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Gravitational self-force theory is the leading approach for modeling gravitational wave emission
from small mass-ratio compact binaries. This method perturbatively expands the metric of the
binary in powers of the mass ratio. The source for the perturbations depends on the orbital con-
figuration, calculational approach, and the order of the perturbative expansion. These sources fall
into three broad classes: (i) distributional, (ii) worldtube, and (iii) unbounded support. The latter,
in particular, is important for emerging second-order (in the mass ratio) calculations. Traditional
frequency domain approaches employ the variation of parameters method and compute the perturba-
tion on standard time slices with numerical boundary conditions supplied at finite radius from series
expansions of the asymptotic behavior. This approach has been very successful, but the boundary
conditions calculations are tedious, and the approach is not well suited to unbounded sources where
homogeneous solutions must be computed at all radii. This work develops an alternative approach
where hyperboloidal slices foliate the spacetime, and compactifying coordinates simplify the bound-
ary treatment. We implement this approach with a multi-domain spectral solver with analytic mesh
refinement and use the scalar-field self-force on circular orbits around a Schwarzschild black hole
as an example problem. The method works efficiently for all three source classes encountered in
self-force calculations and has distinct advantages over the traditional approach. For example, our
code efficiently computes the perturbation for orbits with extremely large orbital radii (rp > 105M)
or modes with very high spherical harmonic mode index (` ≥ 100). Our results indicate that
hyperboloidal methods can play an essential role in self-force calculations.

I. INTRODUCTION

Observations of gravitational waves are providing new
insights into the population statistics of compact binaries
[1] and enabling tests of Einstein’s general relativity (GR)
in strong-field, dynamical spacetimes [2]. As present de-
tectors are upgraded and new detectors come online, a
wider range of systems will appear.

One particularly interesting class of sources are com-
pact binaries where the mass ratio, ε, of the smaller to
the larger mass is small. For example, extreme mass-
ratio inspirals (EMRIs) with ε . 10−4 are sources for
the future space-based LISA detector [3]. Another ex-
ample are intermediate mass-ratio inspirals (IMRIs) with
10−4 . ε . 10−1 which are sources for both ground- and
space-based detectors [4]. Searching for and estimating
the parameters of these binaries requires precise theoret-
ical waveform templates to compare against the detector
data stream.

The small mass ratio of E/IMRIs lends itself to a
perturbative treatment through black hole perturbation
theory, and in particular, the gravitational self-force ap-
proach [5–7]. In this approach one expands the spacetime

metric of the binary as gµν = gµν +εh
(1)
µν +ε2h

(2)
µν +O(ε3),

where gµν is the metric of primary, and the h
(n)
µν are n-

th order perturbative corrections. Taking this expansion
through second-order in the mass ratio [O(ε2)] is impor-

tant for precision tests of GR with EMRIs [8], and enables
efficient modeling of IMRIs [9]. The equations governing

the metric perturbations h
(n)
µν are obtained by substitut-

ing the expansion above into the Einstein field equations
and solving order-by-order along with appropriate reg-
ularization schemes to handle the behavior of the met-
ric perturbation near the secondary [5, 10, 11]. These
equations can then be solved in the time- or frequency
domains, typically after decomposing the perturbation
onto a spherical or spheroidal harmonic basis.

The majority of self-force calculations have been car-
ried out in the frequency domain [12–18] where comput-
ing the perturbation reduces to solving a set of ordi-
nary differential equations (ODEs). The source for each
Fourier mode of the perturbation depends on the orbital
configuration, calculational approach, and the order of
the perturbative expansion.

These sources fall into three broad classes: (i) distri-
butional, (ii) worldtube, and (iii) unbounded support.
Distributional sources are encountered at first-order (in
the mass ratio) when using a point-particle model for the
secondary moving on a fixed orbital radius [12, 15, 19].
Eccentric orbits, which librate between a minimum and
maximum radius, lead to worldtube sources [13]. This
class of sources also arises when the secondary is mod-
eled using an effective-source approach where the source
is confined to a compact worldtube around the world-
line [20, 21]. Finally, sources with unbounded support
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appear in second-order calculations where a vital ingre-
dient of the second-order source involves products of the
first-order metric perturbation [22].

The long-established approach for obtaining solutions
for each Fourier mode, whether at first or second-order,
is through the Green’s function method of variation of
parameters. To generate the physical solution, one con-
structs a basis of linearly independent homogeneous so-
lutions that satisfy ingoing boundary conditions at the
bifurcation horizon (r → 2M) and outgoing boundary
conditions at spatial infinity (r → ∞). The homoge-
neous solutions are typically computed by either con-
structing appropriate numerical boundary conditions at
finite radii and numerically integrating into the space-
time or by using the semi-analytic Mano-Suzuki-Takasugi
(MST) method [23]. One then integrates these homoge-
neous solutions against the source term to construct the
inhomogeneous solution.

This approach has been instrumental in previous
frequency-domain self-force calculations, but it does have
some drawbacks. For the numerical integration method,
the boundary conditions are formally straightforward to
compute from Frobenius or asymptotic series expansions
but deriving them is tedious work. Furthermore, these se-
ries expansions of the boundary conditions must be eval-
uated in the wave zone to converge at large radii. For low-
frequency modes, which occur for large radius orbits and
some modes of eccentric orbit calculations [14, 24], the
wave zone moves into the very weak field, which means
the integration of the homogeneous solutions accumu-
lates a lot of error from the many steps the numerical in-
tegrator must take to extend the solution into the strong
field.

The MST method avoids these issues by writing the
perturbation as a rapidly convergent series of hypergeo-
metric functions that satisfy the boundary conditions by
construction and can be evaluated at any radius. The
challenge with this approach is finding the coefficients in
these series expansions. For low-frequency modes, this
can be done very efficiently [25] (or even analytically,
e.g., [26–28]), but for modes with higher frequencies, nu-
merically finding the coefficients and evaluating the many
terms in the series can be computationally expensive and
often requires the use of arithmetic beyond machine pre-
cision [29]. This makes the MST approach ill-suited to
working with sources with unbounded support as the ho-
mogeneous solutions then need to be evaluated at all radii
to employ the variations of parameters approach. This
class of sources is also challenging for the numerical in-
tegration method as the homogeneous solutions may not
even be regular near the ‘opposite’ boundary to where
the boundary conditions are set.

This work develops a new approach to self-force cal-
culations that resolves these challenges and works effi-
ciently for all three classes of sources described above.
We first transform the field equation for the perturbation
to hyperboloidal slices [22, 30–32]. These slices provide
a smooth foliation instead of intersecting at the black

hole horizon and spatial infinity. Compactifying the ra-
dial coordinate leads to a regular geometry allowing us to
place both the future event horizon H+ and future null
infinity I + on our numerical grid. We do not need to
provide data on the grid boundaries because there are no
incoming characteristics into the numerical domain. The
resulting boundary conditions are behavioral instead of
numerical.

This combination of hyperboloidal slicing and com-
pactification has already proven very successful in time-
domain black hole perturbation calculations [33–43].
For our frequency-domain implementation, we efficiently
solve the perturbation equations using the spectral meth-
ods developed in Refs. [44, 45]. These techniques, ex-
panded to include the pseudospectrum of perturbations,
have been applied successfully to the study of quasinor-
mal modes [46–49]. We use the same coordinates em-
ployed in these papers to tackle the self-force problem.

We demonstrate our approach on a scalar-field toy
problem that captures all the key features of self-force
calculations while avoiding additional complexity that
arises in the gravitational case. We show that our method
works efficiently for distributional, worldtube, and un-
bounded support sources. We also demonstrate that it
performs well for very large radius circular orbits and
very high spherical harmonic mode indices in combina-
tion with analytic mesh refinement. The paper is orga-
nized as follows. In Sec. II we give the field equation and
mode decomposition on standard t-slicing, and discuss
the three classes of sources. In Sec. III we transform the
field equations to hyperboloidal slicing and compactify
them. In Sec. IV we give the details of the spectral nu-
merical scheme. We present our results in Sec. V for all
three classes of sources and for large radius orbits. In
this work we adopt the metric signature (− + ++) and
use geometrized units such that G = c = 1.

II. FREQUENCY DOMAIN SELF-FORCE
PROBLEM: SCHWARZSCHILD BACKGROUND

The line element for the Schwarzschild solution with
mass M in standard coordinates (t, r, θ, ϕ) is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(
dθ2 + sin2 θ dϕ

)
, (1)

with f(r) = 1−2M/r. The frequency-domain field equa-
tions in the self-force problem for a field φ have the
generic form [12, 15, 19–22, 31]

∆φ = S, (2)

where ∆ is a second order derivative operator on the
Schwarzschild background. We discuss the specific form
of the operator ∆ and the source S for a scalar field
example in the following sections.
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A. Scalar-field example

We focus on a scalar self-force (SSF) toy model in this
work. This model captures all the essential features of
self-force calculations while avoiding subtle technical is-
sues in the gravitational case, such as gauge choices. We
follow Ref. [20] and consider a particle of mass µ with
scalar charge q, moving on a geodesic with coordinates
xµ(τ) where τ is the particle’s proper time. In this toy
model, the particle’s motion gives rise to a scalar field,
which acts back on the scalar charge to generate the SSF.
The dynamics of the scalar field Φ(t, r, θ, ϕ) is dictated
by the wave equation in curved spacetime,

�Φ := ∇α∇αΦ = −4πρ, (3)

where ∇α is the covariant derivative with respect to the
background Schwarzschild metric and ρ is the particle’s
scalar density supported on the particle’s worldline,

ρ(t, r, θ, ϕ) = q

∫
δ4(xµ − xµp (τ))[−g(x)]−1/2, (4)

where g = −r4 sin2 θ is the metric determinant. This
equation is equivalent to the spin-0 Teukolsky equation
[50]. We must impose appropriate outgoing boundary
conditions to obtain the retarded field, Φret, from Eq. (3).
This retarded field, however, is divergent at the parti-
cle. The backreaction on the particle is calculated from
a residual field [51, 52]

ΦR(x) = Φret(x)− ΦP(x) (5)

where ΦP is a puncture field defined in a region around
the particle that cancels the divergence in the retarded
field. The equations of motion are then given by

uβ∇β(µuα) = Fα(xp) = lim
x→xp

q∇αΦR(x). (6)

For reviews of self-force theory see Refs. [5, 6]. For
this work, it is sufficient to know that the residual field
can be calculated either by first computing the retarded
field and then subtracting the singular contribution using
the mode-sum approach [53], or by reformulating Eq. (3)
to directly solve for the regular field using the effective-
source approach [54, 55]. How these two approaches af-
fect the source of Eq. 3 is discussed in Sec. II C below.

B. The operator ∆

The operator on the left-hand side of Eq. (2) follows
from decomposing the scalar field into Fourier and spher-
ical harmonic modes

Φ(t, r, θ, ϕ) =

∫ ∑

lm

φ`m(r)Y`m(θ, ϕ)e−iωt dω, (7)

where Y`m(θ, ϕ) are the usual spherical harmonics nor-

malized such that
∫
Y`mY

∗
`′m′ sin θ dθ = δl

′

l δ
m′

m . Substi-
tuting this into Eq. (3) leads to separatable equations

where for each (`,m)-mode the radial equation is gov-
erned by

∆`m =
d2

dr2
+2

(1−M/r)

r f

d

dr
+

1

f

(
ω2

f
− `(`+ 1)

r2

)
. (8)

Appendix A discusses the operator ∆`m for the Bardeen-
Press-Teukolsky (BPT) [56] and Regge-Wheeler-Zerilli
(RWZ) [57] formulations of black-hole perturbation the-
ory.

C. The source S

We now discuss the most common source types in self-
force calculations that appear on the right-hand side of
the Eq. (2). In our examples, the perturbation is a parti-
cle of mass µmoving on a circular geodesic with radius rp.
Circular geodesics can be parameterized by their energy
E , angular momentum L, or azimuthal frequency Ωϕ. In
terms of the orbital radius, they are given explicitly as

E =
fp√

1− 3M/rp
, L =

√
rpM√

1− 3M/rp
, Ωϕ =

√
M

r3
p

, (9)

where fp = f(rp). The mode frequency becomes ω =
mΩϕ and the integral in Eq. (7) becomes a discrete sum
over m modes [12].

1. Distributional source

The first case we consider has a distributional source
with support on the particle’s orbit. This case arises
when we directly solve for the retarded field with a point-
particle source, as is common in black hole perturbation
theory. The regular field can then be computed using the
mode-sum approach [53].

In our scalar-field example, the source for each mode
is given by decomposing Eq. (4) into spherical harmonic
and Fourier modes as in Eq. (7). The field equation takes
the form

∆`mφ`m = Sd
`m, (10)

where the distributional source is given by [12, 20]

Sd
`m = κ`mδ(r − rp), κ`m = − 4πq

Epr2
p

ĉ`mP
m
` (0), (11)

with ĉ`m =

√
2`+ 1

4π

(`−m)!

(`+m)!
arising from the defini-

tion of the defintion of the spherical harmonic function:
Y`m(θ, ϕ) = ĉ`mP

m
` (cos θ)eimϕ, where Pm` (cos θ) is the

associated Legendre Polynomial. Note that solutions
to Eq. (10) are not unique. We must impose outgoing
boundary conditions to obtain the retarded solution as
we discuss in Sec. II D.
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2. Worldtube sources

The second scenario we consider has extended sources
with compact support around the particle, i.e., cases in
which the source functions are defined on the compact
worldtube r ∈ [r−, r+], with r− ≤ rp ≤ r+. These types
of sources occur in eccentric orbit [13, 58] and effective-
source [20, 21] calculations. We demonstrate our ap-
proach with the effective-source case, where we directly
solve for the residual field. For each spherical harmonic
mode we write

ΦR`m = φret
`m − φP`m. (12)

Applying the operator (8) to this equation, and using
Eq. (10), we obtain the differential equation for the resid-
ual field ΦR`m

∆`mΦR`m = Sw
`m, (13)

with Sw
`m an effective source defined within a worldtube

around the particle

Sw
`m =

{
0 if r < r−, r > r+,

Sd
`m −∆`mφ

P
`m if r− ≤ r ≤ r+.

(14)

In the scalar toy-model, the distributional term Sd
`m is

given by Eq. (11) and the corresponding modes of the
puncture field are given by [20]

ΦP`m = δ(ω −mΩϕ)

[
κ`m

2
|∆r|+ χ`m∆r + ξ`m

]
, (15)

with ∆r = r − rp and

χ`m =
4q Y`m(π/2, 0)

(2`+ 1)r2
p

√
1− 3M/rp

fp
(E − 2K), (16)

ξ`m =
8q Y`m(π/2, 0)

(2`+ 1)rp

√
1− 3M/rp

fp
K. (17)

The functions K and E are the complete elliptic inte-
grals of first and second kind, respectively, with argu-
ments M/(rpfp). By construction of the puncture field,
ΦP`m,rr = κ`mδ(r − rp) and so it follows for r ∈ [r−, r+]

Sw
`m = −

[
2

(1−M/r)

r f
ΦP`m,r+

1

f

(
ω2

f
− `(`+ 1)

r2

)
ΦP`m

]
.

(18)

3. Sources with unbounded support

Sources with unbounded support arise in various re-
cent self-force calculations. They appear in second-order
GSF calculations where a contribution to the source for
the second-order metric perturbation comes from the
second-order Einstein tensor, which is computed from

quadratic combinations of the first-order metric pertur-
bation and its derivatives [22]. The two-timescale ap-
proach to second-order calculations introduces “slow-
time derivatives” of the first-order metric perturbation
[22] and the calculation of these also introduces un-
bounded support source terms. Further unbounded sup-
port sources appear when modeling hyperbolic orbits in
the frequency domain [59].

In this work we will use the slow-time derivative
calculation to demonstrate how the hyperboloidal ap-
proach applies to sources with unbounded support. For
quasi-circular inspirals, the main computational chal-
lenge when calculating slow-time derivatives is to com-
pute [22]

ψret
`m = ∂rpφ

ret
`m (19)

Hereafter we refer to ψret
`m as the “parametric derivative”

of the perturbation. Taking an rp-derivative of Eq. (10)
and rearranging we find that ψret

`m satisfies the equation

∆`mψ
ret
`m = Su

`m, (20)

with the source

Su
`m = ∂rpκ`mδ(r − rp)− κ`mδ′(r − rp)

−2
ω ∂rpω

f2
φret
`m. (21)

Note that Su
`m has both Dirac-delta distributions and a

term involving retarded field φret
`m which extends all over

the spatial domain (unbounded support). The distribu-
tion terms in this case are also more complicated as they
involve both δ(r − rp), and δ′(r − rp). Thus, both ψret

`m
and ∂rψ

ret
`m exhibit discontinuities at the particle’s orbit

fixed by κ`m and ∂rpκ`m.

D. The boundary conditions

The physical boundary conditions are typically spec-
ified on t = constant hypersurfaces that intersect the
bifurcation horizon B at r = 2M , and at spatial infin-
ity i0 as r →∞ (see thin, dashed lines in Fig. 1). These
boundary conditions pick the retarded solution whose en-
ergy radiates towards the black hole or to infinity. For
compact sources the asymptotic form of the boundary
conditions is given by

φret
`m(r) ∼ e±iωr

∗

r
, r∗ → ±∞. (22)

For implementation with a numerical scheme, the oscil-
lations along the t-slices means that compactification of
the radial domain leads to an infinite resolution problem
and is therefore avoided within the standard approach
[60–62]. Instead, the unbounded domain is truncated and
the boundary conditions are imposed at a finite radius.

To find the boundary conditions at a finite distance,
one performs a series expansion. For example, the outer
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boundary condition towards spatial infinity is often ex-
panded at some large radius rout in the form

φret
`m(rout) = eiωr

∗
∞∑

k=0

a`mk(ωrout)
−k (23)

The coefficients alm,k≥1 are determined by substituting
the expansion into the homogeneous equation ∆lmφlm =
0 and solving the resulting recurrence relation. For the
scalar field, these recurrence relations can be found in,
e.g., Appendix A of Ref. [20]. Computing these rela-
tions is tedious work, which becomes substantially more
involved for perturbation of Kerr spacetime (e.g., Ap-
pendix C of Ref. [19]) or for gravitational perturbations
[15, 24].

For the expansion in Eq. (23) to converge, we must
have ωrout � 1. This can be problematic when very
low-frequency modes occur as the outer boundary must
then move out very far. The unbounded support source
given in Eq. (21) falls off sufficiently rapidly that the
asymptotic boundary condition is given by just the rp-
derivative of Eq. 22

ψret
`m(r) ∼ ± i∂rpω r

∗e±iωr
∗

r
, r∗ → ±∞. (24)

Constructing boundary conditions at a finite radius for
the unbounded support source is more involved as now
the recurrence relation for the coefficients involve coef-
ficients of the expansion of the retarded field, φret

`m, that
appears in the source – see Ref. [63] for an example where
such boundary conditions are computed.

III. HYPERBOLOIDAL METHOD FOR
SELF-FORCE IN FREQUENCY DOMAIN

Hyperboloidal surfaces are spacelike surfaces that be-
have like a spacetime hyperboloid near null horizons.
The term hyperboloidal in the literature typically refers
to null infinity [64, 65]. We expand the usage of the
term to encompass also other null surfaces, such as the
black hole horizon or the cosmological horizon. Horizon-
penetrating coordinates, such as the original Eddington-
Finkelstein or the Painlevé-Gullstrand coordinates, are
hyperboloidal, which becomes clear when written with re-
spect to the tortoise coordinate that pushes the black hole
horizon to negative infinity. Naturally, first numerical im-
plementations of hyperboloidal coordinates in black hole
spacetimes also included horizon-penetrating coordinates
[33, 34, 66]. Therefore, it makes sense to use the term for
both the black hole horizon and null infinity.

The similarity of hyperboloidal coordinates near null
infinity and near the black hole horizon is also visible
when viewed in a Penrose diagram (see Fig. 1 and [31]).
Hyperboloidal coordinates foliate the (future) event hori-
zon H+ instead of intersecting at the bifurcation sphere
B at r = 2M , and they foliate (future) null infinity
I + instead of intersecting at spatial infinity i0 when

r → ∞. Consequently, we can include the black hole
horizon and null infinity in our computational domain,
which removes the need for the complicated boundary
conditions described in the previous section. Another
important advantage of the method is that the construc-
tion only depends on the background spacetime. In con-
trast, boundary conditions must be computed separately
for each problem with different sources or different for-
mulations of the perturbations.

Among the many ways to construct hyperboloidal sur-
faces, a convenient and common method is to fix the coor-
dinate location of null infinity (scri) on the grid [30]. Scri-
fixing has the essential advantage of leaving the timelike
Killing field of stationary black holes invariant. Con-
sequently, coefficients of equations describing black hole
perturbations are time-independent, and the event hori-
zon and null infinity are fixed at the numerical bound-
aries. The scri-fixing method of Ref. [30] to construct
hyperboloidal coordinates consists of three steps:

1. Introduce a time coordinate that respects the time-
like Killing field and satisfies certain asymptotic
conditions.

2. Map the unbounded spatial domain to a compact
domain.

3. Rescale the fields for regularity at the domain
boundary.

Level sets of the hyperboloidal time coordinate τ1 pen-
etrate the (future) black-hole horizon at r = 2M , and
future null infinity I + as r → ∞ as depicted on the
Carter-Penrose diagram Fig. 1. As both surfaces are in-
coming null surfaces, no boundary data is prescribed.
The boundary conditions after the spatial mapping are
behavioral as opposed to numerical in the terminology
of Boyd [67]. This implies trivial boundary treatment in
spectral methods after a suitable choice of function space.

There are many specific hyperboloidal coordinates us-
ing scri-fixing (see [32] for a review in the context of Kerr
spacetime). Here, we follow [32, 44–46] and work in the
so-called minimal gauge. Specifically, the transformation
between the original Schwarzschild coordinates (t, r, θ, ϕ)
and the hyperboloidal coordinates (τ, σ, θ, ϕ) reads

t = λ

(
τ −H(σ)

)
, r =

2M

σ
, (25)

with λ = 4M and the height function

H(σ) =
1

2

(
ln(1− σ)− 1

σ
+ lnσ

)
. (26)

Thus, along τ = constant, I + is located at σ = 0 and
the black-hole horizon is at σ = 1.

1 Not to be confused with proper time, which shall be denoted by
τ in this work.
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i+

H+ I +

i0B

H− I −

i−

Singularity

FIG. 1. Carter-Penrose diagram for the Schwarzschild exte-
rior region. Thin, dashed lines depict standard Schwarzschild
time surfaces t =constant extending between the bifurcation
sphere B at the horizon r = 2M and space-like infinity i0

as r → ∞. The intersection of these time surfaces near
B and i0 imply a coordinate singularity. The domain must
be truncated and boundary data must be imposed near B
and i0. Thick, solid lines depict hyperboloidal time surfaces
τ =constant extending between the black-hole horizon H+ at
σ = 1 and future null infinity I + as σ = 0 given by (25).
These coordinates provide a smooth foliation on the full ex-
terior domain which means that both the horizon and null
infinity can be included in the computational domain. No
external boundary conditions are needed to study perturba-
tions.

As discussed in Ref. [32, 45], this gauge retains the min-
imal structure in the coordinate transformation needed
to construct hyperboloidal slices. Consequently, the cor-
responding equations on black-hole perturbation theory
assume the most simple form. Figure 1 shows the level
sets τ = constant in the Carter-Penrose diagram, where
the desired properties become evident: the hypersurfaces
penetrate the black-hole horizon H+, and they extend up
to future null infinity I +. For regularity of the trans-
formed equations, the asymptotic fall-off behavior of the
unknown field must be taken into account [61]. The
rescaling that takes out the asymptotic fall-off is geomet-
rically related to the conformal completion of the asymp-
totically flat background spacetime [68]. In the frequency
domain, the time transformation Eq. (25) corresponds to
a rescaling [31, 32, 62]. The scalar field rescales as

φ = Z φ, Z = Ω esH , s = −iωλ. (27)

The conformal factor Ω = σ/λ accounts for the scalar
field’s fall-off behavior ∼ 1/r, whereas the exponential

term naturally arises from the Fourier factor e−iωt when
the time transformation in Eq. (25) is taken into account.
In this way, Z automatically incorporates the boundary
behavior (22) via the geometrical interpretation of the
height function from the spacetime perspective. Here-
after will denote the rescaled quantities with an overline,
e.g., φ.

Equivalent to Eq. (2), the hyperboloidal field φ satisfies

Aφ = S, (28)

with the operator A and source S related to the original
∆ and S via

∆φ = FAφ =⇒ S = F−1S. (29)

We discuss the re-scaling factor F in the upcoming sec-
tion. First, let us express the operator A as

A = α2
d2

dσ2
+ α1

d

dσ
+ α0. (30)

An important property is that the transformed opera-
tor A degenerates at the domain boundaries. In other
words, the operator’s principal part α2 vanishes at σ = 0
and σ = 1. Thus, the original considerations about in-
going/outgoing boundary conditions are re-casted into
questions about the underlying solution’s regularity. In
practical terms, due to the vanishing of the coefficient α2

at σ = 0 and σ = 1, the regularity conditions for a field
φ satisfying Eq. (28) reads

(
α1∂σφ+ α0φ

)∣∣∣∣∣
σ=0,
σ=1

= S
∣∣
σ=0,
σ=1

. (31)

In this way, the boundary conditions follow directly from
the equation, and no external data is allowed if one seeks
a regular solution. In the above considerations, we as-
sume S is finite at σ = 0 and σ = 1. As discussed, this is
the case for the examples under consideration. A more
detailed study on the regularity classes of S is necessary
for the sources on the two-time scale analysis [22].

A. The hyperboloidal operator A and factor F

The operator A acting on the hyperboloidal scalar field
φ`m follows from Eqs. (8) and (29) via a factor [32]

F =
Z

r2f
. (32)

The original radial coordinate r is understood as the
function r(σ) according to Eq. (25). The coefficients on
Eq. (30) are

α2 = σ2(1− σ), α1 = σ(2− 3σ) + s(1− 2σ2)

α0 = −
[
`(`+ 1) + σ + 2sσ + s2(1 + σ)

]
. (33)
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The polynomial structure in σ manifests the hyper-
boloidal minimal gauge’s simplicity. With the explicit
expressions above, it becomes evident that A`m is a de-
generate operator, i.e., α2 = 0 at σ = 0 and σ = 1.
Appendix A discusses the factor F and operator A for
fields with spin weight p 6= 0 in both BPT and RWZ
formalisms.

B. The hyperboloidal source S

We now turn our attention to the transformation of
the different types of source terms discussed in Sec. II C.

1. Distributional sources

The transformation of Eq. (11), where the source term
has delta-support on the particle’s orbit, gives

Sd

`m = κ`m δ(σ − σp). (34)

The constant κ`m relates to the original κ`m via

κ`m =
σ2
p

2MF κ`m

= 2M
fp
Zp
κ`m. (35)

The first line in Eq. (35) has a generic form, and the
transformation incorporates two terms: a rescaling by
F−1 from Eq. (29), and a change of coordinates in the
delta function accomplished by

δ(g(σ)) =
δ(σ − σp)
|g′(σp)|

, g(σ) = r(σ)− rp. (36)

In the above expression, r(σ) is given by Eq. (25). The
second line in Eq. (35) makes explicit use of the func-
tion F in Eq. (32). In this context, the (hyperboloidal)

retarded field φ
ret

`m is the regular solution to the equation

A`mφ
ret

`m = Sd

`m, (37)

i.e., φ
ret

`m must satisfy Eq. (31) with the right-hand side
S = 0 at σ = 0 and σ = 1. Note that, as opposed to the
standard case, the transformed equation does not allow
for regular advanced solutions. The retarded behavior is
not imposed through a separate boundary condition, but
through the equation itself.

The delta-function source in the right-hand side of (37)
imposes a jump in the field’s first derivative in the form

(
∂σφ

ret

`m+ − ∂σφ
ret

`m−

)∣∣∣∣
σ=σp

= Jp. (38)

with

Jp =
κ`m
α2

∣∣∣∣
σ=σp

. (39)

In the above expressions we have defined
(
∂σφ

ret

`m±

)∣∣∣∣
σ=σp

= lim
ε→0

∂σφ
ret

`m(σp ± ε). (40)

2. Worldtube sources

For sources with compact support around the particle’s

orbit, the hyperboloidal residual field Φ
R
`m satisfies

A`mφ
R
`m = Sw

`m, (41)

with Sw

`m defined within the worldtube σ ∈ [σ−, σ+].
Note that from Eq. (25) one has r+ = r(σ−) and
r− = r(σ+). Considering Sw

`m given by Eq. (14), we
obtain the transformed expression

Sw

`m = κ`mδ(σ − σp)−A`mΦ
P
`m. (42)

As expected, α2 ∂
2
σσΦ

P
`m = κ`mδ(σ − σp), so the delta-

source cancels out in the right-hand-side of Eq. (42). We
are left with

Sw

`m = α1 ∂σΦ
P
`m + α0 Φ

P
`m. (43)

Alternatively, the rescaling from Eq. (29) applies di-
rectly into the regularised expression (18). As explained,

Eq. (31) fixes the regularity conditions for φ
R
`m. Since

S`m = 0 at σ = 0 and σ = 1, the conditions reduce to
same as for the retarded field. In fact, by definition one
has

Φ
R
`m =

{
φ

ret

`m, σ ∈ [0, σ−), σ ∈ (σ+, 1]

φ
ret

`m − φ
P
`m, σ ∈ [σ−, σ+]

, (44)

i.e., Φ
R
`m and φ

ret

`m coincide everywhere outside the world-
tube. Eq. (44) fixes the transition conditions at the
boundaries σin,out. Specifically, Eq. (44) imposes

(
Φ
R
`m+ − Φ

R
`m−

)∣∣∣∣
σ=σin

= −φP`m(σin), (45)

(
∂σΦ

R
`m+ − ∂σΦ

R
`m−

)∣∣∣∣
σ=σin

= −∂σφ
P
`m(σin), (46)

(
Φ
R
`m+ − Φ

R
`m−

)∣∣∣∣
σ=σout

= φ
P
`m(σout), (47)

(
∂σΦ

R
`m+ − ∂σΦ

R
`m−

)∣∣∣∣
σ=σout

= ∂σφ
P
`m(σout). (48)

Finally, a unique solution follows by fixing Φ
R
`m at the

particle’s location via continuity conditions
(

Φ
R
`m+ − Φ

R
`m−

)∣∣∣∣
σ=σp

= 0, (49)

(
∂σΦ

R
`m+ − ∂σΦ

R
`m−

)∣∣∣∣
σ=σp

= 0. (50)
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3. Unbounded support sources

The transformation of Eq. (20) follows similarly. By
taking the derivative of Eq. (37) with respect to rp
one obtains the hyperboloidal parametric derivative field

ψ
ret

`m = φ
ret

`m,rp

A`mψ
ret

`m = Su

`m. (51)

Here, the extended hyperboloidal source reads

Su

`m = ∂rpκ`mδ(σ − σp) +
σ2
p

2M
κ`m δ

′(σ − σp)

+Cφ
ret

`m, (52)

with the operator C = ∂rpA given by

C = ∂rps

(
2σ + 2s(1 + σ)− (1− 2σ2)∂σ

)
. (53)

The relation between the original field ψret
`m and its hy-

perboloidal equivalent ψ
ret

`m does not follow from Eq. (27)

in contrast to φret
`m and φ

ret

`m. Because Z depends on rp
through the frequency s, Eq. (27) leads to

ψret
`m = Z ψ

ret

`m + ∂rpZ φ
ret

`m. (54)

The field ψ
ret

`m is then uniquely determined via the regu-
larity conditions at σ = 0 and σ = 1, together with the
jump conditions at the particle location. According to
Eq. (31) the regularity conditions read

(
α1∂σψ

ret

`m + α0ψ
ret

`m

)∣∣∣∣∣
σ=0,
σ=1

= Cφ
ret

`m

∣∣∣
σ=0,
σ=1

, (55)

whereas the jump conditions at the particle location are

(
ψ

ret

`m+ − ψ
ret

`m−

)∣∣∣∣
σ=σp

=
σ2
p Jp

2M
(56)

(
∂σψ

ret

`m+ − ∂σψ
ret

`m−

)∣∣∣∣
σ=σp

= ∂rpJp −
σ2
p Jp

2M

α1

α2

∣∣∣∣
σ=σp

.(57)

C. Energy flux and the self-force

As a consistency check of our calculations, it is useful to
use a flux-balance law and compare our results to those in
the literature. For these we need to compute the energy
flux radiated to infinity and the horizon. In the following
subsections, we derive the balance law and show how to
calculate the energy fluxes from data computed on the
hyperboloidal slices.

1. Flux Balance Law

The total energy flux must balance the work W done
on the scalar charge by the SSF such that

Ėtotal = −W = −µĖ , (58)

where Etotal is the total radiated (scalar) energy, overdot
denotes a derivative with respect to coordinate time t,
and we have written the work done in terms of the rate
of change of specific energy, E , per unit time. The spe-
cific energy itself is given by E = −ξµ(t)uµ = −gµνξν(t)uν ,

where ξµ(t) is the timelike Killing vector field satisfying

the Killing equation ∇βξα +∇αξβ = 0. To take advan-
tage of this, we transform the derivative that appears on
the right-hand-side to a derivative with respect to proper
time,

Ė = (ut)−1uα∇αE
= −gµν(ut)−1

(
uνuα∇αξµ(t) + ξµ(t)u

α∇αuν
)

= −gµν(ut)−1ξµ(t)u
α∇αuν . (59)

The term uνuα∇αξµ(t) vanishes due to ξµ(t) satisfying

Killing’s equation. Since the motion of our particle is de-
termined by the (self-)forced equation of motion, Eq. (6)
and our timelike Killing vector is given by the Kronecker
Delta, ξµ(t) = δµt , we find from Eqs. (58) and (59)

Ft = µutĖtotal. (60)

Note that we have neglected the rate of change of the
mass per unit proper time, dµ/dτ, as we are in a sta-
tionary, circular orbit configuration. In more general
setups, the mass of the scalar charge can vary due to
the SSF component that is tangent to uα such that
dµ/dτ = −uαFα [13, 51].

We compute the rp-derivative of the self-force from our
calculations involving sources with unbounded support.
As with our original field equation (20), one can take an
rp-derivative of both sides of Eq. (60) to find

DrpFt = µ
(
∂rpu

tĖtotal + ut∂rpĖtotal

)
. (61)

Note that one must carefully consider the rp-derivative on
the left-hand side of Eq. (61), since the operations ∂rp and
limr→rp do not commute with each other. More specifi-
cally, the right-hand side involves quantities evaluated at
the black-hole horizon, and at future null infinity. Thus,
∂rp accounts for the explicit parametric dependence on
the particle’s orbit. The left-hand side, however, must
account for the parametric rp-dependence, as well as the
contribution from the field’s value at rp. Hence, for a
given quantity $p = lim

r→rp
$(r), one obtains

Drp$p =

(
∂rp$(r) +$′(r)

)∣∣∣∣∣
rp

. (62)
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2. Hyperboloidal Flux

The total radiated energy can be evaluated from the
energy flux vector

εα := −gαβTβµξµ(t), (63)

where Tµν is the stress-energy tensor of the scalar field
[69]. We wish to calculate the flux flowing to I + (future
null infinity) and down to the black hole. To do so let us
consider a timelike hypersurface with r = r0 labelled Σ0.
The scalar-field energy flowing through an infinitesimal
surface element of the hypersurface, dΣ0, that spans a
small time dt is given by

dE0 =

∫

Σ

εαdΣ0
α =

∫

Σ

Tαµ ξ
µ
(t)dΣ0

α. (64)

Here dΣ0
α is an outward-pointing surface element on the

section of the hypersurface dΣ0. Since our hypersurface
is timelike, the outward-pointing surface elements are ex-
pressed as dΣ0

α =
√
−hnαdtdθdϕ, where h is the determi-

nant of the induced metric on Σ0 and nα is the radial unit
normal vector to the hypersurface. Explicitly in terms of
the standard Schwarschild coordinates nα = δrα/

√
f0 and

therefore h = −f0r
2
0 sin2 θ, where subscript “0” means

the function is evaluated at r = r0. Bringing this all to-
gether and substituting the coordinate form of the Killing
tensor, one finds the flux of energy through the hyper-
surface Σ0 to be

Ė0 =
dE0

dt
= f0r

2
0

∮
Ttr dw, (65)

where dw is the standard differential solid angle.2 Our
aim is to write Eq. (65) in terms of our hyperboloidal

coordinates xα
′

= (τ, σ, θ, ϕ) and the hyperboloidal field
φ(σ) to evaluate the radiative flux at future null infin-
ity (σ = 0) and the horizon (σ = 1). By transforming
the stress-energy tensor of the scalar field Tαβ into our
coordinates, we find

Ttr = − σ2

2Mλ
(Tττ H,σ + Tτσ ) . (66)

It follows from Eq. (26)

∂σH =
1− 2σ2

2σ2(1− σ)
. (67)

As discussed in Appendix B, evaluating Tττ and Tτσ in
terms of the conformal field and noting in our hyper-
boloidal coordinates, f(σ) = (1− σ), we find remarkably

2 This is written differently than the normal convention dΩ, so as
to not be confused with the conformal factor Ω introduced in
Eq. (27).

simple expressions for the flux integrands:

f0 (Tττ H,σ + Tτσ )
∣∣
σ0=0

=
1

8πλ2
(∂τΦ)2, (68)

f0 (Tττ H,σ + Tτσ )
∣∣
σ0=1

= − 1

8πλ2
(∂τΦ)2. (69)

Therefore our flux expressions become

ĖI +

:= +Ė0
∣∣
σ0=0

=
1

16πλ2

∮
(∂τΦ)2

∣∣∣∣
σ=0

dw (70)

ĖH
+

:= −Ė0
∣∣
σ0=1

=
1

16πλ2

∮
(∂τΦ)2

∣∣∣∣
σ=1

dw, (71)

where our sign convention is chosen such that the out-
flow of energy towards I + is positive and the inflow of
energy towards the horizon is negative. The Fourier and
spherical harmonic mode decomposition of the conformal
scalar field given by

Φ(τ, σ, θ, ϕ) =
∑

`,m

φ`m(σ)Y`m(θ, ϕ)esτ :=
∑

`m

Φ`m, (72)

allows us to make the replacement ∂τΦ`m = sΦ`m. If we
substitute this into Eq. (71), the integral is readily evalu-
ated with the standard spherical harmonic orthogonality
relation, leaving us with succinct expressions for the flux
at the horizon and infinity,

ĖI +

=
1

16π λ2

∑

`m

∣∣sφ`m
∣∣2
σ=0

, (73)

ĖH
+

=
1

16πλ2

∑

`m

∣∣sφ`m
∣∣2
σ=1

. (74)

If we are to compare our results with the parametric
derivative of the field, ψ`m, we need to compute the rp-
derivative of the flux. As our conformal field is complex,
we find

∂rpĖ
I +

=
1

16πλ2

×
∑

`m

Re

[
sφ`m

(
∂rps φ`m + sψ`m

)∗
]

σ=0

, (75)

∂rpĖ
H+

=
1

16πλ2

×
∑

`m

Re

[
sφ`m

(
∂rps φ`m + sψ`m

)∗
]

σ=1

. (76)

D. Self-force

To calculate the self-force within our hyperboloidal ap-
proach we start with the expression for the self-force in
covariant form given in Eq. (6). We first consider the t-
component of the self-force in terms of conformal scalar
field. The transformation to conformal coordinates yields

F self
t =

q

λ
lim

xµ→xµp
Ω ∂τΦ(xµ). (77)
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We shall denote the `-mode contribution to the full self-
force field by F`t. With the help of Eq. (27), substituting
the decomposition from Eq. (72) into Eq. (77) and taking
the limit to the worldline we find

F`t =
q

λ

∑̀

m=−`
sZ(σp)φ`m(σp)Y`m(π/2, 0). (78)

This expression can be used to directly evaluate left-hand
side of the balance law, Eq. (61), by taking a rp-derivative
of both sides of Eq. (78):

DrpFt =
q

λ

∑̀

m=−`

[
∂rpsZφ`m +

+sZ

(
Drpφ`m +Drp lnZφ`m

)]
Y`m(π/2, 0). (79)

Using Eq. (62), one obtains explicitly

Drpφ`m = ψ`m(σp)−
2M

r2
p

φ`m,σ

∣∣∣∣∣
σ=σrp

, (80)

Drp lnZ = ∂rps−
2M

r2
p

(
(ln Ω),σ + sH,σ

)∣∣∣∣∣
σ=σrp

.(81)

Obtaining the r-component of the SSF, meanwhile, is a
bit more involved. Due to the coordinate transformation
given in Eq. (25), one obtains

∂r = − σ2

2M
(∂σ +H,σ∂τ ) . (82)

Therefore,

F self
r = − q

2M
lim

xµ→xµp
σ2 [H,σ∂τΦ(xµ) + ∂σΦ(xµ)] , (83)

which yields

F±`r = −q σ
2
p

2M

∑̀

m=−`
Z(σp)

[
H,σsφ

±
`m+

+ φ
±
`m,σ +

φ
±
`m

σ

]

σ=σp

Y`m(π/2, 0). (84)

Here, F+
`r and F−`r correspond to approaching the world-

line from the range r > rp and r < rp respectively. This

distinction is necessary if we set φ`m = φ
ret

`m above as
then the derivatives of the scalar field ∂τφ and ∂σφ at
the particle location have two well-defined, but generally
different one-sided limits. In this case the left-hand side
of Eq. (84) represents the unregularized `-modes of the
force. To compute the r-component of the SSF we use
the mode-sum regularization formula [53]

F self
`r = F±`r ∓Ar`(`+ 1)−Br −

3∑

n=1

F `r[2n], (85)

where Ar, Br, F
`
r[2n] are known as regularization parame-

ters. The Ar and Br act to regularize the self-force, and
the F `r[2n] act to accelerate the convergence of the `-mode

sum [70]. If instead in Eq. (84) we set φ̄`m = φ̄R`m as com-
puted from the effective-source approach then the limit
is the same from both directions and the left-hand side
of Eq. (84) becomes F`r.

IV. NUMERICAL METHODS

This section details the numerical methods providing
highly accurate solutions to the equations transformed
into compactified hyperboloidal coordinates. We follow
the conceptual framework from Refs. [71–74] employing a
multi-domain spectral method [67, 75, 76], enhanced with
analytic mesh refinement to improve the computation of
solutions with steep gradients.

A. Multi-domain spectral methods

We use a collocation-point spectral method to solve
the hyperboloidal equation on the compact domain σ ∈
[0, 1]. Specifically, we employ the algorithms detailed in
Ref. [73] to find the numerical approximations f (iField),
with iField = 0 · · ·NField, assuming nField = NField + 1
real-valued functions. For instance, the scalar self-force
field described in the previous section is a complex-valued
function. Therefore, the numerical scheme must solve for
a total of nField = 2 unknown functions: the scalar field’s
real and imaginary part.

We divide the interval [0, 1] into ndom sub-domains

σ ∈ [σ0, σ1]︸ ︷︷ ︸
domain id=1

∪ · · · ∪ [σid−1
, σid ]︸ ︷︷ ︸

domain id

∪ · · · ∪ [σndom−1
, σndom

]︸ ︷︷ ︸
domain id=ndom

.

(86)
In our coordinates, future null infinity is at σ0 = 0 and
the black-hole horizon is at σndom

= 1. It is convenient
to map each sub-domain σ ∈ [σid−1

, σid ], labelled by id =
1 · · ·ndom, into a coordinate x ∈ [−1, 1] via

σ =
1

2

[
σid(1 + x) + σid−1

(1− x)
]
, (87)

x =
2σ − (σid + σid−1

)

σid − σid−1

. (88)

At each domain id, the numerical scheme approximates
a given function, f (id,iField)(x), via the finite expansion

f
(id,iField)
Nid

(x) =

Nid∑

k=0

c
(id,iField)
k Tk(x), (89)

with Nid the truncation order, and Tk(x) =
cos[k arccos(x)] the Chebyshev polynomials of first kind.

The Chebyshev coefficients c
(id,iField)
i are fixed by a collo-
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cation method. For this purpose, we discretise the inter-
val x ∈ [−1, 1] in terms of the Chebyshev-Lobatto grid

xi = cos

(
π

i

Nid

)
, i = 0 · · ·Nid , (90)

and impose that the expression (89) coincides with the
exact function f (id,iField)(x) at the grid points. In other

words, the coefficients c
(id,iField)
i follow from inverting the

equation

f
(id,iField)
Nid

(xi) = f (id,iField)(xi). (91)

The above considerations assume an a priori known func-
tion f (id,iField)(x) from which we construct the approxi-

mation f
(id,iField)
Nid

(x). In practice, though, f (id,iField)(x)

is not given, and we only have access to the underlying
differential equation the function must satisfy. To ob-
tain the function’s values at the discrete grid points, we
first collect the unknown components from all different
domains into the single vector. More specifically, let us
define

f
(id,iField)
i = f

(id,iField)
Nid

(xi) (92)

as the function’s value for a given field iField, at the grid
point xi within the domain id. Then, we collect each of
these values into the vector

~X =
(
f

(id,iField)
i

)
id=1···ndom
iField=0···NField
i=0···Nid

, (93)

which has a total of

ntotal = nField

ndom∑

id=1

(Nid + 1) (94)

components. Enforcing the differential equations, to-
gether with its boundary or transition conditions at all
domains and all collocation points leads to an algebraic

system of ntotal linear equations ~F ( ~X). Recall that im-
posing the differential equation at the grid points re-
quires calculating approximations for the first and sec-
ond derivatives, respectively, f ′i

(id,iField) and f ′′i
(id,iField).

They result from applying specific spectral differential

matrices to the vectors ~X [67, 75, 77]. We solve the linear

system ~F ( ~X) for the vector ~X using an LU decomposi-
tion. Thus, the algorithm scales as n3

total and should be
sufficiently fast for low-to-moderate values of ndom and
Nid .

B. Convergence

Spectral methods are very efficient when the underly-
ing function f (id,iField)(x) is analytic because the approx-

imated numerical solution f
(id,iField)
Nid

(x) converges expo-

nentially to the exact solution as the numerical resolution

Nid increases (see [67, 75–77] and references therein). Be-
cause we do not have access to an explicit expression for
the exact solution f (id,iField)(x), the numerical error is
estimated by fixing a reference solution obtained with a
given high accuracy Nid = N ref

id
, and measuring a relative

error

E(id,iField)
Nid

=

∣∣∣∣∣∣
1−

f
(id,iField)
Nid

(x)

f
(id,iField)

Nref
id

(x)

∣∣∣∣∣∣
, Nid < N ref

id
. (95)

In particular, we are interested in measuring the error
at the particle’s location. The Chebyshev coefficients

c
(id,iField)
k provide an efficient way to estimate the error of

a numerical solution at a fixed Nid because their asymp-
totic behavior for k � 1 determines the rate at which the
error E(id,iField)

Nid
decays to zero as Nid → ∞. Indeed, the

exponential convergence E(id,iField)
Nid

∼ C−Nid for analytic

functions follows from a behavior c
(id,iField)
k ∼ C̄−k (with

constants C and C̄).
Particular scenarios may jeopardize the fast conver-

gence rate. Clearly, the exponential decay depends on
the regularity of the underlying solution. If the solution
is known to be on a regularity class Cl([−1, 1]), then the
convergence rate (as well as the behavior of the Cheby-
shev coefficients) will be merely algebraic. We do not
find these issues in the scenarios studied here.

An exponential decay does not always imply a highly
accurate solution for a small-to-moderate numerical res-
olution Nid . The error and the Chebyshev coefficients
of functions with steep gradients may decay with a rela-
tively small exponential rate. As discussed in the follow-
ing sections, this is the case for large angular modes ` or
large orbital radii rp. In the next section, we describe the
“analytic mesh-refinement” (AnMR) technique, which
introduces yet another coordinate mapping to increase
the grid density around the steep region.

C. Analytic mesh-refinement

Within a given domain id, we map the interval [−1, 1]
into itself via

x = xB

(
1− 2 sinh [κ(1− xBχ)]

sinh(2κ)

)
, χ ∈ [−1, 1], (96)

with a mesh-refinement parameter κ ≥ 0. The limit
κ → 0 recovers the identity x = χ. The parameter
xB indicates whether the steep region is around the left
(xB = −1) or the right boundary (xB = 1). The AnMR
technique discretises the grid χ ∈ [−1, 1] — as opposed
to x in Eq. (90) — via

χi = cos

(
π

i

Nid

)
, i = 0 · · ·Nid . (97)

The grid xi follows from the AnMR mapping (96), which
then fixes the grid in the hyperboloidal radial coordinate
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FIG. 2. Analytic mesh-refinement (AnMR) to better resolve
functions with strong gradients. Bottom panel: A Chebyshev-
Lobatto grid is considered for the coordinate χ ∈ [−1, 1] ac-
cording to Eq. (97). Middle panel: For xB = −1, the AnMR
map (96) populates the grid points around the left bound-
ary. Top panel: For xB = 1, the AnMR map (96) populates
the grid points around the right boundary. Examples with
AnMR-parameter κ = 3.

σ via Eq. (86). The bottom panel of Fig. 2 displays the
Chebyshev-Lobatto grid for the χ coordinate according
to Eq. (97), whereas the middle and top panels reveal
the effect of the mapping (96) with a parameter κ = 3.
They demonstrate, respectively, the accumulation of grid
points on either the left (xB = −1) or right boundary
(xB = 1). As we shall demonstrate, the increase of point
density in these regions allows us to accurately represent
functions with steep gradients around the particle with
a low-to-moderate spectral resolution Nid .

V. RESULTS

This section presents several numerical results that
demonstrate the effectiveness of self-force calculations
using compactified hyperboloidal coordinates combined
with spectral methods. In each subsection, we present
results for examples from the three classes of sources
commonly found in self-force calculations: distributional,
worldtube, and unbounded support. Computing self-
force for large radius orbits is a challenging problem for
all three classes and is therefore presented in a separate
subsection. At all steps of the code development, we
compare the solution around the particle with the cor-
responding solution obtained from the Black Hole Per-
turbation Toolkit (BHPToolkit) [78]. Such cross-checks
attest to our results’ correctness and allow us to perform
convergence tests.

A. Distributional sources

We compute the retarded field φ
ret

`m using a distribu-
tional source solving Eq. (37). We first examine indi-

vidual modes and then present results for the self-force
computed using the mode-sum approach. In our compu-
tations we split the grid at the particle’s location, σp, and
employ the same spectral resolution in both domains, i.e.,
N1 = N2 = N .

The left panel of Fig. 3 displays the real part of

hyperboloidal retarded field φ
ret

`m for the angular mode
(`,m) = (1, 1), where the spectral resolution is N = 60

and the particle is at rp = 6M . The retarded field φ
ret

`m is
continuous with a discontinuity at the first radial deriva-
tive. Most importantly, the field is accessible in the en-
tire domain, including future null infinity σ = 0 and the
black-hole horizon σ = 1. The solutions’ accuracy and
smoothness are assessed by the behavior of the corre-
sponding Chebyshev coefficients ci

3. The insets show
the coefficients’ exponential decay up to the round-off
saturation of order 10−16. In contrast, the right panel
of Fig. 3 explores more extreme regions in the parameter
space. Similar to the left panel of Fig. 3 this shows the

real part of φ
ret

`m but with (`,m) = (100, 0) and rp = 6M .
The numerical solution requires a higher resolution N ,
especially in domain 2, due to the steep gradient around
the particle.

These computations of the transformed fields φ
ret

`m

demonstrate the internal consistency of the code in the
compact hyperboloidal formulation. The field φret

`m and
its derivative are used in the calculation of the self-force
and can be reconstructed from φ

ret

`m via Eq. (27). As
discussed in Sec. IV, we take a numerical solution with
the high resolution N ref = 150 as reference and evaluate
the relative error EN according to Eq. (95) for the phys-
ical retarded field and its rp-derivative at the particle’s
location. We observe spectral convergence, with higher
angular modes requiring higher numerical resolution to
obtain a given precision. The behavior for high angular
modes is a consequence of the steep gradients around the
particle observed in right pane of Fig. 3. Nevertheless,
the required resolution is not prohibitive, as all `−modes
seem to converge similarly. The main effect of increas-
ing ` is an upward shift in the curves, and one obtains
accurate solutions for `-modes as high as ` = 100 with
moderate resolution N = 100.

In Fig. 4, we show convergence for a fixed (`,m) =
(1, 1) but varying rp/M = {3.01, 10, 100, 1000}. Even
though we observe exponential convergence regardless of
rp, the convergence rate decreases for higher values of rp.
For instance, resolution N = 150 yields solutions |φret

`m|
correct only up to 10−4 for rp = 1000M . The reason
behind the poor convergence rate is the steep gradients
around the particle, so the spectral method loses accu-
racy for large rp. One can, however, solve this problem
using analytic mesh refinement (AnMR) as presented in
Sec. V D below.

3 To simplify the notation, we remove the labels (idom, iFields) used
in section IV, as this information is available within the plots.
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FIG. 3. Left panel: Real parts of hyperboloidal retarded field φ
ret

`m for the angular mode (`,m) = (1, 1) with rp = 6M and
N = 60. The numerical domain extends from future null infinity, σ = 0, to the future event horizon, σ = 1. The inset
demonstrates exponential decay of Chebyshev coefficients indicating spectral convergence. Right panel: Same fields as in the
left panel but for angular mode (`,m) = (100, 0) and resolution N = 120. We need higher resolution at high mode numbers
because of the steep gradient around the particle. Insets demonstrate slower spectral convergence than in left panel.
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FIG. 4. Numerical convergence for the retarded field |φret
`m|

with (`,m) = (1, 1) as function of particle’s orbit rp. Despite
the exponential decay of error against a reference solution
with N ref = 150, the decay rate is slower at large orbits rp
due to steep gradients.

To further validate our code, we calculate both the
energy flux and the local self-force. The energy flux at

infinity, ĖI +

, and the horizon, ĖH
+

, is computed from
the values of the field at σ = 0 and σ = 1, respectively,
using Eqs. (73) and (74). In Table I we present numerical
values for these scalar energy fluxes. Table I also presents
a direct comparison with values for the flux at the hori-
zon and spatial infinity computed using the Teukolsky
package of the Black Hole Perturbation Toolkit [78], with
relative differences comparable in magnitude to machine
precision.

We also compute the self-force from the values of the

derivative of the scalar field at the particle’s location.
The t-component of the self-force, F`t, is computed using
Eq. (78). The modes of F`t do not require any regular-
ization, and in Fig. 5 we see that the contribution from
each `-mode falls off exponentially to machine round-off.
The r-component of the self-force, F`r, is computed us-
ing Eq. (84). The individual `-modes of the radial self-
force do require regularization, which we perform using
Eq. (85). In Fig. 6 we show the behavior of both the un-
regularized and regularized `-modes of the self-force. The
delicate cancellation between the modes of the retarded
field and the regularization parameters is a good test of
the correctness of our code, and we find that our numer-
ical results are excellent for modes as high as ` = 100.

1 5 10 15 20

10−16

10−14

10−12

10−10

10−8

10−6

10−4

`

∣ ∣ (M
2
/q

2
)
×
F
`t

∣ ∣

`-mode contribution to Ft for rp/M = 10M

exp reference

FIG. 5. The `−mode contributions to the t-component of
SSF, F`t, for a particle on a circular orbit of radius rp =
10M . The modes of F `

t converge exponentially until machine
precision round-off is encountered near ` = 17.
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rp/M ĖH
+

× µ(M/q)2 ĖI+

× µ(M/q)2 Ft × (M/q)2 1− |Ft/u
tĖtotal| 1− µ|Ėtotal/Ė

BHPT
total |

6 7.850 26× 10−6 2.473 45× 10−4 3.609 07× 10−4 7.60× 10−12 −1.04× 10−10

7 2.405 85× 10−6 1.311 91× 10−4 1.767 32× 10−4 −6.95× 10−12 −4.12× 10−12

8 8.823 07× 10−7 7.637 25× 10−5 9.772 04× 10−5 6.64× 10−12 −6.88× 10−13

10 1.700 76× 10−10 3.120 66× 10−5 3.750 23× 10−5 3.38× 10−12 −4.18× 10−13

14 1.485 86× 10−8 8.172 62× 10−6 9.236 73× 10−6 4.85× 10−12 7.92× 10−13

20 1.159 66× 10−9 1.982 51× 10−6 2.151 59× 10−6 1.13× 10−12 6.42× 10−13

30 6.534 17× 10−11 3.961 79× 10−7 4.176 79× 10−7 −2.18× 10−12 1.96× 10−12

50 1.777 67× 10−12 5.196 70× 10−8 5.360 17× 10−8 −7.93× 10−12 1.10× 10−11

70 1.666 51× 10−6 1.361 06× 10−8 1.391 22× 10−8 3.39× 10−12 3.03× 10−11

100 1.360 47× 10−14 3.284 62× 10−9 3.335 04× 10−9 4.42× 10−9 1.35× 10−10

TABLE I. Sample numerical results for the scalar-field energy flux for a range of numerical values of rp at exactly H+ and
I + in the second and third column respectively. The fourth column displays t-component of the SSF calculated locally using
Eq. (78). Column five is an internal consistency check comparing the t-component of the self-force calculated locally with and
using the total energy flux and balance law in Eq. (58). Column six presents a comparison of the with total energy flux with
results obtained from the Teukolsky package of the Black Hole Perturbation Toolkit [78].
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FIG. 6. The `−mode contribution to the r-component of the
SSF, F`r, for a particle on a circular orbit of radius rp = 10M .
For large ` the unregularized modes (blue squares) grow lin-
early. After subtracting the leading regularization parame-
ter, the modes (light blue triangles) tend to a constant for
large `. Further subtracting the next regularization parame-
ter, the regular modes (orange circles) fall off as `2 for large `.
The convergence of the `-mode sum is then accelerated using
higher-order regularization parameters with each additional
parameter changing the large ` behavior by l−2. After all the
known regularization parameters are subtracted, the modes
quickly reach machine round-off. Note that the agreement
with the expected large-` behavior is excellent out to ` = 100
(when the contributions are above machine precision).

B. Worldtube sources

As an example of a worldtube source, we solve Eq. (41)

for the hyperboloidal residual field φ
R
`m. The effective-

source for this equation has compact support within a
region around the particle. This naturally suggests a

four-domain grid for our spectral solver. We scale the
numerical resolution as N1 = 2N2 = 2N3 = N4 = N .
In the compact radial coordinate σ, the puncture field
regularizing the source takes values in a window around
the particle fixed by

σ− =
σp
2
, σ+ =

1 + σp
2

. (98)

The corresponding physical coordinates r±(σ∓) read

r+ = 2rp, r− =
2rp

1 + rp/(2M)
. (99)

This choice halves the region between future null infinity,
σ = 0, and the particle, σ = σp, as well as between the
particle and the horizon σ = 1. Thus, the problem is
formulated on the four domains

• Domain 1: σ ∈ [0, σ−],

• Domain 2: σ ∈ [σ−, σp],

• Domain 3: σ ∈ [σp, σ+],

• Domain 4: σ ∈ [σ+, 1].

We explore the same set of parameters as in the previous
section. Figure 7 displays the results for a fixed angular
mode (`,m) = (1, 1) with the particle located at rp = 6M
and numerical resolution N = 60. Figure 8 shows the
results for large angular (`,m) = (100, 0) and N = 100.

The hyperboloidal residual field φ
R
`m (blue) is discon-

tinuous across the window boundaries σ∓, but continuous
at the particle’s location σp. For a consistent compari-
son, these panels also display (in red) the corresponding

retarded field φ
ret

`m = φ
R
`m + φ

P
`m. As the effective-source

only has support inside the worldtube we have φ
R
`m = φ

ret

`m

in the domains 1 and 4, and φ
R
`m = φ

ret

`m−φ
P
`m at domains

2 and 3. The smoothness of the retarded field across the
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FIG. 7. Top panel: Effective source solution using four-
domains with angular mode (`,m) = (1, 1) and particle loca-
tion rp = 6M . Bottom panel: Decay of Chebyshev coefficients
in all domains demonstrates spectral convergence. The inset

displays the real part of residual field φ
R
`m with a separate

color for each domain.

worldtube boundaries is an important consistency check

on the results for φ
R
`m.

The bottom panels on Figs. 7 and 8 display the Cheby-
shev coefficients within each domain. These plots have an
inset, where we reproduce the real part of residual field

φ
R
`m with a color code identifying each of the four do-

mains. As in the previous section, the coefficients’ spec-
tral decay to numerical round-off indicates high accuracy.
High angular modes as in Fig. 8 require higher resolution
due to steep gradients around the particle.

Next, we discuss convergence tests for the residual field∣∣φR`m
∣∣. By fixing a reference solution with N ref = 150,

we calculate the relative error at the particle accord-
ing to Eq. (95). The top panel of Fig. 9 compares
the code’s convergence for the angular modes (`,m) =
(1, 1), (50, 50) and (100, 0) with the particle at rp = 6M .
We encounter the expected exponential convergence,
with higher angular modes requiring slightly higher res-
olution. The bottom panel compares the convergence for
various particle locations rp/M = {3.01, 10, 100, 1000}
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FIG. 8. Same setup as in Fig. 7 but for a high angular mode
(`,m) = (100, 0).

with a fixed angular mode (`,m) = (1, 1). As in Sec. V A,
the error decays exponentially in all cases. As before, the
decay rate is lower for larger rp values. For instance,
when rp = 1000M , one only achieves an accuracy of
∼ 10−6 with N = 150.

We further check our results by computing components
of the self-force. For the t-component, F`t, our results are
almost identical to those presented for the distributional
source in Fig. 5. Using the effective-source approach we
directly compute the modes of the residual field, and from
their radial derivatives the modes of the radial self-force,
F`r, can be computed using Eq. (84). With the effective-
source in Eq. (42) we expect `−2 convergence of the `-
modes of the self-force which we observe for modes up to
` = 100 – see Fig. 10. We then use higher-order regular-
ization parameters to accelerate further the convergence
of the `-mode sum [70]. This faster rate of convergence
could also be achieved by using a higher-order puncture
which would leave to a smoother effective-source [20].
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FIG. 9. Convergence tests for the residual field
∣∣φR`m∣∣ dis-

playing the error against a reference solution with N ref =
150 according to Eq. (95). Top panel: Angular modes
(`,m) = (1, 1), (50, 50) and (100, 0) with the particle at
rp = 6M . Higher angular modes require slightly higher res-
olution. Bottom panel: Various particle locations rp/M =
{3.01, 10, 100, 1000} with a fixed angular mode (`,m) = (1, 1).
The exponential decay rate is lower for larger orbits.

C. Sources with unbounded support

As an example of a problem with an unbounded sup-

port source, we compute, ψ
ret

`m = φ
ret

`m,rp which satisfies

the field equation (51). The source for Eq. (51) contains

φ
ret

`m and so we solve for both fields simultaneously. These
problems are not well suited to the variations of parame-
ter approach as explained in the introduction, but we find
our hyperboloidal spectral approach handles them with
ease. In Fig. 11 we show the calculation of the (1, 1)-mode
of the ψret

`m for a particle orbiting at rp = 6M . As with the
compact sources, the decay of the Chebyshev coefficients
in the two domains demonstrate spectral convergence.
We see similar convergence properties for other orbital
radii – see Fig. 12. Again, the convergence is slower for
large radius orbits with compact sources.

To check our results further, we compute the rp-
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FIG. 10. The `-mode contribution to the r-component of
self-force, F`r, computed using the effective-source method.
The direct output of the hyperboloidal calculation with the
effective-source are shown as the (orange) circles which fall
off as `2. We then use higher-order regularization parameters
to accelerate the convergence of the series. The more rapidly
convergent series quickly reaches machine precision round-off.
The results presented here for the regularized force are, as ex-
pected, the same as the results from the mode-sum approach
– see Fig. 6. With our setup the effective-source method is
more efficient than the distributional source and mode-sum
approach. This is because with the distributional source large
gradients of the field occur near the particle which necessi-
tates N = 150 Chebyshev nodes in each domain where the
effective-source only requires N = 50.

derivative of the energy flux radiated through the event
horizon and to infinity. For reference values to compare
against, we use the Teukolsky package from the BH-
PToolkit to compute the numerical rp-derivative of the
fluxes. This is achieved by fitting a Taylor series centred
around the rp value of interest using a densely populated
grid of fluxes around rp. It suffices for our expansion
to be truncated at O(rp − r)5 for a grid of 50 points
equally spaced over the range [rp− 0.05, rp + 0.05]. This
approach is very slow as we must solve the scalar wave
equation many times for each rp value at which we wish
to compute the rp-derivative of the fluxes. We compare
our hyperboloidal data to the numerically compute the
rp-derivative in Table V C and find excellent agreement.

D. Large radius orbits

We see in Figs. 4 and 9 that the convergence of the so-
lution slows down for large orbits. This slow convergence
is due to the fixed mapping of the unbounded domain to
a compact domain. In the compact radial coordinate σ,
the region between null infinity at σ = 0 and the particle
at σ = σp becomes very small as it scales as ∼ r−1

p while
the domain between the particle and the horizon becomes
comparatively large. Strong gradients form because the
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rp/M ∂rpĖ
H+

`=1 × µ(M/q)2 ∂rpĖ
I+

`=1 × µ(M/q)2 DrpF1t × (M/q)2 1− |DrpF1t/∂rp(utĖ`=1
total)| 1− µ|Ė`=1

total/Ė
BHPT
total |

6 −9.373 67× 10−6 −7.513 47× 10−5 −8.450 83× 10−5 −2.32× 10−11 2.35× 10−13

7 −2.485 26× 10−6 −3.961 39× 10−5 −4.209 92× 10−5 9.04× 10−11 −5.17× 10−13

8 −7.975 41× 10−7 −1.111 22× 10−5 −2.302 19× 10−5 5.32× 10−11 −5.82× 10−13

10 −1.224 13× 10−7 −8.200 90× 10−6 −8.323 31× 10−6 5.03× 10−11 −2.67× 10−13

14 −7.578 77× 10−9 −1.739 16× 10−6 −1.746 74× 10−6 1.22× 10−10 8.92× 10−14

20 −4.115 11× 10−10 −3.227 39× 10−7 −3.231 51× 10−7 3.63× 10−10 −2.71× 10−13

30 −1.538 65× 10−11 −4.600 66× 10−8 −4.602 20× 10−8 7.24× 10−10 −9.41× 10−14

50 −2.502 51× 10−13 −3.822 38× 10−9 −3.822 63× 10−9 2.23× 10−12 −5.50× 10−13

70 −1.673 14× 10−14 −7.320 62× 10−10 −7.320 79× 10−10 2.44× 10−9 −1.41× 10−13

100 −9.549 97× 10−16 −1.258 86× 10−10 −1.258 87× 10−10 3.65× 10−10 −4.03× 10−13

TABLE II. Sample numerical results for the rp-derivative of the scalar-field energy flux for the ` = 1 mode for a range of
numerical values of rp at exactly H+ and I + in the second and third column respectively. The fourth column presents
the ` = 1 mode of the rp-derivative of the t-component of the SSF calculated using Eq. (79). Column five is an internal
consistency check comparing the t-component of the self-force calculated locally and using the total energy flux and balance
law in Eq. (58). Column six presents a comparison of the rp-derivative of the total energy flux with results obtained via
numerically differentiating solutions from the Teukolsky package of the Black Hole Perturbation Toolkit (BHPToolkit) [78] as
described in the main text.
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FIG. 11. The rp-derivative of the scalar field, ψ
ret

`m, computed

for rp = 6M and (l,m) = (1, 1). The source for ψ
ret

`m is un-
bounded but our approach handles it with ease. The inset
shows the exponential convergence (until machine round-off
is reached) for the Chebyshev coefficients in each domain.

main contribution to φ
ret

`m (or φ
R
`m) comes from the region

around the particle. These strong gradients are already
visible for rp = 100M depicted in Fig. 13.

One way to improve the accuracy of our results for
large rp is to increase the number of sub-domains. We
observe faster convergence at rp = 1000M in the four-

domain code (solving for φ
R
`m in Fig. 9) than in the two-

domain code (solving for φ
ret

`m in the bottom panel of
Fig. 4). These codes solve for different fields and the com-
parison between the errors are only valid at a qualitative
level, but we can still confirm that the better convergence
for the four-domain computation is a direct consequence
of having more domains.
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FIG. 12. Convergence of ψret
`m with increasing number of

Chebyshev nodes, N , for different orbital radii. In all cases
the convergence is exponential but for large radius orbits the
convergence can be quite slow. The rate of convergence can
be improved with Analytic Mesh Refinement – see Fig. 15.

However, increasing the number of subdomains can
quickly become prohibitive with the current algorithm.
The ODE solver used in these computations employs an
LU decomposition scheme with a computational scaling
as n3

total. Assuming that all ndom have a numerical reso-
lution of order N , one obtains ntotal ∼ ndomN and thus a
scaling n3

domN
3. More subdomains require significantly

more computational resources. It is evident from Fig. 13
that the solution on much of the computational domain
does not show any features that need to be resolved.
Shifting the existing resources towards the steep gradi-
ents seems the appropriate solution. Therefore, instead
of increasing the subdomains, we employ analytic mesh
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FIG. 13. In self-force calculations for large orbits, strong gra-
dients form in the compact coordinate σ around the particle.

refinement (AnMR) described in Sec. IV C to achieve the
desired high accuracy for large orbits while keeping the
computational requirements low. To demonstrate the ef-
fects of AnMR we will focus on problems with two do-
mains below, but also present results for four domains
using an effective source in Appendix C 2.

1. Analytic mesh refinement with two domains

In this section we present large orbit calculations in
our two-domain code, i.e., solving for the retarded field

φ
ret

`m and its rp-derivative ψ
ret

`m. We first concentrate on
domain 2, σ ∈ [σp, 1]. Because the particle is located
at the domain’s left boundary, the mapping (96) is em-
ployed with xB = −1. The top panel of Fig. 14 displays

the Chebyshev coefficients of Re(φ
ret

`m) for several AnMR-
parameters κ when rp = 1000M and (`,m) = (1, 1). We
observe slow convergence without AnMR (κ = 0). In-
creasing κ increases the grid point density around the
left boundary, and, as a consequence, the function be-
comes better represented by its spectral approximation,
which improves the convergence rate. For instance, at
κ = 0, the coefficients assume values only of order
∼ 10−2, while κ = 3 yields coefficients down to or-
der ∼ 10−10. For each combination of parameters rp
and (`,m), there exits an optimal value κ∗`m(rp) lead-
ing to the fastest convergence. In Fig. 14, optimal decay
is achieved at κ∗11(103M) ≈ 3.85, where the ci’s reach
the numerical round-off saturation at around N ≈ 50.
As we further increase κ, the coefficients’ decay rate
decreases once again. We empirically find the optimal
value for κ∗`m(rp) on domain 2 at several radii rp/M =
{10, 50, 100, 300, 1000, 4000, 10000}. The bottom panel
of Fig. 14 shows κ∗`m(rp) for the angular modes used as
example: (`,m) = (1, 1), (50, 50), and (100, 0). We find
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FIG. 14. Top panel: Chebyshev coefficients of Re(φ
ret

`m) for
rp = 1000M and (`,m) = (1, 1) in domain 2 between the
particle and the horizon. The optimal value for the AnMR
parameter is κ = 3.85. Bottom panel: Optimal AnMR param-
eters plotted against rp/M with the fit Eq. (100) for different
angular modes.

that the fit

κ∗`m(rp) ≈ A`m + 0.5 ln
( rp
M

)
, (100)

captures the rp-dependence for the optimal κ∗`m. Inter-
estingly, the log-dependence is independent of the (`,m)-
mode, and the only effect of the angular parameters
is to shift the curve upwards. For instance, we have
A1,1 ≈ 0.42, A50,50 ≈ 0.89, and A100,0 ≈ 1.15. One can
also exploit the AnMR to increase the accuracy in the
domain extending up to future null infinity (domain 1).
However, a systematic pattern for the optimal κ∗`m(rp) in
domain 1 [similar to Eq. (100) in domain 2] is absent. Ap-
pendix C 1 discusses this possibility and it brings an ex-
plicit example for the configuration (`,m) = (1, 1). Since
the experiments with AnMR on domain 1 demonstrate
marginal accuracy improvements, we employ AnMR only
on the domain extending to the black-hole horizon. Using
the value κ∗`m(rp) from Eq. (100), we can compute accu-
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FIG. 15. Left panel: Exponential error decay for large orbits with optimal AnMR. Comparison with Fig. 12 demonstrates
the power of AnMR in calculating accurate self-force results for large radius orbits. Right panel: Convergence for different
spherical harmonic modes with rp/M = 106 including a high-` mode where machine precision is reached around N = 80. This
computation would be prohibitively resource-intensive in standard self-force calculations.

rate solutions for any rp with a relatively low numerical
resolution. In Fig. 15 we display convergence tests similar
to the bottom panel of Fig. 9. The numerical resolution is
set as N1 = N2 = N , with N ref = 100 for reference solu-
tion in Eq. (95). Convergence is spectral with saturation
at machine precision around N ∼ 70, regardless of rp.
Similarly, the right panel of Fig. 15 shows the equivalent
results for a fixed rp = 106M , but comparing the different
angular modes (`,m) = (1, 1), (50, 50) and (100, 0). The
exponential decay saturates at N ∼ 70 even for high-`
modes. Fig. 15 clearly demonstrates the significant gain
offered by the AnMR combined with compactification for
large orbits.

2. Post-Newtonian comparison for large radius orbits

To demonstrate the significant improvement the an-
alytic mesh refinement provides for large radius orbits,
we compute the t-component of the self-force, Ft and its
rp-derivative and compare it against a post-Newtonian
series in the weak field. For a scalar particle in a
Schwarzschild background, a weak-field expression for Ft
was derived to high PN order in Ref. [79], with the terms
up to 4PN terms given explicitly. After summation over
`-modes, the 4PN expression is given by

Ft(rp �M) =
q2V 4

3 r2
p

[
1− 1

2
V 2 + 2πV 3

− 77

8
V 4 +

27π

5
V 5 +O(V 6)

]
, (101)

where V =
√
M/rp. Note that our definition of the scalar

field differs from that of [79] by a factor of 4π, which leads
to the same difference in Ft. The t-component represents

the energy lost due to the SSF and hence the expression
begins at 1.5PN order since this is due to dipole radi-
ation. The PN-expression for the rp-derivative of the
t-component of the SSF, after some simplification, is

DrpFt(rp �M) = −4 q2V 4

3 r3
p

[
1− 5

8
V 2 +

11π

4
V 3

− 231

16
V 4 +

351π

40
V 5 +O(V 6)

]
. (102)

We compare the numerical results of our code to the
above two PN series in Fig. 16. In both panels we plot the
force or its rp-derivative normalized by the leading term
in the relevant PN series, i.e., the coefficient in front of
the square brackets in Eqs. (101) or (102), respectively.
We denote these normalized quantities with an overhat.

When we subtract the leading (normalized) PN term

(i.e. 1) from F̂t we observe that the residual scales as
V 2, as expected. The order of the scaling increases by
O(V ) for the subtraction of each subsequent sub-leading
PN term up to 4.5PN order. We find excellent agree-
ment with the PN series for orbits as large as rp = 106M
even up to O(V 6). For the calculation of Ft this is a
significant improvement of what is usually possible with
the numerical integration method that relies on boundary
condition expansions evaluated in the wave zone (though
note the MST method works well for large orbits with
distributional sources). For ∂rpFt, neither the numerical
integration nor MST methods work well for large radius
orbits, but the results from our hyperboloidal approach
agree very well with the PN series. We find the same
scaling arguments as previously and agreement up for
rp = 106M up to O(V 6) for the residuals.
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FIG. 16. Left panel: Comparison of the Newtonian-normalised t-component of the self-force, F̂t, with its 4.5PN expansion. The
(dark blue) squares show our numerical results for F̂t. This data approaches the leading (normalized) PN result for large radius
orbits. When we subtract the leading PN term from the numerical data we get the (light blue) triangles. For large rp this data
approaches a V 2 reference curve as expected from the PN series in Eq. (101). When we subtract the first subdominant term in
the PN series and see that the residual (pink circles) falls off as V 3, as expected. We repeat this procedure with the remaining
terms in the PN series to compute the other data and find agreement with the PN series (until machine round-off is reached).
This shows our numerical results are accurate even for extreme large radius orbits with rp ∼ 106. Right panel: Comparison of
the rp-derivative of the Newtonian-normalised t-component of the self-force obtained from flux-balance laws with the 4.5PN
expression. This figure constructed in the same way as the left panel except we subtract terms from the PN series in Eq. (102).
Again we see that our numerical results are accurate even for extreme large radius orbits with rp ∼ 106. Accurate results for
large radius orbits for self-force problem with unbounded sources are very difficult to achieve with the standard variation of
parameters approach. Our hyperboloidal method can thus be instrumental in future precision comparisons with PN theory for
self-force problems with unbounded sources, e.g., second-order self-force calculations.

VI. CONCLUSION

This work presents the hyperboloidal approach to self-
force calculations in the frequency domain. This ap-
proach works well for the three classes of sources typically
found in self-force calculations: distributional, world-
tube, and unbounded support. The latter, in particu-
lar, is challenging for current techniques but crucial for
emerging second-order (in the mass ratio) calculations
[9, 80, 81]. Another challenging problem for current self-
force techniques, present for all three classes of sources,
is the comparison to post-Newtonian results for large or-
bital radii. Compactification along hyperboloidal sur-
faces combined with analytic mesh refinement is an ele-
gant solution to these challenging problems.

Our approach relies on two essential ingredients. On
the theoretical side, we employ scri-fixing hyperboloidal
coordinates for the background black-hole spacetime in
minimal gauge [30–32, 44, 45]. On the numerical side,
we solve the self-force equations with a spectral ODE
solver, enhanced with analytic mesh refinement to resolve
functions with steep gradients [71–74]. The combination
of these theoretical and numerical frameworks provides
us with a powerful novel scheme to address the current
limitations of the numerical techniques in the self-force
program.

We emphasize various advantages of hyperboloidal

slices relevant to the self-force problem, as demonstrated
in this work. First, the boundary conditions at the black
hole and the wave zone become trivial. Specifically, the
geometric construction of hyperboloidal slices ensures the
absence of incoming characteristics as the radial coor-
dinate approaches the horizon or extends towards the
wave zone. Consequently, the treatment of the boundary
conditions is behavioral and not numerical. The outgo-
ing behavior of solutions near the boundaries follows di-
rectly from the regularity of solutions as discussed with
Eq. (31). This simplification of boundary treatment is
both a conceptual and a practical advantage because one
does not need to impose boundary conditions by hand to
ensure the uniqueness of the solution, and one does not
need to compute lengthy and tedious approximations at
finite radii for each type of perturbation or source.

Second, radiation extraction becomes a trivial evalua-
tion at the outer boundary, whereas current calculations
extrapolate fluxes from finite radii up to infinity. Such
extrapolations are particularly difficult to perform for un-
bounded support sources and introduces additional sys-
tematic errors that must be controlled. In contrast, we
evaluate fluxes directly from the hyperboloidal solutions
at the spacetime boundaries as discussed in Sec. V D 2.
The extraction of fluxes are as accurate as the numerical
solution of the equations without additional systematic
errors.
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Third, hyperboloidal slices improve the numerical ef-
ficiency of ODE solvers. Typically, the accuracy of fre-
quency domain calculations is limited by the number of
grid points per wavelength. Hyperboloidal transforma-
tions flatten the waves and reduce the number of spa-
tial oscillations along the time slice, thereby enabling a
highly efficient numerical solver. The hyperboloidal so-
lution is smooth and non-oscillatory throughout the do-
main except for discontinuities at the particle location
or worldtube boundaries. Therefore, multi-domain spec-
tral methods are ideally adapted to generate highly ac-
curate solutions for little computational cost. Such spec-
tral methods have been successfully employed both for
hyperboloidal formulations [82–84] and self-force calcu-
lations [85]. Our code, based on Refs. [44, 45], brings
these two applications together in a multi-domain spec-
tral code for hyperboloidal self-force calculations where
the compactified exterior black-hole region is divided into
subdomains to properly treat the singular behaviors and
discontinuities at the particle location while efficiently
resolving the non-oscillatory solution with spectral accu-
racy away from the discontinuities.

Fourth, hyperboloidal compactification efficiently
solves the problem of unbounded support sources with
support extending across the entire exterior black-hole
region. Such sources provide a significant numerical chal-
lenge in second-order self-force calculations. Present im-
plementations compute the second-order source on a fi-
nite radial domain and expend significant effort mak-
ing the source fall off more rapidly to make the inte-
grals in the variation of parameters approach converge
more rapidly. Our approach avoids these issues entirely
and handles the case of unbounded support sources with
ease. There is also an additional advantage of using of
hyperboloidal slicing in second-order calculations as it
improves the behavior of the source near the boundaries
[22, 86].

Fifth, compactification allows us to compute self-force
for orbits with very large radii, e.g., rp ∼ 106M . The
large radius regime is important for connecting self-force
results to post-Newtonian theory [87–90]. This regime
is challenging for current numerical integration meth-
ods because they place the outer boundary far into the
wave zone for convergence of the boundary series. For
weak-field orbits, the wave zone moves out into the very
weak field, requiring many steps for the numerical inte-
grator to reach the particle’s radius. While this prob-
lem can be overcome with the Mano-Suzuki-Takasugi
method [91] for distributional or worldtube sources, the
computational cost of this approach prohibits the ap-
plication of the method to unbounded support sources.
Hyperboloidal compactification maps the entire exte-
rior domain onto the finite numerical grid and there-
fore includes automatically any large radii in the domain.
We resolve the steep gradients around the particle that
form due to compactification by using analytic mesh-
refinement [73, 84, 92–94]. We demonstrate that our ap-
proach works exceptionally well for these cases, as well

as for distributional and worldtube sources in Sec. V D
and Appendix C 2.

Sixth, we compute solutions with high ` modes very
accurately. This is essential for studies of the behavior of
the self-force and related gauge-invariant quantities near
the light-ring [90, 95].

Given the geometric elegance of the hyperboloidal
framework and the strong evidence for its advantages,
we conclude that future studies in black-hole perturba-
tion theory will make heavy use of hyperboloidal foli-
ations. We note that the benefits we list arise not so
much from the hyperboloidal nature of the coordinates
but from the regularity of the foliation in the entire ex-
terior domain. This regularity allows us to include the
black hole horizon and future null infinity on our nu-
merical grid. One would expect similar advantages from
a double-null foliation with compactification. The main
reason we prefer the hyperboloidal framework is its flex-
ibility. It is straightforward to extend hyperboloidal co-
ordinates from Schwarzschild to Kerr spacetimes [30, 32],
whereas it is highly nontrivial to do the same for double-
null coordinates.

Presently, the results discussed in this work are re-
stricted to the first-order scalar-self force for a particle
on a circular orbit around a Schwarzschild black hole.
There are many steps to take on the path to second-
order, gravitational self-force for a particle on a gen-
eral orbit in a Kerr spacetime. We expect that our ap-
proach will readily extend to, e.g., the Lorenz-gauge grav-
itational case [14, 15, 21] to Kerr spacetime using the
Teukolsky formalism [50] both of which are commonly
used in frequency domain self-force calculations (see Ap-
pendix A for the operators in the Regge-Wheeler-Zerilli
and Bardeen-Press-Teukolsky formalisms using the min-
imal gauge).
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Appendix A: Black-hole perturbation theory

Black-hole perturbation theory on spherically sym-
metric BH spacetime is commonly formulated either
in the Regge-Wheeler-Zerilli (RWZ) or the Bardeen-
Press-Teukolsky (BPT) formalism. Both describes per-
turbative field characterised by their spin-weight p =
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0,±1,±2. The RWZ approach considers specific combi-
nations of the perturbed metric as the propagating field
on the Schwarzschild background, whereas the BPT for-
mulation has scalar fields (p = 0), and the propagating
degrees of freedom for the Faraday-Maxwell (p = ±1) and
Weyl tensors (p = ±2) as perturbative fields. We denote
φp,`m and up,`m fields with spin p within the BPT and
RWZ formalism respectively. For scalar fields p = 0, they
are trivially related by

φ0,`m =
u0,`m

r
. (A1)

Hyperboloidal formulations of the RWZ and BPT
equations were first implemented in time domain using
constant mean curvature time surfaces [34, 96]. In this
appendix, we present the frequency domain expressions
for the left-hand side of Eq. (2) for a field with spin p us-
ing the minimal gauge. We also discuss the correspond-
ing factors Z and F involved in the frequency-domain
hyperboloidal transformations via eqs. (27) and (29), re-
spectively, as well as the hyperboloidal operator A.

1. Bardeen-Press-Teukolsky formalism

With the BPT formalism, the left-hand side of Eq. (2)
reads ∆BPT

`m φp,`m, with

∆BPT
`m =

d2

dr2
+ 2(1 + p)

r −M
r2f

d

dr
(A2)

− 1

f

(
`(`+ 1)− p(p+ 1)

r2
+ 2p

ω

r2

(
M

f
− r
)
− ω2

f

)
.

The above operator differs from the usual format for the
BPT equation by an overall factor r2f and it reduces to
Eq. (8) when p = 0. With hyperboloidal transformation,
the regularisation factor in Eq. (27) reads [31, 32]

Z = Ω1+2p
(
r2f
)−p

esH , (A3)

while F is still given by Eq. (32). Finally, the coefficients
α2, α1 and α0 for the operator ABPT

`m in Eq. (30) read [44]

α2 = σ2(1− σ), (A4)

α1 = s(1− 2σ2) + σ

(
2− 3σ + p(2− σ)

)
, (A5)

α0 = −
(
s2(1 + σ) + s [2σ − p(1− σ)]

+`(`+ 1) + (1 + p)(σ − p)
)
. (A6)

2. The Regge-Wheeler-Zerilli formalism

With the RWZ formalism, the left-hand side of Eq. (2)
reads ∆RWZ

`m up,`m, with

∆RWZ
`m =

d2

dr2∗
− (PRW,Z

`m − ω2). (A7)

The potential PRW,Z
`m depends on the type of perturba-

tion. The potential for polar perturbations (RW) are
(with ` ≥ |p|)

PRW
`m =

f

r2

(
`(1 + `) + (1− p2)

M

r

)
, (A8)

whereas the potential for axial perturbations (Z) reads
(with n = (`− 1)(`+ 2)/2 and ` ≥ 2)

PZ
`m =

f

r2

(
2n2(n+ 1)r3 + 6n2Mr2 + 18nM2r + 18M3

r(nr + 3M)2

)
.

(A9)
With hyperboloidal transformation, the regularisation
factors in Eqs. (27) and (29) read

Z =
2M

λ
esH , F =

Zf

r2
. (A10)

Finally, the coefficients α2, α1 and α0 for the operator
ARWZ
`m in Eq. (30) read [48]

α2 = σ2(1− σ) (A11)

α1 = 2σ(1− 3σ2)− s(1− 2σ2), (A12)

α0 = −
(
s2 (1 + σ) + s σ2 + V RW,Z

`m

)
, (A13)

with V RW,Z
`m =

r2

f
PRW,Z
`m .

Appendix B: Evaluation of the stress-energy tensor
in hyperboloidal coordinates

In order to calculate the flux towards future null infin-
ity and the horizon we need to consider the limits of the
integrand towards σ → 0 and σ → 1 respectively. The
relevant components of the stress energy tensor are Tττ
and Tτσ . Under the conformal rescaling,

gαβ = Ω−2g̃αβ , gαβ = Ω2g̃αβ , (B1)

and ∇αΦ = ∂αΦ. Hence, the stress-energy tensor be-
comes

Tαβ =
1

4π

(
∇αΦ∇βΦ− 1

2
g̃αβ g̃

µν∇µΦ∇νΦ

)
. (B2)
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The components Tττ and Tτσ can then be expressed as

Tττ =
1

4π

[
Ω2(∂τΦ)2 +

1

2
g̃ττ g̃

µν∇µΦ∇νΦ

]
=

1

4π

[
Ω2(∂τΦ)2 +

1

2
σ2(σ − 1)g̃µν∇µΦ∇νΦ

]
, (B3)

Tτσ =
1

4π

[
Ω2∂τΦ∂σΦ +

1

2
g̃τσ g̃

µν∇µΦ∇νΦ

]
=

1

4π

[
Ω2∂τΦ∂σΦ +

1

4
(1− 2σ2)g̃µν∇µΦ∇νΦ

]
. (B4)

The second term in these expression can be written as

1

2
g̃αβ g̃

µν∇µΦ∇νΦ =
1

2
g̃αβ

[
g̃ττ (∂τΦ)2 + g̃σσ(∂σΦ)2 + 2g̃τσ∂τΦ∂σΦ + g̃θθ(∂θΦ)2 + g̃ϕϕ(∂ϕΦ)2

]
. (B5)

But since our scalar-field scales as Φ = ΩΦ then

1

2
g̃αβ g̃

µν∇µΦ∇νΦ =
1

2
g̃αβ
[
Ω2g̃ττ (∂τΦ)2 + g̃σσ(Φ + Ω ∂σΦ)2 + 2g̃τσΩ (∂τΦ)(Φ + Ω ∂σΦ)

+ g̃θθΩ2 (∂θΦ)2 + g̃ϕϕΩ2 (∂ϕΦ)2
]
. (B6)

Inserting the components of the conformal metric we are left with

1

2
g̃αβ g̃

µν∇µΦ∇νΦ =
1

2
g̃αβ
[
− 4Ω2(1 + σ)(∂τΦ)2 + 4σ2(1− σ)(Φ + Ω ∂σΦ)2 + 4(1− 2σ2)Ω (∂τΦ)(Φ + Ω ∂σΦ)

+ 4Ω2 (∂θΦ)2 + 4 csc2 θΩ2 (∂ϕΦ)2
]
. (B7)

Taking our results from Eqs. (B5) and (B7) we find

Tττ =
σ2

4πλ3

[
λ(∂τΦ)2 − (1− σ)σ

(
(2− 4σ2)(∂τΦ)(Φ̃ + λ∂σΦ)2 + 2λσ(∂θΦ)2 − 2λ(σ − 1)σ(Φ + λ∂σΦ)2

− 2λσ(σ + 1)(∂τΦ)2 + 2λσ csc2 θ ∂ϕΦ
)]
, (B8)

Tτσ =
σ

8πλ3

[
2λσ(∂σΦ)(∂τΦ) + (1− 2σ2)

(
(2− 4σ2)(∂τΦ)

(
λ(Φ + λ∂σΦ)2 + 2λσ(∂θΦ)2 − 2λσ(σ − 1)(λ(Φ + λ∂σΦ)2

− 2λσ(σ + 1)(∂τΦ)2 + 2λσ csc2 θ ∂ϕΦ
)]
. (B9)

Appendix C: Analytic Mesh-Refinement

This appendix complements Sec. V D and discusses the
effects of the AnMR in two cases: the accuracy on domain
1 extending between future null infinity and the particle’s
orbit for distributional sources (with qualitatively similar
results in the case of sources with unbounded support);
and scenarios with worldtube sources, whose results fol-
low from a code with 4-domains.

1. Treatment at I +

Contrary to the systematic pattern observed by
Eq. (100), the method to optimise the solutions’ accuracy
in domain 1 is very sensitive to the particular (`,m)-
mode, and the improvement in accuracy is not so sig-

nificant. As example, we consider the solution for φ
ret

`m

with (`,m) = (1, 1). One needs to employ the AnMR
with xB = −1, i.e., the map (96) populates the grid

points around future null infinity σ = 0. Fig. 17 demon-
strates this effect. The top panel in Fig. 17 shows the

Chebyshev coefficients of Re(φ
ret

`m) with rp = 1000M
and (`,m) = (1, 1) for several AnMR-parameters κ for
domain 1. The coefficients decay moderately fast for
κ = 0, but one can improve the decay rate by varying κ
(e.g. κ = 2, 3 and 4). As explained in Sec. V D, one typi-
cally encounters and optimal value κ∗`m(rp) on domain 1,
for which the decay is the fastest. In this example, the
optimal value κ∗`m(rp) corresponds to κ∗1,1(1000M) = 3.
The bottom panel displays the fit of κ∗1,1(rp) against rp.
Contrary to the log-dependence of Eq. (100), we observe
that κ∗1,1(rp) quickly saturates around ∼ 3, according to

κ∗1 = 3.00 tanh
(

0.01
rp
M

+ 0.48
)
. (C1)

On the other hand, we observe that the coefficients on do-
main 1 for modes (`,m) = (50, 50) and (`,m) = (100, 0)
are optimised with a map (96) with xB = 1, i.e., with an
increase of grid points around the particle. We observe
a slight improvement on the coefficients decay rate for
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FIG. 17. AnMR effect over φ
ret

`m on domain 1 (between future
null infinity and particle’s orbit). Top panel: Chebyshev co-

efficients of Re(φ
ret

`m) with rp = 1000M and (`,m) = (1, 1) in
domain 1 between the particle and future null infinity. The
improvement with AnMR is not as compelling as in domain 2
presented in Fig. 14. Bottom panel: Optimal AnMR param-
eters plotted against rp/M with the fit Eq. (C1).

(`,m) = (50, 50) and (100, 0), respectively when κ = 1 or
κ = 1.5, regardless of the particle location. Because the
effects on the accuracy is marginal and highly dependent
on the angular mode (`,m), we refrain form using the
AnMR technique on domain 1.

2. Worldtube sources

We apply the AnMR also to effective-source compu-
tations. As discussed in Sec. V B, this problem requires
a four-domain code. The accuracy loss for large orbits
arise from domain 3 where σ ∈ [σp, σ+]. Therefore, we
use the AnMR (xB = −1) on domain 3. The top panel of
Fig. 18 displays the Chebyshev coefficients for the resid-

ual field Re(Φ
R
`m) with rp = 1000M and (`,m) = (1, 1).

As previously, we observe the coefficients’ slow decay rate

when κ = 0 and significant improvement for κ > 0. In
this example, the best decay rate is achieved for the value
κ ∼ 3.5. The calibration for the optimal k∗`m(rp) is the
same as in Eq. (100). In particular, for (`,m) = (1, 1),
(50, 50) and (100, 0), the offsets A`,m are A1,1 ≈ −0.02,
A50,50 ≈ 0.59 and A100,0 ≈ 0.85. We show in Fig. 19
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FIG. 18. AnMR for scenarios with worldtube sources, requir-

ing a code with 4 domains. Chebyshev coefficients of Re(φ
R
`m)

for rp = 1000M and (`,m) = (1, 1) in domain 3 (between the
particle σp and the worldtube boundary σ+). Here, the opti-
mal value for the AnMR parameter is κ = 3.5 and the overall
tendency on rp and (`,m) follows the tendency observed in
Eq. (100).
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FIG. 19. Exponential error decay for large orbits with optimal
AnMR for worldtube sources. It demonstrates the challeng-
ing computation of rp/M = 106 and (`,m) = (1, 1) where
machine precision is reached around N = 50. In this par-
ticular example, the error saturates at ∼ 10−6 because the

residual field Φ
R
`,m assumes values

∣∣ΦR1,1∣∣ ∼ 10−13, i.e. the
around roundoff limits of double float operations.

the relative error for a fixed angular mode (`,m) = (1, 1)
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for several values of log10(rp/M) = {2 · · · 6}. We find
exponential convergence, but the saturation happens at
larger errors as one increases the particle’s location. Note
that for rp = 106M , the solution already approaches
machine precision for double float operations. One has

∣∣ΦR1,1
∣∣ ∼ 10−13,

∣∣ΦR50,50

∣∣ ∼ 10−14, and
∣∣ΦR100,0

∣∣ ∼ 10−15.
The high saturation error in Fig. 19 reflects limitations
with respect to precision. A more accurate calculation
would require higher internal precision.
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and Quantum Gravity 27, 175003 (2010).
[36] A. Zenginoglu and G. Khanna, Phys. Rev. X 1, 021017

(2011).
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