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The study of decision making under uncertainty is important in many areas (e.g. portfolio

theory, control theory and utility theory). The exogenous and endogenous uncertainties, such

as variations in stock prices, changes in consumer demand and ambiguity about investor’s

risk attitude, are beyond deciders’ control and knowledge and significantly influence the ef-

fectiveness of any decision. In this thesis, we concentrate on this issue and propose some

efficient models to deal with the uncertainties. Specifically, (a) we introduce a utility-based

reward-risk ratio (URR) optimization model and consider a situation where an investor does

not have complete information on the probability distribution of the underlying random vari-

ables, and we propose a distributionally robust URR optimization model to mitigate the risk

arising from ambiguity of the true probability distribution; (b) we introduce a multivariate

utility-based shortfall risk measure (MSR) and focus on a case that a decision maker’s true

loss function in the definition of MSR is unknown but it is possible to elicit a set of plausi-

ble loss functions with partial information, and consequently propose a robust formulation

of MSR based on the worst case loss function; (c) we investigate an issue that whether a

statistical estimator such as the optimal value of a preference robust optimization model

based on empirical data is reliable when the empirical data contain some noise, and we derive

moderate sufficient conditions under which the optimal value of the model is robust against

perturbation of the exogenous uncertainty data.
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Chapter 1

Introduction

Optimal decision making problems naturally arise in many fields of engineering and

management science. In investment and risk management, for example, a decision

maker aims to find the optimal allocation of resources among available assets that would

meet the expected return and risk preference. However, there are many underlying

exogenous and endogenous uncertainties involved in the decision making. For instance,

an investor need to select a portfolio to maximize gain with uncertain future stock price,

a manager need to decide an inventory level to maximize profit when future demand

is unknown, and there is an ambiguity about the decision maker’s risk preference.

Thus the desired outcome will be affected by these factors outside the decision maker’s

control and knowledge at the time of decision. In this thesis, we will investigate these

issues and propose some efficient models to deal with the uncertainties. The following

sections give a brief introduction of the motivations and contributions of this thesis

and also give a plan for subsequent chapters.

1.1 Distributionally Robust Optimization

The primary objective of portfolio management is to allocate monetary resources among

available assets so as to achieve the highest possible return while controlling the fund’s

risk exposure. Reward-risk ratio optimization is an important mathematical approach

in portfolio management. In previous researches, the reward-risk ratio optimization

problem has been studied based on various risk measures. One of the most referenced

reward/risk measures used in finance is the Sharpe ratio [76, 77], which is based on

mean-variance analysis.

In general, a decision maker’s risk preference is important in reward-risk analysis. A

decision maker often needs to identify the utility function that characterizes his/her at-

1



2 Chapter 1 Introduction

titude toward risk when making decisions. Thus in Chapter 2, we propose a new reward-

risk ratio associated with personal preference which is called utility-based reward-risk

ratio (URR). We apply the URR to an optimal decision making problem where the

objective is to maximize the ratio.

An accurate prediction of the distribution of asset returns is an essential factor in

determining whether the reward-risk ratio can be precisely evaluated. However, in

practice, a decision maker does not have complete information on the distribution of

the underlying exogenous uncertainty. To deal with this difficulty, the research on

worst-case analysis of the portfolio selection problem has increased over the past few

years.

In Chapter 2, we consider a robust scheme for the URR optimization model to mitigate

the risk arising from ambiguity of the true distribution. We propose a distribution-

ally robust utility-based reward-risk ratio (DRURR) optimization model where the

ambiguity set of probability distributions is constructed through prior moment infor-

mation. We reformulate the DRURR optimization model as a mathematical program

with robust inequality constraints and further transform it into a nonlinear semi-infinite

programming problem through the Lagrange dualization. We then apply the entropic

approximation scheme to deal with the semi-infinite constraints and stability analy-

sis is presented for the approximation scheme, and consequently propose a numerical

scheme to solve the approximated optimization problem.

To see how the proposed framework of modelling works, we investigate a specific case

that the ambiguity set is determined by the mean and covariance. we consider box

constraints for the mean and covariance, which restricts each component of the two

quantities to an interval with finite lower and upper bound. We analyse the likelihood

of the true distribution to lie in the ambiguity set and the convergence of the optimal

value and the optimal solutions obtained on the basis of the ambiguity set. Finally,

we apply the DRURR optimization model to a portfolio selection problem and report

some numerical test results.

1.2 Preference Robust Optimization

The DRURR optimization model investigated in Chapter 2 is under the assumption

that a decision maker’s true utility function is known. In many practical applications,

however, the true utility function is unavailable because there may not be enough

information to specify it or a group of decision makers have difficulty agreeing on

which utility function to use. Thus in Chapter 3, we will focus on this issue in the

context of the utility-based shortfall risk measure (SR).
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The SR model introduced by Föllmer and Schied [32] has received increasing attention

over the past few years. For a given loss function (as a risk attitude) and a threshold

value (as a prespecified risk level), the SR of a financial position is the minimal capital

added to the position such that the new position’s risk level is below the prespecified

risk level [47]. Previous research on SR was based on the univariate case, whereas in

natural applications, many financial positions possess multi-attributes, e.g., an insur-

ance company typically has several business lines each of which has a distinct attribute.

This motivates us to consider a multi-attribute SR model.

In Chapter 3, we introduce a multivariate utility-based shortfall risk measure (MSR)

and consider a situation where a decision maker’s true loss function is unknown but it

is possible to elicit a set of plausible loss functions with empirical data or subjective

judgements. Consequently, we define a preference robust multivariate utility-based

shortfall risk measure (PRMSR) through the worst loss function from the set to mitigate

the risk from the ambiguity. We demonstrate that MSR and PRMSR are convex risk

measures and discuss the domains of MSR and PRMSR.

Since a risk measure is often associated with some decision making problems, we apply

the PRMSR to an optimization problem (denoted by PRMSR-Opti) where the objec-

tive is to minimize the PRMSR of a vector-valued cost function. Considering a case

that the underlying probability distribution is continuous, we propose a sample average

approximation scheme and show it converges to the true problem in terms of the opti-

mal value and optimal solutions as the sample size increases. A tractable formulation

is developed for the approximated optimization problem when the ambiguity set of

loss functions is defined with some specified characteristics such as convex increasing,

Lipschitz continuous and pairwise comparisons. Some numerical studies are also given

to examine the performance of the proposed robust model and numerical scheme.

1.3 Statistical Robustness

In preference robust optimization models, e.g., the PRMSR-Opti in Chapter 3, the

true probability distribution is often assumed to be either known or can be recovered

via empirical data which do not contain any noise. However, it is unclear whether

a statistical estimator such as the optimal value of a preference robust optimization

model based on empirical data is reliable when the empirical data contain some noise,

that is, if we let QN denote the empirical distribution based on the data with noise, PN
the empirical distribution based on the data with noise detached and ϑ(·) the optimal

value of a preference robust optimization model, we ask whether ϑ(QN) is close to

ϑ(PN) under some metric when N is sufficiently large. This issue is also known as

statistical robustness which can be traced back to the work of Hampel [41].
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In Chapter 4, we investigate the above issue in the context of PRMSR-Opti model.

We recall some basic notions and results about ψ-weak topology and derive uniform

continuity of ϑ(P ) w.r.t. variation of the true probability distribution P under some

metrics. We investigate the uniform Glivenko-Cantelli property and identify appropri-

ate metrics under which ϑ(PN) uniformly converges to ϑ(P ). We establish statistical

robustness of estimator of ϑ(·), that is, ϑ(QN) is close to ϑ(PN) under the Prokhorov

metric when N is sufficiently large as long as Q (the distribution generates the data

with noise) is close to P .

Unlike Chapter 2, which considers P is unknown but can be approximated with an

ambiguity set of distributions and the optimal decision is based on the worst probability

distribution from the ambiguity set, the statistical robustness in Chapter 4 does not

consider worst probability distribution, rather it concerns with quality of statistical

estimators based on real data. In addition, compared with the convergence analysis in

Chapter 3, the convergence analysis in Chapter 4 focuses on uniform convergence of

ϑ(PN) to ϑ(P ) for all P in a specified set of probability measures rather than the rate

of convergence for a fixed P .

1.4 Notation

Throughout this thesis, we will use the following notations. By convention, we write

aT b for the scalar product of two vectors a, b ∈ Rn, e denotes a vector with all elements

being 1, ‖ · ‖ denotes the Euclidean norm of a vector, ‖ · ‖∞ denotes the infinity

norm of matrix, ‖ · ‖F denotes the Frobenius norm of matrix and (a)+ = max{a, 0}.
We use ‘clA’ to denote the closure of a set A, Diam(A) denotes the diameter of a

set A, d(x,A) := infx′∈A ‖x − x′‖ denotes the distance from a point x to the set

A, D(C,A) := supx∈C d(x,A) denotes the deviation of C from A, and H(C,A) :=

max{D(C,A),D(A,C)} denotes the Hausdorff distance between C and A.



Chapter 2

Distributionally Robust

Utility-Based Reward-Risk Ratio

Optimization

Reward-risk ratio optimization is an important mathematical approach in financial

portfolio management. It helps decision makers allocate limited resource efficiently so

as to maximize their wealth while reduce the fund’s risk exposure. Generally, a deci-

sion maker’s risk preference has a significant influence on his/her investment decision

making, and it is important for a decision maker to find an appropriate reward-risk

ratio which reflects his/her risk attitude. In practice, a decision maker often needs

to identify the utility function that characterizes his/her attitude toward risk when

making decisions. Thus in this chapter, we propose a new reward-risk ratio associat-

ed with personal preference which is called utility-based reward-risk ratio (URR). In

the real world, a decision maker often needs to make decisions with underlying uncer-

tainties (e.g., variations in stock prices and changes in consumer demand), and these

uncertainties will significantly influence the effectiveness of decisions. Hence in this

chapter, we will consider a situation where there is an ambiguity about the probability

distribution of random variable, and use a robust scheme for the URR optimization

model to alleviate the risk arising from it.

5



6 Chapter 2 Distributionally Robust Utility-Based Reward-Risk Ratio Optimization

2.1 Introduction

2.1.1 Literature Review

One of the main issues in financial portfolio management is to develop appropriate

measures for hedging risks arising from various uncertain factors. Since the pioneering

Markowitz work on mean-variance portfolio selection [58], the reward-risk analysis

framework has been widely used in financial portfolio management. Under the reward-

risk analysis framework, the portfolio choice is made according to two criteria: the

expected return and the risk. One portfolio is preferred to another if it has higher

expected return and lower risk.

Related to reward-risk analysis is the reward-risk ratio optimization, which has been

studied based on the various performance measures in the literature, see Stoyanov et

al. [79] for an overview of this topic. One of the most referenced return/risk measures

used in finance is the Sharpe ratio [76, 77], which is based on mean-variance analysis.

The ratio measures the excess return per unit of deviation in an investment asset, and

it characterizes how well the return of an asset compensates the investor for the risk

taken. After the publication of the Sharpe ratio, some new performance measures, like

the STARR ratio, Sortino-Satchell ratio and the Rachev ratio, have been proposed, see

Biglova et al. [14] for an empirical comparison.

In practice, no matter which performance ratio is adopted, whether the ratio can be

accurately evaluated mainly depends on the reliable and exact forecast of the distri-

bution of asset returns. The work of Black and Litterman [16] indicated that when

adopting the mean-variance model, the portfolio decision is very sensitive to the mean,

and a small error in the estimator of this variable can be amplified into a significant

change of the optimal portfolio strategy. It is obvious that the ambiguity in underly-

ing distributions can be observed in situations where data samples are insufficient or

unstable. In addition, other cases, such as indetermination of exit time in portfolio

selection problem [59] or no consensus on the future markets among decision makers

in decentralized investment management problem [60], may lead to the uncertainty of

underlying distributions.

This phenomenon motivates an increase in study of robustness of the portfolio selection

when dealing with the ambiguity in the underlying distribution. The work of Ben-

Tal et al. [12] developed a robust multi-stage asset allocation model using a robust

linear programming approach. Lobo and Boyd [56], Goldfarb and Iyengar [37] and

Lu [57] studied the robust mean-variance portfolio selection problem. In their work,

some uncertainty sets (e.g., box uncertainty set and ellipsoidal uncertainty set) of the

problem parameters (e.g., mean and covariance of the random returns) were introduced,
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and they showed that the robust portfolio selection problems corresponding to these

uncertainty structures can be transformed into semidefinite programs or second-order

cone programs, which can be solved by interior-point algorithms.

El Ghaoui et al. [35] studied the robust portfolio optimization problem using worst-case

value-at-risk, which requires the information of the first and second moments of the

distribution only. A study by Natarajan et al. [61] considered the robust value-at-risk

optimization problem by incorporating asymmetric distributional information. Zhu

and Fukushima [88] explored the robust portfolio selection problem using worst-case

conditional value-at-risk with several structures of uncertainty in the underlying distri-

bution. The work of Zhu et al. [89] focused on the robustness of lower-partial moment

based portfolio selection problems. Delage and Ye [26] investigated the distributionally

robust optimization problem where the ambiguity set is constructed through moment

constraints.

The work of Kapsos et al. [50] proposed a robust omega ratio model where the in-

formation of the true probability distribution is incomplete, and they computed the

omega ratio on the basis of the worst probability distribution in an ambiguity set of

distributions. In their work, three types of uncertainty (mixture distribution, box and

ellipsoidal uncertainty) were considered. A study by Gorissen [38] extended robust

optimization to fractional programming, where both the objective and the constraints

contain uncertain parameters, and he proposed tractable formulation for addressing

the problem under some conditions.

The majority of prior research on robust reward-risk ratio optimization have not taken

into account personal preference. However, in practice, a decision maker needs to

identify the utility function that characterizes his/her attitude toward risk when making

decisions. Tong and Wu [81] stated that decision maker’s risk preference is important

in reward-risk analysis. In the standard portfolio analysis, it is often assumed that

investors are risk averse and their utility can be expressed as a function of the mean and

variance of the portfolios rate of return [51]. The work of De Giorgi [23] characterized

reward and risk measures to obtain a link between reward-risk framework for portfolio

selection and utility expectation approach.

2.1.2 Contribution

Our research in this chapter proposes a new reward-risk ratio associated with deci-

sion maker’s risk preference which is called utility-based reward-risk ratio (URR). We

apply the URR to an optimization problem and consider a situation where the true

probability distribution is unknown. To tackle this issue, we investigate a distribution-

ally robust utility-based reward-risk ratio (DRURR) model, which is varied from the

ex ante Sharpe ratio model with the ambiguity set of probability distribution being
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constructed through prior moment information.

We reformulate the DRURR optimization model as a mathematical program with

robust inequality constraints and further transform it into a nonlinear semi-infinite

programming problem. We use the entropic approximation scheme to deal with the

semi-infinite constraints and give a stability analysis for the approximation scheme.

Compared with mainstream approximation methods in the literature of distributionally

robust optimization, the approximation scheme we used has no specific requirement

(e.g., linear or convex) for the underlying functions w.r.t. the random variables. Thus

the framework of our research has a wider range of applications.

We investigate a specific case that the ambiguity set is determined by the mean and

covariance. Unlike the work of Popescu [64] assumes complete information of the

mean and covariance, we consider some degree of uncertainty for the two quantities.

Compared with the work of Delage and Ye [26] which uses ellipsoid constraints for the

mean and semi-definite constraints for the covariance, we consider box constraints for

the mean and covariance which restricts each component of the two quantities to an

interval with finite lower and upper bound. The ambiguity set defined as such can

convert the robust formulation to a moment problem which can be solved by a general

numerical scheme. We also analyse the likelihood of the true distribution to lie in

the ambiguity set and the convergence of the optimal value and the optimal solutions

obtained on the basis of the ambiguity set.

We propose a numerical scheme to solve the approximated optimization problem based

on the framework of the Dinkelbach method. Compared with the standard Dinkelbach

method, our algorithm updates the optimal value automatically at each iteration by

solving a nonlinear equation. We apply the DRURR optimization model to a portfolio

selection problem and carry out some numerical tests to show the effectiveness and

efficiency of the model.

2.1.3 Structure

The rest of this chapter is structured as follows: In section 2.2, we propose a distribu-

tionally robust utility-based reward-risk ratio optimization model and reformulate it as

a mathematical program with robust inequality constraints. In section 2.3, we trans-

form the robust optimization problem into a semi-infinite programming problem in the

case when the ambiguity set is constructed through prior moment information and fur-

ther use the entropic risk measure to construct an approximation of the semi-infinite

constraints. In section 2.4, we consider a case that the ambiguity set is determined by

the mean and covariance with some degree of uncertainty and present stability anal-

ysis of the robust optimization problem w.r.t. change of sample data. An iterative

scheme is developed for solving the approximated optimization problem in section 2.5,
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and we apply the proposed model to a portfolio optimization problem and report some

numerical test results in section 2.6.

2.2 URR and Distributionally Robust URR

We use u(·) to denote a utility function which is increasing and concave and motivate

our discuss with the following stochastic program:

max
x∈X

EP [u(f(x, ξ))− u(Y (ξ))] (2.2.1)

where x is a vector of decision variables, X is a nonempty convex and compact subset

of Rn, f : Rn × Rk → R is a continuous return function and it is concave w.r.t. x

for every fixed ξ, ξ is a random variable on probability space (Ξ,F , P ) with Ξ ⊂ Rk,

Y (ξ) is a benchmark return, EP [·] denotes the expected value w.r.t. the probability

distribution of ξ.

Here EP [u(f(x, ξ))] measures a decision maker’s preference to random returns of the

chosen action, likewise, EP [u(Y (ξ))] measures a decision maker’s preference to a bench-

mark return. If

EP [u(f(x, ξ))] ≥ EP [u(Y (ξ))],

we can assert that the random returns of the chosen action f(x, ξ) are preferred to

the benchmark return Y (ξ). It means that the decision maker is satisfied with this

investment action, and it can be considered as a reward to the investor. Therefore, we

can regard (2.2.1) as a reward maximization problem.

Similarly, we have the following stochastic program:

min
x∈X

EP [(u(Y (ξ))− u(f(x, ξ)))+], (2.2.2)

where (a)+ = max{a, 0}. It considers the situation when

EP [u(Y (ξ))] ≥ EP [u(f(x, ξ))].

According to the above discussion, it can be regarded as a risk to the investor, and

(2.2.2) is a risk minimization problem.

As discussed in the introduction, reward-risk ratio optimization is an important mathe-

matical approach in financial portfolio management which takes into account the return

and risk of the investment and helps an investor make the optimal decision to max-

imise the expected return and minimise the risk. Thus in what follows, we focus on a
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so-called utility-based reward-risk ratio (URR) optimization problem:

sup
x∈X

EP [u(f(x, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x, ξ)))+]
. (2.2.3)

In this setup, as discussed above, the numerator is regarded as a reward and the

denominator as a risk. Note that we define EP [((u(Y (ξ)) − u(f(x, ξ)))+] as the risk

because we only care about the scenarios where the utility of f (portfolio return) falls

below the utility of benchmark return and we look at the expected utility values of

these scenarios. This is in accordance with the semi-deviation risk measures in practice

where only deviation from the targeted value is regarded as a risk. We assume that the

denominator is positive for all x ∈ X in that if there is an x0 such that the quantity is

zero, it means that in all scenarios (or almost surely) the new portfolio is worse than

the benchmark, and we will exclude such strategy from our feasible set.

The main issue relates to the above model is the information on the underlying un-

certainty. In practice, the true probability distribution of random variable ξ may be

unknown, but it may be possible to obtain some partial information to construct an

ambiguity set of distributions which approximate the true distribution. We use P to

denote an ambiguity set and consider a distributionally robust utility-based reward-risk

ratio (DRURR) optimization model:

sup
x∈X

inf
P∈P

EP [u(f(x, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x, ξ)))+]
. (2.2.4)

In this formulation, the optimal solution is based on the worst probability distribution

from P and it provides a lower bound for the optimal value of problem (2.2.3) if the

true probability distribution is contained in P .

To deal with the fractional form of the objective function, we use a variable γ ∈ R and

reformulate problem (2.2.4) as follows:

sup
x∈X,γ∈R

γ

s.t. inf
P∈P

EP [u(f(x, ξ))− u(Y (ξ))− γ(u(Y (ξ))− u(f(x, ξ)))+] ≥ 0
(2.2.5)

Compared to (2.2.4), problem (2.2.5) is relatively easier to handle as both the objective

and constraint functions are linear w.r.t. EP [·]. We show the equivalence of (2.2.4) and

(2.2.5) in the following proposition.

Proposition 2.2.1 Problems (2.2.5) and (2.2.4) are equivalent when both have finite

optimal value and optimal solutions, that is, if {γ∗, (x∗, γ∗)} is a pair of optimal value

and optimal solution of problem (2.2.5), then {γ∗, x∗} is a pair of optimal value and

optimal solution of problem (2.2.4), and vice versa.
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Proof. We use the convention 0
0

= +∞. Let {γ∗, (x∗, γ∗)} and {γ̂, x̂} be a pair of

optimal value and optimal solution of problems (2.2.5) and (2.2.4) respectively. Since

(x∗, γ∗) is a feasible solution of problem (2.2.5), we have

inf
P∈P

EP [u(f(x∗, ξ))− u(Y (ξ))− γ∗(u(Y (ξ))− u(f(x∗, ξ)))+] ≥ 0. (2.2.6)

Next we show (2.2.6) implies

inf
P∈P

EP [u(f(x∗, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x∗, ξ)))+]
≥ γ∗. (2.2.7)

Assume for the sake of a contradiction that (2.2.7) fails to hold. Then there exists a

small positive number ε and a sequence {PN} ⊂ P such that

EPN [u(f(x∗, ξ))− u(Y (ξ))]

EPN [(u(Y (ξ))− u(f(x∗, ξ)))+]
≤ γ∗ − ε (2.2.8)

when N is sufficiently large. For a fixed PN , we have

EPN [u(f(x∗, ξ))− u(Y (ξ))− γ∗(u(Y (ξ))− u(f(x∗, ξ)))+]

≤ −εEPN [(u(Y (ξ))− u(f(x∗, ξ)))+].

If EPN [(u(Y (ξ))− u(f(x∗, ξ)))+] > 0, then the inequality above contradicts to (2.2.6).

On the other hand, if EPN [(u(Y (ξ)) − u(f(x∗, ξ)))+] = 0, then EPN [u(f(x∗, ξ)) −
u(Y (ξ))] ≥ 0, which entails the left hand side of (2.2.8) to be positive infinity. This is

not possible because of the boundedness of γ∗. Thus we get a contradiction as desired.

Since x∗ is a feasible solution of problem (2.2.4), then

γ̂ ≥ inf
P∈P

EP [u(f(x∗, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x∗, ξ)))+]
≥ γ∗. (2.2.9)

On the other hand, as x̂ is an optimal solution of problem (2.2.4), we have

EP [u(f(x̂, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x̂, ξ)))+]
≥ γ̂

for all P ∈ P . Multiplying both sides of the above inequality by EP [(u(Y (ξ)) −
u(f(x̂, ξ)))+] and taking minimum w.r.t. P over P , we obtain

inf
P∈P

EP [u(f(x̂, ξ))− u(Y (ξ))− γ̂(u(Y (ξ))− u(f(x̂, ξ)))+] ≥ 0,

which means (x̂, γ̂) is a feasible solution of problem (2.2.5). Thus

γ∗ ≥ inf
P∈P

EP [u(f(x̂, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x̂, ξ)))+]
≥ γ̂ (2.2.10)
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Combining (2.2.9) and (2.2.10), we have

γ∗ = inf
P∈P

EP [u(f(x∗, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x∗, ξ)))+]

= inf
P∈P

EP [u(f(x̂, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x̂, ξ)))+]
= γ̂.

The proof is complete. �

To ensure the optimal value and the optimal solutions of problem (2.2.5) to be bounded,

we make the following assumption.

Assumption 2.2.1 Assume that:

(a) X is a compact convex set;

(b) Ξ ⊂ Rk is a compact set;

(c) f(·, ·), Y (·) and u(·) are continuous;

(d) there exists a positive number ε such that

min
x∈X

inf
P∈P

EP [(u(Y (ξ))− u(f(x, ξ)))+] ≥ ε. (2.2.11)

Parts (a)-(c) of the Assumption 2.2.1 are standard in the literature, see [30] for example.

Part (d) provides a sufficient condition for the well-definedness of the robust formulation

(2.2.4) and (2.2.5).

Proposition 2.2.2 Under Assumption 2.2.1, problem (2.2.5) have a finite optimal

value.

Proof. Condition (2.2.11) ensures that for all P ∈ P and all x ∈ X∣∣∣∣ EP [u(f(x, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x, ξ)))+]

∣∣∣∣ ≤ 1

ε
|EP [u(f(x, ξ))− u(Y (ξ))]|

≤ sup
x∈X

sup
P∈P

1

ε
|EP [u(f(x, ξ))− u(Y (ξ))]|

≤ 1

ε
sup
x∈X

sup
ξ∈Ξ
|u(f(x, ξ))− u(Y (ξ))|.

Under Assumption 2.2.1, Ξ and X are compact sets and functions f , Y and u are

continuous. Therefore, supx∈X supξ∈Ξ |u(f(x, ξ)) − u(Y (ξ))| is bounded and so is the
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optimal value of (2.2.4). As we have shown in Proposition 2.2.1 that (2.2.4) and (2.2.5)

are equivalent, thus problem (2.2.5) has a finite optimal value. �

For the convenience of exposition, we rewrite problem (2.2.5) as a minimization prob-

lem:

inf
x∈X,γ∈R

−γ

s.t. sup
P∈P

EP [−u(f(x, ξ)) + u(Y (ξ)) + γ(u(Y (ξ))− u(f(x, ξ)))+] ≤ 0.
(2.2.12)

To simplify the notation, we let

H(x, ξ, γ) := −u(f(x, ξ)) + u(Y (ξ)) + γ(u(Y (ξ))− u(f(x, ξ)))+

and write problem (2.2.12) in a concise form

inf
x∈X,γ∈R

−γ

s.t. sup
P∈P

EP [H(x, ξ, γ)] ≤ 0.
(2.2.13)

Proposition 2.2.3 Under Assumption 2.2.1, the following assertions hold.

(i) For each P ∈ P and x ∈ X, EP [H(x, ξ, γ)] is strictly increasing in γ;

(ii) there exists a finite γ∗ such that

sup
P∈P

EP [H(x, ξ, γ∗)] ≥ 0,∀x ∈ X; (2.2.14)

(iii) if given a γ∗ satisfying (2.2.14) and there exists x∗ ∈ X such that EP [H(x∗, ξ, γ∗)] =

0, then −γ∗ and (x∗, γ∗) are the optimal value and optimal solution of problem

(2.2.13).

Proof. Part (i). Under Assumption 2.2.1 (d), it is easy to see that EP [H(x, ξ, ·)] is

strictly increasing in γ.

Part (ii). Under Assumption 2.2.1 (a)-(c), we have

sup
P∈P

EP [| − u(f(x, ξ)) + u(Y (ξ))|] ≤ max
x∈X,ξ∈Ξ

| − u(f(x, ξ)) + u(Y (ξ))| < +∞.

By Assumption 2.2.1 (d),

sup
P∈P

EP [γ(u(Y (ξ))− u(f(x, ξ)))+] ≥ γε.
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Therefore, there must exist a γ∗ sufficiently large such that

sup
P∈P

EP [H(x, ξ, γ∗)] ≥ 0,∀x ∈ X.

Part (iii). The equality of (2.2.14) implies (x∗, γ∗) is a feasible solution of problem

(2.2.13). By Part (i) and (ii), for any x ∈ X and any δ > 0

sup
P∈P

EP [H(x, ξ, γ∗ + δ)] > 0,

which implies that the optimal value of problem (2.2.13) cannot be smaller than −γ∗.
�

The assertions in Proposition 2.2.3 ensure the boundedness of the optimal solution of

problem (2.2.13) and the sufficient condition for optimality.

2.3 Dual Formulation and Entropic Approximation

In this section, we consider a dual formulation for the problem (2.2.13) when the ambi-

guity set P is constructed through moments. Specifically, we construct the ambiguity

set P as follows:

P :=

{
P ∈P :

EP [ψi(ξ)] = 0, i = 1, . . . , p

EP [ψi(ξ)] ≤ 0, i = p+ 1, . . . , q

}
, (2.3.1)

where ψi : Ξ → R, i = 1, . . . , q, are continuous functions, and P denotes the set of

probability measures of random variable ξ. For the simplicity of discussion, we restrict

ψ(ξ) to be scalar functions and make the following assumption.

Assumption 2.3.1 Let ψi(ξ) be defined as in (2.3.1) and Ξ be the support set of ξ.

Let ψ := (ψ1, . . . , ψq). We assume:

0q ∈ int{EP [ψ(ξ)] : P ∈P} − K,

where ‘int’ denotes the interior of a set, K := 0p × Rq−p
+ , 0q is a zero vector with q

dimensions and 0p is a zero vector with p dimensions.

The assumption is a standard condition for deriving Lagrange dual of moment prob-

lems, see Xu et al. [86, Proposition 2.1]. Under Assumption 2.3.1, we can reformulate

problem (2.2.13) as the following semi-infinite programming problem (see Appendix
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A):

inf
x∈X,γ∈R,λ∈Rp×Rq−p+

−γ

s.t. sup
ξ∈Ξ

H(x, ξ, γ)−
q∑
i=1

λiψi(ξ) ≤ 0.
(2.3.2)

If Assumption 2.2.1 holds, then the optimal value of the primal and the dual problems

is finite. In addition, by [72, Proposition 3.4], the set of optimal solutions is nonempty

and bounded.

For the convenience of exposition, we let

T (x, γ, λ, ξ) := H(x, ξ, γ)−
q∑
i=1

λiψi(ξ) (2.3.3)

and rewrite the semi-infinite programming problem (2.3.2) as follows:

inf
x∈X,γ∈R,λ∈Rp×Rq−p+

−γ

s.t. sup
ξ∈Ξ

T (x, γ, λ, ξ) ≤ 0.
(2.3.4)

In what follows, we consider an approximation of the constraint in (2.3.4) through

entropic risk measure. The entropic risk measure is defined as

eα(Z) :=
1

α
lnEP [e−αZ ],

where Z ∈ L∞(Ξ,F , P ) 1 is a random variable and α is a positive number. It is well

known that eα(Z) is monotonically increasing in α and

lim
α→+∞

eα(Z) = ess sup(−Z),

where ‘ess sup’ denotes essential supremum of the random variable, see [33] for a

thorough treatment of the subject.

The following lemma states the uniform approximation of entropic risk measure for a

general class of random functions.

Lemma 2.3.1 ( [55, Proposition 2.1]) Let g : Rn ×Rk → R be a continuous function

and X be a subset of Rn. Let ξ be a random variable on the probability space (Ξ,F , P )

with support set Ξ ⊂ Rk. Let G(x), Fx(·) and Ξx denote the essential supremum, the

cumulative distribution function and the support set of −g(x, ξ) respectively, that is, Ξx

is the smallest set satisfied P (−g(x, ξ) ∈ Ξx) = 1. Let Diam(Ξx) denote the diameter

1L∞(Ξ,F , P ) denotes the set of essentially bounded measurable functions.
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of Ξx. Assume: (a) X ⊂ Rn is a compact set, (b) for each fixed x ∈ X,

inf
ξ∈Ξ

g(x, ξ) > −∞.

Then for each fixed x ∈ X,

lim
α→+∞

eα(g(x, ξ)) = G(x).

Assume in addition: (c)

inf
x∈X

inf
ξ∈Ξ

g(x, ξ) > −∞,

(d) for any fixed small positive number ε, there exists δ(ε) ∈ (0, 1) such that

Fx(G(x)− ε) ≤ 1− δ(ε), ∀x ∈ Xε,

where Xε := {x ∈ X : Diam(Ξx) > 2ε}. Then

|eα(g(x, ξ))−G(x)| < 2ε+

∣∣∣∣ 1α ln δ(ε)

∣∣∣∣ . (2.3.5)

By Lemma 2.3.1, we consider an approximation of the constraint in problem (2.3.4) as

follows:

eα(−T (x, γ, λ, ξ)) :=
1

α
lnE[eαT (x,γ,λ,ξ)] ≤ 0. (2.3.6)

Note that the expectation E[·] in (2.3.6) is different from the expectation EP [·] in

the preceding section. From Lemma 2.3.1, we can see the conclusion holds for any

probability distribution of ξ̂ with support set Ξ. However, in problem (2.2.3), we do

not assume any knowledge of the true probability distriution P except the support set

Ξ.

With (2.3.6), we can construct an approximation of problem (2.3.4) as follows:

inf
x∈X,γ∈R,λ∈Rp×Rq−p+

−γ

s.t. eα(−T (x, γ, λ, ξ)) ≤ 0
(2.3.7)

Since the set of optimal solutions to problem (2.3.4) is nonempty and bounded under

Assumption 2.2.1, we may restrict the variables λi, i = 1, . . . , q in problem (2.3.7) to

take finite values. Specifically, we assume that there exists a positive constant C0 such

that

|λi| ≤ C0, i = 1, . . . , q.

The following proposition states some important properties of the feasible sets and the

optimal values of problems (2.3.4) and (2.3.7).
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Proposition 2.3.1 Let F and ϑ denote the feasible set and the optimal value of prob-

lem (2.3.4) respectively. Likewise, define F(α) and ϑ(α) for problem (2.3.7). Then the

following assertions hold.

(i) F ⊂ F(α) for all α > 0;

(ii) F(α) is monotonically decreasing, that is, α1 < α2, F(α2) ⊂ F(α1);

(iii) ϑ(α) is non-decreasing and ϑ(α) ≤ ϑ;

(iv) if Assumptions 2.2.1 and 2.3.1 hold and there exists a positive number ε such that

min
x∈X

E[(u(Y (ξ))− u(f(x, ξ)))+] ≥ ε, (2.3.8)

then both ϑ and ϑ(α) are finite, and the set of optimal solutions to (2.3.7) is

nonempty and bounded.

Proof. Part (i). Since eα(−T (x, γ, λ, ξ)) ≤ supξ∈Ξ T (x, γ, λ, ξ), then F ⊂ F(α).

Part (ii). It follows form the fact that for any fixed x, γ, λ, eα(−T (x, γ, λ, ξ)) increases

in α.

Part (iii). It follows from Part (i) and Part (ii).

Part (iv). Under Assumption 2.2.1, as we have discussed above, ϑ is finite. By Jensen’s

inequality,

E[eαT (x,γ,λ,ξ)] ≥ eαE[T (x,γ,λ,ξ)].

Thus we have

eα(−T (x, γ, λ, ξ)) =
1

α
lnE[eαT (x,γ,λ,ξ)] ≥ 1

α
ln eαE[T (x,γ,λ,ξ)].

In addition, we have

E[T (x, γ, λ, ξ)] = E[H(x, ξ, γ)]−
q∑
i=1

λiE[ψi(ξ)]

and
E[H(x, ξ, γ)] = −E[u(f(x, ξ))] + E[u(Y (ξ))]

+γE[(u(Y (ξ))− u(f(x, ξ)))+]

≥ −E[u(f(x, ξ))] + E[u(Y (ξ))] + γε.

Since |λi| ≤ C0 and ψi(·) is continuous on Ξ, for i = 1, . . . , q, then the inequality above

means E[T (x, γ, λ, ξ)]→ +∞ as γ → +∞, and hence

eα(−T (x, γ, λ, ξ)) =
1

α
lnE[eαT (x,γ,λ,ξ)]→ +∞.
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It shows that a large γ will violate the constraint of problem (2.3.7) regardless of the

value of α, which means γ must be bounded at its optimum. The nonemptiness and

boundedness of the set of optimal solutions to (2.3.7) follow from the boundedness of

γ and the fact that the other variables of the problem are restricted to take a value

from a compact set. �

In what follows, we consider the approximation of (2.3.7) to (2.3.4) in terms of the

feasible sets and the optimal values as α changes. For the convenience of exposition,

we let

M := X ×R×Rp ×Rq−p
+ and m := (x, γ, λ) ∈M,

then T (x, γ, λ, ξ) can be written as T (m, ξ). The below error bound condition [62] will

be used in the following stability analysis.

Assumption 2.3.2 There exist positive constants C and δ such that

d(m,F) ≤ C

(
sup
ξ∈Ξ

T (m, ξ)

)
+

(2.3.9)

for any m ∈M satisfying d(m,F) ≤ δ.

Note that For m ∈ F , supξ∈Ξ T (m, ξ) ≤ 0, the constraint (2.3.9) holds trivially. Thus

the quantity (supξ∈Ξ T (m, ξ))+ describes the significance of constraint violation when

m /∈ F .

Theorem 2.3.1 Assume: (a) F is a compact set; (b) ψi, i = 1, . . . , q, is continuous;

(c) Assumption 2.2.1 and the conditions of Lemma 2.3.1 hold for function T (m, ξ).

Then

(i) for any ε > 0, there exists a positive number α0 such that

H(F(α),F) ≤ ε,∀α ∈ [α0,+∞);

(ii) if Assumption 2.3.2 holds, then there exist positive constants C and α∗ such that

H(F(α),F) ≤ C sup
m∈M

∆α(m),∀α ∈ [α∗,+∞), (2.3.10)

where

∆α(m) :=

(
sup
ξ∈Ξ

T (m, ξ)− eα(−T (m, ξ))

)
;

(iii)

|ϑ(α)− ϑ| ≤ C sup
m∈M

∆α(m), ∀α ∈ [α∗,+∞).
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Proof. By Proposition 2.3.1 (i), D(F ,F(α)) = 0, therefore in Parts (i) and (ii), we

only need to show the inequalities hold for D(F(α),F).

Part (i). Let ε be a fixed small positive number. Define

F (ε) := inf
m∈M

d(m,F)≥ε

sup
ξ∈Ξ

T (m, ξ).

Then F (ε) > 0. Let δ := F (ε)/2. By Lemma 2.3.1, there exists a positive number α0

such that

sup
m∈M

[
sup
ξ∈Ξ

T (m, ξ)− eα(−T (m, ξ))

]
≤ δ,

for α > α0. For any m ∈M with d(m,F) ≥ ε,

eα(−T (m, ξ)) = supξ∈Ξ T (m, ξ) + eα(−T (m, ξ))− supξ∈Ξ T (m, ξ)

≥ F (ε)− F (ε)/2 = F (ε)/2 > 0,

which implies m /∈ F(α). It shows that for every m ∈ F(α), we have d(m,F) < ε, that

is, D(F(α),F) ≤ ε.

Part (ii). Under Assumpion 2.3.2, it follows by Part (i) that there exists a sufficiently

large α∗ such that

d(m,F) ≤ C

(
sup
ξ∈Ξ

T (m, ξ)

)
+

for all m ∈ F(α) when α ≥ α∗. Since m ∈ F(α) is equivalent to eα(−T (m, ξ)) ≤ 0,

then for any m ∈ F(α),

d(m,F) ≤ C
(
supξ∈Ξ T (m, ξ)

)
+
− C (eα(−T (m, ξ)))+

≤ C
(
supξ∈Ξ T (m, ξ)− eα(−T (m, ξ))

)
+

= C
(
supξ∈Ξ T (m, ξ)− eα(−T (m, ξ))

)
≤ C supm∈M

(
supξ∈Ξ T (m, ξ)− eα(−T (m, ξ))

)
,

where the second inequality follows from the fact (a)+ − (b)+ ≤ (a− b)+, the equality

follows from the fact supξ∈Ξ T (m, ξ) ≥ eα(−T (m, ξ)) for any m ∈M. It shows

D(F(α),F) ≤ C sup
m∈M

(
sup
ξ∈Ξ

T (m, ξ)− eα(−T (m, ξ))

)
.

Part (iii). Let m∗ and mα be an optimal solution of problem (2.3.4) and problem

(2.3.7) respectively. Let γ∗ and γα be the corresponding second component of m∗ and

mα respectively. Then ϑ = −γ∗ and ϑ(α) = −γα. By Part (ii), there exists m̄ ∈ F
such that

‖mα − m̄‖ ≤ C sup
m∈M

∆α(m).
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Let γ̄ be the corresponding second component of m̄. Then ϑ = −γ∗ ≤ −γ̄. Thus we

have

ϑ ≤ −γ̄ ≤ −γα + |γα − γ̄| ≤ ϑ(α) + C sup
m∈M

∆α(m).

Exchange the role of mα and m∗ under the symmetry of Hausdorff distance between

F(α) and F , we have

ϑ(α) ≤ ϑ+ C sup
m∈M

∆α(m).

The conclusion follows. �

Under condition (c), it follows by Lemma 2.3.1 that ∆α(m) goes to 0 uniformly for all

m ∈M as α→ +∞, thus Theorem 2.3.1 states that |ϑ(α)− ϑ| → 0.

2.4 Specific Case of Ambiguity Set

In order to see how the proposed framework of modelling works, in this section we inves-

tigate a specific case that the ambiguity set is determined by the mean and covariance.

Unlike the work of Popescu [64] that assuming complete information of the mean and

covariance, we consider some degree of uncertainty for the two quantities. Specifical-

ly, based on the study by Tütüncü and Koenig [82], we consider box constraints for

the mean and covariance, which restricts each component of the two quantities to an

interval with finite lower and upper bound. The ambiguity set is defined as follows:

P∗ :=

{
P ∈P :

−ε ≤ (EP [ξ]− µ̄)i ≤ ε, i = 1, . . . ,m

‖EP [(ξ − µ̄)(ξ − µ̄)T ]− Σ̄‖∞ ≤ σ

}
, (2.4.1)

where µ̄ and Σ̄ denote the mean and covariance matrix respectively, ‖A‖∞ = max |aij|.

The main advantage of such construction is that the ambiguity set (2.4.1) can be fitted

into the framework of the preceding moment problem so that we can solve the latter

by a general numerical scheme (to be detailed in Section 2.5). Specifically, we recast

(2.4.1) as follows:

P∗ :=

{
P ∈P :

−ε ≤ EP [ψi(ξ)] ≤ ε, i = 1, . . . , p

−σ ≤ EP [ψj(ξ)] ≤ σ, j = p+ 1, . . . , q

}
. (2.4.2)

where p is the dimension of random ξ, q = p2+3p
2

, ψi(ξ) = ξi − µ̄i and ψj(ξ), j =

p + 1, . . . , q are the elements of the upper triangular of matrix (ξ − µ̄)(ξ − µ̄)T − Σ̄.

Compared with the semi-definite constraint which specifies the property of the centered

covariance of random variable, it may be more convenient to give a lower and upper

bound for each component of the centered covariance. In some cases, the covariance

between two random variables is precisely known, and the box constraint also allows
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different σ value to be set for each component of the covariance matrix.

In practice we may use samples to construct an estimate of the true mean and co-

variance. Let ξ1, . . . , ξN be an independent and identically distributed sample of ξ

and

µN :=
1

N

N∑
s=1

ξs, ΣN :=
1

N

N∑
s=1

(ξs − µN)(ξs − µN)T .

Then we construct a sample based ambiguity set as follows:

PN :=

{
P ∈P :

−ε ≤ EP [ψNi (ξ)] ≤ ε, i = 1, . . . , p

−σ ≤ EP [ψNj (ξ)] ≤ σ, j = p+ 1, . . . , q

}
. (2.4.3)

where p and q are defined as above, ψNi (ξ) = ξi − µNi and ψNj (ξ), j = p + 1, . . . , q are

the elements of the upper triangular of matrix (ξ − µN)(ξ − µN)T − ΣN .

The next work is to address some theoretical questions: (i) does PN converge to P∗ as

the sample size increases? (ii) is the true probability distribution of ξ lies in PN? (iii)

does the optimal value and the optimal solutions obtained on the basis of PN converge

to their true counterpart?

We first address question (i). Let us recall the definition of total variation metric based

on [10] for forthcoming discussion.

Definition 2.4.1 (Total variation metric) Let P,Q ∈ P and M denote the set of

measurable functions defined in the probability space (Ξ,B). The total variation metric

between P and Q is defined as

dTV (P,Q) := sup
g∈M

(EP [g(ξ)]− EQ[g(ξ)]),

where M := {g : Rk → R | g is B measurable, supξ∈Ξ |g(ξ)| ≤ 1}.

Using the total variation metric, we can define the distance from a point to a set,

deviation form one set to another and Hausdorff distance between two sets in the

space of P as follows:

dTV (Q,P∗) := inf
P∈P∗

dTV (Q,P ),

DTV (PN ,P∗) := sup
Q∈PN

dTV (Q,P∗),

HTV (PN ,P∗) := max{DTV (PN ,P∗),DTV (P∗,PN)}.

Proposition 2.4.1 Suppose that Ξ is a compact set. Then HTV (PN ,P∗) → 0 as

N → +∞.
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Proof. When Ξ is a compact set, both PN and P∗ are compact sets under the total

variation metric. For any given Q ∈ PN , it follows by [80, Lemma 4.1] that there exists

a positive constant C∗ such that

DTV (Q,P∗) ≤ C∗(‖(EQ[ΨI(ξ)]− εe)+‖+ ‖(−EQ[ΨI(ξ)]− εe)+‖)
+C∗(‖(EQ[ΨJ(ξ)]− σe)+‖+ ‖(−EQ[ΨJ(ξ)]− σe)+‖)

≤ C∗(‖(EQ[ΨI(ξ)−ΨN
I (ξ)])+‖+ ‖(EQ[ΨN

I (ξ)−ΨI(ξ)])+‖)
+C∗(‖(EQ[ΨJ(ξ)−ΨN

J (ξ)])+‖+ ‖(EQ[ΨN
J (ξ)−ΨJ(ξ)])+‖),

(2.4.4)

where

ΨI :=

 ψ1
...
ψp

 ,ΨJ :=

 ψp+1
...
ψq

 ,ΨN
I :=

 ψN1
...
ψNp

 ,ΨN
J :=

 ψNp+1
...
ψNq

 ,
for a vector a, (a)+ = max{a, 0} with the maximum being taken componentwise. The

first inequality of (2.4.4) means that a probability measure Q ∈P deviating form P∗

under the total variation metric is linearly bounded by the residual of the system of

equalities and inequalities defining P∗. The second inequality follows from the facts

that Q ∈ PN and (a)+ ≤ (a− b)+ if b ≤ 0. Likewise, for any given Q ∈ P∗,

DTV (Q,PN) ≤ C∗(‖(EQ[ΨN
I (ξ)]− εe)+‖+ ‖(−EQ[ΨN

I (ξ)]− εe)+‖)
+C∗(‖(EQ[ΨN

J (ξ)]− σe)+‖+ ‖(−EQ[ΨN
J (ξ)]− σe)+‖)

≤ C∗(‖(EQ[ΨN
I (ξ)−ΨI(ξ)])+‖+ ‖(EQ[ΨI(ξ)−ΨN

I (ξ)])+‖)
+C∗(‖(EQ[ΨN

J (ξ)−ΨJ(ξ)])+‖+ ‖(EQ[ΨJ(ξ)−ΨN
J (ξ)])+‖).

Since µN → µ̄ and ΣN → Σ̄, it is easy to see that ΨN
I and ΨN

J converge to ΨI and

ΨJ uniformly over Ξ as N →∞. Thus both DTV (Q,P∗) and DTV (Q,PN) converge to

zero as N →∞, which implies HTV (PN ,P∗)→ 0. �

To address question (ii), we give the following lemma based on [78].

Lemma 2.4.1 If ξ is essentially bounded by a positive number β, then for any given

positive small number δ,

(i) with probability at least 1− δ over the choice of the samples of ξ,

‖E[ξ]− µN‖∞ ≤
β√
N

(
2 +

√
2 ln

1

δ

)
;

(ii) with probability at least 1− 2δ over the choice of the samples of ξ,

‖E[(ξ − µN)(ξ − µN)T ]− ΣN‖∞ ≤
3β2

√
N

(
2 +

√
2 ln

1

δ

)
.
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Proof. Part (i). It follows straightforwardly from [78, Theorem 3].

Part (ii). Let

SN :=
1

N

N∑
i=1

ξiξ
T
i and S := E[ξξT ].

Then
‖E[(ξ − µN)(ξ − µN)T ]− ΣN‖∞

= ‖E[(ξ − µN)(ξ − µN)T ]− 1
N

∑N
i=1(ξi − µN)(ξi − µN)T‖∞

= ‖S − 2E[ξ](µN)T + µN(µN)T − SN + µN(µN)T‖∞
≤ ‖S − SN‖∞ + 2‖E[ξ](µN)T − µN(µ)T‖∞
≤ ‖S − SN‖F + 2‖E[ξ]− µN‖ · ‖(µN)T‖.

Note that for any two events A and B, Bonferroni’s inequality states that

P (AB) ≥ P (A) + P (B)− 1.

Thus, it follows by [78, Corollary 5] and Part (i) that with probability at least 1− 2δ

‖E[(ξ − µN)(ξ − µN)T ]− ΣN‖∞
≤ β2

√
N

(
2 +

√
2 ln 1

δ

)
+ 2β2
√
N

(
2 +

√
2 ln 1

δ

)
= 3β2

√
N

(
2 +

√
2 ln 1

δ

)
,

where the inequality indicates that with high probability the covariance matrix of the

randomly generated sample gives a good estimation of E[(ξ − µN)(ξ − µN)T ] in a way

that does not depend on the dimension of the feature space. �

Theorem 2.4.1 Suppose that ξ is essentially bounded by a positive number β and the

parameters ε and σ are chosen as follows:

εN :=
β√
N

(
2 +

√
2 ln

1

δ

)
, σN :=

3β2

√
N

(
2 +

√
2 ln

1

δ

)
.

Then with probability at least 1 − 3δ over the choice of the samples of ξ, the true

distribution of ξ lies in the ambiguity set PN .

Proof. It follows from Bonferroni’s inequality and Lemma 2.4.1 directly. �

Now we address question (iii). By the ambiguity set PN , we can derive the dual

formulation of problem (2.2.13) coupled by the entropic approximation as follows:

inf
x∈X,γ∈R,λ∈Rp×Rq−p+

−γ

s.t. eα(−TN(x, γ, λ, ξ)) ≤ 0,
(2.4.5)
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where TN(x, γ, λ, ξ) := H(x, ξ, γ)−
∑q

i=1 λiψ
N
i (ξ).

Let F , S and ϑ denote the feasible set, the set of optimal solutions and the optimal

value of problem (2.3.4) respectively. Likewise, we define F(α), S(α) and ϑ(α) for

problem (2.3.7) and FN(α), SN(α) and ϑN(α) for problem (2.4.5). Let F s(α) denote

the set of strictly feasible solutions 2 of problem (2.3.7).

Theorem 2.4.2 Assume: (a) A is any compact set such that A ∩ S(α) 6= ∅ and

A ∩ SN(α) 6= ∅; (b) clF s(α) ∩ S(α) 6= ∅. Then

(i) lim supN→+∞ S
N(α) ∩ A ⊆ S(α) ∩ A and limN→+∞ ϑ

N(α) = ϑ(α);

(ii) if Assumption 2.3.2 holds, there exist N̂ and α̂ sufficiently large such that for any

N ≥ N̂ and γ ≥ γ̂,

D(FN(α),F) ≤ C sup
m∈M

∆N
α (m)

and

ϑ− ϑN(α) ≤ C sup
m∈M

∆N
α (m),

where C is a positive constant and

∆N
α (m) :=

(
sup
ξ∈Ξ

T (m, ξ)− eα(−TN(m, ξ))

)
.

Proof. Part (i). Under condition (a), since ΨN
I (·) and ΨN

J (·) converge to ΨI(·) and

ΨJ(·) uniformly on Ξ, it is easy to show that lim supN→+∞FN(α) ⊆ F(α). We assume

(xN , γN , λN) ∈ SN(α), (xN , γN , λN)→ (x∗, γ∗, λ∗) ∈ F(α) as N → +∞, which implies

lim
N→+∞

ϑN(α) = lim
N→+∞

−γN = −γ∗ ≥ ϑ(α). (2.4.6)

Under condition (b), there exists (x̄, γ̄, λ̄) ∈ S(α) and a sequence {(x̂s, γ̂s, λ̂s)} ⊂ F s(α),

such that (x̂s, γ̂s, λ̂s) → (x̄, γ̄, λ̄), which implies that for any small positive number

ε > 0, there exists a point (x̂s, γ̂s, λ̂s) ∈ F s(α) such that

−γ̂s − ϑ(α) = −γ̂s + γ̄ ≤ ε.

Moreover, since (x̂s, γ̂s, λ̂s) ∈ F s(α) and ΨN
I (·) and ΨN

J (·) converge to ΨI(·) and ΨJ(·)
uniformly on Ξ as N →∞, then (x̂s, γ̂s, λ̂s) ∈ FN(α) for N sufficiently large. It implies

that

ϑ(α) ≥ −γ̂s − ε ≥ −γN − ε = ϑN(α)− ε.

By deriving N to infinity, we arrive at ϑ(α) ≥ −γ∗ − ε, which implies ϑ(α) ≥ −γ∗ in

that ε can be chosen arbitrarily small. Together with (2.4.6), we have ϑ(α) = −γ∗,
2 Strictly feasible solution is an interior point in M such that the constraint of (2.3.7) holds strictly.
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which implies (x∗, γ∗, λ∗) ∈ S(α), and it also shows limN→+∞ ϑ
N(α) = ϑ(α).

Part (ii). By Part (i) and Theorem 2.3.1, there exist N̂ and α̂ sufficiently large such

that for any N ≥ N̂ and α ≥ α̂,

D(FN(α),F) ≤ δ,

where δ is a positive constant. Since m ∈ FN(α) is equivalent to eα(−TN(m, ξ)) ≤ 0,

then for any m ∈ FN(α), it follows by (2.3.9) that

d(m,F) ≤ C

(
sup
ξ∈Ξ

T (m, ξ)

)
+

− C
(
eα(−TN(m, ξ))

)
+

≤ C

(
sup
ξ∈Ξ

T (m, ξ)− eα(−TN(m, ξ))

)
+

= C

(
sup
ξ∈Ξ

T (m, ξ)− eα(−TN(m, ξ))

)
≤ C sup

m∈M

(
sup
ξ∈Ξ

T (m, ξ)− eα(−TN(m, ξ))

)
,

where the second inequality follows from the fact (a)+ − (b)+ ≤ (a− b)+, the equality

follows from the fact supξ∈Ξ T (m, ξ) ≥ eα(−TN(m, ξ)) for any m ∈M. It shows

D(FN(α),F) ≤ C sup
m∈M

(
sup
ξ∈Ξ

T (m, ξ)− eα(−TN(m, ξ))

)
. (2.4.7)

Let m∗ and mN
α be an optimal solution of problem (2.3.4) and problem (2.4.5) re-

spectively. Let γ∗ and γNα be the corresponding second component of m∗ and mN
α

respectively. Then ϑ = −γ∗ and ϑN(α) = −γNα . By (2.4.7), there exists m̄ ∈ F such

that

‖mN
α − m̄‖ ≤ C sup

m∈M
∆N
α (m).

Let γ̄ be the corresponding second component of m̄. Then we have

ϑ ≤ −γ̄ ≤ −γNα +
∣∣γNα − γ̄∣∣ ≤ ϑN(α) + C sup

m∈M
∆N
α (m).

The conclusion follows. �

We are guaranteed that F ⊂ F(α),∀α > 0 by definition and lim supN→+∞FN(α) ⊆
F(α) but we are not guaranteed that F ⊆ FN(α) and hence we are unable to assess

D(F ,FN(α)). Note that ∆N
α (m) → 0 as N,α → +∞. This can be observed through

the inequality below

∆N
α (m) ≤

(
supξ∈Ξ T (m, ξ)− eα(−T (m, ξ))

)
+
(
eα(−T (m, ξ))− eα(−TN(m, ξ))

)
+
,

where the first term goes to zero by Lemma 2.3.1 and the second term goes to zero as
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N → +∞ by [73, Proposition 7].

2.5 Iterative Scheme

In this section, we propose an algorithm to solve problem (2.3.7). Let us first recall

problem (2.3.7)

inf
x∈X,γ∈R,λ∈Λ

−γ

s.t. eα(−T (x, γ, λ, ξ)) ≤ 0,

where Λ := Rp×Rq−p
+ . The following algorithm presents an iterative scheme for solving

this problem.

Algorithm 2.5.1 (Iterative scheme)

Step 1. Given x0, λ0, set k = 0.

Step 2. For given xk, λk, solve γk as a solution to the following equation:

eα(−T (xk, γ, λk, ξ)) = 0. (2.5.1)

Step 3. For given γk, solve

min eα(−T (x, γk, λ, ξ))

s.t. x ∈ X
λ ∈ Λ,

(2.5.2)

and denote the optimal value and the optimal solution by V(γk) and (xk+1, λk+1)

respectively.

Step 4. If V(γk) = 0, stop. Return −γk as the optimal value of problem (2.3.7) and

(xk+1, γk, λk+1) as the optimal solution. Otherwise go to Step 2.

Note that the idea of the algorithm is rooted in the well known Dinkelbach method

for quasi-convex fractional programming since our problem is reformulated from a

fractional programming problem. The procedure is more complex here because we

are handling eα(−T (x, γ, λ, ξ)) rather than T (x, γ, λ, ξ). The bisection method can be

applied in Step 2, where variables x and λ are fixed and we can find the root of equation

(2.5.1) since the function is monotonically increasing in γ. Although our algorithm is

analogous to the standard Dinkelbach method in Step 2 and Step 3, we solve a nonlinear

equation in Step 2 to obtain γk and the objective function of (2.5.2) is nonlinear in

γ or in (x, λ). Compared with [50, Algorithm 1] which updates the optimal value by

a fixed increment and then solve a linear program, our iterative scheme updates the

optimal value automatically at each iteration by solving a nonlinear equation.
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Proposition 2.5.1 Let γk be generated by Algorithm 2.5.1 and V(γ) be defined as the

optimal value of (2.5.2). Then

(i) V(γ) is continuous in γ;

(ii) equation (2.5.1) has a unique solution;

(iii) for each k, −γk+1 < −γk;

(iv) −γk is the optimal value of problem (2.3.7) if and only if V(γk) = 0.

Proof. Part (i). Since X and Λ are assumed to be bounded, it is easy to verify that

eα(−T (x, γ, λ, ξ)) is uniformly continuous in (x, λ). Then it follows by [70, Theorem

1.17] that V(γ) is continuous in γ.

Part (ii). By Proposition 2.2.3 and (2.3.3), for fixed x, λ, α, eα(−T (x, γ, λ, ξ)) is strictly

increasing in γ. Thus equation (2.5.1) has a unique solution.

Part (iii) and (iv). By the definition of γk and V(γk), V(γk) ≤ 0. −γk is the optimal

value of problem (2.3.7) if and only if V(γk) ≥ 0. To see this, assume for the sake of a

contradiction that V(γk) < 0, that is

eα(−T (xk+1, γk, λk+1, ξ)) < 0.

Then we can find a positive number δ such that

eα(−T (xk+1, γk + δ, λk+1, ξ)) = 0.

Thus −γk+1 = −γk−δ < −γk which contradicts the assumption that −γk is the optimal

value. If V(γk) = 0, then

min
x∈X,λ∈Λ

eα(−T (x, γk, λ, ξ)) = 0.

Since eα(−T (x, ·, λ, ξ)) is strictly increasing in γ, we have

eα(−T (x, γk + δ, λ, ξ)) > 0, ∀δ > 0, x ∈ X,λ ∈ Λ,

which means γk + δ is not feasible to problem (2.3.7). This shows −γk is the optimal

value and (xk+1, γk, λk+1) is the optimal solution of problem (2.3.7). �

Theorem 2.5.1 Let {−γk} be a sequence generated by Algorithm 2.5.1. Under As-

sumption 2.2.1, the sequence is monotonically decreasing and it converges to the optimal

value of problem (2.3.7).
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Proof. The Monotonicity follows from Proposition 2.5.1. Next, we show the con-

vergence. Let us consider the case (a) that the Algorithm 2.5.1 terminates after k

iterations, that is, V(γk) = 0. By Proposition 2.5.1, γk is the optimal value.

Now we consider the case (b) that {−γk} is an infinite sequence. Under Assumption

2.2.1, the sequence is lower bounded. Therefore, there exists a positive number γ∗ such

that −γk ↓ −γ∗, which means γ∗ is the upper bound of the sequence {γk}. It suffices

to show that V(γ∗) ≥ 0.

Assume for the sake of a contradiction that V(γ∗) < 0. Let (x∗, λ∗) denote the cor-

responding optimal solution to problem (2.5.2) for the given γ∗. Then there exists a

positive constant c0 such that

eα(−T (x∗, γ∗, λ∗, ξ)) ≤ −c0.

Since eα(−T (x∗, γ, λ∗, ξ)) is monotonically increasing w.r.t. γ, and γk < γ∗, then

eα(−T (x∗, γk, λ
∗, ξ)) < −c0, ∀k.

Let (xk+1, λk+1) denote the corresponding optimal solution to problem (2.5.2) for the

given γk. Then we have

eα(−T (xk+1, γk, λk+1, ξ)) ≤ eα(−T (x∗, γk, λ
∗, ξ)) < −c0.

Since γk → γ∗ and eα(·) is continuous, there exists a sufficiently large k̂ such that

eα(−T (xk̂+1, γ
∗, λk̂+1, ξ)) ≤ −c0/2.

At step 2 of the Algorithm 2.5.1 , γk̂+1 is chosen to satisfy

eα(−T (xk̂+1, γk̂+1, λk̂+1, ξ)) = 0.

This shows γk̂+1 > γ∗, which contradicts the fact that γ∗ is the upper bound of the

sequence {γk}. The proof is complete. �

2.6 Numerical Tests

In this section, we carry out some numerical tests to evaluate the performance of the

DRURR optimization model. We apply our model to a portfolio selection problem

where limited funds are allocated among investment assets to maximize wealth.
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2.6.1 Problem Description

Let us start by describing the problem setup and notations. Suppose that there are

n = 10 assets and we let xj be the proportion of the total fund invested in asset j.

Since we do not consider short positions, the set of feasible fund allocations is a convex

set

X :=

{
x ∈ Rn :

n∑
j=1

xj = 1, x ≥ 0

}
.

We let ξj denote the random return of asset j. To simplify the discussions, we ignore

the transaction fee, then we let the random outcome

f(x, ξ) :=
n∑
j=1

ξjxj.

denote the return of the portfolio.

In this numerical study, we consider three models. The first one is the stochastic

programming (SP) model where the problem (2.2.3) is solved by approximating the

true probability distribution P with empirical data. The second model is to minimize

the Conditional Value at Risk (CVaR):

min
x∈X

CVaRα(−f(x, ξ)) = min
x∈X

inf
η∈R

{
η +

1

1− α
E[(−f(x, ξ)− η)+]

}
,

where α ∈ (0, 1) is the level of confidence, in applications one typically sets α = 0.95

or 0.99, see [68]. The third one is our DRURR optimization model:

sup
x∈X

inf
P∈P

EP [u(f(x, ξ))− u(Y (ξ))]

EP [(u(Y (ξ))− u(f(x, ξ)))+]
.

To implement the DRURR optimization model and the iterative scheme, we use the

ambiguity set defined in (2.4.3).

2.6.2 Data

We now describe the data set to be used in our experiments. We randomly select 10

assets in stock markets and use the data over a time horizon of 6 years with a total of

1500 records of historical asset returns (obtained from https://www.google.com/finance

with adjustment for stock splitting).

For the experiments, we define the utility function u(y) = − exp(−βy) with β = 0.05.

We let Y (ξ) be the benchmark return calculated based on an equally weighted fund

allocation strategy. We let the value of parameter δ in Theorem 2.4.1 be fixed at 0.01
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which means with probability at least 97% the true distribution lies in the ambiguity

set. We set the precision ε = 0.01 and figure out the entropic approximation parameter

α = 700 (see details in Appendix B).

2.6.3 Experiments

We now describe the details of our experiments and present the results.

Experiment I: Comparison of the three models

In the first experiment, we compare our DRURR optimization model with the SP

model and the CVaR minimization model. We first randomly select 100 samples from

the total data set to calculate the optimal fund allocations for the three models. Then

we randomly select another 100 samples as the test data set to figure out the lowest

return and average return for each model. We present the results in Figure 2.1 after

100 simulations.

Figure 2.1: Lowest returns and average returns for three models: SP, CVaR and DRURR.

From Figure 2.1, we can see that the lowest returns under the optimal fund allocation

plans of the DRURR model are higher than that of other two models. Compared

with the lowest returns, the average returns of the three models show little change. It

indicates that the DRURR model has lower risk than other two models and it is more

suitable for the risk-averse decision makers.
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Experiment II: Sensitivity test of the DRURR model

In the second experiment, we test the sensitivity of the DRURR model w.r.t. the

change of parameters including α and δ. The change of parameter δ will determine

the value of εN and σN
3 which in turn determine the size of the ambiguity set. We

first randomly select 100 samples from the total data set to calculate the optimal fund

allocations for the DRURR model based on different parameters. Then we randomly

select another 100 samples as the test data set to figure out the total return for each

parameter setting. We present the relative changes of the total returns w.r.t. different

parameter settings in Figure 2.2 (a) and (b) after 100 simulations.

(a) (b)

Figure 2.2: (a) Relative change of total return w.r.t. parameter δ. (b) Relative change of total
return w.r.t. parameter α.

From Figure 2.2 (a) and (b), we can observe that our DRURR model is relative stable

w.r.t. the change of parameter α, while it is more sensitive to the variation of parameter

δ. The results show that the size of ambiguity set has a more important influence on

the return of the DRURR model than that of parameter α.

Experiment III: Runtime w.r.t the number of assets

In the third experiment, we test the computation time of the DRURR optimization

model based on different numbers of assets. We implement Algorithm 2.5.1 on MAT-

LAB R2019b installed in a generic laptop with Intel Core i5 processor, 4GM RAM, on

a 64-bit Windows 7 operating system. We use the built-in optimization solver fmincon

to solve minimization problem (2.5.2). We record the average computation time based

on 100 simulations. The results in Table 2.1 and Figure 2.3 show that the computation

time is approximately doubled for each increase of 5 in the number of assets.

3 εN := β√
N

(
2 +

√
2 ln 1

δ

)
, σN := 3β2

√
N

(
2 +

√
2 ln 1

δ

)
, where N is the number of samples of ξ and ξ is

essentially bounded by a positive number β.
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Number of assets 5 10 15 20 25 30

Time (second) 36.47 67.18 132.36 271.63 553.62 1092.37

Table 2.1: Computation time w.r.t. the number of assets

Figure 2.3: Computation time w.r.t. the number of assets



Chapter 3

Preference Robust Multivariate

Utility-Based Shortfall Risk

Optimization

The DRURR optimization model investigated in Chapter 2 is under the assumption

that a decision maker’s true utility function is known. In many practical applications,

however, the true utility function is unavailable because there may not be enough

information to specify it or a group of decision makers have difficulty agreeing on

which utility function to use. In this chapter, we will concentrate on this issue in the

context of the utility-based shortfall risk measure (SR) which has received increasing

attention over the past few years. The SR model is capable of capturing the large

potential loss and it is more sensitive to extreme events than CVaR. We consider the

situation where the true loss function (represents a decision maker’s risk preference) in

SR is not available and use a robust scheme to mitigate the risk from the ambiguity.

In addition, most studies of SR only deal with the univariate case, where profits/losses

are expressed by a random variable. In natural applications, however, many financial

positions possess multi-attributes, e.g., an insurance company typically has several

business lines each of which has a distinct attribute. This motivates us to consider a

multi-attribute SR model.

33
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3.1 Introduction

3.1.1 Literature Review

Measuring or quantifying risk is important to understand the potential features of risk

that an institution has. A proper assessment of the downside risk of financial positions

is significant in the process of decision making. As discussed in [36], a good risk measure

should be sensitive to excessive losses and encourage diversification. Over the past few

decades since the pioneering work of Markowitz [58] on mean-variance risk measure, a

great deal of effort has gone into achieving suitable methods of measuring risk.

One of the well known risk measures is value-at-risk (VaR), which has been widely

used as an industry standard since the 1990s [39,65]. However, there is a growing dis-

satisfaction about this measure, which is accused of neither encouraging diversification

nor taking into account the size of extremely large losses [68, 69]. These shortcomings

motivated an axiomatic analysis of risk measures with desirable properties. The ax-

iomatic foundation study of risk measures was pioneered by Artzner et al. [9], which

introduced the notion of coherent risk measure. In the work of Artzner et al. [9], a risk

measure is called coherent if it satisfies four basic properties: translation invariance,

monotonicity, subadditivity, positive homogeneity.

After the introduction of coherent risk measures, many variations and extensions of

them have been proposed and studied in the literature, see e.g., [3, 27, 54, 63]. Condi-

tional value-at-risk (CVaR), as one of the coherent risk measures, studied by [2, 8, 69]

has gained popularity in recent years. CVaR has emerged as a better alternative to

VaR because it measures the sizes of the potential losses beyond the threshold amount

indicated by the VaR. Although CVaR is used in a wide range of applications such

as supply chain [19], network design [11], healthcare [20], etc., it still suffers from se-

vere deficiencies. One important drawback of CVaR is that it only captures a limited

spectrum of risk attitudes and may not accurately represent the risk aversion of some

decision makers. There are also many other interesting coherent risk measures, such

as spectral risk measures [1, 4].

An important extension of the concept of coherent risk measure is the notion of convex

risk measure, studied by Föllmer and Schied [32] and Frittelli and Gianin [34], who

generalized coherent risk measures to the convex case by replacing the two properties of

subadditivity and positive homogeneity with the property of convexity. A special cate-

gory of convex risk measures, called utility-based shortfall risk measure (SR) proposed

by Föllmer and Schied [32], has received increasing attentions over the past few years.

For a given loss function (as a risk attitude) and a threshold value (as a prespecified

risk level), the SR of a financial position is the minimal capital added to the position
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such that the new position’s risk level is below the prespecified risk level [47].

The use of SR turns out to be very flexible because both loss function and threshold

value can be tailored to the specific needs of any financial institution or regulating

authority. Besides, SR has many appealing properties, including monotonicity, trans-

lation invariance and law invariance, and it moreover satisfies convexity if and only

if the loss function is convex [32]. The work of Giesecke et al. [36] shows that SR is

capable of capturing the large potential loss and it is more sensitive to extreme events

than CVaR. The study on the estimation of SR is pioneered by Dunkel and Weber [29],

who treated the estimation of SR as a stochastic root finding problem and applied the

stochastic approximation algorithms combined with importance sampling techniques

to solve the problem. While Hu and Zhang [47] treated the SR as the optimal value of

a stochastic optimization problem and implemented the sample average approximation

method to solve the problem.

Although sensitivity analysis and computational aspects of SR have been studied in

the literature, an important challenge remains that it is unclear how to choose a loss

function that faithfully represents a decision makers true risk attitude. In the work of

Armbruster and Delage [6] and Hu and Mehrotra [46], the idea is to formulate a set of

plausible risk preference relations and seek decisions that are optimal with respect to

worst-case expected utility. Haskell et al. [42] extended this preference robust expected

utility framework to cases where there is also ambiguity about the underlying probabil-

ity distribution. Delage and Li [25] introduced the notion of preference robust risk mea-

sure: %R(X) := supρ∈R(X), where R is an ambiguity set of all convex/coherent/law

invariant risk measures. However, the authors did not provide a reformulation that

could exploit the fact that the measure is known to be a utility-based shortfall risk

measure.

3.1.2 Contribution

In this chapter, we consider the case that the true loss function in SR is not available

since there is no enough information to specify it or decision makers have difficulty

agreeing on which loss function to use. To mitigate the risk from the ambiguity, we

exploit the idea of Armbruster and Delage [6] to construct a set of loss functions from

empirical data or subjective judgements and compute the SR through the worst loss

function from the set.

Compared with Föllmer and Schied [32]’s SR model which uses a fixed targeted utility

loss λ to determine the acceptance set, Our SR model’s acceptance set is determined

by the expected value of utility benchmark loss E[l(−Y )] that captures not only the

performance of benchmark position under the same random environment but also the

decision maker’s preference which is particularly important when there is an ambiguity
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about the loss function.

In addition, most studies of SR only deal with the univariate case, where profits/losses

are expressed by a random variable, however, in many natural applications it is nec-

essary to assess the risk of a vector whose components represent different gains or

liabilities from various financial risk components. Thus in this work, we apply SR in

a multivariate framework that models are dependence of several financial risk compo-

nents, that is, we contribute to a systemic extension of SR based on multivariate loss

functions.

Moreover, many tractable reformulations of SR optimization problems are established

under the hypothesis of a discrete outcome space. We explore a tractable numerical

scheme for the case when the underlying probability distribution is continuous. We also

apply our proposed model to a multi-criteria resource allocation problem in homeland

security and conduct some numerical tests to examine the performance of the model.

3.1.3 Structure

The remainder of this chapter is organised as follows: In section 3.2, we give a brief

introduction to the multivariate utility-based shortfall risk measure (MSR) and propose

a preference robust MSR model. In section 3.3, we introduce some properties of MSR

and preference robust MSR. In section 3.4, we apply preference robust MSR to an

optimization problem and discuss discrete approximation of the problem when the

probability distribution is continuous. A tractable formulation is developed for the

approximation problem in section 3.5, and some numerical studies are carried out in

section 3.6.

3.2 MSR and Preference Robust MSR

Consider a financial position with multi-attributes represented by a random vector

X : Ω → Rn for some integer n ≥ 1 on a probability space (Ω,F ,P), where (Ω,F) is

a measurable space with σ-algebra F and P is a probability measure. We let L 0 :=

L 0(Ω,F ,P) be the space of all measurable mappings X : Ω → Rn, and L∞ :=

L∞(Ω,F ,P) ⊂ L 0 is the space of essentially bounded measurable functions. We

generally treat L 0 as a space of multi-attribute prospects with n ≥ 2, although the

case n = 1 is also covered.

Föllmer and Schied [32] first introduce utility-based shortfall risk measure (SR) over a

single attribute prospect space. Let l : R → R be an increasing convex loss function

and Z : Ω→ R a financial position. Given a targeted utility loss λ, they define the set



3.2 MSR and Preference Robust MSR 37

of acceptable positions as

S := {Z ∈ L∞ : E[l(−Z)] ≤ λ}

and the utility-based shortfall risk measure (SR) as

SR(Z) := inf{t ∈ R : Z + t ∈ S}.

In practical applications, many financial positions possess multi-attributes [31], i.e.,

an insurance company typically has several business lines each of which has a distinct

attribute. Moreover, there is often a benchmark position which provides a bottom

line for the performance of a financial position. This motivates us to consider multi-

attribuite utlity shortfall risk measure model with targeted utility loss determined by

a benchmark position. We start by defining the acceptance set

A := {X ∈ L 0 : E[l(−X)] ≤ E[l(−Y )]},

where l : Rn → R is an increasing loss function and Y ∈ L 0 is a benchmark. Note

that by increasing, we mean that l(x) ≤ l(y) for any x, y ∈ Rn with x ≤ y. In

comparison with the acceptance set which is determined by a fixed targeted utility loss

in Föllmer and Schied’s SR model, our acceptance set here is determined by E[l(−Y )]

which captures not only performance of the benchmark position under the same random

environment but also the investor’s preference which is particularly important when

there is an ambiguity of the loss function.

With the acceptable set A, we can define the multivariate utility-based shortfall risk

measure (MSR) as

MSRl,d(X) := inf{t ∈ R : X + td ∈ A}
= inf{t ∈ R : E[l(−X − td)− l(−Y )] ≤ 0},

(3.2.1)

where d ∈ D is a preset weighting vector and

D =

{
d ∈ Rn :

n∑
i=1

di = 1, di > 0

}
.

The MSR may be interpreted as the smallest amount of cash t (when t > 0) to be

injected to the financial position X or the largest amount of cash t (when t < 0 ) can

be taken out so that the new position falls into the acceptance set A. A slightly more

general form of MSR is considered by Armenti et al. [7]

ρ(X) = inf

{
n∑
i=1

mi : E[l(X +m)] ≤ 0

}
. (3.2.2)
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Note that by setting mi = tdi and using multivariate loss function l(−X − td)− l(−Y )

in (3.2.2), we get formulation (3.2.1). However, the two formulations are intrinsically

different for two reasons: (a) In (3.2.2), the optimal solution may have one component

being positive and another being negative, while in (3.2.1) the signs of the components

at optimum are consistent; (b) In (3.2.1), d is fixed which may be interpreted as a

preset weighting vector and the allocation is proportionate across the components,

while in formulation (3.2.2), the allocation m ∈ Rn does not have to be proportionate

and the overall aim is to minimize the aggregated liquidity cost
∑n

i=1mi. Although

model (3.2.2) is more general, (3.2.1) does have some advantages: (i) The optimization

problem has one variable t as opposed to n-variables in (3.2.2), this will significantly

simplify (PRMSR-Opti) in the follow-up discussions; (ii) It allows one to choose optimal

weighting vector in (3.2.1) although we do not explore in that direction in this thesis,

this kind of research is interesting in asset allocation problem [13].

From the definition of MSR, it is easy to observe that choosing an appropriate loss

function l is important in applying MSR. However, in practice, there could be consid-

erable ambiguity in the choice of the loss function. For example, the decision maker

does not gather enough information to uniquely specify the loss function, or a group

of decision makers have difficulty agreeing which loss function to use. In these circum-

stances, there is no obvious choice for the true loss function. To overcome the risk

arising from ambiguity about the decision maker’s risk preference, we will construct a

set of loss functions with available partial information or subjective judgements and

define a preference robust MSR through the worst loss function from the set.

Definition 3.2.1 Let L be a set of the loss functions l : Rn → R and d ∈ D. The

preference robust multivariate shortfall risk measure is defined as

(PRMSR) MSRL,d(X) := inf

{
t ∈ R : sup

l∈L
E[l(−X − td)− l(−Y )] ≤ 0

}
, (3.2.3)

where the preference robust constraint means that the expected disutility of losses E[l(−X−
td)] falls below E[l(−Y )] for every risk attitude defined as l ∈ L.

This worst-case approach is justified in robust optimization, and the above definition

is an application of the philosophy of robust optimization to preference ambiguity. For

a practical interpretation, which is especially relevant in the context of group decision

making, the robust loss function means accommodating the preferences of the least

favored member of L.

In practice, a risk measure is often associated with some decision making problems.

Thus we consider an optimization problem with PRMSR as an objective function.

Specifically, let c(z, ξ(ω)) be a financial position associated with decision matrix z ∈
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Z ⊂ Rn and random matrix ξ(ω). We consider

(PRMSR-Opti) min
z∈Z

MSRP
L,d(c(z, ξ)), (3.2.4)

where ξ : (Ω,F ,P)→ Ξ ⊂ Rs, P := P ◦ ξ−1 is the probability measure on Rs induced

by ξ and c(z, ξ) : Z × Ξ→ Rn is a continuous function. In this work, we focus on the

case that P is continuously distributed and propose a sample average approximation

scheme

min
z∈Z

MSRPN
L,d(c(z, ξ)), (3.2.5)

where PN is a discrete approximation of the true probability distribution P . We es-

tablish conditions under which (3.2.5) converges to (3.2.4) in terms of the optimal

value and optimal solutions as the sample size increases, and we develop a tractable

formulation for the optimization problem (3.2.5).

3.3 Properties of preference robust MSR

In this section, we will investigate some properties of MSR and its preference robust

counterpart.

3.3.1 Convexity of MSR and PRMSR

We start by specifying a set of loss functions which will be used throughout this chapter

to define our risk measures. Let L be the set of all convex increasing functions l : Rn →
R that are strictly increasing along direction d 1 for each d ∈ D.

Proposition 3.3.1 Let x ∈ Rn, l ∈ L and d ∈ D, let h(t) := l(x − td). Then the

following hold.

(i) h is a strictly decreasing convex function, and h is continuous on R;

(ii) h(t)→ +∞ as t→ −∞.

Definition 3.3.1 (Multivariate convex risk measure) A real-valued function ρ :

L 0 → R is said to be a convex risk measure if it satisfies the following properties:

(a) Convexity: ρ(αX + (1 − α)Y ) ≤ αρ(X) + (1 − α)ρ(Y ) for all X, Y ∈ L 0 and

α ∈ [0, 1];

1 Increasing along direction d ∈ D means that l(x + t1d) ≤ l(x + t2d) for any x ∈ Rn, t1, t2 ∈ R with
t1 ≤ t2.
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(b) Monotonicity: ρ(X) ≤ ρ(Y ) for X, Y ∈ L 0 with X ≥ Y ;

(c) Translation invariance: ρ(X +md) = ρ(X)−m for X ∈ L 0, m ∈ R and d ∈ D.

Note that the inequality X ≥ Y is understood to mean X(ω) ≥ Y (ω) for all ω ∈ Ω,

and we compare vectors on Rn in the component-wise order, i.e., X(ω) ≥ Y (ω) means

Xi(ω) ≥ Yi(ω) for all i = 1, . . . , n. Here convexity means that diversification does

not increase the risk, i.e., the risk of a diversified position αX + (1 − α)Y is less or

equal to the weighted average of the individual risks. Monotonicity means if financial

position X is better than Y in every scenario then risk of position X is less than risk

of position Y . Translation invariance means if financial position X can generate cash

m deterministically then the risk will be reduced by m.

Proposition 3.3.2 Let ρ(·) be a multivariate utility-based shortfall risk measure de-

fined as in (3.2.1). Then ρ(·) is a convex risk measure for each associated l ∈ L.

Proof. By Definition 3.3.1, it suffices to verify the three properties specified there.

Let us start with convexity and consider any Xi ∈ L 0, i = 1, 2 such that

ρ(Xi) = inf t

s.t. E[l(−Xi − td)] ≤ E[l(−Y )].
(3.3.1)

Let t1 = ρ(X1), t2 = ρ(X2) and tα = αt1 + (1− α)t2, for any fixed α ∈ [0, 1]. Then

E[l(−(αX1 + (1− α)X2)− tαd)]

= E[l(α(−X1 − t1d) + (1− α)(−X2 − t2d))]

≤ αE[l(−X1 − t1d)] + (1− α)E[l(−X2 − t2d)]

≤ αE[l(−Y )] + (1− α)E[l(−Y )]

= E[l(−Y )],

which means that tα is a feasible solution to the program (3.2.1) with X = αX1 + (1−
α)X2. Thus

ρ(αX1 + (1− α)X2) ≤ tα = αt1 + (1− α)t2 = αρ(X1) + (1− α)ρ(X2).

To show the monotonicity, let X1 ≥ X2. Let Fi denote the feasible set of (3.3.1). Then

F2 ⊆ F1 since

l(−X1 − td) ≤ l(−X2 − td),

which means that ρ(X1) ≤ ρ(X2). The translation invariance follows by

ρ(X +md) = inf{t : E[l(−X − (t+m)d)− l(−Y )] ≤ 0}
= inf{t′ −m : E[l(−X − (t′)d)− l(−Y )] ≤ 0}
= ρ(X)−m.



3.3 Properties of preference robust MSR 41

Hence ρ(·) is a convex risk measure. �

Proposition 3.3.3 Let ρ(·) be a multivariate utility-based shortfall risk measure with

a loss function l ∈ L. Assume that ρ(X) is finite-valued. Then t′ := ρ(X) is the unique

solution of the equation

E[l(−X − td)− l(−Y )] = 0. (3.3.2)

Proof. Let

H(t) := E[l(−X − td)− l(−Y )],

and t0 be such that

H(t0) = E[l(−X − t0d)− l(−Y )] = 0.

The existence of t0 is guaranteed by the fact: (a) ρ(X) is finite which implies that the

feasible set {t ∈ R : E[l(−X − td) − l(−Y )] ≤ 0} is nonempty and hence there exists

a t̄ such that

H(t̄) = E[l(−X − t̄d)− l(−Y )] ≤ 0;

(b) H(t) is continuous and H(t)→ +∞ as t→ −∞ based on Proposition 3.3.1.

From Proposition 3.3.1, we know that for each ω ∈ Ω, the function hω(t) = l(−X(ω)−
td) − l(−Y (ω)) is a strictly decreasing convex function and satisfies hω(t) → +∞ as

t → −∞. Therefore, H(·) is a non-increasing continuous convex function. We first

show that H(·) is strictly decreasing near t0. Since hω(t) is strictly decreasing, for any

sufficiently small positive number ε,

H(t0 − ε) = E[l(−X(ω)− t0d+ εd)− l(−Y )]

=

∫
Ω

hω(t0 − ε)P (dω)

>

∫
Ω

hω(t0)P (dω)

= E[l(−X − t0d)− l(−Y )] = H(t0).

Likewise, we can show H(t0 +ε) < H(t0). This indicates that H(·) is strictly decreasing

near t0.

We now return to show t′ := ρ(X) is the unique solution of equation (3.3.2). It is

easy to see that t′ is a feasible solution to (3.2.1), which implies H(t′) ≤ 0. The strict

inequality does not hold because otherwise t′ could be further reduced and hence would

not be optimal. This shows t′ satisfies equation (3.3.2). Since we have shown that H(·)
is non-increasing continuous function and strictly decreasing near t0, hence t′ is the

unique solution to the equation. �

Theorem 3.3.1 Let L ⊆ L. Then
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(i) MSRL,d(X) = sup
l∈L

MSRl,d(X), that is,

inf

{
t ∈ R : sup

l∈L
E[l(−X − td)− l(−Y )] ≤ 0

}
= sup

l∈L
inf{t ∈ R : E[l(−X − td)− l(−Y )] ≤ 0};

(3.3.3)

(ii) MSRL,d(X) is a convex risk measure.

Proof. Part (i). Let t∗ := MSRL,d(X) and t̂ := supl∈L MSRl,d(X). We first consider

the case (a) that there exists t0 ∈ R such that

sup
l∈L

E[l(−X − t0d)− l(−Y )] ≤ 0. (3.3.4)

Under this condition, the feasible set of MSRL,d(X) is non-empty and hence t∗ 6= +∞.

In what follows, we show that t∗ 6= −∞.

Since l(·) is convex, by the Jensen’s inequality,

E[l(−X − td)] ≥ l(−E[X]− td),

which enables us to deduce

sup
l∈L

E[l(−X − td)− l(−Y )] ≥ sup
l∈L

l(−E[X]− td)− E[l(−Y )]. (3.3.5)

Based on Proposition 3.3.1, we have

lim
t→−∞

sup
l∈L

l(−E[X]− td)− E[l(−Y )] = +∞,

and through (3.3.5), we have

lim
t→−∞

sup
l∈L

E[l(−X − td)− l(−Y )] = +∞. (3.3.6)

Thus {
t ∈ R : sup

l∈L
E[l(−X − td)− l(−Y )] ≤ 0

}
is a bounded set and hence t∗ 6= −∞. This shows t∗ is finite.

Now we return to show t∗ = t̂. Since t∗ is the smallest number such that

sup
l∈L

E[l(−X − t∗d)− l(−Y )] ≤ 0,

then for any l ∈ L,

E[l(−X − t∗d)− l(−Y )] ≤ 0,
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which means that for each l ∈ L, t∗ is a feasible solution for the inner minimization

problem of supl∈L MSRl,d(X). If we use tl to denote the optimal value of the inner

minimization problem of supl∈L MSRl,d(X), then our discussion shows t∗ ≥ tl for all

l ∈ L and hence

t∗ ≥ sup
l∈L

tl = t̂. (3.3.7)

Conversely, for each l ∈ L,

E[l(−X − t̂d)− l(−Y )] ≤ E[l(−X − tld)− l(−Y )] ≤ 0.

Thus

sup
l∈L

E[l(−X − t̂d)− l(−Y )] ≤ 0.

This shows t̂ is a feasible solution of MSRL,d(X) and hence t̂ ≥ t∗.

We now consider the case (b) that condition (3.3.4) fails to hold, that is, the feasible

set of MSRL,d(X) is empty. In that case, the optimal value t∗ = +∞. Moreover, the

emptiness of the feasible set means that for any t ∈ R, there exist a constant δt > 0

and lt ∈ L such that

E[lt(−X − td)− lt(−Y )] > δt. (3.3.8)

In what follows, we show that (3.3.8) implies t̂ is infinite. Indeed, if t̂ is finite, then for

all l ∈ L,

E[l(−X − t̂d)− l(−Y )] ≤ 0,

which contradicts (3.3.8). Hence, without condition (3.3.4), both t∗ and t̂ must be

infinite.

Part (ii). It follows from Part (i) in that the supremum operation preserves convexity,

monotonicity and translation invariance. �

Theorem 3.3.1 Part (i) states that the robust shortfall risk measure is equal to the

worst case shortfall risk measure associated with the loss function l chosen from the

ambiguity set L. It is important because the right hand side has a clear business insight

whereas the left hand side will be effectively used to develop numerical procedures for

evaluating the robust risk measure.

3.3.2 Domain of MSR and PRMSR

The risk measures are real-valued functions defined on the space of random variables.

The domain of a risk measure specifies the set of random variables whose risks are

finite valued. In practice, each random variable represents a prospect of gain/loss and

the domain of a risk measure represents the scope of prospects where the risk measure
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can be sensibly used (not going to infinity which does not make a sense in practice).

Specifically, let ρ(·) be a multivariate utility-based shortfall risk measure associated

with l ∈ L. It might be interesting to discuss the domain of ρ(·) over L 0 where ρ is

finite valued. To this end, we exploit the notion of Orlicz space.

Let Ψ : Rn
+ → [0,∞] be a Young function 2 such that Ψ is continuous, increasing

convex with

0 = Ψ(0) = lim
x↓0

Ψ(x) and lim
x↑∞

Ψ(x) =∞.

The Orlicz space associated with Ψ is

L Ψ := L Ψ(Ω,F ,P) = {X ∈ L 0 : E[Ψ(c|X|)] <∞ for some c > 0},

where we write |x| for the absolute value of vector x, that is, the i-th component of |x|
is |xi|. The Orlicz heart is defined as

H Ψ := H Ψ(Ω,F ,P) = {X ∈ L 0 : E[Ψ(c|X|)] <∞ for all c > 0}.

Note that when Ψ takes the value of ∞, H Ψ = {0} and L Ψ = L∞. For this reason,

we mainly focus on the case when Ψ is finite. Then we have the following relationship

of the spaces which are of our interest:

L∞ ⊂H Ψ ⊂ L Ψ ⊂ L 0.

We define a Young function

Ψl(x) := l(x)− l(0) for x ∈ Rn
+.

It is easy to see that

l(−X − td) ≤ 1
2
l(−2X) + 1

2
l(−2td)

≤ 1
2
l(2|X|)− 1

2
l(0) + 1

2
l(2|td|)− 1

2
l(0) + l(0)

= 1
2
Ψl(2|X|) + 1

2
Ψl(2|td|) + l(0),

which implies E[l(−X − td)] < ∞ for t ∈ R and X ∈ H Ψl when l(0) < ∞. Hence

ρ(X) 6= −∞ for each X ∈ H Ψl . If in addition, T (X) := {t ∈ R : E[l(−X − td) −
l(−Y )] ≤ 0} 6= ∅ for X ∈H Ψl , then ρ(X) 6= +∞. Thus the domain of ρ(·) is

H Ψl ∩ {X ∈ L 0 : T (X) 6= ∅},

where ρ is finite valued.

Now we turn to the robust case, that is, PRMSR %(·). Let L ⊂ L be the associated

ambiguity set. Suppose that supl∈L l(0) <∞. Then following a similar analysis to the

2 In literature, Young function is defined over R+. Here we extend the notion to multivariate case.
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above, we can show that ρ(X) 6= −∞ for each X ∈
⋂
l∈L H Ψl and the domain of %(·)

is ⋂
l∈L H Ψl

⋂
{X ∈ L 0 : T (X) 6= ∅},

where

T (X) :=

{
t ∈ R : sup

l∈L
E[l(−X − td)− l(−Y )] ≤ 0

}
6= ∅.

3.4 Approximation of (PRMSR-Opti)

In this section, we discuss discrete approximation of (PRMSR-Opti) when the underly-

ing probability distribution P is continuous. By the definition of the preference robust

MSR, we rewrite problem (PRMSR-Opti) as

min
z∈Z,t∈R

t

s.t. sup
l∈L

EP [l(−c(z, ξ)− td)− l(−Y (ξ))] ≤ 0,
(3.4.1)

and its approximate problem takes the form:

min
z∈Z,t∈R

t

s.t. sup
l∈L

EPN [l(−c(z, ξ)− td)− l(−Y (ξ))] ≤ 0.
(3.4.2)

To ease the exposition, we let

v(z, t) := sup
l∈L

EP [l(−c(z, ξ)− td)− l(−Y (ξ))] (3.4.3)

and

vN(z, t) := sup
l∈L

EPN [l(−c(z, ξ)− td)− l(−Y (ξ))]. (3.4.4)

Consequently, we rewrite (3.4.1) and (3.4.2) as

(PRMSR-Opti)
min

z∈Z,t∈R
t

s.t. v(z, t) ≤ 0,
(3.4.5)

and

(Opti-N)
min

z∈Z,t∈R
t

s.t. vN(z, t) ≤ 0,
(3.4.6)

Let F , S and ϑ denote the feasible set, the set of optimal solutions and the optimal

value of problem (PRMSR-Opti) respectively. Likewise, we define FN , SN and ϑN for

problem (Opti-N). Throughout this section, we make the following assumption.
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Assumption 3.4.1 Assume that:

(a) L ⊆ L (as defined at the beginning of Section 3.3);

(b) Z is a compact set;

(c) c(·, ·) is a continuous function on Z × Ξ;

(d) Problem (PRMSR-Opti) satisfies Slater condition, that is, there exist a positive

constant number θ and z0 ∈ Z, t0 ∈ R such that

sup
l∈L

EP [l(−c(z0, ξ)− t0d)− l(−Y )] ≤ −θ. (3.4.7)

Under Assumption 3.4.1 the optimal value ϑ is finite. To see this, we note that

sup
l∈L

EP [l(−X − t0d)− l(−Y )] ≤ sup
l∈L

EP [l(−c(z0, ξ)− t0d)− l(−Y )] ≤ −θ,

where X := maxz∈Z c(z, ξ). Following a similar proof to (3.3.6), we can show

lim
t→−∞

sup
l∈L

EP [l(−X − td)− l(−Y )] = +∞,

which implies the t component of the feasible set F must have a lower bound and hence

the optimal value ϑ > −∞. On the other hand, condition (3.4.7) ensures ϑ ≤ t0.

3.4.1 Sample Average Approximation

We start by looking into sample average approximation (SAA) scheme. Let

PN(·) :=
1

N

N∑
k=1

1ξk(·), (3.4.8)

where ξ1, . . . , ξN are iid samples of ξ and

1ξk(ξ(ω)) :=

{
1, if ξ(ω) = ξk,

0, if ξ(ω) 6= ξk.

Instead of deriving uniform approximation specifically for vN(z, t), we establish a gen-

eral convergence result which may be of interest beyond this section.

Let f : Z × Ξ → Rn be a continuous function and G be a set of continuous functions

g : Rn → R. Let

w(z) := sup
g∈G

EP [g(f(z, ξ))]
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and

wN(z) := sup
g∈G

EPN [g(f(z, ξ))].

In what follows, we show uniform convergence of wN(z) to w(z) under some conditions.

Note that in the literature of stochastic programming, there are some recent studies

on uniform convergence of SAA of a random function, see e.g., [75, 85]. Here we focus

on a slightly different situation where it considers uniform exponential convergence of

the maximum of a class of SAA random functions as opposed to a single SAA function

in the literature.

In order to derive uniform exponential convergence of wN(z) to w(z), we need to impose

some conditions on G and f .

Assumption 3.4.2 Let Ξ be the support set of ξ.

(a) For any ε > 0, there exists a compact set Ξε ⊂ Ξ such that

sup
N,z∈Z,g∈G

EPN [|g(f(z, ξ))1Ξ\Ξε(ξ)|] ≤ ε (3.4.9)

with probability 1.

(b) For any m > 0, there exist positive constants κm, Bm and x0 ∈ [−me,me] such

that

sup
g∈G
|g(x1)− g(x2)| ≤ κm‖x1 − x2‖,∀x1, x2 ∈ [−me,me] (3.4.10)

and supg∈Gm |g(x0)| ≤ Bm, where

Gm := {g(·) ∈ G : g(·) is defined over interval [−me,me]}. (3.4.11)

(c) There exists a measurable function φ(ξ) : Ξ→ R+ and a constant γ > 0 such that

‖f(z, ξ)− f(z′, ξ)‖ ≤ φ(ξ)‖z − z′‖γ, ∀z, z′ ∈ Z, ξ ∈ Ξ.

Assumption 3.4.2 (a) is a well known uniform integrability condition for all g ∈ G [15,

Chapter 3]. Condition (b) requires the class of functions in G to be equi-continuous

over [−me,me] for any m > 0. Condition (c) means that f(·, ξ) is Hölder continuous

in z [75, Theorem 5.2].

Under Assumption 3.4.2, the set Gm is bounded by

sup
g∈Gm

‖g‖∞ ≤ Bm + 2κmm. (3.4.12)

By Ascoli-Arzela Theorem [18], the Lipschitz continuity (3.4.10) and the uniform
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boundedness (3.4.12) guarantee that Gm is relatively compact. The relative compact-

ness ensures existence of ε-net of Gm, that is, for any ε > 0, there exists a set of finite

number of functions {g1, . . . , gK} ⊂ Gm such that

Gm =
K⋃
k=1

(Gm)k

where (Gm)k := {g ∈ Gm : ‖g − gk‖∞ ≤ ε} for k = 1, . . . , K.

Lemma 3.4.1 Let Assumption 3.4.2 hold. When N is sufficiently large, then for any

δ > 0 and ε > 0, there exist positive constants C(ε, δ) and β(ε, δ) such that

Prob

(
sup
z∈Z
|wN(z)− w(z)| ≥ δ

)
≤ C(ε, δ)e−Nβ(ε,δ) (3.4.13)

Proof. Under Assumption 3.4.2 (a), let

mε := sup
z∈Z,ξ∈Ξε

‖f(z, ξ)‖∞

and Gmε be defined as in (3.4.11). Then Gmε is relatively compact. Let

sup
g∈Gmε

sup
x∈[−mεe,mεe]

|g(x)| ≤ λ.

Then

Ξε ⊂ {ξ ∈ Ξ : |g(f(z, ξ))| < λ},∀z ∈ Z, g ∈ G

and hence

{ξ ∈ Ξ : |g(f(z, ξ))| ≥ λ} ⊂ Ξ\Ξε,∀z ∈ Z, g ∈ G.

Under condition (3.4.9), we have

sup
N,z∈Z,g∈G

∫
{ξ∈Ξ:|g(f(z,ξ))|≥λ}

|g(f(z, ξ))|PN(dξ)

≤ sup
N,z∈Z,g∈G

∫
Ξ\Ξε
|g(f(z, ξ))|PN(dξ) ≤ ε.

Then it follows by [40, Lemma 2.1] that for any z ∈ Z, g ∈ G,

EP [g(f(z, ξ))1Ξ\Ξε(ξ)] = lim
N→∞

EPN [g(f(z, ξ))1Ξ\Ξε(ξ)],

which implies

sup
z∈Z,g∈G

EP [|g(f(z, ξ))1Ξ\Ξε(ξ)|] ≤ ε.



3.4 Approximation of (PRMSR-Opti) 49

By the definition of wN(z) and w(z), we have

wN(z)− w(z)

= sup
g∈G

EPN [g(f(z, ξ))]− sup
g∈G

EP [g(f(z, ξ))]

≤ sup
g∈G

EPN [g(f(z, ξ))1Ξε(ξ)]− sup
g∈G

EP [g(f(z, ξ))1Ξε(ξ)] + 2ε

= sup
g∈Gmε

EPN [g(f(z, ξ))1Ξε(ξ)]− sup
g∈Gmε

EP [g(f(z, ξ))1Ξε(ξ)] + 2ε

= sup
k∈K

sup
g∈(Gmε )k

EPN [g(f(z, ξ))1Ξε(ξ)]− sup
k∈K

sup
g∈(Gmε )k

EP [g(f(z, ξ))1Ξε(ξ)] + 2ε

= sup
k∈K

sup
g∈(Gmε )k

EPN [g(f(z, ξ))1Ξε(ξ)− gk(f(z, ξ))1Ξε(ξ) + gk(f(z, ξ))1Ξε(ξ)]

− sup
k∈K

sup
g∈(Gmε )k

EP [g(f(z, ξ))1Ξε(ξ)− gk(f(z, ξ))1Ξε(ξ) + gk(f(z, ξ))1Ξε(ξ)] + 2ε

≤ sup
k∈K

(ε+ EPN [gk(f(z, ξ))1Ξε(ξ)])− sup
k∈K

(−ε+ EP [gk(f(z, ξ))1Ξε(ξ)]) + 2ε

= sup
k∈K

EPN [gk(f(z, ξ))1Ξε(ξ)]− sup
k∈K

EP [gk(f(z, ξ))1Ξε(ξ)] + 4ε.

Likewise, we can also obtain

wN(z)− w(z) ≥ sup
k∈K

EPN [gk(f(z, ξ))1Ξε(ξ)]− sup
k∈K

EP [gk(f(z, ξ))1Ξε(ξ)]− 4ε.

Combining the above two inequalities, we get

|wN(z)− w(z)| ≤ sup
k∈K
|EPN [gk(f(z, ξ))1Ξε(ξ)]− EP [gk(f(z, ξ))1Ξε(ξ)]|+ 4ε.

Under Assumption 3.4.2 (b) and (c), for any g ∈ Gmε ,

|g(f(z, ξ))1mε(ξ)− g(f(z′, ξ))1mε(ξ)|
≤ 1mε(ξ)κm‖f(z, ξ)− f(z′, ξ)‖
≤ 1mε(ξ)κmφ(ξ)‖z − z′‖γ,∀ξ ∈ Ξ.

Then by [75, Theorem 5.1], we have

Prob

(
sup
z∈Z
|wN(z)− w(z)| ≥ δ

)
≤ Prob

(
sup
z∈Z

sup
k∈K
|EPN [gk(f(z, ξ))1mε(ξ)]− EP [gk(f(z, ξ))1mε(ξ)]| ≥ δ − 4ε

)
= Prob

(
sup
k∈K

sup
z∈Z

EPN [gk(f(z, ξ))1mε(ξ)]− EP [gk(f(z, ξ))1mε(ξ)]| ≥ δ − 4ε

)
≤

∑
k∈K

Prob

(
sup
z∈Z
|EPN [gk(f(z, ξ))1mε(ξ)]− EP [gk(f(z, ξ))1mε(ξ)]| ≥ δ − 4ε

)
≤

∑
k∈K

C(ε, δ, gk)e
−Nβ(ε,δ,gk),

which implies that (3.4.13) holds. �
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Note that the work of Haskell et al. [44] proposes a similar discretization scheme to

approximate integral stochastic dominance constraints where they derive uniform ex-

ponential convergence under the condition that the utility functions are Lipschitz con-

tinuous and defined on a compact set. Here we use the uniform integrability condition

to relax the compactness condition so that the convergence result can be applied to

the problem (PRMSR-Opti) where the loss functions are defined on Rn rather than a

compact set.

3.4.2 Convergence of the Optimal Values and Optimal Solutions

We now return to discuss convergence of (Opti-N) to (PRMSR-Opti) in terms of the

optimal values and optimal solutions. Let vN(z, t) and v(z, t) be defined as in (3.4.4)

and (3.4.3). We start by deriving uniform convergence of vN(z, t) to v(z, t) using

Lemma 3.4.1. To this end, we need to match the conditions required by the lemma.

(C1) Let T be a compact set in R. For any ε > 0, there exists a compact set Ξε ⊂ Ξ

such that

sup
N,z∈Z,t∈T,l∈L

EPN [|l(−c(z, ξ)− td)1Ξ\Ξε(ξ)|] ≤ ε

and

sup
N,l∈L

EPN [|l(−Y (ξ))1Ξ\Ξε(ξ)|] ≤ ε.

(C2) For any m > 0, there exist positive constants κm, Bm and x0 ∈ [−me,me] such

that

sup
l∈L
|l(x1)− l(x2)| ≤ κm‖x1 − x2‖, ∀x1, x2 ∈ [−me,me]

and supl∈Lm |l(x0)| ≤ Bm, where

Lm := {l(·) ∈ L : l(·) is defined over interval [−me,me]}.

(C3) There exists a measurable function r(ξ) : Ξ → R+ and a constant γ > 0 such

that

‖c(z, ξ)− c(z′, ξ)‖ ≤ φ(ξ)‖z − z′‖γ, ∀z, z′ ∈ Z, ξ ∈ Ξ.

Theorem 3.4.1 Let conditions (C1)-(C3) hold. Let T be a compact set in R. Then

for any δ > 0 and ε > 0, there exist positive constants N(ε, δ), C(ε, δ) and β(ε, δ) such

that

Prob

(
sup

z∈Z,t∈T
|vN(z, t)− v(z, t)| ≥ δ

)
≤ C(ε, δ)e−Nβ(ε,δ) (3.4.14)

for N ≥ N(ε, δ).
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Proof. It is analogous to that of Lemma 3.4.1. �

The following theorem states convergence of (Opti-N) to (PRMSR-Opti) in terms of

the optimal values and optimal solutions as the sample size N increases.

Theorem 3.4.2 Let Assumption 3.4.1 and conditions (C1)-(C3) hold. Suppose that

for almost every ξ ∈ Ξ, c(·, ξ) is a concave function. Then

(i) For any δ ≤ θ,

Prob(|ϑN − ϑ| ≥ δ) ≤ C(ε, ε)e−Nβ(ε,ε) (3.4.15)

for N ≥ N(ε, ε), where N(ε, ε), C(ε, ε) and β(ε, ε) are defined as in Theorem

3.4.1 and ε is some positive constant depending on δ, and θ is given in (3.4.7).

(ii) Let {zN , tN} be a sequence of optimal solution obtained from solving problem (Opti-

N). Then with probability 1, a cluster point of the sequence is an optimal solution

of problem (PRMSR-Opti).

Proof. Part (i). Let t∗ = ϑ. Following the discussions immediately after Assumption

3.4.1, we know that t∗ is finite and t∗ ≤ t0. Let δ be given as in Theorem 3.4.1 with

δ ≤ θ and η be any fixed positive constant such that η ≥ δ. Then there exists a

constant cη > 0 such that

inf
z∈Z

v(z, t∗ − cη) ≥ η. (3.4.16)

To see the existence, notice that

infz∈Z v(z, t∗ − cη)
= inf

z∈Z
sup
l∈L

EP [l(−c(z, ξ)− (t∗ − cη)d)]− EP [l(−Y (ξ))]

≥ inf
z∈Z

EP [l(−c(z, ξ)− (t∗ − cη)d)]− EP [l(−Y (ξ))] (for any l ∈ L)

≥ inf
z∈Z

l(EP [−c(z, ξ)]− (t∗ − cη)d)− EP [l(−Y (ξ))] (by convexity of l)

= l

(
inf
z∈Z

EP [−c(z, ξ)]− (t∗ − cη)d
)
− EP [l(−Y (ξ))] (by monotonicity of l).

Since Z is a compact set and EP [−c(z, ξ)] is continuous, then infz∈Z EP [−c(z, ξ)] is

bounded. Moreover, since limt→+∞ l(t) = +∞, the last term goes beyond η for a

sufficiently large cη and hence (3.4.16) holds.

Let T in Theorem 3.4.1 be chosen such that [t∗ − cη, t0] ⊂ T . Then by Theorem 3.4.1

inf
z∈Z

vN(z, t∗ − cη)

= inf
z∈Z

v(z, t∗ − cη) + inf
z∈Z

vN(z, t∗ − cη)− inf
z∈Z

v(z, t∗ − cη)

≥ η − sup
z∈Z
|vN(z, t∗ − cη)− v(z, t∗ − cη)|

> η − δ/2
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with probability at least 1− C(ε, δ/2)e−Nβ(ε,δ/2) for N ≥ N(ε, δ/2). Let (zN , tN) ∈ SN
be the optimal solution of (Opti-N). The inequality above shows

vN(zN , t
∗ − cη) ≥ inf

z∈Z
vN(z, t∗ − cη) > η − δ/2, (3.4.17)

which implies tN > t∗ − cη.

On the other hand, it follows by (3.4.7) and Theorem 3.4.1,

sup
l∈L

EPN [l(−c(z0, ξ)− t0d)− l(−Y )]

= sup
l∈L

EP [l(−c(z0, ξ)− t0d)− l(−Y )] + sup
l∈L

EPN [l(−c(z0, ξ)− t0d)− l(−Y )]

− sup
l∈L

EP [l(−c(z0, ξ)− t0d)− l(−Y )]

≤ −θ + vN(z0, t0)− v(z0, t0)

≤ −θ + sup
z∈Z,t∈T

|vN(z, t)− v(z, t)|

< −θ + δ/2 ≤ −δ/2
(3.4.18)

with probability at least 1 − C(ε, δ/2)e−Nβ(ε,δ/2) for N ≥ N(ε, δ/2). The inequality

(3.4.18) implies (z0, t0) is a feasible solution to (Opti-N) and hence tN ≤ t0. Summa-

rizing the discussions above, we have

tN ∈ [t∗ − cη, t0] (3.4.19)

with probability at least 1− C(ε, δ/2)e−Nβ(ε,δ/2).

Let us consider the systems of inequalities

v(z, t) ≤ 0, (z, t) ∈ Z × T

and

vN(z, t) ≤ 0, (z, t) ∈ Z × T.

The set of solutions to the systems of inequalities are equal to F∩Z×T and FN∩Z×T
respectively. Since l(−c(z, ξ) − td) is convex in (z, t), both v(z, t) and vN(z, t) are

convex functions. By the Slater condition (3.4.7) and Robinson’s error bound theorem

for convex systems [67], for any (z, t) ∈ Z × T ,

d((z, t),F ∩ Z × T ) ≤ ∆

θ
max{v(z, t), 0},

where ∆ denotes the diameter of F ∩Z×T and we write d(a,A) for the distance from

a point a to a set A. Likewise, by the Slater condition (3.4.18), for any (z, t) ∈ Z × T ,

d((z, t),FN ∩ Z × T ) ≤ 2∆

δ
max{vN(z, t), 0}.
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with probability at least 1−C(ε, δ/2)e−Nβ(ε,δ/2) for N ≥ N(ε, δ/2). Combining the two

error bounds, we obtain (see Appendix C)

H(FN ∩ Z × T,F ∩ Z × T ) ≤ 2∆

δ
sup

z∈Z,t∈T
|vN(z, t)− v(z, t)|, (3.4.20)

where H denotes the Hausdorff distance. Thus

|ϑN−ϑ| = |tN−t∗| ≤ H(FN∩Z×T,F∩Z×T ) ≤ 2∆

δ
sup

z∈Z,t∈T
|vN(z, t)−v(z, t)|. (3.4.21)

Let ε := min( δ
2

2∆
, δ

2
). We deduce from (3.4.14) and (3.4.21)

Prob(|ϑN − ϑ| ≥ δ) ≤ Prob

(
sup

z∈Z,t∈T
|vN(z, t)− v(z, t)| ≥ ε

)
≤ C(ε, ε)e−Nβ(ε,ε)

for N ≥ N(ε, ε).

Part (ii). The exponential rate of convergence (3.4.15) implies tN → t∗ almost surely.

Moreover, since vN(zN , tN) ≤ 0 and vN uniformly converges to v over Z × T , then

v(ẑ, t∗) ≤ 0 for every cluster point ẑ of {zN}. �

3.5 Tractable Formulation of (Opti-N)

In this section, we develop a tractable formulation for the approximated optimization

problem (Opti-N). Let us start by specifying the ambiguity set of multivariate loss

functions L. We require the multivariate loss functions to satisfy certain properties.

Below is a list of them.

(C1) L1 ⊆ L;

(C2) L2 is a set of uniformly Lipschitz continuous functions with modulus κ, that is,

sup
l∈L2

|l(x1)− l(x2)| ≤ κ‖x1 − x2‖,∀x1, x2 ∈ Rn.

Condition (C2) means that the multivariate loss functions will not change rapidly at any

point. Moreover, we suppose that the information on the decision makers preference

can be elicited through pairwise comparison of questionnaires or lotteries and add some

additional conditions as follows:

(C3) L3 := {l : EP [l(−G0)]− EP [l(−B0)] = −1,EP [l(−O)] = 0};
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(C4) L4 := {l : EP [l(−Gk)] ≤ EP [l(−Bk)], k = 1, . . . , K}.

Here G0, . . . , GK , B0, . . . , BK are given random vectors representing lotteries, and O is

a zero vector with dimension n. Condition (C3) is used to normalise the multivariate

loss functions which specifies that the utility difference between −G0 and −B0 is 1.

Condition (C4) means admissible multivariate loss functions must satisfy the pairwise

preference elicitation conditions, that is, L4 denotes the set of utilities that prefer −Bk

to −Gk for all k. Conditions (C3) and (C4) are also used in [6] to define the set of

decision maker’s utility functions.

We consider L has the specified structure that satisfies Conditions (C1)-(C4), that is,

L = L1 ∩ L2 ∩ L3 ∩ L4. (3.5.1)

Following [70, Theorem 9.13], l is locally Lipschitz continuous at x̄ with l(x̄) finite if

and only if the convex subdifferential mapping ∂l : x→ ∂l(x) is locally bounded at x̄.

Furthermore, the Lipschitz modulus κ̄ of l at x̄ is equal to

κ̄ = max
a∈∂l(x̄)

‖a‖.

Hence, Condition (C2) can be ensured by

max
a∈∂l(x)

‖a‖ ≤ κ,∀x ∈ Rn, l ∈ L. (3.5.2)

We define

Θ :=
K⋃
k=0

(supp(−Gk) ∪ supp(−Bk)) ∪ supp(−O) ∪ supp(−Y )

to be the joint support of all random vectors. For convenience, let θj denote the j-th

entry of Θ, and the size of the support is denoted by J := |Θ|.

As in Delage et al. [24], we will use support function approach to reformulate the robust

constraint in (Opti-N) as a linear programming problem. The main challenge that we

need to tackle here is that the loss functions are multivariate. To this effect, let us

recall some preliminary definitions associated with support functions.

Definition 3.5.1 Let f : Rn → R be a convex function. A function g is said to be

majorized by f if

g(x) ≤ f(x), ∀x ∈ dom f,

and g is a support function of f at x ∈ Rn if g is majorized by f and g(x) = f(x). A
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vector s ∈ Rn is called a subgradient of f at x ∈ Rn if

f(y) ≥ f(x) + 〈s, y − x〉, ∀y ∈ dom f,

and we denote the set of subgradients of f at x by ∂f(x) which is known as subdiffer-

ential of f at x.

When f is convex and subdifferentiable at x, the linear function

l(y) = f(x) + 〈a, y − x〉

is a support function of f at x for any a ∈ ∂f(x). The following theorem states some

properties of support functions and their relationship to convex functions.

Theorem 3.5.1 Let f : Rn → R. The following assertions hold:

(i) f is a convex function if and only if there exists an index set J such that

f(x) = sup
j∈J

lj(x), ∀x ∈ domf,

where J is possibly infinite and lj(x) = 〈aj, x〉+ bj for all j ∈ J .

(ii) For any finite set Θ ⊂ Rn and values {vθ}θ∈Θ ⊂ R, f̂ : Rn → R defined by

f̂(x) = max
a,b
{〈a, x〉+ b : 〈a, θ〉+ b ≤ vθ, ∀θ ∈ Θ} (3.5.3)

is convex.

These results are well known, see [17] for instance. Part (i) states that a convex function

can be recovered by taking the supremum of its support functions, and Part (ii) gives

conditions for constructing the “highest” convex function that contains a set of values

{vθ}θ∈Θ over a finite set Θ. Note that in (3.5.3), point x is not necessarily in set Θ.

The next theorem states that any positive combination of the function values at a set

of points may be calculated by solving a single linear programming problem. Moreover

if there is a set of convex functions each of which has some specified values over Θ,

then the worst value of the positive combination may be obtained by solving a single

linear programming problem with vθ being treated as a vector of variables.

Theorem 3.5.2 Let L be a set of proper convex functions from Rn to R and Θ ⊂ Rn

be a discrete set of points. For each l ∈ L, let v = {v1, · · · , vJ} = {l(θ) : θ ∈ Θ} be the

set of values of l over Θ, where J = |Θ| denotes the cardinality of Θ. Then for given
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tk ∈ Rn, positive number αk, k = 1, · · · , K and βj, j = 1, · · · , J ,

K∑
k=1

αkl(tk)−
J∑
j=1

βjl(θj) = sup
(A,b)∈F(v)

{
K∑
k=1

αk(a
T
k tk + bk)−

J∑
j=1

βjvj

}
(3.5.4)

and

sup
l∈L

{
K∑
k=1

αkl(tk)−
J∑
j=1

βjl(θj)

}
= sup

v,(A,b)∈F(v)

{
K∑
k=1

αk(a
T
k tk + bk)−

J∑
j=1

βjvj

}
,(3.5.5)

where we write (A, b) for {(aj, bj)}Jj=1 and

F(v) := {(aj, bj), j = 1, · · · , J : aTj θi + bj ≤ vi, for i = 1, · · · , J}.

Proof. Observe that (3.5.5) follows from (3.5.4) by taking supremum with respect

to l over L at the left hand side of the equation and v (function values of l over Θ) on

the right had side, it suffices to show (3.5.4).

For the fixed tk ∈ Rn, k = 1, · · · , K, it follows by Theorem 3.5.1 (ii) that

l(tk) = sup
{
aTk tk + bk : (A, b) ∈ F(v)

}
,

Since (ai, bi) and (aj, bj) are two independent pairs of variables for i 6= j and their

feasible ranges are not affected each other, then the maximization problem at the right

hand side of equation (3.5.4) is decomposeable (v is fixed there). This shows (3.5.4).

�

Let us recall problem (Opti-N):

min
z∈Z,t∈R

t

s.t. vN(z, t) ≤ 0,

where vN(z, t) := supl∈L EPN [l(−c(z, ξ)− td)− l(−Y (ξ))]. With the specified structure

of L (defined as in (3.5.1)), we first give a tractable formulation for vN(z, t).

Proposition 3.5.1 Assume that ξ is discretely distributed with pi = P (ξ = ξi) for
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i = 1, . . . , N . Then vN(z, t) can be reformulated as

max
ai∈Rn,bi∈R,vj∈R,sj∈Rn

N∑
i=1

pi(〈ai,−c(z, ξi)− td〉+ bi)−
J∑
j=1

P (−Y = θj)vj

s.t.
J∑
j=1

P (−G0 = θj)vj −
J∑
j=1

P (−B0 = θj)vj = −1,

J∑
j=1

P (−O = θj)vj = 0,

J∑
j=1

P (−Gk = θj)vj ≤
J∑
j=1

P (−Bk = θj)vj, k = 1, . . . , K,

〈ai, θj〉+ bi ≤ vj, j = 1, . . . , J ; i = 1, . . . , N,

〈sj, θq − θj〉+ vj ≤ vq, j = 1, . . . , J ; q = 1, . . . , J,

0 ≤ ai ≤ κe, i = 1, . . . , N,

0 ≤ sj ≤ κe, j = 1, . . . , J,

(3.5.6)

where θj ∈ Θ, vj is the value of l on θj, and J = (2K + 3)N + 1.

Proof. Let L(v) := {l : l(θj) = vj, j = 1, . . . , J}. Then

vN(z, t) =

 sup
v

sup
l∈L(v)∩L

EPN [l(−c(z, ξ)− td)− l(−Y (ξ))]

s.t. L(v) ∩ L 6= ∅,

=

 sup
v

sup
l∈L(v)∩L1∩L2

EPN [l(−c(z, ξ)− td)− l(−Y (ξ))]

s.t. L(v) ∩ L1 ∩ L2 6= ∅, L(v) ⊂ L3, L(v) ⊂ L4,

where the first equality is due to the fact that
⋃
v L(v)∩L = L and the second equality

holds since L(v) is either a subset of L3 or is disjoint from it and the same is true with

respect to L4. Let us characterize the feasible set of the last program in the sequel.

Based on Theorem 3.5.1 and (3.5.2), constraint L(v)∩L1 ∩L2 6= ∅ can be represented

as

〈sj, θq − θj〉+ vj ≤ vq, j = 1, . . . , J ; q = 1, . . . , J,

‖sj‖∞ ≤ ‖sj‖ ≤ κ, j = 1, . . . , J,

sj ≥ 0, j = 1, . . . , J.

Here the reason why we adopt the infinity norm rather than Euclidean norm is that

the resulting constraint with the former is linear which is easy to handle, otherwise

the resulting problem (3.5.6) will be a quadratic optimization problem. Constraint
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L(v) ⊂ L3 can be characterized by∑
j(P (−G0 = θj)vj − P (−B0 = θj)vj) = −1,∑
j P (−O = θj)vj = 0,

and L(v) ⊂ L4 by∑
j P (−Gk = θj)vj ≤

∑
j P (−Bk = θj)vj, k = 1, . . . , K.

All of the three sets of the constraints form the feasible set of v, denoted by V .

Next we look at the objective function of problem (3.5.6). Note that for l ∈ L(v),

EPN [l(−Y (ξ))] =
N∑
i=1

pil(−Y (ξi))

=
J∑
j=1

P (−Y = θj)vj,

where the second equality follows from the fact that for j = 1, . . . , J , i = 1, . . . , N ,

P (−Y = θj) =

{
pi, −Y (ξi) = θj,

0, otherwise,

and l(−Y (ξi)) = vj if −Y (ξi) = θj. Then for fixed v ∈ V , it follows by Theorem 3.5.2

that

EPN [l(−c(z, ξ)− td)− l(−Y (ξ))]

= max
(A,b)∈F(v)

N∑
i=1

pi(〈ai,−c(z, ξi)− td〉+ bi)−
J∑
j=1

P (−Y = θj)vj,
(3.5.8)

where

F(v) := {(aj, bj), j = 1, · · · , J : 〈a, θj〉+ b ≤ vj, j = 1, . . . , J, ‖a‖∞ ≤ κ, a ≥ 0}.

By taking supremum with respect to l over L (where L satisfies L(v) ∩ L1 ∩ L2 6=
∅, L(v) ⊂ L3, L(v) ⊂ L4) at the left hand side of (3.5.8) and v over V at the right hand

side of (3.5.8), we obtain (3.5.6). �

Proposition 3.5.1 indicates that for each fixed z, the value of vN(z, t) can be computed

by solving a finite dimensional linear program of reasonable size with (n + 1)(N + J)

variables and J2 +NJ+(N+J)n+K+1 constraints (not counting the non-negativity

constraints). However, if we merge program (3.5.6) directly into the constraint of

(Opti-N), then the latter becomes an optimization problem with semi-infinite con-

straints (indexed by parameters (ai, bi, vj, sj)) which is undesirable. This motivates us

to consider the Lagrangian dual of (3.5.6) which is a minimization problem and can
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be better integrated into (Opti-N). To this end, we define the Lagrangian of program

(3.5.6)

L(a, b, v, s; γ, τ, λ, µ, η, α, β)

=
N∑
i=1

pi(〈ai,−c(z, ξi))− td〉+ bi)−
J∑
j=1

P (−Y = θj)vj + γ

(
J∑
j=1

P (−O = θj)vj

)

+τ

(
J∑
j=1

P (−G0 = θj)vj −
J∑
j=1

P (−B0 = θj)vj + 1

)
+

J∑
j=1

αj(κe− sj)

+
K∑
k=1

λk

(
J∑
j=1

P (−Bk = θj)vj −
J∑
j=1

P (−Gk = θj)vj

)
+

N∑
i=1

βi(κe− ai)

+
J∑
j=1

J∑
j′=1

µjj′(vj′ − vj + sj(θj − θj′)) +
N∑
i=1

J∑
j=1

ηij(vj − bi − aT
i θj)

=
N∑
i=1

aT
i

(
pi(−c(z, ξi)− td)−

J∑
j=1

ηijθj − βi

)
+

N∑
i=1

bi

(
pi −

J∑
j=1

ηij

)

+
J∑
j=1

vj[−P (−Y = θj) + γP (−O = θj) + τ(P (−G0 = θj)− P (−B0 = θj))

+
K∑
k=1

λk(P (−Bk = θj)− P (−Gk = θj)) +
J∑

j′=1

µj′j −
J∑

j′=1

µjj′ +
N∑
i=1

ηij]

+
J∑
j=1

sj

(
J∑

j′=1

µjj′(θj − θj′)− αj

)
+ τ + κ〈e,

J∑
j=1

αj +
N∑
i=1

βi〉.
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Since strong duality holds to problem (3.5.6), then the optimal value of (3.5.6) is equal

to the optimal value of its Lagrange dual

min
γ,τ,λ,µ,α,η,β

τ + κ〈e,
J∑
j=1

αj +
N∑
i=1

βi〉

s.t.
J∑

j′=1

µj′j −
J∑

j′=1

µjj′ +
N∑
i=1

ηij

+
K∑
k=1

λk(P (−Bk = θj)− P (−Gk = θj))− P (−Y = θj)

+γP (−O = θj) + τ(P (−G0 = θj)− P (−B0 = θj)) = 0, j = 1, . . . , J,

pi(c(z, ξi) + td) +
J∑
j=1

ηijθj + βi ≥ 0, i = 1, . . . , N,

J∑
j=1

ηij = pi, i = 1, . . . , N,

J∑
j′=1

µjj′(θj − θj′)− αj ≤ 0, j = 1, . . . , J,

λk ≥ 0, k = 1, . . . , K,

µjq ≥ 0, j = 1, . . . , J ; q = 1, . . . , J,

ηij ≥ 0, i = 1, . . . , N ; j = 1 . . . , J,

αj ≥ 0, j = 1, . . . , J,

βi ≥ 0, i = 1, . . . , N.

(3.5.9)

By merging (3.5.9) into (Opti-N), we obtain

min
z∈Z,t∈R

t

s.t. min
(γ,τ,λ,µ,α,η,β)∈F(z)

τ + κ〈e,
J∑
j=1

αj +
N∑
i=1

βi〉 ≤ 0,
(3.5.10)

where F(z) denotes the feasible set of program (3.5.9). It is easy to show that problem

(3.5.10) is equivalent to

min
z∈Z,t∈R,γ,τ,λ,µ,α,η,β

t

s.t. τ + κ〈e,
J∑
j=1

αj +
N∑
i=1

βi〉 ≤ 0,

(γ, τ, λ, µ, α, η, β) ∈ F(z).

(3.5.11)

This enables us to give tractable formulation of (Opti-N) as stated in the following

theorem.



3.6 Numerical Tests 61

Theorem 3.5.3 Let pi = P (ξ = ξi) for i = 1, . . . , N . If problem (Opti-N) is feasible,

then it equals to the following problem:

min
z,t,γ,τ,λ,µ,α,η,β

t

s.t. τ + κ〈e,
J∑
j=1

αj +
N∑
i=1

βi〉 ≤ 0,

pi(c(z, ξi) + td) +
J∑
j=1

ηijθj + βi ≥ 0, i = 1, . . . , N,

−P (−Y = θj) + γP (−O = θj) + τ(P (−G0 = θj)− P (−B0 = θj))

+
K∑
k=1

λk(P (−Bk = θj)− P (−Gk = θj))

+
J∑

j′=1

µj′j −
J∑

j′=1

µjj′ +
N∑
i=1

ηij = 0, j = 1, . . . , J,

J∑
j′=1

µjj′(θj − θj′)− αj ≤ 0, j = 1, . . . , J,

J∑
j=1

ηij = pi, i = 1, . . . , N,

λk ≥ 0, k = 1, . . . , K,

µjq ≥ 0, j = 1, . . . , J ; q = 1, . . . , J,

ηij ≥ 0, i = 1, . . . , N ; j = 1 . . . , J,

αj ≥ 0, j = 1, . . . , J,

βi ≥ 0, i = 1, . . . , N,

z ∈ Z.
(3.5.12)

Note that problem (3.5.12) is a convex programming problem and it is linear when

c(z, ξi) is linear in z. Theorem 3.5.3 establishes a tractable reformulation of problem

(Opti-N) and we will use it in the later numerical tests.

3.6 Numerical Tests

In this section, we apply our model to a multi-criteria resource allocation problem in

homeland security where we aim to allocate limited budget among major cities in the

United States to protect against terrorist threats. This application is based on the

case study investigated in Hu et al. [45] and Haskell et al. [43]. We use this example

to examine the performance of our proposed model.
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3.6.1 Problem Setup

Let us start by describing the problem setup and notations. As mentioned by Hu et

al. [45], there are four criteria giving a comprehensive measure of the health of a city,

thus in this case study, we believe that there are n = 4 criteria for estimating the effect

of a terrorist attack. In order to make the background of the case study clearer, we

extract the definition of these criteria from Haskell et al. [43]: property loss measures

the impact on economic structures and individual property; fatalities measures the

loss of human lives; air departures measures the loss for the citys airport; bridge traffic

measures the loss for the citys bridge traffic. Based on Hu et al. [45], there are three

possible underlying loss scenarios corresponding to different levels of terrorist attacks:

reduced loss, standard loss and increased loss, which means the size of sample space is

|Ω| = 3.

Suppose that we have a fund A to be allocated among m = 10 cities. Let zij denote the

fund to be allocated to city i corresponding to criterion j and z ∈ Z ⊂ Rm×n, where

Z represents the set of feasible fund allocations:

Z :=

{
z ∈ Rm×n :

m∑
i=1

n∑
j=1

zij ≤ A

}
.

The random loss at city i with respect to criterion j for scenario ω is denoted by ξij(ω).

Thus a random matrix ξ ∈ Ξ ⊂ Rm×n captures the loss for all criteria in all cities. To

simplify the discussions, we assume that the benefits per monetary unit to be allocated

to city i corresponding to criterion j are the same.

Given a particular budget allocation z ∈ Z, similar to Willis et. al. [84], the cost of

budget misallocation with respect to criterion j is measured by the function:

cj(z)(ω) :=
m∑
i=1

(ξij(ω)− zij)+, ω ∈ Ω and j = 1, . . . , n. (3.6.1)

The quantity cj(z)(ω) can be viewed as the sum of the shortfall with respect to criterion

j over all cities. We combine the shortfall for each criterion into the vector-valued

mapping

c(z)(ω) = (c1(z)(ω), . . . , cn(z)(ω)), ω ∈ Ω. (3.6.2)

The negative value of the shortfall, i.e. −c(z)(ω) can be viewed as the “reward”.

In this numerical study, we consider three models. The first one is the risk-neutral and

minimizes the expected shortfall:

min
z∈Z

E[wT c(z)(ω)], (3.6.3)
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where w ∈ Rn with w ≥ 0 and ‖w‖ = 1. The second model is to minimize the

aggregated CVaR:

min
z∈Z

n∑
j=1

CVaRαj(cj(z)(ω)) = min
z∈Z

n∑
j=1

inf
ηj∈R

{
ηj +

1

1− αj
E[(cj(z)(ω)− ηj)+]

}
, (3.6.4)

where αj ∈ (0, 1) is the level of confidence for criterion j. The third one is our PRMSR

model:

min
z∈Z

MSRP
L,d(c(z)(ω)), (3.6.5)

where L is an ambiguity set of multivariate loss functions l and d is a given weighting

vector in D.

3.6.2 Data

We now describe the data set used in our experiments. We assume that the probability

distribution over three loss scenarios are equal and use the same data set considered

by Hu et al. [45] and Haskell et al. [43]. We give the data set for completeness of the

paper in Appendix E.

In our framework, the ambiguity set L is defined as in (3.5.1). To construct L, we

assume that the decision maker has a true multivariate loss function denoted by ltrue :

Rn → R, which is unknown. However, the decision maker has her/his choice function

denoted by ρ : L 0(Rn) → R when s/he is asked to choose the preferred prospect

from each pair of prospects (the preferred prospect is denoted by Gk and the other is

denoted by Bk, k = 0, . . . ,M , the first pair G0 and B0 is used in the normalization

property). We record Gk and Bk in an “elicited comparison data set” and an example

is presented in Appendix F.

For simplification, in this case study we take a continuous, increasing and convex

function u : R→ R and choose weights w ∈ Rn with w ≥ 0 and ‖w‖ = 1 to define the

choice function

ρ(X) := E[u(〈w,X〉)], X ∈ L 0(Rn). (3.6.6)

Here we use the exponential function u(y) = exp(βy) with β = 0.01. Moreover, we

set the fund to be A = $500 million and assume the fund allocated to each city i

corresponding to criterion j not less than $1 million and no more than $30 million. We

let Y (ξ) be the loss calculated based on an equally weighted fund allocation strategy.

We take the modulus of Lipschitz continuity to be κ = 1/12. We let all elements in

vector w and vector d to be 1/n. The computational details of these three models are

given in Appendix D.
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3.6.3 Experiments

In this subsection, we describe the details of our experiments and present the results.

Experiment I: Sensitivity test of three models to data perturbation

In the first experiment, we compare the sensitivity of the three models (3.6.3), (3.6.4)

and (3.6.5) to data perturbation. The elicited comparison data set used for this exper-

iment is presented in Table F.1 in Appendix F, it contains five pairs of prospects for

pairwise comparison and one pair for normalization. The optimal budget allocations

are presented in Table 3.1. From the Table 3.1 we can see that more fund are allocated

to the Bridge traffic compared with other three criteria and New York, Chicago and

San Francisco are the three cities that are allocated the most fund.

To make the comparison, we consider a perturbed data set of the terrorism losses.

Specifically, we assume that the perturbed data set is generated from the original data

set by randomly changing ±5% of the data in Table E.1 for each city, each criterion

and each scenario, since the distribution of the terrorism losses is fully described in

Table E.1 and has three different levels of terrorist attacks: reduced loss, standard loss

and increased loss. For example, the element ξ̃ij(ωk) for city i, criterion j and scenario

ωk in the perturbed data set is given by

ξ̃ij(ωk) = ξij(ωk)× (1 + r × s), (3.6.7)

where r = 5% is a perturbation ratio and s is from the uniform distribution on [−1, 1].

In this experiment, we randomly generate 100 perturbed data sets. By solving models

(3.6.3), (3.6.4) and (3.6.5), we obtain the optimal budget allocations for each perturbed

data set. We then calculate the average optimal budget allocation for each model under

100 simulations. To analyze the impact of the perturbations of original data set to the

optimal budget allocations for the three models, we consider the relative change of the

average optimal budget allocation to the original optimal budget allocation for each

city and each criterion. The results are presented in Figure 3.1. We can see that the

proposed PRMSR model is more sensitive to the perturbed data set compared with

risk-neutral model and aggregated CVaR model, which confirms that the PRMSR

model captures changes in data more effectively from shortfall risk perspective.

Experiment II: Effect of the perturbation range on optimal value

In the second experiment, we examine the impact of the data perturbation on the

optimal value of the PRMSR model. Specifically, we generate perturbed data sets
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Figure 3.1: Comparative analysis of impact of data perturbation: average relative change out of 100
simulations for the optimal budget allocations to each criterion and each city from different models:
PRMSR, Risk-Neutral (RN) and CVaR.
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by following the same procedures as in Experiment I with the perturbation ratio r ∈
{1%, 2%, 3%, 4%, 5%}. We randomly generate 100 perturbed data sets for each r and

solve the model (3.6.5) to obtain the optimal value for each perturbed data set. Figure

3.2 depicts boxplot and dot plot of the optimal values as r increases. We can see that

the change of the optimal value is not drastic.

(a) (b)

Figure 3.2: (a) Boxplot of the optimal values of the PRMSR model w.r.t. the perturbation ratio
(%). (b) Dot plot of the optimal values of the PRMSR model w.r.t. the perturbation ratio (%).

Experiment III: Effect of the number of pairs on optimal budget allocation

In the third experiment, we consider the impact of the number of pairs for eliciting

the ambiguity set L on the optimal budget allocation. We select K pairs of prospects,

K ∈ {5, 10, 20}, to form the elicited comparison data set, and then solve the problem

(3.6.5) to compare their effects on budget allocations for cities and criteria. The results

are shown in Figure 3.3.

(a) (b)

Figure 3.3: (a) Optimal budget allocation to cities w.r.t. the number of pairs. (b) Optimal budget
allocation to criteria w.r.t. the number of pairs.

From Figure 3.3, we observe that an increase in the number of pairs has minor effect on
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the optimal budget allocations for cities and criteria. This phenomenon confirms that

in practical decision making, even with less extra preference information, our model

still can effectively capture the worst decision maker’s risk preference.

Experiment IV: effect of d on optimal budget allocation

In the fourth experiment, we consider the effect of the choice of the weighting vector

d on the optimal budget allocation. To this end, we consider three weighting vec-

tors: d1 = (1/4, 1/4, 1/4, 1/4) equally treating each criterion, d2 = (1/8, 1/8, 3/8, 3/8)

emphasizing the air departures and bridge traffic, and d3 = (3/8, 3/8, 1/8, 1/8) giving

more consideration to the property losses and fatalities as Hu et al. [45] did for reflecting

the importance of each criterion. The influences of d on optimal budget allocations to

cities are shown in Figure 3.4(a) and the influences of d on optimal budget allocations

to criteria are shown in Figure 3.4(b).

(a) (b)

Figure 3.4: (a) Optimal budget allocation to cities w.r.t. weighting vector d. (b) Optimal budget
allocation to criteria w.r.t. weighting vector d.

From Figure 3.4(a) we can see that no matter which weighting vector used, more budget

is allocated to New York and Chicago whereas less budget is allocated to Philadelphia,

Newark and Seattle. We observe form Figure 3.4(b) that the effect of d on optimal

budget allocation to Air departures is small compared with other three criteria.

Experiment V: Runtime w.r.t the number of pairs

In the fifth experiment, we test the solution time of problem (3.6.5) based on the size of

the elicited comparison data set. The experiments are performed on a generic laptop

with Intel Core i5 processor, 4GM RAM, on a 64-bit Windows 7 operating system.

Specifically, we solve problem (D4) by the SDPT3 4.0 solver in CVX on Matlab R2019b.

The average computation time w.r.t. the number of pairs under 100 simulations is
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shown in Table 3.2 and Figure 3.5. We can observe that the solution time grows

gradually as the size of the elicited comparison data set increases because the pro-

posed tractable formulation to problem (3.6.5) is a finite dimensional linear program

of reasonable size.

Number of pairs 2 4 6 8 10 12 14 16 18 20

Time (second) 3.62 6.91 8.34 10.97 11.73 13.84 16.75 17.82 19.78 20.83

Table 3.2: Computation time w.r.t. the number of pairs

Figure 3.5: Computation time w.r.t. the number of pairs





Chapter 4

Statistical Robustness in Preference

Robust Optimization Models

Preference robust optimization has recently received increasing attention in decision

analysis. It deals with the ambiguity of decision maker’s utility preference or risk atti-

tude. In preference robust optimization models, e.g., the PRMSR optimization model

in Chapter 3, the true probability distribution of random variable is often assumed to

be either known or can be recovered via empirical data which do not contain any noise.

In practice, however, empirical data may contain some noise, and it is unclear whether

a statistical estimator such as the optimal value of a preference robust optimization

model based on those data is still reliable. Thus in this chapter, we will investigate this

issue in the context of the PRMSR optimization model. We aims to derive moderate

conditions and identify appropriate metrics under which the optimal value of PRMSR

optimization model obtained based on the perceived data is close to that based on real

data.

71
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4.1 Introduction

4.1.1 Literature Review

Consider the following expected utility maximization problem:

max
x∈X

EP [u(f(x, ξ))],

where u : R → R is an increasing utility function, x ∈ X ⊂ Rn is a decision vector,

ξ : Ω → Rs is a vector of random variables defined over probability space (Ω,F ,P),

P := P ◦ ξ−1 is the probability measure on Rs induced by ξ and f : Rn ×Rs → R is a

continuous function.

By the well-known expected utility theory [83], there exists a utility function u(·) such

that the decision maker prefers prospect A to prospect B if and only if E[u(A)] ≥
E[u(B)]. A convex utility function means the decision maker is risk taking whereas

a concave utility function means risk averse and an affine utility function means risk

neutral. Our focus here is on the situation where the true utility function is unknown,

but it is possible to construct an ambiguity set of utility functions such that the true

utility function lies in the ambiguity set with high probability. Thus we consider the

following maximin preference robust optimization model:

V(P ) := max
x∈X

inf
u∈U

EP [u(f(x, ξ))],

where U denotes the ambiguity set of utility functions.

This kind of preference robust optimization model is first considered by Armbruster

and Delage [6] and it is rooted in stochastic dominance [28]. The structure of the

above model is largely determined by the ambiguity set U of the utility functions.

The work of Armbruster and Delage [6] considers an ambiguity set of utility functions

which meets some criteria such as risk averse, S-shaped and prudent. Instead of trying

to identify a single utility function the criteria, they develop a minimax preference

robust optimization model where the optimal decision is based on the worst utility

function from the ambiguity set and demonstrate how the minimax optimization prob-

lem can be reformulated as a finite dimensional linear programming problem. Delage

and Li [25] extend the research to risk management problem where the objective is the

Fölmer and Schied’s convex risk measure [32] and the uncertainty arises from decision

maker’s risk attitude. Haskell et al. [42] take it further by taking into account of am-

biguity about both decision maker’s utiltiy and probability distribution of underlying

exogenous uncertainty.

Hu and Mehortra [46] tackle the issue in a different manner. First, they propose a mo-



4.1 Introduction 73

ment type framework for constructing the ambiguity set of decision maker’s preference

which cover a wide range of approaches such as pairwise comparison, certainty equiva-

lent and stochastic dominance. Second, they consider a probabilistic representation of

the class of increasing convex utility functions by confining them to a compact interval

and scaling them to being bounded by 1. Third, they consider lower and upper bound

of the true unknown utility function, and propose a piecewise linear approximation

of the functions in the bounds for deriving tractable reformulation of the preference

robust optimization model.

In all these preference robust optimization models, the true probability distribution

is assumed to be either known or can be recovered via empirical data which do not

contain any noise. However, it is unclear whether a statistical estimator such as the

optimal value of a preference robust optimization model based on the data with noise

is still reliable. Specifically, let QN denote the the empirical distribution based on the

data with noise and PN the data with the noise detached, we ask whether V(QN) is

close to V(PN) under some metric when N is sufficiently large. This issue is also known

as statistical robustness in the literature of statistics [48]. The concept of statistical

robustness can be traced back to the work of Hampel [41], and it has been popularized

over the years particularly with monographs [48,49].

A research by Cont et al. [22] defines the notion of qualitative robustness 1 of a risk

estimator and uses it to examine the robustness of various risk estimators derived from

empirical data. They demonstrate that the historical estimator of any spectral risk

measure is not robust. The work of Krätschmer et al. [53] proposes and analyses a

refined notion of qualitative robustness that applies to tail-dependent law-invariant

convex risk measures on Orlicz spaces.

4.1.2 Contribution

Our research in this chapter concerns the issue that the optimal value obtained from

solving the PRMSR optimization model with perceived data may perform differently

from it’s true counterpart. We fill up this significant gap by providing a comprehensive

study of the statistical robustness of the PRMSR optimization model. Specifically, we

derive moderate sufficient conditions under which the optimal value changes continu-

ously against small variation of the probability distribution which paves the way for

the analysis of statistical robustness. Compared with the standard stability analysis in

stochastic programming [71], our result shows interactions between the tail behaviours

of probability distribution and loss function through some specified topology under

which the continuity is established.

1 Throughout this chapter, we use terminology statistical robustness to avoid confusion with other notions
of robustness.
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Moreover, we identify appropriate metrics under which the statistical estimator of the

optimal value is uniformly asymptotically consistent. This result is associated with

convergence analysis of sample average approximation [74], while the uniformity re-

quirement makes the analysis much more challenging. This result gives a theoretical

basis for discrete approximation in the PRMSR optimization model where true proba-

bility distribution is continuous, and it is important in developing tractable numerical

schemes for the PRMSR optimization model.

We demonstrate statistical robustness of the optimal value of the PRMSR optimization

model obtained based on the data generated by some distributions close to the true

distribution. Although the analysis follows from the framework of qualitative robust-

ness in [52, 53], the PRMSR optimization model includes minimax operations w.r.t.

z, t and l which needs more complex mathematical treatment.

4.1.3 Structure

The remainder of this chapter is structured as follows: In section 4.2, we recall the

PRMSR optimization model and make a preliminary analysis of the statistical robust-

ness. In section 4.3, we recall some basic concepts and results about ψ-weak topology

and show continuity of ϑ(·) (the optimal value of PRMSR optimization model) near P .

In section 4.4, we introduce the Uniform Glivenko-Cantelli property and derive uniform

consistency of ϑ(PN) to ϑ(P ). In section 4.5, we establish the statistical robustness of

the estimator of ϑ(·).

4.2 Preliminary Description

Consider a financial position c(z, ξ(ω)) associated with decision variable z ∈ Z ⊂ Rn

and random variable ξ(ω). Let L be a set of increasing and not constant loss functions

l : Rn → R. We first recall the preference robust multivariate utility-based shortfall

risk measure (PRMSR) optimization model defined as in Chapter 3:

(PRMSR-Opti)
min

z∈Z,t∈R
t

s.t. sup
l∈L

EP [l(−c(z, ξ)− td)− l(−Y (ξ))] ≤ 0,
(4.2.1)

where ξ : (Ω,F ,P)→ Ξ ⊂ Rs, P := P ◦ ξ−1 is the probability measure on Rs induced

by ξ and c(z, ξ) : Z × Ξ→ Rn is a continuous function, Y is a benchmark, d ∈ D is a

preset weighting vector and

D =

{
d ∈ Rn :

n∑
i=1

di = 1, di > 0

}
.
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In the PRMSR optimization model, we assume the true probability distribution P

can be recovered from empirical data. In practice, however, the perceived empirical

data may contain some noise, and it is differ from the real data generated by P . The

discrepancy may have an impact on the quality of the optimal value obtained from

solving the PRMSR optimization model with perceived empirical data. Thus it may

be interesting to examine insensitivity of the optimal value of the PRMSR optimization

model to the deviation of empirical distributions from the true.

For simplicity of exposition, we assume that the probability space (Ω,F ,P) is atomless.

The assumption is common in the literature of statistical robustness, see [53]. The

assumption excludes all discrete distributions and we will focus on the case where P

follows a continuous distribution in the following discussion. Throughout this chapter,

we use P(Rs) to denote the set of all probability measures on Rs.

Let P,Q ∈ P(Rs). Let ξ1, . . . , ξN and ξ̃1, . . . , ξ̃N be iid samples generated by P and

Q respectively. We write empirical distribution

PN(·) :=
1

N

N∑
i=1

1ξi(·) (4.2.2)

if the samples are generated by P and

QN(·) :=
1

N

N∑
i=1

1ξ̃i(·) (4.2.3)

if the samples are generated by Q, where 1ξ̃(·) denotes the Dirac measure at ξ̃. We

refer to P as the true probability distribution and Q its perturbation. In practice,

samples are often obtained from empirical data which contain some noise. This means

the samples are generated by Q rather than P . In this setup, samples of P are not

obtainable and PN(·) is defined only for theoretical analysis.

Let ϑ(·) denote the optimal value of (PRMSR-Opti). It is obvious that ϑ(QN) is a

statistical estimator of ϑ(Q) rather than the true robust optimal value ϑ(P ), so we are

interested in how close ϑ(QN) is to ϑ(PN) (a statistical estimator of ϑ(P )) under some

metric. If ϑ(QN) is close to ϑ(PN), then it is safe to use ϑ(QN) as an estimate of ϑ(P ).

Note that there is a distinction between traditional stability analysis in stochastic

programming and statistical robustness. The former concentrate on the convergence of

ϑ(PN) to ϑ(P ) or continuity of ϑ(·) near P . The latter requires not only the continuity

of ϑ(·) near P but also convergence of ϑ(QN) to ϑ(Q) uniformly for all Q near P .
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4.3 Continuity of ϑ(P )

A key step to establish statistical robustness of the estimator of ϑ(·) is to show conti-

nuity of ϑ(P ′) when P ′ is near the true probability distribution P under some metric.

4.3.1 ψ-Weak Topology

Let us recall some basic concepts of ψ-weak topology which are needed in the forthcom-

ing discussions. The materials are mainly extracted from [21], and references therein

for a more comprehensive discussion on the subject.

Definition 4.3.1 Let ψ : Rs → [0,∞) be a continuous function and

Mψ :=

{
P ′ ∈P(Rs) :

∫
Rs
ψ(ξ)P ′(dξ) <∞

}
.

Note that Mψ defines a subset of probability measures in P(Rs) which satisfies the

generalized moment condition of ψ.

Definition 4.3.2 (ψ-weak topology) Let ψ : Rs → [0,∞) be a gauge function, that

is, ψ is continuous and there exists a compact set such that ψ ≥ 1 holds outside the

compact set. Let Hψ be the linear space of all continuous functions h : Rs → R for

which there exists a positive constant c such that

|h(ξ)| ≤ c(ψ(ξ) + 1), ∀ξ ∈ Rs.

The ψ-weak topology, denoted by τψ, is the coarsest topology on Mψ for which the

mapping H :Mψ → R defined by

H(P ′) :=

∫
Rs
h(ξ)P ′(dξ), h ∈ Hψ

is continuous. A sequence {Pk} ⊂ Mψ is said to convergence ψ-weakly to P ∈ Mψ

written Pk
ψ→ P if it converges w.r.t. τψ.

By Krätschmer et al. [52], ψ-weak convergence implies weak convergence, denoted by

Pk
w→ P , and ∫

Rs
ψ(ξ)Pk(dξ)→

∫
Rs
ψ(ξ)P (dξ)

as k →∞.
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Definition 4.3.3 (Uniform integrating set) Let ψ : Rs → [0,∞) be a gauge func-

tion. A set M ⊂Mψ is said to be locally uniformly ψ-integrating if for any P ′ ∈ M
there exists some open neighborhood N of P ′ w.r.t. the topology of weak convergence

such that

lim
γ→∞

sup
P ′′∈N∩M

∫
{ξ∈Rs:ψ(ξ)≥γ}

ψ(ξ)P ′′(dξ) = 0.

It is well known that the relative ψ-weak topology on M ⊂ Mψ coincides with the

relative weak topology of weak convergence on M if and only if M is locally uni-

formly ψ-integrating [87, Lemma 3.4]. In the forthcoming discussions, we will use this

equivalence.

4.3.2 Continuity of ϑ(P )

Let us start by deriving a gauge function which majorizes l(−c(z, ξ)−td) and l(−Y (ξ)).

To ease the exposition, let

vP (z, t) := sup
l∈L

EP [l(−c(z, ξ)− td)− l(−Y (ξ))], (4.3.1)

and rewrite (4.2.1) as

(PRMSR-Opti)
min

z∈Z,t∈R
t

s.t. vP (z, t) ≤ 0
(4.3.2)

Let FP denote the feasible set of problem (PRMSR-Opti). Throughout this section,

we let Assumption 3.4.1 hold and making the following assumptions.

Assumption 4.3.1 (Growth condition) Let c(·, ·) and Y (·) be defined as in the

problem (PRMSR-Opti). Let t ∈ T ⊂ R and T be a compact set. There is an ex-

ponent β > 0 and some locally bounded function g : Rn → R such that

‖ − c(z, ξ)− td‖ ≤ g(z)(‖ξ‖β + 1), ∀(z, ξ) ∈ Z × Ξ, t ∈ T, d ∈ D (4.3.3)

and

‖ − Y (ξ)‖ ≤ g(z)(‖ξ‖β + 1), ∀ξ ∈ Ξ. (4.3.4)

Note that g(·) is said to be a locally bounded function if the convergence of {zN}
implies the boundedness of {g(zN)}.
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Let C := supz∈Z g(z). Since Z is assumed to be a compact set, then C <∞. We assume

without loss of generality that C ≥ 1. Let

ψ(ξ) := max

(
sup
l∈L

l(C(‖ξ‖β + 1)), sup
l∈L
−l(−C(‖ξ‖β + 1))

)
. (4.3.5)

Then the growth condition and monotonic increasing property of l(·) imply for all

(z, ξ) ∈ Z × Ξ, t ∈ T, d ∈ D and l ∈ L,

l(−c(z, ξ)− td) ≤ l(C(‖ξ‖β + 1)) ≤ ψ(ξ) for c(z, ξ) + td ≤ 0,

−l(−c(z, ξ)− td) ≤ −l(−C(‖ξ‖β + 1)) ≤ ψ(ξ) for c(z, ξ) + td ≥ 0,

which means

|l(−c(z, ξ)− td)| ≤ ψ(ξ), ∀(z, ξ) ∈ Z × Ξ, t ∈ T, d ∈ D, l ∈ L. (4.3.6)

Likewise, we have

|l(−Y (ξ))| ≤ ψ(ξ), ∀ξ ∈ Ξ, l ∈ L. (4.3.7)

Assumption 4.3.2 Let ψ(·) be defined as in (4.3.5) and P ∈ Mψ. Let {Pk} ⊂ Mψ

be a sequence of probability measures such that Pk
ψ→ P . There exists a sequence

of monotonically increasing numbers {rN} where rN → ∞ such that for any fixed

r ∈ {rN}, P (‖ξ‖ = r) = 0,

lim
k→∞

sup
z,t,d

sup
l∈L

∣∣∣∣∫
{ξ∈Rs:‖ξ‖≤r}

l(−c(z, ξ)− td)Pk(dξ)

−
∫
{ξ∈Rs:‖ξ‖≤r}

l(−c(z, ξ)− td)P (dξ)

∣∣∣∣ = 0 (4.3.8)

and

lim
k→∞

sup
l∈L

∣∣∣∣∫
{ξ∈Rs:‖ξ‖≤r}

l(−Y (ξ))Pk(dξ)

−
∫
{ξ∈Rs:‖ξ‖≤r}

l(−Y (ξ))P (dξ)

∣∣∣∣ = 0 (4.3.9)

Based on [66, Theorem 3.2] we can establish equalities (4.3.8) and (4.3.9) under condi-

tions: (a) l(·) is uniformly Lipschitz continuous with a bounded modulus for all l ∈ L
and (b) Assumption 4.3.1 holds. Condition P (‖ξ‖ = r) = 0 is fulfilled when P is

non-atomic. Note that the setting of (4.3.8) and (4.3.9) does not fit to the framework

of [66, Theorem 3.2] exactly as the range of the integral in our case is bounded whereas

the range of the integral in [66, Theorem 3.2] is over the whole space. However, un-

der condition (a) we are able to show the class of loss functions l are equicontinuous

and together with (b), we can show that (4.3.8) and (4.3.9) hold by a similar proof
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to [66, Theorem 3.2] based on the equicontinuity condition and condition (b).

We let Pk
ψ→ P and consider the problem

min
z∈Z,t∈R

t

s.t. sup
l∈L

EPk [l(−c(z, ξ)− td)− l(−Y (ξ))] ≤ 0.
(4.3.10)

To ease the exposition, let

vPk(z, t) := sup
l∈L

EPk [l(−c(z, ξ)− td)− l(−Y (ξ))] (4.3.11)

and rewrite (4.3.10) as

(Opti-Pk)
min

z∈Z,t∈R
t

s.t. vPk(z, t) ≤ 0.
(4.3.12)

We use FPk and ϑ(Pk) to denote the feasible set and the optimal value of problem

(Opti-Pk) respectively.

Theorem 4.3.1 (Continuity) Let vP (·, ·) and ψ(·) be defined as in (4.3.1) and (4.3.5).

Suppose that c(·, ξ) is a concave function. Then under Assumptions 3.4.1, 4.3.1 and

4.3.2,

(i)

lim
P ′

ψ→P
vP ′(z, t) = vP (z, t) (4.3.13)

(ii)

lim
P ′

ψ→P
ϑ(P ′) = ϑ(P ). (4.3.14)

Proof. It follows by [49, Theorem 2.15] thatMψ is a Polish space. Thus it suffices to

show (4.3.13) and (4.3.14) for any sequence {Pk} ⊂ Mψ converging to P ∈Mψ under

ψ-weak topology.

Part (i). Since Pk
ψ→ P , then Pk

w→ P and

lim
k→∞

∫
Rs
ψ(ξ)Pk(dξ) =

∫
Rs
ψ(ξ)P (dξ).
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Under the growth condition, we have via (4.3.6)

lim
r→∞

sup
z,t,d

sup
l∈L

∫
{ξ∈Rs:‖ξ‖>r}

|l(−c(z, ξ)− td)|Pk(dξ)

≤ lim
r→∞

∫
{ξ∈Rs:‖ξ‖>r}

ψ(ξ)Pk(dξ) = 0.
(4.3.15)

The last equality is due to the fact that {Pk} ⊂ Mψ and [52, Lemma 3.4], that is,

ψ-weak convergence implies weak convergence and uniform integrating property. Note

that since ψ(·) is defined as in (4.3.5), we have ψ(ξ) → ∞ as ‖ξ‖ → ∞. Similarly,

since P ∈Mψ, we have

lim
r→∞

sup
z,t,d

sup
l∈L

∫
{ξ∈Rs:‖ξ‖>r}

|l(−c(z, ξ)− td)|P (dξ)

≤ lim
r→∞

∫
{ξ∈Rs:‖ξ‖>r}

ψ(ξ)P (dξ) = 0.
(4.3.16)

On the other hand, under Assumption 4.3.2, we can choose those r such that P (‖ξ‖ =

r) = 0 and

lim
k→∞

sup
z,t,d

sup
l∈L

∣∣∣∣∫
{ξ∈Rs:‖ξ‖≤r}

l(−c(z, ξ)− td)Pk(dξ)

−
∫
{ξ∈Rs:‖ξ‖≤r}

l(−c(z, ξ)− td)P (dξ)

∣∣∣∣ = 0. (4.3.17)

Combing (4.3.15), (4.3.16) and (4.3.17), we obtain

lim
k→∞

sup
z,t,d

sup
l∈L

∣∣∣∣∫
Rs
l(−c(z, ξ)− td)Pk(dξ)

−
∫
Rs
l(−c(z, ξ)− td)P (dξ)

∣∣∣∣ = 0. (4.3.18)

Likewise, we have

lim
k→∞

sup
l∈L

∣∣∣∣∫
Rs
l(−Y (ξ))Pk(dξ)

−
∫
Rs
l(−Y (ξ))P (dξ)

∣∣∣∣ = 0. (4.3.19)

Combing (4.3.18) and (4.3.19), we obtain

lim
k→∞

sup
z,t,d

∣∣∣∣sup
l∈L

EPk [l(−c(z, ξ)− td)− l(−Y (ξ))]

− sup
l∈L

EP [l(−c(z, ξ)− td)− l(−Y (ξ))]

∣∣∣∣ = 0, (4.3.20)

which implies (4.3.13).
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Part (ii). The proof is similar to that of Theorem 3.4.2 Part (i), we include a proof in

Appendix G for self-containedness. �

Note that the stability result (4.3.14) requires perturbation of P ′ from P under topology

of ψ-weak convergence. Since ψ captures the growth of c(z, ξ) and l, it means that if

ψ is steep w.r.t. growth of ξ either due to the significance of loss or due to the sharp

increase of the loss function l at the tail would make the optimal value function ϑ(·)
less stable.

4.4 Uniform Consistency

In this section, we show the uniform consistency of vPN (z, t) to vP (z, t), that is, the

convergence of vPN (z, t) to vP (z, t) for all P in a subset of P(Rs), and its uniformity

w.r.t. z, the latter leads to uniform consistency of ϑ(PN) to ϑ(P ). Here

vPN (z, t) := sup
l∈L

EPN [l(−c(z, ξ)− td)− l(−Y (ξ))] (4.4.1)

and the approximate problem of (PRMSR-Opti) takes the form

(Opti-PN)
min

z∈Z,t∈R
t

s.t. vPN (z, t) ≤ 0.
(4.4.2)

The convergence result is important because in the literature of preference robust

optimization models, tractable formulations rely on PN (discrete approximation of P )

when P is continuously distributed.

It follows by [52, 53] that the ψ-weak topology on Mψ is generated by the metric

dψ :Mψ ×Mψ → R defined by

dψ(P ′, P ′′) := dProk(P ′, P ′′) +

∣∣∣∣∫
Rs
ψ(ξ)P ′(dξ)−

∫
Rs
ψ(ξ)P ′′(dξ)

∣∣∣∣ , (4.4.3)

for P ′, P ′′ ∈Mψ, where dProk : P(Rs)×P(Rs)→ R+ is the Prokhorov metric

dProk(P ′, P ′′) := inf{ε > 0 : P ′(A) ≤ P ′′(Aε) + ε,∀A ∈ B(Rs)}, (4.4.4)

where Aε := A + Bε(0) denotes the Minkowski sum of A and the open ball centred at

0 (w.r.t. Euclidean norm) and B(Rs) denotes the Borel σ-algebra on Rs.

Let (Rs)⊗N denote the Cartesian productRs×. . .×Rs and B(Rs)⊗N its Borel σ-algebra.

Let P⊗N denote the probability measure on the measurable space ((Rs)⊗N ,B(Rs)⊗N)

with marginal P on each (Rs,B(Rs)) and Q⊗N with marginal Q. We recall the def-
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inition of Uniform Glivenko-Cantelli (UGC) property based on [52] for forthcoming

discussion.

Definition 4.4.1 (UGC property) Let ψ be a gauge function and dψ be defined as

in (4.4.3). Let M be a subset of Mψ. The metric space (M,dψ) has UGC property if

for any ε > 0 and δ > 0, there exists N0 ∈ N such that for all P ∈M and N ≥ N0

P⊗N [(ξ1, . . . , ξN) : dψ(P, PN) ≥ δ] ≤ ε. (4.4.5)

The UGC property states that for every empirical probability measure PN generated

by P ∈M, PN is close to P under the metric dψ when N is sufficiently large.

Theorem 4.4.1 (Uniform consistency) Let ψ be defined as in (4.3.5) and

Mψp

κ :=

{
P ∈P(Rs) :

∫
Rs
ψ(ξ)pP (dξ) ≤ κ

}
(4.4.6)

for some fixed p > 1 and κ > 0. Let M ⊂ Mψp

κ be a compact set. If Assumptions

4.3.1 and 4.3.2 hold, then for any ε > 0 and δ > 0, there exists N0 ∈ N such that for

all P ∈M and N ≥ N0

(i)

P⊗N
[{

ξ ∈ (Rs)N : sup
z,t,d
|vPN (z, t)− vP (z, t)| ≥ δ

}]
≤ ε (4.4.7)

(ii)

P⊗N
[{
ξ ∈ (Rs)N : |ϑ(PN)− ϑ(P )| ≥ δ

}]
≤ ε. (4.4.8)

Proof. Part (i). By [52, Corollary 3.5], (Mψp

κ ,dψp) has the UGC property which

means that for any ε > 0 and δ > 0, there exists N0 ∈ N such that

P⊗N [{ξ ∈ (Rs)N : dψp(P, PN) ≥ δ}] ≤ ε,∀P ∈Mψp

κ (4.4.9)

for all N ≥ N0. For each fixed P as such, we may set r large enough so that P (‖ξ‖ =

r) = 0 and

sup
z,t,d

sup
l∈L

∣∣∣∣∫
{ξ∈Rs:‖ξ‖>r}

l(−c(z, ξ)− td)P (dξ)

∣∣∣∣ ≤ ∫
{ξ∈Rs:‖ξ‖>r}

ψ(ξ)P (dξ) ≤ δ

8
. (4.4.10)
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On the other hand, by (4.4.9) and [21, Lemma 2.61],

P⊗N
[
sup
z,t,d

sup
l∈L

∣∣∣∣∫
{ξ∈Rs:‖ξ‖>r}

l(−c(z, ξ)− td)PN(dξ)

∣∣∣∣ ≥ δ

8

]
≤ P⊗N

[∫
{ξ∈Rs:‖ξ‖>r}

ψ(ξ)PN(dξ) ≥ δ

8

]
≤ ε

4

(4.4.11)

for all N ≥ N0 and N0 sufficiently large. Moreover, by Assumption 4.3.2 and (4.4.9),

P⊗N
[
sup
z,t,d

sup
l∈L

∣∣∣∣∫
{ξ∈Rs:‖ξ‖≤r}

l(−c(z, ξ)− td)PN(dξ)

−
∫
{ξ∈Rs:‖ξ‖≤r}

l(−c(z, ξ)− td)P (dξ)

∣∣∣∣ ≥ δ

4

]
≤ ε

4
(4.4.12)

for all N ≥ N0 and N0 sufficiently large. Combining (4.4.10), (4.4.11) and (4.4.12), we

obtain

P⊗N
[
sup
z,t,d

sup
l∈L

∣∣∣∣∫
Rs
l(−c(z, ξ)− td)PN(dξ)

−
∫
Rs
l(−c(z, ξ)− td)P (dξ)

∣∣∣∣ ≥ δ

2

]
≤ ε

2
(4.4.13)

for fixed P ∈M.

Next we show the uniformity of (4.4.13) w.r.t. P . Assume for the sake of a contradiction

that there exist some positive numbers ε0 and δ0 such that for any v ∈ N, there exist

v′ > v, Pv′ ∈M and some Nv′ > v such that

P
⊗Nv′
v′

[
sup
z,t,d

sup
l∈L

∣∣∣∣∫
Rs
l(−c(z, ξ)− td)PNv′ (dξ)

−
∫
Rs
l(−c(z, ξ)− td)Pv′(dξ)

∣∣∣∣ ≥ δ0

]
> ε0. (4.4.14)

Let v increase. Then we obtain a sequence of {Pv′} which satisfies (4.4.14). Since M
is a compact set under the ψ-weak topology, then {Pv′} has a converging subsequence.

Assume without loss of generality that Pv′
ψ→ P∗ ∈ M. It follows by [40, Lemma 2.1]

that the convergence implies∫
Rs
l(−c(z, ξ)− td)Pv(dξ)→

∫
Rs
l(−c(z, ξ)− td)P∗(dξ).

On the other hand, since {PNv} converges ψ-weakly to P∗ as v increase, we can obtain

P⊗Nv∗

[
sup
z,t,d

sup
l∈L

∣∣∣∣∫
Rs
l(−c(z, ξ)− td)PNv(dξ)

−
∫
Rs
l(−c(z, ξ)− td)P∗(dξ)

∣∣∣∣ ≥ δ0

2

]
<
ε0
2
, (4.4.15)
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which leads to a contradiction as desired. Thus the inequality (4.4.13) holds for all

P ∈M.

Likewise, we have

P⊗N
[
sup
l∈L

∣∣∣∣∫
Rs
l(−Y (ξ))PN(dξ)−

∫
Rs
l(−Y (ξ))P (dξ)

∣∣∣∣ ≥ δ

]
≤ ε,∀P ∈M (4.4.16)

for all N ≥ N0 and N0 sufficiently large. Hence the inequality (4.4.7) holds.

Part (ii). It is analogous to the proof of Theorem 4.3.1. �

We make a few comments on the conditions and results of Theorem 4.4.1. First, the

set of probability measuresMψp

κ is determined by the nature of function ψ which is in

turn dependent on the growth of c(z, ξ) and the loss function l. In fact only the tail

properties of l and c affect the set. Roughly speaking, the heavier the tails, the smaller

the set Mψp

κ will be. Second, in comparison with the convergence results in Theorem

3.4.2, the convergence result (4.4.8) focuses on uniform convergence of ϑ(PN) to ϑ(P )

for all P in M rather than the rate of convergence for a fixed P . Third, when Ξ is a

compact set, Mψp

κ = P(Ξ) for κ sufficiently large.

4.5 Statistical Robustness

In this section, we use the UGC property to derive statistical robustness of the esti-

mator of ϑ(·). Let us start by recalling the definition of statistical robustness based on

Krätschmer et al. [53].

Definition 4.5.1 (Statistical robustness) Let M ⊂ P(Rs) be a set of probability

measures and dψ be defined as in (4.4.3) for some gauge function ψ : Rs → R. A

statistical estimator V(·) : M → R is said to be robust on M with respect to dψ and

dProk if for all P ∈M and ε > 0, there exist δ > 0 and N0 ∈ N such that

Q ∈M,dψ(P,Q) ≤ δ =⇒ dProk

(
P⊗N ◦ V(PN)−1, Q⊗N ◦ V(QN)−1

)
≤ ε,∀N ≥ N0,

where V(PN) and V(QN) map from (Rs)⊗N to R and provide an estimator for V(P )

and V(Q) respectively.

The definition is based on Hampel’s classical concept of qualitative robustness [41] of

an estimator requires that a small change in the law of the data results in only small

changes in the law of the estimator.
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Theorem 4.5.1 (Statistical robustness) Let ψ and Mψp

κ be defined as in (4.3.5)

and (4.4.6). Let M ⊂ Mψp

κ be a compact set with p > 1. Assume in addition that

Assumptions 4.3.1 and 4.3.2 hold. Then for any P ∈M and ε > 0, there exist positive

numbers δ and N0 ∈ N such that

Q ∈M,dψp(P,Q) ≤ δ =⇒ dProk

(
P⊗N ◦ ϑ(PN)−1, Q⊗N ◦ ϑ(QN)−1

)
≤ ε (4.5.1)

for all N ≥ N0.

Proof. By the triangle inequality, we have

dProk

(
P⊗N ◦ ϑ(PN)−1, Q⊗N ◦ ϑ(QN)−1

)
≤ dProk

(
P⊗N ◦ ϑ(PN)−1,1ϑ(P )

)
+ dProk

(
1ϑ(P ), Q

⊗N ◦ ϑ(QN)−1
)
,

where 1x denote the Dirac measure at x ∈ R. It suffices to show existence of appro-

priate positive numbers δ and N0 ∈ N such that for Q ∈ M with dψp(P,Q) ≤ δ, we

have

dProk

(
P⊗N ◦ ϑ(PN)−1,1ϑ(P )

)
≤ ε

2
(4.5.2)

and

dProk

(
1ϑ(P ), Q

⊗N ◦ ϑ(QN)−1
)
≤ ε

2
(4.5.3)

for all N ≥ N0. By Strassen’s theorem [49, Theorem 2.13], (4.5.2) and (4.5.3) are

implied respectively by

P⊗N
[{
ξ ∈ (Rs)N : |ϑ(PN)− ϑ(P )| ≤ ε

2

}]
≥ 1− ε

2
(4.5.4)

and

Q⊗N
[{
ξ ∈ (Rs)N : |ϑ(P )− ϑ(QN)| ≤ ε

2

}]
≥ 1− ε

2
. (4.5.5)

Note that (4.5.4) follows from Theorem 4.4.1. Thus we are left to prove (4.5.5). Note

that

|ϑ(P )− ϑ(QN)| ≤ |ϑ(P )− ϑ(Q)|+ |ϑ(Q)− ϑ(QN)|.

It follows by Theorem 4.3.1 that we can choose δ sufficiently small such that when

dψp(P,Q) ≤ δ, we have

|ϑ(P )− ϑ(Q)| ≤ ε

4
. (4.5.6)

Analogous to (4.5.4), we have from Theorem 4.4.1

Q⊗N
[{
ξ ∈ (Rs)N : |ϑ(Q)− ϑ(QN)| ≤ ε

4

}]
≥ 1− ε

2
(4.5.7)

for all N ≥ N0. Combining (4.5.6) and (4.5.7), we have (4.5.5) holds. �

Theorem 4.5.1 provides a theoretical guarantee that if the perceived data is generated

by some probability distribution Q which is close to the true distribution P and Q
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satisfies moment condition (4.4.6), then the optimal value obtained with the perceived

data is close to the one with real data.

As we discussed after Theorem 4.4.1, the set of probability measuresMψp

κ is determined

by the tail properties of c(z, ξ) and loss function l. The heavier the tails, the smaller the

setMψp

κ will be, which means less plausible probability distributions may be considered

for the perturbation in the left hand side of (4.5.1) and consequently less chances for

the statistical estimator of the optimal value to be robust (satisfying the inequality at

the right hand side of (4.5.1)).



Chapter 5

Summary and Future Directions

Optimal decision making problems naturally arise in many fields of engineering and

management science. Decision makers often face underlying exogenous and endogenous

uncertainties when taking decisions. Such uncertainties are outside the deciders’ control

and knowledge at the time of the decisions and will affect the desired outcome. In

this thesis, we focus on this issue and propose some efficient models to deal with the

uncertainties. The following sections summarize this thesis and identify some promising

directions for future research.

5.1 Summary

Chapter 2. In Chapter 2, we introduce a utility-based reward-risk ratio (URR) opti-

mization model and consider a situation where the true probability distribution of the

underlying random variables is unknown. To mitigate the risk arising from ambiguity

of the true probability distribution, we propose a distributionally robust utility-based

reward-risk ratio (DRURR) optimization model where the ambiguity set of probability

distribution is constructed through prior moment information.

We reformulate the DRURR optimization model as a mathematical program with

robust inequality constraints and further transform it into a nonlinear semi-infinite

programming problem through the Lagrange dualization. We then apply the entropic

approximation scheme to deal with the semi-infinite constraints and show the stabili-

ty of the approximated optimization problem, and consequently propose a numerical

scheme to solve it.

We also investigate a specific case that the ambiguity set is determined by the mean

and covariance, and use box constraints for each component of the two quantities.

We demonstrate that the true probability distribution lies in the ambiguity set with

87
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a high likelihood, and the optimal value and the optimal solutions obtained on the

basis of the ambiguity set converge to their true counterpart. We apply the DRURR

optimization model to a portfolio selection problem, and the numerical test results

show some promising performance of our model and numerical scheme.

Chapter 3. In Chapter 3, we introduce a multivariate utility-based shortfall risk

measure (MSR) and consider a situation where a decision makers true loss function

is unknown but it is possible to elicit a set of plausible loss functions with partial

information, and consequently propose a preference robust multivariate utility-based

shortfall risk measure (PRMSR). We demonstrate that MSR and PRMSR are convex

risk measures and define the domains of MSR and PRMSR.

We apply the PRMSR to an optimal decision making problem. Considering the case

that the underlying probability distribution is continuous, we propose a sample average

approximation scheme and show that it converges to the true problem in terms of the

optimal value and the optimal solutions as the sample size increases. A tractable for-

mulation is developed for the approximated optimization problem when the ambiguity

set of loss functions is defined with some specified characteristics. Some numerical

studies are also given to examine the efficiency of the proposed robust model.

Chapter 4. In Chapter 4, we consider a situation where the true probability dis-

tribution P is approximated by empirical data and the data may contain some noise

which means the data are not exactly generated by P , rather they are generated by a

perturbed distribution Q from P . Under these circumstances, we examine the quality

of the optimal value ϑ(·) obtained from solving the PRMSR optimization model with

the empirical data.

We derive moderate sufficient conditions under which ϑ(·) changes continuously against

small variation of the true probability distribution P and identify appropriate metrics

under which ϑ(PN) uniformly converges ϑ(P ). We establish statistical robustness of

estimator of ϑ(·), that is, ϑ(QN) is close to ϑ(PN) under the Prokhorov metric when

N is sufficiently large as long as Q is close to P .

5.2 Future Directions

There are several research directions which can be taken to extend the works in this

thesis:

• In Chapter 2, we consider the situation where there is an ambiguity about the

underlying probability distribution in the URR optimization model but assume

the utility function in the definition of URR is known. We may take it further by
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taking into account of ambiguity about both decision makers risk preference and

underlying probability distribution in the URR optimization model.

• In Chapter 3, we assume that the loss function in the definition of MSR is convex.

In the future work, we may consider the case that the loss function has different

shapes, such as quasi-convex or S-shaped. In addition, we may take it further by

considering the situation where the direction d in the definition of MSR is also

ambiguous since in this work we assume that the direction d is known.

• In Chapter 3, we demonstrate that when L ⊆ L then PRMSR is equal to the

worst case MSR associated with the loss function l chosen from the ambiguity set

L. In the future work, we may investigate whether the worst of a set of MSR with

some specified characteristics such as positive homogeneity can be represented as

PRMSR by defining an appropriate ambiguity set of loss functions.

• In Chapter 4, we derive moderate sufficient conditions under which the opti-

mal value of (PRMSR-Opti) is statistically robust against perturbation of the

exogenous uncertainty data. In the future work, we may investigate statistical

robustness of the estimators of the optimal solutions for (PRMSR-Opti) as well.





Appendix A

Reformulation as A Semi-Infinite

Programming Problem

Let us recall the problem (2.2.13)

inf
x∈X,γ∈R

−γ

s.t. sup
P∈P

EP [H(x, ξ, γ)] ≤ 0,

and the ambiguity set P constructed in (2.3.1)

P :=

{
P ∈P :

EP [ψi(ξ)] = 0, i = 1, . . . , p

EP [ψi(ξ)] ≤ 0, i = p+ 1, . . . , q

}
.

Consider the constraint of probelm (2.2.13) with the ambiguity set P ,

sup
P∈P

EP [H(x, ξ, γ)]

s.t. EP [ψi(ξ)] = 0, i = 1, . . . , p

EP [ψi(ξ)] ≤ 0, i = p+ 1, . . . , q

EP [1Ξ(ξ)] = 1,

where 1Ξ(ξ) :=

{
1, ξ ∈ Ξ,

0, ξ /∈ Ξ.

The Lagrangian function can be defined as

L(P, λ, µ) = EP [H(x, ξ, γ)− Σq
i=1λiψi(ξ)− µ1Ξ(ξ)] + µ,

91



92 Reformulation as A Semi-Infinite Programming Problem

and the Lagrangian dual problem is

inf
µ,λ

µ

s.t. H(x, ξ, γ)− Σq
i=1λiψi(ξ) ≤ µ1Ξ(ξ), ∀ξ ∈ Ξ,

λi ≥ 0, i = p+ 1, . . . , q.

(A1)

Problem (A1) can be reformulated as

sup
ξ∈Ξ

H(x, ξ, γ)− Σq
i=1λiψi(ξ)

s.t. λi ≥ 0, i = p+ 1, . . . , q.

Then we can reformulate problem (2.2.13) as follows:

inf
x∈X,γ∈R,λ∈Rp×Rq−p+

−γ

s.t. supξ∈Ξ H(x, ξ, γ)−
∑q

i=1 λiψi(ξ) ≤ 0.



Appendix B

Entropic Approximation Parameter

α

In this work, we use the samples of the random variables to compute sample average

approximation (SAA) of the expected value in eα(·). In this case, the value of parameter

α may be estimated by the sample size and the tolerance. For example, suppose there

are 10 samples “Z1, . . . , Z10” in decreasing order, then

eα(−Z)− Z1 =
1

α
ln(1 + eα(Z2−Z1) + . . .+ eα(Z10−Z1))− 1

α
ln 10 ≤ 0.

Thus

|eα(−Z)−Z1| = Z1−eα(−Z) =
1

α
ln 10− 1

α
ln(1+eα(Z2−Z1)+. . .+eα(Z10−Z1)) ≤ 1

α
ln 10.

If the precision is ε, then we may set α ≥ ln 10
ε

.

In the numerical tests, we set ε = 0.01 and use SAA method with 1000 samples to

calculate the expectation in eα(Z) := 1
α

lnE[e−αZ ]. α = 700 ensures 1
700

ln(1000) <

0.01.
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Proof of Inequality (3.4.20)

Under Robinson’s error bound theorem, we have

d((z, t),F ∩ Z × T ) ≤ ∆

θ
max{v(z, t), 0}, ∀(z, t) ∈ Z × T (C1)

and

d((z, t),FN ∩ Z × T ) ≤ 2∆

δ
max{vN(z, t), 0}, ∀(z, t) ∈ Z × T, (C2)

where δ is a positive number and δ < θ.

Let (z′, t′) ∈ FN ∩ Z × T , then

d((z′, t′),F ∩ Z × T ) ≤ ∆
θ

max{v(z′, t′), 0} − ∆
θ

max{vN(z′, t′), 0}
≤ ∆

θ
|v(z′, t′)− vN(z′, t′)|

≤ ∆
θ

supz∈Z,t∈T |v(z, t)− vN(z, t)|.

The first inequality follows from (C1) and the fact that vN(z′, t′) ≤ 0. Thus

D(FN ∩ Z × T,F ∩ Z × T ) ≤ ∆

θ
sup

z∈Z,t∈T
|v(z, t)− vN(z, t)|. (C3)

Conversely, let (z′, t′) ∈ F ∩ Z × T . Then

d((z′, t′),FN ∩ Z × T ) ≤ 2∆
δ

max{vN(z′, t′), 0} − 2∆
δ

max{v(z′, t′), 0}
≤ 2∆

δ
|vN(z′, t′)− v(z′, t′)|

≤ 2∆
δ

supz∈Z,t∈T |vN(z, t)− v(z, t)|.

Thus

D(F ∩ Z × T,FN ∩ Z × T ) ≤ 2∆

δ
sup

z∈Z,t∈T
|vN(z, t)− v(z, t)|. (C4)
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Combining (C3) and (C4), we obtain

H(FN ∩ Z × T,F ∩ Z × T ) ≤ 2∆

δ
sup

z∈Z,t∈T
|vN(z, t)− v(z, t)|.



Appendix D

Computational Details

The first model (3.6.3): Let τ kij := (ξij(ωk)−zij)+ for i = 1, . . . ,m; j = 1, . . . , n; k =

1, . . . , N . Then τ kij can be written as

τ kij ≥ 0, and τ kij ≥ ξij(ωk)− zij.

Consequently (3.6.3) can be rewritten as

min
z,τ

N∑
k=1

pk

n∑
j=1

wj

m∑
i=1

τ kij

s.t. τ kij ≥ 0, i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , N,

τ kij ≥ ξij(ωk)− zij, i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , N,

z ∈ Z.

(D1)

Problem (D1) is a LP and can be easily solved by using e.g., fmincon or CVX in Matlab.

The second model (3.6.4): Let µj = CVaRαj(cj(z)(ω)) for j = 1, . . . , n. Then

there exists a η∗j ∈ R such that

µj ≥ η∗j +
1

1− αj
E[(cj(z)(ω)− η∗j )+], j = 1, . . . , n.

Let λkj = (cj(z)(ωk) − ηj)+ for j = 1, . . . , n, k = 1, . . . , N . Then (3.6.4) can be
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represented as

min
z,τ,λ,µ,η

n∑
j=1

µj

s.t. µj ≥ ηj +
1

1− αj

N∑
k=1

pkλ
k
j , j = 1, . . . , n,

λkj ≥
m∑
i=1

τ kij − ηj, j = 1, . . . , n; k = 1, . . . , N,

λkj ≥ 0, j = 1, . . . , n; k = 1, . . . , N,

τ kij ≥ ξij(ωk)− zij, i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , N,

τ kij ≥ 0, i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , N,

z ∈ Z.

(D2)

Problem (D2) is a LP and can be easily solved by using e.g., fmincon or CVX in Matlab.

The third model (3.6.5): We using the proposed tractable reformulation (3.5.12) to

solve (3.6.5). We assign values to components in Θ as follows:

θj =


Gk(ωi), for j = 2kN + i,

Bk(ωi), for j = (2k + 1)N + i,

Y (ωi), for j = 2(K + 1)N + i,

0, for j = (2K + 3)N + 1.

with i = 1, . . . , N ; k = 0, . . . , K. (D3)

To make the numerical formulation clear, we introduce some notations for our experi-

ments. The index of cities is i = 1, . . . ,m = 10; the index of criteria is j = 1, . . . , n = 4;

the index of scenarios is k = 1, . . . , N = 3; the index of θ is l = 1, . . . , J = 40; the

index of elicited pairs is q = 1, . . . , K = 5. There the numerical formulation for our

experiments of (3.5.12) is
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min
z,t,γ,τ,λ,µ,η,α,β,ν

t

s.t. τ + 〈κe,
N∑
k=1

αk +
J∑
l=1

βl〉 ≤ 0,

N∑
k=1

µkl +
J∑
l′=1

ηl′l −
J∑
l′=1

ηll′ +
K∑
q=1

λq(P (−Bq = θl)

−P (−Y = θl) + γP (−O = θl) + τP (−G0 = θl)

−τP (−B0 = θl)− P (−Gq = θl)) = 0, l = 1, . . . , J,

−pk(
m∑
i=1

νkij − tdj) +
J∑
l=1

µklθlj + αkj ≥ 0, k = 1, . . . , N ; j = 1, . . . , n,

J∑
l′=1

ηll′(θl′ − θl) + βl ≥ 0, l = 1, . . . , J,

J∑
l=1

µkl = pk, k = 1, . . . , N,

νkij ≥ ξij(ωk)− zij, i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , N,

νkij ≥ 0, i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , N,

λq ≥ 0, q = 1, . . . , K;

µkl ≥ 0, k = 1, . . . , N ; l = 1, . . . , J,

ηll′ ≥ 0, l = 1, . . . , J ; l′ = 1, . . . , J,

αk ≥ 0, k = 1, . . . , N,

βl ≥ 0, l = 1, . . . , J,

z ∈ Z.
(D4)

Problem (D4) is a LP and can be easily solved by using e.g., fmincon or CVX in Matlab.





Appendix E

Terrorism Losses Data Set

Table E.1 presents the raw data obtained from Hu et al. [45] and Haskell et al. [43]

which is used as the loss scenarios.

Cities
Property losses ($ million) Fatalities ($ million)

Reduced Standard Increased Reduced Standard Increased

New York 265 413 550 221 304 401
Chicago 77 115 150 38 54 73

San Francisco 38 57 81 16 24 36
Washington 21 36 59 16 29 48
Los Angeles 16 34 58 7 17 31
Philadelphia 8 21 28 5 9 13

Boston 8.3 18 26 8 12 17
Houston 6.7 11 15 6 9 12
Newark 0.8 7.3 12 0.1 4 9
Seattle 4 6.7 10 3 4 6

Cities
Air departures ($ million) Bridge traffic ($ million)

Reduced Standard Increased Reduced Standard Increased

New York 10.71 11.78 12.96 162.41 178.65 196.51
Chicago 18.13 19.94 21.94 86.81 95.50 105.04

San Francisco 9.56 8.69 10.51 75.62 83.18 91.50
Washington 7.83 8.61 9.47 69.43 76.38 84.01
Los Angeles 13.08 14.39 15.82 91.50 100.65 110.71
Philadelphia 6.19 6.81 7.49 52.34 57.57 63.33

Boston 5.28 5.80 6.38 182.18 200.40 220.44
Houston 9.52 10.47 11.52 84.04 92.44 101.68
Newark 5.82 6.40 7.04 141.09 155.19 170.71
Seattle 6.16 6.78 7.46 57.37 63.50 69.85

Table E.1: The random loss ξij(ω) for i = 1, . . . , 10, j = 1, . . . , 4 and |Ω| = 3.
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Elicited Comparison Data Set

In this case study, we define the prospects over three scenarios where each scenario

has an equal one-third probability of being realized. Since the elicited comparison

data set is designed as a questionnaire to ask the decision maker to obtain his/her

preference, the precise values of the comparison data set have slightly effect on the

elicited preference for decision makers. Therefore, we assume that for each prospect,

we generate the loss for attribute j for each scenario from the uniform distribution on[
r1 × min

i=1,...,10;ω∈Ω
{ξij(ω)}, r2 × max

i=1,...,10;ω∈Ω
{ξij(ω)}

]
, (D1)

where r1 < 1 < r2. To generate the elicited comparison data set in our experiments,

we set r1 = 0.5 and r2 = 2 and then the ranges to generate the realization for each

criterion are [0.4, 1100], [0.05, 802], [2.64, 43.88] and [26.17, 440.88]. Specifically, for

each criterion, we firstly generate three random realizations from (D1) and then assign

these values to different scenarios according to the risk levels, i.e., increased loss level

has the largest value, and so on. In our setting, the elicited comparison data set is

given in Table F.1.
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Criteria
Losses ($ million) (Gk) Losses ($ million) (Bk)

Reduced Standard Increased Reduced Standard Increased

Pair 0

Property losses 83.93 264.21 442.23 371.76 406.42 990.10
Fatalities 98.95 147.53 192.48 89.23 312.60 625.77

Air departures 4.69 19.85 39.87 6.62 12.61 19.30
Bridge traffic 229.07 229.74 417.98 80.90 416.85 422.69

Pair 1

Property losses 286.28 394.39 1017.51 562.94 618.95 865.63
Fatalities 26.21 72.53 597.01 29.93 344.68 782.59

Air departures 6.18 28.42 31.47 13.51 24.55 39.28
Bridge traffic 239.75 307.93 393.77 78.20 338.13 431.26

Pair 2

Property losses 102.00 753.40 959.89 106.62 930.53 1037.25
Fatalities 307.40 418.94 729.53 204.56 709.34 729.06

Air departures 12.32 23.08 37.27 8.92 12.16 29.77
Bridge traffic 105.33 350.24 369.16 32.17 161.07 203.93

Pair 3

Property losses 423.91 714.37 715.52 12.87 576,24 1000.37
Fatalities 171.80 455.23 717.40 319.64 501.28 717.44

Air departures 14.22 19.64 32.16 14.68 25.86 28.30
Bridge traffic 200.24 247.02 354.63 82.03 213.00 263.50

Pair 4

Property losses 306.31 469.75 923.88 633.42 695.26 839.23
Fatalities 196.42 244.26 514.03 3.14 188.61 706.23

Air departures 14.58 23.24 39.84 8.23 17.58 34.86
Bridge traffic 47.66 361.51 399.88 252.12 399.03 410.07

Pair 5

Property losses 441.12 488.47 609.86 297.50 694.93 916.88
Fatalities 126.05 313.45 642.67 662.16 708.72 758.19

Air departures 7.96 31.37 41.65 8.82 30.56 34.96
Bridge traffic 37.84 94.76 170.59 65.06 121.01 367.23

Table F.1: Elicited comparison data set example



Appendix G

Proof of Theorem 4.3.1 Part (ii)

As we discussed after Assumption 3.4.1 that ϑ(P ) is finite and ϑ(P ) ≤ t0. Let α be

any fixed positive constant. Then there exists a constant cα > 0 such that

inf
z∈Z

vP (z, ϑ(P )− cα) ≥ α. (G1)

Let T be chosen as [ϑ(P ) − cα, t0] ⊂ T . Since Pk
ψ→ P , then by (4.3.13), there exists

k0 sufficiently large such that for all k ≥ k0,

inf
z∈Z

vPk(z, ϑ(P )− cα)

≥ α− sup
z∈Z
|vPk(z, ϑ(P )− cα)− vP (z, ϑ(P )− cα)|

≥ α− ε > 0.

Let (zPk , ϑ(Pk)) be the optimal solution of problem (Opti-Pk). The inequality above

shows

vPk(zPk , ϑ(P )− cα) ≥ inf
z∈Z

vPk(z, ϑ(P )− cα) > 0, ∀k ≥ k0, (G2)

which implies ϑ(Pk) > ϑ(P )− cα.

On the other hand, it follows by (3.4.7) and (4.3.13),

sup
l∈L

EPk [l(−c(z0, ξ)− t0d)− l(−Y )]

≤ −θ + vPk(z0, t0)− vP (z0, t0)

≤ −θ + sup
z∈Z,t∈T

|vPk(z, t)− vP (z, t)|

≤ −θ + ε < 0

(G3)

for all k ≥ k0. The inequality (G3) implies (z0, t0) is a feasible solution to problem
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(Opti-Pk) and hence ϑ(Pk) ≤ t0. Summarizing the discussions above, we have

ϑ(Pk) ∈ [ϑ(P )− cα, t0] (G4)

for all k ≥ k0.

Consider the systems of inequalities

vP (z, t) ≤ 0, (z, t) ∈ Z × T

and

vPk(z, t) ≤ 0, (z, t) ∈ Z × T.

The set of solutions to the systems of inequalities are equal to FP∩Z×T and FPk∩Z×T
respectively. By Robinson’s error bound theorem for convex systems [67], for any

(z, t) ∈ Z × T ,

d((z, t),FP ∩ Z × T ) ≤ ∆

θ
max{vP (z, t), 0},

where ∆ denotes the diameter of F ∩Z ×T , θ is the parameter in the Slater condition

(3.4.7). Likewise, for any (z, t) ∈ Z × T , we have

d((z, t),FPk ∩ Z × T ) ≤ ∆

δ
max{vPk(z, t), 0},

for all k ≥ k0, where δ is a positive number and δ < θ. Combining the two error

bounds, we obtain

H(FPk ∩ Z × T,FP ∩ Z × T ) ≤ ∆

δ
sup

z∈Z,t∈T
|vPk(z, t)− vP (z, t)|.

Thus

|ϑ(Pk)− ϑ(P )| ≤ H(FPk ∩Z × T,FP ∩Z × T ) ≤ ∆

δ
sup

z∈Z,t∈T
|vPk(z, t)− vP (z, t)|. (G5)

We deduce from (4.3.13) and (G5)

lim
k→∞
|ϑ(Pk)− ϑ(P )| = 0

which implies (4.3.14).
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[7] Y. Armenti, S. Crépey, S. Drapeau, and A. Papapantoleon. Multivariate short-

fall risk allocation and systemic risk. SIAM Journal on Financial Mathematics,

9(1):90–126, 2018.

[8] P. Artzner, F. Delbaen, J. Eber, and D. Heath. Thinking coherently. Risk, pages

68–71, 1997.

[9] P. Artzner, F. Delbaen, J. M. Eber, and D. Heath. Coherent measures of risk.

Mathematical finance, 9(3):203–228, 1999.

[10] K. B. Athreya and S. N. Lahiri. Measure theory and probability theory. Springer

Science & Business Media, 2006.

[11] R. Babazadeh, J. Razmi, and M. S. Pishvaee. Robust facility location in sup-

ply chain network design under risk. International Journal of Mechanic Systems

Engineering, 1(1):35–47, 2011.

[12] A. Ben-Tal, T. Margalit, and A. Nemirovski. Robust modeling of multi-stage

portfolio problems. In High performance optimization, pages 303–328. Springer,

2000.

107



108 Bibliography

[13] F. Biagini, J.-P. Fouque, M. Frittelli, and T. Meyer-Brandis. A unified approach to

systemic risk measures via acceptance sets. Mathematical Finance, 29(1):329–367,

2019.

[14] A. Biglova, S. Ortobelli, S. T. Rachev, and S. Stoyanov. Different approaches

to risk estimation in portfolio theory. The Journal of Portfolio Management,

31(1):103–112, 2004.

[15] P. Billingsley. Convergence of probability measures. 1999.

[16] F. Black and R. Litterman. Global portfolio optimization. Financial analysts

journal, 48(5):28–43, 1992.

[17] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,

2004.

[18] R. F. Brown. A topological introduction to nonlinear analysis. 2004.

[19] M. C. Carneiro, G. P. Ribas, and S. Hamacher. Risk management in the oil

supply chain: a cvar approach. Industrial and Engineering Chemistry Research,

49(7):3286–3294, 2010.

[20] T. C. Chan, H. Mahmoudzadeh, and T. G. Purdie. A robust-cvar optimization ap-

proach with application to breast cancer therapy. European Journal of Operational

Research, 238(3):876–885, 2014.

[21] M. Claus. Advancing stability analysis of mean-risk stochastic programs: Bilevel

and two-stage models. 2012.

[22] R. Cont, R. Deguest, and G. Scandolo. Robustness and sensitivity analysis of risk

measurement procedures. Quantitative finance, 10(6):593–606, 2010.

[23] E. De Giorgi. Reward–risk portfolio selection and stochastic dominance. Journal

of Banking & Finance, 29(4):895–926, 2005.

[24] E. Delage, S. Guo, and H. Xu. Shortfall Risk Models when Information of Loss

Function is Incomplete. GERAD HEC Montréal, 2018.
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