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Conventional enhanced biological phosphorus removal is based on anaerobic phosphorus
release and aerobic phosphorus uptake, which requires more energy supply and sludge
production. Thus, there are growing concerns about effective phosphorus removal from

wastewater with lower energy requirement.

The aim of this study was to achieve enriched sludge of denitrifying phosphorus
accumulating organisms with anaerobic/anoxic conditions, especially with NO>-N, and
explore the possibility of anoxic EBPR process with NO>-N as the sole electron acceptor

in anaerobic/anoxic process.

This study included an extensive literature review, laboratory works involving continuous
operation of biological reactors and sample analysis for data collection, data analysis and

process simulation for practical phosphorus removal, to address the research questions.

The results suggested that long-period continuous NO;-N dosing in anoxic phase could
induce faster enrichment of denitrifying phosphorus accumulating organisms and more
efficient phosphorus removal than NOs-N at ambient temperature, without toxic
inhibition of nitrite. The ratio of NO3-N to NO,-N was accorded to the amount of electron
transfer of them, to remove the same amount of phosphorus. Dechloromonas is the
functional microbial group in anoxic phosphorus uptake in both NO>-N and NOs™-N based

anaerobic/anoxic systems.

It was concluded that the complete phosphorus removal could be achieved with NO,-N
as the sole electron acceptor in anaerobic/anoxic reactors, with enriched denitrifying

phosphorus accumulating organisms.
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Chapter 1 Introduction

Wastewater treatment processes have been considered as one of the most important
industries all over the world, due to the increasing public awareness of environmental
protection and public health. Conventional municipal wastewater treatment works
(WWTWSs) mainly consist of primary and secondary treatment processes, although the
more stringent regulations/directives (European Commission, 2019) also set upper limit
on phosphorus and nitrogen removal. Enhanced biological phosphorus removal (EBPR) is
an economic and ecological phosphate-phosphorus (PO;*-P) removal approach, and has
become one of the best-studied process for P treatment. Anoxic phosphorus uptake with
nitrite-nitrogen (NO>-N) as the electron acceptor, replacing oxygen in traditional EBPR
process, can potentially achieve simultaneous PO;*-P and NO,-N removal and reduced

energy consumption and sludge production in the wastewater treatment process.

1.1 Phosphorus and nitrogen in wastewater

Eutrophication has been recognised as one of the most common and serious
environmental problem which should be reduced urgently. As the description of Ansari
et al. (2011), eutrophication is “the enrichment of water by nutrients especially
compounds of nitrogen (N) and phosphorus (P), causing an accelerated growth of algae
and higher forms of plant life to produce an undesirable disturbance to the balance of
organisms and the quality of the water concerned”. Hence, nitrogen and phosphorus have
been recognised as the two main nutrients that cause eutrophication of water bodies for
decades of years (National Academy of Sciences, 1969). As essential elements for all kinds
of life forms, the enrichment of nitrogen and phosphorus can lead to the excessive of
production of algae and cyanobacteria, the following loss of aquatic animals and the
deterioration of aquatic environments (Correll, 1998). As the basic element in DNA, RNA
and ATP, phosphorus provides the important condition for algal blooms. Although
eutrophication is mostly considered as the synthetical result of nutrients, based on the
statement of Conley et al. (2009), P is the primary limiting nutrient causing the
eutrophication in lakes, while N is the key influencing element for coastal area and
estuaries. Hence, P suffusion is the main reason for the algal bloom and eutrophication

in fresh waters.



Chapter 1

As the main phosphorus and nitrogen pollutant sources, point sources (municipal and
industrial effluents) and nonpoint sources (e.g. runoff from pastures, croplands and
agriculture) are investigated to deal with, in order to find out any methods in the control
of pollutants. In case of phosphorus pollutant, for instance, in the statistics of
Environmental agency (EA, 2012), wastewater discharge from sewage treatment plants
and agricultural land are the two primary sources in the UK, which separately contribute
60%-80% and 20%-30% of phosphorus in rivers. Hence, it is of importance to reduce the
phosphorus contents from sewage effluent to decrease total P level in natural aquatic
environments. Nutrients in municipal wastewater are mainly from the discharge of
human waste, food, as nitrogen and phosphorus are essential elements for the cells
synthesis, consisting protein, ATP, bone, DNA and RNA, etc. In addition, some certain
soaps and detergents are also sources which contain phosphorus, discharged into the
sewage in the daily life of human beings and some commercial activities. As a result,
municipal wastewater consists of a mixture of domestic sewage from households and a

proportion of industrial and commercial effluents (Pescod, 1992).

In order to reduce the P release in effluents and obtain the higher quality of natural
aquatic environment, stricter discharge standards and requirements are developing in the
recent years. In the urban waste water treatment directive (UWWTD) for Europe, lower
total phosphorus (TP) concentrations in wastewater discharges were required (European

Commission, 2019), with 2 mg L (10000-100000 p. e.) and 1 mg L™ (>100000 p. e.)

Since phosphorus is considered as a kind of important mineral element, it is significant to
manage the footprint of phosphorus, in order to close the cycle of phosphorus, reduce
waste production from phosphorus removal and save the resources. As nitrogen and
phosphorus are important industrial and agricultural resources, the recovery is one of the
useful methods to reduce the nutrient discharge and enhance the development of
relevant economic aspects. Firstly, ammonia and phosphate are essential materials used
in fertiliser, which are widely used in agriculture and horticulture. Secondly, ammonia and
phosphate are both necessary materials in industries including pharmacy, chemical
engineering, food industry, energy industry and so on. Due to the function of nitrogen
and phosphorus in agriculture and industry and the environmental issue caused by their
discharge, it is of importance to enhance sustainable development with both stable
economic growth and less contaminant discharge. As a result, the recovery of nutrients,
especially phosphate, can reduce the requirement of phosphorite mining to save the

phosphorus resource on the earth.
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1.2 Phosphorus and nitrogen removal processes

In the removal of phosphorus from wastewater, chemical and biological methods are
normally considered. Nowadays, chemical precipitation is still the main treatment
method in WWTWs, primarily with iron or aluminium, while EBPR process is also utilised
in other treatment works (Sedlak, 1991; Tran et al., 2012; Attour et al., 2014). To achieve
a higher effluent quality standard and avoid the pollutants from metal dosing, biological
removal methods are being increasingly considered to utilise in treatment plants. On the
contrary, chemical methods are not the most desirable selections, due to their lower cost-

efficiency or inadaptability to domestic wastewater.

In addition, the recovery of phosphorus in wastewater industry is an important part of
the entire phosphorus cycle and reuse. Struvite as fertiliser, for instance, has been
employed to recycle phosphorus from wastewater treatment plants (Britton et al., 2009).
In addition, other phosphorus removal methods, such as EBPR process by phosphorus
accumulating organisms (PAOs), should be considered sufficiently, as an important part

of the removal process.

In the aspect of nitrogen removal, biological nutrient removal (BNR) process is the main
approach, with nitrification and denitrification based on the activities of microbials
(Wiesman., 1994; Zhu et al., 2008). The process consists of the oxidisation of NH4*-N with
ammonia oxidising bacteria (AOB), oxidisation of NO>-N with nitrite oxidising bacteria
(NOB) in aerobic phase and denitrification from NOs™-N to nitrogen gas in anoxic phase.
In order to optimise ammonia removal, partial nitrification via nitrite is developed to save
25% oxygen demand and 60% energy consumption in aerobic phase (Peng and Zhu, 2006).
Partial nitrification is a key procedure for some novel ammonia removal process, such as
short-cut nitrification and denitrification, completely autotrophic N removal over nitrite
(Canon), oxygen-limited autotrophic nitrification-denitrification (Oland) and anaerobic

ammonia oxidation (Anammox, Verstraete and Philips, 1998).

Normally, the aerobic process, especially in conventional BNR processes, is conducted to
accomplish nitrification and aerobic phosphate uptake, which has been widely used in
conventional wastewater treatment process. With the development of treatment
technology, more energy-efficient treatment processes with the combination of
biological P and N removal is considered. These processes can develop low oxygen and
energy cost ammonia removal perspective, while it is necessary to conduct extra-

integrated phosphorus removal fraction in these process, in order to achieve
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simultaneously N and P removal. For instance, Zeng et al. (2014) combined nitritation
denitritation, anammox and denitrifying phosphorus removal in the treatment carbon-
limited municipal wastewater, and achieved a stable phosphorus removal rate of 85%-

90%.

Denitrifying phosphorus uptake combined with nitrification or partial nitrification via NOx
-N (namely NOs  and/or NOy) can achieve nitrogen and phosphorus simultaneously, with
low oxygen and energy consumption. Meanwhile, low organic carbon in municipal
wastewater cannot limit the efficiency due to the only organic material requirement of
denitrifying phosphorus accumulating organisms (DPAOs), by washing out other
heterotrophic denitrifying microorganisms. In addition, the amount of excess sludge can
also be reduced in this system, without the existence of non-phosphorus uptake

denitrifying bacteria.

Specifically, A;N two-sludge system is one of the P and N treatment approaches which
effectively combined the advantages of partial nitrification and anoxic EBPR. Firstly, the
carbon consumption in anoxic P uptake is lower than aerobic P uptake. Compared with
traditional treatment process where significant amount of PHB is oxidised by PAOs in
aerobic period, inducing lower organic carbon used for denitrification (Kerrn-Jespersen
et al., 1994; Kuba et al., 1996b), two-sludge system which separate PAOs and nitrifying

bacteria, can enhance the COD usage only for P release to decrease the carbon demand.

Secondly, the oxygen demand used in the two-sludge system via nitrite can be reduced,
since the oxygen is provided only for partial nitrification. Due to continuous aerobic phase
for P uptake is avoided, aeration and energy demands for this progress are completely
saved. In case of post aeration, it was used most of A, systems to improve the P removal
rate, reduce the potential public health hazard and enhance the sludge settlement ability
in most of the studies (Lv et al., 2014; Dai et al., 2017b). However, it will save more energy
if post aeration is cancelled without any obvious hazard impacts. Thus, it is of importance
to prove the P uptake ability of A, systems without post aeration. In addition, as discussed
in above, the application of partial nitrification in ammonia oxidisation can save around
25% oxygen and 60% energy consumption. Two-sludge system, as a result, can effectively

decrease the energy demand for aeration in the treatment process.

Thirdly, sludge production in the combination of partial nitrification and denitrifying
phosphorus uptake can be reduced by washing out the non-functional microbial groups.

The stable operation of partial nitrification can effectively wash out nitrate oxidising
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bacteria (NOB, Peng and Zhu, 2006; Guo et al., 2009a), achieving lower sludge discharge
(Tokutomi, 2004; van Kempen et al., 2001). Furthermore, denitrification P uptake was
frequently reported in the previous studies (Kuba et al., 1996b; Dai et al., 2017b) for less

sludge production.

The utilisation of nitrite in anoxic phosphorus uptake was discussed in some previous
studies, where the feasibility of NO,-N for PO,>-P uptake, while the controversial point
was the threshold value of nitrogen concentration in the anoxic phase (Meinhold et al.,

1999; Lee et al., 2001; Hu et al., 2003; Wang et al., 2007; Tang et al., 2012).

Hence, there are still limits restraining the potential of NO,-N based phosphorus removal
in anoxic phase, including the toxicity of nitrite on microorganisms and relatively longer
enrichment period of DPAOs. Due to the controversy and potential, it is significant to
explore the feasibility of denitrifying phosphorus uptake (DPU) via NO;-N and its
potential operation mode, investigate the factors influencing the treatment efficiencies
of this process from the enrichment method of DPAOs to steady and effective operation,
and analyse its practical value in municipal wastewater treatment. Temperature is an
important factor influencing the performance of EBPR and the competition between
PAOs and GAOs, while NO,-N based EBPR has not been comprehensively investigated at
high temperature to explore the operation performance of the A, systems and the change

of microbial communities.

In summary, if the combination of denitrifying phosphorus removal and partial
nitrification can be conducted in practical, with NO,-N as the sole electron acceptor, the
energy cost and sludge production will be significantly reduced. Even though the ratio of
phosphorus to nitrogen in domestic wastewater is not constant, utilising NO,-N to achieve

anoxic phosphorus uptake to the utmost is also important.
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Chapter 2 Literature review

As an important part of the whole phosphorus cycle, phosphorus removal from
wastewater is playing a necessary role after the discharge of sewage and industrial
effluent, prior to the reuse of phosphorus products (Morse et al., 1998; Filippelli, 2008;
Elser and Bennett, 2011). Hence, nutrient treatment of wastewater has been increasingly
valuable in the current years. As another important nutrient element, nitrogen is

normally considered and disposed with the removal of phosphorus at the same time.

Municipal wastewater is considered as one of the most important P and N pollution
sources, which should be comprehensively treated to reduce the concentrations of P and
N in discharge. In the development of wastewater treatment process, physical, chemical
and biological methods for phosphorus and nitrogen are researched and utilised for
wastewater treatment. In this review, some typical treatment processes in these method
will be discussed, in which biological methods, as the most related method about this

project, will be specifically evaluated.

For the biological treatment methods, the main nitrogen removal process will be
discussed to declare the relationship between nitrogen and phosphorus removal. More
importantly, as the core content of this study, DPU will be comprehensively reviewed,
including current research about the biochemical principle of DPU, factors influencing
DPU, the relationship between PAOs (DPAOs) and glycogen accumulating organisms
(GAOs or DGAOs), and the enrichment of DPAOs. In addition, because of the important
relativity to DPU, partial nitrification (involving the principle and main factors) and A;N
two-sludge with anaerobic - (partial) nitrification - anoxic phases (from the first finding to

the later development) will be reviewed.

2.1 Physical/chemical removal of nitrogen and phosphorus

As discussed above, physical and chemical treatments are the important methods used
in WWTWs to removal the nutrients and improve the quality of discharge. Even though

biological treatment process of nitrogen and phosphorus is the most frequent method in
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wastewater treatment process, physical and chemical approaches are still developed to

adapt different treatment conditions and discharge requirements.

In some certain situations, non-biological processes of nitrogen removal, which are based
on the physical or chemical properties of ammonia, may be technically and economically
feasible. Some common process for nitrogen removal are breakpoint chlorination, air

stripping and selective ion exchange (Atkins and Scherger, 2013).

Breakpoint chlorination, which has been utilised in practical wastewater treatment
industry to achieve an additional ammonia removal, can effectively remove dissolved
NHs*-N (Pressley et al., 1972). The method is based on ammonia oxidisation by the
addition of chlorine into wastewater, inducing ammonia oxidisation to nitrogen gas: 1)
NH,Cl is formed from the chlorination of NHs*; 2) NH,Cl is oxidised by HCIO to N..
Nonetheless, the extra HCIO produced in this process should be removed by
dechlorination with SO, or activated carbon. The main limitation of chlorination is the
formation of toxic disinfections (Wang et al., 2007). To optimise the chlorination process,
the control of undesirable by-products is necessary and important. Hence, extra

treatment process should be applied to remedy the inadequacy (Zhang et al., 2015).

Desorption or stripping can transfer a dissolved component from a liquid to a gas phase.
In the case of ammonia, it has two forms (ammonium and free ammonia) in water stream,
which can convert to each other in the solutions. Hence, air stripping consists of raising
the pH of the wastewater to more than 10 or 11 to increase NH3/NH,* ratio, and providing
sufficient air to strop the ammonia gas from wastewater. Additionally, depending on the
different conditions and requirements, some other kinds of gas can also be employed in
the ammonia stripping removal, and the ammonia stripped with this method can be
recovered and utilised for some other materials (Yuan et al., 2016). Nonetheless, the
efficiency of ammonia removal by stripping is sharply influenced by temperature, and
the stripping towers applied are easily affected by scaling. In addition, the process is
widely used to remove high strength of ammonia, such as swine manure wastewater,
landfill leachate, food waste etc (Liao et al., 1995; Kabdasli et al., 2000; Serna-Maza et
al., 2014).

lon exchange can be achieved by passing the wastewater through an ion-exchanger bed,
which presents high selectivity for ammonium ion over other cations that are commonly
contained in wastewater (Sedlak, 1991). Natural zeolite and its analogues are frequently

used for this method, due to the highly porous alumina-silicates with the three
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dimensional framework and negatively charged lattice structure. The factors influencing
the NH4*-N exchange include the homoionic form and grain size of zeolite, HRT, initial
concentration of nitrogen, competition from other cations, pH, temperature and the
scaling up of the ion exchange system (Hedstrom 2011; Gupta et al., 2015). In recent
years, some other kinds of ion exchanger such as mesolite, have also been reported in
the use of ammonium with their effective adsorption performance and separation from
wastewater (Thornton et al., 2007). As ion exchange is mainly used to optimise nitrogen
efficiency in municipal wastewater treatment process, it is usually applied with the
combination of other chemical or biological processes. Consequently, the application of

ion exchange is normally complex, which require additional operation and management.

Chemical phosphorus removal from wastewater normally consists of the incorporation
of phosphate into suspend solids (particulate form) and the removal of the formed
suspend solids. Calcium, iron and aluminium are commonly used as precipitants for
phosphorus removal, with the forms of Cas3(PO4);, Cas(OH)(PO4);, CaHPO4, FePO.,
Fe3(POa4), Fex(OH)y(PO4);, AIPOs and Al(OH),(PO4), respectively. In these reaction
processes, pH value is an important factor influencing the removal efficiency. In the
previous studies, as reported by Sedlak (1991), pH values of higher than 10 are normally
employed for precipitation with lime, while relative moderate pH values of lower than
7.5 are more suitable for iron salts and aluminium salts to precipitate phosphorus. Except
of conventional chemical precipitation, electrocoagulation using a sacrificial anode
electrode (iron or aluminium) can also be employed for phosphate removal, and increase
the efficiency of chemical precipitation of phosphorus (Tran et al., 2012). Attour et al.
(2014) investigated the parameters influencing on phosphate removal by
electrocoagulation with aluminium electrodes, and suggested that the efficiency of this
method especially depended on the electrical intensity, pH and temperature. The
combination of Fe based precipitation and adsorption was also reported in the recent
years (Wilfert et al., 2015), which indicated that a kind of iron-based particle could
achieve a relatively high phosphorus adsorption capacity of 245 mg P g*. The limitations
of chemical method include: a. The additional chemical dosing, which induce further
metal pollutants if the dosing intensity is not controlled appropriately; b. pH adjustment,
which needs extra metal (Na* or K*) addition and more complicated operation and
control; and c. The disposal of precipitation, which is a problem related to environmental

protection and economical management (Bunce et al., 2018).
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Anion exchange can be employed in phosphate removal and recovery (Nur et al., 2014),
in which the recovery rate of phosphate can achieve higher than 99.5% with the iron
oxide anion exchange resin and precipitation by calcium chloride. In the recent years,
sorption is increasingly popular in phosphate removal and recovery from wastewater
with iron oxide- or CaMg-based sorbents. For instance, Ashekuzzaman & Jiang (2014)
explored the performance of Ca-, Mg- and CaMg-based sorption for PO,*-P removal, and
found that the material could remove >90% of PO4>-P from 3.4-10.4 mg L phosphorus
containing wastewater. Lalley et al. (2016) compared modified and unmodified iron oxide
sorbents to treat PO,>-P in lake water directly, and found that the modified sorbents with
silver had higher adsorption capacity (38.8 mg g!) than unmodified sorbents (37.7 mg g
1). Membrane technologies can also be utilised for the treatment nitrogen and
phosphorus in wastewater. Qiu and Ting (2014) investigated the performance of an
osmotic membrane bioreactor (OMBR) to enrich phosphorus, and then recover the
phosphorus supernatant within the reactor. Chon et al. (2013) combined different sorts
of membrane methods including disk filtration, ultrafiltration and reverse osmosis to
remove ammonia in municipal wastewater, and achieved a relatively high removal
efficiency. However, ion exchange and membrane approaches are generally considered
as improving treatment methods, which require higher investment to achieve optimised
efficiency, inducing that they may not appropriate for small-scale and rural treatment
plants.

Struvite or magnesium ammonium phosphate (MAP, MgNH,P0O,4-6H,0) precipitation can
be used to achieve ammonia and phosphate recovery and produce an attractive fertiliser
in some area of nutrient removal process (Le Corre et al., 2009 and Ye et al., 2014). In
order to achieve sufficient struvite formation, suitable pH (7.6) and appropriate
magnesium dosing (Jaffer et al., 2002) should be selected in the process. However, a large
amount of chemical inputs such as MgCl,, NaOH and brine solutions (Booker et al., 2010)
need to be added into wastewater to achieve the precipitation, which is not cost-
effective enough. In addition, the application of struvite recovery is more appropriate for
the sewage with high-strength pollutants, such as anaerobic digestate, containing high
concentration of phosphorus and nitrogen (up to hundreds mg L'* of P and N ), which has

higher commercial value to recover.

10
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2.2 Biological nitrogen removal

2.2.1 Conventional biological nitrogen removal

Biological treatment of nitrogen is obtained by the conversion from ammonia to nitrogen
gas with the biochemical activities of microorganisms. The conventional biological
oxidation of ammonia is achieved with two species of autotrophic microorganisms,
which involve Nitrosomonas and Nitrobacter, via the reaction with oxygen, and

accomplished in two steps which are:

Nitrosomonas
2NHf + 30, —— > 2NO; + 2H,0 + 4H™ (2-1)
Nitrobacter
2NOy; + 0, ———— 2NO3 (2-2)

Denitrification process is carried out by a variety of heterotrophic bacteria which utilise
nitrate instead of oxygen as the electron acceptor under anoxic conditions. The
stoichiometric reaction of denitrification depends on organic matter (methanol, for

example), which can be expressed by the below equation (Zhu et al., 2008):

6NO3 + 5CH;0H — 3N, + 5C0, + 7H,0 + 60H~ (2-3)

In nitrogen removal process of wastewater, nitrification and denitrification can be
accomplished separate stage system (two sludge), single-sludge system with mixed

liquor cycle or oxidation ditch or channel in which they occur sequentially.

However, the conventional biological nitrogen removal process has several limitations in
practical treatment process, including the separation of spaces or time sequences, long
retention time or large volume, higher DO requirement and organic carbon, and higher
operation costs (Zhu et al., 2008). Hence, the substitute has been explored and designed
to develop the biological nitrogen removal method, i.e. simultaneous nitrification and
denitrification (SND), short-cut (or partial) nitrification and denitrification and anaerobic

ammonium oxidation (ANAMMOX).

Among these approaches, partial nitrification and denitrification process, which utilises
NO>-N as intermediate product to instead of NOs-N, has the advantages involving 25%
lower oxygen consumption and 60% energy saving, 40% lower requirement for electron
donors and 1.5-2 times denitrification rate of NOs™-N (Turk and Mavinic, 1989; Peng et

al., 2005; Peng and Zhu, 2006). Hence, it has been widely studied in the combination

11
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with the other novel nitrogen removal process (Yoo et al., 1999; Kartal et al., 2007; Ma

etal., 2016).

Since the above processes are mostly utilised in the removal of nitrogen, but very limited
phosphorus removal can be achieved, effective and space-saving treatment of both
nitrogen and phosphorus is needed in WWTWs, and it is of importance to combine the
removal process of them, in order to remove the nutrie