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MEASURED EXPANDERS

KANG LI, JÁN ŠPAKULA, AND JIAWEN ZHANG

Abstract. By measured graphs we mean graphs endowed with a measure on the
set of vertices. In this context, we explore the relations between the appropriate
Cheeger constant and Poincaré inequalities. We prove that the so-called Cheeger
inequality holds in two cases: when the measure comes from a random walk, or
when the measure has a bounded measure ratio. Moreover, we also prove that
our measured (asymptotic) expanders are generalised expanders introduced by
Tessera. Finally, we present some examples to demonstrate relations and differ-
ences between classical expander graphs and the measured ones. The current
paper is motivated primarily by our previous work on the rigidity problem for
Roe algebras.
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1. Introduction

Motivated by our analytic work in [10, 11], we in this paper explore graph ex-
pansion in the context of measured graphs (i.e., their vertex sets are endowed with
a measure or weights). There are three essential ways of quantifying expansion in
a graph: the Cheeger constant, the spectral gap of the associated graph Laplacian,
and the optimal constant in the Poincaré inequality. This paper aims to address
their relations to each other in the measured setting. Most importantly, we have
generalised the so-called Cheeger inequality to measured graphs (see [1, 2, 6, 16] for
the classical Cheeger inequality).

Although the notion of graph Laplacian is extremely well understood and
established in the unweighted setting, in the setting with weights on the vertex
sets there are at least two possibilities to define the graph Laplacian:

The most straightforward one is perhaps as follows: if m is a measure on the
vertex set V of a graph G, one can define a unitary isomorphism Um : ℓ2(V,m)→
ℓ2(V), and declare that the graph Laplacian on (V,m) is U∗m∆Um, where ∆ is the
standard graph Laplacian on G. However, this approach does not yield the type
of Poincaré inequality that is required for the results in [10].

There is another approach to Laplacians on graphs in the case when the asso-
ciated measure on the vertex set happens to be a stationary measure of a random
walk on the graph, or in other words, there exists a ‘compatible’ measure on the
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set of edges (see Section 3.2 for details). Although this case already appeared in
the literature (see e.g. [19]), we could not find the exact arguments and precise
statements needed for [10]. Therefore, we present elementary proofs for the de-
sired Cheeger inequality (Theorem 3.7) and Lp-Poincaré inequality (Proposition
3.8).

While the random walk approach is undoubtedly elegant, it happens that not
every measure on a graph is a stationary measure of some random walk. Instead
we sidestep the issue of defining a graph Laplacian directly, and we simply ask
the spectral gap to be the best constant for which a Poincaré inequality holds (cf.
Definition 3.18). To relate the Cheeger constant and our spectral gap, we require
that there is a multiplicative bound on how much the measure can change across
an edge (we call it bounded measure ratio in Definition 3.14). Under this extra
assumption, we are able to obtain the Cheeger inequality in Theorem 3.24.

In Section 4, we show in Theorem 4.6 that our measured expanders (more
generally measured asymptotic expanders studied in [10, 11]) are Lp-generalised
expanders introduced by Tessera in [17] for each p ∈ [1,∞). This particularly
strengthens a result proved in [10] that measured (asymptotic) expanders do not
coarsely embed into any Lp-space (see Corollary 4.9). In the final section, we
present several examples in order to clarify the relation and difference between
expander graphs and measured expander graphs (see e.g. Corollary 5.3 and
Proposition 5.8).

We close the introduction by mentioning that measured (asymptotic) expanders
arise naturally from ergodic theory. More precisely, we can always associate
a sequence of measured approximating graphs to any measurable action on a
probability space. The associated sequence of measured approximating graphs is
forms a sequence of measured expanders if and only if the measurable action has
a spectral gap. In parallel, the associated sequence of measured approximating
graphs forms a sequence of measured asymptotic expanders if and only if the
measurable action is strongly ergodic. As a large class of measurable actions
which have a spectral gap or are strongly ergodic, one can naturally construct
numerous examples of measured (asymptotic) expanders (we refer the reader to
[11, Section 6] for details).

Acknowledgement. We would like to thank Gábor Elek for pointing out Propo-
sition 5.1 and Lemma 5.6 to us.

Convention. Throughout the paper, all metric spaces are non-empty and discrete,
and without further explanation a graph refers to a connected undirected graph.

2. Preliminaries

Let G = (V,E) be a (connected) graph with vertex set V and edge set E. We
endow V with the edge-path metric d, defined to be the length (number of edges)
in a shortest path connecting given two points. For A ⊆ V, the vertex boundary
∂VA of A is defined to be {v ∈ V : d(v,A) = 1}, and its edge boundary ∂EA is defined
to be the set of all edges in E with one endpoint in A and the other one in V \ A.

We say that two vertices v,w ∈ V are adjacent if there is an edge in E connecting
them, denoted by v ∼E w or just v ∼ w. For a vertex v ∈ V, its valency val(v) is
defined to be the number of vertices adjacent to v. We say that a graph G = (V,E)
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is k-regular for some k ∈N if val(v) = k for each v ∈ V, andG has bounded valency if
there exists some K ≥ 0 such that each vertex has valency at most K. A sequence
of graphs {Gn}n∈N is said to have uniformly bounded valency if there exists some
K ≥ 0 such that each vertex in Gn has valency bounded by K for all n.

For a finite graph (V,E), its Cheeger constant is defined to be

ch(V,E) := min
{ |∂VA|
|A| : A ⊆ V, 0 < |A| ≤ |V|

2

}

.

We note that the Cheeger constant ch(V,E) is positive if and only if (V,E) is a
connected graph.

Definition 2.1. A sequence of finite (connected)1 graphs {(Vn,En)}n∈N is called a
sequence of expanders if they have uniformly bounded valency, |Vn| → ∞, and
infn∈N ch(Vn,En) > 0.

In this paper, we study a measured version of expanders as introduced in [10].
Recall that a finite measured graph (V,E,m) is a finite (connected and undirected)
graph (V,E) equipped with a non-trivial finite measure m defined on the σ-algebra
of all subsets of V. We say that (V,E,m) has full support if the support of m is V.
For a finite measured graph (V,E,m), we define its Cheeger constant to be:

(2.1) ch(V,E,m) := min
{m(∂VA)

m(A)
: A ⊆ V, 0 < m(A) ≤ 1

2
m(V)

}

.

Again, we note that the Cheeger constant of (V,E,m) is positive if and only if the
full subgraph of (V,E) with supp(m) as the vertex set is connected.

We recall the following measured version of expanders:

Definition 2.2 ([10, Definition 4.18]). A sequence of measured expanders is a se-
quence of finite measured graphs {(Vn,En,mn)}n∈N such that infn∈N ch(Vn,En,mn) >
0.

Remark 2.3. For a sequence of finite measured graphs {(Vn,En,mn)}n∈N, we con-
sider the sequence of measured subgraphs {(G′n,mn)}n∈N such that G′n is the
full subgraph in (Vn,En) with the vertex set supp(mn). Then {(Vn,En,mn)}n∈N
is a sequence of measured expanders if and only if {(G′n,mn)}n∈N is. The argu-
ment is straightforward, because that for any n ∈ N and any A ⊆ Vn we have
∂supp(mn)(A ∩ supp(mn)) = ∂Vn(A ∩ supp(mn)) ∩ supp(mn) ⊆ ∂VnA. Hence, without
loss of generality we only need to consider measured expanders with full support.

Recall from [10] that a sequence of finite measured graphs {(Vn,En,mn)}n∈N is
called ghostly if

lim
n→∞

sup
v∈Vn

mn(v)

mn(Vn)
= 0.(2.2)

Note that the condition (2.2) necessarily implies that |supp(mn)| → ∞ as n → ∞.
However, it is clear that the converse may fail in general. Moreover, if each mn is
the counting measure on Vn then {(Vn,En,mn)}n∈N is ghostly if and only if |Vn| → ∞
as n→∞.

1We note that the expanding condition already implies that all the graphs (Vn,En) in an expander
sequence are connected.
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3. Spectral gaps and Cheeger Inequalities

It is a classical result that expander graphs can be characterised in terms of
the spectral gap of graph Laplacians via Cheeger inequalities [1, 2, 6, 16]. In this
section, we first generalise it to the case of measured expanders coming from
random walks, and then move on to a more general case of measured expanders
with bounded measure ratio.

3.1. A review of the Poincaré inequality for expander graphs. Let G = (V,E)
be a finite k-regular graph for some k ∈ N, and ℓ2(V) be the Hilbert space of all
complex-valued functions on V equipped with the inner product

〈 f , g〉 :=
∑

v∈V
f (v)g(v)

for f , g ∈ ℓ2(V). The graph Laplacian ∆ is a linear operator inB(ℓ2(V)) defined by:

(∆ f )(v) = f (v) − 1

k

∑

w∈V:w∼v

f (w)

for f ∈ ℓ2(V). It follows from direct calculations that ∆ is a positive operator with
norm at most 2, the constant functions on V are eigenvectors for eigenvalue 0,
and if the graph is connected then ∆ f = 0 if and only if f is constant. The spectral
gap of the graph (V,E) is defined to be the smallest positive eigenvalue of ∆. Then
we have the following Cheeger inequalities:

Proposition 3.1 ([1, 2, 6, 16]). Let G = (V,E) be a finite connected k-regular graph with
positive Cheeger constant c and spectral gap λ. Then:

c2

2
≤ λ ≤ 2c.

In particular, we have the following Poincaré inequality:

(3.1)
∑

v,w∈V:v∼w

| f (v) − f (w)|2 ≥ c2
∑

v∈V
| f (v)|2

for f ∈ ℓ2(V) with
∑

v∈V f (v) = 0.

In the rest of this section, we will develop analogous results to measured ex-
panders either from random walks or with bounded measure ratio.

3.2. Measured expanders from random walks. First let us recall some notions
from the theory of random walks. For more details, see textbooks [3, 19].

A random walk or a Markov chain on a non-empty set V is a map r : V×V −→ [0,∞)
such that

∑

v∈V r(u, v) = 1 for any u ∈ V. A stationary measure µ for a random
walk r is a function µ : V −→ (0,∞) such that µ(u)r(u, v) = µ(v)r(v, u) for any
u, v ∈ V. A random walk is called reversible if it admits at least one stationary
measure. In the reversible case, the function a : V × V −→ [0,∞) defined by
a(u, v) := µ(u)r(u, v) is called the conductance function. Clearly, a is symmetric in
the sense that a(u, v) = a(v, u) for all u, v ∈ V, and we also have µ(u) =

∑

v∈V a(u, v)
for all u ∈ V. Conversely, let a : V × V → [0,∞) be a symmetric map such
that µ(u) :=

∑

v∈V a(u, v) is positive and finite for each u ∈ V. Then the formula

r(u, v) :=
a(u,v)

µ(u)
defines a reversible random walk on V with stationary measure µ.
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Given a reversible random walk r on a non-empty set V with a stationary
measure µ, we can endow V with a (not necessarily connected,2 but undirected)
graph (V,E) without multiple edges by requiring that u ∼E v is an edge if and
only if r(u, v) > 0 (which is equivalent to that r(v, u) > 0). Since the corresponding
conductance function a is symmetric, we define a(e) := a(u, v) = a(v, u) for each
edge e ∈ E connecting vertices u and v. For D ⊆ E, its area is defined to be
a(D) :=

∑

e∈D a(e). We set a(∅) = 0. Now assume that V is finite and let m be a non-
trivial finite measure on V of full support. Then we define the (µ, a,m)-Cheeger
constant of (V,E,m) to be

min
{a(∂EA)

µ(A)
: A ⊆ V with 0 < m(A) ≤ 1

2
m(V)

}

,(3.2)

where ∂EA is the edge boundary of A. Similarly as in the remark following (2.1),
if the (µ, a,m)-Cheeger constant is positive, then the graph (V,E) is automatically
connected.

Given the above data, we consider the following Hilbert space:

ℓ2(V;µ) :=
{

f : V→ C
∣

∣

∣

∑

v∈V
| f (v)|2µ(v) < ∞

}

with 〈 f1, f2〉µ :=
∑

v∈V
f1(v) f2(v)µ(v).

The graph Laplacian ∆ ∈ B(ℓ2(V;µ)) associated to the reversible random walk r is
defined as

(3.3) (∆ f )(v) := f (v) −
∑

u∈V:u∼v

f (u)r(v, u)

for f ∈ ℓ2(V;µ) and v, u ∈ V. In fact, the graph Laplacian ∆ is a positive bounded
operator with norm at most 2. When the constructed graph (V,E) is connected,
∆ f = 0 if and only if f is constant (see, e.g., [3, Proposition 5.2.2] for details).

The spectral gap λ of (r, µ) is defined to be the smallest positive eigenvalue of ∆
as defined in (3.3). We now explore a measured version of Proposition 3.1. We
start with a lower bound of the spectral gap, which is stated (without proof) in
[10, Proposition 5.1].

Proposition 3.2. Let r be a reversible random walk on a non-empty finite set V with
a stationary measure µ such that a is the associated conductance function and (V,E) is
the associated graph structure. If m is a non-trivial finite measure on V of full support
such that the (µ, a,m)-Cheeger constant c is positive, then the spectral gap λ of (r, µ) is

bounded from below by c2

2
. Consequently, we have the following Poincaré inequality:

(3.4)
∑

v,w∈V:v∼Ew

| f (v) − f (w)|2a(v,w) ≥ c2
∑

v∈V
| f (v)|2µ(v).

for any f ∈ ℓ2(V;µ) with
∑

v∈V f (v)µ(v) = 0.

Remark 3.3. Note that the spectral gap of (r, µ) does not depend on the auxiliary
measure m, while the (µ, a,m)-Cheeger constant does. One way to interpret the
conclusion of Proposition 3.2 is that different choices of measures m provide
different lower bounds for the (same) spectral gap.

2The constructed graph (V,E) is connected if and only if the random walk r is irreducible (see
[3, Example 5.1.1] for details).
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The possibility of choosing different auxiliary measures m becomes important
in the next subsection, where we address the case of measured expanders which
do not necessarily arise from random walks.

Remark 3.4. Note that the left hand side of (3.4) coincides with 2〈∆ f , f 〉 by a direct
calculation. After we arbitrarily choose an orientation on E, we rewrite the left
hand side as follows:

∑

v,w∈V:v∼Ew

| f (v) − f (w)|2a(v,w) = 2
∑

e∈E
| f (e+) − f (e−)|2a(e).

In the following, we will use both forms without further explanation.

The proof of Proposition 3.2 is similar to the classical case of expander graphs.
As we could not find an explicit proof for our setup in the literature, we provide
a detailed proof here, following the argument given in [4, Theorem 1.2.3]. We
also refer the reader to [19, Chapter 4.A] for the case of random walks on infinite
graphs.

Proof of Proposition 3.2. We fix an orientation on the edge set E, i.e., for each edge
e ∈ E we make a choice of orientation. Since the graph (V,E) does not have
multiple edges, we may regard E as a subset in V × V and write e = (e−, e+) for
e ∈ E. Consider the following Hilbert space:

ℓ2(E; a) :=
{

F : E→ C
∣

∣

∣

∑

e∈E
|F(e)|2a(e) < ∞

}

with 〈F,G〉 :=
∑

e∈E
F(e)G(e)a(e).

It is straightforward to check that ∆ = d∗d, where

d : ℓ2(V;µ)→ ℓ2(E; a), (d f )(e) = f (e+) − f (e−).

Let f : V → [0,∞) be a non-negative function on V, and we consider the following
value:

(3.5) B f :=
∑

e∈E
| f (e+)2 − f (e−)2| · a(e).

Denote by βr > βr−1 > . . . > β0 the values f takes, and set Li := {v ∈ V : f (v) ≥ βi}.
Step I. We claim:

B f =

r
∑

i=1

a(∂ELi) · (β2
i − β2

i−1).

Indeed, for any e = (e−, e+) ∈ E we will consider all the level sets Li it crosses as
follows. Suppose max{ f (e−), f (e+)} = βi(e) and min{ f (e−), f (e+)} = β j(e). Replacing
each item | f (e−)2 − f (e+)2| · a(e) in (3.5) by

i(e)
∑

k= j(e)+1

(β2
k − β2

k−1) · a(e),

we obtain that

(3.6) B f =
∑

e∈E

i(e)
∑

k= j(e)+1

(β2
k − β2

k−1) · a(e).



MEASURED EXPANDERS 7

Observe that every occurrence of the term β2
k
−β2

k−1
in (3.6) corresponds to an edge

e ∈ E which has one endpoint in Lk and the other one outside of Lk. Hence, the
total number of times that β2

k
− β2

k−1
appears in (3.6) is exactly

∑

e∈∂ELk

a(e) = a(∂ELk).

This proves the claim.

Step II. Using the Cauchy–Schwartz inequality in ℓ2(E; a), we have that

B f =
∑

e∈E
| f (e+) + f (e−)| · | f (e+) − f (e−)| · a(e)

≤
(
∑

e∈E
( f (e+) + f (e−))2 · a(e)

) 1
2 ·
(
∑

e∈E
| f (e+) − f (e−)|2 · a(e)

) 1
2

≤
(
∑

e∈E
(2 f (e+)2 + 2 f (e−)2) · a(e)

)
1
2 · ‖d f ‖

=
(

2
∑

v∈V
f (v)2 ·

∑

w∼v

a(v,w)
) 1

2 · ‖d f ‖

=
√

2 · ‖ f ‖ · ‖d f ‖.

Step III. Now we assume further that m(supp f ) ≤ 1
2
m(V). We claim that B f ≥

c · ‖ f ‖2. Indeed, note that β0 = 0 and that for all i ≥ 1 we have m(Li) ≤ 1
2
m(V), so

that a(∂ELi) ≥ cµ(Li). Hence, by the claim in Step I we see that

B f ≥
r
∑

i=1

c · µ(Li) · (β2
i − β2

i−1)

= c ·
[

µ(Lr)β
2
r + µ(Lr−1 \ Lr)β

2
r−1 + . . . + µ(L1 \ L2)β2

1

]

= c · ‖ f ‖2.

Step IV. Let g be a real-valued eigenvector of ∆ associated to its smallest positive
eigenvalue, i.e., to the spectral gapλ. Set V+ := {v ∈ V : g(v) > 0}and f = max{g, 0}.
Since

∑

v∈V g(v)µ(v) = 0 and g , 0, by replacing g by−g if necessary, we can assume
that 0 < m(V+) ≤ 1

2
m(V). For v ∈ V+, we have

(∆ f )(v) = f (v) −
∑

w∈V:w∼v

f (w)r(v,w)

= f (v) −
∑

w∈V+:w∼v

g(w)r(v,w)

≤ g(v) −
∑

w∈V:w∼v

g(w)r(v,w)

= (∆g)(v) = λg(v) = λ f (v).

It follows that

‖d f ‖2 = 〈∆ f , f 〉 =
∑

v∈V+
(∆ f )(v) · f (v) · µ(v) ≤ λ

∑

v∈V+
f (v)2 · µ(v) = λ‖ f ‖2.

Combining all together, we obtain

c · ‖ f ‖2 ≤ B f ≤
√

2 · ‖ f ‖ · ‖d f ‖ ≤
√

2λ · ‖ f ‖ · ‖ f ‖.
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Thus, we deduce that λ ≥ c2/2.

Finally, the Poincaré inequality is simply an expanded version of the inequality

〈∆ f , f 〉 ≥ c2

2
〈 f , f 〉, which holds for all vectors f orthogonal to the zero eigenspace

of ∆. Since c > 0, the only eigenvectors for 0 are the constant functions, and thus
the vectors orthogonal to the zero eigenspace of ∆ are precisely those f satisfying
∑

v∈V f (v)µ(v) = 0. This concludes the proof. �

Now we consider an upper bound on the spectral gap in the case of m = µ.

Proposition 3.5. Let r be a reversible random walk on a non-empty finite set V with a
stationary measure µ such that a is the associated conductance function and (V,E) is the
associated graph structure. Assume also that the (µ, a, µ)-Cheeger constant c is positive.
Then the spectral gap λ of (r, µ) is bounded from above by 2c.

We will follow the proof in [2], and start with the following lemma:

Lemma 3.6. Let r be a reversible random walk on a non-empty finite set V with a
stationary measure µ such that a is the associated conductance function, (V,E) is the
associated graph structure and λ is the spectral gap of (r, µ). Assume also that (V,E) is
connected. For any subsets A,B ⊆ V with A ∩ B = ∅, we denote ρ := d(A,B) and EA

(respectively EB) the set of edges with both endpoints in A (respectively in B). Then

λ · ρ2 ≤
( 1

µ(A)
+

1

µ(B)

)

· (a(E) − a(EA) − a(EB)).

Proof. As in the proof of Proposition 3.2, we choose an orientation on E. Consider
the following function on V:

g(v) :=
µ(V)

µ(A)
− 1

ρ
·
(µ(V)

µ(A)
+
µ(V)

µ(B)

)

·min{d(v,A), ρ}.

It is clear that for any edge e = (e−, e+), we have

|g(e+) − g(e−)| ≤ 1

ρ
·
(µ(V)

µ(A)
+
µ(V)

µ(B)

)

.

Set α := 1
µ(V)

∑

v∈V g(v)µ(v) and f := g − α. Then
∑

e∈E
| f (e+) − f (e−)|2a(e) =

∑

e∈E
|g(e+) − g(e−)|2a(e)

=
∑

e∈E\(EA∪EB)

|g(e+) − g(e−)|2a(e)

≤ 1

ρ2

(µ(V)

µ(A)
+
µ(V)

µ(B)

)2
(a(E) − a(EA) − a(EB)).

On the other hand, we also have
∑

v∈V
| f (v)|2µ(v) ≥

∑

v∈A∪B

| f (v)|2µ(v)

=
(µ(V)

µ(A)
− α
)2
· µ(A) +

(µ(V)

µ(B)
+ α
)2
· µ(B)

≥ µ(V)2 ·
( 1

µ(A)
+

1

µ(B)

)

.
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Hence, it follows from the definition of the spectral gap λ that

1

ρ2

(µ(V)

µ(A)
+
µ(V)

µ(B)

)2
(a(E) − a(EA) − a(EB)) ≥ λµ(V)2 ·

( 1

µ(A)
+

1

µ(B)

)

,

which concludes the proof. �

Proof of Proposition 3.5. Given A ⊆ V with 0 < µ(A) ≤ µ(V)

2
, we take B = V\A. Since

the Cheeger constant c is positive, we know that the graph (V,E) is connected so
that ρ := d(A,B) = 1. Applying Lemma 3.6, we obtain the following

λ ≤
( 1

µ(A)
+

1

µ(B)

)

· a(∂EA) ≤ 2

µ(A)
· a(∂EA).

Hence, we conclude that

a(∂EA) ≥ λ
2
µ(A),

as desired. �

Combining Proposition 3.2 and Proposition 3.5, we obtain the following desired
result, which is the measured version of Proposition 3.1:

Theorem 3.7. Let r be a reversible random walk on a non-empty finite set V with a
stationary measure µ such that a is the associated conductance function. Assume that the
(µ, a, µ)-Cheeger constant c is positive, and denote the spectral gap of (r, µ) by λ. Then

c2

2
≤ λ ≤ 2c.

In the following, we prove an Lp-version of the Poincaré inequality arising from
random walks. To start, we present an alternative form of the Poincaré inequality
in (3.4): For any f : V→ C with

∑

u∈V f (u)µ(u) = 0, we see that
∑

u,v∈V
| f (u) − f (v)|2 ·

µ(u)µ(v)

µ(V)
= 2
∑

u∈V
| f (u)|2

(
∑

v∈V

µ(u)µ(v)

µ(V)

)

− 2
∑

u,v∈V
Re( f (u) f (v)) ·

µ(u)µ(v)

µ(V)

= 2
∑

u∈V
| f (u)|2µ(u) − 2

µ(V)
· Re
[(
∑

u∈V
f (u)µ(u)

)

·
(
∑

v∈V
f (v)µ(v)

)]

= 2
∑

u∈V
| f (u)|2µ(u).

In other words, (3.4) is equivalent to the following inequality:

(3.7)
∑

u,v∈V:u∼v

| f (u) − f (v)|2a(u, v) ≥ c2

2

∑

u,v∈V
| f (u) − f (v)|2

µ(u)µ(v)

µ(V)
.

Note that both sides of (3.7) are invariant under replacing f by f + c for any c ∈ C.
In particular, (3.7) also holds for all functions f : V → C without the restriction
that
∑

v∈V f (v)µ(v) = 0. Consequently, for any f : V → ℓ2(N) we have

(3.8)
∑

u,v∈V:u∼v

‖ f (u) − f (v)‖2a(u, v) ≥ c2

2

∑

u,v∈V
‖ f (u) − f (v)‖2µ(u)µ(v)

µ(V)
,

simply by summing the individual coordinates on both sides of (3.7).

Now we move on to an Lp-version of Proposition 3.2. This was originally shown
in [14] for the case of expander graphs and in [5, Theorem 3.11] for the case of
random walks. Since we need to deal with the auxiliary measure m, we provide
a proof here for completeness.
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Proposition 3.8. Let r be a reversible random walk on a non-empty finite set V with a
stationary measure µ such that a is the associated conductance function and (V,E) is the
associated graph structure. Assume that m is a non-trivial finite measure on V of full
support such that the (µ, a,m)-Cheeger constant c is positive. Then for any p ∈ [1,∞),
there exists a positive constant cp depending only on c and p such that for any f : V → C,
we have the following Lp-Poincaré inequality:

(3.9)
∑

u,v∈V:u∼Ev

| f (u) − f (v)|pa(u, v) ≥ cp ·
∑

u,v∈V
| f (u) − f (v)|p

µ(u)µ(v)

µ(V)
.

Proof. First of all, we note that for any p ∈ [1,∞) and a, b ∈ R, we have

2−
p
2 (|a|p + |b|p) ≤ (

√

|a|2 + |b|2)p ≤ 2
p
2 (|a|p + |b|p).

Hence, it suffices to consider real functions f : V → R. We divide the proof into
the following two cases.

Case I: 1 ≤ p < 2. Since there exists an isometric embedding

ϕ : (R, |x − y|
p
2 ) →֒ ℓ2(N;C)

(see for example [15] and [18, Example 3.5 in Chapter 1]), we consider the function
ϕ ◦ f : V → ℓ2(N;C). From (3.8), we have

∑

u,v∈V:u∼v

| f (u) − f (v)|pa(u, v) =
∑

u,v∈V:u∼v

‖ϕ ◦ f (u) − ϕ ◦ f (v)‖2a(u, v)

≥ c2

2
·
∑

u,v∈V
‖ϕ ◦ f (u) − ϕ ◦ f (v)‖2

µ(u)µ(v)

µ(V)
=

c2

2
·
∑

u,v∈V
| f (u) − f (v)|p

µ(u)µ(v)

µ(V)
.

Hence, we obtain (3.9) by setting cp := c2

2
for p ∈ [1, 2).

Case II: p ≥ 2. Replacing f by f −∑v∈V | f (v)| p2 sgn( f (v))µ(v), we can assume that
∑

v∈V | f (v)| p2 sgn( f (v))µ(v) = 0. From (3.4), we have

(3.10)
∑

u,v∈V:u∼v

∣

∣

∣| f (u)|
p
2 sgn( f (u)) − | f (v)|

p
2 sgn( f (v))

∣

∣

∣

2
a(u, v) ≥ c2

∑

v∈V
| f (v)|pµ(v).

Note that for any p > 1 and a, b ∈ R, we have

∣

∣

∣|a|psgn(a) − |b|psgn(b)
∣

∣

∣ ≤ p · |a − b| ·
(

|a|p−1 + |b|p−1
)

.
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So for the left hand side of (3.10), we have

L.H.S. ≤
∑

u,v∈V:u∼v

[p

2
| f (u) − f (v)| ·

(

| f (u)|
p
2−1 + | f (v)|

p
2−1
)]2
· a(u, v)

=
p2

4
·
∑

u,v∈V:u∼v

| f (u) − f (v)|2 ·
(

| f (u)|
p
2−1 + | f (v)|

p
2−1
)2
· a(u, v)

≤ p2

4
·
(
∑

u,v∈V:u∼v

| f (u) − f (v)|p · a(u, v)
) 2

p ·
(
∑

u,v∈V:u∼v

(

| f (u)|
p
2−1 + | f (v)|

p
2−1
)

2p
p−2 · a(u, v)

)

p−2
p

≤ p2

4
·
(
∑

u,v∈V:u∼v

| f (u) − f (v)|p · a(u, v)
) 2

p ·
(
∑

u,v∈V:u∼v

2
2p

p−2−1
(

| f (u)|p + | f (v)|p
)

· a(u, v)
)

p−2
p

≤ p2

4
· 21+ 2

p ·
(
∑

u,v∈V:u∼v

| f (u) − f (v)|p · a(u, v)
) 2

p ·
(
∑

v∈V
| f (v)|pµ(v)

)1− 2
p
.

Combined with (3.10), we obtain that
∑

u,v∈V:u∼v

| f (u) − f (v)|pa(u, v) ≥
( 4c2

p2 · 21+ 2
p

)

p
2
∑

v∈V
| f (v)|pµ(v)

≥
( 4c2

p2 · 21+ 2
p

)

p
2 · 1

2p+1

∑

u,v∈V
| f (u) − f (v)|p

µ(u)µ(v)

µ(V)
.

Consequently, if p ≥ 2 then (3.9) holds for cp :=
(

4c2

p2·21+ 2
p

)

p
2 · 1

2p+1 , and we have finished

the proof. �

In the remainder of this subsection, let us relate the above discussion on random
walks to the notion of measured expanders introduced in Definition 2.2. To this
end, we need the following easy lemma.

Lemma 3.9. Let r be a reversible random walk on a non-empty finite set V with a
stationary measure µ such that a is the associated conductance function and (V,E) is
the associated graph structure. Then the (µ, a, µ)-Cheeger constant does not exceed the
Cheeger constant ch(V,E, µ) defined in (2.1).

Proof. Since v ∼ u if and only if a(u, v) > 0, it follows that for every A ⊆ V we have

a(∂EA) =
∑

e∈∂EA

a(e) =
∑

u∈∂VA

∑

v∈A:v∼u

a(u, v) ≤
∑

u∈∂VA

∑

v∈V:v∼u

a(u, v) =
∑

u∈∂VA

µ(u) = µ(∂VA).

This concludes the proof. �

Remark 3.10. It is plausible that the two notions of Cheeger constants in Lemma 3.9
may be different in general. It is also interesting to find conditions under which
they are bound to each other. However, we did not pursue this line of questions.

Consequently, we obtain the following:

Proposition 3.11. Let {(Vn, rn, µn)}n∈N be a sequence of reversible random walks rn on
non-empty finite sets Vn with stationary measures µn. For each n ∈ N, let an be the
associated conductance function and En the associated edge set on Vn. Assume that there
exists a constant c > 0 such that each (µn, an, µn)-Cheeger constant is greater than c.
Then {(Vn,En, µn)}n∈N is a sequence of measured expanders.



12 KANG LI, JÁN ŠPAKULA, AND JIAWEN ZHANG

Let us extract the following definition:

Definition 3.12. A sequence of finite measured graphs {(Vn,En, µn)}n∈N is called
a sequence of measured graphs from random walks if for each n ∈ N, there exists a
reversible random walk rn on Vn with the stationary measure µn and the associated
edge set is En. Furthermore, it is called a sequence of measured expanders from
random walks if there exists a constant c > 0 satisfying that each (µn, an, µn)-Cheeger
constant is greater than c, where an is the conductance function for (rn, µn).

As a consequence of Theorem 3.7, we obtain the following reformulation:

Theorem 3.13. Let {(Vn,En, µn)}n∈N be a sequence of measured graphs from random
walks {rn}n∈N, and ∆n ∈ B(ℓ2(Vn;µn)) be the graph Laplacian defined in (3.3) for each
n ∈N. Then the following are equivalent:

(1) {(Vn,En, µn)}n∈N is a sequence of measured expanders from random walks;
(2) There exists a constant c > 0 such that the spectral gap of (rn, µn) is bounded from

below by c for each n ∈N;
(3) There exists a constant c′ > 0 such that the spectrum of ∆n is contained in
{0} ∪ [c′, 2] for each n ∈N.

3.3. Measured expanders with bounded measure ratio. In this subsection, we
will focus on more general measured graphs which do not necessarily come from
random walks.

The Cheeger constant (using the vertex expansion) defined in (2.1) certainly
makes sense for general finite measured graphs. However, the classical Cheeger
constant from random walks (see (3.2)) requires a compatible measure a (i.e., the
conductance function) on the set of edges in order to control the spectral gap
(see Theorem 3.7 for the Cheeger inequality). To extend the Cheeger inequality
to a general case, we restrict ourselves to finite measured graphs with bounded
measure ratio. Nevertheless, this notion is flexible enough for our purposes in
the study of Roe algebras and measured asymptotic expanders in [10]3.

Definition 3.14. Let (V,E,m) be a finite measured graph and s ∈ (0, 1). We say
that it has measure ratio bounded by s if for every edge u ∼E v, we have s · m(v) ≤
m(u) ≤ 1

s
· m(v). We say that a family of finite measured graphs {(Vn,En,mn)}n∈N

has bounded measure ratio if there exists s ∈ (0, 1) such that for every n ∈ N, the
finite measured graph (Vn,En,mn) has measure ratio bounded by s.

Remark 3.15. • For a single finite measured graph (V,E,m) such that m has full
support, it always has bounded measure ratio by some s ∈ (0, 1). However,
we will require a uniform bound on the measure ratio for a family of finite
measured graphs (such as measured expanders).
• Recall that our standing assumption is that a finite measured graph (V,E,m)

is connected and m is non-trivial. It follows directly that if (V,E,m) has
measure ratio bounded by some s ∈ (0, 1), then m must have full support.

The following lemma has been worked out in [10] and it builds an auxiliary
random walk whose stationary measure µ can control the original measure m for
the given finite measured graph with bounded measure ratio.

3It is shown in [10, Corollary 4.21] that measured asymptotic expanders admit a uniform
exhaustion by measured expander graphs with bounded measure ratios.
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Lemma 3.16 ([10, Lemma 5.2]). Let (V,E,m) be a finite measured graph such that m has
full support. Then there exists a (unique) reversible random walk r : V×V → [0,∞) with
a (unique) stationary measure µ : V → (0,∞) and the associated conductance function
a : V × V → [0,∞) satisfying the following:

(1) a(u, v) = m(u) +m(v) whenever u, v ∈ V such that u ∼E v;
(2) For u, v ∈ V, we have r(u, v) > 0 if and only if u ∼E v.

If we additionally suppose that (V,E,m) has valency bounded by K ≥ 1, measure ratio
bounded by s ∈ (0, 1) and Cheeger constant c > 0, then

(3) For u ∈ V, we have s
K(1+s)

µ(u) ≤ m(u) ≤ 1
1+s
µ(u);

(4) The (µ, a,m)-Cheeger constant in (3.2) is bounded below by cs
K

.

Remark 3.17. Note that when m is the counting measure on V, the random walk r
constructed in Lemma 3.16 is exactly the regular random walk on V, i.e., r(u, v) =

1
val(u)

for u ∼ v and 0 otherwise. In this case, the associated stationary measure

µ coincides with twice of the valency function. If (V,E) has constant valency, we
have recovered the setting of expander graphs discussed in Section 3.1.

Based on the construction of random walks from Lemma 3.16, we propose the
following notion of spectral gap for measured graphs as the best constant for
which a certain version of Poincaré inequality holds:

Definition 3.18. The spectral gap of a finite measured graph (V,E,m) with full
support is the supremum of λ satisfying the following inequality:

(3.11)
∑

u,v∈V:u∼Ev

| f (u) − f (v)|2(m(u) +m(v)) ≥ 2λ
∑

u∈V
| f (u)|2m(u),

for any f ∈ ℓ2(V; m) with
∑

v∈V f (v)m(v) = 0. Equivalently,

(3.12)
∑

u,v∈V:u∼Ev

| f (u) − f (v)|2(m(u) +m(v)) ≥ λ
∑

u,v∈V
| f (u) − f (v)|2 · m(u)m(v)

m(V)

for any f ∈ ℓ2(V; m).

Note that the equivalence between (3.11) and (3.12) follows exactly from the
same calculations used to obtain (3.7). We leave the details to the reader.

The following lemma justifies the name of spectral gap in Definition 3.18 by the
spectral gap of some genuine Laplacian operator:

Lemma 3.19. Let (V,E,m) be a finite measured graph with full support, and (r, µ) be the
random walk on (V,E) from Lemma 3.16. Let ∆ ∈ B(ℓ2(V;µ)) be the graph Laplacian
defined in (3.3), and W : ℓ2(V; m)→ ℓ2(V;µ) be the identity operator. Then the spectral
gap of (V,E,m) in Definition 3.18 coincides with the smallest positive eigenvalue of the
operator Λ := W∗∆W ∈ B(ℓ2(V; m)).

Proof. First note that for f : V → C, the function W f is constant if and only if f is.
Hence the kernel of Λ consists of constant functions on V. Also note that for any
f ∈ ℓ2(V; m), we have:

〈Λ f , f 〉m = 〈∆W f ,W f 〉µ =
1

2

∑

u,v∈V:u∼v

| f (u) − f (v)|2
(

m(u) +m(v)
)

.
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Hence the smallest positive eigenvalue of Λ is the largest λ > 0 such that

〈Λ f , f 〉m ≥ λ
∑

v∈V
| f (v)|2m(v),

i.e.,
1

2

∑

u,v∈V:u∼v

| f (u) − f (v)|2
(

m(u) +m(v)
)

≥ λ
∑

v∈V
| f (v)|2m(v),

for all f ∈ ℓ2(V; m) with
∑

v∈V f (v)m(v) = 0. This coincides with the spectral gap
from Definition 3.18. �

The next result provides a control on the spectral gap of a finite measured graph
by that of the associated random walk. This will allow us to bound or estimate
spectral gap in terms of the Cheeger constant for measured graphs.

Lemma 3.20. Let (V,E,m) be a finite measured graph with valency bounded by K and
measure ratio bounded by s ∈ (0, 1), and let λ be the spectral gap of (V,E,m). Let (r, µ) be
the random walk on (V,E) from Lemma 3.16, and λ′ be the spectral gap of (r, µ). Then:

s(1 + s)

K
· λ′ ≤ λ ≤ K2(1 + s)

s2
· λ′.

Proof. By Definition 3.18, the number λ is the supremum of λ1 satisfying
∑

u,v∈V:u∼v

| f (u) − f (v)|2(m(u) +m(v)) ≥ λ1

∑

u,v∈V
| f (u) − f (v)|2 · m(u)m(v)

m(V)

for any f : V → C. On the other hand, the number λ′ is the supremum of λ2

satisfying

∑

u,v∈V:u∼v

| f (u) − f (v)|2(m(u) +m(v)) ≥ λ2

∑

u,v∈V
| f (u) − f (v)|2 ·

µ(u)µ(v)

µ(V)

for any f : V → C. Now note from condition (3) in Lemma 3.16 that s
K(1+s)

µ(v) ≤
m(v) ≤ 1

1+s
µ(v) for all v ∈ V, hence we obtain:

s2

K2(1 + s)
·
∑

u,v∈V
| f (u) − f (v)|2 ·

µ(u)µ(v)

µ(V)
≤
∑

u,v∈V
| f (u) − f (v)|2 · m(u)m(v)

m(V)

and
∑

u,v∈V
| f (u) − f (v)|2 · m(u)m(v)

m(V)
≤ K

s(1 + s)
·
∑

u,v∈V
| f (u) − f (v)|2 · µ(u)µ(v)

µ(V)
.

This concludes the proof. �

Now we can apply Proposition 3.2 to the above auxiliary random walk r and
obtain the required Poincaré inequality for measured graphs in this case. There-
fore, we reach the following lower bound for the spectral gap, which refines [10,
Corollary 5.3] in the case of a Hilbert space:

Proposition 3.21. Let (V,E,m) be a finite measured graph with valency bounded by K,
measure ratio bounded by s ∈ (0, 1) and Cheeger constant c. Then the spectral gap of

(V,E,m) is bounded from below by c2s3(1+s)

2K3 .
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Proof. Applying Proposition 3.2 to the random walk r with the associated sta-
tionary measure µ from Lemma 3.16, we obtain that the spectral gap of (r, µ) is

bounded from below by c2s2

2K2 . Now the left inequality in Lemma 3.20 concludes
the proof. �

At this point, recall that in [10], we apply Proposition 3.8 directly to the auxiliary
measure and obtain an Lp-version of Proposition 3.21 for p ∈ [1,∞) as follows:

Proposition 3.22 ([10, Corollary 5.3]). Let (V,E,m) be a finite measured graph with
valency bounded by K, measure ratio bounded by s ∈ (0, 1) and Cheeger constant c. Then
for any p ∈ [1,∞), there exists a positive constant cp depending only on c, s, p,K such
that for any f : V → C, we have the following Lp-Poincaré inequality:

(3.13)
∑

u,v∈V:u∼v

| f (u) − f (v)|p(m(u) +m(v)) ≥ cp

∑

u,v∈V
| f (u) − f (v)|p m(u)m(v)

m(V)
.

Now we address the opposite direction in the Hilbert space case, i.e., an upper
bound for the spectral gap. We have the following result analogous to Proposition
3.5:

Proposition 3.23. Let (V,E,m) be a finite measured graph with valency bounded by K,
measure ratio bounded by s ∈ (0, 1), and spectral gap λ. Then the Cheeger constant of
(V,E,m) is bounded from below by sλ

2(1+s)K
.

Proof. Let A ⊆ V with 0 < m(A) ≤ m(V)

2
. We now apply the argument in the proof

of Lemma 3.6, with B = V \ A (and hence ρ = 1 and E \ (EA ∪ EB) = ∂E(A)),
a(e) = m(e−) + m(e+), µ = m,4 and function f as defined there. This provides two
inequalities:

∑

e∈E
| f (e+) − f (e−)|2(m(e−) +m(e+)) ≤

(m(V)

m(A)
+

m(V)

m(X \ A)

)2 ∑

e∈∂EA

(m(e−) +m(e+)),

∑

v∈V
| f (v)|2m(v) ≥ m(V)2 ·

( 1

m(A)
+

1

m(X \ A)

)

.

Observe that in our case we also have
∑

e∈∂EA

(m(e−) +m(e+)) ≤ m(∂VA)(1 +
1

s
)K.

Combining the above three inequalities yields
(3.14)
∑

e∈E
| f (e+)− f (e−)|2(m(e−)+m(e+)) ≤

( 1

m(A)
+

1

m(X \ A)

)

(1+
1

s
)Km(∂VA)

∑

v∈V
| f (v)|2m(v).

Hence it follows from the definition of λ that5

( 1

m(A)
+

1

m(X \ A)

)

m(∂VA)(1 +
1

s
)K ≥ λ,

4Note that the assumption in Lemma 3.6 that µ is the stationary measure is not used in its proof.
5Note that the first sum in the displayed equation (3.14) encounters every edge only once, while

the corresponding sum in Definition 3.18 runs over adjacent pairs of vertices.
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which implies that

m(∂VA) ≥ sλ

2(1 + s)K
m(A).

This finishes the proof. �

Finally combining Proposition 3.21 and Proposition 3.23, we obtain the follow-
ing. Readers may compare with Theorem 3.7.

Theorem 3.24. Let (V,E,m) be a finite measured graph with valency bounded by K,
measure ratio bounded by s ∈ (0, 1), Cheeger constant c and spectral gap λ. Then

c2s3(1 + s)

2K3
≤ λ ≤ 2(1 + s)Kc

s
.

Consequently, we apply Theorem 3.24 to a sequence of finite measured graphs
and obtain the following (readers may compare with Theorem 3.13):

Theorem 3.25. Let {(Vn,En,mn)}n∈N be a sequence of finite measured graphs with
uniformly bounded valency and bounded measure ratio. For each n ∈ N, let Λn ∈
B(ℓ2(Vn,mn)) be the operator from Lemma 3.19. Then the following are equivalent:

(1) {(Vn,En,mn)}n∈N is a sequence of measured expanders;
(2) There exists a constant c > 0 such that the spectral gap of (Vn,En,mn) is bounded

from below by c for each n ∈N;
(3) There exist constants c′, κ > 0 such that the spectrum of Λn is contained in
{0} ∪ [c′, κ] for each n ∈N.

4. Generalised expanders

In this section, we relate measured expanders and their asymptotic version with
the notion of generalised expanders. First recall that the notion of generalised
expanders was introduced by Tessera in [17] as a generalisation of expander
graphs and as (the sole) obstruction to coarse embeddability into a Hilbert space.
We will state in the case of general Lp-spaces for p ∈ [1,∞).

Definition 4.1 ([17, Definition 16]). Let p ∈ [1,∞). A sequence of finite metric
spaces {(Xn, dn)}n∈N is called a sequence of Lp-generalised expanders if for every
function ρ+ : [0,∞)→ [0,∞), there exists a constant k > 0 and a sequence rn → ∞
such that for each n ∈N there exists a probability measure µn on Xn×Xn satisfying
the following:

(1) µn(x, y) = µn(y, x) for all x, y ∈ Xn;
(2) µn(x, y) = 0 if dn(x, y) ≤ rn;
(3) for every measure space (Z, ν) and any map f : Xn → Lp(Z, ν) satisfying
‖ f (x)− f (y)‖p ≤ ρ+(dn(x, y)) for any x, y ∈ Xn, the following inequality holds:

∑

x,y∈Xn

‖ f (x) − f (y)‖ppµn(x, y) ≤ kp.

Proposition 4.2 ([17, Corollary 17]). Let p ∈ [1,∞). A metric space X does not
coarsely embed into any Lp-space if and only if it has a coarsely embedded sequence of
Lp-generalised expanders.
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The main aim of this section is to show that ghostly measured asymptotic
expanders, which is an asymptotic version of measured expanders introduced in
[10], are Lp-generalised expanders for any p ∈ [1,∞). Let us recall some notions.

Definition 4.3 ([10, Definition 2.4]). We say that {(Xn, dn,mn)}n∈N is a sequence of
finite measured metric spaces if each (Xn, dn) is a finite metric space, and each mn

is a non-trivial and finite measure defined on the σ-algebra of all subsets of Xn.
Moreover, the sequence {(Xn, dn,mn)}n∈N is called ghostly if

lim
n→∞

sup
x∈Xn

mn(x)

mn(Xn)
= 0,

and said to have uniformly bounded geometry if for all R > 0, we have

sup
n∈N

sup
x∈Xn

|B(x,R)| < ∞.

Note that in the case of finite measured graphs, the above notions are compatible
with those defined in Section 2. The following notion is the asymptotic version
of measured expanders, which was introduced in [11] and extensively studied in
[10] (see also [8, 9]):

Definition 4.4 ([11, Definition 6.1]). A sequence of finite measured metric spaces
{(Xn, dn,mn)}n∈N is called a sequence of measured asymptotic expanders if for any
α ∈ (0, 1

2
] there exist cα ∈ (0, 1) and Rα > 0 such that for any n ∈ N and A ⊆ Xn

with α ·mn(Xn) ≤ mn(A) ≤ 1
2
mn(Xn), we have mn(∂RαA) > cα ·mn(A).

In this case, we call functions c : α 7→ cα and R : α 7→ Rα from (0, 1
2
] to (0,∞)

parameter functions of {(Xn, dn,mn)}n∈N, and {(Xn, dn,mn)}n∈N is called a sequence of
measured (c,R)-asymptotic expanders.

Clearly any measured expander is a measured asymptotic expander. A form of
a converse is provided by the structure result from [10], which we recall below.
Roughly speaking, it shows that measured asymptotic expanders are necessarily
“exhausted” by a sequence of measured expanders. It is also a key ingredient to
prove the main result of this section.

Proposition 4.5 ([10, Corollary 4.20]). Let {(Xn, dn,mn)}n∈N be a sequence of finite mea-
sured metric spaces with uniformly bounded geometry. Then the following are equivalent:

(1) {(Xn, dn,mn)}n∈N is a sequence of measured asymptotic expanders;
(2) there exist c > 0, a sequence {αk}k∈N in (0, 1) with αk → 0, a sequence {sk}k∈N in

(0, 1), and a positive sequence {Rk}k∈N such that for any n, k ∈N there exist a finite
graph (Vn,k,En,k) and a Rk-Lipschitz injective map in,k : Vn,k → Xn satisfying the
following:

(i) the pullback measure mn,k := i∗
n,k

(mn) on Vn,k has full support and mn,k(Vn,k) ≥
(1 − αk) ·mn(Xn);

(ii) for each k ∈ N, {(Vn,k,En,k,mn,k)}n∈N is a sequence of measured expanders
with uniformly bounded valency and Cheeger constants bounded below by c;

(iii) for any adjacent vertices u ∼En,k
v, we have skmn,k(u) ≤ mn,k(v) ≤ 1

sk
mn,k(u).

The following is the main result of this section:

Theorem 4.6. Let {(Xn, dn,mn)}n∈N be a sequence of ghostly measured asymptotic ex-
panders with uniformly bounded geometry. Then for every p ∈ [1,∞), the sequence
{(Xn, dn,mn)}n∈N is a sequence of Lp-generalised expanders.
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We need the following lemma:

Lemma 4.7. Let (V,E,m) be a finite measured graph with valency bounded by K, measure
ratio bounded by s ∈ (0, 1) and (positive) Cheeger constant c. Let p ∈ [1,∞) and
ρ+ : [0,∞) → [0,∞) be a function. Then there exists a constant κ depending on
K, s, c, p, ρ+ such that for any measure space (Z, ν) and any map f : V → Lp(Z, ν) with
‖ f (u) − f (v)‖p ≤ ρ+(d(u, v)) for every u, v ∈ V (where d is the edge-path metric on V),
we have the following inequality:

∑

u,v∈V
‖ f (u) − f (v)‖ppm(u)m(v) ≤ κ ·m(V)2.

Proof. Applying Proposition 3.22 and the Poincaré inequality (3.13) to each of the
coordinate function fx(v) := f (v)(x) and integrating these inequalities over X, we
obtain that there exists a constant cp > 0 depending on K, s, c, p such that:

cp

∑

u,v∈V
‖ f (u) − f (v)‖pp ·

m(u)m(v)

m(V)
≤
∑

u,v∈V:u∼v

‖ f (u) − f (v)‖pp(m(u) +m(v))

≤ ρ+(1)p
∑

u∈V

∑

v∈V:v∼u

(

m(u) +m(v)
)

≤ ρ+(1)p
∑

u∈V
K(1 +

1

s
)m(u) =

ρ+(1)pK(1 + s)

s
m(V).

Taking κ :=
ρ+(1)pK(1+s)

scp
, we conclude the proof. �

Proof of Theorem 4.6. We fix a p ∈ [1,∞) and a function ρ+ : [0,∞)→ [0,∞). With-
out loss of generality, we assume that each mn is a probability measure on Xn. Set
γn := supx∈Xn

mn(x), which tends to 0 as n → ∞. By Proposition 4.5, there exist
c > 0, R > 0, K > 0 and s ∈ (0, 1) such that for any n ∈ N there exist a finite graph
(Vn,En) and an R-Lipschitz injective map in : Vn → Xn satisfying the following:

(i) the measure m′n := i∗n(mn) on Vn has full support and m′n(Vn) ≥ 1
2
;

(ii) {(Vn,En,m′n)}n∈N is a sequence of measured expanders with valency bounded
by K, Cheeger constants above c and measure ratio bounded by s.

For each n ∈N, set Yn := in(Vn) ⊆ Xn, define a measure µn on Xn × Xn by

µn(x, y) :=

{

mn(x)mn(y), if x, y ∈ Yn;

0, otherwise

and let rn := logK( 1
8γn

). Note that γn → 0, hence rn → ∞. Finally, denote ∆n :=

{(x, y) ∈ Xn × Xn : dn(x, y) ≤ rn}. Then we have:

µn(∆n) =
∑

(x,y)∈∆n

µn(x, y) =
∑

(x,y)∈Yn×Yn

dn(x,y)≤rn

mn(x)mn(y) =
∑

x∈Yn

mn(x)
(
∑

y∈Yn

dn(x,y)≤rn

mn(y)
)

≤
∑

x∈Yn

mn(x) · Krn · γn ≤ mn(Yn) · 1

8
≤ 1

8
.

On the other hand, we have:

µn(Xn × Xn) =
∑

(u,v)∈Yn×Yn

mn(u)mn(v) = mn(Yn)2 ≥ 1

4
.
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Hence we obtain:

µn

(

(Xn × Xn) \ ∆n

)

≥ 1

4
− 1

8
=

1

8
.

Now we consider another measure νn on Xn ×Xn defined by

νn(x, y) :=















µn(x,y)

µn((Xn×Xn)\∆n)
, if (x, y) < ∆n;

0, otherwise.

It is clear that νn is a symmetric probability measure such that νn(x, y) = 0 if
dn(x, y) ≤ rn. Furthermore, for any measure space (Z, ν) and any map fn : Xn →
Lp(Z, ν) satisfying ‖ fn(x) − fn(y)‖p ≤ ρ+(dn(x, y)), the composition fn ◦ in : Vn → H
satisfies that ‖ fn ◦ in(x)− fn ◦ in(y)‖p ≤ ρ+(Rdn(x, y)). Hence from Lemma 4.7, there
exists a constant κ > 0 depending only on K, s, c, p,R, ρ+ such that:

∑

x,y∈Xn

‖ fn(x) − fn(y)‖ppνn(x, y) ≤ 8
∑

x,y∈Xn

‖ fn(x) − fn(y)‖ppµn(x, y)

= 8
∑

x,y∈Yn

‖ fn(x) − fn(y)‖ppmn(x)mn(y)

= 8
∑

u,v∈Vn

‖ fn ◦ in(u) − fn ◦ in(v)‖ppm′n(u)m′n(v)

≤ 8κm′n(Vn) = 8κmn(Yn) ≤ 8κ.

This concludes the proof. �

Since measured expanders are measured asymptotic expanders, we obtain an
immediate corollary:

Corollary 4.8. Let {(Vn,En,mn)}n∈N be a sequence of ghostly measured expanders with
uniformly bounded valency. Then {(Vn, dn,mn)}n∈N is a sequence of Lp-generalised ex-
panders for each p ∈ [1,∞) where dn is the edge-path metric on Vn.

Combining with Proposition 4.2, we obtain the following corollary, which re-
covers [10, Corollary 7.2]:

Corollary 4.9. Let {(Xn, dn,mn)}n∈N be a sequence of ghostly measured asymptotic ex-
panders with uniformly bounded geometry. Then the coarse disjoint union of {(Xn, dn)}
does not coarsely embed into any Lp-space for p ∈ [1,∞).

5. Examples

In this final section, we present some examples to explore the relation between
classical expanders and the measured ones.

Recall that for a residually finite group with Kazhdan’s property (T), its box
spaces form sequences of expanders. This is the type of the first known explicit
constructions of expanders due to Margulis [13]. However, the following results
show that on such expanders, one can always choose ghostly measures such that
the associated measured graphs do not form a sequence of measured expanders.

The following Proposition was pointed out to us by Gábor Elek:
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Proposition 5.1. Let G be a residually finite group and G = N0 ⊲ N1 ⊲ N2 ⊲ . . . be
a sequence of finite index normal subgroups with trivial intersection. Then for any
n ∈N there exists a probability measure mn on G/Nn (without full support) such that the
sequence {(G/Nn,mn)}n is ghostly but not a sequence of measured expanders.

Proof. This follows from [7]: the authors there show that heat kernels — convo-
lution powers of the probability measure describing a simple random walk —
on infinite, connected, bounded degree graphs are not (measured) expanders.
Hence there is a sequence of finitely supported probability measures {mn}n∈N on
G as above, which is ghostly and non-expanding in measure. For each such
measure mn on G there exists kn ≥ 0 such that for all k ≥ kn, the quotient map
G→ G/Nk is injective on 1-neighbourhood of supp(mn). Thus we can inductively
find a subsequence of the subgroups (Nln)n∈N, such that we can endow G/Nln with
the (injective) push-forward of the measure mn. By construction, the resulting se-
quence will be ghostly, but will not form a sequence of measured expanders. �

However, one can always perturb a sequence as in the above Proposition into
a sequence where the measures are full measures:

Proposition 5.2. Let {(Vn,En, µn)}n∈N be a sequence of ghostly measured graphs, which is
not a sequence of measured expanders, and such that the probability measures µn, n ∈N,
do not have full support. Then there exists a sequence of ghostly probability measures
{µ′n}n∈N on {(Vn,En)}n∈N with full support, such that {(Vn,En, µ′n)}n∈N is not a sequence
of measured expanders.

Proof. After taking a subsequence if necessary, we can find An ⊆ Vn with 0 <

µn(An) ≤ 1
2

such that
µn(∂An)

µn(An)
tends to 0 as n → ∞. We construct a new measure µ′n

on Vn as follows:

µ′n({x}) =



















(1 − µn(An)

n
)µn({x}), if x ∈ supp(µn);

µn(An)

n
· 1
|(G/Nln )\supp(µn)| , if x ∈ Vn \ supp(µn).

Since 0 < µn(An) ≤ 1
2
, it is clear that µ′n has full support and the sequence {(Vn, µ′n)}n

is ghostly. Finally, we observe:

µ′n(∂An)

µ′n(An)
≤
µn(∂An) +

µn(An)

n

(1 − µn(An)

n
)µn(An)

≤
2µn(∂An)

µn(An)
+

1

n − µn(An)
→ 0

as n→∞. Hence we obtain that {(Vn, µ′n)}n does not form a sequence of measured
expanders, which concludes the proof. �

As a direct corollary (by taking the group G to have property (T) in Proposition
5.1), we obtain the following:

Corollary 5.3. There exist a sequence of expanders {(Vn,En)}n∈N and measures mn on Vn

with full support such that {(Vn,En,mn)}n∈N is ghostly but does not form a sequence of
measured expanders.

Proposition 5.1 shows that property (T) cannot ensure that box spaces with
arbitrary chosen measure form sequences of measured expanders. Hence it is
natural to ask:
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Question 5.4. Can we define a notion of measured property (T) for groups to en-
sure that box spaces with any ghostly measures form sequences of measured
expanders?

On the other hand, recall that there is a weaker condition for groups called
property (τ) introduced in [12] which also ensures that quotients by a fixed se-
quence of finite index normal subgroups with trivial intersection form a sequence
of expanders. Hence one may also explore a measured version of property (τ) to
construct explicit examples of measured expanders.

The next example concerns a permanence property of measured expanders.
First note the following elementary observation, whose proof is straightforward,
hence omitted.

Lemma 5.5. Let {(Vn,En,mn)}n be a sequence of finite probability measured graphs, and
m′n be another sequence of probability measures on Vn. Assume that there exists a constant
s ≥ 1 such that for each n ∈ N and x ∈ Vn, we have 1

s
mn(x) ≤ m′n(x) ≤ smn(x). Then

{(Vn,En,mn)}n is a sequence of measured expanders if and only if {(Vn,En,m′n)}n is a
sequence of measured expanders.

However, without the assumption on measure ratio, such a conclusion is false.
The following result was communicated to us by Gábor Elek. Note that the
notion of Cheeger constant can be defined for an arbitrary (not necessarily finite)
measured graph (V,E,m) in exactly the same way as (2.1) provided that m(V) < ∞.

Lemma 5.6. Let G = (V,E, µ) be a measured graph with µ(V) = 1 and Cheeger constant
c = ch(V,E, µ) > 0. Let G∞ = (V∞,E∞) = G ×N0 be the Cartesian product of graphs,
where we consider N0 to be a graph with edges between consecutive numbers. Endow
G∞ with the measure µ∞, defined by declaring that µ∞|V×{i} = 2−iµ for i ∈ N0. Then the
Cheeger constant of G∞ = (V∞,E∞, µ∞) is at least min( c

18
, 1

8
).

Proof. Consider a non-empty subset A ⊂ V∞ with µ∞(A) ≤ 1 = µ∞(V∞)/2. For
i ∈ N0, denote Gi = G × {i}, Vi = V × {i}, Ai = A ∩ Vi, A[i,∞) = ⊔∞j=i

A j and

µi := µ∞|V×{i}.
If µi(Ai) ≤ µi(Vi)/2 for all i ∈ N0, then, just using the expansion assumption in

each Gi (which is a scaled copy of G) separately, we obtain µ∞(∂A) ≥ cµ∞(A).

If the above is not the case, then let k ∈ N0 be the smallest number for which
µk(Ak) > µk(Vk)/2. Observe that the slices of A after index k can’t be too big:

µ∞
(

A[k+1,∞)

)

≤ µ∞
(

V[k+1,∞)

)

=
∑∞

i=k+1
2−i = 2−k = µk(Vk) ≤ 2µk(Ak).

Case 1: k > 0 and µk−1(Ak−1) < µk−1(Vk−1)/4. Thus also µk−1(Ak−1) < µk(Vk)/2 <
µk(Ak), and hence

µ∞
(

A[k−1,∞)

)

= µk−1(Ak−1) + µk(Ak) + µ∞
(

A[k+1,∞)

)

≤ 4µk(Ak).

In this case we examine the boundary of A within the slice Gk−1. It contains at
least “a copy” of Ak (in Gk−1), but if they lie within Ak−1, they are not boundary
points. Hence we obtain:

µ∞(∂(A[k−1,∞)) ∩ Vk−1) ≥ 2µk(Ak) − µk−1(Ak−1) > µk(Ak).
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We split A =
(

⊔k−2
i=0

Ai

)

⊔ A[k−1,∞). The first part (if not empty) expands at least by

a factor of c (in each slice separately). For the other part, combining the above
inequalities, we obtain

µ∞
(

∂(A[k−1,∞)) ∩ V[k−1,∞)

)

≥ µk(Ak) ≥ µ∞
(

A[k−1,∞)

)

/4.

Hence this part expands at least by a factor of 1
4
, which finishes Case 1.

Case 2: k > 0 and µk−1(Ak−1) ≥ µk−1(Vk−1)/4. Here we can simply include

Ak into the tail since µ∞
(

A[k,∞)

)

≤ 2−k+1 = µk−1(Vk−1) ≤ 4µk−1(Ak−1), and thus

µ∞
(

A[k−1,∞)

)

≤ 5µk−1(Ak−1). Decomposing A as in Case 1, the first part again

expands at least by a factor of c in each slice; and for the second part we estimate

µ∞
(

∂(A[k−1,∞)) ∩ V[k−1,∞)

)

≥ µk−1 (∂(Ak−1) ∩ Vk−1) ≥ cµk−1 (Ak−1)

≥ c

5
µ∞
(

A[k−1,∞)

)

.

This finishes Case 2.

Case 3: k = 0 and µ0(A0) ≥ 3
4
. Consequently µ1(A1) ≤ µ∞

(

A[1,∞)

)

≤ 1
4
≤ µ0(A0)/3,

and µ∞(A) ≤ 1 ≤ 4
3
µ0(A0). Thus using just the G1-part of the boundary of A, we

have

µ∞(∂(A)) ≥ µ1(∂(A) ∩V1) ≥ µ0(A0)/2 − µ1(A1) ≥ µ0(A0)/6 ≥ µ∞(A)/8.

Case 4: k = 0 and µ0(A0) < 3
4
. Using [10, Lemma 4.12] and [11, Lemma 6.3] we

have that µ0(∂(A0) ∩ V0) ≥ c
6
µ0(A0). Recall from the beginning of the proof that

µ∞
(

A[1,∞)

)

≤ 2µ0(A0). Hence combining them together, we obtain

µ∞(∂(A)) ≥ µ0(∂(A0) ∩ V0) ≥ c
6
µ0(A0) ≥ c

18
µ∞(A).

This finishes Case 4, and the whole proof. �

Example 5.7. Let {Hn = (Vn,En,mn)}n∈N be a sequence of (classical) expanders,
endowed with the normalised counting measures. For every n ∈ N define Kn =

Hn × {0, 1, 2, . . . , n} where we consider {0, 1, 2, . . . , n} as a subgraph in N0. By
a standard argument, {Kn}n∈N is not a classical expander sequence (when no
measures are considered). However, we can endow each Kn with the restriction
of the measure (mn)∞ described in Lemma 5.6. Using the conclusion of the Lemma
and an approximation argument, {Kn}n∈N is a sequence of measured expanders.

In conclusion, we obtain the following:

Proposition 5.8. There exists a sequence of ghostly measured expanders {(Vn,En,mn)}n∈N
with uniformly bounded valency such that the underlying graphs {(Vn,En)}n∈N are not
expanders.
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