations of orthogonality among the modes. In
reciprocal waveguides, the coefficients are either ±1 for non-
orthogonal or 0 for orthogonal modes [31], [32]:

Q
(q,p)
ξ,ν =

 1 if ν = ξ, (q) = (+), (p) = (−)
−1 if ν = ξ, (q) = (−), (p) = (+)
0 otherwise

. (14)

In other words, Q(q,p)
ξ,ν is not zero if and only if ν and ξ are

the same modes but counter-propagating, which also means
that forward- and backward-propagating modes form a bi-
orthonormal basis [15], [16]. As a consequence, when a mode
is considered in the UCMT, also its counter-propagating one
needs to be considered, even though the designer may only be
interested in forward propagation.

For a generic CMT to be exact, the coupled-mode equation
should consider a complete basis of modes. Among them, there
is the continuum of radiation modes [3]. In our theory, how-
ever, we consider leaky modes instead of the radiation ones.
We avoid considering radiation modes because the continuous
spectrum makes them harder to find and use. Besides, radiation
modes do not belong to real-life waveguides, where the cross-
section is finitely extended and the external coating dampens
any wave that radiates out. When such a coating is modelled
as a perfectly matched layer (PML) [33], the radiating modes

become leaky [34]. Therefore, leaky modes approximate the
radiation ones near the core of the waveguide—the most
important region for the guiding properties—but they form
a discrete set so they are easier to find and use.

Guided and leaky modes form an infinite set; however,
practical implementation of the CMT will only consider a
finite subset of it, sacrificing accuracy for feasibility. How
many and which modes should be considered is arguably one
of the most important practical aspects. Yet a systematic rule
does not exist and, as the next examples show, the number
of modes required depends on their type, the waveguides, and
the perturbations being considered.

III. VALIDATION AND EXAMPLES

In this section we validate the UCMT by studying three
waveguides of practical interest, namely: a strongly guiding
solid-core fiber affected by stress anisotropy and core elliptic-
ity; a bent, weakly guiding solid-core fiber; and an elliptically
deformed hollow-core fiber. We choose these cases because
the corresponding equivalent waveguides are translationally
invariant, so they support modes that can be numerically
calculated using a commercial FEM solver [35]. In this way,
we can assess the accuracy of the UCMT by comparing
the propagation constants calculated numerically with those
obtained by the UCMT. In the framework of the UCMT, the
modes of the equivalent waveguide are expressed as linear
combinations of those of the reference waveguide. Given
that modes propagate independently of each other, the actual
modes of the equivalent waveguide can be found in terms of
those of the reference by diagonalizing matrix D + X, and
their propagation constants are the eigenvalues of D+X.

Note that this comparison with the numerical solutions
can be done because the chosen models are translationally
invariant and hence the matrix X is constant. Nevertheless, we
remark that the framework is not restricted to translationally
invariant waveguides alone, but it can be applied also to
longitudinally varying ones.

For clarity, hereinafter we call eigenmodes the modes of
the equivalent waveguide, whereas we continue calling modes
those of the reference one. All the following numerical exam-
ples are evaluated at 1550 nm wavelength.

A. Strongly guiding fiber affected by intrinsic perturbations

As a first example, we consider a strongly guiding structure
affected by both geometric and material perturbations; namely,
an air-clad fiber affected by core ellipticity and stress-induced
anisotropy. These two perturbations are the most common
ones encountered in optical fibers, as they naturally arise
during the drawing process [36]. In the framework of the
UCMT, the real waveguide is the actual one affected by stress-
induced anisotropy and ellipticity, while we choose the ideal,
isotropic, circularly-symmetric fiber as reference waveguide.
As illustrated in Fig. 2, the equivalent waveguide is obtained
by applying to the real waveguide the transformation that
makes it circular.

We model the anisotropy as bi-axial and parametrized by the
difference ∆n between the two axes of birefringence—∆n is
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Fig. 2. Application of the UCMT to the example. (left) the elliptical and anisotropic fiber under study; (center) the equivalent waveguide is computed, using
TO, from the coordinate transformation σ that recovers the circular shape; (right) the circular and isotropic ideal fiber is used as reference in the CMT.

Fig. 3. Effective refractive index of the first twelve guided eigenmodes of an air-cladded fiber with elliptical and birefringent core. Results are computed both
by using the UCMT proposed in this paper (blue curves) and the standard CMT for guided-modes [10] (red-dashed curves), and are compared with FEM
results (× marks).

zero outside the silica core. When the anisotropy is aligned to
the u- and to the v-axis, the dielectric tensor becomes [20]

ϵsa(u, v) =

ϵ̄+ ∆ϵ
2 0 0

0 ϵ̄− ∆ϵ
2 0

0 0 ϵ̄

 , (15)

where ∆ϵ ≈ 2ϵ0n̄∆n, ϵ̄(u, v) = ϵ0 n̄
2(u, v), and n̄(u, v)

is the refractive index profile of the ideal fiber. Regarding
the ellipticity, it deforms the fiber structure from circular to
elliptical, shifting any point of coordinate (u, v) to (x, y)
according to

x(u, v) = (1 + γ)u,

y(u, v) = (1− γ) v,
(16)

where both (u, v) and (x, y) are Cartesian coordinates, and γ
is the maximum relative shift that occurs along the axes of
the elliptical deformation. As defined in Eq. (16), these axes
are aligned with those of the material anisotropy in Eq. (15).
This choice is reasonable since in telecom optical fibers the
anisotropy and the ellipticity are both caused by the thermal
mismatch [30], [37].

We obtain the elliptical and anisotropic fiber under study
(real waveguide) by combining the two perturbations and by
applying them, simultaneously, to the reference waveguide.
From Eqs. (15) and (16), its dielectric tensor reads

ϵ̃(x, y) = ϵsa

(
x

1 + γ
,

y

1− γ

)
. (17)

From this fiber, we get the equivalent waveguide by applying
the coordinate transformation (u, v, s) = σ(x, y, z) that un-
does the ellipticity and recovers the ideal circular structure:
this transformation is simply the inverse of Eq. (16) with
s = z, and its Jacobian matrix reads

Jσ =

1/(1 + γ) 0 0
0 1/(1− γ) 0
0 0 1

 . (18)

Then, according to Eqs. (2), the permittivity and permeability
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tensors of the equivalent waveguide are

ϵ =

 1−γ
1+γ (ϵ̄+ ∆ϵ

2 ) 0 0

0 1+γ
1−γ (ϵ̄− ∆ϵ

2 ) 0

0 0 (1− γ2) ϵ̄

 ,

µ =

 1−γ
1+γ 0 0

0 1+γ
1−γ 0

0 0 1− γ2

 µ0.

(19)

As a numerical example, we choose the ideal air-cladded
fiber (reference waveguide) with core refractive index nco =
1.444 and core radius rco = 1.75µm; at 1550 nm, it propagates
30 guided modes. We fix the ratio between γ and ∆n such
that γ/∆n = 100 and we span typical values of γ in the range
[10−4, 10−1]. With this ratio, the two perturbations contribute
the same amount of modal birefringence to the fundamental
mode, which is typical of telecom single-mode fibers [36].

Fig. 3 shows the propagation constants in terms of effective
refractive index of the first twelve guided eigenmodes. Solid
blue lines are the results obtained with our UCMT, while
black cross marks are those obtained with the FEM solver that
we use as benchmark. For all the values of perturbation, our
theory is precise and performs very close to the benchmark,
as shown in the three zoomed insets. Remarkably, as shown
in the top-left inset, the UCMT also accurately computes
the perturbation-induced modal birefringence between other-
wise degenerate modes; for example, when γ = 10−3 and
∆n = 10−5, the ellipticity and anisotropy combined induce a
birefringence on the fundamental mode of the order of ∼ 10−5

that our theory estimates with an absolute error of ∼ 10−8.
Besides benchmarking our UCMT against FEM, we also

compare it against the standard CMT for anisotropic waveg-
uides and guided modes [10]. As customary, in the standard
CMT the ellipticity of the core is modelled simply as the
difference between the refractive index profile of the ellip-
tical fiber and that of the reference one [19]. The result
is represented by dashed red lines in Fig. 3. Although the
standard CMT provides a correct qualitative behavior, it is not
as accurate as the UCMT, which consistently performs closer
to the benchmark.

B. Bent weakly guiding fiber

In this example, we look at bending effects on a step-
index single-mode fiber. As the fiber bends, its structure
material becomes anisotropic via the elasto-optic effect. Both
the deformation and the anisotropy affect the propagation,
resulting in the electromagnetic field being pushed outward
from the core and in the direction opposite that of the bending
[38]. The modeling is slightly more complicated than the
preceding example because two reference frames are required
(see Fig. 4): the first one, {x̂, ŷ, ẑ}, is fixed with respect to
the laboratory, while the second one, {û, v̂, ŝ}, is local and
follows the fiber bend. We assume also that the axes ŷ and
v̂ (which are parallel) are orthogonal to the curvature plane
where the fiber lays. The relationship between the coordinate

spaces (x, y, z) and (u, v, s) of the two reference frames is
given by [39]:

x(u, v, s) =−Rb + (Rb + u) cos(s/Rb),

y(u, v, s) =v,

z(u, v, s) =(Rb + u) sin(s/Rb).

(20)

As the fiber bends, a complex strain field builds up in it,
but only two directional components of this strain significantly
affect light propagation [40]. The main one occurs along the
longitudinal axis ŝ and is due to the outer (u > 0) material
being stretched and the inner one (u < 0) being compressed.
The secondary one occurs along the bending direction −û and
is due to the pressure exerted by the outer material onto the
inner one. Both effects stress the fiber materials, making them
anisotropic. Expressed in the local frame, the dielectric tensor
of the bent fiber reads [20]

ϵ̃(u, v) = ϵ̄ I3 −
u

Rb

ϵ̄2

ϵ0

q1 0 0
0 q2 0
0 0 q2

+

r2cl
2R2

b

ϵ̄2

ϵ0

q2 0 0
0 q1 0
0 0 q1

 , (21)

where q1 = 0.206, q2 = 0.032 are elasto-optic coefficients for
silica glass, and rcl is the fiber cladding radius. The first term
is the dielectric profile that the fiber would have if it were
not bent. The second and third terms are due to the stresses
along ŝ and −û, respectively. Before applying TO to obtain the
equivalent waveguide, the dielectric tensor must be expressed
with respect to the laboratory frame; this is achieved by the
transformation R⊤

y ϵ̃Ry , where Ry is the rotation matrix

Ry(s) =

 cos(s/Rb) 0 sin(s/Rb)
0 1 0

− sin(s/Rb) 0 cos(s/Rb)

 . (22)

Owing to the general expressions (2), the constitutive tensors
of the equivalent waveguide can now be calculated as

ϵ(u, v) = (detJσ)
−1

Jσ R⊤
y ϵ̃Ry J

⊤
σ ,

µ(u, v) = (detJσ)
−1

Jσ J⊤
σ µ0,

(23)

where the Jacobian matrix Jσ is the inverse of the Jacobian
matrix of (20), and can be factorized as:

Jσ(u, v, s) =

1 0 0
0 1 0
0 0 Rb/(Rb + u)

 Ry. (24)

Explicit calculations easily confirm that the constitutive tensors
are independent of s, i.e., the equivalent waveguide is trans-
lational invariant, similarly to what happens in case of twist
[41]. Note also, that if the stress on the material is neglected,
i.e., if ϵ̃ = ϵ̄ I3, then the result of (23) coincides with that
reported in Ref. [39] about the geometric effect of bending on
a hollow-core Bragg fiber.

Having defined the equivalent waveguide, we study the
propagation using the UCMT. The reference fiber is a straight,
isotropic and single-mode step-index fiber, which supports
only a pair of degenerate guided modes. These have circular
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Fig. 4. Schematic representation of the bend fiber. (left) the fiber is bent with bending radius Rb, and its dielectric tensor changes accordingly with the stress
induced on the material; (center) the equivalent waveguide is computed from the coordinate transformation σ that straightens the bend; (right) the straight
and isotropic fiber is used as reference in the UCMT.

symmetry, therefore any coupling between them result in a
circularly symmetric field, which cannot correctly describe
the shift of the field towards the outside of the bend, actu-
ally observed in a bent fiber. To overcome this issue, leaky
modes must be considered, too; in the following analysis we
considered 200 modes, two of which guided and the others
leaky.

As an example, we assume the reference fiber with core
radius of rco = 4.5µm, cladding radius rcl = 100µm, and
with core and cladding refractive indices of nco = 1.448 and
ncl = 1.444, respectively. Since we also consider the leaky
modes, we surround the fiber’s cross-section with a PML. We
bend the fiber with a radius that spans from 2 cm to 25 cm, and
we look at the propagation constants of its two most guided
eigenmodes.

The results are shown in Fig. 5(a), where we plot the
effective refractive indices of the two most guided eigenmodes
for three different cases, namely considering only geometric
deformation (dashed, blue curves), only elasto-optic stress
(dashed, yellow curves) and both effects simultaneously (solid,
red curves). Interestingly, the geometric deformation has a
much larger impact on the propagation constants than the
elasto-optic stress; moreover, when acting together the two
effects tend to slightly mitigate each other. From the graph, it is
also evident that, as expected, bending breaks the degeneracy
of the modes, giving rise to birefringence. The induced modal
birefringence (difference between the refractive indices of the
two orthogonally polarized modes) is plotted in Fig. 5(b).
We note that the effect of the geometric deformation is
largely negligible with respect to the effect of the elasto-
optic stress, which is practically the only source of modal
birefringence. In all cases the results of the UCMT are in
very good agreement to the FEM simulations, represented by
black crosses. The error in terms of effective refractive index
is always less than 2.5×10−7, a value reached for the tightest
bend (Rb = 2 cm) when both deformation and stress are
considered. In this example we do not report the comparison
with standard CMT just because that theory cannot be used to
model simultaneously geometrical and stress effects induced
by bending.

Fig. 5. Analysis of a bent single-mode fiber performed with the proposed
UCMT and compared with the numerical benchmark (× marks) for three
different cases—only geometric deformation (dashed, blue curves), only
elasto-optic stress (dashed, yellow curves), and both of them simultaneously
(solid, red curves). (a) Effective refractive index of the two most guided
eigenmodes and (b) the corresponding modal birefringence.
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C. Hollow-core fiber affected by ellipticity

A hollow-core fiber consists of a cladding structure made
of glass and a core made of air where light propagates. Since
light is confined in the air, these fibers could bring many of
the advantages of free-space propagation [42]–[44]. Although
a great deal of effort in hollow-core fiber development is di-
rected toward decreasing attenuation, the extent to which fiber
imperfections affect this parameter has seen little investigation.
In this example we show how our theory can be used for this
purpose.

We consider the simplest hollow-core fiber, made of a
circular air hole in a bulk of glass [45], and we study it when
the hole is slightly elliptical. This specific example is chosen to
highlight the ability of the UCMT to analyze also waveguides
where propagation is supported by leaky modes.

We select as reference waveguide the ideal circular hollow-
core fiber, with core radius rco = 30µm, and refractive indices
nco = 1 (air core) and ncl = 1.444 (silica glass cladding).
In the numerical model the fiber is surrounded by a PML
placed beyond 75µm from the fiber axis. At 1550 nm, we
use the 30 lowest-loss leaky modes of the reference to study
the eigenmodes of the equivalent waveguide. The ellipticity is
modeled as in Eq. (16), where γ is varied between 10−4 and
10−1.

Results are reported in Fig. 6, which shows the propagation
constants of the twelve lowest-loss eigenmodes of the fiber
for different values of core ellipticity γ. Specifically, Fig. 6(a)
shows the real part of the propagation constants expressed in
terms of effective refractive index, while Fig. 6(b) shows their
imaginary part expressed in terms of loss in dB/m. Solid blue
lines indicate the results obtained with our UCMT and black
crosses are the benchmark values from FEM simulations. The
dashed red lines are the results obtained with the standard
CMT for leaky modes proposed in Ref. [14] where, as in
Sec. III-A, the ellipticity is modelled as the difference between
the dielectric permittivity of the circular fiber and the elliptical
one.

Results from our theory are in excellent agreement with the
benchmark, especially at low and medium values of γ. It is
slightly less accurate when the ellipticity is strong, although
this is only appreciable by looking at the loss. The reason is
that a loss of 1 dB/m corresponds to an effective refractive
index imaginary part of ≃ −2.5 × 10−8 at 1550 nm, so loss
requires in general high precision to be estimated. At γ =
10−1, the UCMT estimates the effective refractive index of
the highest-loss eigenmode with an absolute error of ∼ 10−6

on both the real and the imaginary part.
The UCMT performs much better than the standard CMT,

which does not follow the correct behavior when the ellipticity
is medium or large. As already discussed in Sec. III-A, the
lack of accuracy of the standard CMT is due to its inability
to correctly model the geometrical change of the boundary
conditions. This has drastic effects in leaky waveguides, be-
cause the leakier is the eigenmode, the closer its EM field
is to the core-cladding boundary, and the more sensitive it
is to changes in the boundary conditions. As a result, the
performance of the standard CMT worsens when eigenmodes

Fig. 6. Analysis of an elliptical hollow-core fiber. Real part of effective
refractive index (a) and losses (b) of the twelve lowest-loss leaky eigenmodes.
Blue curves are the results of the proposed UCMT; dashed, red curves are
obtained with the standard CMT described in Ref. [14]; × marks are the
numerical benchmark.

have high losses. For this reason, a CMT treating geometric
perturbations would have been a more equitable point of
comparison against our UCMT for this example. Nevertheless,
these CMTs are available only for lossless waveguides, and
although one example has been adapted to study a bent
hollow-core fiber [39], it is specialized and valid only for that
particular case and not suitable for generic deformations.

IV. CONCLUSION

In this work we proposed a unified coupled-mode theory
(UCMT) to study optical waveguides when they are affected
by both geometric and material perturbations simultaneously,
a common scenario previously impossible to be investigated
with standard coupled-mode theories. The proposed UCMT
uses the theory of transformation optics (TO) to convert
geometric deformations into material perturbations, and an
ad hoc developed coupled-mode theory to deal with both
dielectric and magnetic perturbations, and with both guided
and leaky modes.
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We validated our UCMT in three key cases, showing that in
every case it performs very close to FEM simulations, proving
that it can accurately track different aspects of the propagation,
including propagation constants, modal birefringence, and
losses. As with any CMT, the UCMT may require a variable
number of modes to obtain accurate results. However, the
number of modes required to achieve a given level of accuracy
is not easily predictable and it depends on the type of modes,
waveguides, and perturbations. In the analyzed examples we
have observed that the scenario requiring more modes is that
which considers both leaky and guided modes. Since leaky
modes are close together and far from the guided ones in
terms of propagation constants, they tend to couple among
themselves before coupling with the others. As a consequence,
many leaky modes must be considered to evaluate their effects
on the guiding properties.

Accuracy is also affected by the size of the perturbations:
for a fixed number of modes it decreases as the perturbations
become larger. Indeed, the larger the perturbations, the more
the waveguide deviates from the reference, so more modes
are required to compensate for the deviation and achieve a
target accuracy. Ideally, one would always use all the modes
including leaky ones, but since these are infinite in number,
one must compromise between accuracy and the numerical
complexity, which scales with the square of the number of
modes. It is worthwhile remarking, however, that since these
modes are those of the reference waveguide, they must be
calculated only once; afterwards, they can be used for any
kind of perturbation, as long as the reference waveguide is
not changed.

Besides FEM simulations, when possible we have compared
the UCMT against the standard CMTs that one would con-
ventionally use to study propagation in optical waveguides.
In the considered cases, UCMT performed always better than
CMTs, actually outperforming them for strong perturbations.
The advantage of UCMT with respect to standard CMTs lies
in its ability to properly treat properly geometric deformations
and the corresponding changes in the boundary conditions
of the associated EM problem. By contrast, standard CMTs
treat these deformations simply as the difference between the
dielectric profile of the real waveguide and the reference one,
resulting in a poor description of the EM fields and a general
drop of accuracy. Moreover, this approach is not viable when
the deformations are not limited to the cross-section, like in
the case of bending.

The theory which we present here can be a powerful new
tool in the waveguide designer’s arsenal. It can be applied to a
wide range of waveguides, from standard solid-core fibers, to
multi-core fibers, to waveguides with more complex cladding
structures such as nested antiresonant nodeless hollow-core
fibers [43]. Indeed, although we have shown only introductory
examples to validate the UCMT, there are no limitations on
the nature of the perturbations that a waveguide designer can
study. They only need to describe the waveguide as a mapping
from their chosen reference waveguide and have its modes
available. The mapping can include irregular features of the
waveguide’s structure, like a defect localized in a specific area
of the cross-section. When dealing with many of these irregu-

larities, the waveguide designer may construct the mapping as
a superposition of localized transformations, each targeting a
specific feature. Moreover, UCMT allows a designer to study
perturbations whose magnitudes evolve, possibly randomly,
along the waveguide’s direction of propagation, as it is often
the case with twist and micro-bending in drawn fibers. The
coupled-mode equation describes how the coupling occurs at
a given local length. Hence, computing the coupling matrix
X(s) and integrating the coupled-mode equation along the
waveguide is enough for the designer to study the propagation.

The flexibility and accuracy over conventional approaches
render the UCMT ideal for the typical waveguide design
process in which structures are optimized for a particular
performance parameter. Moreover, it can be used to study
situations where finite element methods are intractable or time-
intensive, for example, in helping to understand waveguides’
operating range or to design waveguides robust to specific
perturbations or manufacturing variations.

APPENDIX A
DERIVATION OF THE COUPLED-MODE THEORY

In this section, we derive the proposed UCMT following
the procedure outlined by Marcuse in his CMT [10]. We start
by reducing Maxwell’s equations to a set of equations for the
transverse components of the field. The electromagnetic fields
E(u, v, s) and H(u, v, s) solve Maxwell’s equations in the
harmonic regime [26]:

∇×H = jωϵE, (25a)
∇×E = −jωµH, (25b)

where ω is the angular frequency, ϵ(u, v, s) and µ(u, v, s) are
the permittivity and the permeability tensor of the waveguide.
Without loss of generality, we decompose the fields as E =
Et + Es and H = Ht + Hs, where hereinafter subscripts
t and s indicate the transverse and longitudinal components,
respectively. Similarly, we can decompose the nabla operator
as ∇ = ∇t + ŝ ∂/∂s. As a result, Maxwell’s equations are
split into their transverse and longitudinal terms. Namely, the
transverse ones are:

∇t ×Hs + ŝ× ∂Ht

∂s
= jω

(
ϵtt Et + ϵts Es

)
, (26a)

∇t ×Es + ŝ× ∂Et

∂s
= −jω

(
µtt Ht + µts Hs

)
, (26b)

while the longitudinal ones read:

Es = −j
1

ω

1

ϵss
∇t ×Ht −

1

ϵss
ϵst Et, (27a)

Hs = j
1

ω

1

µss
∇t ×Et −

1

µss
µst Ht, (27b)

where we used ϵss Es = ϵss Es and µss Hs = µss Hs.
Finally, by substituting Eq. (27) into (26), we obtain:

∇t ×
[
− ∇t ×Et

jωµss
− µst

µss
Ht

]
+ ŝ× ∂Ht

∂s
=

jωϵtt Et +
ϵtz
ϵss

∇t ×Ht − jω
ϵts ϵst
ϵss

Et,
(28a)
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∑
ν,p

(da(p)ν

ds
+ jγ(p)

ν a(p)ν

)
(ŝ× h

(p)
νt ) =

∑
ν,p

a(p)ν

{
jω

[
(ϵtt − ϵ̄tt)−

(ϵtsϵst
ϵss

− ϵ̄tsϵ̄st
ϵ̄ss

)]
e
(p)
νt +

(ϵts
ϵss

− ϵ̄ts
ϵ̄ss

)
∇t × h

(p)
νt

}
, (30a)

∑
ν,p

(da(p)ν

ds
+ jγ(p)

ν a(p)ν

)
(ŝ× e

(p)
νt ) =

∑
ν,p

a(p)ν ∇t ×
[
− 1

jω

( 1

ϵss
− 1

ϵ̄ss

)
∇t × h

(p)
νt +

(ϵst
ϵss

− ϵ̄st
ϵ̄ss

)
e
(p)
νt

]
. (30b)

∇t ×
[∇t ×Ht

jωϵss
− ϵst

ϵss
Et

]
+ ŝ× ∂Et

∂s
=

− jωµtt Ht +
µts

µss
∇t ×Et + jω

µts µst

µss
Ht,

(28b)

where the only unknowns are the transverse fields Et and
Ht. Since Eqs. (27) express the longitudinal field Es and
Hs in terms of the transverse one, solving (28) is enough
to determine the entire field.

Following the standard approach of any CMT, the fields are
expressed as a longitudinally varying linear combination of
the modes of the reference waveguide, that is:

Et(u, v, s) =
∑
ν,p

a(p)ν (s) e
(p)
νt (u, v), (29a)

Ht(u, v, s) =
∑
ν,p

a(p)ν (s)h
(p)
νt (u, v), (29b)

where e
(p)
νt and h

(p)
νt are the transverse field of the mode

ν(p), p indicates the mode direction of propagation, a
(p)
ν is

the mode complex amplitude, and the sum is extended to
all the modes of the reference waveguide, either forward-
or backward-propagating, guided or leaky. When the mode
ν(p) propagates within the reference waveguide, the full elec-
tromagnetic field is E(p)

ν (u, v, s) = e
(p)
ν (u, v) exp(−jγ

(p)
ν s)

and H(p)
ν (u, v, s) = h

(p)
ν (u, v) exp(−jγ

(p)
ν s), where γ

(p)
ν is

the propagation constant. For future use, it is worthwhile to
note that these fields solve all the above equations once the
constitutive tensors ϵ and µ are substituted for the ones of the
reference waveguide ϵ̄ and µ̄. In particular, this is true in (27)
and (28), once we substitute Et and Es with E(p)

νt and E(p)
νs ,

respectively, and make analogous substitution for the magnetic
fields.

Perturbation of the permittivity tensor

In order to proceed, we start by assuming that only the
permittivity tensor is perturbed, that is, ϵ(u, v, s) ̸= ϵ̄(u, v)
and µ(u, v, s) = µ̄(u, v). By inserting Eqs. (29) into (28), and
combining the result with (28) rephrased in terms of e(p)νt and
h
(p)
νt , we obtain Eqs. (30), reported at the top of this page. Now

we pre-multiply both sides of (30) by the transverse fields, sum
the two equations and integrate the result over the waveguide
cross-section; more specifically, we evaluate the quantity∫∫ [

e
(q)
ξt

⊤ · (30a) + h
(q)
ξt

⊤ · (30b)
]

dA, (31)

whose expansion yields Eq. (32) reported at the top of the next
page. Both the left-hand side and the right-hand side of (32)
can be further manipulated. Regarding the left-hand side, we

apply the vector identity (a × b) × c = (a · c)b − (b · c)a,
to obtain ∑

ν,p

Q
(q,p)
ξ,ν

(
da(p)ν

ds
+ jγ(p)

ν a(p)ν

)
, (33)

where the coefficients Q
(q,p)
ξ,ν are

Q
(q,p)
ξ,ν =

∫∫
ŝ ·

[
e
(q)
ξ × h(p)

ν − e(p)ν × h
(q)
ξ

]
dA. (34)

These coefficients describe the orthogonality between the
modes of the reference waveguide and do not depend on
the perturbation. In the special, yet very common, case that
the reference waveguide is reciprocal, using the reciprocity
theorem [26] and by properly normalizing the modes, it can
be proved that the coefficients Q(q,p)

ξ,ν read as in (14) [31], [32].
Regarding the right-hand side of (32), we start from its last

term under integration, to which we apply the vector identity
a⊤(∇ × b) = (∇ × a)⊤b−∇ · (a× b) to obtain

(∇t×h
(q)
ξt )

⊤
[
− 1

jω

( 1

ϵss
− 1

ϵ̄ss

)
∇t×h

(p)
νt +

(ϵst
ϵss

− ϵ̄st
ϵ̄ss

)
e
(p)
νt

]
−∇t ·

{
h
(q)
ξt ×

[
− 1

jω

( 1

ϵss
− 1

ϵ̄ss

)
∇t × h

(p)
νt

+

(
ϵst
ϵss

− ϵ̄st
ϵ̄ss

)
e
(p)
νt

]}
. (35)

When (35) is integrated over the entire fiber cross-section,
the divergence term yields zero. This can be proved by
applying the two-dimensional divergence theorem and noting
that the equivalent line integral along the waveguide cross-
section contour tends to zero because the mode fields tend to
zero away from the waveguide axis. Moreover, when (27) is
evaluated for the modes of the reference waveguide, we readily
find ∇t×h

(q)
ξt = j ω

(
ϵ̄st e

(q)
ξt + ϵ̄ss e

(q)
ξs

)
, and hence the double

integral on the right-hand side of (32) can be rearranged as in
Eq. (36) at the bottom of the next page. Finally, (36) can be
written in a more compact form, such as

−j
∑
ν,p

K
(q,p)
ξ,ν (s) a(p)ν (s), (37)

where the coupling coefficients K
(q,p)
ξ,ν (s) are given in (6).

Putting back together the two sides of the equation, we obtain
the scalar coupled-mode equation for dielectric perturbations

∑
ν,p

Q
(q,p)
ξ,ν

(da(p)ν

ds
+ jγ(p)

ν a(p)ν

)
= −j

∑
ν,p

K
(q,p)
ξ,ν a(p)ν . (38)
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∑
ν,p

(da(p)ν

ds
+ jγ(p)

ν a(p)ν

)∫∫
−
[
e
(q)
ξt

⊤ (ŝ× h
(p)
νt ) + h

(q)
ξt

⊤ (ŝ× e
(p)
νt )

]
dA =

−
∑
ν,p

a(p)ν

∫∫ {
jω e

(q)
ξt

⊤ (ϵtt − ϵ̄tt) e
(p)
νt + e

(q)
ξt

⊤
(
ϵts
ϵss

− ϵ̄ts
ϵ̄ss

)
∇t × h

(p)
νt − jω e

(q)
ξt

⊤
(
ϵts ϵst
ϵss

− ϵ̄ts ϵ̄st
ϵ̄ss

)
e
(p)
νt

+ h
(q)
ξt

⊤ ∇t ×
[
− 1

jω

( 1

ϵss
− 1

ϵ̄ss

)
∇t × h

(p)
νt +

(ϵst
ϵss

− ϵ̄st
ϵ̄ss

)
e
(p)
νt

]}
dA (32)

Perturbation of the permeability tensor

In principle, to derive the scalar coupled-mode equation for
a perturbation of the permeability tensor, we could repeat the
above analysis with respect to the magnetic field. In practice, it
is much more straightforward and elegant to apply the duality
theorem of EM fields [26]. Assuming that sources and free
charges are both zero, this theorem states that if {E,H} is the
EM field in a volume with constitutive tensors ϵ and µ, then
the field {E′,H′} is a valid solution of Maxwwell’s equations
in a volume with constitutive tensors ϵ′ and µ′, provided that
the following substitutions are performed

E′ = −H, H′ = E, ϵ′ = µ, µ′ = ϵ; (39)

{E′,H′} is called the dual field. According to the theorem, a
magnetic perturbation on µ corresponds to a dielectric pertur-
bation on ϵ′, which can be studied with the theory described
in the previous sections. To begin with, note that owing to
(39), the modes of the dual field have the same propagation
constants γ

(p)
ν ; similarly, applying (39) to (29) we see that

the dual field has also the same modes amplitudes a
(p)
ν (s).

Therefore, the scalar coupled-mode equation for the dual field
reads as in (38), with the coefficients Q

(q,p)
ξ,ν and K

(q,p)
ξ,ν

substituted by the corresponding dual ones K
′(q,p)
ξ,ν (s) and

Q
′(q,p)
ξ,ν (s); these are defined as in (6) and (34) but for the dual

field {E′,H′}. If we now apply the substitutions (39), we find
that Q′(q,p)

ξ,ν (s) = −Q
(q,p)
ξ,ν (s) and K

′(q,p)
ξ,ν (s) = −C

(q,p)
ξ,ν (s), as

defined in (9). In conclusion the scalar coupled-mode equation
for a magnetic perturbation can be expressed as∑

ν,p

Q
(q,p)
ξ,ν

(da(p)ν

ds
+ jγ(p)

ν a(p)ν

)
= −j

∑
ν,p

C
(q,p)
ξ,ν a(p)ν . (40)

Simultaneous perturbation of the constitutive tensors

To the best of our knowledge, the above theoretical treat-
ment does not lead to general closed form expressions when
the perturbation is applied on both the constitutive tensors.
However, this case can be studied by applying the superpo-
sition principle, according to which the coupling that occurs

when both constitutive tensors are perturbed is equal to the
sum of the coupling occurring when each of them is perturbed
independently of the other. Mathematically this corresponds to
stating that the coupling coefficients are the sum of K(q,p)

ξ,ν and
C

(q,p)
ξ,ν ; accordingly, the coupled-mode equation reads

∑
ν,p

Q
(q,p)
ξ,ν

(da(p)ν

ds
+ jγ(p)

ν a(p)ν

)
=

− j
∑
ν,p

(
K

(q,p)
ξ,ν (s) + C

(q,p)
ξ,ν (s)

)
a(p)ν . (41)

We observe that this approach is correct up to the first order
of approximation because it does not account for the coupling
due to the mutual change of permittivity and permeability,
which are second order or higher effects. Note that this is what
is customarily done in standard CMTs, where the coupling
originated by several perturbations is described as the sum of
the coupling due to each perturbation as if it were acting alone.

The vector coupled-mode equation
The scalar coupled-mode equation (41) is written for each

mode considered in the analysis, leading to a system of
equations. It is convenient to represent this system in vector
notation, reaching the vector coupled-mode equation

Q

(
da
ds

+ jDa

)
= −j (K(s) +C(s)) a, (42)

where a(s) is the vector of the modes’ amplitudes; Q is the
orthogonality matrix, whose elements are the mode orthog-
onality coefficients Q

(q,p)
ξ,ν ; D is the diagonal matrix of the

modes’ propagation constants γ(p)
ν ; and K(s) and C(s) are the

matrices of the coefficients K(q,p)
ξ,ν (s) and C

(q,p)
ξ,ν (s). Owing to

the linear independece of the modes, Q is invertible and the
coupled-mode equation can be rearranged as

da
ds

= −j [D+X(s)]a(s), (43)

where
X(s) = Q−1 (K(s) +C(s)) . (44)

− jω
∑
ν,p

a(p)ν

∫∫ {
e
(q)
ξt

⊤
[
(ϵtt − ϵ̄tt)−

(ϵts ϵst
ϵss

− ϵ̄ts ϵ̄st
ϵ̄ss

)]
e
(p)
νt + e

(q)
ξt

⊤
( ϵ̄ss
ϵss

ϵts − ϵ̄ts

)( ϵ̄st
ϵ̄ss

e
(p)
νt + e(p)νs

)
−
( ϵ̄st
ϵ̄ss

e
(q)
ξt + e

(q)
ξs

)⊤ [
ϵ̄ss

( ϵ̄ss
ϵss

− 1
)( ϵ̄st

ϵ̄ss
e
(p)
νt + e(p)νs

)
−

( ϵ̄ss
ϵss

ϵst − ϵ̄st

)
e
(p)
νt

]}
dA, (36)
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This expression of the coupled-mode equation is the most
general one and also applies to the (rather uncommon) case in
which the reference waveguide is selected to be non-reciprocal.
As already noted, in the more common case in which the
reference waveguide is reciprocal, the coefficients Q

(q,p)
ξ,ν read

as in (14); then, it can be shown that Q−1 = −Q, leading to
Eq. (5).

APPENDIX B
SIMPLIFIED COUPLING COEFFICIENTS

In this section we derived simplified expressions for the
coefficients K

(q,p)
ξ,ν and C

(q,p)
ξ,ν in a few cases of interest.

Given that the choice of the reference waveguide is to a large
extent arbitrary, we can choose it to be either isotropic or with
block-diagonal constitutive tensors such that ϵst = ϵts = 0
and µst = µts = 0 (note that these last conditions are
verified for reciprocal waveguide [26]). As a trivial conse-
quence, in this case both matrices T and S, defined in (7)
and (10), become identity matrices. If we also assume that
the perturbations are small, i.e., ϵ ≈ ϵ̄ and µ ≈ µ̄, then we
can write M(s) ≈ ϵ − ϵ̄ and N(s) ≈ µ − µ̄. Eventually,
these expressions allow us to simplify the coefficients K

(q,p)
ξ,ν

and C
(q,p)
ξ,ν (s) to (12) and (13), respectively. For example, to

achieve the approximation for M(s), we use the fact that
the perturbation is small to approximate ϵ̄ss/ϵss ≈ 1 and to
neglect terms of (8) that are of second order with respect to
the perturbation ϵ − ϵ̄. An analogous argument leads to the
simplified form of N(s).

Another particular condition is when both the reference
and the equivalent waveguide are isotropic. Direct calculations
show that in this case the coupling coefficients simplify to:

K
(q,p)
ξ,ν = ω

∫∫
(ϵ− ϵ̄)

(
e
(q)
ξt

⊤ e
(p)
νt +

ϵ̄

ϵ
e
(q)
ξs

⊤e(p)νs

)
dA,

(45)

C
(q,p)
ξ,ν = −ω

∫∫
(µ− µ̄)

(
h
(q)
ξt

⊤ h
(p)
νt +

µ̄

µ
e
(q)
ξs

⊤e(p)νs

)
dA,

(46)
where the expression of K(q,p)

ξ,ν is equivalent to that proposed
in Ref. [14]. It must be remarked, however, that while having
an isotropic reference waveguide is, as already noted, just a
matter of choice, having an isotropic equivalent waveguide
requires peculiar conditions to be verified. Specifically, accord-
ing to the general expressions (2), the equivalent waveguide
is isotropic if and only if the constitutive tensors of the real
waveguide can be expressed as ϵ̃ = ϵ (detJσ)(J

⊤
σ Jσ)

−1 and
µ̃ = µ (detJσ)(J

⊤
σ Jσ)

−1, where ϵ and µ are the scalar
permittivity and permeability of the equivalent waveguide.
Nevertheless these equations can be verified only when the
real waveguide is isotropic and the transformation σ is such
that J⊤

σ Jσ = I . This means that the Jacobian matrix of σ
must be orthogonal, which occurs, however, only when σ is
a conformal map, that is, a transformation that preserves the
local angles. For completeness, we note that when the real
waveguide is anisotropic, the above equations are verified only
if the constitutive tensors are proportional to each other and the
geometric transformation σ is strictly mathematically related
to the anisotropy; indeed a rather unrealistic case.
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