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Abstract

This paper develops a model for optimal portfolio allocation for an investor with quan-
tile preferences, i.e., who maximizes the τ-quantile of the portfolio return, for τ ∈ (0, 1).
Quantile preferences allow to study heterogeneity in individuals’ portfolio choice by vary-
ing the quantiles, and have a solid axiomatic foundation. Their associated risk attitude is
captured entirely by a single dimensional parameter (the quantile τ), instead of the utility
function. We formally establish the properties of the quantile model. The presence of a
risk-free asset in the portfolio produces an all-or-nothing optimal response to the risk-free
asset that depends on investors’ quantile preference. In addition, when both assets are
risky, we derive conditions under which the optimal portfolio decision has an interior so-
lution that guarantees diversification vis-à-vis fully investing in a single risky asset. We
also derive conditions under which the optimal portfolio decision is characterized by two
regions: full diversification for quantiles below the median and no diversification for upper
quantiles. These results are illustrated in an exhaustive simulation study and an empirical
application using a tactical portfolio of stocks, bonds and a risk-free asset. The results
show heterogeneity in portfolio diversification across risk attitudes.
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1 Introduction

Portfolio selection is a fundamental topic in economics and �nance and one of the leading appli-

cations of decision theory under uncertainty. Modern portfolio theory derives its main results

on diversi�cation and risk under the important paradigm of the expected utility (EU) theory;

see, for instance, Cochrane (2005) and Campbell (2018). Nevertheless, the EU framework has

been subjected to a number of criticisms, mostly arising from experimental evidence.1

In this paper we depart from the EU framework and investigate the optimal portfolio alloca-

tion of individuals concerned with maximizing a speci�c quantile of the distribution of portfolio

returns. This individual's behavior is motivated from both practical and theoretical points of

view. Regarding the former, quantiles have been used in practical decision making in banking

and investment (in the form of Value-at-Risk2 and goal-reaching problems) and in mining, oil

and gas industries (in the form of \probabilities of exceeding"3 a certain level of production).

On the latter motivation, there has been increasing theoretical, empirical and experimental

interest in decision under uncertainty under quantile preferences (QP). This alternative pref-

erence has been characterized in early work by Manski (1988), who studied properties of a

quantile model for individual's behavior. More recently, QP have been formally axiomatized

by Chambers (2009), Rostek (2010), and de Castro and Galvao (2021). Mendelson (1987)

introduced the concept of quantile-preserving spread, which is a notion of risk aversion for the

quantile model that establishes a parallelism with mean-preserving spreads in the standard EU

framework. Chambers (2007) considered the problem of aggregating a pro�le of interpersonally

comparable utilities into a social utility and provides a quantile representation of such social

aggregation. Bhattacharya (2009) studies the problem of optimally dividing individuals into

peer groups to maximize a quantile of social gains from heterogeneous peer e�ects. Giovannetti

(2013) modeled a two-period economy with one risky and one risk-free asset, where the agent

has QP instead of the standard EU. de Castro and Galvao (2019) developed a dynamic model

of rational behavior under uncertainty, in which the agent maximizes a stream of the future

quantile utilities. From an experimental point of view, de Castro et al. (2020) shown evidence

that the behavior of between 30 and 50% of the individuals in their experiment can be better

described with QP rather than EU.

Overall, QP have several attractive features.4 An individual's decision is independent of

1Some studies suggesting that individuals did not always employ objective probabilities resulted in, among
others, Prospect Theory (Kahneman and Tversky, 1979), Rank-Dependent Expected Utility Theory (Quig-
gin, 1982), Cumulative Prospect Theory (Tversky and Kahneman, 1992), Regret (Bell, 1982), and Ambiguity
Aversion (Gilboa and Schmeidler, 1989). Rabin (2000) criticized EU theory arguing that EU would require
unreasonably large levels of risk aversion to explain the data from some small-stakes laboratory experiments.
See also Simon (1979), Tversky and Kahneman (1981), Payne et al. (1992) and Baltussen and Post (2011) as
examples providing experimental evidence on the failure of the EU paradigm.

2See, e.g., Du�e and Pan (1997) and Jorion (2007). The VaR measure is one of the main practical tools for
reporting the exposure to risk by �nancial institutions.

3See, e.g., Apiwatcharoenkul et al. (2016) and Fanchi and Christiansen (2017).
4Rostek (2010) discusses other advantages of the QP, such as robustness, ability to deal with categorical

2



the form of her utility function and thus an optimal choice is relatively easy to compute.5 The

measure of risk aversion is simple, intuitive, and determined by the quantile� 2 (0, 1). The

increasing interest on this recent approach to modeling individuals' behavior under uncertainty

suggests that it is important to understand portfolio choice in this context, and this paper

ful�lls this gap.

Our study of portfolio choice begins with the observation that the individuals' risk attitude

under QP is captured by a single-dimensional parameter, the quantile� 2 (0, 1). The lower the

� , the more averse to risk the� -quantile-maximizer decision maker (� -DM) is. Next we formally

establish properties of the quantile model. First, we focus on a simple portfolio given by a

risk-free and a risky asset. In contrast to the capital market line characterizing the mutual fund

separation theorem in a mean-variance setting (Tobin, 1958), the optimal portfolio allocation

under QP is to fully invest on the risk-free asset for QP given by� below the magnitude of the

risk-free rate, or to fully invest on the risky asset, otherwise. The extension of the portfolio

to considering a risk-free asset and two risky assets provides similar insights indicating an

optimal binary response with respect to the risk-free asset. However, in this case, we �nd

that diversi�cation between the two risky assets may also be an optimal outcome for middle

quantiles even if the allocation to the risk-free asset is null.

The optimal portfolio choice problem is then extended to consider a portfolio of two risky

assets. We formally show that a� -DM always diversi�es (invest in both assets) if the distribu-

tion functions of the assets in the portfolio have same lower end (worst-case scenario) and� is

su�ciently low. In contrast, if � is su�ciently high, we �nd that there is no diversi�cation at

all: the � -DM only invests on the riskier asset. We illustrate these rich heterogeneous behaviors

and theoretical insights with examples of two uniform random variables, a case in which we

are able to obtain an analytical solution of the portfolio selection problem. We then provide

further conditions under which the optimal portfolio decision has an interior solution with

diversi�cation vis-�a-vis no diversi�cation. The intuition behind the obtained characterization

is that, in general, there will be diversi�cation for investors concerned with low quantiles and

downside risk. These diversi�cation insights are illustrated in numerical simulation exercises

that cover several canonical cases under di�erent scenarios. For the particular case of two in-

dependent and identically distributed (iid ) random variables, full diversi�cation is optimal for

� 6 � 0 but not for values of � > � 0. The optimal strategy in the upper part of the distribution

is investing fully in one risky asset. Therefore, the quantile model is 
exible and allows for

the possibility of underdiversi�cation in the sense that, in some scenarios, the optimal port-

folio choice may be no diversi�cation. This is consistent with evidence of underdiversi�cation

compared to standard mean-variance e�cient allocations; see Campbell (2006), Mitton and

(instead of continuous) variables, and the 
exibility of o�ering a family of preferences indexed by quantiles.
5 Intuitively, the monotonicity of quantiles allows one to avoid modeling individuals' utility function. This

is because the maximization problem is invariant to monotonic transformations of the distribution of portfolio
returns.
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Vorkink (2007) and references therein.

The insights of the QP model for optimal portfolio allocation are applied to an empirical

example to illustrate the similarities and di�erences between the optimal portfolio choices of EU

and QP individuals. To do this, we consider a simple portfolio selection of stocks, bonds and

cash, and compare the optimal asset allocation of QP individuals with that of EU individuals

with mean-variance and power utility functions. We consider monthly data collected from

three assets: the risk-free one-month nominal yield on the U.S. Treasury bill rate, the S&P

500 and the G0Q0 Bond Index, for the period January 1980 to December 2016. We compute

the optimal portfolio allocation for the full range of � 2 (0, 1). For low enough quantiles, the

optimal strategy is to invest fully in the risk-free asset, and for high enough quantiles, the

optimal solution is fully invest in S&P 500 index. There is a rich diversi�cation pattern among

the three assets for middle quantile indexes. Overall, the results show portfolio diversi�cation

heterogeneity across risk attitudes, with no diversi�cation for very low and large quantiles.

These empirical �ndings contrast with the results obtained from two standard EU cases, the

mean-variance and CRRA utility cases that exhibit full diversi�cation under risk aversion.

We remark that the initial reaction to the consideration of QP might be of doubt, since

quantile maximization is di�erent from the familiar and well known EU model. Quantile

maximization implies, indeed, some choices that might seem unusual at �rst glance, but can

be considered reasonable after we overcome the in
uence of the EU over our intuition. More

than that, there are situations where the maximization of a quantile seems very natural and

by varying � they encompass the whole range of risk aversion attitudes encountered in EU.

It is not our contention, nevertheless, that quantile maximization is a decision method to be

prescribed in all cases and problems, but rather that it is a complement analysis to EU. As

such, it is important to document its properties and implications on relevant economic settings,

such as the portfolio selection problem that is the focus of this paper. Those properties could

then be tested in laboratories or confronted with data.

The remainder of the paper is laid out as follows. Section 1.1 has a brief review of the

literature. Section 2 discusses the risk attitudes in QP models. Section 3 contains the main

results of the paper. This section derives conditions under which there is full or null diver-

si�cation in the tails, and conditions that provide focal optimal portfolios for risk averse and

risk loving individuals. In addition, this section presents a numerical simulation exercise that

illustrates the theoretical insights of the paper. Section 4 presents a simple portfolio allocation

exercise among stocks, bonds and a risk-free asset, and Section 5 concludes. All mathematical

derivations and proofs are collected in the Appendix.

1.1 Literature review

This paper relates to a number of streams of literature in portfolio selection and economic

theory. First, the paper relates to the extensive literature on optimal decision theory under
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uncertainty and portfolio selection. Optimal portfolio decision based on the EU has been the

basis of asset pricing equilibrium models such as the Sharpe-Lintner CAPM (Sharpe, 1964;

Lintner, 1965) and more recent alternatives based on factor models. In this context, the in-

vestor's optimal portfolio decision relies heavily on the speci�cation of the utility function for

modeling individuals' preferences. Thus the theoretical optimal portfolio allocation of individ-

uals with constant absolute risk aversion and constant relative risk aversion preferences may be

very di�erent although, in practice, it may be di�cult to di�erentiate between both attitudes

towards risk from real data. A robust approach within the EU paradigm is stochastic domi-

nance. This theory allows one to rank risky alternatives without relying on speci�c forms of the

individuals' utility function. Early work by Porter (1974) and Fishburn (1977) characterize the

optimal portfolio decisions of EU individuals using stochastic dominance criteria of di�erent

orders. However, the equivalence between EU maximization and stochastic dominance is only

satis�ed, under risk aversion, for well-behaved (increasing and concave) utility functions.

Second, this paper is related to a branch of the literature on models for portfolio selection

with alternative preferences to the EU. Many alternative preference measures to the EU have

been put forward in the portfolio choice literature. Most of these approaches replace the

utility function, which is essentially a distortion in wealth, by a distortion in the probability

distribution of wealth. This probability distortion function, as Yaari (1987) shows, represents

the risk preference in a di�erent way. Similar approaches involving subjective probability

distributions include, most signi�cantly, Kahneman and Tversky (1979)'s prospect theory.

Garlappi et al. (2007) develop a model for an investor with multiple priors and aversion to

ambiguity. We extend the last two literatures by replacing EU and its variations with QP.

Third, this paper is related to a several works on models using the QP. As mentioned pre-

viously, QP were �rst studied by Manski (1988) and subsequently axiomatized by Chambers

(2009), Rostek (2010) and de Castro and Galvao (2021). The risk attitude under QP is based

on the concept of quantile-preserving spreads introduced in Mendelson (1987) and reformulated

in Manski (1988) in terms of a single-crossing criterion between distribution functions. More

recently, QP models have been employed in modeling economic behavior in di�erent frame-

works, see e.g., Chambers (2007), Bhattacharya (2009), Giovannetti (2013) and de Castro and

Galvao (2019). Also, as mentioned previously, de Castro et al. (2020) show experimental evi-

dence on the use of QP. In the asset pricing literature the use of QP has been hardly explored

though.

Fourth, there is a small literature on optimal portfolio allocation using a quantile target

variable. Kulldor� (1993) and F•ollmer and Leukert (1999) study the goal-reaching problem

where the target variable is a speci�c quantile, and He and Zhou (2011) propose a portfolio

choice model in continuous time, where the quantile function of the terminal cash 
ow is

the decision variable. In a similar context, Brown and Sim (2009) provide a framework for

measuring the quality of risky positions with respect to their ability to achieve some aspiration
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level, that can be interpreted with a quantile probability. In the mutual fund industry, quantiles

have been used as alternative performance measures, see, for example, Kempf and Ruenzi

(2007). We contribute to these two last lines of research by taking the QP together with the

quantile maximization to a portfolio selection model and deriving its properties.

We conclude this section by discussing a related literature that shares some of the insights

of QP theory but is di�erent in scope. This discussion may serve as further general motiva-

tion for use of QP. Quantile measures have been used as risk measures in optimal portfolio

allocation. In particular, Value-at-Risk (VaR) and expected shortfall models are closely linked

to a low quantile selection, see Du�e and Pan (1997) and Jorion (2007) for a comprehen-

sive review of VaR models. In an optimal asset allocation context, the VaR quantiles act

as constraints in the asset allocation optimization exercise rather than as target variables to

be optimized. These mean-risk models discussed in Fishburn (1977) can be considered as an

extension of standard mean-variance formulations, see Markowitz (1952), rather than as QP

models for optimal portfolio allocation. The relevant literature includes Basak and Shapiro

(2001), Krokhmal et al. (2001), Campbell et al. (2001), Wu and Xiao (2002), Bassett et al.

(2004), Engle and Manganelli (2004) and Ibragimov and Walden (2007), among others, and

sheds an interesting light on the properties of VaR-optimal portfolios while acknowledging

considerable computational di�culties (Gaivoronski and P
ug, 2005; Rachev et al., 2007).

2 Quantile preferences and the risk attitude

This section brie
y reviews the de�nition of risk under quantile preferences (QP). We �rst

introduce the notation and de�nition of QP. Given any random variable X : 
 ! R, we denote

by FX : R ! [0, 1] the cumulative distribution function (CDF) of X. Given � 2 (0, 1), the

� -quantile of X is de�ned as

Q� [X] � inf fx 2 X : FX (x) > � g.

A well-known and important property of quantiles, used below, is its invariance with respect to

monotonic transformations. More formally, if  : R ! R is continuous and strictly increasing,

then

Q� [ (X)] =  (Q� [X]) . (1)

A preference� over random variables is a� -quantile preference for some �xed� 2 (0, 1) if

X � Y () Q� [u(X)] > Q� [u(Y)], (2)

where u(�) is the utility function over the possible outcomes of the random variablesX and Y.

Note that u(X) and u(Y) are also random variables. Manski (1988) was the �rst to study QP

as in (2). Chambers (2009) shows that these preferences satisfy the properties of monotonicity,
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ordinal covariance, and continuity. In contrast, Rostek (2010) axiomatized the QP in the

context of Savage (1954)'s subjective framework. Recently, de Castro and Galvao (2021)

provide an alternative axiomatization for the static case using an uncertainty setting and �nite

state space.

It is important to notice that the QP de�ned by (2) are in fact independent of the utility

function. Indeed, for any continuous and strictly increasing u : R ! R, from (1),

X � Y () Q� [u(X)] > Q� [u(Y)] () u(Q� [X]) > u(Q� [Y]) () Q� [X] > Q� [Y]. (3)

This result shows that the utility function plays absolutely no role in de�ning the preference.

We can use (1) to make any transformation ofu; therefore, we could transform a concave

utility function into a convex one without changing the preference. In particular, this implies

that the concavity of the utility function has absolutely no implication for the risk attitude

(nor any property) of QP.

The risk attitude in QP models is captured by the parameter � 2 (0, 1). This is discussed

in detail by de Castro and Galvao (2019) and de Castro et al. (2020). Here we just summarize

the main idea. For comparison of two decision makers, consider the following de�nition by

Ghirardato and Marinacci (2002, De�nition 4, p. 263):

De�nition 2.1 (Ghirardato-Marinacci) . A preference � 0 is more uncertainty averse than

preference� if for any q 2 R, and random variableX, q � X ) q � 0 X and q � X ) q � 0 X.

Ghirardato and Marinacci (2002)'s de�nition is a generalization of the standard notion of

risk aversion in the context of risk under expected utility. The idea is that if a DM with

preference� would rather have the certain outcomeq 2 R than the risky prospect X, then the

more uncertainty averse� 0 DM prefers it as well.

The following Proposition 2.2 shows that � � is more risk averse than� � 0
if and only if

� < � 0. This property implies that an agent with QP given by � is more risk preferring than

another agent with QP given by � 0 if � > � 0. Thus, a QP decision maker that maximizes a

lower quantile is more risk averse than one who maximizes a higher quantile.

Proposition 2.2. Consider quantile maximizing preferences� � and � � 0. The following state-

ments are equivalent:

(1) � > � 0;

(2) � � 0 is more uncertainty averse than� � ;

Proof. See de Castro et al. (2020).

In fact, de Castro et al. (2020) consider two more equivalent conditions, based on the notion

of quantile-preserving spreads introduced by Mendelson (1987), that extend Rothschild and

Stiglitz (1970)'s mean-preserving notion. See de Castro and Galvao (2019) for a more detailed

discussion.
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3 Optimal portfolio choice problem

In this section we �rst study the case of a portfolio given by a risk-free and a risky asset.

This simple portfolio problem serves to establish the intuition about the optimal behavior of

individuals with quantile preferences (QP) and motivate the problem of interest, which is the

study of the optimal portfolio allocation between two or more risky assets. We focus on the

analysis of two risky assets. Prior to this, we set the foundations of the optimal portfolio

allocation problem.

3.1 Quantile portfolio selection under quantile preferences

We start by formally describing the portfolio selection problem under QP. The portfolio man-

ager has a budgetb > 0 to invest in n assets for a given �xed period of time. She will end up

devoting a i 2 [0,b] to asset i , satisfying
P n

i = 1 a i = b. The initial price of asset i is pi > 0,

so that a i = pi q i , where q i denotes the number of units of asseti that the portfolio manager

buys. After the investment period, asset i 's price will be ~pi > 0, which is random if asset

i is not a risk-free asset. Therefore, the net return on asseti after the investment period is

~r i = ~p i
p i

- 1, which is a random variable. Consider the following portfolio

Sw =
nX

i = 1

w i ~r i ,

where w � (w1, ..., wn ) 2 [0, 1]n , with
P n

i = 1 w i = 1. The weights w i = a i
b > 0 denote the

fraction of wealth invested on asseti . Implicitly, we are assuming that the portfolio manager

does not short assets.6

To be consistent with the literature on optimal portfolio theory under EU preferences, we

assume that individuals are endowed with a utility function u(Sw ), where u : R ! R, for

describing individual's preferences on wealth. Then, for a given risk attitude� 2 (0, 1), the

portfolio choice problem under QP is

max
w 2 [0,1]n

Q� [u (Sw )] , s.t.
nX

i = 1

w i = 1. (4)

As discussed in equation (3) above, the choice of utility function is irrelevant for portfo-

lio selection under QP. Hence the quantile optimization problem (4) using a given utility is

equivalent to maximizing the quantile obtained directly from the distribution of the random

variable.

Lemma 3.1. Let u(�) be a continuous and increasing utility function de�ned over the domain

of the random variable Sw for w � (w1, ..., wn ) 2 [0, 1]n . The maximization argument w �

6Our model can deal with short sale, but we leave this to future work.
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solves(4) if and only if it solves the following:

max
w 2 [0,1]n

Q� [Sw ] , s.t.
nX

i = 1

w i = 1. (5)

Given the result in equations (4) and (5), for the remaining of the paper, we focus the main

analyses on the problem in (5).

It is worth noting that the above portfolio choice problem is di�erent, and more general,

than the goal-reaching problem proposed by Kulldor� (1993) in a quantile setting. This author

maximizes the cumulative probability of
P n

i = 1 w i ~r i subject to achieving some target returnr0.

More formally, the objective function is max
( w 1 ,...,w n )

Pf
P n

i = 1 w i ~r i > r0gsubject to
P n

i = 1 w i = 1.

The result in Lemma 3.1 is important in the context of portfolio allocation. Theoretically,

it implies that the quantile choice rule is able to separate beliefs from tastes. The relevance of

this separation criterion was put forward by Ghirardato et al. (2005) in the context of decision

theory under uncertainty. These authors o�ered a result with this separation, but they did

not insist on a complete separation of tastes and beliefs, because such a separation would rule

out most of the choice rules commonly considered by decision theorists.7 In contrast, as shown

in Lemma 3.1, the QP deliver a complete separation of tastes and beliefs. Empirically, this

separation is very important as well. In particular, it allows portfolio managers to make choices

on a particular portfolio without the knowledge of any speci�ed utility function. For instance,

a manager only needs to learn about the quantile� of an agent to choose the portfolio weights

from a given selection of returns~r.

3.2 Optimal portfolio allocation when there is a risk-free asset

Manski (1988) derives the preferences of a quantile maximizer between two outcomesX and Y

when one of the outcome measures is degenerate, and �nds a complete separation in preferences

between the degenerate and risky outcome. The deterministic choice is the preferred strategy

for low quantiles. In contrast, for high quantiles, the risky outcome is the preferred strategy.

In this section, we provide further formality to the example in Manski (1988) and frame it

in an optimal asset allocation context. We assume there is a riskless security that pays a rate

of return equal to Rf = �r , and just one risky security that pays a stochastic rate of return equal

to R with distribution function FR. The portfolio return is de�ned by the convex combination

Rp = w�r + ( 1 - w)R = �r + ( 1 - w)(R- �r),

7For instance, if the preference is given by EU, the belief is captured by the probability while the tastes
by the utility function over outcomes or consequences (such as monetary payo�s). Beliefs and tastes are not
completely separated, however, because if we take a monotonic transformation of the utility function, which
maintains the same tastes over consequences, we may end up with adi�erent preference. That is, the pair
beliefs and tastes come together and are stable only under a�ne transformations of the utility function. In
other words, the EU preferences, as many other preferences, do not allow a separation of tastes and beliefs.
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and the investor's maximization problem (5) for a speci�c quantile � is arg maxw Q� [u(�r + ( 1-

w)(R - �r))] . Using the monotonicity of the quantile process, for a continuous and increasing

utility function, the investor's problem simpli�es to

arg max
w

(1 - w)Q� [R] + w�r .

Simple algebra shows that the individual portfolio choicew is then given by the following:

w � =

8
><

>:

1 when Q� [R] < �r

0 when Q� [R] > �r

any w 2 [0, 1] when Q� [R] = �r .

The intuition of this solution is simple. For small values of � the individual's optimal portfolio

choice isw � = 1 and corresponds to full investment on the risk-free asset. This is so because

�r > Q� [Rp ] for any combination Rp characterized by 0< w < 1. For larger values of� , such

that Q � [R] > �r , the optimal portfolio decision reverses and yieldsw � = 0. For Q� [R] = �r , the

QP maximizer is indi�erent between the risk-free and the risky asset for anyw 2 [0, 1] de�ning

the portfolio return.

In contrast to the capital market line characterizing the mutual fund separation theorem in

a mean-variance setting, Tobin (1958), the optimal portfolio allocation under QP specializes in

the risk-free asset for individuals with � below the magnitude of the risk-free rate and on the

risky asset, otherwise. In Appendix B.4, we extend the analysis of the risk-free asset by adding

a second risky asset to the portfolio. We obtain the same �ndings indicating an optimal binary

response to the risk-free asset. We notice that in this case, however, diversi�cation between

the two risky assets may be optimal for middle quantiles even if the allocation to the risk-free

asset is null.

3.3 The case of two risky assets

This section considers the optimal portfolio allocation problem for an economy with two risky

assets and a decision maker endowed with QP.8 Consider two risky assets represented, respec-

tively, by the continuous random variables X and Y. Let the portfolio be de�ned as

Sw � wX + ( 1 - w)Y, (6)

with 0 6 w 6 1 a scalar portfolio weight. The portfolio selection problem in this context will

be:

max
w 2 [0,1]

Q� [Sw ] . (7)

8See, e.g., Damodaran (2010) for an argument that every asset carries some risk.
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De�ne the solution to this problem by w � (� ) : (0, 1) ! [0, 1]. Whenever there is no confusion

we will use simply w � . We will also assume thatX and Y have joint distribution function given

by a continuous probability density function (p.d.f.) f de�ned over intervals I X and I Y . More

formally:

Assumption 1. X and Y have joint distribution function given by a continuous p.d.f. f :

I X � I Y ! R, where I X = [ x, x], I Y = [ y, y], - 1 6 x < x 6 1 , - 1 6 y < y 6 1 and

0 < f (x, y) < 1 for all (x, y) 2 I X � I Y .

It is important to emphasize that the above assumption does not exclude distributions with

support in the whole real line. In particular, X and Y can be normal variables, for instance. In

fact, almost all distributions studied in �nance satisfy Assumption 1. It shall be understood

that if x = 1 or y = 1 , the intervals are, respectively, [x, 1 ) and [y, 1 ). An analogous

observation holds whenx = - 1 or y = - 1 . We will maintain Assumption 1 in all results of

this section and will not repeat it.

In the remaining of the section we establish the existence of the optimal portfolio choice

under the QP theory as well as derive conditions that determine the existence of diversi�cation.

Lemma 3.2. The optimization problem (7) has at least one solution.

Lemma 3.2 shows that the QP problem has at least one optimal vector,w � (� ), that solves

the problem for a given quantile � . Deriving an explicit expression for w � is in general a

di�cult task, but its value can be obtained through numerical calculations.

3.3.1 Diversi�cation for low quantiles

Our �rst main result is that \in general" for � su�ciently small, diversi�cation is optimal, that

is, there exists an interior solution w � 2 (0, 1). As we will see in a moment, this requires some

assumptions. Perhaps the most important setting is the one described in the following:

Theorem 1. Assume that x, y > - 1 . If x = y and � 2 (0, 1) is su�ciently small, then

any optimal solution must be interior. More formally, there exists � 0 such that if � < � 0 then

w 2 f0, 1gdoes not solve(7) for that � , or yet: if w � solves(7), w � 2 (0, 1).

Intuitively, for a �xed small � , the convex combination of the two assets is able to generate

a larger quantile. Notice that this result requires no further assumption on the distributions

other than the restriction of the same lower bound. Although this condition excludes normal

distributions, it includes important distributions, as for example, the lognormal. Nevertheless,

Theorem 1 can be extended to symmetric normal distributions, although we omit a formal

statement for space considerations.

It is useful to illustrate Theorem 1 for the case of two standard uniform distributions,

X � U(0, 1) and Y � U(0, 1); see Example 3.3. Figure 1 shows the CDFs of the random variable
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Figure 1: CDF of Sw = wX + ( 1- w)Y indexed by w 2 [0, 1] when X � U(0, 1) and Y � U(0, 1).

Sw for di�erent w. One can see that for low� (in this case, � 6 0.5), the CDF curve most to

the right corresponds to w � (� ) = 0.5. If � > 0.5, the optimal w � (� ) is either 0 or 1, that is,

there is no diversi�cation (both 0 and 1 are solutions because the two assets are identical in

this case).

Example 3.3. Consider X � U(0, 1) and Y � U(0, 1), independent. With numerical calcula-

tions, in this case we have:

w � (� ) =

�
0.5, if � 2

�
0, 1

2

�

1, if � 2
�

1
2 , 1

�
.

Notice that there can be diversi�cation even when one of the distribution functions stochas-

tically dominates the other. See, for instance, Example 3.4 for the case ofX � U(0, 2) and

Y � U(0, 1). In this case, even thoughU(0, 2) stochastically dominatesU(0, 1), there is diver-

si�cation for � 6 1=4: the optimal w is interior, w � = 0.5.

Example 3.4. Consider X � U(0, 2) and Y � U(0, 1). In this case we have:

w � (� ) =

�
0.5, if � 2

�
0, 1

4

�

1, if � 2
�

1
4 , 1

�
.

This is an interesting result, because despite the fact thatX �rst order stochastically dom-

inates Y, there exists a convex combinationSw that dominates both random variables X and

Y for low quantiles. Notice, however, that this feature is desirable, because the independence

of X and Y makes a convex combination of the two less risky than any of them.
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3.3.2 No diversi�cation with di�erent lower ends of the distributions

Given the result in Theorem 1, a natural question is what would happen if the assumption

that x = y of the theorem does not hold, that is, if x 6= y. The na•�ve intuition may be

that for low quantiles diversi�cation is always optimal. Theorem 1 shows that this occurs if

� is su�ciently small and there is no obvious di�erence in the lower limits given by x and y.

However, when the tail behavior of the assets in the portfolio is very di�erent, the next result

shows that diversi�cation is not optimal for low quantiles. More formally, Theorem 2 shows

that for x - y > M
2m , with m and M suitable constants, the quantile of X is larger than the

quantile of any convex combination of X and Y for low values of � . A natural interpretation

of this result in a risk management context is to say that the VaR of X is larger than the VaR

of any diversi�ed combination of the assets.9 The investor allocates all the portfolio weight in

the variable that dominates the other in the left tail of the distribution. This is the message

of the next result, where we denoteX's � -quantile by x� .

Theorem 2. Assume that x > y > - 1 . Fix � 2 [0, 1]. Let M and m be such thatm 6

f (x, y) 6 M for all (x, y) 2 [x, x� ] � [y, y] [ [x, x] � [y, x� ].10 If x - y > M
2m , w � = 1 is the

unique solution to (7) for all � 2 (0, � ).11

Theorem 2 shows that the optimal choice isw � = 1 for all � small, provided that the

di�erence between the two distributions at the left end point is su�ciently large. Example 3.5

illustrates this result for the case of X � U(0.5, 1) and Y � U(0, 1). SinceX and Y are uniform

and y = 0, we can takem = M and the assumption of Theorem 2 simpli�es to x > 1
2 , which

is precisely the condition satis�ed in this example (with x = 1
2).

Example 3.5. Consider X � U(0.5, 1) and Y � U(0, 1). Then, w � = 1 for all � 2 (0, 1).

Notice that in this example, we have the choicew � = 1 for all � 2 (0, 1), which is stronger

than the result stated in Theorem 2. We can in fact establish this stronger condition if the

bounds m and M hold for the entire interval. More precisely, we can �x � = 1 in Theorem 2

and conclude the following:

Corollary 3.6. Assume that x > y > - 1 . Let M and m be such thatm 6 f (x, y) 6 M for

all (x, y) 2 [x, x] � [y, y]. If x - y > M
2m , w � = 1 is the unique solution to (7) for all � 2 (0, 1).

The latter result shows the absence of diversi�cation, across� 2 (0, 1), for individuals with

QP under the conditions of the corollary. This result suggests that in many cases the e�orts

of portfolio managers may be futile under QP theory. A major implication of Corollary 3.6 is

9 In the context of risk management, Theorem 2 provides theoretical support to the lack of subadditivity of
VaR measures in general settings, see Artzner et al. (1999).

10 The inferior limit m may be taken over a limited region, not over the whole support. That is, we can
accommodate cases in which the support is in�nite so that f (x, y) ! 0 when y ! 1 .

11 Of course, w � = 0, when y > x > - 1 and y - x > M
2m .
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