
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained

by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial

research or study, without prior permission or charge. This thesis and the accompanying data cannot be

reproduced or quoted extensively from without �rst obtaining permission in writing from the copyright

holder/s. The content of the thesis and accompanying research data (where applicable) must not be

changed in any way or sold commercially in any format or medium without the formal permission of

the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Luca Capezzuto (2021). ‘Large-scale, Dynamic and Distributed Multi-agent Coordination for Real-time

Systems’. PhD Thesis. School of Electronics and Computer Science, University of Southampton.

University of Southampton

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

Large-scale, Dynamic and Distributed

Multi-agent Coordination for Real-time Systems

by

Luca Capezzuto

A thesis for the degree of

Doctor of Philosophy

November 2021

http://www.southampton.ac.uk

University of Southampton

Abstract

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

Doctor of Philosophy

Large-scale, Dynamic and Distributed Multi-agent Coordination for Real-time Systems

by Luca Capezzuto

The Coalition Formation with Spatial and Temporal constraints Problem (CFSTP) is designed to

characterise scenarios at the intersection between task allocation and coalition formation. In

this model, tens of heterogeneous agents are deployed over kilometre-wide areas to carry out

thousands of tasks, each with its deadline and workload. To maximise the number of tasks

completed, the agents need to cooperate by forming, disbanding and reforming coalitions.

In this thesis, we start with an in-depth analysis of Coalition Formation with Look-Ahead (CFLA),

the state-of-the-art CFSTP algorithm. We outline its main limitations, based on which we derive

an extension called CFLA2. We show that we cannot eliminate the limitations of CFLA in

CFLA2, hence we also develop a novel algorithm called Cluster-based Task Scheduling (CTS),

which is the �rst to be simultaneously anytime, e�cient and with convergence guarantee. We

empirically demonstrate the superiority of CTS over CFLA and CFLA2, and propose S-CTS,

a simpli�ed but parallel and more e�cient variant. In problems generated by the RoboCup

Rescue Simulation, S-CTS can compete with the high-performance Binary Max-Sum and DSA

algorithms, while being up to two orders of magnitude faster.

We then propose a minimal mathematical program of the CFSTP, and reduce it to a Dynamic and

Distributed Constraint Optimisation Problem, based on which we design D-CTS, a distributed

version of CTS. We create a test framework that simulates the mobilisation of �re�ghters, which

we use to show the e�ectiveness of D-CTS in large-scale and dynamic environments.

Finally, to characterise scenarios in which the faster the tasks are solved, the greater the

bene�ts, we propose the Multi-Agent Routing and Scheduling through Coalition Formation

problem (MARSC), a generalisation of both the CFSTP and the important Team Orienteering

Problem with Time Windows. We formulate a binary integer program and propose Anytime,

exact and parallel Node Traversal (ANT), the �rst algorithm of its kind for both the MARSC

and the CFSTP. Moreover, we de�ne an approximate variant called ANT-ε. Both algorithms

are validated in our realistic test framework, using as baselines an extended version of CTS,

and an implementation of the Earliest Deadline First technique, which is typically used in

real-time systems.

iii

http://www.southampton.ac.uk

Contents

List of Figures ix

List of Algorithms xi

Nomenclature xiii

Declaration of Authorship xv

Acknowledgements xvii

1 Introduction 1

1.1 Motivating Domain: Disaster Response . 1

1.2 Problem Statement . 3

1.3 Research Objectives and Methodology . 5

1.4 Research Contributions . 6

1.5 Thesis Outline . 8

2 Literature Review 11

2.1 Coalition Formation . 11

2.2 Markov Decision Processes . 14

2.3 Distributed Constraint Optimisation Problems 18

2.3.1 DCOP . 19

2.3.2 Dynamic DCOP . 26

2.4 Our Chosen Approach . 28

2.5 Problems Similar to the CFSTP . 29

3 Background 33

3.1 The CFSTP Model . 33

3.1.1 Basic De�nitions . 33

3.1.2 Coalition Allocations . 34

3.1.3 Coalition Values . 34

3.1.4 Constraints . 35

3.1.5 Objective Function . 35

3.2 The CFLA Algorithm . 36

3.2.1 The Concept of CFLA . 36

3.2.2 Phase 1: De�ning the Legal Agent Allocations 36

v

vi Contents

3.2.3 Phase 2: Selecting the Best Coalition for Each Task 37

3.2.4 Phase 3: De�ning the Degree of Each Task 37

3.2.5 Phase 4: Overall Procedure of CFLA 37

3.3 The Original Mixed Integer Program of the CFSTP 38

3.3.1 Decision Variables . 38

3.3.2 Constraints . 39

3.3.3 Objective Function . 41

4 Anytime and E�cient Multi-agent Coordination for Disaster Response 43

4.1 Coalition Formation with Improved Look-ahead 43

4.1.1 Forming Coalitions with Legal Agent Allocations 43

4.1.2 More E�ective Task Degrees . 44

4.1.3 Analysis and Discussion . 44

4.2 Cluster-based Task Scheduling . 46

4.2.1 Selecting the Best Task for Each Agent 46

4.2.2 Overall Procedure of CTS . 47

4.2.3 Analysis and Discussion . 49

4.3 Comparison Tests . 50

4.3.1 Setup . 50

4.3.2 Results . 51

4.4 Tests with the RoboCup Rescue Simulation . 53

4.4.1 Simpli�ed CTS . 54

4.4.2 Setup . 54

4.4.3 Results . 56

4.5 Summary . 56

5 Large-scale, Dynamic and Distributed CFSTP 59

5.1 Major Gaps in the CFSTP Literature . 59

5.2 A Minimal Mathematical Program of the CFSTP 60

5.2.1 Decision variables . 61

5.2.2 Constraints . 61

5.2.3 Objective Function . 62

5.3 A Scalable, Dynamic and Distributed CFSTP Algorithm 64

5.3.1 Reduction of the CFSTP to a DynDCOP 64

5.3.2 Distributed CTS . 65

5.4 Empirical Evaluation in Dynamic Environments 68

5.4.1 Setup . 68

5.4.2 Results . 70

5.5 Summary . 72

6 The Multi-Agent Routing and Scheduling through Coalition Formation Problem 73

6.1 Problem Formulation . 73

Contents vii

6.1.1 Basic De�nitions . 73

6.1.2 Decision Variables . 74

6.1.3 Constraints . 75

6.1.4 Objective Function . 76

6.1.5 Reduction of the MARSC to a DynDCOP 78

6.2 An Anytime, Exact and Parallel MARSC Algorithm 79

6.2.1 Procedures . 79

6.2.2 Theoretical Properties . 81

6.2.3 Computational Complexity . 82

6.3 Empirical Evaluation . 83

6.3.1 Setup . 84

6.3.2 Results . 85

Conclusions 87

Main Limitations of Our Work . 88

Possible Future Work . 88

References 91

List of Figures

1.1 The disaster management cycle . 2

1.2 Examples of cooperative coordination in disaster response 3

1.3 Di�erences between coalitions and teams . 4

1.4 Class diagram of the problems considered . 8

4.1 Comparison of CFLA, CFLA2 and CTS . 52

4.2 Detail of an example problem in the RCRS . 55

4.3 Performance of S-CTS in RMASBench . 57

5.1 An example factor graph . 65

5.2 Comparison between D-CTS and DSA-SDP . 70

5.3 Ratio of DSA-SDP performance to D-CTS performance 71

6.1 Illustrative example of the execution of ANT 82

6.2 Evaluation of ANT and ANT-ε . 85

ix

List of Algorithms

3.1 getLegalAgentAllocations (Phase 1 of CFLA) . 36

3.2 ECF (Phase 2 of CFLA) . 37

3.3 lookAhead (Phase 3 of CFLA) . 38

3.4 Overall procedure (Phase 4 of CFLA) . 39

4.1 ECF (more detailed Phase 2 of CFLA2) . 44

4.2 lookAhead (improved Phase 3 of CFLA2) . 45

4.3 getTaskAllocableToAgent (used in Phase 1 of CTS) 47

4.4 Overall procedure of CTS (Phases 1 and 2) . 48

4.5 S-CTS (executed by each agent ÿ * A) . 54

5.1 CTS node of variable ÇĊÿ . 66

5.2 CTS node of factor Ą ĊĀ . 66

6.1 getSingletonSolution . 80

6.2 getSolutionForSchedule . 80

6.3 ANT . 81

xi

Nomenclature

Acronyms

ANT Anytime, exact and parallel Node Traversal

BFS Breadth-First Search

BinaryMS Binary Max-Sum

BIP Binary Integer Program

CF Coalition Formation

CFLA CF with Look-Ahead

CFLA2 CF with improved Look-Ahead

CFSTP CF with Spatial and Temporal constraints

Problem

COP Constraint Optimisation Problem

CSG Coalition Structure Generation

CTS Cluster-based Task Scheduling

D-CTS Distributed CTS

DCOP Distributed COP

Dec-MDP Decentralised MDP

DFS Depth-First Search

DSA Distributed Search Algorithm

DynDCOP Dynamic DCOP

EDF Earliest Deadline First

FMS Fast Max-Sum

LFB London Fire Brigade

MARSCMulti-Agent Routing and Scheduling

through CF problem

MAS Multi-Agent System

MDP Markov Decision Process

MIP Mixed Integer Program

MRS Multi-Robot System

MRTA Multi-Robot Task Allocation

NDCS Normally Distributed Coalition Structures

POMDP Partially Observable MDP

RCRS RoboCup Rescue Simulation

S-CTS Simpli�ed CTS

TOP Team Orienteering Problem

TOPTW TOP with Time Windows

TSP Travelling Salesman Problem

UAV Unmanned Aerial Vehicle

USV Unmanned Surface Vehicle

VRP Vehicle Routing Problem

VRPP VRP with Pro�ts

Symbols

ÿ agent

A agent set

AĊĄ Ĉăă agents that are free at Ċ

AĊČ agents that at Ċ can reach Č by µČ
³Č earliest time of Č

´Č soft latest time of Č

xiii

xiv Nomenclature

C coalition

� set of coalition allocations

µČ hard latest time of Č

D task demands

D DynDCOP

DĊ DCOP at Ċ

¶Č task degree (used by CFLA and CFLA2)

Ą ĊĀ Ā-th DCOP function at Ċ

ϕČ bene�t of Č

L all possible task and agent locations

ĂĊÿ location of ÿ at Ċ

LČ possible locations of Č

N Normal distribution

P power set

PĈăā Set of task precedences

ÈČ,Ċ penalty of performing Č during Ċ

Ä agent travel function

Ċ time

ĊăÿĎ maximum problem time

ċ coalition value function

U Uniform distribution

Č task

V task set

čČ workload of Č

Ė BIP solution

Ėÿ BIP singleton solution

ÇĊÿ ÿ-th DCOP variable at Ċ

ĎČ, Ċ, C CFSTP indicator variable

ĎČ, Ă, Ċ, C MARSC indicator variable

ďČ CFSTP task indicator variable

ďČ,Ă MARSC task indicator variable

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated by

me as the result of my own original research. I con�rm that:

1. This work was done wholly or mainly while in candidature for a research degree at this

University;

2. Where any part of this thesis has previously been submitted for a degree or any other

quali�cation at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attributed;

4. Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published in a number of journal and conference papers

(see Section 1.4 for a detailed list).

Signed:

Date:

xv

Acknowledgements

‘The best theory is inspired by practice. The best practice is inspired by theory.’

— Donald E. Knuth, Selected Papers on Computer Science, 1996

‘We have a habit in writing articles published in scienti�c journals to make the

work as �nished as possible, to cover up all the tracks, to not worry about the

blind alleys or describe how you had the wrong idea �rst, and so on. So there

isn’t any place to publish, in a digni�ed manner, what you actually did in order

to get to do the work.’

— Richard P. Feynman, Nobel Lecture, 1966

First of all, I would like to thank my advisors, Gopal Ramchurn and Danesh Tarapore, who

allowed me to embark on this path, and helped me to grow both as a researcher and as a

professional. I am grateful to Klaus-Peter Zauner, Tim Norman and Jie Zhang for examining my

progress and giving me valuable advice. Thanks also to Alessandro Farinelli and Mohammad

Divband Soorati for the edifying discussions, and to Ryan Beal and Shaun Lamb for the good

times we had together in Chania and in the best breweries of Southampton.

This research is supported by the EPSRC grant EP/R2115315/1 and the AXA Research Fund.

I would also like to acknowledge the use of the Iridis High Performance Computing Facility,

and associated support services at the University of Southampton.

To all the people with whom I have made friends, or even shared just a laugh, in student societies

such as Italian Society, MexSoc, CathSoc, Live Music Society, SLAPS and Salsa Society, to name

a few. In particular, I would like to mention my carefree Sundays of roast, Mexican chocolate

and Neapolitan memes with Pierfrancesco and Davide, which helped me to feel less homesick

and to cope with pressing commitments.

To the López de la Cruz family, who welcomed me warmly and allowed me to work in peace

during uncertain months. To Elizabeth, with whom I went hiking in mountains such as Cerro

de la Silla, Cerro Agujerado and Cerro de Chipinque, and then ended the day by going for

chilaquiles. To Ixora and all my other Mexican friends, with whom I spent many fun evenings.

To my family, in particular my mother and my little sister, true forces of nature, who have

always helped and supported me.

To my beautiful love Ilse, without whom I would not be here. Te cielo.

xvii

https://www.axa-research.org/en/project/sarvapali-gopal-ramchurn

Dedicated to the women of my life, in order of appearance: mum Agnese,
granny Luigia, aunt Nunzia, little sister Annaclara, and amorcita Ilse.

Chapter 1

Introduction

A main class of multi-agent assignment problems is cooperative coordination, which considers

the synergies between agents that have common goals [Shoham and Leyton-Brown 2008].

In multi-robot systems, it is called Multi-Robot Task Allocation (MRTA) [Gerkey and Matarić

2004]. Within this class, we are interested in problems involving both routing and scheduling,

which are crucial in areas of increasing importance such as precision agriculture, environmental

monitoring, warehouse automation, pickup and delivery, last-mile planning, space exploration,

and disaster response [Nunes, Manner et al. 2017].

In this thesis, we study large-scale, dynamic and distributed cooperative coordination, with

focus on disaster response scenarios [Kitano and Tadokoro 2001; Murphy 2014]. We explain

the challenges of disaster response in Section 1.1, and state our problem in Section 1.2. We

summarise our research objectives and methodology in Section 1.3. Finally, we highlight our

contributions in Section 1.4, and outline the structure of the document in Section 1.5.

1.1 Motivating Domain: Disaster Response

The information age is plagued by all kinds of disasters. Through the screens of our smart

devices, we helplessly witness events such as wild�res, explosions, earthquakes, and volcanic

eruptions. Although there is no generally accepted terminology, modern disaster management

can be divided into the following phases [Alexander 2002; Hawe et al. 2012]:

1. Mitigation: reducing or eliminating the possibility of a disaster;

2. Preparation: equipping humans with the means to increase their survival and to minimise

the losses during a disaster;

3. Response: reducing or eliminating the impact of a disaster;

4. Recovery: restoring the situation to the state prior to the impact of a disaster.

1

2 Introduction

Mitigation Preparation

ResponseRecovery

Figure 1.1 The disaster management cycle [Alexander 2002]. The mitigation and preparation phases
try to prevent disasters with measures such as keeping evacuation plans up to date and minimising
safety issues. The response phase focuses mainly on saving and safeguarding human lives, while the
recovery phase is dedicated to repair damage, which in some cases can take years.

Regardless of how e�ective the mitigation and preparation phases may be, they are unable to

eliminate every possible hazard [Coppola 2006]. Thus, the response phase plays an important

role in the disaster management cycle. It consists of a set of complex actions like search and

rescue, �rst aid and infrastructure restoration, which are carried out during periods of high

stress, in severely time-constrained environments, and with limited information. In this phase,

it is fundamental to plan �rmly and act as fast as possible, since any delay can lead to further

tragedy and destruction.

Consider the aftermath of a disaster, either natural, like the Cumbre Vieja volcanic eruption in

2021, or man-made, like the Beirut explosion in 2020. Di�erent actors can be present, such as

�rst responders, aid organisations, news reporters and local citizens. The �rst objective is to

assess the situation and determine what are the problems to solve. For this purpose, UAVs may

be deployed to patrol the a�ected areas, sensors may be used to monitor the environment, and

citizens may contribute using social media platforms such as Ushahidi [Okolloh 2009] or Google

Crisis Response. From heterogeneous sources, a great variety of content will be generated, such

as maps, forecasts and reports. Once a set of tasks has been identi�ed, a set of agents will be

de�ned to perform them, each with its speci�c resources and capabilities. Then, the response

phase will take place in the following steps [Jennings et al. 2014]:

1. Formation: agents jointly de�ne how tasks are allocated. To encourage commitment,

incentive schemes could be put in place (e.g., completing high-priority tasks could be

paid double);

2. Operation: agents perform the tasks allocated to them. The execution is not straightfor-

ward: more critical tasks may appear, new agents or resources may become available,

or current agents may disengage (e.g., a UAV could fall due to a malfunction and be

destroyed). Therefore, agents must monitor the system status continuously, and rede�ne

assignments if necessary;

1.2 Problem Statement 3

Figure 1.2 Examples of cooperative coordination in disaster response. From left to right: USV inspecting
piers after Hurricane Wilma [Murphy 2014]; the Colossus robot assisting the Paris Fire Brigade in the
�ght against the 2019 Notre Dame Cathedral �re [IEEE Robots 2019]; �re-�ghting UAVs in the Dazu
District, China [iChongqing 2020].

3. Disbandment: the collective is disbanded either when all tasks have been successfully

completed, or the emergence of some condition prevents continuation (e.g., a sudden

�re spread impedes access to an area of interest, and no �re�ghters are available at the

moment). After that, any rewards, such as payments, transfer of privileges or additional

information, are distributed among agents.

As can be seen, disaster response provides a comprehensive example of the various challenges

of cooperative coordination. In fact, it is a central class of case studies for the multi-agent/robot

systems community [Dadvar and Habibian 2021; Kitano and Tadokoro 2001; Murphy 2014,

2016; Murphy, Tadokoro and Kleiner 2016], as well as for AI in general [Imran et al. 2014].

Based on this domain, we identify our problem below.

1.2 Problem Statement

We focus on the Coalition Formation with Spatial and Temporal constraints Problem (CFSTP)

[Ramchurn, Polukarov et al. 2010]. We use the de�nitions of coalition and coalition formation

given by [Horling and V. Lesser 2005]. Hence, a coalition is a �at and task-oriented organisation

of agents, short-lived and disbanded when no longer needed, while coalition formation is a

consequence of the emergent behaviour of the system [Mataric 1993]. Regardless of its current

location, an agent is considered part of a coalition from the moment it is assigned a task, to

the moment the task is completed. We consider coalitions to be di�erent from teams (Figure

1.3). Moreover, based on [Nunes, Manner et al. 2017, Section 4.5], we consider a system to

be real-time if it may have hard deadlines, which cannot be violated, and possibly also soft

deadlines, which can be violated with some penalty. In the CFSTP, tasks (e.g., save victims or

put out �res) have to be assigned to agents (e.g., ambulances or �re brigades). The assignment

is determined by the spatial distribution of tasks in the disaster area, the time needed to reach

them, the workload they require (e.g., how large a �re is) and their deadlines (e.g., estimated

time left before victims perish). In addition to these constraints, the number of agents may

be much smaller than the number of tasks, hence they need to cooperate with each other by

forming, disbanding and reforming coalitions over time [Epstein and Bazzan 2011; Shehory

4 Introduction

(a) Coalitions. (b) A team.

Figure 1.3 Di�erences between coalitions and teams [Horling and V. Lesser 2005]. Once formed, a
coalition becomes an atomic entity that exists for a limited time, such as political parties joining together
to form a government. In contrast, a team is a long-term organisation in which agents may have di�erent
roles, as in the game of football.

and Kraus 1998]. The objective of the CFSTP is to de�ne which tasks (e.g., sites with the most

victims and the strongest �res) to allocate to which coalitions (e.g., the fastest ambulances and

�re engines with the largest water tanks), in order to maximise the number of tasks completed.

Despite having similarities with classic problems such as Generalised Assignment Problem

[Ross and Soland 1975] and Job-Shop Problem [Brucker 2007], the importance of the CFSTP

lies in the fact that it was the �rst generalisation of the Team Orienteering Problem (TOP) to

consider coalition formation [Ramchurn, Polukarov et al. 2010, Section 4.2]. For this reason, it

has been applied in contexts such as human-agent collectives [Ramchurn, F. Wu et al. 2016],

multi-UAV exploration [Baker et al. 2016], and law enforcement [Nelke, Okamoto and Zivan

2020; Tkach and Amador 2021].

Within this problem class, our interest is in algorithms that are anytime (i.e., which can return

partial solutions if they are interrupted before completion), e�cient, and have theoretical

properties. In other words, approximate algorithms [Papadimitriou 1993]. The reason is that

they are fundamental in real-time domains, where it is necessary to have provable guarantees,

but it may be computationally not feasible or economically undesirable to produce an optimal

solution [Calvaresi et al. 2021; Zilberstein 1996]. In particular, as we said above, the faster the

disaster response, the lower the losses incurred. We also assume that the agents are situated

in a distributed system [Van Steen and Tanenbaum 2017] with a dynamic evolution of the

environment1 [Fioretto, Pontelli and Yeoh 2018], that is:

1. It must be possible for agents to reach a solution through local interaction, rather than

relying on a centralised solver [Ramchurn, Farinelli et al. 2010];

2. At any time, agents can join in or leave, and new tasks can appear.

If the problem is solved in a centralised fashion, then the designated solver has to be informed

whenever there is a change, recompute the solution, and redistribute it to all agents. In real-time

1Also referred to as open systems [Hewitt 1990]. For brevity, we call them dynamic environments.

1.3 Research Objectives and Methodology 5

domains such as disaster response, this leads to three major issues. First, a centralised solver is

a single point of failure that makes the system fragile and not robust to unexpected events, such

as malfunctions or communication disturbances between agents far apart [Petcu 2007]. Second,

if the agents have limited computational resources and the problem is not small, electing a

centralised solver might not be possible, while distributing computations always improves

scalability [Van Steen and Tanenbaum 2017]. Third, a centralised approach might not be as

e�ective as a distributed one, given that the situation can evolve rapidly and there could be

signi�cant communication delays [Mailler, Zheng and Ridgway 2018].

1.3 Research Objectives and Methodology

We aim to develop models, algorithms and test frameworks for multi-agent coordination, with

the following requirements.

R1 Decentralised autonomy: the agents do not have to rely on a single point of failure. This is

particularly important for disaster scenarios, where unreliable infrastructures and scarce

supplies imply that lost resources cannot be replaced.

R2 Cooperation: the agents have to coordinate their actions so to maximise their performance.

Cooperation is also necessary when tasks require combined skills. For example, to extract

survivors from the rubble of a collapsed building, rescue robots detect life signs with their

sensors, �re�ghters dig and paramedics load the injured into ambulances. Therefore, the

solutions must focus on achieving a global objective.

R3 Scalability: the algorithms have to target scenarios with tens to thousands of agents and

tasks, in order to be usable in future contexts where mass deployment of agents (e.g.,

robot swarms) will be common.

R4 Resilience: agents and resources could be added and removed at any time, either by a

human supervisor or due to unexpected failures. The algorithms must be able to produce

feasible solutions even in such situations. If the solution quality degrades, it must happen

in a controlled way.

Moreover, motivated by the disaster response domain, and intending to address the main open

issues in the MRTA literature [Nunes, Manner et al. 2017, Section 9.2], we make the following

assumptions.

A1 Tasks have spatio-temporal constraints (e.g., the buildings on �re are scattered throughout

the city, and each will burn out completely after a certain amount of time). In particular,

each task has a time window, with both a soft and a hard deadline.

6 Introduction

A2 There may be task precedences, such as when �re�ghters have to clear a road to allow

ambulances to enter an area, and heterogeneous task weights, to capture situations in

which some tasks may be more critical or urgent than others (e.g., saving lives has a

greater bene�t than clearing the rubble).

A3 Tasksmay havemultiple possible locations. This allows to characterise situations inwhich,

for example, ambulances can transport the injured to di�erent hospitals, or survivors can

be transferred to various evacuation centres.

A4 Tasks require speci�c resources to be performed (e.g., it is estimated that the �re Ď requires

at least ď quantity of coolant to be extinguished).

A5 The environment is dynamic. For instance, at any moment, new �res could break out, or

other buildings could collapse, hence �rst responders must be ready to deploy to other

areas.

According to [Fioretto, Pontelli and Yeoh 2018], to date the main disciplines that have been

used for solving cooperative coordination problems are game theory [Myerson 1991; Osborne

and Rubinstein 1994], decision theory [Keeney and Rai�a 1993] and constraint programming

[Dechter 2003; Rossi, Van Beek and Walsh 2006].

Usually, cooperative game theory models do not have a distributed design2, or are based

on the impractical assumption that calculations have no cost. On the other hand, decision

theory is a�icted by super-polynomial complexity [Bellman 2003], thus designing scalable

algorithms (Requirement R3) imposes additional assumptions that may be too limiting for

realistic scenarios [Jesus Cerquides et al. 2013; Diederich 2001].

Hence, we choose to workwith constraint programming, which, as wewill show in the following

chapters, allows us to meet all our research objectives. In Chapter 2, we review each of the

above approaches and give a thorough motivation of our choice.

1.4 Research Contributions

We start with an in-depth analysis of Coalition Formation with Look-Ahead (CFLA), the state-

of-the-art CFSTP algorithm. We outline two main limitations. First, its time complexity is

exponential in the number of agents. Second, as we show, its look-ahead technique is not

e�ective in real-world scenarios, such as dynamic environments, where new tasks can appear

at any time. To achieve better performance, we de�ne an extension called CFLA2. However,

since we cannot eliminate the design limitations of CFLA in CFLA2, we also develop a novel

algorithm called Cluster-based Task Scheduling (CTS), the �rst to be simultaneously anytime,

2Rather, there are models that combine non-cooperative game theory with distributed constraint optimisation
[Chapman, Micillo et al. 2010; Chapman, Rogers and Jennings 2011; Chapman, Rogers, Jennings and Leslie 2011;
Zou and Xi 2021].

1.4 Research Contributions 7

e�cient and with convergence guarantee. We empirically show that, in settings where the

look-ahead technique is highly e�ective, CTS completes up to 30% (resp. 10%) more tasks

than CFLA (resp. CFLA2), while being up to four orders of magnitude faster. We also propose

S-CTS, a simpli�ed but parallel and more e�cient variant of CTS. In problems generated by the

RoboCup Rescue Simulation [Kitano and Tadokoro 2001], S-CTS is at most 10% less performing

than high-performance algorithms such as Binary Max-Sum [Pujol-Gonzalez, Jesus Cerquides,

Farinelli, Meseguer and Juan A. Rodriguez-Aguilar 2014] and DSA [W. Zhang et al. 2005], but

up to two orders of magnitude faster.

We then go on to identify the main issues in the CFSTP literature, namely, its original mathe-

matical programming formulation, which is lengthy and di�cult to implement, and the lack of a

distributed, dynamic and scalable algorithm. Consequently, we propose a minimal mathematical

program, and reduce the CFSTP to a Dynamic and Distributed Constraint Optimisation Problem

(DynDCOP) [Fioretto, Pontelli and Yeoh 2018], on which we design D-CTS, a distributed version

of CTS. Using public London Fire Brigade records [London Datastore 2021a,b], we create a

large dataset and a test framework that simulates the mobilisation of �re�ghters in dynamic

environments. In problems with up to 150 agents and 3000 tasks, compared to DSA-SDP, a

state-of-the-art distributed algorithm [Zivan, Okamoto and Peled 2014], D-CTS completes

approximately the same percentage of tasks, but with the advantage of being one order of

magnitude more e�cient in terms of communication overhead and time complexity.

Finally, to characterise scenarios in which the faster the tasks are solved, the greater the

bene�ts, we propose the Multi-Agent Routing and Scheduling through Coalition Formation

problem (MARSC), a generalisation of both the CFSTP and the important Team Orienteering

Problem with Time Windows (TOPTW) [Vansteenwegen and Gunawan 2019]. We formulate a

binary integer program [Wolsey 2020] and propose Anytime, exact and parallel Node Traversal

(ANT), the �rst MARSC algorithm of its kind, which is also the �rst exact CFSTP algorithm.

Moreover, we de�ne an approximate variant called ANT-ε. On a machine with RHEL 7.9

operating system, a 2 GHz CPU with 40 threads, and 24 GB of DDR4-2666 SDRAM, ANT can

�nd optimal solutions to problems with 2 agents and up to 40 tasks in less than 25 minutes.

With the same operating system and CPU, but with 187.5 GB RAM, the industry-leading CPLEX

solver version 20.1 runs out of memory and crashes. On the other hand, in problems with 150

agents and up to 3000 tasks, ANT-ε �nds 2.6 times better median solutions and is 3.65 times

faster than an extended version of CTS.

Since the MARSC generalises or can be reduced to important combinatorial optimisation

problems (Figure 1.4), our results can also be applied to widely studied sub-problems such as

the TOPTW, and be adapted to domains that are similar to or less challenging than disaster

response, such as those mentioned at the beginning of this chapter (Page 1).

Our work has produced the following articles.

8 Introduction

CFSTP MARSC DynDCOP

TOP TOPTW DCOP

VRPP VRP TSP

variant of

reduced to

Figure 1.4 Class diagram of the relationships between the combinatorial optimisation problems that we
consider. We generalise the CFSTP into the MARSC, and show how both can be reduced to a DynDCOP,
an extension of the DCOP [Fioretto, Pontelli and Yeoh 2018]. We also show that the MARSC generalises
the TOPTW, an extension of the TOP, the latter generalised by the CFSTP (Section 1.2). The TOP is a
variant of the Vehicle Routing Problem with Pro�ts (VRPP), which generalises the Vehicle Routing Problem
(VRP) and the Travelling Salesman Problem (TSP) [Vansteenwegen and Gunawan 2019].

1. Capezzuto, Luca, Danesh Tarapore, and Sarvapali D. Ramchurn. Anytime and E�cient

Coalition Formation with Spatial and Temporal Constraints. EUMAS-AT 2020: Multi-Agent

Systems and Agreement Technologies, pp. 589 − 606 (2020). Springer, Cham.

2. Capezzuto, Luca, Danesh Tarapore, and Sarvapali D. Ramchurn. Anytime and E�cient

Multi-agent Coordination for Disaster Response. SN Computer Science 2.3, pp. 1−15 (2021).

3. Capezzuto, Luca, Danesh Tarapore, and Sarvapali D. Ramchurn. Multi-Agent Routing and

Scheduling through Coalition Formation. 12th Workshop on Optimisation and Learning

in Multi-Agent Systems (OptLearnMAS), held at the 20th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2021).

4. Capezzuto, Luca, Danesh Tarapore, and Sarvapali D. Ramchurn. Large-scale, Dynamic

and Distributed Coalition Formation with Spatial and Temporal Constraints. 18th European

Conference onMulti-Agent Systems (EUMAS 2021), Revised Selected Papers, pp. 108−125

(2021). Springer, Cham.

Chapter 4 is composed of Articles 1 and 2, Chapter 5 is Article 4 with minor exposition im-

provements, while Chapter 6 is an extension of Article 3.

1.5 Thesis Outline

The remaining chapters are structured as follows.

Chapter 2 A survey of multi-agent coalition formation for task allocation in the research

�elds identi�ed in Section 1.3. Its has two purposes. First, it motivates in detail which �eld we

1.5 Thesis Outline 9

choose to work with. Second, it shows that, although many existing models come close to our

objectives, no one can satisfy them all, which motivates the proposal of the MARSC in Chapter 6.

Chapter 3 The topics on which the following chapters will be based: our constraint pro-

gramming formulation of the CFSTP; the CFLA algorithm, and the original mixed integer

programming formulation of the CFSTP.

Chapter 4 The CFLA2 algorithm, a novel variant of CFLA. Design of the CTS algorithm, the

new state-of-the-art CFSTP algorithm. De�nition of the parallel variant S-CTS, and empirical

evaluation with the RoboCup Rescue Simulation against the high-performance Binary Max-

Sum and DSA algorithms.

Chapter 5 A minimal binary integer program of the CFSTP, and a reduction to the DynDCOP

formalism. Design of D-CTS, a distributed version of CTS, and empirical evaluation on our

large-scale and realistic test framework based on London Fire Brigade records.

Chapter 6 Formulation of the MARSC, a generalisation of the CFSTP and the TOPTW that

can be used in real-time domains. Design of ANT, the �rst anytime, exact and parallel MARSC

algorithm, as well as the approximate variant ANT-ε.

Conclusions Summary of the strengths and limitations of our work, followed by a list of

possible directions for future work.

Chapter 2

Literature Review

This chapter reviews the areas identi�ed in Section 1.3, namely, game theory, decision theory

and constraint programming. Based on the classi�cations of [Aziz et al. 2021; Cao et al. 2013;

Jesus Cerquides et al. 2013; Farinelli, Iocchi and Nardi 2004; Gini 2017; Jahn et al. 2020; Khamis,

Hussein and Elmogy 2015; Korsah, Stentz and Dias 2013; Miloradović et al. 2019; Nunes, Manner

et al. 2017; Parker, Rus and Sukhatme 2016; Ponda et al. 2015; Skaltsis, Shin and Tsourdos 2021;

Verma and Ranga 2021; Ye, M. Zhang and Vasilakos 2016], we identify 3 fundamental approaches

to cooperative coordination: coalition formation in game theory (Section 2.1); Markov decision

processes in decision theory1 (Section 2.2), and distributed constraint optimisation problems

in constraint programming (Section 2.3).

For each approach, we highlight the main results that are relevant to our objectives (Section

1.3). Then, in Section 2.4, we explain which approach we choose to work with in the following

chapters. Finally, in Section 2.5, we list the limitations of our starting model (Section 1.2) in

relation to our objectives, and show that no work proposed so far is able to address all of them.

This motivates the introduction of the novel model in Chapter 6.

2.1 Coalition Formation

Task allocation through Coalition Formation (CF) models scenarios where tasks cannot be

performed by a single agent [Shehory and Kraus 1998]. It consists of 3 phases [Sandholm,

Larson et al. 1999]:

1. Coalition Structure Generation (CSG): partitioning of agents into exhaustive and disjoint

sets such that only agents within the same set cooperate. Such sets are called coalitions,

while the partition is called coalition structure;

1More precisely, in the sub�eld of multi-agent planning [Torreño et al. 2017].

11

12 Literature Review

2. Coalition value calculation: for each coalition C, de�nition of a measure of the expected

outcome that could be derived if C was formed. Once the calculation is done, the decision

about how to optimally form coalitions can be taken, which depends on the given problem;

3. Revenue distribution: determination of the rewards for each agent in order to get stable

coalitions [Rahwan, Ramchurn et al. 2009]. A coalition is stable if its agents have no

incentive to deviate from it. This property is also known as incentive compatibility [Nisan

et al. 2007, Section 9.3.2].

The most important phase is that of CSG, since the number of possible coalition structures

is exponential in the number of agents. Speci�cally, the time complexity required to �nd an

optimal coalition structure is O(ÿÿ) and É(ÿÿ/2), where ÿ is the number of agents. Furthermore,

the problem is NP-complete [Sandholm, Larson et al. 1999]. For this reason, a wide range

of approximate algorithms has been developed so far, using approaches from mathematical

programming, stochastic search and machine learning. In the remainder of this section, we

will review some important works that are of interest to our context. We refer to [Rahwan,

T. P. Michalak et al. 2015] for a thorough survey on CSG.

Among the �rst and best-known attempts to study algorithmic aspects of CSG, we �nd [Shehory

and Kraus 1998]. They developed decentralised, anytime and dynamic algorithms with low

ratio bounds and low computational complexity, where coalitions may have a precedence order.

Their limitation is the assumption that coalition resources can be transferred between agents,

which reduces the solution space.

An optimal solution to the CSG problem has been given by [Rahwan, Ramchurn et al. 2009].

They represent the solution space through integer partition [Andrews and Eriksson 2004] and

solve the problem using a branch-and-bound technique. The limitation of this approach is that,

in the worst case, the number of coalition structures to be searched is intractable. As a result,

the algorithm is not scalable (Requirement R3).

A CF model with incomplete information, limited computational resources, and time constraints

was proposed by [Kraus, shehory and Taase 2003, 2004]. Their mechanism consists of an auction

protocol and 2 heuristic algorithms. Experimental results show that their algorithms are stable

and increase social welfare, compared to previous strategies. There are 2 limitations in the

work. First, it focuses speci�cally on the Request For Proposal domain, where the tasks are

independent. Therefore, it cannot be used in settings where there may be task precedences

(Assumption A2). Second, the algorithms have no theoretical guarantees, while we aim at

approximate algorithms (Section 1.3).

A variant of CSG is the Graph-Constrained Coalition Formation (GCCF) [Myerson 1977], where

agents have a graph of relationships G and a coalition C is considered feasible if all agents in C

are connected by a subgraph of G induced by C. This formulation allows solving a wide range

of real-world problems. An interesting one is the Social Ridesharing problem [Bista�a, Farinelli

and Ramchurn 2015], in which a community of commuters (e.g., riders and drivers) need to form

2.1 Coalition Formation 13

coalitions (e.g., joining in cars) while meeting the constraints imposed by the social network

(e.g., users prefer to ride with friends). The objective is to minimise associated transportation

costs, like travel time and fuel. The model has been extended to also allow temporal constraints,

such as desired pick-up and arriving times [Bista�a, Farinelli, Chalkiadakis et al. 2017]. For a

survey on real-world GCCF applications, we refer to [Bista�a, Farinelli, Jesús Cerquides et al.

2017]. Such approaches can cope with spatio-temporal and resource constraints (Assumptions

A1 and A4). Nonetheless, they are o�ine, which implies that situations where agents can join

in or leave cannot be considered (Requirement R4 and Assumption A5). [Flammini et al. 2018]

have proposed an online GCCF model in which the graph is weighted and agents are assigned

to coalitions irrevocably. However, their model cannot solve problems where the graph is

unweighted or coalitions can be modi�ed (Requirement R4).

Another variant of CSG is the Overlapping Coalition Formation (OCF) model [Chalkiadakis,

Elkind, Markakis et al. 2010], where agents may be involved in more than one task and thus

may distribute their resources among multiple coalitions. There is no inherent superadditivity

assumption, therefore it is possible to capture scenarios in which not always any pair of

coalitions is best o� by merging into one2. To date, however, there is still no characterisation of

scenarios where overlapping coalitions can naturally arise (Assumption A5). [Zick, Chalkiadakis

and Elkind 2012] showed that the OCF can be reduced to the Unbounded Knapsack Problem

[Martello and Toth 1990], thus proving that it is NP-complete. They also identi�ed that the

computational complexity depends on the amount of resources possessed by each agent, the

maximum coalition size, and the pattern of interaction among agents. Furthermore, they

proposed tractable subproblems with discrete resources and limited interactions.

[Rahwan, T.-D. Nguyen et al. 2013] proposed the Coalition-Flow Network (CF-NET) model,

where a characteristic function game can be represented as a network �ow problem. In the

CF-NET model, the value of a coalition is associated with both the execution of a given task and

the types of the agents involved. Agents can participate in multiple coalitions simultaneously,

which allows to consider both CSG and OCF problems. In addition, each agent has a limit on

the resources that can use to execute tasks, thus there is an upper bound on the number of

coalitions it can join. An anytime approximate algorithm is proposed, which provides worst-

case guarantees on the solution quality. Although it permits to switch between cases with

non-overlapping and overlapping coalitions e�ciently, with and without agent types, the work

does not consider scenarios where the order in which agents join a coalition can a�ect the

value of the coalition [T. P. Michalak et al. 2014]. Hence, it is not suitable for real-time domains

such as disaster response.

A typical assumption in CF is that the values of potential coalitions are known with certainty,

and agents have complete information on the capabilities of potential partners. [Chalkiadakis

and Boutilier 2004, 2012] have proposed a model in which both coalition values and agent

capabilities are uncertain, and Bayesian Reinforcement Learning (RL) [Ghavamzadeh et al. 2015]

2That is, scenarios in which the emergence of the grand coalition, or the coalition of all agents, is either not
guaranteed or impossible [Sandholm, Larson et al. 1999; Sandholm and V. R. T. Lesser 1997].

14 Literature Review

is used to reduce such uncertainties. The rationale for using RL is that agents are supposed

to interact between each other by repeatedly exchanging messages, therefore the more they

interact, the more accurate their beliefs about each other’s capabilities. Their stability criterion,

called Bayesian core, makes agent ÿ choose coalition C based not only on the value of C, but

also on its value of information, de�ned as the quantity of information that ÿ can learn about

other agents if C was formed. Since the proposed inferential process does not consider the cost

of computation, it is not clear how the model can handle large-scale problems (Requirement R3).

Another limitation is that RL approaches, and machine learning in general3, are inapplicable to

our domains of interest due to their initial training phase: before they can generate feasible

solutions, the problem formulation may change, thus new training may become necessary

[Tsimenidis 2020]. Moreover, such approaches are notoriously sample-ine�cient, that is, they

usually need millions of interactions even for the simplest problems [Yang et al. 2021]. This

latency is particularly undesirable in real-time scenarios, where the situation can evolve quickly

(Assumption A3).

[Krausburg, Dix and Bordini 2021] introduced the Sequential Characteristic Function Game

(SCFG), which extends the CSG problem to a total order of structures de�ned by binary relations.

A variant of the clustering heuristic by [Farinelli, Bicego et al. 2017] is proposed to solve the

problem, and 2 examples show that the model is able to characterise disaster response scenarios

where agents can be organised in dynamic hierarchies of coalitions to respond to various events.

Although it opens up new research directions in game theoretic CF, the SCFG is only able to

meet our Assumptions A2 and A5.

[Czarnecki and Ayan Dutta 2021] use a maximum bipartite graph matching and a hedonic

CSG [Bogomolnaia and Jackson 2002] to address MRTA domains that require to minimise

formation costs and to maximise coalition values. Their approach is guaranteed to reach a Nash

equilibrium, and capable to solve problems with thousands of robots and hundreds of tasks

in seconds, which satis�es Requirement R3. However, it does not take any of our remaining

objectives into account.

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) [Seuken and Zilberstein 2008] are widely used in cooperative

coordination [Torreño et al. 2017], given their capability to model stochastic and sequential

decision making [Diederich 2001; M. Kolobov and A. Kolobov 2012; Sutton and Barto 2018],

and have been successfully applied to many agent-based models, multi-agent systems and

multi-robot systems. [Guestrin, Koller and Parr 2002; Kurniawati 2021; Nijs et al. 2021; R. G.

Smith and Davis 1981; Stone, Sutton and Kuhlmann 2005]. Since their computational complexity

3Not considering open problems such as brittleness, embedded bias, catastrophic forgetting, and explainability
[Choi 2021; Dehghani et al. 2021; Roy et al. 2021], as well as the non-trivial requirement to adjust parameters
according to available data and target application [Vasudevan et al. 2021]. In fact, in industry it is good practice to
start without machine learning [Yan 2021].

2.2 Markov Decision Processes 15

is super-polynomial in the number of agents [Bellman 2003], MDP algorithms are typically

approximate [Bertsekas 2012; Busoniu et al. 2017; Geramifard et al. 2011; Mahadevan and

Maggioni 2007; Sutton 1996].

In the standard MDP model, agents are able at every time step to observe the whole global state.

This is not possible in presence of uncertainty, where agents can only infer information on

the global state by observing the environment. The Partially Observable MDP (POMDP) model

extends the MDP model to such domains [Seuken and Zilberstein 2008]. Solving POMDPs is

much more computationally expensive than solving MDPs, because the optimal policy is a

mapping from a belief space (over the state space) to the action space, rather than from the

state space to the action space. Thus, the problem dimension is exponentially increased.

When the MDP and POMDP models are applied to multi-agent scenarios, the resulting models

are called Multi-agent (Partially Observable) Markov Decision Processes (MMDP and MPOMDP,

respectively). The main di�erence is that decisions are collective, therefore there are: a joint

agent state space; a joint action space, and a joint observation space. It is demonstrated that

the computational complexity of M(PO)MDPs is exponential in the number of agents [Redding

et al. 2012]. Furthermore, a limiting assumption of these models is that each agent is required

to have a full (MMDPs) or partial (MPOMDPs) individual observability of the global state. That

is, each agent must have the same full or partial knowledge of the joint state.

When agents decide and observe locally, the assumption of individual observability is in general

impractical, as it requires that every agent communicate its observations to every other agent

at every time step, with no communication costs. This is typically referred to as a free-comm

environment [Ponda et al. 2015]. However, in real-world situations like disaster response,

communication might have operational constraints, such as limited bandwidth or network

topology. To address this issue, various decentralised (PO)MDP variants have been proposed,

but they further increase the problem dimension and thus worsen the computational complexity.

The Decentralised MDP (Dec-MDP) model, �rst proposed by [Bernstein et al. 2002], replaces

the assumption of full individual observability with a full joint observability requirement: the

sum of all agent observations must be equal to the full observability of the global state. To

do so, agents share their observations through communication. However, this overhead has

NEXPTIME complexity. If the global state cannot be uniquely determined by a joint observation,

the Dec-MDP becomes a Dec-POMDP [Bernstein et al. 2002]. The Dec-POMDP has been proven

to be equivalent to the Multi-agent Team Decision Problem (MTDP) [Pynadath and Tambe

2002] in terms of computational complexity and expressiveness of representation [Seuken and

Zilberstein 2008]. If a free-comm environment is assumed, then Dec-MDP and Dec-POMDP

reduce to MMDP and MPOMDP, respectively [Goldman and Zilberstein 2004].

Since the communication infrastructure plays a key role in decentralised architectures, the

above models have also been extended to capture agent communication protocols. The resulting

variants, namely the Dec-POMDP-COM [Goldman and Zilberstein 2003] and the COM-MTDP

[Pynadath and Tambe 2002], de�ne communications as actions on which agents must make

16 Literature Review

explicit decisions. In other words, sending a message is also an action with an associated cost,

and every agent has to decide which messages to send at each time step, where the decision not

to send a message is modelled as a null message with zero cost. It is shown that Dec-POMDP,

MTDP, Dec-POMDP-COM and COM-MTDP are all NEXPTIME-complete in the number of

agents [Seuken and Zilberstein 2008].

In MDP models, the complexity of a problem is directly linked to the assumptions on observabil-

ity and communication [Seuken and Zilberstein 2008]. To keep the computational complexity

tractable, the problem is typically relaxed. Among the most interesting approximate MDP

model, we �nd the Transition Independent Dec-MDP (TI-Dec-MDP) [Becker et al. 2004], where

agents are independent and collaborate with each other through a global reward function of all

agent states and actions. The TI-Dec-MDP extends a factored version of Dec-MDP, in which

the global state is divided into 2 parts: information about local agent states, and information

about the environmental variables of interest. In this model, the dynamics that rule the state

transitions and observations of each agent are independent (i.e., they are functions only of the

local agent and the world state), and agents are only coupled through the global reward function.

Being based on independent agents, the TI-Dec-MDP scales in time better than other models,

but it is also more space demanding, because it requires that each agent stores its complete

state transition history [Becker et al. 2004; Redding et al. 2012]. Moreover, the independence

assumption does not allow to explicitly model situations due to combinations of agent states

(e.g., UAV collisions), even though these can be de�ned by assigning very large negative rewards

(e.g., instead of being de�ned as a set of constraints, collision avoidance could be integrated

into the global reward function). Other notable approximate models include:

• The decentralised sparse-interaction MDP [Melo and Veloso 2011], in which the agent

state space is subdivided into 2 subsets: states where agents need to cooperate, and states

where they can act independently;

• The group-aggregate Dec-MMDP [Redding et al. 2012], where each agent stores only

some properties of interest regarding other agent state-action spaces (e.g., the number of

agents in a particular area, or the location of a particular subset of agents);

• The auctioned POMDP [Capitan et al. 2013], in which agents solve their local version

of the global problem (optimised to their preferences), then negotiate a global solution

through an auction protocol;

• The POMDP with information rewards [Spaan, Veiga and Lima 2015], where agents

are rewarded for reaching certain levels of belief on target state features. This model

is designed for robot-assisted surveillance, where robots have to take into account the

in�uence of actions on the environment, as well as the potential information gain;

• The POMDP with macro-actions [Amato, Konidaris et al. 2016], aimed at solving MRTA

allocation problems. A macro-action is a set of actions necessary to complete a high-level

goal, and includes low-level actions such as moving, manipulating, and perception. [A. J.

2.2 Markov Decision Processes 17

Smith et al. 2019] extended the framework using Monte Carlo Tree Search (MCTS) to

search the action spaces and allow real-time planning;

• The mixed observed MDP [Y. Chen, Rosolia and Ames 2021], combined with a factor

graph formulation and solved with the decentralised Max-Sum algorithm (Section 2.3.1).

Summing up, computational complexity in MDPs can be reduced through approximate tech-

niques, but this yields to problem-dependent solutions. Concerning disaster response problems,

important models and solution techniques are listed below:

• Multi-agent POMDP with online Bayesian learning [Allen-Williams and Jennings 2010],

in which agent policies are de�ned through deterministic �nite state machines built with

Bayesian learning. Heuristics speci�c to search and rescue problems are used to estimate

the values of future states to add;

• Multi-agent POMDP with MCTS [Amato and Oliehoek 2015], which extends the seminal

online planning method by [Silver and Veness 2010] to multi-agent planning and learning

domains, with particular interest in �re-�ghting and sensor network problems with up to

10 agents.

• Multi-agent MDP with MCTS [Ramchurn, F. Wu et al. 2016]. The considered problem is

the CFSTP [Ramchurn, Polukarov et al. 2010], extended to capture the uncertainties of a

threat di�using in an aftermath area (e.g., a radioactive cloud), and the activity of �rst

responders. To cope with dimensionality issues, an approximate algorithm is developed

using MCTS to estimate the expected value of teams. Under the same settings, [Baker

et al. 2016] proposed a decentralised variant of MCTS that allows coordinating multiple

UAVs in the exploration of continuous disaster spaces, with the aim of maximising the

probability of discovering survivors;

• Multi-agent MDP with rejections, called ā-RMMDP [Ramchurn, Huynh, F. Wu et al.

2016], which is based on the probability that a set of agents TH rejects a joint action in a

given state, while each other agent + TH accepts it. A novel approach, called Two-Pass

Planning (TPP), is proposed to solve ā-RMMDPs ad hoc. Empirical evaluation shows that,

in human-in-the-loop settings, TTP task allocations are more likely to be accepted by �rst

responders, and also have a better completion rate with respect to human-on-the-loop

settings;

• POMDP with online planning and active sensing [F. Wu, Ramchurn and Xiaoping Chen

2016], whereMonte Carlo simulation (for one human) is combinedwith information-based

active sensing (for multiple UAVs) using an anytime heuristic;

• Qualitative Dec-POMDP (QDec-POMDP) with iterative planning [Bazinin and Shani 2018].

A QDec-POMDP is a Dec-POMDP in which the quantitative probability distributions over

state spaces are replaced with qualitative sets of states. Although this change improves

the scalability, it does not alter the computational complexity;

18 Literature Review

EE / EB Deterministic Stochastic

Static DCOP Probabilistic DCOP

Dynamic Dynamic DCOP –

Table 2.1 DCOP models [Fioretto, Pontelli and Yeoh 2018]. The columns refer to the environment
evolution (EE), while the rows refer to the environment behaviour (EB). In this thesis, we focus on the
�rst column.

• Dec-POMDP with multi-agent reinforcement learning [H.-R. Lee and T. Lee 2021] pre-

trained by behavioural cloning [H.-R. Lee and T. Lee 2021] to solve selective patient

admission problems, in which an emergency department strategically reassigns some of

the incoming patients to other emergency departments to preserve its medical resources

for future severe patients.

None of the solutions presented above meets all of our requirements (Section 1.3), because they

are either based on heuristics [Allen-Williams and Jennings 2010; Baker et al. 2016; Bazinin

and Shani 2018; F. Wu, Ramchurn and Xiaoping Chen 2016] (we aim at solutions with provable

guarantees), or rely on a centralised solver [Amato and Oliehoek 2015; Ramchurn, Huynh, F. Wu

et al. 2016; Ramchurn, F. Wu et al. 2016] (Requirement R1 impose decentralised solutions), or

are not usable in dynamic environments [H.-R. Lee and T. Lee 2021] (Assumption A5).

2.3 Distributed Constraint Optimisation Problems

A generalisation of the Distributed Constraint Satisfaction Problem [Yokoo, Durfee et al. 1998],

the Distributed Constraint Optimisation Problem (DCOP)4 [Farinelli, Vinyals et al. 2013] can be

classi�ed according to the following parameters [Fioretto, Pontelli and Yeoh 2018]:

• Agent behaviour : how agents act. It can be deterministic or stochastic;

• Agent knowledge: how much agents know about their state and the state of the environ-

ment. It can be total or partial;

• Agent coordination: how agents interact. It can be cooperative (common goals) or com-

petitive (individual goals);

• Environment behaviour : how the environment reacts to the execution of an action. It can

be deterministic or stochastic;

• Environment evolution: this parameter de�nes whether the problem changes over time

(dynamic) or not (static).

4Originally abbreviated to DisCOP [Meisels 2007].

2.3 Distributed Constraint Optimisation Problems 19

Table 2.1 lists the models associated with this classi�cation. The DCOP is a direct extension to

distributed environments of the Constraint Optimisation Problem (COP). It is characterised by

static and deterministic environment, deterministic agent behaviour, total agent knowledge, and

cooperative agent coordination. Dynamic DCOPs (DynDCOPs) are based on decision theory

concepts to model dynamic environments. Given our objectives (Section 1.3), in the next sections

we give a formal de�nition of DCOPs and DynDCOPs, along with a summary of state-of-the-art

algorithms. Following [Fioretto, Pontelli and Yeoh 2018, Section 4.3], we will use the term

incomplete to denote an algorithm that is either approximate or heuristic (i.e., not exact).

2.3.1 DCOP

Following [Petcu 2007, Section 2.1], we begin by formulating the centralised and discrete COP.

De�nition 2.1 A COP is a tuple P = ïX,D, Rð, where X is a set of Ą variables, X = {Ď1, & , ĎĄ},

D is a corresponding set of �nite domains, D = {D1, & , DĄ} such that Ďÿ * Dÿ, and R is a set of Ċ

cost functions, R = {Ĉ1, & , ĈĊ}, with Ĉÿ ∶ Dÿ1 × ď × Ĉÿℎ ³ R, 1 d ÿ d Ċ, ℎ d Ą. An assignment to P

is a set of ā values Ă = {Ă1,& , Ăā}, ā d Ą, where Ăÿ * Dÿ. If ā < Ą, Ă is called partial assignment,

and complete assignment otherwise. An optimal solution to P is a complete assignment X∗ that
minimises the sum of all costs:

X∗ = argmin
Ă*D
|Ă|=Ą

1
Ĉÿ*R

Ĉÿ(Ă) (2.1)

In the previous de�nition, the functions in R are soft constraints. Nonetheless, hard constraints

can be imposed by de�ning cost functions that evaluate feasible assignments to 0, and unfeasible
ones to +@. The discrete DCOP can be formulated as follows.

De�nition 2.2 A DCOP is a tuple P = ïA, P,Rÿÿð such that:

• A is a set of ă agents, A = {A1,& ,Aă};

• P = {COP1,& ,COPā} is a set of disjoint COPs (de�nition 2.1);

• Each COPÿ * P is called the local subproblem of agent Aÿ, who owns and controls it;

• Rÿÿ = {Ĉ1,& , ĈĊ} is a set of inter-agent cost functions de�ned over variables from multiple

local subproblems. In particular, each Ĉÿ * R expresses the value of all possible joint

decisions that can be made by the agents that control the local subproblems involved in

Ĉÿ. The agents involved in Ĉÿ have full knowledge of Ĉÿ and are called responsible for Ĉÿ.

An optimal solution to P is a complete assignment to all variables of all local subproblems, such

that the sum of all inter-agent cost functions is minimised.

Thus, a DCOP is a multi-agent system in which each agent controls its local COP. Hard

constraints can be imposed in DCOPs with the procedure described above for COPs. It is

20 Literature Review

commonly assumed that every cost function is known to all involved agents. The DCOP is

NP-hard [Farinelli, Vinyals et al. 2013]. A typical data structure for representing a DCOP is

the factor graph [Kschischang, Frey and Loeliger 2001; Loeliger 2004].

De�nition 2.3 A factor graph is a bipartite graph expressing the factors of a function. The

factor graph of a DCOP P is composed of:

• Variable nodes, representing the COP variables in P;

• Factor nodes, representing all COP constraints and inter-agent constraints in P;

• Undirected edges between each factor node and the variable nodes in its scope.

Other data structures to represent DCOPs are constraint graphs and pseudo-tree [Fioretto,

Pontelli and Yeoh 2018]. A constraint graph is an undirected hypergraph5 where nodes represent

the decision variables, and edges represent the constraints. Two nodes are in the same edge if the

respective variables occur in the same constraint [Rossi, Van Beek and Walsh 2006]. A pseudo-

tree is a connected pseudo-forest, that is, an undirected connected graph that contains at most

one cycle6. Constraint graphs allow to de�ne priorities between variables, and pseudo-trees

capture partial orders among the agents.

Depending on how decision variables are updated, DCOP algorithms are divided into syn-

chronous and asynchronous. Synchronous algorithms impose an order on how agents make

their decisions, typically through the data structure used for representation. In contrast, asyn-

chronous algorithms allow agents to make their decisions based uniquely on their local views of

the problem. Synchronous algorithms introduce dependencies between agents, but guarantee

that their local views are consistent with each other. In asynchronous algorithms, agents are

independent in their decision-making, thus they can process messages as they receive them,

but there is no consistency guarantee on the local views. [Peri and Meisels 2013] show that

inconsistent agent views may negatively impact network load and thus performance. Therefore,

it is never harmful to have some degree of synchronisation.

The design of a DCOP algorithm can be of 4 types [Mahmud, Khan and Jennings 2020; Yeoh 2010]:

• Search-based: the search space is pruned according to problem-dependent features. This

approach is typically derived from centralised solutions, such as Breadth-First Search (BFS)

or Depth-First Search (DFS) [Cormen et al. 2009];

• Inference-based: using dynamic programming or belief propagation, each agent aggregates

information from other agents to reduce its computation load;

• Sampling-based: the search space is sampled to generate approximate solutions through

statistical inference;

5A generalisation of a graph in which an edge can join 2 or more vertices.
6Connected acyclic graphs (trees) are therefore pseudo-trees.

2.3 Distributed Constraint Optimisation Problems 21

Algorithm Error bound Time complexity Anytime
Space complexity

per agent
Number of
messages

Message size
Local

communication

AFB ✔ O(ĂĄ) ✔ O(Ą) O(ĂĄ) O(Ą) ×
ADOPT ✔ O(ĂĄ) × O(Ą + ĂĂ) O(ĂĄ) O(Ą) ✔
DPOP ✔ O(Ăč) × O(Ăč) O(Ą) O(Ăč) ✔

DSA × O(ĊĂĂ) × O(Ă) O(ĊĄĂ) O(1) ✔
D-Gibbs ✔ O(ĊĂĂ) ✔ O(Ă) O(ĊĄĂ) O(1) ✔
ā-optimal × O(ĂĂč) ✔ O(Ăč) O(Ą2Ă) O(Ăč) ×
Max-Sum × O(ĊĂĂ) × O(ĂĂ) O(ĊĄĂ) O(Ă) ✔

Table 2.2 Characteristics of main DCOP algorithms [Fioretto, Pontelli and Yeoh 2018]. The top side
rows refer to exact algorithms, while those on the bottom side refer to incomplete algorithms.

• Population-based: sets of candidate solutions are used to represent search subspaces and

avoid local optima.

In addition to computational complexity, DCOP algorithms can also be characterised according

to their communication overhead. For instance, the number and size of messages, size of agent

neighbourhoods, and whether communication is local (i.e., the messages are sent to neighbours

only) or global (i.e., the messages are sent to all). Table 2.2 shows the properties of the main

algorithms that we report below. We have chosen this set on the basis of relevance to our context.

For instance, we preferred ADOPT instead of OptAPO [Grinshpoun and Meisels 2008] because,

although both partially centralised, OptAPO has global communication, and we excluded MGM

[Maheswaran, Pearce and Tambe 2004] because it is the deterministic predecessor of DSA,

which has the same computational complexity and is more used. Apart from the algorithms

listed in Table 2.2, we also report 7 recent algorithms not present in the latest DCOP survey

[Fioretto, Pontelli and Yeoh 2018], namely: GDBA [Okamoto, Zivan, Nahon et al. 2016], CoCoA

[Leeuwen and Pawelczak 2017], ACO_DCOP [Z. Chen, T. Wu et al. 2018], COOPT [Leite and

Enembreck 2019b], LSGA [Z. Chen, L. Liu et al. 2020], AED [Mahmud, Choudhury et al. 2020]

and DPSA [Mahmud, Khan and Jennings 2020]. We adopt the following notation: Ą is the

number of decision variables; Ă is the size of the largest decision variable domain; č is the

induced width of the pseudo-tree; Ă is the largest number of agent neighbours; Ċ is the number

of iteration cycles (in incomplete algorithms).

AFB Asynchronous Forward Bounding [A. Gershman, Meisels and Zivan 2009] is an exact,

asynchronous and search-based algorithm, which uses a branch-and-bound approach and a

shared data structure called Current Partial Assignment (CPA). As the name indicates, the CPA

stores the current partial assignment to the decision variables of the problem. The CPA starts

empty and is extended in sequence by each agent. When an agent has to assign values to its

decision variables in the CPA, it is called the assigning agent; agents that have not done it yet

are called unassigned agents. Each assigning agent ÿCPA sends a copy of the CPA forward to

each unassigned agent. Upon receiving a CPA copy, each unassigned agent estimates a lower

bound on the cost of the CPA based on its local view of the problem, and sends it to ÿCPA. Once

ÿCPA has (asynchronously) received the estimations from all unassigned agent, it uses them

to compute a new lower bound. If this new lower bound is greater than the current upper

22 Literature Review

bound, that is, the cost of the best solution found so far, ÿCPA starts a backtracking phase. The

computational complexity of AFB depends entirely on the �rst assigning agent ÿ1CPA: time and

message size are both O(Ą), since ÿ1CPA evaluates, stores and sends the value assignment of all

decision variables; the number of messages is O(Ą), as ÿ1CPA lists all possible value combinations

of the decision variables, and sends a message for each. Because assigning agents may broadcast

messages, communication is not local.

ADOPT Asynchronous Distributed OPTimisation [Junges and Bazzan 2008; Modi et al. 2005]

is an exact, asynchronous and search-based algorithm. It was the �rst DCOP algorithm able

to provide optimal solutions through asynchronous local communication. Its operation is as

follows. The agents are prioritised in aDepth-First Search (DFS) [Cormen et al. 2009] pseudo-tree

in which each node has a single parent and multiple children. Assignments are propagated

downwards the tree, while costs are propagated upwards. Additionally, threshold messages

are propagated downwards to minimise redundant searches. Each agent node stores lower and

upper bounds on the cost of the partial assignment, expressed by the subtree of which it is

root. The DFS structure allows agents to choose partial assignments using a BFS strategy. In

other words, each agent always chooses the partial assignment with the smallest lower bound.

Through the �ow of messages, the lower and upper bounds of each agent node are iteratively

tightened until they coincide. When that happens, the node is said to be terminated. The

whole procedure is completed when all nodes terminate. This is detected by the root agent,

which aggregates the global cost bounds and detects the termination of its children. Similar

to AFB, the time complexity of ADOPT is O(ĂĄ), since the root agent needs to evaluate all

possible value combinations of all its children. Accordingly, the message size is O(Ą). The
space complexity per agent is O(Ą + ĂĂ), where O(Ą) is used to store the partial assignments

under investigation, and O(ĂĂ) is used to store the lower and upper bounds. Finally, the tree

structure implies a local communication, while the BFS strategy for backtracking prevents

the algorithm from being anytime.

DPOP Distributed Pseudo-tree Optimisation Procedure [Junges and Bazzan 2008; Petcu and

Faltings 2005a] is an exact, synchronous and inference-based algorithm. Based on the Sum-

Product algorithm [Kschischang, Frey and Loeliger 2001], it starts by ordering agents through a

DFS pseudo-tree, then it explores the search space through a dynamic programming technique.

Like ADOPT, the exploration is done via message propagation, except that the messages contain

utility values, given that the algorithm is based on maximisation problems. Once the pseudo-tree

is constructed, there are 2 message propagations: from leaves to root, and then from root to

leaves. In the �rst propagation, each node aggregates the utility messages from its children,

which then uses to compute its utility message to send to its parent. In the second propagation,

each node computes the optimal overall utility of its variable and sends a message to its children

containing its assignment. Given the pseudo-tree structure, the complexity for space, time

and message size is the same: O(Ăč). The number of messages is O(Ą), since each agent sends

2.3 Distributed Constraint Optimisation Problems 23

at most Ą messages at each propagation phase, and communication is local. An approximate

version of DPOP has been proposed by [Petcu and Faltings 2005b].

DSA The term Distributed Stochastic Algorithm [W. Zhang et al. 2005] identi�es a class of

incomplete, synchronous and search-based algorithms. The basic structure is the following.

Agents initially give random utilities to their assignments, then loop through a sequence of

actions until all constraints are satis�ed. At loop iteration Ċ, each agent sends its utility to

the neighbours if it changed in iteration Ċ − 1, then it receives their eventual new utilities.

The neighbourhoods are de�ned by the data structure used to represent the problem. Upon

receiving its neighbour messages, each agent stochastically decides whether to keep its current

utility (and thus, current assignment) or change it according to some strategy, to reduce the

number of violated constraints. The DSA algorithms vary in how this strategy is de�ned. The

time complexity is O(ĂĂ), given that each agent has to calculate the utility of it assignments

considering the utilities of its neighbours. The space complexity is O(Ă), since each agent sends

a message to each neighbour. Consequently, the total number of messages is O(ĊĄĂ). The size
of each message is O(1), given that it only contains the value of a given assignment. Finally,

agents communicate only with their neighbours. Even though DSA algorithms have no quality

guarantees, their performance has been extensively demonstrated in practice, to the point that

they are commonly used as a baseline in DCOP benchmarks [Fioretto, Pontelli and Yeoh 2018,

Section 4.4.2]. The state-of-the-art variant is DSA-SDP [Zivan, Okamoto and Peled 2014].

D-Gibbs Distributed Gibbs [D. T. Nguyen et al. 2019] is an incomplete, synchronous and

sampling-based algorithm that reduces the DCOP formulation to a maximum a posteriori

estimation, to which it applies the Gibbs sampling process [S. Geman and D. Geman 1993]

in a decentralised manner. Operating on a pseudo-tree arrangement, each agent computes a

joint probability distribution of its current partial assignment, which then uses to decide its

value assignments. Such assignments are propagated down to the leaves, then cost information

is propagated up to the root. The process continues until convergence or a �xed number of

iterations is reached. The time complexity of D-Gibbs is O(ĊĂĂ), as each agent computes the cost

of an assignment considering the cost values received by its children. The space complexity is

O(Ă), since each agent only needs to store the current values of its children. The total number

of messages is O(ĊĄĂ), given that each agent sends a message to each of its children in the �rst

propagation phase. The size of each message is constant, because agents only send values or

costs. Finally, given the pseudo-tree structure, communication is local.

ā-Optimal [Pearce and Tambe 2007] is a class of incomplete, synchronous and search-based

algorithms, which decomposes a DCOP into a set of subproblems, each of which involves at

most ā agents. The solution process continues until no subset of ā or fewer agents can improve

the global solution. These algorithms are anytime and guaranteed to �nd a lower bound on

the solution quality. However, to eliminate con�icts between partial solutions, each agent may

24 Literature Review

need to communicate with every other agent. Consequently, communication is not local, and

both time and space complexity are exponential in the number of agents. Such limitations

are also present in the variants proposed in [Kiekintveld et al. 2010; Vinyals et al. 2011]. The

ā-optimality concept can also be used to characterise the solution quality of a DCOP algorithm

in an o�ine manner, that is, without solving speci�c problem instances, and consequently

providing general results [Farinelli, Vinyals et al. 2013].

Max-Sum [Farinelli, Rogers et al. 2008] is an incomplete, synchronous and inference-based

algorithm. Based on a factor graph representation of the problem, it optimises the marginal

costs of each decision variable through belief propagation, similar to the Sum-Product algorithm

[Kschischang, Frey and Loeliger 2001]. Convergence to an optimal solution is guaranteed for

acyclic factor graphs only. The space and time complexity is O(ĂĂ), since each agent needs to

store and optimise on the assignments propagated from its neighbours. As a consequence, the

total number of messages is O(ĊĄĂ). The size of each message is O(Ă), since it contains the value
of all the possible assignments of each variable. Max-Sum has been widely extended, among

the most notable variants we mention: bounded Max-Sum [Rogers et al. 2011; Rollon and

Larrosa 2012], which bounds the solution quality by �rst turning cyclic graphs into spanning

trees; Max-Sum_ADVP, which converges polynomially on acyclic graphs using a double-phase

value propagation [Z. Chen, Deng and T. Wu 2017; Zivan and Peled 2012]; Max-Sum with

damping [Cohen and Zivan 2017], which is guaranteed to converge to optimal solutions in

weakly polynomial time. Max-Sum and its variants have been successfully deployed in disaster

response [Delle Fave, Farinelli et al. 2012; Delle Fave, Rogers et al. 2012; Delle Fave, Xu et al.

2010; Pujol-Gonzalez, Jesus Cerquides, Meseguer et al. 2018; Ramchurn, Fischer et al. 2015;

Ramchurn, Huynh, Ikuno et al. 2015; Ramchurn, Huynh, F. Wu et al. 2016; Stranders, Delle Fave

et al. 2010; Stranders, Farinelli et al. 2009; Yedidsion, Zivan and Farinelli 2018] and various

other domains, such as sensor networks, service-oriented computing, smart grid, and tra�c

management [Fioretto, Pontelli and Yeoh 2018].

GDBA Generalised DBA [Okamoto, Zivan, Nahon et al. 2016] is a class of incomplete, syn-

chronous and search-based algorithms that extend the Distributed Breakout Algorithm (DBA)

[Yokoo and Hirayama 1996] to solve DCOPs. These algorithms are not anytime, but can be

made so with the Anytime Local Search framework7 [Zivan, Okamoto and Peled 2014]. More-

over, they have polynomial space and time complexity, and local communication. The results

reported in [Mahmud, Khan and Jennings 2020; Zivan, Okamoto and Peled 2014] suggest that

the (N,NM,T) variant has similar performance to DSA-SDP (Page 23). Each GDBA variant

has the same time and space complexity as DBA.

7In general, this framework can be used with any other incomplete and synchronous DCOP algorithm that is
not anytime, such as DSA or Max-Sum.

2.3 Distributed Constraint Optimisation Problems 25

CoCoA Cooperative Constraint Approximation [Leeuwen and Pawelczak 2017] is an incomplete,

asynchronous and search-based algorithm based on: a one-step look ahead to assess how much

an assignment might impact neighbours; a unique-�rst approach that selects an assignment only

if it is a unique local optimum, and a global state machine that helps the algorithm to terminate.

It has 2 limitations: the state machine forces the communication to be global, while the one-step

look ahead does not make it possible to use the algorithm in dynamic environments (see Section

4.1.3 for a detailed explanation).

ACO_DCOP Ant Colony Optimisation DCOP [Z. Chen, T. Wu et al. 2018] was the �rst

population-basedDCOP algorithm, based on the homonymous swarm intelligence metaheuristic

[Dorigo, Birattari and Stutzle 2006]. It is incomplete and asynchronous. Moreover, it is proven to

be anytime, and has polynomial time and space complexity. Its drawback is the requirement of

global communication, since ants (agents) lay pheromone to mark the promising paths (solution

subspaces) that other members of the colony should follow (investigate).

COOPT Coupled Oscillator OPTimisation [Leite and Enembreck 2019b] is an incomplete,

synchronous and search-based algorithm inspired by the synchronisation process in coupled

oscillator networks. It is anytime, scalable and guaranteed to converge, and has a communication

overhead similar to DSA-SDP. However, it uses a global communication model.

LSGA Local Search Genetic Algorithm [Z. Chen, L. Liu et al. 2020] constitutes a population-

based hybrid framework that uses genetic operators to improve local explorations and avoid

local optima. Solutions are constructed by global �tness functions, which detect and solve

con�icts between partial candidate solutions. LSGA is incomplete and asynchronous, with

linear time and space complexity. Although it can be used in conjunction with any search-based

algorithm, it cannot provide anytime solutions.

AED Anytime Evolutionary DCOP [Mahmud, Choudhury et al. 2020] is an incomplete, syn-

chronous and population-based algorithm based on the following evolutionary process. Each

agent starts with a set of randomly generated candidate solutions (local population). In a series

of iterations, the candidate solutions are �rst mutated (reproduction), then the least promising

ones are discarded with a stochastic procedure. AED is anytime, has polynomial time and

space complexity, and uses a local communication model. Its performance depends on tuning

parameters (³ and ´), which de�ne the balance between exploration and exploitation of the

solution space. Consequently, it may require a non-trivial tuning phase to achieve the best

results with speci�c problems. In fact, in [Mahmud, Khan and Jennings 2020], it (slightly)

outperforms LSGA in only 2 out of 5 test suites.

26 Literature Review

DPSA Distributed Parallel Simulated Annealing [Mahmud, Khan and Jennings 2020] is an

incomplete and asynchronous algorithm, with an approach based on both population and local

search, similar to LSGA. It runs parallel instances of the Distributed Simulated Annealing

algorithm [Arshad and Silaghi 2004], each of which is �ne-tuned using Cross-Entropy sampling

(CE) [Kroese, Taimre and Botev 2011, Section 9.7.3] to avoid convergence to local optima [Zivan,

Okamoto and Peled 2014]. Like AED, it is anytime, has polynomial time and space complexity,

is based on a local communication model, and depends on initial parameters (the CE vector ¹).

To alleviate the last point, the authors provide a pre-processing phase called Greedy Baseline

(GB). Despite requiring fewer parameters than AED, DPSA still needs an initial tuning. In the

scenarios we are interested in, �rst responders may be deployed at short notice, or the situation

may evolve rapidly, hence prior knowledge about the search space of ¹ may not be available,

and the GB phase may have poor performance.

2.3.2 Dynamic DCOP

In real-world scenarios, the environment may change over time. In disaster response, for

instance, new information may become available after the start of the mission (e.g., an update

of the number of victims, or new evacuation priorities), agents may fail, or more may be added

to the system. The Dynamic DCOP (DynDCOP) is a generalisation of the DCOP capable of

addressing such situations. Like the DCOP, it has deterministic agent behaviour, total agent

knowledge, cooperative agent coordination, and deterministic environment behaviour. The

only di�erence is that the environment evolution is dynamic.

De�nition 2.4 A DynDCOP is a sequence of DCOPs, D1, & ,DT, where each DĊ is the DCOP

at time step Ċ. The objective is to optimally solve DĊ , "Ċ d T.

Although it is assumed that agents have total knowledge about their current DCOP, they are

unaware of how the problem may changes in the future. The naive solution to a DynDCOP

is to solve each DĊ with a DCOP algorithm. However, a clever algorithm design can exploit

the self-stabilising property of dynamical systems [Schneider 1993] and minimise the number

of iterations necessary to converge to a solution.

De�nition 2.5 A DynDCOP is self-stabilising if and only if: a solution to DĊ is obtained from

a solution to DĊ−1 (convergence); a solution does not change after convergence (closure).

The DynDCOP is NP-hard, since it requires to solve a series of DCOPs. Dynamic environments

pose a challenge to the DCOP research community [Barambones, Imbert and Moral 2021;

Fioretto, Pontelli and Yeoh 2018; Leite, Enembreck and Barthes 2014; V. Lesser and Corkill 2014;

Petcu 2007], to the extent that only four DynDCOP algorithms have been proposed to date8:

the exact I(-BnB)-ADOPT and S-DPOP, and the incomplete SBDO and FMS.

8We exclude algorithms proposed for variants of the DynDCOP [Barambones, Imbert and Moral 2021, Section
4.4], as they are less general, or are extensions of DCOP algorithms, such as [Zivan, Yedidsion et al. 2015].

2.3 Distributed Constraint Optimisation Problems 27

Algorithm Error bound Time complexity Anytime
Space complexity

per agent
Number of
messages

Message size
Local

communication

I(-BnB)-ADOPT ✔ O(TĂĄ) × O(Ą + ĂĂ) O(TĂĄ) O(Ą) ✔
S-DPOP ✔ O(TĂč) × O(Ăč) O(TĄ) O(Ăč) ✔

FMS × O(TĊĂĂ) × O(ĂĂ) O(TĊĄĂ) O(Ă) ✔
SBDO ✔ O(TĂĄ) ✔ O(Ą) O(TĂĄ) O(Ą) ✔

Table 2.3 Characteristics of the DynDCOP algorithms proposed to date, where T denotes the total
number of time steps, and the other variables are the same as those used in Table 2.2. The top side rows
refer to exact algorithms, while those on the bottom side refer to incomplete algorithms.

I(-BnB)-ADOPT Incremental anyspace (Branch-and-Bound) ADOPT [Yeoh et al. 2015] is an

exact, asynchronous and search-based algorithm that extends (Branch-and-Bound) ADOPT. In-

spired by theMulti-agent Organisation with Bounded Edit Distance (MOBED) algorithm [Sultanik,

Lass and Regli 2009], in order to minimise computations, it uses an incremental pseudo-tree

reconstruction that reuses parts of the pseudo-tree of DĊ−1 to construct the pseudo-tree of DĊ .

The computational complexity and communication requirements are the same as in ADOPT.

However, having the anyspace property, this variant can use more computational space, when

available, to improve the runtime.

S-DPOP Self-stabilising DPOP [Petcu and Faltings 2005b] is an extension of DPOP in which

both the DFS pseudo-tree generation and the message propagation phases are re-executed

whenever the DCOP formulation changes. The computational complexity and communication

requirements are the same as those of DPOP. In addition, when the problem changes, S-

DPOP stabilises in O(ĊĂ) utility messages (�rst propagation) and in O(ā) assignment (second

propagation), where ĊĂ is the depth of the pseudo-tree, and ā is the number of utility functions.

SBDO Support-Based Distributed Optimisation [Billiau, Chang and Ghose 2012] is an incom-

plete, asynchronous and search-based algorithm that extends the Support-Based Distributed

Search algorithm [Harvey, Chang and Ghose 2006] to multi-agent systems. In SBDO, each agent

tries to send stronger arguments over time to in�uence its neighbours. Despite being anytime,

SBDO has exponential runtime, being similar to SyncBB [Hirayama and Yokoo 1997]. [Billiau,

Chang and Ghose 2014] proposed an extension to solve multi-objective DCOPs.

FMS Fast Max-Sum [Ramchurn, Farinelli et al. 2010] is the dynamic version of the incomplete

Max-Sum, in which, at iteration Ċ, solution stability is guaranteed by recalculating only the

factors that changed betweenDĊ−1 andDĊ . Thus, the computational complexity does not change.

FMS has been extended to provide error bounds on the solution [Macarthur, Farinelli et al. 2010],

and to speed up the message propagation via branch-and-bound pruning [Macarthur, Stranders

et al. 2011]. In addition, it can be further accelerated using the generic approaches proposed by

[Z. Chen, Xingqiong Jiang et al. 2019; Khan, Tran-Thanh and Jennings 2018; Zaoad et al. 2021].

28 Literature Review

2.4 Our Chosen Approach

In the previous sections, we discussed state-of-the-art cooperative coordination approaches

based on game theory, decision theory and constraint programming. As we mentioned in

Section 1.3, the approach we choose is constraint programming, and speci�cally the DynDCOP.

We give our technical motivations in the following paragraphs.

Why Not Game Theory Despite the advantages o�ered by the analytical approach, game

theory has some limitations in our context. First of all, it is possible to de�ne models applicable

to speci�c problems, but it is not possible to de�ne a general model to govern rational choice

in interdependent situations [Zeng and Sycara 1996]. Moreover, it is often assumed perfect

computational rationality [S. J. Gershman, Horvitz and Tenenbaum 2015; Lewis, Howes and

S. Singh 2014], meaning that it is not necessary to perform calculations to �nd an acceptable

solution in a set of possible outcomes. This is not realistic, since an agent can know its own

space of solutions, but not that of others. Nonetheless, even if there was a shared solution space,

knowing that a solution exists does not generally imply knowing what it is. Most CF models

assume a limiting superadditive environment, since otherwise the computational complexity

can be exponential [Sandholm, Larson et al. 1999, Section 2.2]. The computations can be

distributed and hence decentralised (Requirement R1), but not always this process is balanced,

in the sense that some agents will have to compute more than others. This issue is known

as coalition imbalance, and can lead to situations where some agents have a dominant share

of the capabilities. An imbalanced coalition relies more on its dominant agents, thus it is

less fault-tolerant (Requirement R4). There are methods for partitioning the computational

load almost equally, such as in auctions and blockchains, but at the cost of a major increase

in complexity. In auctions, for instance, two open problems are e�ciently minimising the

communication overhead [Gerkey and Matarić 2004], and characterising the ability of agents

to respond quickly to dynamic environments [Dias et al. 2006].

Why Not Decision Theory In decision theory, although there are algorithms able to handle

large domain spaces successfully [Capitan et al. 2013], scalability remains a critical challenge,

especially with POMDP formulations [Amato, Chowdhary et al. 2013; Seuken and Zilberstein

2008]. Popular models such as the Dec-POMDP [Bernstein et al. 2002] or the Networked

Distributed POMDP [Nair, Varakantham et al. 2005] are NEXP-complete even for scenarios

with just 2 agents, therefore they are limited to very small problems or subject to conditions

with loss of generality [Kumar, Zilberstein and Toussaint 2011]. Other common models require

noiseless channels or instantaneous communication between agents [Nair, Roth and Yohoo

2004; Pynadath and Tambe 2002; Roth, Simmons and Veloso 2005], which in general is not

possible in decentralised environments like disaster response.

2.5 Problems Similar to the CFSTP 29

Why Constraint Programming For the above reasons, we regard the DynDCOP to be the

most suitable for modelling distributed multi-agent cooperative coordination in dynamic en-

vironments. This model allows to consider the aspects that we aim for, such as autonomous

decision-making, cooperation, and resilience (Section 1.3). Moreover:

• Communication strategies and problem solving are directly linked in (Dyn)DCOPs: the

structure of the interaction graph can be exploited to generate e�cient solutions;

• By de�nition, (Dyn)DCOPs focus on decentralisation, in particular because the constraints

are decomposable, and agents can cooperatively de�ne global solutions through local

communication, as required in point-to-point environments such as those considered in

disaster response;

• As we have seen in Section 2.3, there is a vast choice of (Dyn)DCOPmodels and algorithms,

many of which have been successfully applied in disaster response, as well as many other

real-world scenarios [Barambones, Imbert and Moral 2021; Jesus Cerquides et al. 2013;

Fioretto, Pontelli and Yeoh 2018].

As anticipated by Figure 1.4, in the following chapters we will come to reduce both the CFSTP

and the novel MARSC to the DynDCOP model. Using this reduction, we will create the

�rst DynDCOP algorithm to be simultaneously anytime, e�cient, convergent, and with local

communication.

2.5 Problems Similar to the CFSTP

Many problems similar to the CFSTP have been studied to date [Dadvar and Habibian 2021;

Juárez, Santos and Brizuela 2021; Murphy 2016; Murphy, Tadokoro and Kleiner 2016; Paraskevo-

poulos et al. 2017; Queralta et al. 2020; Rizk, Awad and Tunstel 2019; Seenu et al. 2020]. We

mention below those that come closest to our target (Section 1.3). [Scerri et al. 2005] were

the �rst to investigate time windows and interdependent simultaneous tasks in cooperative

coordination, while [Service and Adams 2011; Vig and Adams 2006] applied the seminal work

of [Shehory and Kraus 1998] to multi-robot systems. However, none of them not consider

situations where task scheduling is required (Assumptions A1, A2, and A5). [Vig and Adams

2006] was extended in [Vig and Adams 2007] with task preemption and precedence relations,

but no spatio-temporal constraints nor multiple possible locations per task (Assumptions A1

and A3). [Zlot 2006] de�ned a problem where tasks are decomposable in multiple ways, but do

not have precedence relations (Assumption A2). [A. J. Singh, Dalapati and Animesh Dutta 2014;

Su et al. 2018] studied multi-agent CF in dynamic environments, the former only with task

priorities and the latter only with temporal constraints, while [Luo, Chakraborty and Sycara

2015] focused on multi-robot CF only with deadline constraints. [Ayari, Hadouaj and Ghedira

2017] proposed a dynamic, decentralised and e�cient CF heuristic for MRTA problems with

30 Literature Review

priority constraints, however ignoring spatio-temporal constraints, task resources and multiple

possible locations per task (Assumptions A1, A3 and A4). [Nelke, Okamoto and Zivan 2020;

Tkach and Amador 2021] studied a CFSTP variant with task weights and soft deadlines, but

without taking into account task precedences, time windows and multiple possible locations

per task (Assumptions A1 − 3). [Bischo� et al. 2020] considered multi-agent CF with task

precedences and no spatio-temporal constraints (Assumption A1). [Suslova and Fazli 2020]

focused on multi-agent CF with time windows and ordering constraints, but in the special

case where each task has the same weight and only one possible location, while coalitions are

superadditive (i.e., the duration of a task depends only on the size of the assigned coalition).

Similar to [Krausburg, Dix and Bordini 2021] (Section 2.1), [Präntare, Appelgren and Heintz

2021; Präntare and Heintz 2020] proposed a generalisation of the CSG problem able to capture

task allocation with ordering constraints, but without spatio-temporal constraints, multiple

possible locations per task, and task workloads (Assumptions A1, A3, and A4). [Arif 2021]

applied evolutionary computation to multi-robot CF considering only homogeneous robots

and no operational constraints.

Although they do not focus on CF, the following works have features of interest to our do-

main. [Barbulescu et al. 2010] considered task allocation for a team of agents with temporal,

ordering and synchronisation constraints. As teams di�er from coalitions (Figure 1.3), they

do not consider routing constraints due to CF over time and in di�erent locations. [Korsah

2011] investigated spatio-temporal constraints, task precedences and multiple possible loca-

tions per task, while [Godoy and Gini 2013; Nunes, McIntire and Gini 2017] studied problems

with time windows, and spatial and precedence constraints. [Maoudj et al. 2015] studied

MRTA with precedence constraints, robot capability constraints, and robot resource constraints.

[Nanjanath and Gini 2010] applied combinatorial auction to MRTA in dynamic environments,

with precedence constraints and time windows. [Whitbrook, Meng and Chung 2015, 2017,

2019] proposed distributed and resilient heuristics for real-time task allocation in multi-agent

systems. [Feo-Flushing, Gambardella and Di Caro 2021] proposed decentralised, anytime and

e�cient algorithms for multi-robot routing and scheduling with heterogeneous agents, non-

atomic tasks (i.e., preemptable), task workloads, and spatio-temporal constraints. Targeting

large-scale multi-UAV �ood response problems, [Ghassemi and Chowdhury 2021] de�ned a

bigraph-based, scalable and online algorithm for MRTA in dynamic environments, with tasks

deadlines and limited robot resources. [B. A. Ferreira, Petrović and Bogdan 2021] created a

distributed metaheuristic for multi-robot scheduling with precedence constraints, based on

a hierarchical task representation.

In the taxonomy of [Korsah, Stentz and Dias 2013], which extends that of [Gerkey and Matarić

2004], the CFSTP is de�ned as a Cross-schedule Dependent Single-Task Multi-Robot Time-extended

Assignment (XD-ST-MR-TA) problem, where:

• ST means that each robot may work on at most one task at a time;

• MR implies that a task may require multiple robots, and thus coalition formation;

2.5 Problems Similar to the CFSTP 31

• TA indicates that each robot may have to work on multiple tasks according to some

schedule;

• XD means that the schedule of an agent may also depend on the schedules of other agents.

For instance, if we have 2 tasks and 2 agents, and the �rst task requires 2 agents, while

the second task requires only one, then the �rst task can be executed only if the second

has been completed, or no agent is working on it.

To date, the main approaches proposed to solve XD-ST-MR-TA problems utilise linear pro-

gramming [Bogner et al. 2018; Koes, Nourbakhsh and Sycara 2005; Korsah 2011], automated

negotiation [Krizmancic et al. 2020] and memetic algorithms [C. Liu and Kroll 2015]. However,

either they do not produce anytime solutions [Krizmancic et al. 2020; C. Liu and Kroll 2015], or

do not have theoretical properties [Bogner et al. 2018], or are based on models simpler than the

CFSTP [Koes, Nourbakhsh and Sycara 2005; Korsah 2011]. Multi-agent approaches that solve

similar problems typically make use of social insects [Amorim, Alves and Freitas 2020; Dos San-

tos and Bazzan 2011; Paulo R. Ferreira, Bo�o and Bazzan 2007; Paulo Roberto Ferreira et al. 2010;

Schwarzrock et al. 2018], automated negotiation [Gallud and Selva 2018; Godoy and Gini 2013;

Nelke, Okamoto and Zivan 2020; Tkach and Amador 2021; Ye, M. Zhang and Sutanto 2013] and

evolutionary computation [Zhou et al. 2020], but without considering the anytime property.

Although each of the works considered has interesting aspects, we note that no one meets all

our requirements and assumptions. Consequently, given the importance of the CFSTP (Section

1.2), after �lling main gaps in its literature in Chapters 4 and 5, we will conclude by presenting

in Chapter 6 a generalisation able to capture more complex problems in disaster response, as

well as in real-time CF problems in general.

Chapter 3

Background

In the previous chapter, we have seen that the CFSTP has been tackled using approaches from

all �elds of research reviewed [Baker et al. 2016; Nelke, Okamoto and Zivan 2020; Ramchurn,

Farinelli et al. 2010; Ramchurn, Polukarov et al. 2010; Ramchurn, F. Wu et al. 2016; Tkach and

Amador 2021]. As shown in Chapter 1, and as will also be evident below, the reason is that it

generalises or shares similarities with classic combinatorial optimisation problems.

This chapter will serve as the basis for the rest of the thesis. In Section 3.1, we present an

improved version of the constraint program of the CFSTP given by [Ramchurn, Polukarov et al.

2010]. More precisely, we extend the de�nition of coalition value, de�ne the constraints with

fewer and simpler equations, and introduce the concept of solution degree. In Section 3.2, we

illustrate CFLA, the state-of-the-art CFSTP algorithm. In Chapter 4, we improve the design of

CFLA, then we eliminate its limitations by formulating a novel algorithm. Finally, we give the

original Mixed Integer Program (MIP) [Wolsey 2020] of the CFSTP in Section 3.3, which will be

shown to be equivalent to a novel and signi�cantly shorter program in Chapter 5.

3.1 The CFSTP Model

We �rst give our basic de�nitions (Section 3.1.1), then characterise coalition allocation and

coalition values (Sections 3.1.2 − 3.1.3), and �nally give the constraints (Section 3.1.4) and the

objective function of the CFSTP (Section 3.1.5).

3.1.1 Basic De�nitions

Let V = {Č1, & , Čă} be a set of ă tasks and A = {ÿ1, & , ÿĄ} be a set of Ą agents. Let L be the �nite

set of all possible task and agent locations. Time is denoted by Ċ * N, starting at Ċ = 0, and

agents travel or complete tasks with a base time unit of 1. The time units needed by an agent to

travel from one location to another are given by the function Ä ∶ A × L × L ³ N. Having A in

33

34 Background

the domain of Ä allows to characterise di�erent agent features (e.g., speed or type). Let ĂČ be the

�xed location of task Č, and let ĂĊÿ * L be the location of agent ÿ at time Ċ, where Ă0ÿ is its initial

location and is known a priori. Each task Č has a demand (µČ, čČ) such that µČ is the deadline of
Č, or the time until which agents can work on Č [Nunes, Manner et al. 2017], and čČ * R≥0 is the
workload of Č, or the amount of work required to complete Č. We denote the location of agent ÿ

at time Ċ by ĂĊÿ * L, the times at which ÿ starts and �nishes working on task Č by ĉČÿ * [0, µČ] and
Ą Čÿ * [ĉČÿ, µČ], respectively, and the maximum problem time by ĊăÿĎ = maxČ*V µČ.

3.1.2 Coalition Allocations

A subset of agents C � A is called a coalition. At time Ċ, the rationale for allocating coalition C

to task Č is that C completes Č in the fewest time units. An agent allocation is denoted by Äÿ→Č
Ċ

and represents the fact that agent ÿ works on task Č at time Ċ. The set of all agent allocations

is denoted by:

T =
{
Äÿ→Č
Ċ

}
ÿ*A, Č*V, Ċ*[0, ĊăÿĎ]

(3.1)

and contains all possible agent allocations. A coalition allocation is denoted by ÄC→Č
Ċ and

represents the fact that coalition C works on task Č at time Ċ. Given a set of agent allocations

T2 � T, and a time Ċ2 ≤ ĊăÿĎ , the set of coalition allocations corresponding to T2 over the time

period [0, Ċ2] is denoted by:

�(T2, Ċ2) =
{
ÄC→Č
Ċ |C = {

ÿ | Äÿ→Č
Ċ * T2

}
, Ċ ≤ Ċ2

}
(3.2)

Furthermore, the set of all coalition allocations is denoted by:

� = �(T, ĊăÿĎ) (3.3)

Similar to T, � contains all possible coalition allocations. An agent allocation Äÿ→Č
Ċ is also

denoted as a singleton coalition allocation Ä{ÿ}→Č
Ċ .

3.1.3 Coalition Values

A subset of agents C � A is called a coalition. Each coalition allocation ÄC→Č
Ċ has a coalition

value, given by the function1 ċ ∶ P(A) × V → R≥0, where P(A) is the power set of A. The
value of ċ(C, Č) expresses how well the agents in C work together on Č, and the workload čČ

decreases by ċ(C, Č) at each time.

1In cooperative game theory, this is called a characteristic function [Chalkiadakis, Elkind and Wooldridge 2012,
Section 2.1].

3.1 The CFSTP Model 35

3.1.4 Constraints

There are 3 types of constraints: structural, temporal and spatial. Structural constraints require

that each task Č can be allocated to only one coalition at a time. This is characterised by the

following sets:

"Č * V, �Č =
{
�2 � � ∶ ÄC1→Č

Ċ , ÄC2→Č
Ċ * �2 ⇒ C1 = C2

}
(3.4)

With an abuse of notation, we write ÄC→Č
Ċ * �Č to indicate that ÄC→Č

Ċ belongs to an unspeci�ed

set of �Č. Temporal constraints require that each task Č can be completed only by its deadline

µČ. This is characterised by the function � ∶ V × � → {0, 1}, de�ned as follows:

�(Č, �) =

⎧⎪⎪⎨⎪⎪⎩
1, if # Ċ ≤ µČ ∶ ∑Ċ2≤Ċ, ÄC→Č

Ċ2
*�Č
ċ(C, Č) ≥ čČ

0, otherwise
(3.5)

Equation 3.5 utilises �Č (Equation 3.4) to count only coalition allocations that satisfy the structural

constraints. Spatial constraints require that an agent will not start working on a task before

reaching it. This is characterised as follows:

"ÿ * A, "Č * V, "Ċ ≤ µČ, ĉ
Č
ÿ ≥ Ċ + Ä(ÿ, ĂĊÿ, ĂČ) (3.6)

"ÿ * A, "Č1, Č2 * V, Ą
Č1
ÿ + Ä(ÿ, ĂČ1 , ĂČ2) ≤ ĉČ2ÿ (3.7)

A set of agent allocations T2 � T is called legal if it exists a time Ċ2 ≤ ĊăÿĎ such that �(T2, Ċ2)

satis�es Equation 3.5. A set of coalition allocations �2 � � that satis�es Equations 3.5 − 3.7 is

called feasible. Consequently, at time Ċ, if ÄC1→Č1
Ċ and ÄC2→Č2

Ċ are feasible coalition allocations

and ĂČ1 ≠ ĂČ2 , then C1 K C2 = ∅.

There are no synchronisation constraints [Nunes, Manner et al. 2017]: when a task Č is allocated

to a coalition C, each agent ÿ * C starts working on Č as soon as it reaches ĂČ. Hence, Č is

completed by a temporal sequence of subcoalitions of C.

3.1.5 Objective Function

The objective function of the CFSTP is to �nd a set of feasible coalition allocations thatmaximises

the number of completed tasks:

arg max
�2��

�2feasible

∑
Č*V

�(Č, �2) (3.8)

To solve Equation 3.8, an exhaustive search may require to verify all the possible coalition

allocations until ĊăÿĎ . Consequently, the time complexity of searching for an optimal solution is:

O (|V|! ⋅ 2|A| ⋅ ĊăÿĎ) (3.9)

36 Background

Algorithm 3.1: getLegalAgentAllocations (Phase 1 of CFLA)

Input: time Ċ
1 LegĊ ← ∅ // the set of legal agent allocations at time Ċ

2 for ÿ * AĊĄ Ĉăă do // for each free agent ÿ

3 for Č * VċĄā do // for each uncompleted task Č

4 if Ċ + Ä(ÿ, ĂĊÿ, ĂČ) ≤ µČ then // if ÿ can reach Č at Ċ by µČ
5 LegĊ ← LegĊ L {Ä

ÿ→Č
Ċ2 }Ċ+Ä(ÿ,ĂĊÿ,ĂČ)≤Ċ2≤µČ

6 return LegĊ

A set of feasible coalition allocations �2 � � is called a solution with degree ā if∑Č*V �(Č, �
2) = ā.

Hence, an argument of Equation 3.8 is a solution with the highest degree. Since it generalises

the TOP (Figure 1.4), the CFSTP is NP-hard [Papadimitriou 1993].

3.2 The CFLA Algorithm

In this section, we report the concept of CFLA and the procedures of which it is composed. CFLA

has 4 phases, but [Ramchurn, Polukarov et al. 2010, Section 6] describes them in 3 procedures.

For readability purposes, we describe them in 4.

3.2.1 The Concept of CFLA

CFLA is a centralised, anytime and greedy algorithm that solves Equation 3.8 by maximising

the working time of agents and minimising the time required by coalitions to complete tasks.

It is divided into 4 phases:

1. De�ning the legal agent allocations (Section 3.2.2);

2. For each task Č, choosing the best coalition C (Section 3.2.3);

3. For each task Č, doing a 1-step look-ahead (Section 3.2.4) to de�ne its degree ¶Č, or the

number of tasks that can be completed after the completion of Č;

4. At each time Ċ ≤ ĊăÿĎ , allocating a task not yet completed and with the highest degree

(Section 3.2.5).

3.2.2 Phase 1: De�ning the Legal Agent Allocations

At time Ċ, Algorithm 3.1 determines which free agents2 AĊĄ Ĉăă can reach which uncompleted

tasks VċĄā by their deadlines. The resulting set of legal agent allocations is denoted by LegĊ .

2That is, agents who neither are travelling to nor working on a task.

3.2 The CFLA Algorithm 37

Algorithm 3.2: ECF (Phase 2 of CFLA)

Input: task Č, a set of legal agent allocations LegĊ
1 C∗Č ← ∅ // an ECF coalition

2 Using LegĊ , de�ne �(T
2, µČ) as in Equation 3.2

// minimise |C|, where C can complete Č by its deadline µČ
3 Find ăÿĄĉÿĐă = minÄC→Č

Ċ *�(T2,µČ)
|C| where∑ÄC→Č

Ċ2
, Ċ≤Ċ2≤µČ ċ(C, Č) ≥ čČ

4 ĊminČ ← µČ
// loop through all possible coalitions of size ăÿĄĉÿĐă

5 for ÄC→Č
Ċ * �(T2, µČ) where |C| = ăÿĄĉÿĐă do

6 if ∑ÄC→Č
Ċ2

, Ċ≤Ċ2≤µČ ċ(C, Č) ≥ 0 then // C can complete Č by its deadline µČ

// minimum time at which C can complete Č

7 Ċminmax ← minĊmax (čČ −∑ÄC→Č
Ċ2

, Ċ≤Ċ2≤Ċmax ċ(C, Č))
8 if Ċminmax < Ċ

min
Č then // check if C is the new best coalition

9 ĊminČ = Ċminmax

10 C∗Č ← C

11 return C∗Č

3.2.3 Phase 2: Selecting the Best Coalition for Each Task

Given a task Č and a set of legal agent allocations LegĊ (computed by Algorithm 3.1), Algorithm

3.2 returns an Earliest Completion First (ECF) coalition C∗Č that can be allocated to Č. In other

words, C∗Č is chosen such that the completion time of Č is minimised and the agent in C∗Č become

free to work on the remaining uncompleted tasks as soon as possible. This algorithm is myopic

[Ramchurn, Polukarov et al. 2010, Section 6.1], since it does not consider the system status

after that C∗Č would complete Č. For this reason, Ramchurn et al. introduced the concept of task

degree (Section 3.2.1) and developed the look-ahead technique presented below.

3.2.4 Phase 3: De�ning the Degree of Each Task

Given a task Č, Algorithm 3.3 performs a brute-force search to de�ne its degree ¶Č (Section 3.2.1).

At line 8, with a procedure similar to line 5 in Algorithm 3.2, it checks how many tasks can be

completed after the completion of Č. Hence, Algorithm 3.3 assigns a score to each coalition

allocation selected by Phase 2 (Section 3.2.3) for each currently uncompleted task. These scores

are then used by Phase 4 (Section 3.2.5) to choose the next task to execute.

3.2.5 Phase 4: Overall Procedure of CFLA

Algorithm 3.4 shows the overall procedure. The repeat-until loop runs until all tasks are

completed, or until the maximum problem time is expired (line 22). At each time Ċ, the set of

legal agent allocations is updated (line 8), and a task allocation is de�ned (Lines 9 − 18). If it is

not possible to allocate other tasks, the algorithm stops early (line 19).

38 Background

Algorithm 3.3: lookAhead (Phase 3 of CFLA)

Input: task Č, an ECF coalition C∗Č of Č, current solution �
2

1 ¶Č ← 0 // the degree of Č

2 ĄČ ← time at which C∗Č completes Č
3 for Č2 * VċĄā ý {Č} do
4 A

ĄČ
Ą Ĉăă ← agents that are free at ĄČ // derived from C∗Č and �2

5 AĂČ2 ← select from A
ĄČ
Ą Ĉăă all agents that can reach Č2 by ĂČ2

6 ÿ ← 1

7 while ÿ ≤ |AĂČ2 | do
8 for C * all combinations of ÿ agents in AĂČ2 do
9 if ∑

ÄC
2→Č

Ċ *�Č , C2�C, Ċ*[ĄČ ,ĂČ2]
ċ(C, Č) ≥ čČ then // if C can complete Č2

10 ¶Č ← ¶Č + 1

11 ÿ ← |AĂČ2 | // break external loop too

12 break

13 ÿ ← ÿ + 1

14 return ¶Č

3.3 The Original Mixed Integer Program of the CFSTP

As opposed to [Ramchurn, Polukarov et al. 2010, Section 5], for readability purposes, we begin

by introducing the decision variables, then we formulate and explain the constraints, and �nally

give the objective function. To be consistent with the notation introduced so far, we rename

some variables and constraints.

3.3.1 Decision Variables

Let LV � L denote the set of all task locations. There are 4 sets of binary variables and 1 set

of integer variables:

"Č * V, "Ċ ≤ ĊăÿĎ , "ÿ * A, ĎČ, Ċ, ÿ * {0, 1} (3.10)

"Č * V, "Ċ ≤ ĊăÿĎ , "C � A, ĎČ, Ċ,C * {0, 1} (3.11)

"Č * V, ďČ * {0, 1} (3.12)

"ÿ * A, "Ă1 * L, "Ă2 * LV, Ĉ
ÿ
Ă1,Ă2

* {0, 1} (3.13)

"Č * V, "ÿ * A, ¼Čÿ * {0,& , ĊăÿĎ} (3.14)

where: ĎČ, Ċ, ÿ = 1 (resp. ĎČ, Ċ,C = 1) if agent ÿ (resp. coalition C) works on task Č at time Ċ, and 0

otherwise; ďČ = 1 if task Č is completed, and 0 otherwise; ĈÿĂ1,Ă2 = 1 if agent ÿ travels from location

Ă1 * L to location Ă2 * LV, and 0 otherwise, and ¼Čÿ is the time at which agent ÿ starts working

on task Č. It is assumed that the allocation process starts at Ċ = 1. Hence, ¼Čÿ = 0 indicates that

agent ÿ does not work on task Č. In the original formulation, ďČ is ¶Č, ĎČ, Ċ,C is ÄC→Č
Ċ , and ¼Čÿ is ĉ

Č
ÿ.

3.3 The Original Mixed Integer Program of the CFSTP 39

Algorithm 3.4: Overall procedure (Phase 4 of CFLA)

Input: tasks V, task demands (µČ, čČ)Č*V, agents A, locations L, travel function Ä,
coalition value function ċ

1 Ċ ← 0

2 �2 ← % // a solution

3 VċĄā ← V // uncompleted tasks

4 repeat

5 ¶ăÿĎ ← 0 // maximum task degree

6 Č∗ ← nil // next task to allocate

7 C∗ ← ∅ // coalition to which Č∗ is allocated

8 LegĊ ← getLegalAgentAllocations(Ċ) // Algorithm 3.1

9 for Č * VċĄā do

10 C∗Č ← ECF(Č, LegĊ) // Algorithm 3.2

11 ¶Č ← lookAhead(Č,C∗Č , �
2) // Algorithm 3.3

12 if ¶Č > ¶ăÿĎ then

13 ¶ăÿĎ ← ¶Č
14 Č∗ ← Č

15 C∗ ← C∗Č

16 if Č∗ ≠ nil and C∗ ≠ ∅ then

17 Add to �2 the allocation of C∗ to Č∗

18 VċĄā ← VċĄā ý {Č∗}
19 if AĊĄ Ĉăă = A then // all agents are free

20 break

21 Ċ ← Ċ + 1

22 until VċĄā = ∅ or Ċ > ĊăÿĎ
23 return �2

3.3.2 Constraints

There are 4 types of constraints: completion, temporal, spatial, and linking. In the original for-

mulation, the temporal constraints are called deadline constraints, while the spatial constraints

are called starting time, routing and service consistency constraints.

The following equations use the Big-M method [Griva, Nash and Sofer 2009]: 3.16, 3.19, 3.20,

3.24, 3.28, 3.29, 3.32, 3.33, and 3.35. This method introduces an arbitrarily large positive constant

M to arti�cially penalise the violation of the constraints involved.

Completion Constraints The work done for each task Č is at least equal to its workload čČ

if the task is completed, and 0 otherwise:

"Č * V, ∑
Ċ≤ĊăÿĎ ∑C�A ĎČ, Ċ,C ⋅ ċ(C, Č) ≥ ďČ ⋅ čČ (3.15)

"Č * V, ∑
ĊdĊăÿĎ

∑
C�A

ĎČ, Ċ,C d M ⋅ ďČ (3.16)

40 Background

Moreover, at each time, at most one coalition can work on each task:

"Č * V, "Ċ d ĊăÿĎ , ∑
C*A

ĎČ, Ċ,C d ďČ (3.17)

Temporal Constraints Each task can only be completed by its deadline:

"Č * V, "ÿ * A, ¼Čÿ + ∑
ĊdĊăÿĎ

ĎČ, Ċ, ÿ d µČ (3.18)

Since it is assumed that there are no allocations at time Ċ = 0, it follows from Equations 3.15

and 3.16 that if a task is not completed, the left-hand side of Equation 3.18 is 0.

Spatial Constraints For each agent ÿ and task Č, ÿ can start to work on Č after �nishing work

on a previous task, or after reaching the task location ĂČ from its initial location Ăÿ0 :

"ÿ * A, "Ă * LV L
{
Ăÿ0
}
, "Č * V, Ä (ÿ, Ă, ĂČ) d ¼

Č
ÿ +M ⋅ (1 − ĈÿĂÿ,ĂČ) (3.19)

"ÿ * A, "Č1, Č2 * V, ¼
Č1
ÿ + ∑

ĊdĊăÿĎ

ĎČ1, Ċ, ÿ + Ä (ÿ, ĂČ1 , ĂČ2) d ¼Č2ÿ +M ⋅ (1 − ĈÿĂČ1 ,ĂČ2) (3.20)

For each agent ÿ and time Ċ, ÿ can work on at most one task during Ċ:

"ÿ * A, "Ċ d ĊăÿĎ , ∑
Č*V

ĎČ, Ċ, ÿ d 1 (3.21)

If an agent starts working on a task at time Ċ, then variables ĎČ, Ċ, ÿ and ĎČ, Ċ−1, ÿ must have

di�erent values:

"ÿ * A, "Č * V, "Ċ * [1, ĊăÿĎ], 1 − 2 ⋅ ||Ċ − ¼Čÿ|| d ĎČ, Ċ, ÿ − ĎČ, Ċ−1, ÿ (3.22)

For each agent ÿ and task Č, ÿ changes the status of its service on Č (e.g., not working to working

or vice versa) at most twice:

"ÿ * A, "Č * V, ∑
Ċ*[1,ĊăÿĎ]

|ĎČ, Ċ, ÿ − ĎČ, Ċ−1, ÿ| d 2 (3.23)

"ÿ * A, "Č1, Č2 * V, "Ċ * [1, ĊăÿĎ],

1 −
|||Ċ − ¼Č2ÿ − Ä (ÿ, ĂČ1 , ĂČ2)||| −M ⋅ (1 − ĈÿĂČ1 ,ĂČ2) d ||ĎČ1, Ċ, ÿ − ĎČ1, Ċ−1, ÿ|| (3.24)

An agent cannot leave and reach the same task location, it can only reach a new task location from

exactly one previous location, and it can only leave a location to reach exactly one task location:

"ÿ * A, Ă * LV, Ĉ
ÿ
Ă,Ă = 0 (3.25)

"ÿ * A, "Ă * LV L
{
Ăÿ0
}
, "Č1 * V, Ĉ

ÿ
Ă,ĂČ1

+ ∑
Č2*Vý{Č1}

ĈÿĂČ1 ,ĂČ2
d 1 (3.26)

3.3 The Original Mixed Integer Program of the CFSTP 41

"ÿ * A, "Ă * LV L
{
Ăÿ0
}
, ∑
Č*V

ĈÿĂ,ĂČ d 1 (3.27)

"Č2 * V, "ÿ * A, ∑
Č1*Vý{Č2}

ĈÿĂČ1 ,ĂČ2
d M ⋅ ∑

ĊdĊăÿĎ

ĎČ2, Ċ, ÿ (3.28)

"Č1 * V, "ÿ * A, ∑
Č2*Vý{Č1}

ĈÿĂČ1 ,ĂČ2
d M ⋅ ∑

ĊdĊăÿĎ

ĎČ1, Ċ, ÿ (3.29)

Linking Constraints An agent reaches a task only to complete it:

"Č * V, ∑
ÿ*A,Ă*LVL{Ăÿ0}

ĈÿĂ,ĂČ ≥ ďČ (3.30)

A coalition C works on task Č and at time Ċ only if every agent ÿ * C works on Č at Ċ:

"C � A, "Č * V, "Ċ ≤ ĊăÿĎ , ∑
ÿ*C

ĎČ, Ċ, ÿ ≥ |C| ⋅ ĎČ, Ċ,C (3.31)

If task Č is allocated to agent ÿ, then ÿ works on Č for at least 1 unit of time:

"ÿ * A, "Č * V, ¼Čÿ d M ⋅ ∑
ĊdĊăÿĎ

ĎČ, Ċ, ÿ (3.32)

"ÿ * A, "Č * V, ∑
ĊdĊăÿĎ

ĎČ, Ċ, ÿ d M ⋅ ¼Čÿ (3.33)

If task Č is allocated to agent ÿ, then ÿ works on Č after reaching ĂČ from another task location

or from its initial location Ăÿ0 :

"ÿ * A, "Č * V, ¼Čÿ ≥ ∑
Ă*LVL{Ăÿ0}

ĈÿĂ,ĂČ (3.34)

"ÿ * A, "Č * V, ¼Čÿ ≤ M ⋅ ∑
Ă*LVL{Ăÿ0}

ĈÿĂ,ĂČ (3.35)

Each agent can work on at most one task at a time, and cannot work at time Ċ = 0:

"ÿ * A, "Ċ d ĊăÿĎ , ∑
Č*V

ĎČ, Ċ, ÿ d 1 (3.36)

"ÿ * A, "Č * V, ĎČ, 0, ÿ = 0 (3.37)

Equations 3.23, 3.31 and 3.37 also imply that if a coalition C works on a task, the service status

of each ÿ * C switches from 0 to 1 at the beginning of the work, and from 1 to 0 at the end of it.

3.3.3 Objective Function

The objective of the CFSTP is to maximise the number of tasks completed:

42 Background

max∑
Č*V

ďČ subject to Equations 3.15 − 3.37 (3.38)

To solve the MIP de�ned by Equation 3.38, we �rst need to create all decision variables and

constraints. Creating the decision variables of Equation 3.11 requires to list all L-tuples over

P(A), where L = |V| ⋅ ĊăÿĎ , with a worst-case time and space complexity of:

O((2|A|)L) = O (2|A|⋅|V|⋅ĊăÿĎ) (3.39)

Creating the remaining decision variables and constraints does not take more time and space

than Equation 3.39. Hence, implementing and solving the above MIP with optimisation software

packages such as CPLEX orGLPKmay require an exponential amount of time and space, followed

in the worst case by a factorial amount of time (Equation 3.9).

Chapter 4

Anytime and E�cient Multi-agent

Coordination for Disaster Response

In this chapter, we begin by presenting the Coalition Formation with improved Look-Ahead

(CFLA2), an extension of the CFLA algorithm (Section 3.2). Despite having better performance,

CFLA2 keeps the design limitations of CFLA, which is why we propose the novel CTS algo-

rithm in Section 4.2. We compare CTS with CFLA and CFLA2 in Section 4.3, and evaluate its

performance with a well-established testbed in Section 4.4.

4.1 Coalition Formation with Improved Look-ahead

We give a more detailed formulation of Phase 2 in Section 4.1.1, and describe an improved

Phase 3 in Section 4.1.2, which constitutes the novelty of CFLA2. Finally, we list the design

limitations of both CFLA and CFLA2 in Section 4.1.3.

4.1.1 Forming Coalitions with Legal Agent Allocations

To minimise both the size of C∗Č and the time at which it completes task Č, Algorithm 4.1 iterates

from the smallest to the largest possible coalition size (line 5), and through all possible coalitions

of each size (line 6). When the procedure �nds a coalition C that can complete Č by its deadline

µČ (line 7), then |C| is the minimum size of the coalitions that can complete Č. Hence, C∗Č is

identi�ed among the coalitions with size |C| (lines 8−11). The summations at lines 7−8 capture

the workload done by the coalition allocations de�ned from the asynchronous arrivals (Section

3.1.4) of the agents in C to the location of Č.

43

44 Anytime and E�cient Multi-agent Coordination for Disaster Response

Algorithm 4.1: ECF (more detailed Phase 2 of CFLA2)

Input: task Č, a set of legal agent allocations LegĊ
1 AĊČ ← de�ne from LegĊ the agents that can reach Č at Ċ by µČ
2 C∗Č ← ∅ // the ECF coalition

3 Ċ∗Č ← µČ + 1 // time at which C∗Č completes Č

4 ÿ ← 1

5 while ÿ ≤ |AĊČ |and C∗Č = ∅ do

6 for C * all combinations of ÿ agents in AĊČ do
7 if ∑ÄC→Č

Ċ2
�Č , C2�C, Ċ2[Ċ,µČ]

ċ(C, Č) ≥ čČ then

8 ĊăÿĄăÿĎ ← minĊăÿĎ (čČ −∑ÄC→Č
Ċ2

�Č , C2�C, Ċ2[Ċ,ĊăÿĎ] ċ(C, Č))
9 if ĊăÿĄăÿĎ < Ċ

∗
Č then

10 Ċ∗Č ← ĊăÿĄăÿĎ
11 C∗Č ← C

12 ÿ ← ÿ + 1

13 return C∗Č

Unlike the original formulation (Algorithm 3.2), Algorithm 4.1 clari�es that the minimum

coalition size is determined by iterating through subsets of the combinations1 of AĊČ, which is

the set of free agents that at time Ċ can reach Č by µČ.

4.1.2 More E�ective Task Degrees

Algorithm 4.2 di�ers from the original look-ahead phase (Algorithm 4.2) in 2 points. First, it only

considers uncompleted tasks that have a deadline greater or equal to µČ (line 4), which prevents

from counting tasks that can be completed before the completion of Č. This is because, as

de�ned in Section 3.2.1, ¶Č must represent the number of tasks that can be completed only after

the completion of Č. Second, at line 11, ¶Č is not just incremented by 1, but also by 1−¸Č2 , where

¸Č2 is the rescaling
2 of čČ2 to the range [čăÿĄ, čăÿĎ], with čăÿĄ and čăÿĎ being respectively

the minimum and maximum task workloads: ¸Č2 = (čČ2 − čăÿĄ) / (čăÿĎ − čăÿĄ). Hence, ¶Č is
also a measure of how much total workload remains after the completion of Č. Maximising

¶Č (line 12 in Algorithm 3.4) leads to the remaining tasks with the smallest workloads, which

increases the probability of completing more.

4.1.3 Analysis and Discussion

Algorithm 3.1 iterates through all free agents and uncompleted tasks. Assuming that line 4

requires constant time, the time complexity is �ÿ = O(|A| ⋅ |V|).
1To date, the most e�cient technique to enumerate all such combinations is the Gray binary code [Knuth 2005,

Section 7.2.1.1].
2Also known as min-max scaling or min-max normalisation.

4.1 Coalition Formation with Improved Look-ahead 45

Algorithm 4.2: lookAhead (improved Phase 3 of CFLA2)

Input: task Č, its ECF coalition C∗Č , the set of all agent allocations T
1 ¶Č ← 0 // the degree of task Č

2 ĄČ ← time at which C∗Č completes Č
3 for Č2 * VċĄā ý {Č} do
4 if ĂČ2 ≥ µČ then

5 A
ĄČ
Ą Ĉăă ← agents that are free at ĄČ // derived from C∗Č and T

6 AĂČ2 ← select from A
ĄČ
Ą Ĉăă the agents that can reach Č2 by ĂČ2

7 ÿ ← 1

8 while ÿ ≤ |AĂČ2 | do
9 for C * all combinations of ÿ agents in AĂČ2 do

// if C can complete Č2
10 if ∑

ÄC
2→Č

Ċ *�Č , C2�C, Ċ*[ĄČ ,ĂČ2]
ċ(C, Č) ≥ čČ then

11 ¶Č ← ¶Č + 1 + (1 − ¸Č2)

12 ÿ ← |AĂČ2 | // break external loop too

13 break

14 ÿ ← ÿ + 1

15 return ¶Č

Algorithm 4.1 iterates (line 5) from coalition size 1 to |AĊČ |, where AĊČ is the set of agents that can
reach task Č at time Ċ. This needs O(|A|) time in case AĊČ = A. For each ÿ ≤ |AĊČ |, examining the

set of all possible coalitions of size ÿ (line 6) requires O(2|A|) time. Assuming that line 8 takes

O(ĊăÿĎ) time, the total time complexity is �Ā = O(|A| ⋅ 2|A| ⋅ ĊăÿĎ).
Algorithm 4.2 iterates through all uncompleted tasks, which requires O(|V|) time, while line 8 is

computationally identical to line 5 in Algorithm 4.1. Hence, the time complexity is �ā = O(|V|⋅2|A|).
Algorithms 3.2 and 3.3 have the same time complexity of Algorithms 4.1 and 4.2, respectively.

As it uses Phases 1 − 3, Algorithm 3.4 has a time complexity of:

O (ĊăÿĎ ⋅ (�ÿ + |V| ⋅ (�Ā + �ā))) = O ((ĊăÿĎ ⋅ |V|)2 ⋅ 2|A|) (4.1)

Therefore, the runtime of CFLA2 is quadratic in the number of tasks and exponential in the

number of agents, which makes it not suitable for systems with limited resources or real-time

applications (Section 1.2). Other limitations are:

1. It can allocate at most one task per time [Ramchurn, Polukarov et al. 2010, Section 7].

More formally, at each time Ċ, the best-case guarantee of CFLA2 is to �nd a solution with

degree ā = 1;

2. In general, greedily allocating a task with the highest degree now does not ensure to

allocate all uncompleted tasks in future. This is particularly relevant in dynamic envi-

ronments, where there is no certainty of having further tasks to be completed (Section

1.2);

46 Anytime and E�cient Multi-agent Coordination for Disaster Response

3. The more tasks can be grouped by degree, the more the look-ahead technique becomes a

costly random choice. In other words, at time Ċ, if some tasks V
2
� V have all maximum

degree, then Algorithm 3.4 selects Č∗ randomly from V
2
. Hence, the larger V

2
is, the less

relevant Algorithm 4.2 becomes;

4. In Algorithm 3.4, all tasks have the same weight. That is, tasks with earlier deadlines

may not be allocated before tasks with later deadlines. This is independent of the order

in which uncompleted tasks are elaborated (line 9), since the computation of ¶ăÿĎ (line

11) would not be a�ected.

To overcome the limitations of CFLA2, in the next section we present a CFSTP algorithm that is

anytime, e�cient and with convergence guarantee, both in static and dynamic environments.

4.2 Cluster-based Task Scheduling

Cluster-based Task Scheduling (CTS) algorithm operates at the agent level, rather than at the

coalition level. Using the terminology of [Gerkey and Matarić 2004], we can say that it decom-

poses a Single-Task Multi-Robot problem into a sequence of Single-Task Single-Robot problems.

It is divided into the following two phases:

1. For each free agent ÿ, associate ÿ with an uncompleted task Č such that Č is the closest to

ÿ and deadline µČ is minimum;

2. For each uncompleted task Č, allocate Č to a coalition C such that |C| is minimum and

each agent ÿ * C has been associated with Č in Phase 1.

Algorithm 4.3 is used in Phase 1, while Algorithm 4.4 enacts both phases. We describe them

in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Selecting the Best Task for Each Agent

Given a time Ċ and an agent ÿ, Algorithm 4.3 returns the uncompleted task Č that is allocable,

the most urgent and closest to ÿ. By allocable we mean that ÿ can reach Č before deadline µČ,

while most urgent means that Č has the earliest deadline. The algorithm prioritises unallocated

tasks, that is, it �rst tries to �nd a task to which no agents are travelling, and on which no

agents are working (ČĊÿ[0]). Otherwise, it returns an already allocated but still uncompleted task

such that ÿ can reach it and contribute to its completion (ČĊÿ[1]). This ensures that ÿ becomes

free only when no other tasks are uncompleted and allocable to ÿ and.

4.2 Cluster-based Task Scheduling 47

Algorithm 4.3: getTaskAllocableToAgent (used in Phase 1 of CTS)

Input: time Ċ, agent ÿ
1 ČĊÿ ← (nil, nil) // array in which ČĊÿ[0] (resp. ČĊÿ[1]) is the unallocated (resp.

allocated but still uncompleted) task allocable to agent ÿ at time Ċ

2 ĊăÿĄ ← (ĊăÿĎ + 1, ĊăÿĎ + 1) // array in which ĊăÿĄ[0] (resp. ĊăÿĄ[1]) defines the time

units required by agent ÿ to reach ČĊÿ[0] (resp. ČĊÿ[1])

3 ĊăÿĄ ← (ĊăÿĎ + 1, ĊăÿĎ + 1) // array in which ĊăÿĄ[0] (resp. ĊăÿĄ[1]) is the deadline of

ČĊÿ[0] (resp. ČĊÿ[1])

4 for Č * V do // for each uncompleted task

5 ÿ ← 0 // Č is unallocated

6 if other agents are travelling to or working on Č then
7 ÿ ← 1 // Č is allocated but still uncompleted

8 ĊÿĈĈ ← Ċ + Ä(ÿ, ĂĊÿ, ĂČ)

9 if ĊÿĈĈ ≤ µČ and ĊÿĈĈ < ĊăÿĄ[ÿ] and µČ < ĊăÿĄ[ÿ] then // ÿ can reach Č by µČ and Č is

the closest to ÿ

10 ČĊÿ[ÿ] ← Č

11 ĊăÿĄ[ÿ] ← ĊÿĈĈ
12 ĊăÿĄ[ÿ] ← µČ

13 if ČĊÿ[0] ≠ nil then // prioritise unallocated tasks

14 return ČĊÿ[0]

15 return ČĊÿ[1]

4.2.2 Overall Procedure of CTS

The overall procedure is described in Algorithm 4.4. The repeat-until loop is the same as

CFLA2, to preserve the anytime property. Phases 1 and 2 are represented respectively by the

loops at lines 5 and 16.

Phase 1 loops through all agents (line 5). Here, an agent ÿ may either be free or reaching a task

location. In the �rst case (line 6), if an uncompleted task Č can be allocated to ÿ (lines 7 − 8),

then Č is �agged as allocable (line 9) and ÿ is added to the set of agents AĊČ to which Č could be

allocated at time Ċ (line 11). In the second case (line 12), ÿ is travelling to a task Č, hence its

location is updated (line 13) and, if it reached Č, it is set to working on Č (lines 14 − 15).

Phase 2 visits each uncompleted task Č (line 16). If Č is allocable (line 18) then it is allocated to

the smallest coalition of agents in AĊČ (de�ned in Phase 1) that can complete it (lines 19 − 33).

In particular, at line 28, φČ is the amount of work done by all the coalitions formed after the

arrival to the location of Č of the �rst ÿ agents in ΠĊČ (de�ned at line 19). After that, if there are

agents working on Č (line 34), its workload čČ is decreased accordingly (line 35). If čČ drops to

zero or below, then Č has been completed (lines 36 − 38). The algorithm stops (line 40) when

all the tasks have been completed, or the maximum problem time is expired, or no other tasks

are allocable and uncompleted (Section 4.2.1).

48 Anytime and E�cient Multi-agent Coordination for Disaster Response

Algorithm 4.4: Overall procedure of CTS (Phases 1 and 2)

Input: tasks V, task demands (µČ, čČ)Č*V, agents A, locations L, travel function Ä,
coalition value function ċ

1 Ċ ← 0

2 �2 ← ∅ // the solution to return (a set of coalition allocations)

3 VÿĂĂąāÿĀĂă ← ∅ // allocable tasks

4 repeat

5 for ÿ * A do // Phase 1: satisfy spatial constraints

6 if ÿ * AĊĄ Ĉăă then

7 Č ← getTaskAllocableToAgent(Ċ, ÿ) // Algorithm 4.3

8 if Č ≠ nil then

9 if Č + VÿĂĂąāÿĀĂă then

10 VÿĂĂąāÿĀĂă ← VÿĂĂąāÿĀĂă L {Č}

11 AĊČ ← AĊČ L {ÿ}

12 else

13 Update ÿ’s location
14 if ÿ reached the task Č to which it was assigned then

15 Set ÿ’s status to working on Č

16 for Č * V do // Phase 2: satisfy temporal constraints

17 CĊČ ← all agents working on Č at time Ċ
18 if Č * VÿĂĂąāÿĀĂă then

19 ΠĊČ ← list of all agents in AĊČ sorted by arrival time to ĂČ
20 C∗ ← ∅

21 for ÿ ← 1 to |ΠĊČ | do
22 C∗ ← �rst ÿ agents in ΠĊČ
23 ¼ÿ ← arrival time to ĂČ of the ÿ-th agent in ΠĊČ
24 if ÿ + 1 ≤ |ΠĊČ | then
25 ¼ÿ+1 ← arrival time to ĂČ of the (ÿ + 1)-th agent in ΠĊČ
26 else

27 ¼ÿ+1 ← µČ

28 φČ ← φČ + (¼ÿ+1 − ¼ÿ) ⋅ ċ(C
∗ L CĊČ, Č) // čČ done at ¼ÿ+1

29 if (µČ − ¼ÿ+1) ⋅ ċ(C
∗, Č) ≥ čČ − φČ then

30 break // C∗ is the minimum coalition to complete Č

31 TČ = ⋃ÿ*C∗
{
Äÿ→Č
¼ÿ

}
// ¼ÿ is ÿ’s arrival time to ĂČ

32 �2 ← �2 L �(TČ, Ċ) // add �(TČ , Ċ) (Section 3.1.2) to �2

33 VÿĂĂąāÿĀĂă ← VÿĂĂąāÿĀĂă ý {Č}
34 if CĊČ � ∅ then

35 čČ ← čČ − ċ(C
Ċ
Č, Č)

36 if čČ ≤ 0 then

37 Set free all agents in CĊČ
38 V ← V ý {Č}

39 Ċ ← Ċ + 1

40 until V = ∅ or Ċ > ĊăÿĎ or all agents are free
41 return �2

4.2 Cluster-based Task Scheduling 49

The spatial constraints (Equations 3.6 and 3.7) are satis�ed by executing Algorithm 4.3 only on

free agents (line 7), while the temporal constraints (Equation 3.5) are satis�ed by allocating a

task Č to a coalition C only when C has minimum size and can complete Č by deadline µČ.

4.2.3 Analysis and Discussion

The approach of CTS transforms the CFSTP from a 1 − ā task allocation to a series of 1 − 1

task allocations. In other words, instead of allocating each task to a coalition of ā agents,

coalitions are formed by clustering or grouping agents based on the closest and most urgent

tasks. This is an eligibility criterion: unlike CFLA2, CTS exploits the distances between agents

and tasks and the speeds of agents to reduce the time needed to de�ne coalition allocations.

Algorithm 4.3 runs in �ÿ = O(|V|) time, assuming that the operation at line 8 has constant time.

In Algorithm 4.4, the time complexity of Phase 1 is O(|A| ⋅ �ÿ) = O(|A| ⋅ |V|), while Phase 2 runs
in O(|V| ⋅ |A| log |A|) because: in the worst case, AĊČ = A and line 19 sorts A in ¬(|A| ⋅ log |A|)
time using any sorting algorithm based on comparisons [Cormen et al. 2009]; the loop at line

21 runs in O(|A|) time. Since the repeat-until loop is executed at most ĊăÿĎ times, the time

complexity of Algorithm 4.4 is:

O (ĊăÿĎ ⋅ |V| ⋅ |A| log |A|) (4.2)

If both phases are executed in parallel, the time complexity is reduced to:

¬ (ĊăÿĎ ⋅ (|V| + |A| log |A|)) (4.3)

CTS does not have the limitations of CFLA2 (Section 4.1.3) because:

1. It can allocate more than one task per time. More formally, at each time Ċ, if one or more

tasks are allocable, CTS �nds a solution with degree 1 d ā d |A|;
2. It runs in polynomial time and does not use a look-ahead technique. Thus, it is e�cient

and can be used in dynamic environments.

Theorem 4.1 CTS is guaranteed to �nd feasible coalition allocations.

Proof. We prove by induction on time Ċ.

At Ċ = 0, Phase 1 of Algorithm 4.4 selects a task Č for each agent ÿ such that Č is allocable, the

most urgent and closest to ÿ (Section 4.2.1). This implies that the agent allocation Äÿ³Č0 is legal

(Section 3.1.4). Then, Phase 2 (Section 4.2.2) allocates Č to ÿ only if it exists a coalition C such

that |C| is minimum, ÄC³Č0 is feasible (Section 3.1.4) and ÿ * C.

At Ċ > 0, for each agent ÿ, there are 2 possible cases: a task Č has been allocated to ÿ at time

Ċ2 < Ċ, or ÿ is free (i.e., idle). In the �rst case, ÿ is either reaching or working on Č (lines 12 − 15

50 Anytime and E�cient Multi-agent Coordination for Disaster Response

in Algorithm 4.4), hence Äÿ³ČĊ is legal and ÄC³ČĊ is feasible, where ÿ * C. In the second case, ÿ

is either at its initial location or at the location of a task on which it �nished working at time

Ċ2 < Ċ. Thus, as in the base case, if it exists a coalition C and a task Č such that |C| is minimum,

ÄC³ČĊ is feasible and ÿ * C, then Č is allocated to ÿ.

Theorem 4.2 CTS converges to a solution, if it exists.

Proof. First we show that CTS always �nds a solution, then that it terminates.

Finding a solution. From Theorem 4.1 it follows that the coalition allocations in the set �(TČ, Ċ)

at line 32 of Algorithm 4.4 are feasible. That is, they satisfy all constraints (Section 3.1.4). Since

�(TČ, Ċ) also de�nes the minimum number of agents necessary to complete task Č (line 29 of

Algorithm 4.4), it is a solution to Č, thus it has degree ā = 1. Therefore, if VÿĂĂąāÿĀĂă � ∅ at some

time Ċ d ĊăÿĎ , then �2 (line 41) has degree ā ≥ 1.

Termination. Algorithm 4.3 iterates exactly once over a �nite set of uncompleted tasks, while

the repeat-until loop of Algorithm 4.4 is executed at most ĊăÿĎ times.

In �nding a solution to a task Č, CTS de�nes a coalition of minimum size among the agents

that are closest to ĂČ. To make a comparison with an exhaustive search, this means that CTS

stops at the �rst valid solution.

The counterexample given by Limitation 2 in Section 4.1.3 does not allow to prove the conver-

gence of CFLA and CFLA2 in dynamic environments. Since no current algorithm that solves

the CFSTP is simultaneously anytime, e�cient and with convergence guarantee (Section 2.5),

CTS is the �rst of its kind.

4.3 Comparison Tests

We implemented CFLA, CFLA2 and CTS in Java3, and replicated the experimental setup of

[Ramchurn, Polukarov et al. 2010] because we wanted to evaluate how well CFLA2 and

CTS perform in settings where the look-ahead technique is highly e�ective. For each test

con�guration, we solved 100 random CFSTP instances and plotted the average and standard

deviation of: percentage of completed tasks; agent travel time (Section 3.1.1); task completion

time, or the time at which a task has no workload left; problem completion time, or the time

at which no other tasks can be allocated.

4.3.1 Setup

Let U(Ă, ċ) and UI(Ă, ċ) be respectively a uniform real distribution and a uniform integer distri-

bution with lower bound Ă and upper bond ċ. Our parameters are de�ned as follows:

3https://doi.org/10.5281/zenodo.4320671

https://doi.org/10.5281/zenodo.4320671

4.3 Comparison Tests 51

• All agents have the same speed. Their initial locations are randomly chosen on a 50 × 50

grid, where the travel time of agent ÿ between two locations is given by the Manhattan

distance (i.e., the taxicab metric or �1 norm) divided by the speed of ÿ;

• Tasks are �xed to 300, while agents range from 2 to 40, in intervals of 2 between 2 and 20

agents, and in intervals of 5 between 20 and 40 agents;

• The coalition values are de�ned as ċ(C, Č) = |C| ⋅ ā, where ā < U(1, 2). Hence, coalition

values depend only on the number of agents involved, and all tasks have the same

di�culty;

• Deadlines µČ < UI(5, 600) and workloads čČ < UI(10, 50).

Unlike [Ramchurn, Polukarov et al. 2010], we set the number of maximum agents to 40 instead

of 20, because it allows in this setup to complete all tasks in some instances. We did not perform

a comparison on larger instances because of the runtime of CFLA and CFLA2: on commodity

hardware, CTS takes seconds to solve instances with thousands of agents and tasks, while CFLA

and CFLA2 take days. Consequently, the purpose of this section is to highlight the performance

of CTS using CFLA and CFLA2 as a baseline. We evaluate the scalability of CTS in Chapter 5.

4.3.2 Results

In terms of completed tasks (Figure 4.1a), the best performing algorithm for instances with up

to 18 agents is CFLA2, while the best performing algorithm for instances with at least 20 agents

is CTS. CFLA is outperformed by CFLA2 in all instances except those with 2 agents, and by

CTS in instances with at least 10 agents. The reason why the performance of CFLA and CFLA2

does not improve signi�cantly starting from instances with 20 agents is that the more agents

(with random initial locations) there are, the more the tasks are likely to be grouped by degree4.

CFLA2 has a trend similar to that of CFLA because it has the same limitations, but it performs

better due to its improved look-ahead technique. CTS is not the best in all instances because

its average task completion time is the highest (see the discussion on Figure 4.1c below). This

implies that the fewer the agents, the more the tasks may expire before they can be allocated. In

our setup, 10 (resp. 20) is the number of agents starting from which this behaviour is contained

enough to allow CTS to outperform CFLA (resp. CFLA2).

Regarding agent travel times (Figure 4.1b), CTS is up to 3 times more e�cient than CFLA

and CFLA2. This is due to Algorithm 4.3, which allocates tasks to agents also based on their

proximity. CFLA2 has lower agent travel times than CFLA for the following reason. The degree

computation in CFLA2 also considers how much total workload would be left (Section 4.1.2).

Higher degrees correspond to lower workloads, and tasks with lower workloads are completed

�rst. Thus, fewer tasks are grouped by degree and more are likely to be completed. This means

that the average distance between task locations in a CFLA2 solution may be lower than that

4See Limitation 3 described in Section 4.1.3.

52 Anytime and E�cient Multi-agent Coordination for Disaster Response

0 10 20 30 40
0

20

40

60

80

100

Number of agents

C
om

pl
et
ed

ta
sk
s
(%
)

(a)

0 10 20 30 40
0

10

20

30

40

Number of agents

A
ge
n
t
tr
av
el
ti
m
e

(b)

0 10 20 30 40
10

15

20

25

Number of agents

T
as
k
co
m
pl
et
io
n
ti
m
e

(c)

0 10 20 30 40
200

300

400

500

600

Number of agents

P
ro
bl
em

co
m
pl
et
io
n
ti
m
e

(d)

cfla cfla2 cts

Figure 4.1 Comparison of CFLA, CFLA2 and CTS on CFSTP instances with linear coalition values.
In each �gure, each point is the ÿČą ± ĉĊĂ/2, where ÿČą is the average over 100 problems of the value
indicated on the Y-axis and ĉĊĂ is the standard deviation of ÿČą . The tasks are �xed to 300, while the
number of agents is denoted by the X-axis.

of a CFLA solution. The agent travel times increase with all algorithms. This behaviour is

also reported, but not explained, by [Ramchurn, Polukarov et al. 2010]. To explain it, let us

consider a toy problem with one agent ÿ1 and one task Č. If we introduce a new agent ÿ2 such

that Ä(ÿ2, Ă0ÿ2 , ĂČ) > Ä(ÿ1, Ă
0
ÿ1
, ĂČ), then the average travel time increases. In our setup, this happens

because the initial agent locations are random.

In general, task completion times (Figure 4.1c) decrease because the more agents there are, the

faster tasks are completed. The completion of task Č is related to the size of the coalition C to

which Č is allocated: the highest the completion time, the smallest the size ofC, hence the highest

the working time of the agents in C. Task completion times are inversely related to agent travel

times. Since CTS has the shortest agent travel times and allocates tasks to the smallest coalitions,

it consequently has the highest task completion times. Therefore, in CTS, agents work the

highest amount of times, and the number of tasks attempted at any one time is the largest.

4.4 Tests with the RoboCup Rescue Simulation 53

The problem completion times (Figure 4.1d) are in line with the task completion times (Figure

4.1c) since the faster tasks are completed, the less time is needed to solve the problem. The

reason why the times of CFLA and CFLA2 do not decrease signi�cantly from 20 agents up is

linked to their performance (see the discussion on Figure 4.1a above). On the other hand, the

fact that the times of CTS decrease more consistently than those of CFLA and CFLA2 indicates

that CTS is the most e�cient asymptotically. In other words, CTS is likely to solve large-scale

problems in fewer time units than CFLA and CFLA2.

In terms of computational times, CTS is signi�cantly faster than CFLA and CFLA2. For example,

in instances with 40 agents and 300 tasks, on average5 CTS is 45106% ± [2625, 32019] (resp.

27160%±[1615, 20980]) faster than CFLA (resp. CFLA2). The runtime improvement of CFLA2 is

due to line 4 of Algorithm 4.2, which results in the look-ahead technique processing fewer tasks.

4.4 Tests with the RoboCup Rescue Simulation

In this section, we benchmark a variant of CTS against high-performance DCOP algorithms

with the RoboCup Rescue Simulation (RCRS), one of the most important projects promoting

multi-agent research on disaster response [Kitano, Tadokoro et al. 1999]. By reproducing the

aftermath of an earthquake in a city, the RCRS allows verifying coordination approaches that

could be enacted by �rst responders in such situations [Kitano and Tadokoro 2001; RoboCup

Rescue Simulator and Agent Development Framework Manual 2021].

We conducted tests with our fork of RMASBench6 [Kleiner et al. 2013], a benchmark platform

based on the RCRS. We chose it because it allows comparisons with ready-to-use implementa-

tions of Binary Max-Sum (BinaryMS) [Pujol-Gonzalez, Jesus Cerquides, Farinelli, Meseguer and

Juan Antonio Rodriguez-Aguilar 2015] and DSA (Page 23). We use them as a baseline because:

• Max-Sum and its variants are widely used and can obtain high quality solutions (Section

2.3). In particular, BinaryMS can produce a solution within the time limit enforced by the

RCRS7 and with the same quality as standard Max-Sum [Pujol-Gonzalez, Jesus Cerquides,

Farinelli, Meseguer and Juan A. Rodriguez-Aguilar 2014; Pujol-Gonzalez, Jesus Cerquides,

Farinelli, Meseguer and Juan Antonio Rodriguez-Aguilar 2015];

• Since numerous empirical evaluations have proven its e�cacy in many di�erent domains,

DSA is a touchstone for testing DCOP and RCRS algorithms (Section 2.3).

Section 4.4.1 describes how CTS can be adapted for use in latest version of the RCRS, which, as

of November 2021, is 1.58. Section 4.4.2 reports our setup, and Section 4.4.3 shows our results.

5On a machine with an Intel Core i5-4690 processor (3.5 GHz, 4 threads) and 8 GB DDR3-1600 RAM.
6https://doi.org/10.5281/zenodo.4320658
7That is, 1 second per problem time unit.
8https://github.com/roborescue/rcrs-server/releases/tag/v1.5

https://doi.org/10.5281/zenodo.4320658
https://github.com/roborescue/rcrs-server/releases/tag/v1.5

54 Anytime and E�cient Multi-agent Coordination for Disaster Response

Algorithm 4.5: S-CTS (executed by each agent ÿ * A)

Input: tasks V, task demands (µČ, čČ)Č*V, locations L, travel function Ä, coalition value
function ċ

1 Initialise ÿ’s status to free

2 repeat

3 if ÿ’s status is free then
4 Č ← an incomplete task with highest utility among those closest to ÿ
5 Set ÿ’s status to reaching Č

6 else

7 Update ÿ’s location
8 if ÿ reached the task Č to which it was assigned then

9 Set ÿ’s status to working on Č

10 else if ÿ �nished working on the last allocated task then

11 Set ÿ’s status to free

12 until V = ∅ or time out

4.4.1 Simpli�ed CTS

In RCRS 1.5, deadlines and workloads are not accessible to agents. Thus, we cannot implement

CTS because we can neither verify the spatial constraints in Phase 1 nor can we implement

Phase 2 (Section 4.2.2). However, RMASBench allows to obtain the utility of a task, which

is a quantitative measure that indicates the current importance of a task. Consequently, we

implemented a modi�ed Phase 1 in which agents can independently choose to work on the

closest tasks with the highest utilities. Algorithm 4.5 describes this variant, which we call

Simpli�ed CTS (S-CTS).

The time complexity of S-CTS is O(ĊăÿĎ ⋅ |V|), since agents do not coordinate with each other

and their choice is made in parallel (i.e., without relying on a centralised solver). Although

S-CTS may seem like a major handicap, we show below that it o�ers a reasonable trade-o�

between runtime and performance.

4.4.2 Setup

All tests are based on the Paris map, one of the most used in the RoboCup competition. We

kept the default setup [Pujol-Gonzalez, Jesus Cerquides, Farinelli, Meseguer and Juan Anto-

nio Rodriguez-Aguilar 2015, Section 6.1] because, according to the authors, it maximises the

performance of both BinaryMS and DSA.

In RMASBench there are police patrols and �re brigades. A police patrol can unblock roads,

while a �re brigade can extinguish �res. Having 2 types of agents allows to study inter-team

coordination aspects. Since this is not in our scope, we did not consider road blockades. As a

result, our problems are easier and our baseline is more competitive. Figure 4.2 gives an example.

4.4 Tests with the RoboCup Rescue Simulation 55

Figure 4.2 Detail of an example RCRS problem on the Paris map. The red dots are �re brigades and
the blue lines are their water jets. The colour of a building indicates its status: grey means no damage;
yellow to red means on �re; blue to purple means that the �re has been extinguished, and black means
that the building is burnt. The darker the colour, the greater the damage. On the centre-right is a �re
station, to which the �re brigades return to re�ll. White regions indicate irrelevant areas, such as rivers
or non-�ammable properties.

The RCRS is based on scenarios [RoboCup Rescue Simulator and Agent Development Framework

Manual 2021]. A scenario is a class of problems, whose main parameter is the number of agents.

In RMASBench there are 5, respectivelywith 15, 21, 27, 33 and 40 �re brigades. Other settings are:

• Agents are homogeneous, that is, they all have the same speed and water tank size;

• There are 3 ignition points, and each scenario is replicated 30 times. At each execution,

a pseudo-random number generator in�uences the way the �res spread from ignition

points to nearby buildings;

• To get a non-trivial number of �res, agents are added 25 seconds after the start;

• Each simulation runs for a maximum of 5 minutes, ending earlier if all �res have been

extinguished;

• For each coalition C and task Č, we have that ċ(C, Č) = |C|, which is a special case of

superadditive characteristic function [Chalkiadakis, Elkind and Wooldridge 2012, Section

2.1.2.2];

• Deadlines and workloads are randomly generated by the RCRS.

For each scenario and algorithm, we plot the average and standard deviation of:

56 Anytime and E�cient Multi-agent Coordination for Disaster Response

1. Problem completion time (Section 4.3);

2. The number of buildings that burned at least once, denoted by ĀąĄāă;

3. Score, or the percentage of damage su�ered by the city, where 100% means completely

burnt. This is the main RCRS metric, de�ned on the total area of the city buildings and

scenario-based parameters;

4. Average CPU time9 per problem time unit.

We do not consider message-related metrics because agents do not communicate in S-CTS

(Section 4.4.1).

4.4.3 Results

The more agents communicate with each other, the better they coordinate. In turn, this leads

to lower completion times and numbers of burned buildings. Because there is no exchange of

messages in S-CTS and BinaryMS has the highest communication overhead, they are respectively

the least and the most performing in Figures 4.3a and 4.3b. Nevertheless, this does not result

in a drastic drop in performance. In Figure 4.3c, in the worst-case scenario (i.e., 21 agents), on

average S-CTS scores about 10% (resp. 5%) less than BinaryMS (resp. DSA). This is not trivial,

given that S-CTS is a simpli�cation and that the scenarios used are �ne-tuned to maximise

the performance of BinaryMS and DSA.

Regarding the average CPU time (Figure 4.3d), S-CTS is up to two orders of magnitude (resp.

1) faster than BinaryMS (resp. DSA). This is because BinaryMS has a pre-processing phase

that requires exponential time, while DSA, despite having a time complexity similar to that

of S-CTS (Table 2.2), has a message-passing phase as well.

In Figures 4.3a, 4.3b and 4.3c, the trends converge to 0 because the more agents there are, the

less relevant the algorithm being used becomes. In other words, the greater the number of

available agents, the higher the quality of solutions. We can deduce that the degree of agent

communication is directly proportional to the score and inversely proportional to the CPU

time. However, as we have seen, the di�erence in performance between communication and

no communication is not necessarily signi�cant.

4.5 Summary

We presented CFLA2, a version of CFLA with a more detailed Phase 2 and an improved Phase

3. Since we show that the time complexity of CFLA2 is quadratic in the number of tasks and

exponential in the number of agents, and that the look-ahead technique cannot be used in

9Based on an Intel Xeon E5-2670 processor (octa-core 2.6 GHz with Hyper-Threading).

4.5 Summary 57

15 21 27 33 40
50

100

150

200

Number of agents

P
ro
bl
em

co
m
pl
et
io
n
ti
m
e

(a)

15 21 27 33 40
0

200

400

600

Number of agents

Ā ą
Ą
āă

(b)

15 21 27 33 40
0

5

10

15

Number of agents

Sc
or
e
(%
)

(b)

15 21 27 33 40
0

100

200

300

Number of agents

A
ve
ra
ge

C
P
U
ti
m
e
(m

s)

(d)

s-cts dsa binaryms

Figure 4.3 Performance of S-CTS in RMASBench using DSA and Binary Max-Sum as baselines. In
each �gure, the X-axis de�nes the number of agents in the scenario, while each point is the ÿČą ± ĉĊĂ/2,
where ÿČą is the average over 30 simulations of the value indicated by the Y-axis, and ĉĊĂ is the standard
deviation of ÿČą .

dynamic environments, we also presented CTS, the �rst anytime and e�cient CFSTP algorithm

with convergence guarantee. We demonstrated the superiority of CTS in settings that largely

favour the look-ahead technique, and showed that a simpli�ed but parallel variant is enough to

compete with high-performance baselines in the RCRS, at a fraction of their time complexity.

The next chapter extends CTS to large-scale dynamic and distributed environments, which

fall within our research objectives (Section 1.3).

Chapter 5

Large-scale, Dynamic and Distributed

CFSTP

After identifying the principal shortcomings in the CFSTP literature in Section 5.1, this chapter

proposes a minimal mathematical formulation in Section 5.2, a distributed version of CTS

in Section 5.3, and the �rst large-scale, dynamic and distributed CFSTP test framework in

Section 5.4.

5.1 Major Gaps in the CFSTP Literature

There are 3 main issues in the CFSTP literature. First, its original mathematical programming

formulation (Section 3.3) is based on 4 sets of binary variables, 1 set of integer variables and

23 types of constraints, 9 of which use the Big-M method. So many variables and constraints

make implementation di�cult, while the Big-M method introduces a large penalty term that,

if not chosen carefully, leads to serious rounding errors and ill conditioning [Griva, Nash and

Sofer 2009, Section 5.4.2].

Second, there is no algorithm that is simultaneously scalable, distributed, and able to solve the

CFSTP in dynamic environments (Section 1.2). To solve this issue, we want to extend the CTS

algorithm (Section 4.2), since it is anytime, has a polynomial time complexity, and can be used

in dynamic environments. Its only limitation in relation to our objectives is to be centralised.

In real-world domains such as disaster response, this leads to problems such as single points of

failure, unsustainable computational loads, and poor performance in case of rapid changes of

situation (Section 1.2). To date, only [Ramchurn, Farinelli et al. 2010] have proposed a dynamic

and distributed solution to the CFSTP. They reduced it to a DynDCOP (Section 2.3.2) and solved

it with FMS, a variant of Max-Sum specialised for task allocation (Page 27). However, unlike

CTS, FMS is not guaranteed to converge, it is not anytime, and its runtime is exponential in

the number of agents. [Pujol-Gonzalez, Jesus Cerquides, Farinelli, Meseguer and Juan Antonio

59

60 Large-scale, Dynamic and Distributed CFSTP

Rodriguez-Aguilar 2015] proposed BinaryMS (Section 4.4), another Max-Sum variant which,

compared to FMS, lowers the runtime to polynomial and achieves the same solution quality.

Nonetheless, even BinaryMS is not guaranteed to converge and not anytime. In addition, it

requires a preprocessing step with exponential runtime to transform the problem constraints

into binary form, which makes it not suitable for dynamic environments.

Lastly, no realistic CFSTP test framework has been proposed so far, although this shortcoming

was already identi�ed in the original article [Ramchurn, Polukarov et al. 2010, Section 8]. There

are very few such frameworks even for the DynDCOP, to which the CFSTP can be reduced, as

mentioned above. Indeed, although the DCOP and DynDCOP models can capture numerous

real-world problems, researchers usually perform their empirical evaluations on synthetic

problems or classical combinatorial problems, such as graph colouring and resource allocation

[Fioretto, Pontelli and Yeoh 2018]. To the best of our knowledge, to date only the following

(Dyn)DCOP works have conducted tests based on real-world data. [Maheswaran, Tambe et

al. 2004] considered resource-constrained multiple-event scheduling problems occurring in

o�ce environments. [Junges and Bazzan 2008] evaluated the performance of complete DCOP

algorithms in tra�c light synchronisation problems. [Y. Kim, Krainin and V. Lesser 2011]

developed heuristics for applying Max-Sum to problems based on the real-time sensor system

NetRad. [Nelke, Okamoto and Zivan 2020; Tkach and Amador 2021] studied law enforcement

problems inspired by police logs. However, none of these test frameworks is large-scale1.

In the following sections, we address the above issues by proposing:

• A novel mathematical programming formulation of the CFSTP, based only on binary

variables and 5 types of constraints, which do not use the Big-M method;

• A distributed version of the CTS algorithm that preserves its properties, namely being

anytime, scalable and guaranteed to converge;

• The �rst large-scale, dynamic and distributed CFSTP test framework, based on real-world

data published by the London Fire Brigade [London Datastore 2021a,b].

5.2 A Minimal Mathematical Program of the CFSTP

We formulate the CFSTP as a Binary Integer Program (BIP) [Wolsey 2020]. Based on the

de�nitions of Sections 3.1.1 − 3.1.3, we detail our decision variables, constraints and objective

function.

1It is worth mentioning [Leite and Enembreck 2019a], which is, to the best of our knowledge, the only study to
date that evaluates incomplete DCOP algorithms in large-scale problems, although not using real-world data.

5.2 A Minimal Mathematical Program of the CFSTP 61

5.2.1 Decision variables

Similar to Section 3.3.1, we use the following indicator or binary variables:

"Č * V, "Ċ d µČ, "C � A, ĎČ, Ċ,C * {0, 1} (5.1)

"Č * V, ďČ * {0, 1} (5.2)

where: ĎČ, Ċ,C = 1 if coalition C works on task Č at time Ċ, and 0 otherwise; ďČ = 1 if task

Č is completed, and 0 otherwise. Specifying indicator variables for individual agents is not

necessary, since they can be inferred from Equation 5.1.

5.2.2 Constraints

There are 3 types of constraints: structural, temporal and spatial.

Structural Constraints At each time, at most one coalition can work on each task:

"Č * V, "Ċ d µČ, ∑
C�A

ĎČ, Ċ,C d 1 (5.3)

Equations 5.1 and 5.3 ensure that $ĎČ, Ċ,C ∶ C � A, and that the maximum coalition size is |A|.
Temporal Constraints Tasks can be completed only by their deadlines, and no agent can

work on a task after its completion:

"Č * V, ďČ d 1 (5.4)

"Č * V, ⌈∑ĊdµČ ∑C�A ċ(C, Č) ⋅ ĎČ, Ċ,C⌉ = ⌈čČ ⋅ ďČ⌉ (5.5)

Spatial Constraints An agent cannotwork on a task before reaching its location. This identi�es

two cases: when an agent reaches a task from its initial location, and when an agent moves from

one task location to another. The �rst case imposes that, for each task Č, time Ċ d µČ and coalition

C, the variable ĎČ, Ċ,C can be positive only if all agents in C can reach location ĂČ at a time Ċ2 < Ċ:

"Č * V, "C � A, if �Ä = max
ÿ*C

Ä(ÿ, Ă0ÿ , ĂČ) d µČ then ∑
Ċd �Ä

ĎČ, Ċ,C = 0 (5.6)

where �Ä is the maximum time at which an agent ÿ * C reaches ĂČ, from its initial location at time

Ċ = 0. Conditional constraints are usually formulated using auxiliary variables or the Big-M

method [Wolsey 2020]. However, such approaches further enlarge the mathematical program

or can cause numerical issues (Section 5.1). Consequently, in the preprocessing step necessary

to create our BIP, we can implement Equation 5.6 simply by excluding the variables that must

62 Large-scale, Dynamic and Distributed CFSTP

be equal to 0. That is, if �Ä d µČ, we only declare the following variables: {ĎČ, Ċ,C}Ċ*[�Ä+1,µČ]. The

second case requires that if an agent cannot work on two tasks consecutively, then it can

work on at most one:

"Č1, Č2 * V, "C1,C2 � A such that C1 K C2 � ∅,

"Ċ1 d µČ1 , "Ċ2 d µČ2 such that Ċ1 + max
ÿ*C1KC2

Ä(ÿ, ĂČ1 , ĂČ2) ≥ Ċ2,

ĎČ1, Ċ1,C1 + ĎČ2, Ċ2,C2 ≤ 1

(5.7)

Hence, coalition C2 can work on task Č2 only if all agents in C1 K C2 can reach location ĂČ2
by deadline µČ2 . Equation 5.7 also implies that an agent cannot work on multiple tasks at

the same time.

There are no synchronisation constraints [Nunes, Manner et al. 2017]. Thus, when a task

Č is allocated to a coalition C, each agent ÿ * C starts working on Č as soon as it reaches

its location, without waiting for the remaining agents. This means that Č is completed by a

temporal sequence of subcoalitions of C: #S � P(C) such that "C2 * S, #Ċ ≤ µČ, ĎČ, Ċ,C2 = 1,

where P(C) is the power set of C.

5.2.3 Objective Function

Let Ė be a solution, that is, a value assignment to all variables, which de�nes the route and

schedule of each agent. The objective is to �nd a solution that maximises the number of

completed tasks:

argmax
Ė

∑
Č*V

ďČ subject to Equations 5.1 − 5.7 (5.8)

Both creating all decision variables (Section 5.2.1) and �nding an optimal solution exhaustively

(Equation 5.8) may require to list all possible coalition allocations for each possible permutation

of V, with a worst-case time complexity of:

O (|V|! ⋅ 2|A| ⋅ ĊăÿĎ) (5.9)

which is the same as the CFSTP formulation of Section 3.1.5.

Theorem 5.1 Equation 5.8 is equivalent to the original MIP of the CFSTP (Section 3.3).

Proof. Since we use the original objective function (Equation 3.38), below we show how our

constraints imply the original ones (Equations 3.15 − 3.37).

Completing tasks by their deadlines and allowing agents to work only on uncompleted tasks

implies that the total work done for each task Č is equal to čČ if Č is completed, and 0 otherwise.

Hence, Equations 5.4, 5.5ò Equations 3.15, 3.16.

5.2 A Minimal Mathematical Program of the CFSTP 63

Equation 5.3 is equivalent to Equation 3.17.

If at most one coalition can work on each task at each time, and an agent cannot work on a

task before reaching its location, then each agent can work on at most one task at each time.

Consequently, Equations 5.3, 5.6ò Equation 3.21.

Equation 3.18 is not necessary because Ċ d µČ for each ĎČ, Ċ,C (Equation 5.1).

If agent ÿ cannot work on task Č before reaching its location ĂČ, then it can do so after �nishing

work on a previous task, or after reaching ĂČ from its initial location Ăÿ0 . Furthermore, since the

objective is to maximise the number of completed tasks, if Č is allocated to ÿ, then ÿ changes

the status of its service (from free to working and vice versa) exactly twice, and the decision

variables related to ÿ and Č are equal to 1 only when ÿ works on Č, and 0 otherwise. Thus,

Equations 5.6 − 5.8ò Equations 3.19, 3.20, 3.22 − 3.24.

If agent ÿ cannot work on two tasks consecutively, then it can work on at most one. Therefore,

ÿ cannot leave and reach the same task location, it can only reach a new task location from

exactly one location, and it can only leave a location to reach exactly one task location. That is,

Equation 5.7ò Equations 3.25 − 3.27.

Since task Č can only be completed by deadline µČ, agent ÿ can work on Č only if it can reach

its location ĂČ by µČ, and the objective is to maximise the number of completed tasks, then: the

coalition C of which ÿ is a member reaches Č only to complete it; C works for at least 1 unit of

time on Č (assuming that čČ ≥ 1, "Č * V), and each ÿ * C reaches ĂČ from another task location

or from its initial location Ăÿ0 . Thus, Equations 5.5 − 5.7, 5.8⇒ Equations 3.30 − 3.35.

Equation 5.3 is equivalent to Equation 3.36.

Since the original MIP assumes that the allocation process starts at Ċ = 1 (Section 3.3.1), Equation

5.6 ⇒ Equation 3.37. If we remove this assumption, then Equation 3.37 is not necessary.

Having signi�cantly fewer constraints than the original MIP, our BIP can be used more ef-

fectively by exact algorithms based on branch-and-cut or branch-and-price [Vansteenwegen

and Gunawan 2019, Section 3.1.1]. A trivial way to solve the CFSTP would be to implement

Equation 5.8 with solvers such as CPLEX or GLPK. Although this would guarantee anytime

and optimal solutions, it would also take exponential time to both create and solve our BIP

(Equation 5.9). This limits this practice to o�ine contexts and very small problems. For example,

using CPLEX 20.1 with commodity hardware, and the test setup of [Ramchurn, Polukarov et al.

2010], we can solve problems where |A| ⋅ |V| d 20 in hours. With bigger problems, CPLEX

depletes all memory (8 GB) and crashes.

Anothermajor issue with centralised generation of optimal solutions is that, in real-time domains

such as disaster response, it can be computationally not feasible or economically undesirable,

especially when the problem changes frequently (Section 1.2). For these reasons, the next

section presents a scalable, dynamic and distributed algorithm to solve the CFSTP.

64 Large-scale, Dynamic and Distributed CFSTP

5.3 A Scalable, Dynamic and Distributed CFSTP Algorithm

We propose a novel reduction of the CFSTP to a DynDCOP, then we show how CTS can solve

the problem in this formulation. We use the DynDCOP formalism because it has proven largely

capable of modelling disaster response problems (Section 2.4).

5.3.1 Reduction of the CFSTP to a DynDCOP

Using De�nition 2.4, we formalise a DynDCOP as a sequence D = {DĊ}ĊdĊăÿĎ , where each

DĊ = (AĊ ,XĊ ,DĊ , FĊ) is a DCOP such that AĊ � A, and:

• XĊ = {ÇĊ1,& , Ç
Ċ
ā} is a set of ā = |AĊ | d Ą variables, where ÇĊÿ indicates the task performed

by agent ÿĊÿ * A
Ċ ;

• DĊ = {DĊ1,& ,D
Ċ
ā} is a set of ā variable domains, such that ÇĊÿ * D

Ċ
ÿ . A set Ă = {Ă1,& , Ăā},

where Ăÿ * DĊÿ , is called an assignment. Each Ăÿ * Ă is called the ÿ-th variable assignment

and is the value assigned to variable ÇĊÿ ;

• FĊ = {Ą Ċ1 ,& , Ą
Ċ
ℎ } is a set of ℎ d ă functions, where Ą Ċÿ represents the constraints on task

ČĊÿ . In particular, each Ą Ċÿ ∶ D
Ċ
ÿ1
×ď × DĊÿℎÿ

³ R≥0 assigns a non-negative real cost to each

possible assignment to the variables XĊℎÿ � X
Ċ , where ℎÿ ≤ ℎ is the arity of Ą Ċÿ .

The objective of D is to �nd an assignment that minimises all costs:

"Ċ ≤ ĊăÿĎ , argmin
Ă*DĊ

∑
Ą Ċÿ *F

Ċ

Ą Ċÿ (Ăÿ1 ,& , Ăÿℎÿ) (5.10)

It is typically assumed that if ÇĊÿ is in the scope of Ą ĊĀ , then agent ÿĊÿ knows Ą
Ċ
Ā [Fioretto, Pontelli

and Yeoh 2018, Section 4.2]. To reduce the CFSTP to a DynDCOP, we specify AĊ , DĊ and FĊ as

follows. At time Ċ, let AĊ be the set of free agents (Section 3.2.2), and let VĊÿĂĂąāÿĀĂă be the set of

tasks that have not yet been completed. The domain of each variable ÇĊÿ is:

DĊÿ =
{
Č * VĊÿĂĂąāÿĀĂă such that Ċ + Ä(ÿĊÿ , ĂÿĊÿ , ĂČ) ≤ µČ

}
L {%} (5.11)

where %means that no task is allocated to agent ÿĊÿ . Hence, A
Ċ satis�es the structural constraints,

while DĊÿ contains all tasks that at time Ċ can be allocated to ÿĊÿ satisfying the spatial constraints

(Section 5.2.2). Let Ėÿ � Ė be a singleton solution, that is, a solution to task Čÿ (Section 5.2.3). At

time Ċ, let ĖĊÿ � Ėÿ be a singleton solution corresponding to Ą Ċÿ (Ăÿ1 ,& , Ăÿℎÿ), de�ned as follows.

Each ĎČÿ, Ċ,C * ĖĊÿ is such that C is a subset of the agents that control the variables in the scope

of Ą Ċÿ , while ĎČÿ, Ċ,C = 1 if Ăÿℎÿ = Čÿ, for each ℎÿ-th agent in C, and 0 otherwise. To satisfy the

5.3 A Scalable, Dynamic and Distributed CFSTP Algorithm 65

Ą1

Ą2

Ą3

Ą4

Ç1

Ç2

Figure 5.1 The factor graph of a DCOPwith 2 agents and 4 tasks. In our formulation, a DCOP represents
the state of a CFSTP at a certain time, in which circles are variables of free agents, squares are cost
functions of uncompleted tasks, and each edge connects an agent to a task it can reach by its deadline.

temporal constraints (Section 5.2.2), each ÿ-th function is de�ned as follows:

Ą Ċÿ (Ăÿ1 ,& , Ăÿℎÿ) = min
ĖĊÿ , Ċ2≤µČÿ

⎡⎢⎢⎢ ∑
ĉ≤Ċ2, ĎČÿ , ĉ,C*ĖĊÿ ċ(C, Č)

⎤⎥⎥⎥ = ⌈čČ⌉ (5.12)

with the convention that Ą Ċÿ (Ăÿ1 ,& , Ăÿℎÿ) = +@ if Čÿ cannot be completed by deadline µČÿ . Hence,

the solution space of D satis�es all CFSTP constraints, while minimising all costs implies

minimising the time required to complete each task (Equations 5.10 and 5.12), which implies

maximising the number of completed tasks, as required by the objective function of the CFSTP

(Equation 5.8).

5.3.2 Distributed CTS

Before introducing our distributed version of CTS (Section 4.2), we present the data structure

and the communication protocol on which it is based.

To represent DCOPs, we use factor graphs (De�nition 2.3). As an example, Figure 5.1 shows the

factor graph of the function F(X) = Ą1(Ç1) + Ą2(Ç1, Ç2) + Ą3(Ç1, Ç2) + Ą4(Ç2). In a factor graph

G, a solution is found by allowing nodes to exchange messages. Hence, to execute CTS on G,

we have to de�ne how nodes communicate and operate. Below, we present a communication

protocol and algorithms for both variable and factor nodes. Based on the well-established

formalism of [Yokoo, Ishida et al. 1992], the nodes communicate in the following way:

• Node ÿ can message node Ā only if ÿ knows the address of Ā2. In our context, if ÇĊÿ is in the

scope of Ą ĊĀ , then Ç
Ċ
ÿ knows the address of Ą

Ċ
Ā , and vice versa;

• Each node ÿ has a message queue Qÿ, to which messages are delivered with a �nite delay;

• Node ÿ can use the function receive() to dequeue a message from Qÿ, and the function

send(Ā , illoc_force, [args]) to send a message to Ā . Node Ā will receive a message in

the format (sender, illoc_force, [args]), where sender is the identi�er of node ÿ,

illoc_force is its illocutionary force, and [args] is an optional list of arguments. An

illocutionary force is either an information or a command [Vieira et al. 2007].

2For instance, the IP address of Ā , if the nodes are connected to the same network.

66 Large-scale, Dynamic and Distributed CFSTP

Algorithm 5.1: CTS node of variable ÇĊÿ
1 ÇĊÿ ← % // the agent is initially free

2 ĂĀ ← get task allocable to agent ÿĊÿ at time Ċ // Algorithm 4.3

3 if ĂĀ ≠ % then

4 ĉÿ ← time at which agent ÿĊÿ can start working on task ĂĀ
5 Ą ĊĀ ← factor node of ĂĀ
6 send(Ą ĊĀ , assignable, ĉÿ)

7 msg ← nil

8 while msg not received from Ą ĊĀ or not time out do
9 msg ← receive()

10 if msg = (Ą ĊĀ , allocate) then

11 ÇĊÿ ← ĂĀ

Algorithm 5.2: CTS node of factor Ą ĊĀ

1 while not all neighbours sent an assignable message or not time out do
2 msg ← receive()

3 ΠĊČĀ ← list of all assignable agents sorted by arrival time to ČĀ
4 C∗ ← minimum coalition in ΠĊČĀ that can complete ČĀ by µČĀ // Equation 5.12

5 for ÿĊÿ * C
∗ do

6 send(ÇĊÿ , allocate)

7 CĊČĀ ← all agents working on ČĀ at time Ċ

8 if CĊČĀ ≠ ∅ then

9 čČĀ ← čČĀ − ċ(C
Ċ
ČĀ
, ČĀ)

We assume that the node of each function is controlled by an agent in its scope. This agent can

be chosen randomly or according to some criterion. Moreover, we assume that each agent can

independently retrieve the system time (i.e., the current value of Ċ) in constant time.

Algorithm 5.1 presents the operation of variable node ÇĊÿ . If there is an uncompleted task ČĊĀ that

can be allocated to free agent ÿĊÿ (lines 1 − 3), then variable node ÇĊÿ communicates to factor

node Ą ĊĀ the ability of ÿĊÿ to work on ČĊĀ , also specifying the time at which it can reach and start

working on it (lines 4 − 6). After that, it waits until it gets a reply from Ą ĊĀ or a predetermined

time interval expires (lines 7 − 9). If it receives the approval of Ą ĊĀ , then Č
Ċ
Ā is allocated to ÿ

Ċ
ÿ (lines

10 − 11). At line 2, ČĊĀ is chosen such that it is the closest to ÿĊÿ and µČĊĀ is the earliest deadline.

Phase 1 is completed after that each ÇĊÿ executes line 6.

Algorithm 5.2 presents the operation of factor node Ą ĊĀ . The loop at lines 1−2 is a synchronisation

step that allows Ą ĊĀ to know which agents in its neighbourhood can work on ČĊĀ . Lines 3 − 6

enacts Phase 2, while lines 7−9 update workload čČĀ . Hence, our factor graphs are synchronous

networks, in which the factor nodes are the synchronisers [Lynch 1996].

We call Distributed CTS (D-CTS) the union of Algorithms 5.1 and 5.2. Each message has size

O(1), since it always contains a node address, a message �ag and an integer. At time Ċ, each

5.3 A Scalable, Dynamic and Distributed CFSTP Algorithm 67

variable node ÇĊÿ sends at most 1 message (line 6 in Algorithm 5.1), while each factor node Ą ĊĀ
sends O(|A|) messages (lines 5 − 6 in Algorithm 5.2). Assuming that all tasks can be completed,

the total number of messages sent is:

O(|A| + |V| ⋅ |A|) = O(|V| ⋅ |A|) (5.13)

The runtime of Algorithm 5.1 is O(|V|), because line 2 selects a task in the neighbourhood of

an agent. The runtime of Algorithm 5.2 is O(|A| log |A|), due to the sorting at line 3 [Cormen

et al. 2009]. Since both algorithms are executed up to ĊăÿĎ times, the overall time complexity of

D-CTS is the same as CTS (Equations 4.2 and 4.3). The advantages of D-CTS are:

1. It is anytime, since it decomposes a CFSTP into a set of subproblems (Section 4.2). This

property is not trivial to guarantee in distributed systems [Zivan, Okamoto and Peled

2014], and is missing in main DCOP algorithms, such as ADOPT, DPOP, OptAPO and

Max-Sum (Table 2.2);

2. It is self-stabilising (De�nition 2.5), being guaranteed to converge (Theorem 4.2), and

given that each agent can only work on a new task after completing the one to which it

is currently assigned (Algorithm 5.1);

3. The phase-based design has 2 performance bene�ts. First, the algorithm is not a�ected

by the structure of factor graphs. For instance, in a cyclic graph like the one in Figure 5.1,

where the same ÿ > 1 tasks can be allocated to the same Ā > 1 agents, inference-based

DCOP algorithms (e.g., Max-Sum variants) in general are not guaranteed to converge,

unless they are augmented with speci�c techniques (e.g., damping or ADVP). Second,

the algorithm is robust to disruptions, that is, the addition or removal of factor graph

nodes [Ramchurn, Farinelli et al. 2010, Section 6.2]. Disruptions are typical of dynamic

environments (Section 1.2). For instance, in disaster response, tasks are removed if some

victims have perished, and are added if new �res are discovered. Likewise, new agents

can be added to re�ect the availability of additional workforce, while existing ones are

removed when they deplete their resources, or are unable to continue due to sustained

damages. Unlike D-CTS, the majority of DCOP algorithms (e.g., Max-Sum and DPOP)

cannot handle disruptions, unless they are properly augmented (e.g., FMS and S-DPOP);

4. Unlike most DCOP algorithms (e.g., ADOPT and DPOP), the communication overhead

(i.e., the number of messages exchanged) is at most linear (Equation 5.13), and each agent

does not need to maintain an information graph of all other agents;

5. Finally, performance does not depend on any tuning parameters, as is the case with other

DCOP algorithms (e.g., DSA, AED and DPSA).

Since each factor node is controlled by an agent (Page 66), D-CTS is not fully distributed, but

partially centralised. However, this is a typical assumption in DCOP algorithms that use factor

graphs or pseudo-trees, as it allows to explicitly handle ā-ary constraints [Fioretto, Pontelli

68 Large-scale, Dynamic and Distributed CFSTP

and Yeoh 2018, Section 4.2]. This is also the case for main algorithms such as AFB, ADOPT,

DPOP and Max-Sum (Section 2.3). Partial centralisation improves local coordination and thus

overall performance, but reduces privacy [Fioretto, Pontelli and Yeoh 2018, Section 4.3.1]. In

cooperative coordination, and particularly in disaster response, this is generally not an issue.

Algorithms 5.1 and 5.2 resemble a single-item auction [Dias et al. 2006], where, for each time Ċ

and task ČĀ : the bidders are the agents in AĊ that can reach ČĀ by µČĀ ; the bid of an agent is the

time at which it can start working on ČĀ ; the auctioneer is the agent controlling factor node Ą ĊĀ ,

which closes the auction by sending allocate messages to selected agents. However, there are

two di�erences from a classic auction. First, ČĀ can be allocated to more than one agent at once.

Second, agents cannot be overburdened with evaluation problems, since each bidder is interested

in at most one task, and therefore each auctioneer receives as few bids as possible. In other

words, the communication overhead is minimised. This advantage is due to our reduction of the

CFSTP to a DynDCOP (Section 5.3.1), in which the search space contains only feasible solutions.

5.4 Empirical Evaluation in Dynamic Environments

We created a dataset3 with 347588 tasks using open records published by the London Fire

Brigade (LFB) over a period of 11 years. Then, we wrote a test framework in Java4 and compared

D-CTS with DSA-SDP, a state-of-the-art incomplete, synchronous and search-based DCOP

algorithm (Page 23).

We adapted DSA-SDP to solve our DynDCOP formulation (Section 5.3.1), which �nds a CFSTP

solution by solving multiple DCOPs. Hence, being a DCOP algorithm, its performance is not

penalised in our test framework. We chose it as our baseline because, similarly to D-CTS, it

has a polynomial coordination overhead and is scalable (Table 2.2). We kept the parameters of

[Zivan, Okamoto and Peled 2014] and ran |VĊÿĂĂąāÿĀĂă | iterations at each time Ċ, since we found

that, in our test framework, running more iterations can only marginally improve the solution

quality, while requiring a signi�cant increase in communication overhead and time complexity.

Below, we detail our setup and discuss the results.

5.4.1 Setup

Let N and U denote the normal and uniform distribution, respectively. A test con�guration

consists of the following parameters:

• Since there are currently 150 identical London �re engines in operation, |A| = 150 for

each problem. All agents have the same speed;

3https://doi.org/10.5281/zenodo.4728012
4https://doi.org/10.5281/zenodo.4764646

https://doi.org/10.5281/zenodo.4728012
https://doi.org/10.5281/zenodo.4764646

5.4 Empirical Evaluation in Dynamic Environments 69

• |V| = |A| ⋅ ā, where ā * {1,& , 20}. Thus, problems have up to 3000 tasks;

• The demand of each task Č is de�ned by a record dated between 1 January 2009 and 31

December 2020. More precisely, µČ is the attendance time (in seconds) of the �re�ghters,

and since the median attendance time in the whole dataset is about 5 minutes, we set

čČ < U(10, 300) to simulate wide-ranging workloads;

• For each task-to-agent ratio |V|/|A|, the nodes of a problem are chosen in chronological

order. That is, the �rst problem always starts with record 1, and if a problem stops at

record ć, then the following one will use records ć + 1 to ć + 1 + |V|;
• The locations are latitude-longitude points, and the travel time Ä(ÿ, Ă1, Ă2) is given by the

great-circle distance in kilometers between locations Ă1 and Ă2, divided by the (�xed) speed

of agent ÿ;

• In addition to task locations, L contains the locations of the 103 currently active London

�re stations. In each problem, each agent starts at a �re station de�ned by the record of a

task.

Regardless of its individual features, each agent may perform di�erently in di�erent coalitions,

due to the interaction with other agents. To generate coalition values, we start by taking from

[Rahwan, T. Michalak and Jennings 2012, Section 4] the following well-known CSG distributions:

1. Normally Distributed Coalition Structures (NDCS): ċ(C, Č) < N(|C|, 4
√|C|);

2. Agent-based: each agent ÿ has a value Ćÿ < U(0, 10) representing its individual perfor-

mance and a value ĆCÿ < U(0, 2 ⋅ Ćÿ) representing its performance in coalition C. The

value of a coalition is the sum of the values of its members: ċ(C, Č) = ∑ÿ*C Ć
C
ÿ .

Then, we decrease each ½Č = ċ(C, Č) by values Ĉ and ć, both sampled from U(½Č/10, ½Č/4)

with probability µČ/(ĊăÿĎ + 1) and |C|/(|A| + 1), respectively. The perturbation Ĉ simulates

real-time domains where the later µČ is, the lower the bene�t of performing Č [Stankovic et al.

2013]. The perturbation ć simulates situations where the more agents there are, the greater

the likelihood of congestion and thus of reduced performance, as it can happen in large-scale

robot swarms [Guerrero, Oliver and Valero 2017]. We call the resulting distributions UC_NDCS

and UC_Agent-based, where UC means Urgent and Congested. NDCS assigns lower values to

solutions containing fewer coalitions [Rahwan, Ramchurn et al. 2009], while Agent-based does

the opposite by de�nition. Both distributions are neither superadditive nor subadditive [Rahwan,

T. P. Michalak et al. 2015]. Hence, it is not possible to de�ne a priori an optimal coalition

for each task. We ensured consistency between the results of the algorithms by computing

and storing coalition values in hash maps. More precisely, the maps were lazy-initialised and

shared among all problems.

During the solution of each problem, we gradually removed agents to simulate degradation

scenarios. The removal rate was calculated with a Poisson cumulative distribution function

70 Large-scale, Dynamic and Distributed CFSTP

1 4 8 12 16 20
0

20

40

60

80

100

|V|/|A|

C
om

pl
et
ed

ta
sk
s
(%
)

(a) UC_NDCS

d-cts
dsa-sdp

1 4 8 12 16 20
0

20

40

60

80

100

|V|/|A|
C
om

pl
et
ed

ta
sk
s
(%
)

(b) UC_Agent-based

d-cts
dsa-sdp

Figure 5.2 Comparison between D-CTS and DSA-SDP in our test framework. Each sub�gure denotes
a coalition value distribution, while each point is the median and 95% con�dence interval over 100
problems of the percentage of tasks completed. The X-axis is the task-to-agent ratio.

PąÿĉCDF(a, ¼), where a contains all �re�ghter arrival times in the dataset, and the rate ¼ is the

average number of incidents per hour and per day. For each test con�guration and algorithm,

we solved 100 problems and measured the median and 95% con�dence interval of: number

of messages sent; network load, or the total size of messages sent; number of Non-Concurrent

Constraint Checks (NCCCs) [Meisels 2007]; percentage of tasks completed, and CPU time5.

5.4.2 Results

Figure 5.2 and 5.3 show our results. D-CTS completes 3.79% ± [42.22%, 1.96%] more tasks than

DSA-SDP (Figure 5.2). For both algorithms, the performance drops rapidly as the task-to-agent

ratio increases. This is due to the Urgent component in the coalition value distributions: the

higher the ratio, the higher the median task completion time. Conversely, the Congested

component can reduce the percentage of tasks completed more in problems with smaller task-

to-agent ratios, where agents can form larger coalitions and thus increase the likelihood of

congestion.

The network load of DSA-SDP is 0.59 ± [0.41, 0.02] times that of D-CTS (Figure 5.3b). This is

because a DSA-SDP message contains only a task address, while a D-CTS message also contains

a binary �ag and an integer (Section 5.3). In Java, an address requires 8 bytes, a �ag requires 1

byte, and an integer requires 1 − 4 bytes. Hence, while a DSA-SDP message always requires 8

bytes, a D-CTS message requires 10 − 13 bytes. This is line with the results obtained. However,

the situation would be reversed if we performed 1000 DSA-SDP iterations as suggested in [W.

Zhang et al. 2005], since ăăĂÿÿĄ({|VĊÿĂĂąāÿĀĂă |}ĊdĊăÿĎ) l 1000 in our tests.

5Based on an Intel Xeon E5-2670 processor (2.6 GHz, 8 threads).

5.4 Empirical Evaluation in Dynamic Environments 71

1 4 8 12 16 20

40

45

50

55

60

|V|/|A|

D
SA

-S
D
P
/
D
-C
T
S

(a) Messages sent

uc_ndcs uc_agent-based

1 4 8 12 16 20

0.5
0.6
0.7
0.8
0.9
1

|V|/|A|
D
SA

-S
D
P
/
D
-C
T
S

(b) Network load

1 4 8 12 16 20
40

60

80

100

|V|/|A|

D
SA

-S
D
P
/
D
-C
T
S

(c) NCCCs

1 4 8 12 16 20
5

10

15

20

25

|V|/|A|

D
SA

-S
D
P
/
D
-C
T
S

(d) CPU time

Figure 5.3 Ratio of DSA-SDP performance to D-CTS performance. Each sub�gure denotes a perfor-
mance metricm, while each point is the median and 95% con�dence interval over 100 problems ofmÿ/ăĀ,
where ăÿ (resp. ăĀ) is the value of DSA-SDP (resp. D-CTS) for ă. The X-axis is the task-to-agent ratio.

The remaining metrics put DSA-SDP at a distinct disadvantage (Figure 5.3a, c, d). The overload

compared to D-CTS is 41.72±[12.45, 0.42] times more messages sent, 72.78±[34.79, 27.79] times

more NCCCs, and 13.82 ± [4.52, 3.71] times more CPU time. This is explained as follows. While

the number of messages sent is O(|V| ⋅ |A|) in D-CTS (Section 5.3), it is O(|V| ⋅ |A|2) in DSA-SDP,

since the agents exchange their assignments6 [Zivan, Okamoto and Peled 2014]. In D-CTS,

analysing in sequence the agents that can be assigned to each task (line 4 in Algorithm 5.2)

requires O(|V| ⋅ |A|) NCCCs. DSA-SDP does a similar analysis, but for each message exchanged

between two agents, which requires O(|V|2 ⋅ |A|2) NCCCs. Finally, the time complexity of

DSA-SDP is O(ĊăÿĎ ⋅ |V| ⋅ |A|2), where O(|V| ⋅ |A|) is required by the message exchange phase

at each time, and O(|A|) is required by each agent to calculate the assignment costs (Equation

5.12). Hence, DSA-SDP is asymptotically slower than D-CTS (Equations 4.2 and 4.3). Overall,

D-CTS took 525 ± [281, 482] ms, while DSA-SDP took 6.97 ± [5.84, 6.2] seconds. In accordance

6To align with Table 2.2, we have that Ċ = |V|, and Ą = Ă = |A|.

72 Large-scale, Dynamic and Distributed CFSTP

with the above, the ratio of DSA-SDP performance to D-CTS performance tends to increase

with regard to CPU time, and to decrease with regard to the other metrics.

In a dynamic environment, desirable features of a distributed algorithm include being robust

to disruptions and minimising communication overhead (Section 5.3). The latter feature is

particularly important in real-world domains such as disaster response, where agent communi-

cation can be costly (i.e., not free-comm environments, Section 2.2) or there may be operational

constraints, such as low bandwidth or limited network topology (e.g., sparse robot swarms

searching for shipwrecks on the seabed, or monitoring forest �res [Tarapore, Groß and Zauner

2020]). In our tests, compared to the state-of-the-art DSA-SDP, D-CTS achieves a slightly

better solution quality (Figure 5.2), and is one order of magnitude more e�cient in terms of

communication overhead and time complexity (Figure 5.3). This a�rms its e�ectiveness as a

scalable and distributed CFSTP algorithm for dynamic environments.

5.5 Summary

We proposed a novel and minimal BIP of the CFSTP, and demonstrated its equivalence with the

original MIP formulation (Section 3.3). Based on a novel reduction of the CFSTP to a DynDCOP,

we also created D-CTS, a distributed version of CTS that preserves its properties (anytime,

convergent, scalable) and is self-stabilising. We de�ned a large-scale CFSTP dataset, as well as

a dynamic test framework, and empirically showed that D-CTS has slightly better performance

than the state-of-the-art DSA-SDP, while having signi�cantly lower communication overhead

and time complexity. Having �lled the main gaps in the literature, in order to meet all our

research objectives (Section 1.3), the next and �nal chapter will focus on the main limitations

of the CFSTP model itself.

Chapter 6

The Multi-Agent Routing and

Scheduling through Coalition

Formation Problem

Although many problems similar to the CFSTP have been studied to date (Section 2.5), no one

can meet all our research objectives (Section 1.3). Against this background, in this �nal chapter

we begin by presenting in Section 6.1 the Multi-Agent Routing and Scheduling through Coalition

formation problem (MARSC), a generalisation of the CFSTP and the TOPTW that can be used in

real-time domains. Then, we de�ne in Section 6.2 the �rst anytime, exact and parallel MARSC

algorithm. Since no exact algorithm has so far been proposed for the CFSTP, it is consequently

the �rst of its kind for this problem as well. Finally, in Section 6.3, using extended versions of

the test frameworks of Chapters 4 and 5, we evaluate our algorithm on synthetic small-scale

problems, and an approximate variant on large-scale realistic problems.

6.1 Problem Formulation

As in Section 5.2, we use a BIP formulation. Since the MARSC generalises the CFSTP (Theorem

6.1), we recall and extend the basic de�nitions and constraints of Sections 3.1.1 − 3.1.3 and 5.2.

Speci�cally, we add multiple possible locations per task, bene�ts, time windows, precedences,

and de�ne a more general objective function. We also show how to extend the work of Section

5.3.1 to reduce the MARSC to a DynDCOP.

6.1.1 Basic De�nitions

Let V = {Č1,& , Čă} be a set of ă tasks and A = {ÿ1,& , ÿĄ} be a set of Ą agents. Let L be the �nite

set of all possible task and agent locations. Time is denoted by Ċ * N, starting at Ċ = 0, and

73

74 The Multi-Agent Routing and Scheduling through Coalition Formation Problem

agents travel or perform tasks with a base time unit of 1. The time units needed by an agent to

travel from one location to another are given by the function Ä ∶ A × L × L ³ N. Having A in

the domain of Ä allows to characterise di�erent agent features (e.g., speed or type). Let ĂĊÿ * L be

the location of agent ÿ at time Ċ, where Ă0ÿ is the initial location of ÿ and is known a priori.

Task Demand Each task Č has a demand DČ = (LČ, čČ,ϕČ,³Č, ´Č, µČ), where:

• LČ � L is the set of possible locations of Č;

• čČ * R≥0 is the workload of Č, or the amount of work required to complete Č;

• ϕČ * R≥0 is the bene�t of Č, or the weight associated with the completion of Č;

• [³Č, ´Č, µČ] is the time window of Č, such that ³Č * N is the earliest time of Č, or the time

starting from which agents can work on Č, ´Č * N is the soft latest time of Č, or the time

until which agents can work on Č without incurring in a penalty, and µČ * N is the hard

latest time of Č, or the time until which agents can work on Č incurring in a penalty. No

agent can work on Č after µČ.

We assume that ³Č ≤ ´Č ≤ µČ, "Č * V, and call ĊăÿĎ = maxČ*V µČ the maximum problem time.

Task Order Let PĈăā � V × V be such that if (Č1, Č2) * PĈăā then Č1 must be completed before

Č2. Each (Č1, Č2) * PĈăā is called a precedence and can be graphically denoted with Č1 z Č2. As

typically done in MRTA [Nunes, Manner et al. 2017], we assume that G = (V, PĈăā) is a �nite,

directed and acyclic graph. Moreover, without loss of generality, we assume that PĈăā does not

contain relations which can be inferred transitively, that is:

(Č1, Č2) * PĈăā I (Č2, Č3) * PĈăā ⇒ (Č1, Č3) + PĈăā

Coalition and Coalition Value A subset of agentsC � A is called a coalition. For each coalition,

task and location there is a coalition value, given by the function ċ ∶ P(A) × V × L → R≥0,
where P(A) is the power set of A. The value of ċ(C, Č, Ă) is the amount of work that coalition

C does on task Č at location Ă * LČ in one time unit. In other words, when C performs Č in

Ă, ċ(C, Č, Ă) expresses how well the agents in C work together, and the workload čČ decreases

by ċ(C, Č, Ă) at each time.

6.1.2 Decision Variables

We use the following indicator variables:

"Č * V, "Ă * LČ, "Ċ * [³Č, µČ], "C � A, ĎČ, Ă, Ċ,C * {0, 1} (6.1)

"Č * V, "Ă * LČ, ďČ,Ă * {0, 1} (6.2)

6.1 Problem Formulation 75

where: ĎČ, Ă, Ċ,C = 1 if task Č in location Ă and at time Ċ is performed by coalition C, and 0 otherwise;

ďČ,Ă = 1 if task Č is completed in location Ă, and 0 otherwise.

6.1.3 Constraints

There are 4 types of constraints: structural, temporal, spatial and ordering.

Structural Constraints Each task can be performed by at most one coalition at each time,

and only within its time window:

"Č * V, "Ă * LČ, "Ċ * [³Č, µČ], ∑
C�A

ĎČ, Ă, Ċ,C ≤ 1 (6.3)

Temporal Constraints Each task can be performed in at most one location, and no agent can

work on it after its workload has been completed:

"Č * V, ∑
Ă*LČ

ďČ,Ă ≤ 1 (6.4)

"Č * V, "Ă * LČ, ⌈ ∑
Ċ*[³Č ,µČ]

∑
C�A

ċ(C, Č, Ă) ⋅ ĎČ, Ă, Ċ,C⌉ = ⌈čČ ⋅ ďČ,Ă⌉ (6.5)

Spatial Constraints An agent cannot work on a task before reaching one of its possible

locations. This identi�es two cases: when an agent reaches a task location from its initial

location, and when an agent moves from one task location to another. The �rst case imposes

that, for each task Č, location Ă * LČ and coalition C, the decision variable ĎČ, Ă, Ċ,C can be positive

only if all agents in C can reach Ă at time Ċ2 < Ċ:

"Č * V, "Ă * LČ, "C � A, if �Ä = max
ÿ*C

Ä(ÿ, Ă0ÿ , Ă) ≥ ³Č then ∑
Ċ*[³Č , �Ä]

ĎČ, Ă, Ċ,C = 0 (6.6)

The value of �Ä is the maximum time at which an agent ÿ * C reaches Ă, from its initial location

at time Ċ = 0. Conditional constraints are usually formulated using auxiliary variables or the

Big-M method. However, such approaches further enlarge the mathematical program or easily

cause numerical issues (Section 5.1). Consequently, in the preprocessing step necessary to

create our BIP, we can implement Equation 6.6 simply by excluding the variables that must be

equal to 0. The second case requires that if an agent cannot perform two tasks consecutively,

then it can perform at most one:

"C1,C2 � A ∶ C1 K C2 ≠ ∅, "Č1, Č2 * V, "Ă1 * LČ1 , "Ă2 * LČ2 ,

"Ċ1 * [³1, µ1], "Ċ2 * [³2, µ2] ∶ Ċ1 + max
ÿ*C1KC2

Ä(ÿ, Ă1, Ă2) ≥ Ċ2,

ĎČ1, Ă1, Ċ1,C1 + ĎČ2, Ă2, Ċ2,C2 ≤ 1

(6.7)

76 The Multi-Agent Routing and Scheduling through Coalition Formation Problem

Hence, coalition C2 can perform task Č2 only if all agents in C1 K C2 can reach location Ă2 by the

hard latest time µ2. Equation 6.7 also implies that two tasks cannot be performed by the same

agent at the same time. Consequently, coalitions that exist in di�erent locations at the same

time are disjoint. There are no synchronisation constraints [Nunes, Manner et al. 2017]. Thus,

when a task Č in location Ă is allocated to a coalition C, each agent ÿ * C starts working on Č

as soon as it reaches Ă, without waiting for the remaining agents. That is, Č is completed by a

temporal sequence of subcoalitions of C: #S � P(C) such that "C2 * S, #Ċ * [³Č, µČ], ĎČ, Ă, Ċ,C2 = 1,

where P(C) is the power set of C.

Ordering Constraints If Č1 z Č2 then Č2 can only be performed after Č1:

"Č1, Č2 * V, if Č1 z Č2 then ∑
Ă1*LČ1

ďČ1,Ă1 ≥ ∑
Ă2*LČ2

ďČ2,Ă2 (6.8)

6.1.4 Objective Function

Let Ė be a solution, that is, a value assignment to all decision variables, which de�nes the route

and schedule of each agent. For each task Č and time Ċ, let:

ÈČ,Ċ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Ċ ≤ ´Č

1 −
Ċ − ´Č

µČ − ´Č + 1
, otherwise

(6.9)

be the penalty of performing Č at Ċ, that is, a positive weight that decreases linearly after Ċ

passes ´Č. Let:

ĉāąĈă(Ė) =∑
Č*V

∑
Ă*LČ

∑
Ċ*[³Č ,µČ]

∑
C�A

ϕČ ⋅ ÈČ,Ċ ⋅ ĎČ, Ă, Ċ,C (6.10)

be the score of Ė. The objective of the MARSC is to �nd a solution that has maximum score

and satis�es all constraints:

argmax
Ė

ĉāąĈă(Ė) subject to Equations 6.1 − 6.8 (6.11)

Hence, Equation 6.11 maximises the total bene�twhile minimising the total time penalty (i.e., the

number of tasks that are completed after their soft latest times). This involves maximising task

completion times and minimising coalition sizes. Consequently, the number of tasks performed

at any one time is the largest, and the most bene�cial tasks are prioritised. Ours is a combination

of two objective functions commonly used in MRTA problems [Nunes, Manner et al. 2017,

Section 5]. Creating all decision variables (Equation 6.1) may require to list all L-tuples over

P(A), where L = |V| ⋅ |L| ⋅ ĊăÿĎ . This implies a worst-case time and space complexity of:

O((2|A|)L) = O (2|A|⋅|V|⋅|L|⋅ĊăÿĎ) (6.12)

6.1 Problem Formulation 77

In addition, searching for an optimal solution exhaustively (Equation 6.11) may require to list

all possible coalition allocations for each possible permutation of V, with a worst-case time

complexity of:

O (|V|! ⋅ |L| ⋅ 2|A| ⋅ ĊăÿĎ) (6.13)

Theorem 6.1 The MARSC generalises the CFSTP.

Proof. We refer to the BIP formulation of the CFSTP given in Section 5.2.

The CFSTP is a MARSC where tasks have exactly one location, bene�ts are homogeneous,

there are neither earliest nor soft latest times, and tasks can be completed in any order. The

structural, temporal and spatial constraints are identical. Given a MARSC solution Ė and a task

Č, if ĎČ, Ă, Ċ,C = 1, for some Ă * LČ, Ċ * [³Č, µČ] and C * P(A), then ďČ,Ă = 1. Thus, in the presence of

the above-mentioned simpli�cations, Equation 6.11 maximises the number of completed tasks,

as required by the objective function of the CFSTP (Equation 5.8).

Theorem 6.2 The MARSC generalises the TOPTW.

Proof. Based on [Vansteenwegen and Gunawan 2019, Section 3.3], we �rst describe the TOPTW

using our terminology (Section 6.1.1), then we show that it is a special case of the MARSC.

The TOPTW considers a �nite set of tasks, each with a non-negative bene�t. Each task has

exactly one location and no soft latest time: |LČ | = 1 I ´Č = µČ, "Č * V. When a task is completed

within its time window, its bene�t is added to the total bene�t. Between each pair of tasks

there is a �xed travel time. There are an initial task and a �nal task, both with a bene�t of 0,
an earliest time of 0 and a soft latest time of ĊăÿĎ . Each route must begin at the location of the

initial task and end at the location of the �nal task. The objective is to determine Ą routes, one

for each agent, that maximise the total bene�t.

The travel time between tasks Čÿ and ČĀ also includes the service time at ČĀ , that is, the time taken

by any coalition to complete ČĀ [Vansteenwegen and Gunawan 2019, Section 2.2]. Hence, we set
čČ = 1, "Č * V, to ensure that each task is completed in at most 1 unit of time. Since travel times

depend only on task locations, we exclude A from the domain of Ä(⋅). Coalitions are singleton,
that is, each C is such that |C| = 1. The coalition value function ċ(⋅) always returns 1.

Because each task has exactly one location and coalitions are singleton, we remove the subscript

Ă from the decision variables and simply use ÿ instead of C to indicate the coalition that consists

of agent ÿ. Hence: ĎČ, Ċ, ÿ = 1 if agent ÿ works on task Č at time Ċ, and 0 otherwise; ďČ = 1 if task
Č is completed, and 0 otherwise. Let ČĉĊÿĈĊ and ČăĄĂ denote the initial and �nal tasks, respectively.

The structural constraints (Equation 6.3) become:

"Č * V ý {ČĉĊÿĈĊ , ČăĄĂ} , "Ċ * [³Č, ´Č], ∑
ÿ*A

ĎČ, Ċ, ÿ d 1 (6.14)

78 The Multi-Agent Routing and Scheduling through Coalition Formation Problem

Since both coalition values and workloads are unitary, and each task does not have multiple

locations, Equation 6.14 already ensures that a task is completed within its time window by at

most one agent. Hence, no temporal constraints (Equations 6.4 and 6.5) are required.

Let ĂĉĊÿĈĊ denote the location of ČĉĊÿĈĊ , and let ĂČ denote the location of any other task Č. The initial

location of each agent is ĂĉĊÿĈĊ , and the spatial constraints (Equations 6.6 and 6.7) become:

"Č * V, "ÿ * A, if ¼ = Ä(ĂĉĊÿĈĊ , ĂČ) ≥ ³Č then ∑
Ċ*[³Č ,¼]

ĎČ, Ċ, ÿ = 0 (6.15)

"Č1, Č2 * V, "ÿ * A, "Ċ1 * [³1, ´1], "Ċ2 * [³2, ´2] ∶ Ċ1 + Ä(ĂČ1 , ĂČ2) ≥ Ċ2,

ĎČ1, Ċ1, ÿ + ĎČ2, Ċ2, ÿ ≤ 1
(6.16)

To ensure that each agent schedule starts with ČĉĊÿĈĊ and ends with ČăĄĂ , we de�ne the set of

precedences as follows:

PĈăā = {(ČĉĊÿĈĊ , Č), (Č, ČăĄĂ) ∶ Č * V ý {ČĉĊÿĈĊ , ČăĄĂ}}

The ordering constraints (Equation 6.8) become:

"Č1, Č2 * V, if Č1 z Č2 then ďČ1 ≥ ďČ2 (6.17)

The absence of soft latest times means that there can be no time penalties: ÈČ,Ċ = 1, "Č * V,
"Ċ ≤ ĊăÿĎ (Equation 6.9). Hence, the objective function (Equation 6.11) is simpli�ed as follows:

argmax
Ė

∑
Č*Vý{ČĉĊÿĈĊ ,ČăĄĂ }

∑
Ċ*[³Č ,´Č]

∑
ÿ*A

ϕČ ⋅ ĎČ, Ċ, ÿ

subject to Equations 6.14 − 6.17

(6.18)

Both the CFSTP and the TOPTW are NP-hard [Ramchurn, Polukarov et al. 2010; Vansteenwegen

and Gunawan 2019], thus the MARSC is NP-hard as well.

6.1.5 Reduction of the MARSC to a DynDCOP

Given that the MARSC generalises the CFSTP (Theorem 6.1), to reduce it to a DynDCOP, there

are two modi�cations to be made to the work of Section 5.3.1.

Let VĊāąăĆĂăĊăĂ denote the set of tasks that have been completed at time Ċ. The �rst modi�cation

is to include ordering constraints and the possibility of having multiple possible locations per

task by rede�ning Equation 5.11 as follows:

DĊÿ =
{
Č * VĊÿĂĂąāÿĀĂă | (#Č2 * V ∶ Č2 z Č ò Č2 * VĊāąăĆĂăĊăĂ) I

#Ă * LČ ∶ Ċ + Ä(ÿĊÿ , ĂÿĊÿ , Ă) d µČ
}
L {%}

(6.19)

6.2 An Anytime, Exact and Parallel MARSC Algorithm 79

Recall that, in propositional logic, A ò B ≡ ¬A J B ≡ if A then B. The second change is to

include time windows, bene�ts and penalties by rede�ning Equation 5.12 as follows:

Ą Ċÿ (Ăÿ1 ,& , Ăÿℎÿ) = minĖĊÿ
−ĉāąĈă(ĖĊÿ) (6.20)

where each ĎČÿ, Ă, Ċ,C * ĖĊÿ is such that C is a subset of the agents that control the variables in the

scope of Ą Ċÿ , while ĎČÿ, Ă, Ċ,C = 1 if Ăÿℎÿ = Čÿ, for each ℎÿ-th agent in C and for some Ă * LČÿ , and 0

otherwise. Being an additive function (Equation 6.10), the solution score �ts naturally with

the characterisation of Ą Ċÿ (⋅). It is multiplied by −1 in Equation 6.20 because we formulate the

DynDCOP as a minimisation problem (Equation 5.10).

6.2 An Anytime, Exact and Parallel MARSC Algorithm

A trivial way to solve the MARSC would be to implement Equation 6.11 with solvers such as

CPLEX or GLPK. Although this would guarantee anytime and optimal solutions, it would also

take exponential time and space to create the BIP (Equation 6.12), in addition to the time to

solve it (Equation 6.13). This limits this practice to o�ine contexts and very small problems. For

example, using CPLEX 20.1 with our HPC cluster1, we can solve within hours problems with

superadditive coalition values, uniformly distributed workloads and time windows, locations

based on the taxicab metric, and Ăÿă = |A| ⋅ |V| ⋅ |L| d 30. With greater Ăÿă values, CPLEX

depletes all memory (187.5 GB) and crashes. For this reason, this section presents the Anytime,

exact and parallel Node Traversal (ANT) algorithm, which provides the sharp lower bound on

the time and space complexity required to solve the MARSC optimally. We begin by explaining

its procedures, then we analyse its theoretical properties and computational complexity.

6.2.1 Procedures

Given a task Č, a location Ă * LČ and a set of agents A2 � A, Algorithm 6.1 de�nes a coalition

C∗ � P(A2) such that |C∗| is minimum and each agent ÿ * C∗ reaches Ă not only by µČ (line 1), but

also in the shortest possible time (line 2), which satis�es the spatial constraints. The status of

each agent (line 1) is set by Algorithm 6.2. When the condition at line 12 holds, C∗ satis�es the

temporal constraints. Line 13 returns a singleton solution ĖČ � Ė (Section 5.3.1). In particular,

ĖČ de�nes the temporal sequence of subcoalitions of C∗ that are formed as the agents reach Ă,

thus satisfying the structural constraints. That is, for each ÿ * C∗, ĖČ de�nes the time interval ÿ

during which ÿ will work on Č at Ă, such that ÿ does not violate any constraints, and ĉāąĈă(ĖČ) is
maximum; ÿ is considered part of C∗ from the moment ĖČ is created until the end of ÿ.

Let Ã(V) denote the set of all permutations of V. Algorithm 6.2 takes as input a task permutation

V³ � Ã(V) and a set of agents A2 � A. It de�nes a solution Ė³ by �nding singleton solutions

1The Iridis 5 Compute Cluster at the University of Southampton.

https://www.southampton.ac.uk/isolutions/staff/iridis.page

80 The Multi-Agent Routing and Scheduling through Coalition Formation Problem

Algorithm 6.1: getSingletonSolution

Input: task Č, location Ă * LČ, agents A2

1 ΠČ ← array of all agents in A2 that, from their current status, can reach Ă by µČ
2 Sort ΠČ by arrival time to Ă
3 φČ ← 0 // total workload done on Č

4 for ÿ ← 1; ÿ ≤ |ΠČ |; ÿ ← ÿ + 1 do

5 C∗ ← �rst ÿ agents in ΠČ
6 ¼ÿ ← arrival time to Ă of the ÿ-th agent in ΠČ
7 if ÿ + 1 ≤ |ΠČ | then
8 ¼ÿ+1 ← arrival time to Ă of the (ÿ + 1)-th agent in ΠČ
9 else // the ÿ-th agent is the last

10 ¼ÿ+1 ← µČ // last feasible working time

11 φČ ← φČ + (¼ÿ+1 − ¼ÿ) ⋅ ċ(C
∗, Č, Ă) // workload done at time ¼ÿ+1

12 if (µČ − ¼ÿ+1) ⋅ ċ(C
∗, Č, Ă) ≥ čČ − φČ then

13 return ĖČ // using C∗, Č, and Ă

14 return nil

Algorithm 6.2: getSolutionForSchedule

Input: incumbent solution Ė, task permutation V³, agents A2

1 Ė³ ← empty vector
2 for Č * V³ do

3 Ė³Č ← nil

4 for Ă * LČ do

5 Ė³Č,Ă ← getSingletonSolution(Č, Ă, A2)

6 Ė³Č ← argmaxĖ2*{Ė³Č,Ă ,Ė³Č } ĉāąĈă(Ė
2)

7 if Ė³Č ≠ nil then

8 "ÿ * A2, update ÿ.status based on Ė³Č

9 return argmaxĖ2*{Ė³,Ė} ĉāąĈă(Ė2) // access to Ė is synchronised

following the order of V³. For each Č * V³, the loop at line 4 �nds a location Ă * LČ that

maximises ĉāąĈă(Ė³Č), with the convention that ĉāąĈă(nil) = 0. Lines 7 and 8 ensure that Ė³

satis�es the structural constraints by saving, after �nding each singleton solution and for each

agent ÿ * A2, the last time ÿ was working, and at which location (i.e., its status). At line 9, Ė
is maximised synchronously to allow execution in concurrent environments.

Algorithm 6.3 describes the overall procedure. Lines 2 and 3 initialise the incumbent solution

using the Earliest Deadline First (EDF) technique, which is typically used in real-time systems

[Stankovic et al. 2013]. Lines 4 − 6 launch a thread with an instance of Algorithm 6.2 for each

schedule or permutation of V that satis�es the ordering constraints. At lines 3 and 6, A is cloned

to avoid interferences between threads. The stopping criterion at line 7 works as follows. Let ā

be the number of tasks performed in the solution found at line 6, let S be the set of all schedules

investigated so far, and let �X be the set of all solutions found so far. If for each permutation of ā

tasks Ć there is a schedule in S that starts with Ć, and �X does not contain a solution involving

6.2 An Anytime, Exact and Parallel MARSC Algorithm 81

Algorithm 6.3: ANT

Input: tasks V, demands {DČ}Č*V, order PĈăā, agents A
1 Ė ← empty vector
2 Sort V by earliest time, while satisfying the ordering constraints // initial schedule

3 Ė ← getSolutionForSchedule(Ė, V, clone(A)) // initial incumbent solution

4 for V³ * Ã(V) do // remaining schedules

5 if V³ satis�es the ordering constraints then
6 Ė ← getSolutionForSchedule(Ė, V³, clone(A))
7 if #ā ≤ |V| ∶ $ solutions for ā tasks in Ė then

8 break

9 return Ė

ā tasks, then there can be no solution for ā2 ≥ ā tasks. Since S consequently also contains

schedules starting with each permutation of ā22 < ā tasks, the search can safely end.

The reason why it is su�cient that, for each ā-permutation of tasks Ć, S contains a schedule ĉ

starting with Ć, is that ĉ has maximum score for subschedule Ć. In other words, due to Equation

6.10, any schedule ĉ2 ≠ ĉ containing Ć (in any position) is such that ĉāąĈă(ĉ2) ≤ ĉāąĈă(ĉ). Figure

6.1 shows an example of the execution of Algorithm 6.3.

6.2.2 Theoretical Properties

Algorithm 6.1 is based on the following lemma.

Lemma 6.3 "ÿ * A, "Č * V, "Ċ * [³Č, µČ], if Ä(ÿ, Ă0ÿ , ĂČ) > Ċ, then $Č2 * V ý {Č} such that:

#ĂČ2 * LČ2 , #Ċ2 * [³Č2 , µČ2] ∶ Ċ2 + Ä(ÿ, ĂČ2 , ĂČ) d Ċ (6.21)

Proof. If agent ÿ cannot reach location ĂČ from its initial location Ă0ÿ by time Ċ, then it cannot

reach ĂČ by Ċ even if it would depart from any other location at time Ċ2 < Ċ, because each possible

route of ÿ always starts at Ă0ÿ .

Hence, if Ä(ÿ, Ă0ÿ , ĂČ) > Ċ, then we can safely exclude each decision variable ĎČ, Ă, Ċ,C such that ÿ * C.

This means that only agents that can reach ĂČ by µČ are able to form feasible coalitions, and only

coalitions that can be formed while agents reach ĂČ can maximise ĉāąĈă(ĖČ), as demonstrated

by the following lemma.

Lemma 6.4 For the input subproblem, Algorithm 6.1 is guaranteed to converge to an optimal

singleton solution.

Proof. Algorithm 6.1 �nds a coalition of minimum size C∗ that reaches Ă as fast as possible.

This maximises the working time of the agents in C∗, that is, the number of positive decision

variables, and therefore also the score (Equation 6.10).

82 The Multi-Agent Routing and Scheduling through Coalition Formation Problem

0 (Č1, Č2, Č3, Č4) 1
1 (Č2, Č1, Č3, Č4) 2
2 (Č3, Č1, Č2, Č4) 3
3 (Č1, Č3, Č2, Č4) 4
4 (Č2, Č3, Č1, Č4) 5
5 (Č3, Č2, Č1, Č4) 6
6 (Č4, Č2, Č1, Č3) 7
7 (Č2, Č4, Č1, Č3) 8

8 (Č1, Č4, Č2, Č3) 9
9 (Č4, Č1, Č2, Č3) 10
10 (Č2, Č1, Č4, Č3) 10

11 (Č1, Č2, Č4, Č3) 10

12 (Č1, Č3, Č4, Č2) 10

13 (Č3, Č1, Č4, Č2) 10

14 (Č4, Č1, Č3, Č2) 10

15 (Č1, Č4, Č3, Č2) 10

16 (Č3, Č4, Č1, Č2) 11
17 (Č4, Č3, Č1, Č2) 12
18 (Č4, Č3, Č2, Č1) 12

19 (Č3, Č4, Č2, Č1) 12

20 (Č2, Č4, Č3, Č1) 12

21 (Č4, Č2, Č3, Č1) 12

22 (Č3, Č2, Č4, Č1) 12

23 (Č2, Č3, Č4, Č1) 12

Figure 6.1 Illustrative example of the execution of Algorithm 6.3 on a problem where V = {Č1, Č2, Č3, Č4},
PĈăā = %, and ĖČ1 is the only feasible solution, which is therefore optimal. Each cell of each column is
an iteration of the loop at line 4, except the �rst cell of the �rst column, which represents the initial
incumbent solution obtained at line 3. Each cell reports the iteration number, current schedule, and
number of schedules starting with distinct 2-permutations of V investigated so far. The schedules are
generated using Heap’s method [Sedgewick 1977]. Let ĖČ1 be found at iteration 0. ANT takes 17 iterations
before ensuring that, for each 2-permutation of V Ć, at least one schedule starting with Ć has been
investigated. Thus, the last 6 schedules (25% of the total) are skipped.

Corollary 6.5 For the input schedule, Algorithm 6.2 is guaranteed to converge to an optimal

solution.

Hence, if we were to perform the tasks according to a given order V³, Algorithm 6.2 would

�nd a solution Ė³ with maximum score, in particular due to lines 4 − 6 (Section 6.2.1). The

previous results lead to the following theorem.

Theorem 6.6 Algorithm 6.3 is exact.

Proof. Corollary 6.5 implies that Algorithm 6.3 �nds an optimal solution to each possible

schedule (line 5). Hence, we only need to show that the stopping criterion (line 7) does not

exclude schedules that have to be investigated. This follows from the discussion in Section 6.2.1:

if we investigated all schedules involving ā tasks, without �nding a solution, then the maximum

possible number of completed tasks must be less than ā, thus there is no need to continue.

Lastly, Algorithm 6.3 is pleasingly parallel [Kepner 2009, Section 2.1] because each possible

schedule (line 6) is investigated in an independent thread, and anytime since each iteration of

the loop at line 4 updates the incumbent solution.

6.2.3 Computational Complexity

Algorithm 6.1 requires O(|A| log |A|) time for the sorting at line 2 [Cormen et al. 2009], and

�ÿ = O(|A| ⋅ (µČ − ³Č)) time and space to de�ne when each agent ÿ * C∗ is working on Č. Its

6.3 Empirical Evaluation 83

total time complexity is �Ā = O(|A| log |A| ⋅ ĊăÿĎ). Algorithm 6.2 requires �ā = O(|V| ⋅ |L| ⋅ �Ā) time

and �Ă = O(|A| ⋅ ĊăÿĎ) space to determine when and where each agent ÿ * A works, since each

variable ďČ,Ă can be stored in constant space (e.g., using a �xed-size string).

Algorithm 6.3 requires: O(|V| log |V|) time and O(|V|) space for line 2; �ā time and �Ă space for

line 3; O(|V|!) time for the loop at line 4, and O(|V|) time for checking the condition at line

5. The condition at line 7 can be checked in constant time and space using counter variables.

Hence, ANT has an overall time complexity of:

O (|V| log |V| + |V|! ⋅ (|V| + �ā)) = O (|V|! ⋅ |L| ⋅ |A| log |A| ⋅ ĊăÿĎ) (6.22)

and an overall space complexity of:

O (|V| + (1 + ») ⋅ �Ă) = O (|V| + » ⋅ |A| ⋅ ĊăÿĎ) (6.23)

where » is the maximum number of threads available. From Lemma 6.3 and Theorem 6.6, it

follows that no exact MARSC algorithm can have a time and space complexity lower than that

speci�ed by Equations 6.22 and 6.23.

6.3 Empirical Evaluation

We wrote a test framework in Java2 consisting of two suites. The �rst is an extension of Section

4.3, while the second is a variant of Section 5.4 with an extended dataset3 of 567492 task demands

(+67%) generated from LFB records of the last 12 years. We used the �rst suite to test ANT

on small-scale synthetic problems, and the second suite to test an approximate variant called

ANT-ε on large-scale realistic problems. This variant simply limits to ε the maximum number of

iterations done at line 4 in Algorithm 6.3. We used Heap’s method [Sedgewick 1977] to generate

task permutations4 in Algorithm 6.3, and set ε = 105. As baselines, we used CTS (Section 4.2),

augmented to solve the MARSC, and EDF5, equivalent to lines 2 and 3 of Algorithm 6.3. Below,

we detail our test suites and discuss the results.

2https://doi.org/10.5281/zenodo.5375844
3https://doi.org/10.5281/zenodo.4018139
4In preliminary tests, it proved to be the fastest in �nding anytime solutions among the methods reported in

[Sedgewick 1977].
5We use it in place of TOPTW algorithms, which ignore coalition formation and real-time domains.

https://doi.org/10.5281/zenodo.5375844
https://doi.org/10.5281/zenodo.4018139

84 The Multi-Agent Routing and Scheduling through Coalition Formation Problem

6.3.1 Setup

Let N and U denote the normal and uniform distribution, respectively. A test con�guration

consists of the following base parameters:

• |V| = |A| ⋅ ā, where ā * {1,& , 20};
• For each task Čÿ, with ÿ d |V|− 1, if ³Čÿ d ³Čÿ+1 and µČÿ < µČÿ+1 , then Čÿ z Čÿ+1 has probability
0.5. That is, the task order is a partial chain de�ned by coin tosses.

Each suite then uses the following parameters.

Suite 1: Synthetic Problems

• |A| = 2. Consequently, problems have up to 40 tasks. From Equation 6.22, it follows that

a problem contains up to 40! H 8.16 ⋅ 1047 schedules to be investigated;

• The location space is a 50×50 grid. "ÿ * A, "Ă1, Ă2 * L, Ä(ÿ, Ă1, Ă2) is the Manhattan distance

between Ă1 and Ă2 divided by the speed of ÿ, which is sampled from U(1, 2). Each agent

has a random initial location, while each task has 2 random possible locations;

• "Č * V, čČ < U(10, 50), ³Č < U(5, 600), µČ < U(³Č, 600), ´Č < U(³Č, µČ), and ϕČ < U(1, 2).

Suite 2: LFB Problems

• Each task demand is de�ned by a record dated between 1 January 2009 and 31 May

2021 as follows: ³Č = minÿ*A Ä(ÿ, Ă0ÿ , ĂČ); µČ = ³Č + », where » is the attendance time

(in seconds) of the �re�ghters; ´Č < U(³Č, µČ); |LČ | = 1, and ϕČ = 1. Lastly, since the
median attendance time in the whole dataset is about 5 minutes, we set čČ < U(10, 300)

to simulate wide-ranging workloads;

• The remaining parameters are the same as in Section 5.4.1.

Coalition Value Distributions We use UC_NDCS and UC_Agent-based from Section 5.4.1,

with the following addition. To simulate real-time domains where the further away ĂČ is, the

lower the bene�t of performing Č [Stankovic et al. 2013], we decrease each ½Č = ċ(C, Č, Ă) by

Đ < U(½Č/10, ½Č/4)with probability Ä(�ÿ, Ă�ÿ, ĂČ)/(ĊăÿĎ+1), where �ÿ is the last agent to reach ĂČ, and

Ă�ÿ is the location of the task previously completed by �ÿ, or Ă0�ÿ otherwise. Since it is a touchstone

for the study of coalition formation problems [Sandholm, Larson et al. 1999], we also use the

following special case of Superadditive distribution: ċ(C, Č, Ă) = |C|. We ensured consistency

between the results of the algorithms as follows. Regarding Superadditive, all coalition values

6.3 Empirical Evaluation 85

Suite 1: Synthetic Problems (|A| = 2)

1 4 8 12 16 20

0

0.5

1

1.5

2

2.5
⋅104

|V|/|A|

ĉā
ąĈ
ă(
Ė)

(a) Superadditive

ant
cts
edf

1 4 8 12 16 20

0

0.5

1

1.5

2

2.5
⋅104

|V|/|A|

ĉā
ąĈ
ă(
Ė)

(b) UC_NDCS

ant
cts
edf

1 4 8 12 16 20

0

0.5

1

1.5

2

2.5
⋅104

|V|/|A|

ĉā
ąĈ
ă(
Ė)

(c) UC_Agent-based

ant
cts
edf

Suite 2: LFB Problems (|A| = 150)

1 4 8 12 16 20

0

0.5

1

1.5
⋅105

|V|/|A|

ĉā
ąĈ
ă(
Ė)

(d) Superadditive

ant-ε
cts
edf

1 4 8 12 16 20

0

0.5

1

1.5
⋅105

|V|/|A|

ĉā
ąĈ
ă(
Ė)

(e) UC_NDCS

ant-ε
cts
edf

1 4 8 12 16 20

0

0.5

1

1.5
⋅105

|V|/|A|

ĉā
ąĈ
ă(
Ė)

(f) UC_Agent-based

ant-ε
cts
edf

Figure 6.2 Performance of ANT and ANT-ε in our test suites. Each sub�gure contains tests performed
with the coalition value distribution in the title. Each point is the median and 95% con�dence interval
over 100 replicates. The X-axis indicates task-to-agent ratios, while the Y-axis reports solution scores
(Equation 6.10). The higher the scores, the better the solutions.

were computed and stored in hash maps before running the tests. As it is only de�ned by

coalition sizes, this preprocessing step took O(|A|) time. For UC_NDCS and UC_Agent-based,

the hash maps were lazy-initialised and shared among all problems (as done in Section 5.4.1).

For each test suite, algorithm and coalition value, we solved 100 problems, and measured the

median and 95% con�dence interval of solution score (Equation 6.10) and CPU time6. Since we

have 3 algorithms, 20 task-to-agent ratios, 3 coalition value distributions, 100 replicates, and 2

test suites, the total number of tests performed is 36000.

6.3.2 Results

Figure 6.2 reports the results of our tests. The solution score generally increases because it is an

absolute metric, hence the larger the problem size, the more tasks there are that can be completed

by their soft latest times. Let ¸ΛB = ĉāąĈă(ĖΛ)/ĉāąĈă(ĖB) be the performance improvement of

Λ * {ANT,ANT-ε} over B * {CTS,EDF}. Regarding Suite 1 (synthetic problems, |A| = 2), being
an exact algorithm, ANT dominated both baselines. More precisely, we recorded the following

median improvements:

• Superadditive (Figure 6.2a): ¸ANTCTS H 1.07 ± [0.57, 0.06] and ¸ANTEDF H 1.36 ± [0.75, 0.32];

6Based on an Intel Xeon Gold 6138 (2 GHz, 40 threads).

86 The Multi-Agent Routing and Scheduling through Coalition Formation Problem

• UC_NDCS (Figure 6.2b): ¸ANTCTS H 1.94 ± [1.79, 0.81] and ¸ANTEDF H 1.92 ± [1.39, 0.82];

• UC_Agent-based (Figure 6.2c): ¸ANTCTS H 1.89 ± [0.64, 0.82] and ¸ANTEDF H 2.35 ± [1.02, 0.95].

The overall median is 1.9 ± [1.83, 0.89]. The wider con�dence intervals in Figures 6.2b and 6.2c

are due to the perturbations introduced by the UC factor. Regarding Suite 2 (LFB problems,|A| = 150), the median improvements are:

• Superadditive (Figure 6.2d): ¸ANT-εCTS H 1.83 ± [2.27, 1.55] and ¸ANT-εEDF H 3.38 ± [2.04, 2.37];

• UC_NDCS (Figure 6.2e): ¸ANT-εCTS H 4.23 ± [6.86, 3.79] and ¸ANT-εEDF H 4.26 ± [3.05, 3.25];

• UC_Agent-based (Figure 6.2f): ¸ANT-εCTS H 0.58± [0.70, 0.33] and ¸ANT-εEDF H 2.15± [1.42, 1.13].

The overall median is 2.6 ± [8.49, 2.5]. The con�dence intervals are less wide in Suite 2 because

the tasks are chosen in chronological order, thus the problems vary less in di�culty. The

non-monotonic performance of CTS depends both on its strategy of prioritising urgent and

uncompleted tasks (Section 4.2.2), and on the fact that the tasks are sorted chronologically.

After reaching the ‘peak’ performance (e.g., |V|/|A| = 9 in Figure 6.2f), CTS becomes increas-

ingly ine�ective because, when there are too many chronologically ordered tasks, performing

urgent and uncompleted tasks �rst is similar to EDF. Furthermore, the reason why it has the

worst performance for |V|/|A| ≥ 12 in Figure 6.2e is that it minimises the number of coalition

allocations, which is penalised by any distribution based on NDCS. On the other hand, ANT-ε

tends to be more e�ective as the problem size increases, and is also more consistent, both with

distributions such as Superadditive and UC_Agent-based, which reward larger coalitions more

and thus are suitable for real-time domains like disaster response, and with (a variant of) NDCS,

which is more di�cult to prune [Rahwan, Ramchurn et al. 2009, Section 5.2].

In Suite 1, CTS and EDF ran in less than 1 ms, while ANT had a median of 15.56 ± [8.9, 15.55]

minutes. In Suite 2, the medians were: 78 ± [64, 72]ms for EDF; 18.35 ± [39.7, 18.08] seconds for

CTS, and 5.03 ± [3.84, 4.44] seconds for ANT-ε. Hence, ANT-ε was typically 3.65 times faster

than CTS. The total RAM usage was 7.25 GB for Suite 1, and 20.4 GB for Suite 2.

To summarise, ANT solved synthetic problems with 2 agents and up to 40 tasks in less than

25 minutes, �nding up to 3.73 times better solutions than our incomplete baselines. On the

other hand, compared to the state-of-the-art CFSTP algorithm, ANT-ε found 2.6 times better

median solutions in less than a third of the time.

Conclusions

In Chapter 4, we proposed two novel algorithms to solve the CFSTP. The �rst is CFLA2, an

improved version of CFLA, and the second is CTS, which is the �rst to be simultaneously

anytime, e�cient and with convergence guarantee. CFLA2 can replace CFLA in solving static

or small-scale problems, while CTS provides a baseline for benchmarks with dynamic and

large-scale problems. Moreover, we showed how a simpli�ed but parallel and faster variant

of CTS is enough to compete with high-performance algorithms such as BinaryMS and DSA

in the RCRS. Because it signi�cantly outperforms CFLA, and is more applicable than CFLA2,

we can consider CTS to be the new state-of-the-art CFSTP algorithm. Thanks to its features

(Section 4.2.3), CTS can also be used in contexts other than disaster response, but which can be

still characterised by the CFSTP model, such as multi-robot area coverage, or exploration of

environments that are dangerous for humans [Ramchurn, Polukarov et al. 2010, Section 8].

Chapter 5 has focused on eliminating the major gaps in the CFSTP literature. Speci�cally, we

gave a novel mathematical programming formulation, which is signi�cantly shorter than the

original (Section 3.3). Then, by reducing the CFSTP to a DynDCOP, we designed D-CTS, the

�rst distributed version of CTS. Lastly, using real-world and open data provided by the LFB, and

a large-scale test framework, we compared D-CTS with DSA-SDP, a state-of-the-art distributed

algorithm. In situations where the number of agents monotonically decreases over time, D-

CTS has slightly better median performance, as well as signi�cantly lower communication

overhead and time complexity. D-CTS sets the �rst large-scale, dynamic and distributed CFSTP

benchmark.

Finally, in Chapter 6, to meet all our research objectives (Section 1.3), we de�ned the MARSC,

a generalisation of both the CFSTP and the TOPTW that can be used in real-time domains.

Moreover, we proposed ANT, the �rst anytime, exact and parallel MARSC algorithm, as well

as an approximate variant called ANT-ε. ANT is also the �rst exact algorithm for the CFSTP.

Using extended versions of the test frameworks of Chapters 4 and 5, we showed that ANT can

solve problems with 2 agents and up to 40 tasks in less than 25 minutes, while ANT-ε can solve

problems with 150 agents and up to 3000 tasks in at most 8.87 seconds. ANT can be used in

applications where optimal solutions are required and time is not a limiting factor, such as

industrial scheduling and timetabling problems [Petcu and Faltings 2005a], or routing protocols

for static sensor networks [Kho, Rogers and Jennings 2009]. On the other hand, ANT-ε can be

87

88 The Multi-Agent Routing and Scheduling through Coalition Formation Problem

used in large-scale and dynamic environments where it is important to minimise communication

overhead [Chapman, Rogers, Jennings and Leslie 2011; Ponda et al. 2015].

Main Limitations of Our Work

We cannot de�ne the quality of the approximation obtained by (D-)CTS in general settings

(Section 4.2.3). Moreover, the fact that it maximises the working time of agents (Section 4.3)

implies that some agents may take longer to complete some tasks and therefore may not work

on others. Thus, if an optimal solution exists, (D-)CTS is not guaranteed to �nd it.

Although it generalises the CFSTP and the TOPTW with important constraints and a more

expressive objective function, the MARSC assumes that the agents have total knowledge, and

that the environment has a deterministic behaviour (Section 2.3). In real-world domains, the

status of the tasks may be partially known or unknown, while exogenous events, such as

unexpected failures or severe weather conditions, may reduce the ability of agents to perform

them. Thus, agents have to balance the exploration of the environment with the exploitation of

the information acquired [Taylor, Jain, Y. Jin et al. 2010; Taylor, Jain, Tandon et al. 2011].

The performance of ANT depends primarily on the order in which the schedules are investigated

(line 4 in Algorithm 6.3). For example, if in Figure 6.1 we had investigated (Č3, Č4, Č1, Č2) and

(Č4, Č3, Č1, Č2) at iterations 10 and 11, respectively, then we would have skipped the last 12

schedules (50% of the total), thus minimising the number of iterations required. Moreover,

although ANT-ε is an approximate variant, it is not clear what the relationship is between the

value of ε and the quality of the solutions obtained.

Possible Future Work

In its current state, the �eld of multi-agent optimisation is very much focused on academic

testbeds, and little on real-world scenarios [V. Dignum and F. Dignum 2020; Zivan 2021].

In particular, research on DCOPs is mostly concerned with creating e�ective algorithms for

solving well-known benchmark problems7, which do not necessarily re�ect realistic situations.

Consequently, possible future work should not only seek to mitigate the above limitations, but

also do so with the aim of overcoming the current stagnation in the DCOP research community.

A �rst objective is to extend our LFB test framework (Section 5.4) by:

1. Adding other state-of-the-art distributed algorithms as baselines, such as DALO [Kiek-

intveld et al. 2010], Bounded FMS [Macarthur, Farinelli et al. 2010], SBDO [Billiau, Chang

and Ghose 2012], GDBA [Okamoto, Zivan, Nahon et al. 2016], D-Gibbs [D. T. Nguyen

et al. 2019], and FMC_TA [Nelke, Okamoto and Zivan 2020; Tkach and Amador 2021];

7For example, those generated with the FRODO framework [Fioretto, Pontelli and Yeoh 2018, Section 9.4.2].

6.3 Empirical Evaluation 89

2. Developing more realistic coalition value distributions, perhaps by extending the ones

identi�ed in [Changder, Aknine and Animesh Dutta 2021, Section 5.1];

3. Also studying exploration scenarios [Fioretto, Pontelli and Yeoh 2018], that is, designing

tests in which tasks are gradually added to the system;

4. De�ning a travel time function suitable for ground vehicles. More precisely, the current

de�nition of Ä(⋅) is based on the shortest distance between two points on the surface of a

sphere (Section 5.4.1). This is only suitable for multi-UAV systems �ying high enough

not to have to avoid collisions. However, already with such a simple function, D-CTS is

one order of magnitude more e�cient than DSA-SDP (Section 5.4.2). Consequently, it

would be worth studying how the results change with a function that considers more

realistic factors, such as terrain type or road congestion.

The concept of ā-optimality [Farinelli, Vinyals et al. 2013; Service andAdams 2011] could be used

to design extensions of D-CTS and ANT-ε with provable bounds on solution quality. Moreover,

given its advantages (Section 5.3) and the scarcity of incomplete DynDCOP algorithms (Section

2.3.2), another important objective is to create a D-CTS variant able to solve general DynDCOPs.

The nascent paradigm of enhancing multi-agent optimisation with machine learning has already

proved capable of improving the performance of VRP algorithms considerably [Bai et al. 2021].

Motivated by this, we could use Q-learning to create a more e�ective method for investigating

schedules in ANT, and combine it with a CUDA implementation to establish trade-o�s between

computational power and problem size. This improved version of ANT could be validated

against general meta-heuristics that are also based on permutations of problem elements, such

as Squeaky Wheel Optimisation [Joslin and Clements 1999]. Since the MARSC generalises

the TOPTW (Theorem 6.2), we could evaluate a simpli�ed version of ANT in well-established

TOPTW benchmarks. To the best of our knowledge, despite being the most studied vehicle

routing problem [Vansteenwegen and Gunawan 2019], so far only 4 exact TOPTW algorithms

have been proposed [Boussier, Feillet and Gendreau 2007; Gedik et al. 2017; El-Hajj et al.

2015; Tae and B.-I. Kim 2015]. Hence, it would be interesting to compare ANT with these

algorithms. Moreover, given that the MARSC is related to the CSG problem, which remains

central to numerous multi-agent applications, following contributions like [Agarwal et al. 2015;

Svensson et al. 2013; Ueda et al. 2010], ANT could also be adapted as a new anytime, parallel

and exact CSG algorithm.

Finally, to capture problems where agents have limited perception, communication is imperfect

or noisy, and the environment behaviour is stochastic (e.g., the location and severity of the

�res are unknown, thus agents must scout the disaster area to �nd them), we could extend the

reduction of the MARSC to a DynDCOP given in Section 6.1.5 with elements of autonomic

communications theory [Dobson et al. 2006] and Probabilistic DCOPs [Fioretto, Pontelli and

Yeoh 2018, Section 6]. To the best of our knowledge, this would result in the �rst DCOP model

to cope with both dynamic and stochastic environments [Fioretto, Pontelli and Yeoh 2018,

Section 9.1].

References

Agarwal, Manoj et al. (2015). ‘Parallel multi-objective multi-robot coalition formation’. In: Expert

Systems with Applications 42.21, pp. 7797–7811 (cit. on p. 89).

Alexander, David E. (2002). Principles of Emergency Planning and Management. Oxford University Press

(cit. on pp. 1, 2).

Allen-Williams, Mair and Nicholas R. Jennings (2010). ‘Bayesian Agent Adaptation in Complex Dy-

namic Systems’. In: Handbook of Research on Complex Dynamic Process Management: Techniques for

Adaptability in Turbulent Environments. IGI Global, pp. 172–208 (cit. on pp. 17, 18).

Amato, Christopher, Girish Chowdhary et al. (2013). ‘Decentralized Control of Partially Observable

Markov Decision Processes’. In: IEEE Conference on Decision and Control, pp. 2398–2405 (cit. on p. 28).

Amato, Christopher, George Konidaris et al. (2016). ‘Policy search for multi-robot coordination under

uncertainty’. In: International Journal of Robotics Research 35.14, pp. 1760–1778 (cit. on p. 16).

Amato, Christopher and Frans Oliehoek (2015). ‘Scalable Planning and Learning for Multiagent POMDPs’.

In: AAAI. Vol. 29. 1 (cit. on pp. 17, 18).

Amorim, Junier Caminha, Vander Alves and Edison Pignaton de Freitas (2020). ‘Assessing a swarm-

GAP based solution for the task allocation problem in dynamic scenarios’. In: Expert Systems with

Applications 152.113437 (cit. on p. 31).

Andrews, George E. and Kimmo Eriksson (2004). Integer Partitions. Cambridge University Press (cit. on

p. 12).

Arif, Muhammad Usman (2021). ‘Robot Coalition Formation Against Time-Extended Multi-Robot Tasks’.

In: International Journal of Intelligent Unmanned Systems (in press). doi: 10.1108/IJIUS-12-2020-

0070 (cit. on p. 30).

Arshad, Muhammad and Marius C. Silaghi (2004). ‘Distributed Simulated Annealing’. In: Distributed

Constraint Problem Solving and Reasoning in Multi-Agent Systems 112. Ed. by Zhang, Weixiong and

Sorge, Volker, pp. 35–47 (cit. on p. 26).

Ayari, Emna, Sameh Hadouaj and Khaled Ghedira (2017). ‘A Dynamic Decentralised Coalition Formation

Approach for Task Allocation under Tasks Priority Constraints’. In: International Conference on

Advanced Robotics (ICAR). IEEE, pp. 250–255 (cit. on p. 29).

Aziz, Haris et al. (2021). ‘Multi-Robot Task Allocation–Complexity and Approximation’. In: arXiv:

2103.12370 [cs.RO] (cit. on p. 11).

Bai, Ruibin et al. (2021). ‘Analytics and Machine Learning in Vehicle Routing Research’. In: arXiv:

2102.10012 [cs.LG] (cit. on p. 89).

Baker, Chris A. B. et al. (2016). ‘Planning Search and Rescue Missions for UAV Teams’. In: ECAI,

pp. 1777–1782 (cit. on pp. 4, 17, 18, 33).

Barambones, Jose, Ricardo Imbert and Cristian Moral (2021). ‘Applicability of Multi-Agent Systems

and Constrained Reasoning for Sensor-Based Distributed Scenarios: A Systematic Mapping Study on

Dynamic DCOPs’. In: Sensors 21.3807 (cit. on pp. 26, 29).

91

https://doi.org/10.1108/IJIUS-12-2020-0070
https://doi.org/10.1108/IJIUS-12-2020-0070
https://arxiv.org/abs/2103.12370
https://arxiv.org/abs/2102.10012

92 References

Barbulescu, Laura et al. (2010). ‘Distributed Coordination of Mobile Agent Teams: The Advantage of

Planning Ahead’. In: AAMAS. Vol. 1, pp. 1331–1338 (cit. on p. 30).

Bazinin, Sagi and Guy Shani (2018). ‘Iterative Planning for Deterministic QDec-POMDPs’. In: EPiC Series

in Computing 55, pp. 15–28 (cit. on pp. 17, 18).

Becker, Raphen et al. (2004). ‘Solving Transition Independent Decentralized Markov Decision Processes’.

In: JAIR 22, pp. 423–455 (cit. on p. 16).

Bellman, Richard (2003). Dynamic Programming. Dover Publications Mineola (cit. on pp. 6, 15).

Bernstein, Daniel S. et al. (2002). ‘The Complexity of Decentralized Control of Markov Decision

Processes’. In: Mathematics of Operations Research 27.4, pp. 819–840 (cit. on pp. 15, 28).

Bertsekas, Dimitri P. (2012). Dynamic Programming and Optimal Control. Fourth edition. Athena

Scienti�c (cit. on p. 15).

Billiau, Graham, Chee Fon Chang and Aditya Ghose (2012). ‘SBDO: A New Robust Approach to Dynamic

Distributed Constraint Optimisation’. In: PRIMA. Springer Berlin Heidelberg, pp. 11–26 (cit. on pp. 27,

88).

– (2014). ‘Multi-objective Distributed Constraint Optimization Using Semi-rings’. In: International

Conference on Principles and Practice of Multi-Agent Systems. Springer, pp. 407–422 (cit. on p. 27).

Bischo�, Esther et al. (2020). ‘Multi-Robot Task Allocation and Scheduling Considering Cooperative

Tasks and Precedence Constraints’. In: IEEE International Conference on Systems, Man, and Cybernetics,

pp. 3949–3956 (cit. on p. 30).

Bista�a, Filippo, Alessandro Farinelli, Jesús Cerquides et al. (2017). ‘Algorithms for Graph-Constrained

Coalition Formation in the Real World’. In: ACM Transactions on Intelligent Systems and Technology

8.4, p. 60 (cit. on p. 13).

Bista�a, Filippo, Alessandro Farinelli, Georgios Chalkiadakis et al. (2017). ‘A cooperative game-theoretic

approach to the social ridesharing problem’. In: AIJ 246, pp. 86–117 (cit. on p. 13).

Bista�a, Filippo, Alessandro Farinelli and Sarvapali D. Ramchurn (2015). ‘Sharing Rides with Friends: A

Coalition Formation Algorithm for Ridesharing’. In: AAAI (cit. on p. 12).

Bogner, Karin et al. (2018). ‘Optimised scheduling in human–robot collaboration–a use case in the

assembly of printed circuit boards’. In: International Journal of Production Research 56.16, pp. 5522–

5540 (cit. on p. 31).

Bogomolnaia, Anna and Matthew O. Jackson (2002). ‘The Stability of Hedonic Coalition Structures’. In:

Games and Economic Behavior 38.2, pp. 201–230 (cit. on p. 14).

Boussier, Sylvain, Dominique Feillet and Michel Gendreau (2007). ‘An exact algorithm for team orien-

teering problems’. In: 4OR 5.3, pp. 211–230 (cit. on p. 89).

Brucker, Peter (2007). Scheduling Algorithms. Fifth edition. Springer-Verlag (cit. on p. 4).

Busoniu, Lucian et al. (2017). Reinforcement Learning and Dynamic Programming Using Function Approxi-

mators. CRC press (cit. on p. 15).

Calvaresi, Davide et al. (2021). ‘Real-time multi-agent systems: rationality, formal model, and empirical

results’. In: JAAMAS 35.1, pp. 1–37 (cit. on p. 4).

Cao, Yongcan et al. (2013). ‘An Overview of Recent Progress in the Study of Distributed Multi-agent

Coordination’. In: IEEE Transactions on Industrial informatics 9.1, pp. 427–438 (cit. on p. 11).

Capitan, Jesus et al. (2013). ‘Decentralized multi-robot cooperation with auctioned POMDPs’. In:

International Journal of Robotics Research 32.6, pp. 650–671 (cit. on pp. 16, 28).

Cerquides, Jesus et al. (2013). ‘A Tutorial on Optimization for Multi-Agent Systems’. In: The Computer

Journal 57.6, pp. 799–824 (cit. on pp. 6, 11, 29).

Chalkiadakis, Georgios and Craig Boutilier (2004). ‘Bayesian Reinforcement Learning for Coalition

Formation under Uncertainty’. In: AAMAS. Vol. 3, pp. 1090–1097 (cit. on p. 13).

References 93

– (2012). ‘Sequentially optimal repeated coalition formation under uncertainty’. In: JAAMAS 24.3,

pp. 441–484 (cit. on p. 13).

Chalkiadakis, Georgios, Edith Elkind, Evangelos Markakis et al. (2010). ‘Cooperative Games with

Overlapping Coalitions’. In: JAIR 39, pp. 179–216 (cit. on p. 13).

Chalkiadakis, Georgios, Edith Elkind and Michael Wooldridge (2012). Computational Aspects of Coopera-

tive Game Theory. Morgan & Claypool Publishers (cit. on pp. 34, 55).

Changder, Narayan, Samir Aknine and Animesh Dutta (2021). ‘Improving coalition structure search

with an imperfect algorithm: analysis and evaluation results’. In: Arti�cial Intelligence Review 54.1,

pp. 397–425 (cit. on p. 89).

Chapman, Archie C., Rosa Anna Micillo et al. (2010). ‘Decentralized Dynamic Task Allocation Using

Overlapping Potential Games’. In: The Computer Journal 53.9, pp. 1462–1477 (cit. on p. 6).

Chapman, Archie C., Alex Rogers and Nicholas R. Jennings (2011). ‘Benchmarking hybrid algorithms for

distributed constraint optimisation games’. In: JAAMAS 22.3, pp. 385–414 (cit. on p. 6).

Chapman, Archie C., Alex Rogers, Nicholas R. Jennings and David S. Leslie (2011). ‘A unifying framework

for iterative approximate best-response algorithms for distributed constraint optimization problems’.

In: The Knowledge Engineering Review 26.4, pp. 411–444 (cit. on pp. 6, 88).

Chen, Yuxiao, Ugo Rosolia and Aaron D. Ames (2021). ‘Decentralized Task and Path Planning for

Multi-Robot Systems’. In: IEEE Robotics and Automation Letters 6.3, pp. 4337–4344 (cit. on p. 17).

Chen, Ziyu, Yanchen Deng and Tengfei Wu (2017). ‘An Iterative Re�ned Max-sum_AD Algorithm via

Single-side Value Propagation and Local Search’. In: AAMAS, pp. 195–202 (cit. on p. 24).

Chen, Ziyu, Xingqiong Jiang et al. (2019). ‘A Generic Approach for Accelerating Belief Propagation

based DCOP Algorithms via A Branch-and-Bound Technique’. In: AAAI. Vol. 33. 1, pp. 6038–6045

(cit. on p. 27).

Chen, Ziyu, Lizhen Liu et al. (2020). ‘A genetic algorithm based framework for local search algorithms

for distributed constraint optimization problems’. In: JAAMAS 34, pp. 1–31 (cit. on pp. 21, 25).

Chen, Ziyu, Tengfei Wu et al. (2018). ‘An Ant-Based Algorithm to Solve Distributed Constraint Opti-

mization Problems’. In: AAAI 32.1 (cit. on pp. 21, 25).

Choi, Charles Q. (2021). 7 Revealing Ways AIs Fail. https://spectrum.ieee.org/ai-failures. (Visited

on 01/11/2021) (cit. on p. 14).

Cohen, Liel and Roie Zivan (2017). ‘Max-sum Revisited: The Real Power of Damping’. In: AAMAS,

pp. 111–124 (cit. on p. 24).

Coppola, Damon P. (2006). Introduction to International Disaster Management. Elsevier (cit. on p. 2).

Cormen, Thomas H. et al. (2009). Introduction to Algorithms. Third edition. MIT press (cit. on pp. 20, 22,

49, 67, 82).

Czarnecki, Emily and Ayan Dutta (2021). ‘Scalable hedonic coalition formation for task allocation with

heterogeneous robots’. In: Intelligent Service Robotics 3, pp. 501–517 (cit. on p. 14).

Dadvar, Mehdi and Soheil Habibian (2021). ‘Contemporary Research Trends in Response Robotics’. In:

arXiv: 2105.07812 [cs.CY] (cit. on pp. 3, 29).

Dechter, Rina (2003). Constraint Processing. Morgan Kaufmann (cit. on p. 6).

Dehghani, Mostafa et al. (2021). ‘The Benchmark Lottery’. In: arXiv: 2107.07002 [cs.LG] (cit. on p. 14).

Delle Fave, Francesco Maria, Alessandro Farinelli et al. (2012). ‘A Methodology for Deploying the

Max-Sum Algorithm and a Case Study on Unmanned Aerial Vehicles’. In: IAAI (cit. on p. 24).

Delle Fave, Francesco Maria, Alex Rogers et al. (2012). ‘Deploying the Max-Sum Algorithm for De-

centralised Coordination and Task Allocation of Unmanned Aerial Vehicles for Live Aerial Imagery

Collection’. In: International Conference on Robotics and Automation. IEEE, pp. 469–476 (cit. on p. 24).

https://spectrum.ieee.org/ai-failures
https://arxiv.org/abs/2105.07812
https://arxiv.org/abs/2107.07002

94 References

Delle Fave, Francesco Maria, Zhe Xu et al. (2010). ‘Decentralised Coordination of Unmanned Aerial

Vehicles for Target Search using the Max-Sum Algorithm’. In: AAMAS Workshop on Agents in Real

Time and Dynamic Environment, pp. 35–44 (cit. on p. 24).

Dias, M. Bernardine et al. (2006). ‘Market-Based Multirobot Coordination: A Survey and Analysis’. In:

Proceedings of the IEEE 94.7, pp. 1257–1270 (cit. on pp. 28, 68).

Diederich, Adele (2001). ‘Sequential Decision Making’. In: International Encyclopedia of the Social &

Behavioral Sciences. Ed. by Smelser, Neil J. and Baltes, Paul B. Oxford: Pergamon, pp. 13917–13922

(cit. on pp. 6, 14).

Dignum, Virginia and Frank Dignum (2020). ‘Agents Are Dead. Long Live Agents!’ In: AAMAS, pp. 1701–

1705 (cit. on p. 88).

Dobson, Simon et al. (2006). ‘A Survey of Autonomic Communications’. In: ACM TAAS 1.2, pp. 223–259

(cit. on p. 89).

Dorigo, Marco, Mauro Birattari and Thomas Stutzle (2006). ‘Ant Colony Optimization: Arti�cial Ants as

a Computational Intelligence Technique’. In: IEEE Computational Intelligence Magazine 1.4, pp. 28–39

(cit. on p. 25).

Dos Santos, Fernando and Ana L. C. Bazzan (2011). ‘Towards e�cient multiagent task allocation in the

RoboCup Rescue: a biologically-inspired approach’. In: JAAMAS 22.3, pp. 465–486 (cit. on p. 31).

Epstein, Daniel and Ana L. C. Bazzan (2011). ‘Dealing with Coalition Formation in the RoboCup Rescue -

An Euristic Approach’. In: ICAART. Vol. 2. SciTePress, pp. 717–720 (cit. on p. 3).

Farinelli, Alessandro, Manuele Bicego et al. (2017). ‘A Hierarchical Clustering Approach to Large-scale

Near-optimal Coalition Formation with Quality Guarantees’. In: Engineering Applications of Arti�cial

Intelligence 59, pp. 170–185 (cit. on p. 14).

Farinelli, Alessandro, Luca Iocchi and Daniele Nardi (2004). ‘Multirobot Systems: A Classi�cation

Focused on Coordination’. In: IEEE Transactions on Systems, Man, and Cybernetics 34.5, pp. 2015–2028

(cit. on p. 11).

Farinelli, Alessandro, Alex Rogers et al. (2008). ‘Decentralised Coordination of Low-Power Embedded

Devices Using the Max-Sum Algorithm’. In: AAMAS. Vol. 2, pp. 639–646 (cit. on p. 24).

Farinelli, Alessandro, Meritxell Vinyals et al. (2013). ‘Distributed Constraint Handling and Optimization’.

In: Multiagent Systems. Ed. by Weiss, Gerhard. Second edition. MIT Press. Chap. 12 (cit. on pp. 18, 20,

24, 89).

Feo-Flushing, Eduardo, Luca Maria Gambardella and Gianni A. Di Caro (2021). ‘Spatially-Distributed

Missions With Heterogeneous Multi-Robot Teams’. In: IEEE Access 9, pp. 67327–67348 (cit. on p. 30).

Ferreira, Barbara Arbanas, Tamara Petrović and Stjepan Bogdan (2021). ‘Distributed Mission Planning of

Complex Tasks for Heterogeneous Multi-Robot Teams’. In: arXiv: 2109.10106 [cs.RO] (cit. on p. 30).

Ferreira, Paulo R., Felipe S. Bo�o and Ana L. C. Bazzan (2007). ‘Using Swarm-GAP for Distributed Task

Allocation in Complex Scenarios’. In: AAMAS. Springer, pp. 107–121 (cit. on p. 31).

Ferreira, Paulo Roberto et al. (2010). ‘RoboCup Rescue as multiagent task allocation among teams:

experiments with task interdependencies’. In: JAAMAS 20.3, pp. 421–443 (cit. on p. 31).

Fioretto, Ferdinando, Enrico Pontelli and William Yeoh (2018). ‘Distributed Constraint Optimization

Problems and Applications: A Survey’. In: JAIR 61, pp. 623–698 (cit. on pp. 4, 6–8, 18–21, 23, 24, 26,

29, 60, 64, 67, 68, 88, 89).

Flammini, Michele et al. (2018). ‘Online Coalition Structure Generation in Graph Games’. In: AAMAS,

pp. 1353–1361 (cit. on p. 13).

Gallud, Ximo and Daniel Selva (2018). ‘Agent-based simulation framework and consensus algorithm for

observing systems with adaptive modularity’. In: Systems Engineering 21.5, pp. 432–454 (cit. on p. 31).

Gedik, Ridvan et al. (2017). ‘A Constraint Programming Approach for the Team Orienteering Problem

with Time Windows’. In: Computers & Industrial Engineering 107, pp. 178–195 (cit. on p. 89).

https://arxiv.org/abs/2109.10106

References 95

Geman, Stuart and Donald Geman (1993). ‘Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images’. In: Journal of Applied Statistics 20.5-6, pp. 25–62 (cit. on p. 23).

Geramifard, Alborz et al. (2011). ‘Online Discovery of Feature Dependencies’. In: ICML, pp. 881–888

(cit. on p. 15).

Gerkey, Brian P. and Maja J. Matarić (2004). ‘A Formal Analysis and Taxonomy of Task Allocation in

Multi-Robot Systems’. In: International Journal of Robotics Research 23.9, pp. 939–954 (cit. on pp. 1, 28,

30, 46).

Gershman, Amir, Amnon Meisels and Roie Zivan (2009). ‘Asynchronous Forward Bounding for Dis-

tributed COPs’. In: JAIR 34, pp. 61–88 (cit. on p. 21).

Gershman, Samuel J., Eric J. Horvitz and Joshua B. Tenenbaum (2015). ‘Computational rationality: A

converging paradigm for intelligence in brains, minds, andmachines’. In: Science 349.6245, pp. 273–278

(cit. on p. 28).

Ghassemi, Payam and Souma Chowdhury (2021). ‘Multi-Robot Task Allocation in Disaster Response:

Addressing Dynamic Tasks with Deadlines and Robots with Range and Payload Constraints’. In:

Robotics and Autonomous Systems (in press). doi: 10.1016/j.robot.2021.103905 (cit. on p. 30).

Ghavamzadeh, Mohammad et al. (2015). ‘Bayesian Reinforcement Learning: A Survey’. In: Foundations

and Trends in Machine Learning 8.5-6, pp. 359–492 (cit. on p. 13).

Gini, Maria (2017). ‘Multi-Robot Allocation of Tasks with Temporal and Ordering Constraints’. In: AAAI,

pp. 4863–4869 (cit. on p. 11).

Godoy, Julio and Maria Gini (2013). ‘Task Allocation for Spatially and Temporally Distributed Tasks’. In:

IAS. Springer Berlin Heidelberg, pp. 603–612 (cit. on pp. 30, 31).

Goldman, Claudia V. and Shlomo Zilberstein (2003). ‘Optimizing Information Exchange in Cooperative

Multi-agent Systems’. In: AAMAS, pp. 137–144 (cit. on p. 15).

– (2004). ‘Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis’. In:

JAIR 22, pp. 143–174 (cit. on p. 15).

Grinshpoun, Tal and Amnon Meisels (2008). ‘Completeness and Performance of the APO Algorithm’. In:

JAIR 33, pp. 223–258 (cit. on p. 21).

Griva, Igor, Stephen G. Nash and Ariela Sofer (2009). Linear and Nonlinear Optimization. Second edition.

SIAM (cit. on pp. 39, 59).

Guerrero, Jose, Gabriel Oliver and Oscar Valero (2017). ‘Multi-robot Coalitions Formation with Deadlines:

Complexity Analysis and Solutions’. In: PloS one 12.1 (cit. on p. 69).

Guestrin, Carlos, Daphne Koller and Ronald Parr (2002). ‘Multiagent Planning with Factored MDPs’. In:

Advances in Neural Information Processing Systems, pp. 1523–1530 (cit. on p. 14).

El-Hajj, Racha et al. (2015). ‘A column generation algorithm for the team orienteering problem with

time windows’. In: The 45th International Conference on Computers & Industrial Engineering (CIE45)

(cit. on p. 89).

Harvey, Peter, Chee Fon Chang and Aditya Ghose (2006). ‘Support-Based Distributed Search: A New

Approach for Multiagent Constraint Processing’. In: International Workshop on Argumentation in

Multi-Agent Systems. Springer, pp. 91–106 (cit. on p. 27).

Hawe, Glenn I. et al. (2012). ‘Agent-Based Simulation for Large-Scale Emergency Response: A Survey of

Usage and Implementation’. In: ACM CSUR 45.1, pp. 1–51 (cit. on p. 1).

Hewitt, Carl (1990). ‘The challenge of open systems’. In: The foundations of arti�cial intelligence: a

sourcebook. Cambridge University Press, pp. 383–395 (cit. on p. 4).

Hirayama, Katsutoshi and Makoto Yokoo (1997). ‘Distributed Partial Constraint Satisfaction Problem’. In:

International Conference on Principles and Practice of Constraint Programming. Springer, pp. 222–236

(cit. on p. 27).

https://doi.org/10.1016/j.robot.2021.103905

96 References

Horling, Bryan and Victor Lesser (2005). ‘A Survey of Multi-Agent Organizational Paradigms’. In: The

Knowledge Engineering Review 19.4, pp. 281–316 (cit. on pp. 3, 4).

iChongqing (2020). The First Fire Drill for High-Rise Fire Fighting Drones Was Held in Dazu, Chongqing.

https://www.youtube.com/watch?v=WFqThcMIN7A. (Visited on 01/11/2021) (cit. on p. 3).

IEEE Robots (2019). The Colossus Robot. https://robots.ieee.org/robots/colossus. (Visited on

01/11/2021) (cit. on p. 3).

Imran, Muhammad et al. (2014). ‘AIDR: Arti�cial Intelligence for Disaster Response’. In: Proceedings of

the 23rd International Conference on World Wide Web, pp. 159–162 (cit. on p. 3).

Jahn, Uwe et al. (2020). ‘A Taxonomy for Mobile Robots: Types, Applications, Capabilities, Implementa-

tions, Requirements, and Challenges’. In: Robotics 9.4, p. 109 (cit. on p. 11).

Jennings, Nicholas R. et al. (2014). ‘Human-agent Collectives’. In: Communications of the ACM 57.12,

pp. 80–88 (cit. on p. 2).

Joslin, David E. and David P. Clements (1999). ‘Squeaky Wheel Optimization’. In: JAIR 10, pp. 353–373

(cit. on p. 89).

Juárez, Julio, Cipriano Santos and Carlos A. Brizuela (2021). ‘A Comprehensive Review and a Taxonomy

Proposal of Team Formation Problems’. In: ACM CSUR 54.7, pp. 1–33 (cit. on p. 29).

Junges, Robert and Ana L. C. Bazzan (2008). ‘Evaluating the Performance of DCOP Algorithms in a Real

World, Dynamic Problem’. In: AAMAS. Vol. 2, pp. 599–606 (cit. on pp. 22, 60).

Keeney, Ralph L. and Howard Rai�a (1993). Decisions with Multiple Objectives: Preferences and Value

Trade-O�s. Cambridge University Press (cit. on p. 6).

Kepner, Jeremy (2009). Parallel MATLAB for Multicore and Multinode Computers. SIAM (cit. on p. 82).

Khamis, Alaa, Ahmed Hussein and Ahmed Elmogy (2015). ‘Multi-robot Task Allocation: A Review of

the State-of-the-Art’. In: Cooperative Robots and Sensor Networks, pp. 31–51 (cit. on p. 11).

Khan, Md. Mosaddek, Long Tran-Thanh and Nicholas R. Jennings (2018). ‘A Generic Domain Pruning

Technique for GDL-based DCOP Algorithms in Cooperative Multi-Agent Systems’. In: AAMAS,

pp. 1595–1603 (cit. on p. 27).

Kho, Johnsen, Alex Rogers and Nicholas R. Jennings (2009). ‘Decentralized Control of Adaptive Sampling

in Wireless Sensor Networks’. In: ACM Transations on Sensor Networks 5.3, pp. 1–35 (cit. on p. 87).

Kiekintveld, Christopher et al. (2010). ‘Asynchronous Algorithms forApproximate Distributed Constraint

Optimization with Quality Bounds’. In: AAMAS, pp. 133–140 (cit. on pp. 24, 88).

Kim, Yoonheui, Michael Krainin and Victor Lesser (2011). ‘E�ective Variants of the Max-Sum Algo-

rithm for Radar Coordination and Scheduling’. In: IEEE/WIC/ACM International Conferences on Web

Intelligence and Intelligent Agent Technology. Vol. 2, pp. 357–364 (cit. on p. 60).

Kitano, Hiroaki and Satoshi Tadokoro (2001). ‘RoboCup Rescue: A Grand Challenge for Multiagent and

Intelligent Systems’. In: AI Magazine 22.1, pp. 39–53 (cit. on pp. 1, 3, 7, 53).

Kitano, Hiroaki, Satoshi Tadokoro et al. (1999). ‘RoboCup Rescue: Search and Rescue in Large-Scale

Disasters as a Domain for Autonomous Agents Research’. In: International Conference on Systems,

Man, and Cybernetics. Vol. 6. IEEE, pp. 739–743 (cit. on p. 53).

Kleiner, Alexander et al. (2013). ‘RMASBench: Benchmarking Dynamic Multi-Agent Coordination in

Urban Search and Rescue’. In: AAMAS, pp. 1195–1196. url: https://gitlab.com/lcpz/rmasbench

(visited on 01/11/2021) (cit. on p. 53).

Knuth, Donald E. (2005). The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples

and Permutations. Pearson Education (cit. on p. 44).

Koes, Mary, Illah Nourbakhsh and Katia Sycara (2005). ‘Heterogeneous Multirobot Coordination with

Spatial and Temporal Constraints’. In: AAAI. Vol. 5, pp. 1292–1297 (cit. on p. 31).

https://www.youtube.com/watch?v=WFqThcMIN7A
https://robots.ieee.org/robots/colossus
https://gitlab.com/lcpz/rmasbench

References 97

Kolobov, Mausam and Andrey Kolobov (2012). Planning with Markov Decision Processes: An AI Perspective.

Synthesis Lectures on Arti�cial Intelligence and Machine Learning. Morgan & Claypool Publishers

(cit. on p. 14).

Korsah, G. Ayorkor (2011). ‘Exploring Bounded Optimal Coordination for Heterogeneous Teams with

Cross-Schedule Dependencies’. PhD thesis. Carnegie Mellon University (cit. on pp. 30, 31).

Korsah, G. Ayorkor, Anthony Stentz and M. Bernardine Dias (2013). ‘A comprehensive taxonomy for

multi-robot task allocation’. In: International Journal of Robotics Research 32.12, pp. 1495–1512 (cit. on

pp. 11, 30).

Kraus, Sarit, Onn shehory and Gilad Taase (2003). ‘Coalition Formation with Uncertain Heterogeneous

Information’. In: AAMAS, pp. 1–8 (cit. on p. 12).

– (2004). ‘The Advantages of Compromising in Coalition Formation with Incomplete Information’. In:

AAMAS. Vol. 2, pp. 588–595 (cit. on p. 12).

Krausburg, Tabajara, Jürgen Dix and Rafael H. Bordini (2021). ‘Feasible Coalition Sequences’. In: AAMAS,

pp. 719–727 (cit. on pp. 14, 30).

Krizmancic, Marko et al. (2020). ‘Cooperative Aerial-Ground Multi-Robot System for Automated

Construction Tasks’. In: IEEE Robotics and Automation Letters 5.2 (cit. on p. 31).

Kroese, Dirk .P, Thomas Taimre and Zdravko I. Botev (2011). Handbook of Monte Carlo Methods. John

Wiley & Sons (cit. on p. 26).

Kschischang, Frank R., Brendan J. Frey and Hans-Andrea Loeliger (2001). ‘Factor Graphs and the Sum-

Product Algorithm’. In: IEEE Transations on Information Theory 47.2, pp. 498–519 (cit. on pp. 20, 22,

24).

Kumar, Akshat, Shlomo Zilberstein and Marc Toussaint (2011). ‘Scalable Multiagent Planning Using

Probabilistic Inference’. In: AAAI (cit. on p. 28).

Kurniawati, Hanna (2021). ‘Partially Observable Markov Decision Processes (POMDPs) and Robotics’.

In: arXiv: 2107.07599 [cs.RO] (cit. on p. 14).

Lee, Hyun-Rok and Taesik Lee (2021). ‘Multi-agent reinforcement learning algorithm to solve a partially-

observable multi-agent problem in disaster response’. In: European Journal of Operational Research

291.1, pp. 296–308 (cit. on p. 18).

Leeuwen, Cornelis Jan van and Przemyslaw Pawelczak (2017). ‘CoCoA: A Non-Iterative Approach to a

Local Search (A)DCOP Solver’. In: AAAI. Vol. 31. 1 (cit. on pp. 21, 25).

Leite, Allan R. and Fabricio Enembreck (2019a). ‘Evaluating Incomplete DCOPAlgorithms On Large-Scale

Problems’. In: International Joint Conference on Neural Networks. IEEE, pp. 1–8 (cit. on p. 60).

– (2019b). ‘Using Collective Behavior of Coupled Oscillators for Solving DCOP’. In: JAIR 64, pp. 987–

1023 (cit. on pp. 21, 25).

Leite, Allan R., Fabricio Enembreck and Jean-Paul A. Barthes (2014). ‘Distributed Constraint Optimization

Problems: Review and perspectives’. In: Expert Systems with Applications 41.11, pp. 5139–5157 (cit. on

p. 26).

Lesser, Victor and Daniel Corkill (2014). ‘Challenges for Multi-Agent Coordination Theory Based on

Empirical Observations’. In: AAMAS, pp. 1157–1160 (cit. on p. 26).

Lewis, Richard L., Andrew Howes and Satinder Singh (2014). ‘Computational Rationality: Linking

Mechanism and Behavior Through Bounded Utility Maximization’. In: Topics in Cognitive Science 6.2,

pp. 279–311 (cit. on p. 28).

Liu, Chun and Andreas Kroll (2015). ‘Memetic algorithms for optimal task allocation in multi-robot

systems for inspection problems with cooperative tasks’. In: Soft Computing 19.3, pp. 567–584 (cit. on

p. 31).

Loeliger, Hans-Andrea (2004). ‘An Introduction to Factor Graphs’. In: IEEE Signal Processing Magazine

21.1, pp. 28–41 (cit. on p. 20).

https://arxiv.org/abs/2107.07599

98 References

London Datastore (2021a). London Fire Brigade Incident Records. https://data.london.gov.uk/

dataset/london-fire-brigade-incident-records. (Visited on 01/11/2021) (cit. on pp. 7, 60).

– (2021b). London Fire Brigade Mobilisation Records. https://data.london.gov.uk/dataset/london-

fire-brigade-mobilisation-records. (Visited on 01/11/2021) (cit. on pp. 7, 60).

Luo, Lingzhi, Nilanjan Chakraborty and Katia Sycara (2015). ‘Distributed Algorithms for Multirobot

Task Assignment with Task Deadline Constraints’. In: IEEE Transactions on Automation Science and

Engineering 12.3, pp. 876–888 (cit. on p. 29).

Lynch, Nancy A. (1996). Distributed Algorithms. Elsevier (cit. on p. 66).

Macarthur, Kathryn S., Alessandro Farinelli et al. (2010). ‘E�cient, Superstabilizing Decentralised

Optimisation for Dynamic Task Allocation Environments’. In: International Workshop on Optimization

in Multi-Agent systems (OptMAS), pp. 25–32 (cit. on pp. 27, 88).

Macarthur, Kathryn S., Ruben Stranders et al. (2011). ‘A Distributed Anytime Algorithm for Dynamic

Task Allocation in Multi-Agent Systems’. In: AAAI (cit. on p. 27).

Mahadevan, Sridhar and Mauro Maggioni (2007). ‘Proto-value Functions: A Laplacian Framework for

Learning Representation and Control in Markov Decision Processes’. In: Journal of Machine Learning

Research 8, pp. 2169–2231 (cit. on p. 15).

Maheswaran, Rajiv T., Jonathan P. Pearce and Milind Tambe (2004). ‘Distributed Algorithms for DCOP:

A Graphical-Game-Based Approach’. In: ISCA PDCS, pp. 432–439 (cit. on p. 21).

Maheswaran, Rajiv T., Milind Tambe et al. (2004). ‘Taking DCOP to the Real World: E�cient Complete

Solutions for Distributed Multi-Event Scheduling’. In: AAMAS. Vol. 1, pp. 310–317 (cit. on p. 60).

Mahmud, Saaduddin, Moumita Choudhury et al. (2020). ‘AED: An Anytime Evolutionary DCOP

Algorithm’. In: AAMAS, pp. 825–833 (cit. on pp. 21, 25).

Mahmud, Saaduddin, Md. Mosaddek Khan and Nicholas R. Jennings (2020). ‘On Population-Based

Algorithms for Distributed Constraint Optimization Problems’. In: arXiv: 2009.01625 [cs.AI] (cit. on

pp. 20, 21, 24–26).

Mailler, Roger, Huimin Zheng and Anton Ridgway (2018). ‘Dynamic, distributed constraint solving and

thermodynamic theory’. In: JAAMAS 32.1, pp. 188–217 (cit. on p. 5).

Maoudj, Abderraouf et al. (2015). ‘Multi-agent Approach for Task Allocation and Scheduling in Coop-

erative Heterogeneous Multi-Robot Team: Simulation Results’. In: 13th International Conference on

Industrial Informatics. IEEE, pp. 179–184 (cit. on p. 30).

Martello, Silvano and Paolo Toth (1990). Knapsack Problems: Algorithms and Computer Implementations.

John Wiley & Sons, Inc. (cit. on p. 13).

Mataric, Maja J. (1993). ‘Designing Emergent Behaviors: From Local Interactions to Collective Intelli-

gence’. In: International Conference on Simulation of Adaptive Behavior. MIT Press, pp. 432–441 (cit. on

p. 3).

Meisels, Amnon (2007). Distributed Search by Constrained Agents. Springer (cit. on pp. 18, 70).

Melo, Francisco S. and Manuela Veloso (2011). ‘Decentralized MDPs with sparse interactions’. In: AIJ

175.11, pp. 1757–1789 (cit. on p. 16).

Michalak, Tomasz P. et al. (2014). ‘Implementation and Computation of a Value for Generalized

Characteristic Function Games’. In: ACM Transactions on Economics and Computation 2.4, p. 16 (cit. on

p. 13).

Miloradović, Branko et al. (2019). ‘Tamer: Task Allocation in Multi-robot Systems Through an Entity-

Relationship Model’. In: International Conference on Principles and Practice of Multi-Agent Systems.

Springer, pp. 478–486 (cit. on p. 11).

Modi, Pragnesh Jay et al. (2005). ‘Adopt: Asynchronous distributed constraint optimization with quality

guarantees’. In: AIJ 161.1-2, pp. 149–180 (cit. on p. 22).

Murphy, Robin R. (2014). Disaster Robotics. MIT press (cit. on pp. 1, 3).

https://data.london.gov.uk/dataset/london-fire-brigade-incident-records
https://data.london.gov.uk/dataset/london-fire-brigade-incident-records
https://data.london.gov.uk/dataset/london-fire-brigade-mobilisation-records
https://data.london.gov.uk/dataset/london-fire-brigade-mobilisation-records
https://arxiv.org/abs/2009.01625

References 99

– (2016). ‘Emergency Informatics: Using Computing to Improve Disaster Management’. In: Computer

49.5, pp. 19–27 (cit. on pp. 3, 29).

Murphy, Robin R., Satoshi Tadokoro and Alexander Kleiner (2016). ‘Disaster Robotics’. In: Springer

Handbook of Robotics. Springer. Chap. 60, pp. 1577–1604 (cit. on pp. 3, 29).

Myerson, Roger B. (1977). ‘Graphs and Cooperation in Games’. In: Mathematics of operations research

2.3, pp. 225–229 (cit. on p. 12).

– (1991). Game Theory: Analysis of Con�ict. Harvard University Press (cit. on p. 6).

Nair, Ranjit, Maayan Roth and Makoto Yohoo (2004). ‘Communication for Improving Policy Computation

in Distributed POMDPs’. In: AAMAS. Vol. 3, pp. 1098–1105 (cit. on p. 28).

Nair, Ranjit, Pradeep Varakantham et al. (2005). ‘Networked distributed POMDPs: A Synthesis of

Distributed Constraint Optimization and POMDPs’. In: AAAI. Vol. 5, pp. 133–139 (cit. on p. 28).

Nanjanath, Maitreyi and Maria Gini (2010). ‘Repeated auctions for robust task execution by a robot

team’. In: Robotics and Autonomous Systems 58.7, pp. 900–909 (cit. on p. 30).

Nelke, So�a Amador, Steven Okamoto and Roie Zivan (2020). ‘Market Clearing-based Dynamic Multi-

agent Task Allocation’. In: ACM Transactions on Intelligent Systems and Technology 11.1, pp. 1–25

(cit. on pp. 4, 30, 31, 33, 60, 88).

Nguyen, Duc Thien et al. (2019). ‘Distributed Gibbs: A Linear-Space Sampling-Based DCOP Algorithm’.

In: JAIR 64, pp. 705–748 (cit. on pp. 23, 88).

Nijs, Frits de et al. (2021). ‘Constrained Multiagent Markov Decision Processes: a Taxonomy of Problems

and Algorithms’. In: JAIR 70, pp. 955–1001 (cit. on p. 14).

Nisan, Noam et al., eds. (2007). Algorithmic Game Theory. Cambridge University Press (cit. on p. 12).

Nunes, Ernesto, Marie Manner et al. (2017). ‘A taxonomy for task allocation problems with temporal

and ordering constraints’. In: JRAS 90, pp. 55–70 (cit. on pp. 1, 3, 5, 11, 34, 35, 62, 74, 76).

Nunes, Ernesto, Mitchell McIntire and Maria Gini (2017). ‘Decentralized multi-robot allocation of tasks

with temporal and precedence constraints’. In: Advanced Robotics 31.22, pp. 1193–1207 (cit. on p. 30).

Okamoto, Steven, Roie Zivan, Aviv Nahon et al. (2016). ‘Distributed Breakout: Beyond Satisfaction’. In:

IJCAI, pp. 447–453 (cit. on pp. 21, 24, 88).

Okolloh, Ory (2009). ‘Ushahidi, or ‘testimony’: Web 2.0 tools for crowdsourcing crisis information’. In:

Participatory Learning and Action 59.1, pp. 65–70 (cit. on p. 2).

Osborne, Martin J. and Ariel Rubinstein (1994). A Course in Game Theory. MIT Press (cit. on p. 6).

Papadimitriou, Christos H. (1993). Computational Complexity. Pearson (cit. on pp. 4, 36).

Paraskevopoulos, Dimitris C. et al. (2017). ‘Resource Constrained Routing and Scheduling: Review and

Research Prospects’. In: European Journal of Operational Research 263.3, pp. 737–754 (cit. on p. 29).

Parker, Lynne E., Daniela Rus and Gaurav S. Sukhatme (2016). ‘Multiple Mobile Robot Systems’. In:

Springer Handbook of Robotics. Springer, pp. 1335–1384 (cit. on p. 11).

Pearce, Jonathan P. and Milind Tambe (2007). ‘Quality Guarantees on k-Optimal Solutions for Distributed

Constraint Optimization Problems’. In: IJCAI, pp. 1446–1451 (cit. on p. 23).

Peri, Or and Amnon Meisels (2013). ‘Synchronizing for Performance-DCOP Algorithms’. In: ICAART,

pp. 5–14 (cit. on p. 20).

Petcu, Adrian (2007). ‘A Class of Algorithms for Distributed Constraint Optimization’. PhD thesis. École

polytechnique fédérale de Lausanne (cit. on pp. 5, 19, 26).

Petcu, Adrian and Boi Faltings (2005a). ‘A Scalable Method for Multiagent Constraint Optimization’. In:

AAAI (cit. on pp. 22, 87).

– (2005b). ‘Superstabilizing, fault-containing distributed combinatorial optimization’. In: AAAI. 20 449

(cit. on pp. 23, 27).

Ponda, Sameera S. et al. (2015). ‘Cooperative Mission Planning for Multi-UAV Teams. Handbook of

Unmanned Aerial Vehicles’. In: Springer, pp. 1447–1490 (cit. on pp. 11, 15, 88).

100 References

Präntare, Fredrik, Herman Appelgren and Fredrik Heintz (2021). ‘Anytime Heuristic and Monte Carlo

Methods for Large-Scale Simultaneous Coalition Structure Generation and Assignment’. In: AAAI

35.13, pp. 11317–11324 (cit. on p. 30).

Präntare, Fredrik and Fredrik Heintz (2020). ‘An anytime algorithm for optimal simultaneous coalition

structure generation and assignment’. In: JAAMAS 34.1, pp. 1–31 (cit. on p. 30).

Pujol-Gonzalez, Marc, Jesus Cerquides, Alessandro Farinelli, Pedro Meseguer and Juan A. Rodriguez-

Aguilar (2014). ‘Binary Max-Sum for Multi-Team Task Allocation in RoboCup Rescue’. In: (cit. on

pp. 7, 53).

Pujol-Gonzalez, Marc, Jesus Cerquides, Alessandro Farinelli, PedroMeseguer and JuanAntonio Rodriguez-

Aguilar (2015). ‘E�cient Inter-Team Task Allocation in Robocup Rescue’. In: pp. 413–421 (cit. on

pp. 53, 54, 59).

Pujol-Gonzalez, Marc, Jesus Cerquides, Pedro Meseguer et al. (2018). ‘Decentralized Dynamic Task

Allocation for UAVs with Limited Communication Range’. In: arXiv: 1809.07863 [cs.NI] (cit. on

p. 24).

Pynadath, David V. and Milind Tambe (2002). ‘The Communicative Multiagent Team Decision Problem:

Analyzing Teamwork Theories and Models’. In: JAIR 16, pp. 389–423 (cit. on pp. 15, 28).

Queralta, Jorge Pena et al. (2020). ‘Collaborative Multi-Robot Search and Rescue: Planning, Coordination,

Perception, and Active Vision’. In: IEEE Access 8, pp. 191617–191643 (cit. on p. 29).

Rahwan, Talal, Tomasz Michalak and Nicholas R. Jennings (2012). ‘A Hybrid Algorithm for Coalition

Structure Generation’. In: AAAI. Vol. 26. 1 (cit. on p. 69).

Rahwan, Talal, Tomasz P. Michalak et al. (2015). ‘Coalition structure generation: A survey’. In: AIJ 229,

pp. 139–174 (cit. on pp. 12, 69).

Rahwan, Talal, Tri-Dung Nguyen et al. (2013). ‘Coalitional Games via Network Flows’. In: AAAI,

pp. 324–331 (cit. on p. 13).

Rahwan, Talal, Sarvapali D. Ramchurn et al. (2009). ‘An Anytime Algorithm for Optimal Coalition

Structure Generation’. In: JAIR 34, pp. 521–567 (cit. on pp. 12, 69, 86).

Ramchurn, Sarvapali D., Alessandro Farinelli et al. (2010). ‘Decentralized Coordination in RoboCup

Rescue’. In: The Computer Journal 53.9, pp. 1447–1461 (cit. on pp. 4, 27, 33, 59, 67).

Ramchurn, Sarvapali D., Joel E. Fischer et al. (2015). ‘A Study of Human-Agent Collaboration for

Multi-UAV Task Allocation in Dynamic Environments’. In: AAAI (cit. on p. 24).

Ramchurn, Sarvapali D., Trung Dong Huynh, Yuki Ikuno et al. (2015). ‘HAC-ER: A Disaster Response

System Based on Human-Agent Collectives’. In: AAMAS, pp. 533–541 (cit. on p. 24).

Ramchurn, Sarvapali D., Trung Dong Huynh, Feng Wu et al. (2016). ‘A Disaster Response System based

on Human-Agent Collectives’. In: JAIR 57, pp. 661–708 (cit. on pp. 17, 18, 24).

Ramchurn, Sarvapali D., Maria Polukarov et al. (2010). ‘Coalition Formation with Spatial and Temporal

Constraints’. In: AAMAS, pp. 1181–1188 (cit. on pp. 3, 4, 17, 33, 36–38, 45, 50–52, 60, 63, 78, 87).

Ramchurn, Sarvapali D., Feng Wu et al. (2016). ‘Human-Agent Collaboration for Disaster Response’. In:

JAAMAS 30.1, pp. 82–111 (cit. on pp. 4, 17, 18, 33).

Redding, Joshua D. et al. (2012). ‘Scalable, MDP-based planning for multiple, cooperating agents’. In:

American Control Conference. IEEE, pp. 6011–6016 (cit. on pp. 15, 16).

Rizk, Yara, Mariette Awad and Edward W. Tunstel (2019). ‘Cooperative Heterogeneous Multi-Robot

Systems: A Survey’. In: ACM CSUR 52.2, pp. 1–31 (cit. on p. 29).

RoboCup Rescue Simulator and Agent Development Framework Manual (2021). url: https://rescuesim.

robocup.org/resources/documentation (visited on 01/11/2021) (cit. on pp. 53, 55).

Rogers, Alex et al. (2011). ‘Bounded approximate decentralised coordination via the max-sum algorithm’.

In: AIJ 175.2, pp. 730–759 (cit. on p. 24).

https://arxiv.org/abs/1809.07863
https://rescuesim.robocup.org/resources/documentation
https://rescuesim.robocup.org/resources/documentation

References 101

Rollon, Emma and Javier Larrosa (2012). ‘Improved Bounded Max-Sum for Distributed Constraint

Optimization’. In: International Conference on Principles and Practice of Constraint Programming.

Springer, pp. 624–632 (cit. on p. 24).

Ross, G. Terry and Richard M. Soland (1975). ‘A branch and bound algorithm for the generalized

assignment problem’. In: Mathematical Programming 8.1, pp. 91–103 (cit. on p. 4).

Rossi, Francesca, Peter Van Beek and Toby Walsh, eds. (2006). Handbook of Constraint Programming.

Elsevier (cit. on pp. 6, 20).

Roth, Maayan, Reid Simmons and Manuela Veloso (2005). ‘Decentralized Communication Strategies for

Coordinated Multi-Agent Policies’. In: Multi-Robot Systems. From Swarms to Intelligent Automata.

Vol. 3. Springer, pp. 93–105 (cit. on p. 28).

Roy, Nicholas et al. (2021). ‘From Machine Learning to Robotics: Challenges and Opportunities for

Embodied Intelligence’. In: arXiv: 2110.15245 [cs.RO] (cit. on p. 14).

Sandholm, Tuomas W., Kate Larson et al. (1999). ‘Coalition Structure Generation with Worst Case

Guarantees’. In: AIJ 111.1-2, pp. 209–238 (cit. on pp. 11–13, 28, 84).

Sandholm, Tuomas W. and Victor R. T. Lesser (1997). ‘Coalitions among computationally bounded

agents’. In: AIJ 94.1-2, pp. 99–137 (cit. on p. 13).

Scerri, Paul et al. (2005). ‘Allocating Tasks in Extreme Teams’. In: AAMAS, pp. 727–734 (cit. on p. 29).

Schneider, Marco (1993). ‘Self-stabilization’. In: ACM CSUR 25.1, pp. 45–67 (cit. on p. 26).

Schwarzrock, Janaína et al. (2018). ‘Solving task allocation problem in multi Unmanned Aerial Vehicles

systems using Swarm intelligence’. In: Engineering Applications of Arti�cial Intelligence 72, pp. 10–20

(cit. on p. 31).

Sedgewick, Robert (1977). ‘Permutation Generation Methods’. In: ACM CSUR 9.2, pp. 137–164 (cit. on

pp. 82, 83).

Seenu, N. et al. (2020). ‘Review on state-of-the-art dynamic task allocation strategies for multiple-robot

systems’. In: Industrial Robot: the international journal of robotics research and application 47.6, pp. 929–

942 (cit. on p. 29).

Service, Travis C. and Julie A. Adams (2011). ‘Coalition formation for task allocation: Theory and

algorithms’. In: JAAMAS 22.2, pp. 225–248 (cit. on pp. 29, 89).

Seuken, Sven and Shlomo Zilberstein (2008). ‘Formal models and algorithms for decentralized decision

making under uncertainty’. In: JAAMAS 17.2, pp. 190–250 (cit. on pp. 14–16, 28).

Shehory, Onn and Sarit Kraus (1998). ‘Methods for task allocation via agent coalition formation’. In: AIJ

101.1-2, pp. 165–200 (cit. on pp. 3, 11, 12, 29).

Shoham, Yoav and Kevin Leyton-Brown (2008). Multiagent Systems: Algorithmic, Game-Theoretic, and

Logical Foundations. Cambridge University Press (cit. on p. 1).

Silver, David and Joel Veness (2010). ‘Monte-Carlo Planning in Large POMDPs’. In: Neural Information

Processing Systems (cit. on p. 17).

Singh, Arambam J., Poulami Dalapati and Animesh Dutta (2014). ‘Multi Agent Based Dynamic Task

Allocation’. In: Agent and Multi-Agent Systems: Technologies and Applications. Springer, pp. 171–182

(cit. on p. 29).

Skaltsis, George Marios, Hyo-Sang Shin and Antonios Tsourdos (2021). ‘A survey of task allocation

techniques in MAS’. In: International Conference on Unmanned Aircraft Systems. IEEE, pp. 488–497

(cit. on p. 11).

Smith, Andrew J. et al. (2019). ‘Real-time distributed non-myopic task selection for heterogeneous

robotic teams’. In: Autonomous Robots 43.3, pp. 789–811 (cit. on p. 16).

Smith, Reid G. and Randall Davis (1981). ‘Frameworks for Cooperation in Distributed Problem Solving’.

In: IEEE Transactions on Systems, Man, and Cybernetics 11.1, pp. 61–70 (cit. on p. 14).

https://arxiv.org/abs/2110.15245

102 References

Spaan, Matthijs T. J., Tiago S. Veiga and Pedro U. Lima (2015). ‘Decision-theoretic planning under

uncertainty with information rewards for active cooperative perception’. In: JAAMAS 29.6, pp. 1157–

1185 (cit. on p. 16).

Stankovic, John A. et al. (2013). Deadline scheduling for real-time systems: EDF and related algorithms.

Vol. 460. Reprint of the original 1998 edition. Springer Science & Business Media (cit. on pp. 69, 80,

84).

Stone, Peter, Richard S. Sutton and Gregory Kuhlmann (2005). ‘Reinforcement Learning for RoboCup

Soccer Keepaway’. In: Adaptive Behavior 13.3, pp. 165–188 (cit. on p. 14).

Stranders, Ruben, Francesco Maria Delle Fave et al. (2010). ‘A Decentralised Coordination Algorithm for

Mobile Sensors’. In: AAAI (cit. on p. 24).

Stranders, Ruben, Alessandro Farinelli et al. (2009). ‘Decentralised Coordination of Mobile Sensors Using

the Max-Sum Algorithm’. In: AAAI (cit. on p. 24).

Su, Xing et al. (2018). ‘Two innovative coalition formation models for dynamic task allocation in disaster

rescues’. In: Journal of Systems Science and Systems Engineering 27.2, pp. 215–230 (cit. on p. 29).

Sultanik, Evan A., Robert N. Lass and William C. Regli (2009). ‘Dynamic Con�guration of Agent

Organizations’. In: AAAI, pp. 305–311 (cit. on p. 27).

Suslova, Elina and Pooyan Fazli (2020). ‘Multi-Robot Task Allocation with Time Window and Ordering

Constraints’. In: IROS. IEEE, pp. 6909–6916 (cit. on p. 30).

Sutton, Richard S. (1996). ‘Generalization in Reinforcement Learning: Successful Examples Using Sparse

Coarse Coding’. In: Advances in Neural Information Processing Systems, pp. 1038–1044 (cit. on p. 15).

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduction. Second edition.

The MIT Press (cit. on p. 14).

Svensson, Kim et al. (2013). ‘Solving the Coalition Structure Generation Problem on a GPU’. In:

International Workshop on Optimisation in Multi-Agent Systems (cit. on p. 89).

Tae, Hyunchul and Byung-In Kim (2015). ‘A Branch-and-Price Approach for the Team Orienteering

Problem with Time Windows’. In: International Journal of Industrial Engineering 22.2 (cit. on p. 89).

Tarapore, Danesh, Roderich Groß and Klaus-Peter Zauner (2020). ‘Sparse Robot Swarms: Moving Swarms

to Real-World Applications’. In: Frontiers in Robotics and AI 7, p. 83 (cit. on p. 72).

Taylor, Matthew E., Manish Jain, Yanquin Jin et al. (2010). ‘When Should There be a “Me” in “Team”?:

Distributed Multi-Agent Optimization Under Uncertainty’. In: AAMAS. Vol. 1, pp. 109–116 (cit. on

p. 88).

Taylor, Matthew E., Manish Jain, Prateek Tandon et al. (2011). ‘Distributed on-line multi-agent optimiza-

tion under uncertainty: Balancing exploration and exploitation’. In: Advances in Complex Systems

14.03, pp. 471–528 (cit. on p. 88).

Tkach, Itshak and So�a Amador (2021). ‘Towards addressing dynamic multi-agent task allocation in law

enforcement’. In: JAAMAS 35.1, pp. 1–18 (cit. on pp. 4, 30, 31, 33, 60, 88).

Torreño, Alejandro et al. (2017). ‘Cooperative Multi-Agent Planning: A Survey’. In: ACM CSUR 50.6,

pp. 1–32 (cit. on pp. 11, 14).

Tsimenidis, Stefanos (2020). ‘Limitations of Deep Neural Networks: a discussion of G. Marcus’ critical

appraisal of deep learning’. In: arXiv: 2012.15754 [cs.AI] (cit. on p. 14).

Ueda, Suguru et al. (2010). ‘Coalition Structure Generation Based on Distributed Constraint Optimization’.

In: AAAI. Vol. 24. 1 (cit. on p. 89).

Van Steen, Maarten and Andrew S. Tanenbaum (2017). Distributed Systems. Third edition. CreateSpace

Independent Publishing Platform (cit. on pp. 4, 5).

Vansteenwegen, Pieter and Aldy Gunawan (2019). Orienteering Problems: Models and Algorithms for

Vehicle Routing Problems with Pro�ts. Switzerland: Springer Nature (cit. on pp. 7, 8, 63, 77, 78, 89).

https://arxiv.org/abs/2012.15754

References 103

Vasudevan, Rama K. et al. (2021). ‘O�-the-shelf deep learning is not enough, and requires parsimony,

Bayesianity, and causality’. In: npj Computational Materials 7.1, pp. 1–6 (cit. on p. 14).

Verma, Janardan Kumar and Virender Ranga (2021). ‘Multi-Robot Coordination Analysis, Taxonomy,

Challenges and Future Scope’. In: Journal of Intelligent & Robotic Systems 102.1, pp. 1–36 (cit. on p. 11).

Vieira, Renata et al. (2007). ‘On the formal semantics of speech-act based communication in an agent-

oriented programming language’. In: JAIR 29, pp. 221–267 (cit. on p. 65).

Vig, Lovekesh and Julie A. Adams (2006). ‘Multi-Robot Coalition Formation’. In: IEEE Transactions on

Robotics 22.4, pp. 637–649 (cit. on p. 29).

– (2007). ‘Coalition Formation: From Software Agents to Robots’. In: Journal of Intelligent and Robotic

Systems 50.1, pp. 85–118 (cit. on p. 29).

Vinyals, Meritxell et al. (2011). ‘Quality Guarantees for Region Optimal DCOP Algorithms’. In: AAMAS.

Vol. 1, pp. 133–140 (cit. on p. 24).

Whitbrook, Amanda, Qinggang Meng and Paul W. H. Chung (2015). ‘A Novel Distributed Scheduling

Algorithm for Time-Critical Multi-Agent Systems’. In: IROS. IEEE, pp. 6451–6458 (cit. on p. 30).

– (2017). ‘Reliable, Distributed Scheduling and Rescheduling for Time-Critical, Multiagent Systems’. In:

IEEE Transactions on Automation Science and Engineering 15.2, pp. 732–747 (cit. on p. 30).

– (2019). ‘Addressing robustness in time-critical, distributed, task allocation algorithms’. In: Applied

Intelligence 49.1, pp. 1–15 (cit. on p. 30).

Wolsey, Laurence A. (2020). Integer Programming. Second edition. John Wiley & Sons (cit. on pp. 7, 33,

60, 61).

Wu, Feng, Sarvapali D. Ramchurn and Xiaoping Chen (2016). ‘Coordinating Human-UAV Teams in

Disaster Response’. In: IJCAI, pp. 524–530 (cit. on pp. 17, 18).

Yan, Eugene (2021). The First Rule of Machine Learning: Start without Machine Learning. https://

eugeneyan.com/writing/first-rule-of-ml. (Visited on 01/11/2021) (cit. on p. 14).

Yang, Tianpei et al. (2021). ‘Exploration in Deep Reinforcement Learning: A Comprehensive Survey’. In:

arXiv: 2109.06668 [cs.AI] (cit. on p. 14).

Ye, Dayong, Minjie Zhang and Danny Sutanto (2013). ‘Self-Adaptation-Based Dynamic Coalition For-

mation in a Distributed Agent Network: A Mechanism and a Brief Survey’. In: IEEE Transactions on

Parallel and Distributed Systems 24.5, pp. 1042–1051 (cit. on p. 31).

Ye, Dayong, Minjie Zhang andAthanasios V. Vasilakos (2016). ‘A Survey of Self-OrganizationMechanisms

in Multiagent Systems’. In: IEEE Transactions on Systems, Man, and Cybernetics 47.3, pp. 441–461

(cit. on p. 11).

Yedidsion, Harel, Roie Zivan and Alessandro Farinelli (2018). ‘Applying max-sum to teams of mobile

sensing agents’. In: Engineering Applications of Arti�cial Intelligence 71, pp. 87–99 (cit. on p. 24).

Yeoh, William (2010). ‘Speeding Up Distributed Constraint Optimization Search Algorithms’. PhD thesis.

University of Southern California (cit. on p. 20).

Yeoh, William et al. (2015). ‘Incremental DCOP Search Algorithms for Solving Dynamic DCOP Problems’.

In: IEEE International Conference on Web Intelligence and Intelligent Agent Technology. Vol. 2, pp. 257–

264 (cit. on p. 27).

Yokoo, Makoto, Edmund H. Durfee et al. (1998). ‘The Distributed Constraint Satisfaction Problem:

Formalization and Algorithms’. In: IEEE Transactions on Knowledge and Data Engineering 10.5,

pp. 673–685 (cit. on p. 18).

Yokoo, Makoto and Katsutoshi Hirayama (1996). ‘Distributed Breakout Algorithm for Solving Distributed

Constraint Satisfaction Problems’. In: AAMAS. MIT Press Cambridge, pp. 401–408 (cit. on p. 24).

Yokoo, Makoto, Toru Ishida et al. (1992). ‘Distributed Constraint Satisfaction for Formalizing Distributed

Problem Solving’. In: International Conference on Distributed Computing Systems. IEEE, pp. 614–621

(cit. on p. 65).

https://eugeneyan.com/writing/first-rule-of-ml
https://eugeneyan.com/writing/first-rule-of-ml
https://arxiv.org/abs/2109.06668

104 References

Zaoad, Syeed Abrar et al. (2021). ‘Accelerating Message Passing Operation of GDL-Based Constraint

Optimization Algorithms Using Multiprocessing’. In: IEEE ISPA 2021. IEEE (cit. on p. 27).

Zeng, Dajun and Katia Sycara (1996). ‘How can an agent learn to negotiate?’ In: International Workshop

on Agent Theories, Architectures, and Languages. Springer, pp. 233–244 (cit. on p. 28).

Zhang, Weixiong et al. (2005). ‘Distributed stochastic search and distributed breakout: properties,

comparison and applications to constraint optimization problems in sensor networks’. In: AIJ 161.1-2,

pp. 55–87 (cit. on pp. 7, 23, 70).

Zhou, Jing et al. (2020). ‘Task Allocation for Multi-agent Systems Based on Distributed Many-objective

Evolutionary Algorithm and Greedy Algorithm’. In: IEEE Access (cit. on p. 31).

Zick, Yair, Georgios Chalkiadakis and Edith Elkind (2012). ‘Overlapping Coalition Formation Games:

Charting the Tractability Frontier’. In: AAMAS. Vol. 2, pp. 787–794 (cit. on p. 13).

Zilberstein, Shlomo (1996). ‘Using Anytime Algorithms in Intelligent Systems’. In: AI Magazine 17.3,

pp. 73–83 (cit. on p. 4).

Zivan, Roie (2021). ‘Applying Multi-Agent Optimization to Realistic Scenarios, including IOT Applica-

tions’. OptLearnMAS at AAMAS 2021. url: https://optlearnmas21.github.io/#roie (visited on

01/11/2021) (cit. on p. 88).

Zivan, Roie, Steven Okamoto and Hilla Peled (2014). ‘Explorative Anytime Local Search for Distributed

Constraint Optimization’. In: AIJ 212, pp. 1–26 (cit. on pp. 7, 23, 24, 26, 67, 68, 71).

Zivan, Roie and Hilla Peled (2012). ‘Max/Min-sum Distributed Constraint Optimization through Value

Propagation on an Alternating DAG’. In: AAMAS. Vol. 1, pp. 265–272 (cit. on p. 24).

Zivan, Roie, Harel Yedidsion et al. (2015). ‘Distributed constraint optimization for teams of mobile

sensing agents’. In: JAAMAS 29.3, pp. 495–536 (cit. on p. 26).

Zlot, Robert Michael (2006). ‘An Auction-Based Approach to Complex Task Allocation for Multirobot

Teams’. PhD thesis. The Robotics Institute, Carnegie Mellon University (cit. on p. 29).

Zou, Hui and Yan Xi (2021). ‘Decentralised Task Allocation Using GDL Negotiations in Multi-agent

System’. In: Cognitive Robotics (in press). doi: 10.1016/j.cogr.2021.07.003 (cit. on p. 6).

https://optlearnmas21.github.io/#roie
https://doi.org/10.1016/j.cogr.2021.07.003

