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Abstract

This paper develops a model for optimal portfolio allocation for an investor with quan-
tile preferences, i.e., who maximizes the τ-quantile of the portfolio return, for τ ∈ (0, 1).
Quantile preferences allow to study heterogeneity in individuals’ portfolio choice by vary-
ing the quantiles, and have a solid axiomatic foundation. Their associated risk attitude is
captured entirely by a single dimensional parameter (the quantile τ), instead of the utility
function. We formally establish the properties of the quantile model. The presence of a
risk-free asset in the portfolio produces an all-or-nothing optimal response to the risk-free
asset that depends on investors’ quantile preference. In addition, when both assets are
risky, we derive conditions under which the optimal portfolio decision has an interior so-
lution that guarantees diversification vis-à-vis fully investing in a single risky asset. We
also derive conditions under which the optimal portfolio decision is characterized by two
regions: full diversification for quantiles below the median and no diversification for upper
quantiles. These results are illustrated in an exhaustive simulation study and an empirical
application using a tactical portfolio of stocks, bonds and a risk-free asset. The results
show heterogeneity in portfolio diversification across risk attitudes.
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1 Introduction

Portfolio selection is a fundamental topic in economics and finance and one of the leading appli-

cations of decision theory under uncertainty. Modern portfolio theory derives its main results

on diversification and risk under the important paradigm of the expected utility (EU) theory;

see, for instance, Cochrane (2005) and Campbell (2018). Nevertheless, the EU framework has

been subjected to a number of criticisms, mostly arising from experimental evidence.1

In this paper we depart from the EU framework and investigate the optimal portfolio alloca-

tion of individuals concerned with maximizing a specific quantile of the distribution of portfolio

returns. This individual’s behavior is motivated from both practical and theoretical points of

view. Regarding the former, quantiles have been used in practical decision making in banking

and investment (in the form of Value-at-Risk2 and goal-reaching problems) and in mining, oil

and gas industries (in the form of “probabilities of exceeding”3 a certain level of production).

On the latter motivation, there has been increasing theoretical, empirical and experimental

interest in decision under uncertainty under quantile preferences (QP). This alternative pref-

erence has been characterized in early work by Manski (1988), who studied properties of a

quantile model for individual’s behavior. More recently, QP have been formally axiomatized

by Chambers (2009), Rostek (2010), and de Castro and Galvao (2021). Mendelson (1987)

introduced the concept of quantile-preserving spread, which is a notion of risk aversion for the

quantile model that establishes a parallelism with mean-preserving spreads in the standard EU

framework. Chambers (2007) considered the problem of aggregating a profile of interpersonally

comparable utilities into a social utility and provides a quantile representation of such social

aggregation. Bhattacharya (2009) studies the problem of optimally dividing individuals into

peer groups to maximize a quantile of social gains from heterogeneous peer effects. Giovannetti

(2013) modeled a two-period economy with one risky and one risk-free asset, where the agent

has QP instead of the standard EU. de Castro and Galvao (2019) developed a dynamic model

of rational behavior under uncertainty, in which the agent maximizes a stream of the future

quantile utilities. From an experimental point of view, de Castro et al. (2020) shown evidence

that the behavior of between 30 and 50% of the individuals in their experiment can be better

described with QP rather than EU.

Overall, QP have several attractive features.4 An individual’s decision is independent of

1Some studies suggesting that individuals did not always employ objective probabilities resulted in, among
others, Prospect Theory (Kahneman and Tversky, 1979), Rank-Dependent Expected Utility Theory (Quig-
gin, 1982), Cumulative Prospect Theory (Tversky and Kahneman, 1992), Regret (Bell, 1982), and Ambiguity
Aversion (Gilboa and Schmeidler, 1989). Rabin (2000) criticized EU theory arguing that EU would require
unreasonably large levels of risk aversion to explain the data from some small-stakes laboratory experiments.
See also Simon (1979), Tversky and Kahneman (1981), Payne et al. (1992) and Baltussen and Post (2011) as
examples providing experimental evidence on the failure of the EU paradigm.

2See, e.g., Duffie and Pan (1997) and Jorion (2007). The VaR measure is one of the main practical tools for
reporting the exposure to risk by financial institutions.

3See, e.g., Apiwatcharoenkul et al. (2016) and Fanchi and Christiansen (2017).
4Rostek (2010) discusses other advantages of the QP, such as robustness, ability to deal with categorical
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the form of her utility function and thus an optimal choice is relatively easy to compute.5 The

measure of risk aversion is simple, intuitive, and determined by the quantile τ ∈ (0, 1). The

increasing interest on this recent approach to modeling individuals’ behavior under uncertainty

suggests that it is important to understand portfolio choice in this context, and this paper

fulfills this gap.

Our study of portfolio choice begins with the observation that the individuals’ risk attitude

under QP is captured by a single-dimensional parameter, the quantile τ ∈ (0, 1). The lower the

τ, the more averse to risk the τ-quantile-maximizer decision maker (τ-DM) is. Next we formally

establish properties of the quantile model. First, we focus on a simple portfolio given by a

risk-free and a risky asset. In contrast to the capital market line characterizing the mutual fund

separation theorem in a mean-variance setting (Tobin, 1958), the optimal portfolio allocation

under QP is to fully invest on the risk-free asset for QP given by τ below the magnitude of the

risk-free rate, or to fully invest on the risky asset, otherwise. The extension of the portfolio

to considering a risk-free asset and two risky assets provides similar insights indicating an

optimal binary response with respect to the risk-free asset. However, in this case, we find

that diversification between the two risky assets may also be an optimal outcome for middle

quantiles even if the allocation to the risk-free asset is null.

The optimal portfolio choice problem is then extended to consider a portfolio of two risky

assets. We formally show that a τ-DM always diversifies (invest in both assets) if the distribu-

tion functions of the assets in the portfolio have same lower end (worst-case scenario) and τ is

sufficiently low. In contrast, if τ is sufficiently high, we find that there is no diversification at

all: the τ-DM only invests on the riskier asset. We illustrate these rich heterogeneous behaviors

and theoretical insights with examples of two uniform random variables, a case in which we

are able to obtain an analytical solution of the portfolio selection problem. We then provide

further conditions under which the optimal portfolio decision has an interior solution with

diversification vis-à-vis no diversification. The intuition behind the obtained characterization

is that, in general, there will be diversification for investors concerned with low quantiles and

downside risk. These diversification insights are illustrated in numerical simulation exercises

that cover several canonical cases under different scenarios. For the particular case of two in-

dependent and identically distributed (iid) random variables, full diversification is optimal for

τ 6 τ0 but not for values of τ > τ0. The optimal strategy in the upper part of the distribution

is investing fully in one risky asset. Therefore, the quantile model is flexible and allows for

the possibility of underdiversification in the sense that, in some scenarios, the optimal port-

folio choice may be no diversification. This is consistent with evidence of underdiversification

compared to standard mean-variance efficient allocations; see Campbell (2006), Mitton and

(instead of continuous) variables, and the flexibility of offering a family of preferences indexed by quantiles.
5Intuitively, the monotonicity of quantiles allows one to avoid modeling individuals’ utility function. This

is because the maximization problem is invariant to monotonic transformations of the distribution of portfolio
returns.
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Vorkink (2007) and references therein.

The insights of the QP model for optimal portfolio allocation are applied to an empirical

example to illustrate the similarities and differences between the optimal portfolio choices of EU

and QP individuals. To do this, we consider a simple portfolio selection of stocks, bonds and

cash, and compare the optimal asset allocation of QP individuals with that of EU individuals

with mean-variance and power utility functions. We consider monthly data collected from

three assets: the risk-free one-month nominal yield on the U.S. Treasury bill rate, the S&P

500 and the G0Q0 Bond Index, for the period January 1980 to December 2016. We compute

the optimal portfolio allocation for the full range of τ ∈ (0, 1). For low enough quantiles, the

optimal strategy is to invest fully in the risk-free asset, and for high enough quantiles, the

optimal solution is fully invest in S&P 500 index. There is a rich diversification pattern among

the three assets for middle quantile indexes. Overall, the results show portfolio diversification

heterogeneity across risk attitudes, with no diversification for very low and large quantiles.

These empirical findings contrast with the results obtained from two standard EU cases, the

mean-variance and CRRA utility cases that exhibit full diversification under risk aversion.

We remark that the initial reaction to the consideration of QP might be of doubt, since

quantile maximization is different from the familiar and well known EU model. Quantile

maximization implies, indeed, some choices that might seem unusual at first glance, but can

be considered reasonable after we overcome the influence of the EU over our intuition. More

than that, there are situations where the maximization of a quantile seems very natural and

by varying τ they encompass the whole range of risk aversion attitudes encountered in EU.

It is not our contention, nevertheless, that quantile maximization is a decision method to be

prescribed in all cases and problems, but rather that it is a complement analysis to EU. As

such, it is important to document its properties and implications on relevant economic settings,

such as the portfolio selection problem that is the focus of this paper. Those properties could

then be tested in laboratories or confronted with data.

The remainder of the paper is laid out as follows. Section 1.1 has a brief review of the

literature. Section 2 discusses the risk attitudes in QP models. Section 3 contains the main

results of the paper. This section derives conditions under which there is full or null diver-

sification in the tails, and conditions that provide focal optimal portfolios for risk averse and

risk loving individuals. In addition, this section presents a numerical simulation exercise that

illustrates the theoretical insights of the paper. Section 4 presents a simple portfolio allocation

exercise among stocks, bonds and a risk-free asset, and Section 5 concludes. All mathematical

derivations and proofs are collected in the Appendix.

1.1 Literature review

This paper relates to a number of streams of literature in portfolio selection and economic

theory. First, the paper relates to the extensive literature on optimal decision theory under
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uncertainty and portfolio selection. Optimal portfolio decision based on the EU has been the

basis of asset pricing equilibrium models such as the Sharpe-Lintner CAPM (Sharpe, 1964;

Lintner, 1965) and more recent alternatives based on factor models. In this context, the in-

vestor’s optimal portfolio decision relies heavily on the specification of the utility function for

modeling individuals’ preferences. Thus the theoretical optimal portfolio allocation of individ-

uals with constant absolute risk aversion and constant relative risk aversion preferences may be

very different although, in practice, it may be difficult to differentiate between both attitudes

towards risk from real data. A robust approach within the EU paradigm is stochastic domi-

nance. This theory allows one to rank risky alternatives without relying on specific forms of the

individuals’ utility function. Early work by Porter (1974) and Fishburn (1977) characterize the

optimal portfolio decisions of EU individuals using stochastic dominance criteria of different

orders. However, the equivalence between EU maximization and stochastic dominance is only

satisfied, under risk aversion, for well-behaved (increasing and concave) utility functions.

Second, this paper is related to a branch of the literature on models for portfolio selection

with alternative preferences to the EU. Many alternative preference measures to the EU have

been put forward in the portfolio choice literature. Most of these approaches replace the

utility function, which is essentially a distortion in wealth, by a distortion in the probability

distribution of wealth. This probability distortion function, as Yaari (1987) shows, represents

the risk preference in a different way. Similar approaches involving subjective probability

distributions include, most significantly, Kahneman and Tversky (1979)’s prospect theory.

Garlappi et al. (2007) develop a model for an investor with multiple priors and aversion to

ambiguity. We extend the last two literatures by replacing EU and its variations with QP.

Third, this paper is related to a several works on models using the QP. As mentioned pre-

viously, QP were first studied by Manski (1988) and subsequently axiomatized by Chambers

(2009), Rostek (2010) and de Castro and Galvao (2021). The risk attitude under QP is based

on the concept of quantile-preserving spreads introduced in Mendelson (1987) and reformulated

in Manski (1988) in terms of a single-crossing criterion between distribution functions. More

recently, QP models have been employed in modeling economic behavior in different frame-

works, see e.g., Chambers (2007), Bhattacharya (2009), Giovannetti (2013) and de Castro and

Galvao (2019). Also, as mentioned previously, de Castro et al. (2020) show experimental evi-

dence on the use of QP. In the asset pricing literature the use of QP has been hardly explored

though.

Fourth, there is a small literature on optimal portfolio allocation using a quantile target

variable. Kulldorff (1993) and Föllmer and Leukert (1999) study the goal-reaching problem

where the target variable is a specific quantile, and He and Zhou (2011) propose a portfolio

choice model in continuous time, where the quantile function of the terminal cash flow is

the decision variable. In a similar context, Brown and Sim (2009) provide a framework for

measuring the quality of risky positions with respect to their ability to achieve some aspiration
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level, that can be interpreted with a quantile probability. In the mutual fund industry, quantiles

have been used as alternative performance measures, see, for example, Kempf and Ruenzi

(2007). We contribute to these two last lines of research by taking the QP together with the

quantile maximization to a portfolio selection model and deriving its properties.

We conclude this section by discussing a related literature that shares some of the insights

of QP theory but is different in scope. This discussion may serve as further general motiva-

tion for use of QP. Quantile measures have been used as risk measures in optimal portfolio

allocation. In particular, Value-at-Risk (VaR) and expected shortfall models are closely linked

to a low quantile selection, see Duffie and Pan (1997) and Jorion (2007) for a comprehen-

sive review of VaR models. In an optimal asset allocation context, the VaR quantiles act

as constraints in the asset allocation optimization exercise rather than as target variables to

be optimized. These mean-risk models discussed in Fishburn (1977) can be considered as an

extension of standard mean-variance formulations, see Markowitz (1952), rather than as QP

models for optimal portfolio allocation. The relevant literature includes Basak and Shapiro

(2001), Krokhmal et al. (2001), Campbell et al. (2001), Wu and Xiao (2002), Bassett et al.

(2004), Engle and Manganelli (2004) and Ibragimov and Walden (2007), among others, and

sheds an interesting light on the properties of VaR-optimal portfolios while acknowledging

considerable computational difficulties (Gaivoronski and Pflug, 2005; Rachev et al., 2007).

2 Quantile preferences and the risk attitude

This section briefly reviews the definition of risk under quantile preferences (QP). We first

introduce the notation and definition of QP. Given any random variable X : Ω→ R, we denote

by FX : R → [0, 1] the cumulative distribution function (CDF) of X. Given τ ∈ (0, 1), the

τ-quantile of X is defined as

Qτ[X] ≡ inf {x ∈ X : FX(x) > τ} .

A well-known and important property of quantiles, used below, is its invariance with respect to

monotonic transformations. More formally, if ψ : R→ R is continuous and strictly increasing,

then

Qτ[ψ(X)] = ψ (Qτ[X]) . (1)

A preference � over random variables is a τ-quantile preference for some fixed τ ∈ (0, 1) if

X � Y ⇐⇒ Qτ[u(X)] > Qτ[u(Y)], (2)

where u(·) is the utility function over the possible outcomes of the random variables X and Y.

Note that u(X) and u(Y) are also random variables. Manski (1988) was the first to study QP

as in (2). Chambers (2009) shows that these preferences satisfy the properties of monotonicity,
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ordinal covariance, and continuity. In contrast, Rostek (2010) axiomatized the QP in the

context of Savage (1954)’s subjective framework. Recently, de Castro and Galvao (2021)

provide an alternative axiomatization for the static case using an uncertainty setting and finite

state space.

It is important to notice that the QP defined by (2) are in fact independent of the utility

function. Indeed, for any continuous and strictly increasing u : R→ R, from (1),

X � Y ⇐⇒ Qτ[u(X)] > Qτ[u(Y)] ⇐⇒ u(Qτ[X]) > u(Qτ[Y]) ⇐⇒ Qτ[X] > Qτ[Y]. (3)

This result shows that the utility function plays absolutely no role in defining the preference.

We can use (1) to make any transformation of u; therefore, we could transform a concave

utility function into a convex one without changing the preference. In particular, this implies

that the concavity of the utility function has absolutely no implication for the risk attitude

(nor any property) of QP.

The risk attitude in QP models is captured by the parameter τ ∈ (0, 1). This is discussed

in detail by de Castro and Galvao (2019) and de Castro et al. (2020). Here we just summarize

the main idea. For comparison of two decision makers, consider the following definition by

Ghirardato and Marinacci (2002, Definition 4, p. 263):

Definition 2.1 (Ghirardato-Marinacci). A preference � ′ is more uncertainty averse than

preference � if for any q ∈ R, and random variable X, q � X⇒ q � ′ X and q � X⇒ q � ′ X.

Ghirardato and Marinacci (2002)’s definition is a generalization of the standard notion of

risk aversion in the context of risk under expected utility. The idea is that if a DM with

preference � would rather have the certain outcome q ∈ R than the risky prospect X, then the

more uncertainty averse � ′ DM prefers it as well.

The following Proposition 2.2 shows that �τ is more risk averse than �τ ′ if and only if

τ < τ ′. This property implies that an agent with QP given by τ is more risk preferring than

another agent with QP given by τ ′ if τ > τ ′. Thus, a QP decision maker that maximizes a

lower quantile is more risk averse than one who maximizes a higher quantile.

Proposition 2.2. Consider quantile maximizing preferences �τ and �τ ′. The following state-

ments are equivalent:

(1) τ > τ ′;

(2) �τ ′ is more uncertainty averse than �τ;

Proof. See de Castro et al. (2020).

In fact, de Castro et al. (2020) consider two more equivalent conditions, based on the notion

of quantile-preserving spreads introduced by Mendelson (1987), that extend Rothschild and

Stiglitz (1970)’s mean-preserving notion. See de Castro and Galvao (2019) for a more detailed

discussion.
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3 Optimal portfolio choice problem

In this section we first study the case of a portfolio given by a risk-free and a risky asset.

This simple portfolio problem serves to establish the intuition about the optimal behavior of

individuals with quantile preferences (QP) and motivate the problem of interest, which is the

study of the optimal portfolio allocation between two or more risky assets. We focus on the

analysis of two risky assets. Prior to this, we set the foundations of the optimal portfolio

allocation problem.

3.1 Quantile portfolio selection under quantile preferences

We start by formally describing the portfolio selection problem under QP. The portfolio man-

ager has a budget b > 0 to invest in n assets for a given fixed period of time. She will end up

devoting ai ∈ [0,b] to asset i, satisfying
∑n
i=1 ai = b. The initial price of asset i is pi > 0,

so that ai = piqi, where qi denotes the number of units of asset i that the portfolio manager

buys. After the investment period, asset i’s price will be p̃i > 0, which is random if asset

i is not a risk-free asset. Therefore, the net return on asset i after the investment period is

r̃i =
p̃i
pi

− 1, which is a random variable. Consider the following portfolio

Sw =

n∑
i=1

wir̃i,

where w ≡ (w1, ...,wn) ∈ [0, 1]n, with
∑n
i=1wi = 1. The weights wi =

ai
b > 0 denote the

fraction of wealth invested on asset i. Implicitly, we are assuming that the portfolio manager

does not short assets.6

To be consistent with the literature on optimal portfolio theory under EU preferences, we

assume that individuals are endowed with a utility function u(Sw), where u : R → R, for

describing individual’s preferences on wealth. Then, for a given risk attitude τ ∈ (0, 1), the

portfolio choice problem under QP is

max
w∈[0,1]n

Qτ [u (Sw)] , s.t.

n∑
i=1

wi = 1. (4)

As discussed in equation (3) above, the choice of utility function is irrelevant for portfo-

lio selection under QP. Hence the quantile optimization problem (4) using a given utility is

equivalent to maximizing the quantile obtained directly from the distribution of the random

variable.

Lemma 3.1. Let u(·) be a continuous and increasing utility function defined over the domain

of the random variable Sw for w ≡ (w1, ...,wn) ∈ [0, 1]n. The maximization argument w∗

6Our model can deal with short sale, but we leave this to future work.
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solves (4) if and only if it solves the following:

max
w∈[0,1]n

Qτ [Sw] , s.t.

n∑
i=1

wi = 1. (5)

Given the result in equations (4) and (5), for the remaining of the paper, we focus the main

analyses on the problem in (5).

It is worth noting that the above portfolio choice problem is different, and more general,

than the goal-reaching problem proposed by Kulldorff (1993) in a quantile setting. This author

maximizes the cumulative probability of
∑n
i=1wir̃i subject to achieving some target return r0.

More formally, the objective function is max
(w1,...,wn)

P{
∑n
i=1wir̃i > r0} subject to

∑n
i=1wi = 1.

The result in Lemma 3.1 is important in the context of portfolio allocation. Theoretically,

it implies that the quantile choice rule is able to separate beliefs from tastes. The relevance of

this separation criterion was put forward by Ghirardato et al. (2005) in the context of decision

theory under uncertainty. These authors offered a result with this separation, but they did

not insist on a complete separation of tastes and beliefs, because such a separation would rule

out most of the choice rules commonly considered by decision theorists.7 In contrast, as shown

in Lemma 3.1, the QP deliver a complete separation of tastes and beliefs. Empirically, this

separation is very important as well. In particular, it allows portfolio managers to make choices

on a particular portfolio without the knowledge of any specified utility function. For instance,

a manager only needs to learn about the quantile τ of an agent to choose the portfolio weights

from a given selection of returns r̃.

3.2 Optimal portfolio allocation when there is a risk-free asset

Manski (1988) derives the preferences of a quantile maximizer between two outcomes X and Y

when one of the outcome measures is degenerate, and finds a complete separation in preferences

between the degenerate and risky outcome. The deterministic choice is the preferred strategy

for low quantiles. In contrast, for high quantiles, the risky outcome is the preferred strategy.

In this section, we provide further formality to the example in Manski (1988) and frame it

in an optimal asset allocation context. We assume there is a riskless security that pays a rate

of return equal to Rf = r̄, and just one risky security that pays a stochastic rate of return equal

to R with distribution function FR. The portfolio return is defined by the convex combination

Rp = wr̄+ (1 −w)R = r̄+ (1 −w)(R− r̄),

7For instance, if the preference is given by EU, the belief is captured by the probability while the tastes
by the utility function over outcomes or consequences (such as monetary payoffs). Beliefs and tastes are not
completely separated, however, because if we take a monotonic transformation of the utility function, which
maintains the same tastes over consequences, we may end up with a different preference. That is, the pair
beliefs and tastes come together and are stable only under affine transformations of the utility function. In
other words, the EU preferences, as many other preferences, do not allow a separation of tastes and beliefs.
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and the investor’s maximization problem (5) for a specific quantile τ is arg maxwQτ[u(r̄+(1−

w)(R − r̄))]. Using the monotonicity of the quantile process, for a continuous and increasing

utility function, the investor’s problem simplifies to

arg max
w

(1 −w)Qτ[R] +wr̄.

Simple algebra shows that the individual portfolio choice w is then given by the following:

w∗ =


1 when Qτ[R] < r̄

0 when Qτ[R] > r̄

any w ∈ [0, 1] when Qτ[R] = r̄.

The intuition of this solution is simple. For small values of τ the individual’s optimal portfolio

choice is w∗ = 1 and corresponds to full investment on the risk-free asset. This is so because

r̄ > Qτ[Rp] for any combination Rp characterized by 0 < w < 1. For larger values of τ, such

that Qτ[R] > r̄, the optimal portfolio decision reverses and yields w∗ = 0. For Qτ[R] = r̄, the

QP maximizer is indifferent between the risk-free and the risky asset for any w ∈ [0, 1] defining

the portfolio return.

In contrast to the capital market line characterizing the mutual fund separation theorem in

a mean-variance setting, Tobin (1958), the optimal portfolio allocation under QP specializes in

the risk-free asset for individuals with τ below the magnitude of the risk-free rate and on the

risky asset, otherwise. In Appendix B.4, we extend the analysis of the risk-free asset by adding

a second risky asset to the portfolio. We obtain the same findings indicating an optimal binary

response to the risk-free asset. We notice that in this case, however, diversification between

the two risky assets may be optimal for middle quantiles even if the allocation to the risk-free

asset is null.

3.3 The case of two risky assets

This section considers the optimal portfolio allocation problem for an economy with two risky

assets and a decision maker endowed with QP.8 Consider two risky assets represented, respec-

tively, by the continuous random variables X and Y. Let the portfolio be defined as

Sw ≡ wX+ (1 −w)Y, (6)

with 0 6 w 6 1 a scalar portfolio weight. The portfolio selection problem in this context will

be:

max
w∈[0,1]

Qτ [Sw] . (7)

8See, e.g., Damodaran (2010) for an argument that every asset carries some risk.
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Define the solution to this problem by w∗(τ) : (0, 1) → [0, 1]. Whenever there is no confusion

we will use simply w∗. We will also assume that X and Y have joint distribution function given

by a continuous probability density function (p.d.f.) f defined over intervals IX and IY . More

formally:

Assumption 1. X and Y have joint distribution function given by a continuous p.d.f. f :

IX × IY → R, where IX = [x, x], IY = [y,y], −∞ 6 x < x 6 ∞, −∞ 6 y < y 6 ∞ and

0 < f(x,y) <∞ for all (x,y) ∈ IX × IY.

It is important to emphasize that the above assumption does not exclude distributions with

support in the whole real line. In particular, X and Y can be normal variables, for instance. In

fact, almost all distributions studied in finance satisfy Assumption 1. It shall be understood

that if x = ∞ or y = ∞, the intervals are, respectively, [x,∞) and [y,∞). An analogous

observation holds when x = −∞ or y = −∞. We will maintain Assumption 1 in all results of

this section and will not repeat it.

In the remaining of the section we establish the existence of the optimal portfolio choice

under the QP theory as well as derive conditions that determine the existence of diversification.

Lemma 3.2. The optimization problem (7) has at least one solution.

Lemma 3.2 shows that the QP problem has at least one optimal vector, w∗(τ), that solves

the problem for a given quantile τ. Deriving an explicit expression for w∗ is in general a

difficult task, but its value can be obtained through numerical calculations.

3.3.1 Diversification for low quantiles

Our first main result is that “in general” for τ sufficiently small, diversification is optimal, that

is, there exists an interior solution w∗ ∈ (0, 1). As we will see in a moment, this requires some

assumptions. Perhaps the most important setting is the one described in the following:

Theorem 1. Assume that x,y > −∞. If x = y and τ ∈ (0, 1) is sufficiently small, then

any optimal solution must be interior. More formally, there exists τ0 such that if τ < τ0 then

w ∈ {0, 1} does not solve (7) for that τ, or yet: if w∗ solves (7), w∗ ∈ (0, 1).

Intuitively, for a fixed small τ, the convex combination of the two assets is able to generate

a larger quantile. Notice that this result requires no further assumption on the distributions

other than the restriction of the same lower bound. Although this condition excludes normal

distributions, it includes important distributions, as for example, the lognormal. Nevertheless,

Theorem 1 can be extended to symmetric normal distributions, although we omit a formal

statement for space considerations.

It is useful to illustrate Theorem 1 for the case of two standard uniform distributions,

X ∼ U(0, 1) and Y ∼ U(0, 1); see Example 3.3. Figure 1 shows the CDFs of the random variable

11
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Figure 1: CDF of Sw = wX+(1−w)Y indexed by w ∈ [0, 1] when X ∼ U(0, 1) and Y ∼ U(0, 1).

Sw for different w. One can see that for low τ (in this case, τ 6 0.5), the CDF curve most to

the right corresponds to w∗(τ) = 0.5. If τ > 0.5, the optimal w∗(τ) is either 0 or 1, that is,

there is no diversification (both 0 and 1 are solutions because the two assets are identical in

this case).

Example 3.3. Consider X ∼ U(0, 1) and Y ∼ U(0, 1), independent. With numerical calcula-

tions, in this case we have:

w∗(τ) =

{
0.5, if τ ∈

(
0, 1

2

]
1, if τ ∈

(
1
2 , 1
)

.

Notice that there can be diversification even when one of the distribution functions stochas-

tically dominates the other. See, for instance, Example 3.4 for the case of X ∼ U(0, 2) and

Y ∼ U(0, 1). In this case, even though U(0, 2) stochastically dominates U(0, 1), there is diver-

sification for τ 6 1/4: the optimal w is interior, w∗ = 0.5.

Example 3.4. Consider X ∼ U(0, 2) and Y ∼ U(0, 1). In this case we have:

w∗(τ) =

{
0.5, if τ ∈

(
0, 1

4

]
1, if τ ∈

(
1
4 , 1
)

.

This is an interesting result, because despite the fact that X first order stochastically dom-

inates Y, there exists a convex combination Sw that dominates both random variables X and

Y for low quantiles. Notice, however, that this feature is desirable, because the independence

of X and Y makes a convex combination of the two less risky than any of them.
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3.3.2 No diversification with different lower ends of the distributions

Given the result in Theorem 1, a natural question is what would happen if the assumption

that x = y of the theorem does not hold, that is, if x 6= y. The näıve intuition may be

that for low quantiles diversification is always optimal. Theorem 1 shows that this occurs if

τ is sufficiently small and there is no obvious difference in the lower limits given by x and y.

However, when the tail behavior of the assets in the portfolio is very different, the next result

shows that diversification is not optimal for low quantiles. More formally, Theorem 2 shows

that for x − y > M
2m , with m and M suitable constants, the quantile of X is larger than the

quantile of any convex combination of X and Y for low values of τ. A natural interpretation

of this result in a risk management context is to say that the VaR of X is larger than the VaR

of any diversified combination of the assets.9 The investor allocates all the portfolio weight in

the variable that dominates the other in the left tail of the distribution. This is the message

of the next result, where we denote X’s τ-quantile by xτ.

Theorem 2. Assume that x > y > −∞. Fix τ ∈ [0, 1]. Let M and m be such that m 6

f(x,y) 6 M for all (x,y) ∈ [x, xτ] × [y,y] ∪ [x, x] × [y, xτ].
10 If x − y > M

2m , w∗ = 1 is the

unique solution to (7) for all τ ∈ (0, τ).11

Theorem 2 shows that the optimal choice is w∗ = 1 for all τ small, provided that the

difference between the two distributions at the left end point is sufficiently large. Example 3.5

illustrates this result for the case of X ∼ U(0.5, 1) and Y ∼ U(0, 1). Since X and Y are uniform

and y = 0, we can take m = M and the assumption of Theorem 2 simplifies to x > 1
2 , which

is precisely the condition satisfied in this example (with x = 1
2).

Example 3.5. Consider X ∼ U(0.5, 1) and Y ∼ U(0, 1). Then, w∗ = 1 for all τ ∈ (0, 1).

Notice that in this example, we have the choice w∗ = 1 for all τ ∈ (0, 1), which is stronger

than the result stated in Theorem 2. We can in fact establish this stronger condition if the

bounds m and M hold for the entire interval. More precisely, we can fix τ = 1 in Theorem 2

and conclude the following:

Corollary 3.6. Assume that x > y > −∞. Let M and m be such that m 6 f(x,y) 6 M for

all (x,y) ∈ [x, x]× [y,y]. If x−y > M
2m , w∗ = 1 is the unique solution to (7) for all τ ∈ (0, 1).

The latter result shows the absence of diversification, across τ ∈ (0, 1), for individuals with

QP under the conditions of the corollary. This result suggests that in many cases the efforts

of portfolio managers may be futile under QP theory. A major implication of Corollary 3.6 is

9In the context of risk management, Theorem 2 provides theoretical support to the lack of subadditivity of
VaR measures in general settings, see Artzner et al. (1999).

10The inferior limit m may be taken over a limited region, not over the whole support. That is, we can
accommodate cases in which the support is infinite so that f(x,y)→ 0 when y→∞.

11Of course, w∗ = 0, when y > x > −∞ and y− x > M
2m

.
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to show that, under QP, if there is no diversification in the lower left tail of the distribution it

is very likely that there is no diversification for higher quantiles.

Nevertheless, the behavior with different lower end points can be complex. For instance,

it may be the case that the optimal choice is w∗ ∈ {0, 1} for small τ, it becomes interior

for intermediate values of τ and then becomes w∗ ∈ {0, 1} again for large τ’s. The following

example illustrates a case when the conditions in the corollary are not satisfied. In this case

we find the existence of diversification in the middle quantiles of the distribution despite the

fact that there is no diversification in the lower left tail.

Example 3.7. Consider (X, Y) a bivariate random vector. Let fX(x) = M be the marginal

density function of X if 0 < x 6 x 6 d, fX(x) = m if d < x 6 x < ∞, and fX(x) = 0

otherwise. The support of X is [12 , 3
2 ], i.e. x = 1

2 and x = 3
2 . Let Y ∼ U(0, 1) such that

fY(y) = 1 for y ∈ [y,y], with y = 0 and y = 1, and fY(y) = 0, otherwise. Then, the

following conditions of Corollary 3.6 are satisfied: (i) x > y > −∞, (ii) M and m are such

that m 6 f(x,y) 6M for all (x,y) ∈ [x, x]× [y,y]. However, for M = 4, m = 2
3 and d = 0.6,

we have x − y = 0.5 < 3 = M
2m , such that the remaining condition of the corollary is not

satisfied.

Figure 2 reports the CDFs for different combinations Sw indexed by w ∈ [0, 1] for the density

functions in Example 3.7. For small and large values of τ the optimal allocation is w∗ = 1,

however, there is a middle interval of τ for which diversification is optimal. This can be seen

by noting that some CDF for w ∈ (0, 1) crosses from below that of w = 1 that corresponds to

X.
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Figure 2: CDF of Sw = wX + (1 − w)Y indexed by w ∈ [0, 1] when (X, Y) are defined in the
Example 3.7.
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Another interesting case is posed by Theorem 2. One might think that the conclusion of

this theorem could hold more generally, whenever x > y and τ is sufficiently small. This is

false, however: the difference between x and y must be bounded away from zero to ensure the

conclusion. The following examples illustrate this observation.

Example 3.8. Consider X ∼ U(0.25, 0.75) and Y ∼ U(0, 1). We have w∗ ∈ (0, 1) for τ ∈
(
0, 1

2

)
and w∗ = 0 for τ ∈

(
1
2 , 1
)
. See Figure 3. Its left panel plots the optimal allocation w∗(τ), while

its right panel plots the τ-quantiles of X, Y and the optimal portfolio Sw∗(τ).

w∗(τ) Qτ[X], Qτ[Y] and Qτ[Sw∗(τ)]

Figure 3: Illustration of Example 3.8—Optimal w∗ for X ∼ U(0.25, 0.75) and Y ∼ U(0, 1).

Example 3.9. Consider X ∼ U(0.25, 1.25) and Y ∼ U(0, 1). We have w∗ ∈ (0, 1) for τ ∈
(0, 0.25) and w∗ = 1 for τ > 0.25. See Figure 4. As in the previous case, the left panel plots

w∗(τ), while its right panel plots the τ-quantiles of X, Y and the optimal portfolio Sw∗(τ).

3.3.3 No diversification for large quantiles

The examples above suggest that for high τ, the optimal choice is w∗ ∈ {0, 1}. This is indeed

correct, as the following result establishes. It shows that the optimal portfolio choice for values

of τ close to 1 is not interior.

Theorem 3. Assume that x = y < y = x < ∞. Fix τ ∈ (0, 1). Let M and m be such that

m 6 f(x,y) 6 M for all (x,y) ∈ [xτ, x] × [y,y] ∪ [x, x] × [xτ,y].12 If xτ − x > M(x−x)
2m , then

w∗(τ) ∈ {0, 1} for all τ ∈ [τ, 1).

Note that in this scenario we may have one or two solutions for τ sufficiently close to 1. In

other words, there is no portfolio diversification in the upper tail of the distribution. These

12The inferior limit m may be taken over a limited region, not over the whole support. That is, we can
accommodate cases in which the support is infinite so that f(x,y)→ 0 when y→∞.
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w∗(τ) Qτ[X], Qτ[Y] and Qτ[Sw∗(τ)]

Figure 4: Illustration of Example 3.9—Optimal w∗ for X ∼ U(0.25, 1.25) and Y ∼ U(0, 1).

findings are related to Ibragimov and Walden (2007). These authors find that for truncated

versions of heavy-tailed distributions with unbounded support diversification may increase

value at risk as long as the random variables are concentrated on a sufficiently large interval.

The results in this section generalize Ibragimov and Walden (2007) by considering a wider

class of distribution functions characterized by Assumption 1. In particular, we derive the

conditions under which diversification in the tails may or may not be an optimal outcome for

individuals endowed with QP.

In the following section we proceed to characterize the existence of interior solutions to the

QP optimal portfolio choice problem.

3.3.4 Characterization of the interior solution in QP optimal portfolio choice

The preceding section has presented conditions on the support of the random variables X and

Y that lead to either full diversification or null diversification. We have also extended the

results to the tails of the distributions by showing that for lower bound supports far apart

diversification is not an optimal outcome. In this section, we build upon these results and

provide a characterization of the interior solutions to the optimal portfolio choice problem

under QP theory. The section also establishes properties of the portfolio selection problem in

a QP framework.

The proof of the results below will depend on some new definitions. First, let us denote

Pr (Sw 6 q) by h(w,q), that is,

h(w,q) ≡
∫
IX

∫
IY∩(−∞,q−wx1−w ]

f(x,y)dydx, (8)

if w ∈ (0, 1), h(0,q) ≡ FY(q) and h(1,q) ≡ FX(q). Let us focus on the case w ∈ (0, 1). From
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Figure 5: An illustration of Z for the case IX = IY = [0, 1].

Assumption 1, we know that as long as
{(
x, q−wx1−w

)
: x ∈ R

}
∩ IX× IY contains more than one

point, the equation h(w,q) = τ ∈ (0, 1) implicitly defines the quantile q = qw,τ of Sw as a

function of w ∈ (0, 1) and τ ∈ (0, 1), that is,

h(w,qw,τ) = τ =⇒ q(w, τ) ≡ Qτ[Sw].

In what follows, we will omit τ from q(w, τ) such that q(w, τ) ≡ q(w).
Let us define IZ = I

w,q
Z = {x ∈ R :

(
x, q−wx1−w

)
∈ IX × IY} and assume that w and q are

such that IZ = I
w,q
Z is a proper interval. Now, let us define a random variable Z = Zw,q that

is characterized by the following density function:

fZ(x) ≡
f
(
x, q−wx1−w

)∫
IZ
f
(
t, q−tw1−w

)
dt

, (9)

for x ∈ IZ. This density function is strictly positive on IZ and zero otherwise. In or-

der to understand what Z corresponds to, consider Figure 5. This figure plots the region{(
x, q−wx1−w

)
: x ∈ R

}
∩ [0, 1]× [0, 1] in a XY plane for the case of two standard uniform distribu-

tions. The left plot in Figure 5 describes the problem for small quantiles (τ 6 1
2) and w = 1

2 ,

and the right plot for large quantiles (τ > 1
2) and w = 1

2 . More generally, the random variable

Z can be interpreted as the projection of Y = q−wX
1−w onto X, and has support drawn in red

and density given by the values in the probability distribution function along the blue line.13

13The two illustrations (a) and (b) correspond, respectively, to τ 6 Pr
([
X+Y
2

6 q
])

and τ > Pr
([
X+Y
2

6 q
])

.
In the first case (a), the line wX+ (1−w)Y = q is below the dashed blue line joining (1, 0) to (0, 1). In case (b)
τ > Pr

([
X+Y
2

6 q
])

, the line wX+ (1 −w)Y = q is above the dashed blue line.
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The definition of the random variable Z through the characterization of its density function

(9), allow us to state our first result in this section.

Proposition 3.10. Let X and Y be random variables satisfying assumption 1, and let Z = Zw,q

be a random variable characterized by the density function (9). Then, the function q(w) is

differentiable at w ∈ (0, 1) and

q ′(w) =
1

1 −w
(E[Z] − q(w)) , for τ ∈ (0, 1), (10)

provided that one of the following cases hold: (1) IX = IY = R; (2) IX = IY = R+; (3)

IX = IY = [0, c], with c > 0 a constant defining a compact support.

This result allows one to derive the optimality condition characterizing the optimal portfolio

choice.

Corollary 3.11. Let w∗ ∈ (0, 1) be an interior solution to the maximization problem (7) for

a given τ ∈ (0, 1). Under the conditions of Proposition 3.10, the optimal w∗ satisfies the

condition E[Zw∗,q] = q(w
∗), with ∂

∂wE[Zw∗,q] < 0.

To understand the optimality condition in Corollary 3.11, we revisit Example 3.3 by con-

sidering again the particular case of two standard uniform random variables, X, Y ∼ U(0, 1).

Example 3.12. Let X and Y be iid U(0, 1) random variables. In this case, if τ 6 1
2 , we have

E[Z] = q
2w . Then, q(w) is increasing if

E[Z] > q ⇐⇒ q

2w
> q ⇐⇒ w <

1

2
.

The maximum is achieved at w∗ = 1
2 given that E[Z] = q ⇐⇒ q

2w∗ = q ⇐⇒ w∗ = 1
2 .

To show that w∗ is a maximum we also note that the function q(w) is strictly decreasing for

w > 1
2 and τ 6 1

2 . This case is illustrated in Figure 5(a). On the other hand, if τ > 1
2 , Figure

5(b) depicts Z. In this case, we can see that

E[Z] =
1

2

(
q− 1 +w

w
+ 1

)
= 1 −

1 − q

2w
> q ⇐⇒ 1 − q

2w
< 1 − q ⇐⇒ w >

1

2
,

which implies that the function q(w) is increasing for w > 1
2 and achieves the maximum at

w∗ = 1, for all τ > 1
2 .

In this example there is a separation in the optimal portfolio allocation between risk-

averse individuals and risk lovers. The optimal portfolio allocation of risk-averse individuals,

characterized by τ ∈ (0, 1
2 ], is full diversification given by w∗ = 1

2 . Risk lovers, characterized

by τ ∈ (1
2 , 1), maximize the objective function (7) at w∗ = 1. This important result separating
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the optimal portfolio allocation into two regions broadly representing the risk preferences of

risk-averse and risk-loving individuals can be generalized to other density functions under the

following assumptions.

Assumption 2. The joint density function f(x,y) of the bivariate random variable (X, Y) is

C1 and satisfies that, for all fixed µ ∈ R, f(µ+ ε,µ− w
1−wε) is unimodal on ε ∈ R, with mode

at ε = 0.

Assumption 3. The joint density function f(x,y) of the bivariate random variable (X, Y) is

such that there exists some w∗ ∈ (0, 1) satisfying the condition

f

(
µ+ ε,µ−

w∗

1 −w∗
ε

)
= f

(
µ− ε,µ+

w∗

1 −w∗
ε

)
(11)

for all µ ∈ R and ε > 0.

Assumption 2 evaluated at the optimal w∗ guarantees the unimodality of the density function

fZ defined in (9). Similarly, Assumption 3 guarantees its symmetry. Note that condition (11)

does not necessarily imply the symmetry of f(x,y) in the sense f(x,y) = f(y, x) unless w∗ = 1
2 .

The following result constitutes one of the main results of this study, namely, we show the

existence of two regimes in the optimal portfolio allocation for individuals characterized by QP

and maximizing the objective function (7).

Proposition 3.13. Let f(x,y) be the joint density function of the pair (X, Y). Under assump-

tions 1 to 3, the solution to the maximization problem (7), for all τ ∈ (0, τ0], is w∗ ∈ (0, 1)

that satisfies expression (11). For τ > τ0, the solution is w∗ ∈ {0, 1}. More specifically, w∗ = 0

for τ > τ0 if w∗ > 1
2 in the interval (0, τ0], and w∗ = 1 for τ > τ0 if w∗ 6 1

2 in the interval

τ ∈ (0, τ0]. The threshold τ0 is defined by the condition τ 6 P(Z 6 q) for τ ∈ (0, τ0], and

P(Z 6 q) < τ for τ ∈ (τ0, 1).

This result accommodates the iid case as a particular example.

Corollary 3.14. Let X and Y be two iid random variables with unimodal density function

fX(·) that satisfies assumption 1. The solution to the maximization problem (7) is w∗ = 1
2 for

τ ∈ (0, τ0], and w∗ ∈ {0, 1}, indistinctively, for τ > τ0.

Proposition 3.13 and Corollary 3.14 offer very interesting insights about portfolio allocation

and the importance of diversification. Under some general assumptions that accommodate,

among other examples, very popular families of density functions such as the Normal distribu-

tion and the Student-t distribution, diversification is optimal for individuals with preferences

characterized by risk aversion (low τ-quantiles). Individuals characterized by these preferences

choose the same portfolio, regardless their specific τ, that is given by an interior solution. For

iid random variables or for symmetric bivariate random variables the optimal allocation is full
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diversification, interpreted as an equal contribution of each asset to the portfolio. In contrast,

individuals with preferences characterized by high values of τ, do not diversify at all. The

optimal investment strategy of these agents is full investment in the asset with more upside

potential, that in these cases corresponds to the asset with higher downside risk too. In this

case the specific value of τ characterizing the individual’s quantile preference is not relevant

for determining the optimal portfolio allocation as long as this value is greater than the cut-off

point τ0. For symmetric distributions, τ0 = 0.5.

3.4 Numerical results

In this section we study optimal asset allocation under QP for portfolios given by the mix-

ture of two continuous random variables X and Y with payoff realizations defined as Sw =

wX+ (1−w)Y. We also compare the results with the optimal asset allocation obtained under

EU. Here, for simplicity and brevity, we concentrate on the simple case of two Gaussian in-

dependent and identically distributed random variables. Nevertheless, Appendix B presents a

more comprehensive examination across different scenarios of the problem allowing for depen-

dence and different configurations of the Gaussian and Chi-squared distributions.

In order to compute the optimal portfolio w∗(τ) : (0, 1)→ [0, 1] we are required to compute

the cumulative distribution function FSw and quantile function Qτ[Sw], for which in many

cases we do not have an analytical expression to work with. We approximate the optimal

portfolio allocation w∗ and quantile function through simulation. The following example aims

to illustrate the practical selection and diversification of portfolios, as well as the theoretical

findings of the previous sections.

3.4.1 Design

In this numerical study we seek to compute the optimal portfolio weights w∗(τ) for the QP

model in equation (5) for τ ∈ (0, 1). To simulate a portfolio, we draw n = 10, 000 realizations

of the random variables (X, Y), which are chosen from different distributions, say Gaussian and

Chi-squared. We investigate several alternative scenarios using independence and dependence

of the variables X and Y. In addition, we vary the mean and variance of the distribution

functions.

For each case below, we report two figures. The figures on the left panel plot the cumulative

distribution functions generated by the portfolio value Sw, that is, we plot FSw for w ∈
{0.1, . . . , 0.9}. These figures intuitively characterize the solutions because for any τ we can draw

a horizontal line and find the optimal QP solution by searching for the largest CDF. Second,

figures on the right panel plot the graph of the portfolio selection {w∗(τ), τ} for different values

of τ.
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3.4.2 Computation of portfolio

To implement the optimization, we use a simple grid search. Let Tj = {0 < τ1 < . . . < τj < 1}

be a grid of values for the quantile index τ with j values, and let Λl = {0 6 w1 < . . . < wl 6 1}

be a grid of values for w with l values. For each fixed τ ∈ Tj we solve the following portfolio

problem numerically

ŵ∗n(τ) = arg max
{w∈Λm}

Q̂τ[Sw], (12)

where Q̂τ is the sample counterpart of the quantile function Qτ.

We consider Tj with grid spacing of 0.01 (#Tj = 99, with τ1 = 0.01 and τ99 = 0.99) and Λl

with grid spacing of 0.01 (#Λj = 101, with w1 = 0 and τ101 = 1).

Consider a simulation exercise given by a very simple case where we consider a weighted

combination of two independent standard Gaussian random variables, X, Y ∼ iid N(0, 1). It

is well known that Sw = wX + (1 − w)Y also follows a Gaussian distribution with Sw ∼

N(0,w2 + (1 − w)2). In this scenario, under risk aversion and for very general forms of the

utility function, e.g. mean-variance, CRRA and CARA utility functions embedded in the

optimal portfolio decision, risk-averse EU individuals choose the investment portfolio that

minimizes the variance of the random variable Sw. In this setting this is given by w∗ = 0.5.

The results for the QP model presented on the right panel of Figure 6 confirm these findings

for low quantiles of the distribution but show more heterogeneity in the optimal portfolio

decision for the upper quantiles. The findings of this simulation exercise provide empirical

evidence showing that the optimal QP choice depends on the quantile τ ∈ (0, 1). In particular,

for this specification of the random variables X and Y the optimal weight w∗ is a function of τ

such that ŵ∗n(τ) = 0.5 for τ 6 0.5, and either ŵ∗n(τ) = 0 or ŵ∗n(τ) = 1 for τ > 0.5. This result

is a consequence of the fact that the distributions of X and Y are identical and confirm the

predictions in Corollary 3.14 about a lack of diversification in the upper tail of the distribution

of portfolio returns. The left panel of the figure plots all combinations of distributions F̂Sw as

a function of w ∈ [0, 1]. These distributions reveal a unique single-crossing point at τ0 = 0.5

for all w.

This simple exercise sheds light on portfolio selection under QP. As mentioned above, the

QP do not rely on any functional form of the utility function. In addition, QP models have

the advantage of allowing for heterogeneity through the quantiles because it offers a family of

preferences indexed by τ, with the risk attitude under the QP being captured by the quantile.

The results in Figure 6 show that individuals with QP encompass both risk-averse and risk-

loving behavior. Those economic agents concerned with downside risk (low quantiles) diversify

by investing equally in each asset, whereas individuals with preferences driven by the upper

quantiles of the distribution of portfolio returns do not diversify at all. The critical point that

determines whether an individual diversifies or not is τ0 = 0.5.14

14The simulation algorithm reflects this issue by selecting either w = 0 or w = 1 for τ0 = 0.5.
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Figure 6: X, Y ∼ N(0, 1). Left panel plots the CDF of Sw. Right panel plots QP portfolio selection.

This neat separation between risk-aversion and risk-loving behaviors characterized by the

quantile τ0 is also observed, more generally, for distribution functions satisfying the conditions

of Proposition 3.13. The result in the proposition accommodates departures from the iid case,

otherwise, if the conditions of the proposition are not satisfied then the optimal asset allocation

under QP is τ−dependent and shifts smoothly from a risk-averse optimal allocation to a risk-

loving optimal allocation. Appendix B illustrates this case and collects several additional

results across different scenarios, including the analysis of portfolios with a risk-free asset. The

results provide strong support to the theoretical findings in this paper.

4 Empirical application to a portfolio of stocks, bonds and cash

This section provides an empirical application illustrating the methods developed in the paper.

We investigate the optimal portfolio choice of an investor with quantile preferences (QP) that

can allocate wealth among three assets: a risk-free asset (one-month Treasury bill rate), a

bond index (G0Q0 Bond Index), and a stock index (S&P 500). We consider monthly data

collected from Bloomberg on the S&P 500 and G0Q0 Bond Index for the period January

1980 to December 2016. The G0Q0 Bond Index is a Bank of America and Merrill Lynch

U.S. Treasury Index that tracks the performance of U.S. dollar denominated sovereign debt

publicly issued by the U.S. government in its domestic market. The nominal yield on the U.S.

one-month risk-free rate is obtained from Kenneth French website.

Prior to computing the portfolio weights, we report nonparametric kernel estimates of the

unconditional density functions of the returns on the three assets. The results are given in

Figure 7. Visual inspection of the densities shows that the three density functions are unimodal

and exhibit similar mean returns but very different standard deviations. A formal statistical

analysis rejects, however, the null hypothesis of equality of means for all pairwise combinations
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Figure 7: Nonparametric kernel estimates of the unconditional densities of monthly log-returns on the

U.S. one-month Treasury bill, the G0Q0 bond index and the S&P 500 index. Monthly data are collected

from Bloomberg on the S&P 500 and G0Q0 Bond Index for the period January 1980 to December 2016.

The risk-free rate is obtained from Kenneth French website.

of the U.S. Treasury bill, the G0Q0 index and the S&P 500 index, and the null hypothesis

of symmetry of the three density functions. More specifically, the mean return and standard

deviation for the U.S. one-month Treasury bill are 0.363 and 0.296, respectively; the mean

return and standard deviation for the G0Q0 bond index are 0.608 and 1.584, respectively, and

0.680 and 3.635 for the S&P 500 index. These summary statistics suggest that the equity

index has the highest expected return and variance, and is followed by the bond index with

regards to expected return and risk. In contrast, the U.S. Treasury bill has the lowest mean

and variance.

We compute the QP portfolio optimal weights by solving the maximization problem (5)

numerically, as in equation (12). We divide the analysis in two. First, we study the optimal

portfolio allocation between the U.S. one-month Treasury bill and the G0Q0 index, and between

the U.S. one-month Treasury bill and the S&P 500 index. Figure 8 clearly confirms the

predictions of previous sections. The optimal portfolio allocation of a QP investor can be

divided into two regions indexed by τ ∈ (0, 1). For low values of τ, individuals are risk averse

and choose to minimize risk by allocating all the wealth on the risk-free asset. However, for

high values of τ, individuals become risk lovers and choose the riskiest strategy that brings the

highest upside potential. Interestingly, the results in Figure 8 highlight the role of the U.S.

one-month Treasury bill as a risk-free investment and are consistent with the insights discussed

in Section 3.2 on the mutual fund separation theorem for the QP case. For low quantiles, the
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Figure 8: Left panel reports the optimal portfolio allocation between the U.S. risk-free asset and G0Q0

bond index. Right panel reports the optimal portfolio allocation between the U.S. risk-free asset and

the S&P 500 index. Monthly data are collected from Bloomberg on the S&P 500 and G0Q0 Bond Index

for the period January 1980 to December 2016. The risk-free rate is obtained from Kenneth French

website.

optimal choice is to fully invest on the risk-free asset, whereas for high quantiles, the optimal

choice is to invest fully on the risky alternative.

Second, we study the allocation problem where the investment universe comprises the three

assets. In this case we report the weights of all the three assets. The results are given in Figure

9 and provide similar insights about the optimal portfolio allocation exercise. We observe a

separation between the risk-free and riskiest asset for low and high quantiles. In particular,

for very low quantiles the optimal portfolio allocation is given by only investing in the risk-

free asset. In contrast, for values of τ beyond the mode, the optimal asset allocation is given

by fully investing on the S&P 500 index. As τ increases, we find that the optimal portfolio

allocation is given by a combination of the three assets, with a large share of investment on

the risk-free asset and a small share of investment distributed equally between the G0Q0 bond

index and the equity index. The allocation to the S&P 500 index with respect to the other

two assets increases as the tolerance of the individual towards risk grows.

We conclude the section by comparing these results with the optimal portfolio allocation of

a EU investor with preferences characterized by two different types of utility function: mean-

variance and power utility functions. The mean-variance utility function is defined as

U(µ,C) = w ′µ−
α

2
w ′Cw, (13)

with µ the vector of mean returns and C the covariance matrix of returns; the vector w denotes

the optimal portfolio weights. This is performed for different degrees of risk aversion α. The

left panel of Figure 10 presents the optimal portfolio allocations for values of α between 0 and

24



0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1

0 20 40 60 80 100
tau

weight RF
weight SP500
weight G0Q0

Figure 9: The optimal portfolio allocation between the U.S. risk-free asset, G0Q0 bond index and the

S&P 500 index. Monthly data are collected from Bloomberg on the S&P 500 and G0Q0 Bond Index

for the period January 1980 to December 2016. The risk-free rate is obtained from Kenneth French

website.

0.5. In this range, the optimal portfolio allocation leads to a diversified portfolio that contains

non-zero combinations of the three assets. For values of α close to zero, corresponding to risk

neutrality, the optimal portfolio allocation is mainly driven by investment in the S&P 500

index. However, as the tolerance to risk decreases, investment in the bond index and the US

Treasury bill gains importance. Investment in the risk-free asset is monotonically increasing

on α and dominates the portfolio for values greater than 0.3. Comparison of both sets of

results suggests interesting similarities and differences across types of individuals. Thus, there

is a mapping between the optimal portfolio choice of the QP investor with risk preferences

characterized by τ in the interval (0.40, 0.60) and the optimal portfolio choice of the mean-

variance investor with values of α in the range 0.05 to 0.45. The QP optimal allocation for

values of τ close to zero is also similar to the mean-variance allocation for values of α greater

than 0.5, signaling risk aversion. The main differences are, however, for behaviors related to

risk-loving attitudes. Thus, for values of τ greater than 0.5 we find that the allocation of the

QP individual is concentrated on the equity index. This result is only found for mean-variance

investors for values of α very close to zero that reflect no risk penalty in the utility function

(13).

For completeness, the right panel of Figure 10 reports the optimal asset allocation problem

for a EU individual with a power utility function characterized by different degrees of relative

risk aversion. Interestingly, the results are very similar to those obtained for the mean-variance

case. In this example, risk-loving attitudes for EU individuals take place for values of γ that

converge to zero.
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Figure 10: Left panel reports the optimal portfolio allocation for a mean-variance investor with risk

preferences modeled by α ∈ [0, 0.5]. Right panel reports the optimal portfolio allocation for an investor

with a CRRA utility function with risk aversion coefficient given by γ ∈ [10, 100]. Monthly data are

collected from Bloomberg on the S&P 500 and G0Q0 Bond Index for the period January 1980 to

December 2016. The risk-free rate is obtained from Kenneth French website.

5 Conclusion

This paper studies the optimal asset allocation problem for individuals with quantile prefer-

ences (QP). The proposed QP model has several attractive features: (i) the portfolio choice is

independent of the utility function and related to the risk attitude τ; (ii) the ability to cap-

ture heterogeneity by varying the quantiles; (iii) robustness; and (iv) it has a solid axiomatic

foundation.

We divide the portfolio allocation problem in two scenarios: with and without a risk-free

asset. In the former case, we find that an investor with quantiles preferences with risk aversion

characterized by a small τ reacts to the presence of a risk-free asset by fully investing on it.

Otherwise, for higher values of τ the optimal strategy is to fully invest on the risky portfolio.

This result is in stark contrast with the standard mutual fund separation theorem that shows

that the optimal combination between the risk-free asset and a risky portfolio is convex and

determined by the investor’s risk aversion profile. Under quantile preferences, we observe

an all-or-nothing behavior, instead. For the case of two risky assets, we derive theoretically

conditions on the support of the random variables under which the optimal portfolio decision

has an interior solution. This result provides the setup under which diversification strategies

are optimal for investors endowed with quantile preferences. These insights are in clear contrast

to the EU paradigm that claims that diversification is always an optimal strategy under very

general forms of risk aversion.

The paper has also explored the optimality of diversification strategies in the tails of the

distribution of portfolio returns. In particular, we have derived conditions under which diver-
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sification in the tails is outperformed by fully investing in one risky asset. This result is of

interest for the characterization of underdiversification strategies in finance.

Additionally, we have characterized the optimal portfolio allocation under QP when an inte-

rior solution exists. Under unimodality and a symmetry condition on the bivariate distribution

of the random lotteries, the individual’s optimal portfolio decision under QP is characterized by

two regions: for quantiles below the median full diversification is optimal, for quantiles above

the median diversification is dominated by fully investing on the asset with highest upside

potential. This strategy characterizes the optimal portfolio decision of risk-loving individuals.

27



Appendix

A Proofs

This appendix collects the proofs for the results in the main text.

Proof of Lemma 3.1:

Proof. The objective function of the primal problem in (4) is

max
w∈[0,1]n

Qτ [u(Sw)] .

Noticing that u(·) is continuous and increasing, and that the quantile is invariant with respect

to monotone transformations, then the above maximization argument is given by

arg max
w

Qτ [u(Sw)] = arg max
w
u (Qτ [Sw])

= arg max
w

Qτ [Sw] .

Proof of Lemma 3.2:

Proof. It is sufficient to show that w 7→ Qτ [wX+ (1 −w)Y] = Qτ[Sw] is continuous. But this

follows from Assumption 1, which implies that the CDF of Sw = wX + (1 − w)Y is strictly

increasing, thus making its quantile continuous.

Proof of Theorem 1:

Proof. (1) By appealing to translations if necessary, we may assume without loss of generality

that x = y = 0, that is, if this is not the case, we may consider the random variables X ′ = X−x

and Y ′ = Y − y. We may also assume without loss of generality that x,y <∞, for if x =∞ or

y =∞, we may truncate the distribution at large x̂, ŷ so that Pr({(x,y) : x > x̂ or y > ŷ}) < ε

for some small ε > 0. Thus, without loss of generality, we may assume that there exists

m,M ∈ R+ such that 0 < m < f(x,y) < M <∞ for all (x,y) ∈ [0, x]× [0,y].

We will prove that we can choose τ small enough so that w = 1 is dominated by w = 1
2 .

The argument that w = 0 is also dominated by w = 1
2 for sufficiently small τ is analogous.

For this, we will assume that w = 1 is better than w = 1
2 and find a contradiction for τ small

enough. Let xτ denote the τ-quantile of X and assume that q = q
(

1
2 , τ
)
6 xτ. See Figure 11

where q < xτ. From the definition, the probability under the red line X+Y
2 6 2 is τ, which is

the same of the probability of the vertical band from 0 to xτ. Therefore, the blue area in the
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Figure 11: Illustration of the proof.

graph (both light and dark blue together) have to be the same as the dark red that corresponds

to the small triangle from xτ to 2q in the horizontal axis and from 0 to 2q − xτ. To better

follow the argument, let A1 correspond to the probability in the dark blue area and A2, the

probability of the light blue area. Let A3 correspond to the probability of the dark red area

and A4, the probability of the light red area. Therefore, as observed above, by definition,

A1 +A2 = A3. (14)

We will show, however, that we can choose τ sufficiently small so that

A1 > A3 +A4. (15)

Observe that (15) implies

A1 +A2 > A1 > A3 +A4 > A3,

which contradicts (14). In order to obtain (15), observe that

A1 =

∫xτ
0

[∫y
2xτ

f(x,y)dy

]
dx

A3 +A4 =

∫2xτ

xτ

[∫xτ
0
f(x,y)dy

]
dx.
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Since m < f(x,y) < M for (x,y) ∈ [0, x]2, we have

A1 >

∫xτ
0

[∫y
2xτ

mdy

]
dx = mxτ (y− 2xτ)

A3 +A4 <

∫2xτ

xτ

[∫xτ
0
Mdy

]
dx =Mx2

τ.

Therefore, we obtain (15) if

mxτ (y− 2xτ) > Mx
2
τ

⇐⇒ xτ [my− (2m+M)xτ] > 0

⇐⇒ xτ <
y(

M
m + 2

) .

Since y, M and m are given constants, the above inequality is satisfied if xτ is small enough,

that is, if τ is sufficiently close to 0.

Proof of Theorem 2:

Proof. Note that by translating the distribution (along the 45◦ line) if necessary, we may

assume without loss of generality that y = 0.

Let us fix any τ ∈ (0, τ] and let xτ,yτ denote the τ-quantiles of X and Y, respectively. Of

course, xτ > x. Figure 12 below will be useful to illustrate the reasoning in this proof.

X

Y

xτ q
w

xτ−wx
1−w

xτ
w

y = 0

yτ

q−(1−w)yτ
w

x

Figure 12: Illustration of the proof.

Let M̄ be the average fX(x) density on the region x ∈ [x, xτ], that is, M̄ ≡ τ
xτ−x

. Therefore,

m 6 M̄ 6 M and m 6 f(x,y) 6 M for all (x,y) ∈ [x, xτ] × [y,y]. We want to show that

q(w, τ) < xτ for all w ∈ [0, 1). To show this, it is enough to show that for any q > xτ and
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w ∈ [0, 1), the probability under the line wx+ (1 −w)y 6 q is larger than τ, that is,

h(w,q) =

∫ xτ
w

x

[∫ xτ−wx
1−w

0
f(x,y)dy

]
dx > τ.

For this, it is sufficient to show that the area in blue in Figure 12 is larger than τ already for

q = xτ, that is,

q > xτ =⇒ h(w,q) > h(w, xτ) =

∫ xτ
w

x

[∫ xτ−wx
1−w

0
f(x,y)dy

]
dx > τ. (16)

Since f(x,y) > m for all (x,y) ∈ [x, xτ]× [y,y] ∪ [x, x]× [y, xτ], we have

h(w, xτ) >
m

2

(xτ
w

− x
)(xτ −wx

1 −w

)
=
m(xτ −wx)

2

2w(1 −w)
.

Thus, to establish (16), it is sufficient to show that

m(xτ −wx)
2

2w(1 −w)
> τ ⇐⇒ m(xτ −wx)

2 > 2τw(1 −w)

⇐⇒ m
[
(xτ)

2 − 2wxxτ +w
2x2
]
− 2τw+ 2w2τ > 0

⇐⇒ w2
(
2τ+mx2

)
− 2w (mxxτ + τ) +mx

2
τ > 0.

Let us define the quadratic polynomial:

p(w) ≡ w2
(
2τ+mx2

)
− 2w (mxxτ + τ) +mx

2
τ. (17)

Notice that p(0) = mx2
τ > 0 and for w = 1:

p(1) =
(
2τ+mx2

)
− 2 (mxxτ + τ) +mx

2
τ = m

(
x2 − 2xxτ + x

2
τ

)
= m(xτ − x)

2 > 0.

Let wV denote the vertex of the quadratic p(w), which is given by

wV =
mxτx+ τ

2τ+mx2
.

Note that wV is always positive.

We can conclude that the quadratic form p(w) in (17) is positive if p(wV) > 0. To verify
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this, we can substitute wV in the quadratic form to obtain:

p(wV) =

[
mxτx+ τ

2τ+mx2

]2 (
2τ+mx2

)
− 2

[
mxτx+ τ

2τ+mx2

]
(mxxτ + τ) +mx

2
τ

=
−(mxτx+ τ)

2

2τ+mx2
+mx2

τ =
mx2

τ(2τ+mx
2) − (mxτx+ τ)

2

2τ+mx2
,

which is positive as long as

2τmx2
τ +m

2x2
τx

2 > (mxτx+ τ)
2 = m2x2

τx
2 + 2τmxτx+ τ

2

⇐⇒ 2τmxτ (xτ − x) > τ
2

⇐⇒ 2mxτ (xτ − x) > τ.

Since τ = M̄(xτ − x), the above condition is equivalent to

2mxτ > M̄ ⇐⇒ xτ >
M̄

2m
.

Since M̄ 6M and xτ > x > M
2m , we have xτ >

M̄
2m , thus proving the result.

Remark A.1. One can also conclude that p(w) > 0 for all w ∈ [0, 1] if wV > 1. Unfortu-

nately, the condition for this is stronger than the one given in Theorem 2. Indeed, wV > 1

if

wv =
mxτx+ τ

2τ+mx2
> 1,

which is equivalent to

mxτx+ τ > 2τ+mx2

⇐⇒ mx(xτ − x) > τ.

Since τ = M̄(xτ − x), the above condition simplifies to

mx > M̄ ⇐⇒ x >
M̄

m
.

Since M̄ 6 M, if we have x > M
m then x > M̄

m . However, this assumption x > M
m is stronger

than the condition in Theorem 2.

Proof of Theorem 3:

Proof. Fix τ > τ and assume that x = y and x = y. We want to show that w∗(τ) = 1

for sufficiently high τ, which is equivalent to show that q(w, τ) < xτ for all w ∈ (0, 1) and
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Figure 13: Illustration for the proof of Theorem 3: the case of τ close to 1.

τ > τ. To show this, it is enough to show that for any q > xτ the probability under the line

wx+ (1 −w)y 6 q is larger than τ, that is,

q > xτ =⇒ h(w,q) > h(w, xτ) =

∫
A(w,xτ)

f(x,y)dydx > τ,

where A(w,q) ≡ {(x,y) ∈ [x, x]× [x, x] : wx+ (1 −w)y 6 q}. This is equivalent to show that

1 − h(w, xτ) =

∫
Ac(w,xτ)

f(x,y)dydx 6 1 − τ.

For estimating this integral, we have to consider three intervals for w: (0,w), [w,w] and (w, 1),

where w and w correspond to the lines that pass by (x, x) and (x, x) respectively, that is,

w x+ (1 −w) x = xτ ⇐⇒ w =
x− xτ
x− x

;

w x+ (1 −w) x = xτ ⇐⇒ w =
xτ − x

x− x
.

Note that w = 1 −w < w for large τ.

Figure 13 shows the set A(w, xτ) in blue, for w ∈ [w,w]. Thus, if w ∈ [w,w],

1 − h(w, xτ) =

∫x
xτ−(1−w)x

w

[∫x
xτ−wx
1−w

f(x,y)dy

]
dx.
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For w ∈ (0,w),

1 − h(w, xτ) =

∫
Ac(w,xτ)

f(x,y)dydx =

∫x
x

[∫x
xτ−wx
1−w

f(x,y)dy

]
dx,

and, for w ∈ (w, 1),

1 − h(w, xτ) =

∫
Ac(w,xτ)

f(x,y)dydx =

∫x
x

[∫x
xτ−(1−w)y

w

f(x,y)dx

]
dy.

We will consider each of the above cases.

Case 1: w ∈ [w,w].

Since m 6 f(x,y) 6M for all (x,y) ∈ [xτ, x]× [x, x], we have

1 − h(w, xτ) 6
M

2

[
x−

xτ − (1 −w)x

w

](
x−

xτ −wx

1 −w

)
.

Using x = x, the left hand side becomes M(x−xτ)
2

2w(1−w) . Thus, it is enough to prove that

M (x− xτ)
2

2w(1 −w)
6 1 − τ ⇐⇒ w(1 −w) >

M (x− xτ)
2

2(1 − τ)
.

Since w ∈ [w,w], we have

w(1 −w) > min{w(1 −w),w(1 −w)} = ww =
xτ − x

x− x
· x− xτ
x− x

.

Thus, it is sufficient to show that:

(xτ − x)(x− xτ)

(x− x)2
>
M (x− xτ)

2

2(1 − τ)

⇐⇒ 2(1 − τ)(xτ − x) >M(x− x)2 (x− xτ) . (18)

We now define m̄ =
(x−xτ)(x−x)

1−τ so that 1 − τ = m̄(x − xτ)(x − x) = m̄(x − xτ)(x − x).

Since

1 − τ =

∫x
xτ

[∫x
x

f(x,y)dy

]
dx > m(x− xτ)(x− x),

we have m̄ > m =⇒ M
m̄ 6 M

m . Therefore, the assumption gives

xτ − x > xτ − x >
M(x− x)

2m
>
M(x− x)

2m̄
,

as we wanted to show.
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Case 2: w ∈ (0,w).

Since m 6 f(x,y) 6M for all (x,y) ∈ [xτ, x]× [x, x], we have

1 − h(w, xτ) 6
M

2
(x− x)

(
x−

xτ −wx

1 −w

)
=
M (x− x) (x− xτ)

2(1 −w)
.

Thus, it is enough to prove

M (x− x) (x− xτ)

2(1 −w)
6 1 − τ ⇐⇒ 1 −w >

M (x− x) (x− xτ)

2(1 − τ)
.

Since w ∈ (0,w), we have 1 −w > 1 −w = xτ−x
x−x . Thus, it is sufficient to show that:

2(1 − τ)(xτ − x) >M(x− x)2 (x− xτ) .

This is exactly condition (18) above, which we have shown to be implied by the assumption.

Case 3: w ∈ (w, 1).

Since m 6 f(x,y) 6M for all (x,y) ∈ [xτ, x]× [x, x], we have

1 − h(w, xτ) 6
M

2
(x− x)

[
x−

xτ − (1 −w)x

w

]
=
M (x− x) (x− xτ)

2w
.

Thus, it is enough to prove

M (x− x) (x− xτ)

2w
6 1 − τ ⇐⇒ 2(1 − τ)w >M (x− x) (x− xτ) .

Since w ∈ (w, 1), w > w = xτ−x
x−x , it is sufficient to show again condition (18) above, which we

have shown to be implied by the assumption of Theorem 3.

Proof of Proposition 3.10:

Proof. Assume first that q(w) is differentiable at w ∈ (0, 1). Taking the total derivative with

respect to w on the equation h(w,q) = τ, we obtain

∂wh(w,q) + ∂qh(w,q) · q ′(w) = 0 =⇒ q ′(w) = −
∂wh(w,q)

∂qh(w,q)
. (19)

From (8), it is clear that h is differentiable and that ∂qh(w,q) > 0. Therefore, by the Implicit

Function Theorem, q is differentiable and given by (19). Now, we will calculate ∂wh(w,q)
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and ∂qh(w,q). Define the function y(w,q) ≡ q−wx
1−w . Then,

∂qy(w,q) =
1

1 −w
, and

∂wy(w,q) =
(−x)(1 −w) − (q−wx)(−1)

(1 −w)2
=

q− x

(1 −w)2
.

Support on R
Here we consider first the case in which IX = IY = R. The other two cases are similar and

considered below.15 It is clear from (8) and Assumption 1 that h is C1 and:

∂wh(w,q) =

∫∞
−∞ f

(
x,
q−wx

1 −w

)[
q− x

(1 −w)2

]
dx (20)

and

∂qh(w,q) =

∫∞
−∞ f

(
x,
q−wx

1 −w

)
1

1 −w
dx. (21)

From this,

∂wh(w,q) =
q

(1 −w)2

∫∞
−∞ f

(
x,
q−wx

1 −w

)
dx−

1

(1 −w)2

∫∞
−∞ xf

(
x,
q−wx

1 −w

)
dx

=
q

1 −w
∂qh(w,q) −

1

(1 −w)
E[Z] · ∂qh(w,q)

=
1

1 −w
· (q− E[Z]) · ∂qh(w,q).

Therefore,

q ′(w) = −
∂wh(w,q)

∂qh(w,q)
=

1

1 −w
(E[Z] − q) ,

as we wanted to show.

Support on [0,∞)

Now, we consider the case IX = IY = R+ = [0,∞). In this case, we have

h(w,q) =

∫ q
w

0

∫ q−wx
1−w

0
f(x,y)dydx. (22)

Let us define:

g(w,q, x) ≡
∫ q−wx

1−w

0
f(x,y)dy,

15When IX or IY are not R, then we have to consider limits that make the derivatives more complex.
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for x < q
w and g

(
w,q, qw

)
= 0 so that g is continuous and differentiable. Also,

h(w,q) =

∫ q
w

0
g(w,q, x)dx.

Then,

∂wh(w,q) = g
(
w,q,

q

w

)(−q

w2

)
+

∫ q
w

0
∂wg(w,q, x)dx

=
1

(1 −w)2

∫ q
w

0
(q− x) f

(
x,
q−wx

1 −w

)
dx,

and

∂qh(w,q) = g
(
w,q,

q

w

)( 1

w

)
+

∫ q
w

0
∂qg(w,q, x)dx

=
1

1 −w

∫ q
x

0
f

(
x,
q−wx

1 −w

)
dx.

From this, we observe that the same expressions remain valid:

∂wh(w,q) =
q

(1 −w)2

∫ q
w

0
f

(
x,
q−wx

1 −w

)
dx−

1

(1 −w)2

∫ q
w

0
xf

(
x,
q−wx

1 −w

)
dx

=
1

1 −w
· (q− E[Z]) · ∂qh(w,q)

and

q ′(w) = −
∂wh(w,q)

∂qh(w,q)
=

1

1 −w
(E[Z] − q) , (23)

as before.

Support on [0, c]

We now consider the case IX = IY = [0, c]. There are two subcases to consider, as show in

Figure 14.

Case (a)

In this case,

h(w,q) =

∫ q−(1−w)c
w

0

∫c
0
f(x,y)dydx+

∫ q
w

q−(1−w)c
w

∫ q−wx
1−w

0
f(x,y)dydx.

Let

g(α,β, x) ≡
∫β
α

f(x,y)dy.
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Figure 14: An illustration of Z for the case IX = IY = [0, c]. The blue area has probability τ.

Therefore,

h(w,q) =

∫ q−(1−w)c
w

0
g(0, c, x)dx+

∫ q
w

q−(1−w)c
w

g(0,
q−wx

1 −w
, x)dx.

Thus,

∂wh(w,q) = g

(
0, c,

q− (1 −w)c

w

)
∂w

[
q− (1 −w)c

1 −w

]
+

∫ q−(1−w)c
w

0
∂w [g(0, c, x)]dx

+ g
(

0, 0,
q

w

)(−q

w2

)
− g

(
0, c,

q− (1 −w)c

w

)
∂w

[
q− (1 −w)c

1 −w

]
+

∫ q
w

q−(1−w)c
w

∂w

[
g(0,

q−wx

1 −w
, x)

]
dx.

Since g(0, 0, ·) = 0 and ∂wg(0, c, x) = 0, and g
(

0, c, q−(1−w)c
w

)
∂w

[
q−(1−w)c

1−w

]
appear with
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+ and - signs, we have

∂wh(w,q) =

∫ q
w

q−(1−w)c
w

∂w

[
g(0,

q−wx

1 −w
, x)

]
dx

=

∫ q
w

q−(1−w)c
w

f

(
x,
q−wx

1 −w

)
∂w

[
q−wx

1 −w

]
dx

=
q− x

(1 −w)2

∫ q
w

q−(1−w)c
w

f

(
x,
q−wx

1 −w

)
dx.

We have:

∂qh(w,q) = g

(
0, c,

q− (1 −w)c

w

)
∂q

[
q− (1 −w)c

1 −w

]
+

∫ q−(1−w)c
w

0
∂q [g(0, c, x)]dx

+ g
(

0, 0,
q

w

)( 1

w

)
− g

(
0, c,

q− (1 −w)c

w

)
∂q

[
q− (1 −w)c

1 −w

]
+

∫ q
w

q−(1−w)c
w

∂q

[
g(0,

q−wx

1 −w
, x)

]
dx.

Anagously to the previous case,

∂qh(w,q) =

∫ q
w

q−(1−w)c
w

∂q

[
g(0,

q−wx

1 −w
, x)

]
dx

=

∫ q
w

q−(1−w)c
w

f

(
x,
q−wx

1 −w

)
∂q

[
q−wx

1 −w

]
dx

=
1

(1 −w)2

∫ q
w

q−(1−w)c
w

(q− x)f

(
x,
q−wx

1 −w

)
dx.

Note that in this case,

fZ(z) =
f
(
z, q−wz1−w

)
∫ q
w
q−(1−w)c

w

f
(
x, q−wx1−w

)
dx

,

so that

E[Z] =

∫ q
w
q−(1−w)c

w

xf
(
x, q−wx1−w

)
dx∫ q

w
q−(1−w)c

w

f
(
x, q−wx1−w

)
dx

.
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From this, we observe that the same expressions remain valid:

∂wh(w,q) =
q

(1 −w)2

∫ q
w

q−(1−w)c
w

f

(
x,
q−wx

1 −w

)
dx−

1

(1 −w)2

∫ q
w

q−(1−w)c
w

xf

(
x,
q−wx

1 −w

)
dx

=
q

1 −w
∂qh(w,q) −

1

(1 −w)
E[Z] · ∂qh(w,q)

=
1

1 −w
· (q− E[Z])∂qh(w,q),

and

q ′(w) = −
∂wh(w,q)

∂qh(w,q)
=

1

1 −w
(E[Z] − q) ,

as before.

Case (b)

In this case,

h(w,q) =

∫ q−(1−w)c
w

0

∫c
0
f(x,y)dydx+

∫c
q−(1−w)c

w

∫ q−wx
1−w

0
f(x,y)dydx,

and

h(w,q) =

∫ q−(1−w)c
w

0
g(0, c, x)dx+

∫c
q−(1−w)c

w

g(0,
q−wx

1 −w
, x)dx.

Thus,

∂wh(w,q) = g

(
0, c,

q− (1 −w)c

w

)
∂w

[
q− (1 −w)c

1 −w

]
+

∫ q−(1−w)c
w

0
∂w [g(0, c, x)]dx

− g

(
0, c,

q− (1 −w)c

w

)
∂w

[
q− (1 −w)c

1 −w

]
+

∫c
q−(1−w)c

w

∂w

[
g(0,

q−wx

1 −w
, x)

]
dx.
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Since ∂wg(0, c, x) = 0, and g
(

0, c, q−(1−w)c
w

)
∂w

[
q−(1−w)c

1−w

]
appear with + and - signs,

∂wh(w,q) =

∫c
q−(1−w)c

w

∂w

[
g(0,

q−wx

1 −w
, x)

]
dx

=

∫c
q−(1−w)c

w

f

(
x,
q−wx

1 −w

)
∂w

[
q−wx

1 −w

]
dx

=
q− x

(1 −w)2

∫c
q−(1−w)c

w

f

(
x,
q−wx

1 −w

)
dx.

Also,

∂qh(w,q) = g

(
0, c,

q− (1 −w)c

w

)
∂q

[
q− (1 −w)c

1 −w

]
+

∫ q−(1−w)c
w

0
∂q [g(0, c, x)]dx

− g

(
0, c,

q− (1 −w)c

w

)
∂q

[
q− (1 −w)c

1 −w

]
+

∫c
q−(1−w)c

w

∂q

[
g(0,

q−wx

1 −w
, x)

]
dx.

Therefore,

∂qh(w,q) =

∫c
q−(1−w)c

w

∂q

[
g(0,

q−wx

1 −w
, x)

]
dx

=

∫c
q−(1−w)c

w

f

(
x,
q−wx

1 −w

)
∂q

[
q−wx

1 −w

]
dx

=
1

(1 −w)2

∫c
q−(1−w)c

w

(q− x)f

(
x,
q−wx

1 −w

)
dx.

Note that in this case,

fZ(z) =
f
(
z, q−wz1−w

)∫c
q−(1−w)c

w

f
(
x, q−wx1−w

)
dx

,

so that

E[Z] =

∫c
q−(1−w)c

w

xf
(
x, q−wx1−w

)
dx∫c

q−(1−w)c
w

f
(
x, q−wx1−w

)
dx

.
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From this, we observe that the same expressions remain valid:

∂wh(w,q) =
q

(1 −w)2

∫c
q−(1−w)c

w

f

(
x,
q−wx

1 −w

)
dx−

1

(1 −w)2

∫c
q−(1−w)c

w

xf

(
x,
q−wx

1 −w

)
dx

=
q

1 −w
∂qh(w,q) −

1

(1 −w)
E[Z] · ∂qh(w,q)

=
1

1 −w
· (q− E[Z])∂qh(w,q)

and

q ′(w) = −
∂wh(w,q)

∂qh(w,q)
=

1

1 −w
(E[Z] − q) ,

as before.

Proof of Corollary 3.11:

Proof. The proof of this result is immediate from imposing q ′(w∗) = 0 in Proposition 3.10,

and noting that q ′′(w) = ∂
∂wE[Zw,q], with q ′′(·) the second derivative with respect to w. To

show this, we take the first derivative of q ′(w) in (10). Then,

q ′′(w) =

(
∂
∂wE[Z] − q

′(w)
)
(1 −w) + E[Z] − q(w)

(1 −w)2
. (24)

Then, noting that E[Z] = q(w∗) and q ′(w∗) = 0, we have

q ′′(w) =
1

(1 −w)2
∂

∂w
E[Z]. (25)

Proof of Proposition 3.13:

Proof. The proof of this result is shown in three different stages. First, we note from Corollary

3.11 that the first order condition characterizing an extremum of the optimization problem (7)

is E[Z] = q(w∗), with w∗ ∈ (0, 1). Now, given that the density function fZ(z) is evaluated over

the line y =
q(w∗)−w∗x

1−w∗ , it is not difficult to see that the projection of this line on the y-axis is

y∗ = E[Z] for x∗ = E[Z]. This result implies that for different quantile values q(w∗) ≡ q(w∗, τ)
indexed by τ ∈ (0, 1), the mean value of the random variable Z characterized by the density

function fZ(z) in (9) is in the 45% degree line such that (x∗,y∗) = (E[Z],E[Z]).

Second, we prove that condition (11) evaluated at w∗ guarantees the symmetry around

E[Z] of the density function fZ for x ∈ IZ = I
w∗,q
Z = {x ∈ R :

(
x, q−w

∗x
1−w∗

)
∈ IX × IY}. More

formally, condition (11) implies fZ(E[Z] + ε) = fZ(E[Z] − ε) for all ε > 0. This is so by noting
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that fZ(E[Z] + ε) =
f(E[Z]+ε,E[Z]− w∗

1−w∗ ε)∫
IZ
f
(
t,
E[Z]−tw∗

1−w∗
)
dt

and fZ(E[Z] − ε) =
f(E[Z]−ε,E[Z]+ w∗

1−w∗ ε)∫
IZ
f
(
t,
E[Z]−tw∗

1−w∗
)
dt

.

Now, we show that under assumption 2, the density function fZ is unimodal. To show this,

we note that fZ(z) =
f
(
x,
E[Z]−w∗x

1−w∗
)

∫
IZ
f
(
t,
E[Z]−tw∗

1−w∗
)
dt

, such that under the change of variable x = E[Z] + ε,

we obtain fZ(z) =
f(E[Z]+ε,E[Z]− w∗

1−w∗ ε)∫
IZ
f
(
t,
E[Z]−tw∗

1−w∗
)
dt

. Assumption 2 evaluated at µ = E[Z] implies that the

numerator of this expression increases with ε up to ε = 0 and then decreases. This condition

is sufficient to show that fZ(z) is unimodal with mode at E[Z].

These findings (unimodality and symmetry of fZ(·)) apply to every τ ∈ (0, 1) and imply

that the point (x∗,y∗) = (E[Z],E[Z]) divides the line q(w
∗)−w∗x

1−w∗ in two equal segments for all

quantile values q(w∗) ≡ q(w∗, τ) indexed by τ ∈ (0, 1). This property also implies that E[Z]

is the median of the distribution of Z with support the projection of the line on the x-axis.

In this scenario no other combination w̃, with w̃ 6= w∗, and such that q(w̃, τ) and q(w∗, τ)

defines two different lines for the same τ ∈ (0, 1), yields a line y =
q(w̃)−w̃x

1−w̃ that intersects

y = x at (x∗,y∗) = (E[Z],E[Z]). Let (x̃, x̃) denote such intersection, and let τ0 ∈ (0, 1) be

defined by the condition τ 6 P(Z 6 q) for τ 6 τ0, and P(Z 6 q) < τ for τ ∈ (τ0, 1]. Then, the

condition τ 6 P(Z 6 q), for all τ ∈ (0, τ0], implies that the projection of the crossing point

(x̃, x̃) on the x-axis, given by x̃, is smaller than the corresponding projection for w∗, that is

x∗ = E[Z]. Then, for all w̃ ∈ (0, 1) with w̃ 6= w∗, it follows that x̃ < E[Z], that is equivalent

to the condition q(w̃) < q(w∗) since q(w̃) = w̃x + (1 − w̃)y. Then, for x = y = x̃, we have

q(w̃) = x̃ and for x = y = E[Z], we have q(w∗) = E[Z]. Hence, the quantity w∗ maximizes the

quantile function for all τ ∈ (0, τ0].

It remains to see that the condition q(w∗) = E[Z] characterizes a minimum of the opti-

mization problem (7) for τ > τ0. In this scenario, the solution to the optimization problem

(7) is also in the 45o degree line, however, for τ ∈ (τ0, 1], it follows that P(Z 6 q) < τ (see

Figure 5(b)). Then, for any w̃ = w∗± ε, with ε > 0, the projection of the crossing point (x̃, x̃)

on the x-axis is larger than the projection of the crossing point (E[Z],E[Z]) associated to w∗.

Thus, for any w̃ = w∗± ε with ε > 0, it follows that x̃ > E[Z] and, using the above arguments,

q(w̃) > q(w∗) for all w̃ 6= w∗, with w∗, w̃ ∈ (0, 1).

The continuity of q(w) with respect tow implies that the solution to (7) is a corner solution.

For w∗ = 1
2 in the region τ ∈ (0, τ0], the solution for τ > τ0 is indistinctively zero or one due

to the symmetry of condition (11). Otherwise, if w∗ 6= 1
2 in the region τ ∈ (0, τ0], the solution

to the maximization problem for τ > τ0 is given by the random variable with largest upside

potential. More formally, it will be one if FX(z) < FY(z) uniformly over z, for z sufficiently

large. In contrast, the solution will be zero for τ > τ0 if FX(z) > FY(z) uniformly over z, for z

sufficiently large. This property is determined by whether w∗ < 1
2 in condition (11) or not.
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Proof of Corollary 3.14:

Proof. To prove the result in the corollary, it is sufficient to show that the iid assumption

implies assumptions 2 and 3 with w∗ = 1
2 . Then, applying Proposition 3.13 the result follows.

To prove assumption 2, we note that under the iid condition, for any µ ∈ R, it holds that

f(µ + ε,µ − ε) = fX(µ + ε)fX(µ − ε). Now, taking the first derivative with respect to ε, we

obtain
∂f(µ+ ε,µ− ε)

∂ε
=
∂fX(µ+ ε)

∂ε
fX(µ− ε) −

∂fX(µ− ε)

∂ε
fX(µ+ ε). (26)

Let mX denote the mode of the random variable X. For µ = mX, the unimodality of fX(·)
implies that ∂fX(µ+ε)∂ε > 0 for ε < 0, ∂fX(µ+ε)∂ε = 0 at ε = 0 and ∂fX(µ+ε)

∂ε < 0 for ε > 0. Under

these conditions, expression (26) yields ∂f(µ+ε,µ−ε)
∂ε > 0 for ε < 0; ∂f(µ+ε,µ−ε)

∂ε = 0 at ε = 0

and ∂f(µ+ε,µ−ε)
∂ε < 0 for ε > 0, as stated in assumption 2.

The proof is a bit more complex for µ 6= mX. In this case, for µ < mX there exists an

interval |ε| < mX − µ that needs to be carefully evaluated. More specifically, for values of ε

inside the interval, we note that expression (26) is positive if ε < 0 and negative if ε > 0. This

follows from noting that for ε < 0 and µ−mX < ε, the following condition is satisfied:

∂fX(µ+ ε)/∂ε

∂fX(µ− ε)/∂ε
>
fX(µ+ ε)

fX(µ− ε)
. (27)

To show this condition it is sufficient to show that ∂fX(µ+ε)∂ε >
∂fX(µ−ε)

∂ε given that fX(µ+ε) <

fX(µ − ε) for ε < 0. This condition is, however, fulfilled for x ∈ (−∞,mX) if the density

function fX is unimodal. Similarly, for ε > 0 and ε < mX − µ, the following condition is

satisfied:
∂fX(µ+ ε)/∂ε

∂fX(µ− ε)/∂ε
<
fX(µ+ ε)

fX(µ− ε)
. (28)

This condition can be shown using the above arguments and noting that ε > 0.

For values of ε outside the interval (0,mx − µ) the above proof follows straightforwardly.

For µ > mX, there exists an interval |ε| < µ −mX that needs to be carefully evaluated.

Nevertheless, the proof in this case follows as in the previous case. Also, for values of ε outside

the interval the above proof follows similarly.

To verify Assumption 3, it is sufficient to show that for w∗ = 1
2 and ε > 0, equation (11)

becomes

f(µ+ ε,µ− ε) = f(µ− ε,µ+ ε), (29)

for all µ ∈ R, with f(·, ·) the joint density function of the random variables X and Y. This

condition is, however, satisfied by construction under the iid assumption. This is so because

f(µ+ ε,µ− ε) = fX(µ+ ε)fX(µ− ε) = f(µ− ε,µ+ ε), (30)
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for all µ ∈ R.

B Numerical simulation study

This Appendix presents additional results on the optimal asset allocation under quantile pref-

erences (QP) for a portfolio Sw = wX + (1 − w)Y given by the mixture of two continuous

random variables X and Y, which are chosen from different distribution functions. For illustra-

tive purposes, we consider pairs of Gaussian and Chi-squared random variables, under mutual

independence and also with dependence. These results are also compared with the optimal

asset allocation obtained under EU. Numerical computation of the portfolios are as described

in Section 3.4.

B.1 Independent and identically distributed random variables

Two Chi-Squared independent and identically distributed random variables

To illustrate the optimal portfolio allocation problem for asymmetric distributions, we inves-

tigate the case of two independent and identically distributed standard Chi-squared distri-

butions, X and Y. Under risk aversion, the iid assumption is sufficient to guarantee that

the optimal portfolio choice of a EU individual will be a fully diversified portfolio given by

w∗ = 0.5. For QP, the same result holds true for values of τ identified with risk aversion.

The left panel of Figure 15 shows that the family of distribution functions FSw satisfies the

single-crossing condition defined by Manski (1988); see also de Castro and Galvao (2021, Sec-

tion 5). The right panel of Figure 15 shows the optimal portfolio allocation is divided into two

regions: a first region given by ŵ∗n(τ) = 0.5, for τ 6 τ0 ≈ 0.80, and a second region given by

ŵ∗n(τ) = {0, 1}, for τ > τ0. The shift in the cut-off point τ0 compared to τ0 = 0.5 is due to the

asymmetry of the Chi-squared distribution.

B.2 Independently distributed random variables

Two Gaussian independent random variables with different variances

We extend the Gaussian case discussed above and consider the case of independent random

variables X and Y with different variances. Let X ∼ N(0, 1) and Y ∼ N(0, 2), independent of

each other. In this case Y is a mean-preserving spread of the random variable X. This observa-

tion implies that X second order stochastically dominates Y and, using Fishburn (1977), X is

preferred to Y for EU individuals endowed with an increasing and concave utility function. We

can extend this result to derive the optimal portfolio allocation of a EU risk averse individual.

In this case, the combination Sw∗ with w∗ = 2/3 has zero mean and minimizes the variance of

the family of random variables Sw. This combination second order stochastically dominates
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Figure 15: X, Y ∼ χ21. Left box plots the CDF of Sw. Right box plots QP portfolio selection.

any other convex combination including X and Y. Then, using Fishburn (1977), Sw∗ is the

optimal strategy for EU individuals endowed with an increasing and concave utility function.

For individuals endowed with QP, we note that condition (11) is satisfied for w∗ = 2/3.

Then, Proposition 3.13 implies that the optimal combination of a QP individual is w∗ = 2
3 for

τ 6 τ0, with τ0 = 1
2 . This result is illustrated in the numerical exercise on the right panel of

Figure 16. Diversification takes place for τ 6 1
2 and no diversfication is the optimal result for

τ > 1
2 .
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Figure 16: X ∼ N(0, 1) and Y ∼ N(0, 2). Left panel plots the CDF of Sw. Right panel plots QP

portfolio selection.

Two Gaussian independent random variables with different means

Consider now the case of two independent Gaussian random variables with different means.

Let X ∼ N(1, 1) and Y ∼ N(1.5, 1), independent of each other. In this case the random variable
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Y first order stochastically dominates the random variable X. In this scenario the optimal

portfolio decision of an EU individual has to be calculated for each utility function separately

because it depends on how the individual faces the trade-off between risk and return.

The results for the QP case are provided in Figure 17. The results show the presence of an

interior solution for τ 6 τ0, with τ0 around 0.30, and a corner solution ŵ∗n(τ) = 0 for τ > 0.30.

The solution in the right tail of the distribution is rationalized by the first order stochastic

dominance of Y over any other convex combination of X and Y for τ sufficiently large.

0
.2

.4
.6

.8
1

ta
u

-4 -2 0 2 4 6
portfolio value

w=0
w=1
w=.5
w=.1
w=.2
w=.3
w=.4
w=.6
w=.7
w=.8
w=.9 0

.1
.2

.3
.4

.5
.6

.7
.8

.9
1

w
 fo

r Q
U

0 20 40 60 80 100
tau

Figure 17: X ∼ N(1, 1) and Y ∼ N(1.5, 1). Left box plots the CDF of Sw. Right box plots QP portfolio

selection.

B.3 Dependent random variables

We study now the case of two dependent random variables. We differentiate between symmetric

and asymmetric random variables.

Two Gaussian dependent random variables with same mean

In this exercise, we consider a bivariate Normal random variable (X, Y) with covariance matrix

Σ = [1 ρ; ρ 1], where ρ = 0.5 is the correlation parameter. This scenario is rationalized by

Proposition 3.13. More specifically, condition (11) is satisfied for ŵ∗n(τ) = 0.5, such that an

interior solution is obtained for τ 6 τ0 = 0.5. This result is observed in Figure 18. For values

of τ greater than 0.5 the optimal solution is, indistinctively, ŵ∗n(τ) = {0, 1}.

Chi-squared dependent random variables

We complete the case of dependent assets with asymmetric distribution functions. Suppose

that X ∼ χ2
1 + 1 and Y ∼ χ2

2 + X − 2 two dependent assets with expected value equal to two

in both cases. For QP individuals, the optimal portfolio allocation has an interior solution for
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Figure 18: (X, Y) ∼ N(0,Σ) with Σ = [1 0.5; 0.5 1]. Left box plots CDF of Sw. Right box plots QP

portfolio selection.
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Figure 19: X ∼ χ21+ 1 and Y ∼ χ22+X− 2. Left box plots the CDF of Sw. Right box plots QP portfolio

selection.

τ 6 τ0, with τ0 = 0.60. The presence of an interior solution for small values of τ is rationalized

by Theorem 1. However, in contrast to previous examples, assumptions 3 is not satisfied

implying that the optimal portfolio allocation varies over τ and there is no separation between

risk aversion and risk loving behavior. Figure 19 reports the optimal portfolio allocation in

this case.

B.4 Optimal portfolio allocation when there is a risk-free asset

Building upon previous insights of the QP theory in Section 3.2, we can extend the mutual

fund separation theorem to the case of one risk free asset with returns r̄ and two risky assets

R1, R2 with distribution functions FR1 , FR2 , respectively, and such that FR1 crosses FR2 from

below at point x12. This assumption implies that R2 is riskier than R1. The portfolio return
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is defined by the convex combination Rp = w0r̄+w1R1 +w2R2, with w0 +w1 +w2 = 1. The

investor’s optimization problem is

arg max
{w0,w1,w2}

Qτ[w0r̄+w1R1 +w2R2]. (31)

In this case the individual’s optimal portfolio choice is given by the risk-free rate when

Qτ[Rp(w)] < r̄, for any combination of weights w = {w0,w1,w2} that is different from

w∗ = {w∗0 = 1,w∗1 = w∗2 = 0}. For higher quantiles, the solution to the maximization problem

(31) is, in principle, quantile-specific. We illustrate this scenario by simulating the returns on

three assets with returns r̄, R1 ∼ N(µ1, 1) and R2 ∼ N(µ2, 1). The solution for 0 6 τ 6 1 is

obtained by simulating n = 10, 000 realizations of the random variables.
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Figure 20: Rp = w0r̄+w1R1 +w2R2, with r̄ constant, R1 ∼ N(µ1, 1) and R2 ∼ N(µ2, 1). Left box plots

r̄ = 0.5, µ1 = µ2 = 0. Right box plots r̄ = 0.25, µ1 = µ2 = 0.

The left panel of Figure 20 reports the case r̄ = 0.5, µ1 = µ2 = 0. The right panel considers

the case r̄ = 0.25, µ1 = µ2 = 0. As discussed above, for Qτ[Rp(w)] < r̄, the optimal allocation

to the portfolio is given by investing on the risk-free asset. For the parameterization r̄ = 0.5,

µ1 = µ2 = 0 - left panel - the value of τ that yields the condition Qτ[Rp(w
∗)] = r̄ is τ0 ≈ 0.7.

For values of τ > 0.7, the optimal allocation to the risk-free asset is zero, and the QP individual

is indifferent between assets 1 and 2. The right panel characterized by a smaller risk-free return

(r̄ = 0.25) presents a similar outcome. In this scenario the value of τ that satisfies the condition

Qτ[Rp(w
∗)] = r̄ is τ0 ≈ 0.6. For higher quantiles, the optimal portfolio allocation is the same

as for the left panel and entails a zero allocation to the risk-free rate.16

16The case of two risky assets with different means is available from the authors upon request.
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