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ABSTRACT

The analysis of current and future cosmological surveys of type Ia supernovae (SNe Ia) at high-redshift depends on the accurate
photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an
essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection
effects and contamination arising from core collapse SNe in the photometric SN Ia samples. We use published SN time-series
spectrophotometric templates, rates, luminosity functions and empirical relationships between SNe and their host galaxies to
construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy
Survey (DES) 5-year photometric SN sample, comparing our simulations of DES with the observed DES transient populations.
We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data.
We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before
photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation,
we find that the predicted contamination varies from 5.8 to 9.3 per cent, with an average of 7.0 per cent and r.m.s. of 1.1 per
cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys
without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology
analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated
systematic uncertainty.

Key words: surveys – supernovae: general – cosmology: observations

1 INTRODUCTION

Type Ia supernovae (SNe Ia) are a mature and well-understood cos-
mological probe via their use as standardisable candles (Scolnic et al.
2019). They remain a uniquely powerful distance indicator in the

high redshift universe, and directly constrain the properties of dark
energy. When combined with Planck cosmic microwave background
(CMB) measurements, current SN Ia samples measure the dark en-
ergy equation-of-state parameter 𝑤 with a precision of ∼ 0.05−0.06
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(Betoule et al. 2014; Scolnic et al. 2018; Dark Energy Survey 2019b),
and show it to be consistent with a cosmological constant (𝑤 ≡ −1).
With current and next generation SN surveys (DES, Abbott et al.

2019; LSST, Ivezić et al. 2019;NancyGraceRomanSpaceTelescope,
formerly WFIRST, Hounsell et al. 2018), statistical uncertainties on
SNe Ia cosmological measurements are becoming comparable to
systematic uncertainties (Brout et al. 2019b). In this paper, we tackle
some of the most important sources of systematic uncertainty related
to SN Ia cosmological analysis and in particular we focus on core
collapse contamination and selection effects.
The Dark Energy Survey (DES) SN programme (DES SN) is the

current state-of-the-art sample for SN Ia cosmology analysis. Over
five seasons, this programme discovered and monitored more than
30,000 optical transients of various astrophysical origins. For 60 per
cent of this sample the spectroscopic redshift of the identified host
galaxy has been measured (many via the OzDES programme; see
Lidman et al. 2020) and approximately 570 transients have been
spectroscopically confirmed and classified (e.g., Smith & D’Andrea
et al. 2018).
The first cosmological results using SNe Ia from DES

(DES-SN3YR) have been measured from a sample of 207
spectroscopically-confirmed SNe Ia observed during the first three
DES SN seasons, combined with 122 publicly available low-redshift
SNe Dark Energy Survey (2019a,b); Macaulay et al. (2019). Detailed
descriptions of the analysis are presented by Brout et al. (2019a,b);
Kessler et al. (2019b); Lasker et al. (2019); Smith et al. (2020). The
final 5-year DES SN sample will include not only spectroscopically-
confirmed SNe Ia, but also photometrically-identified SNe Ia with
a spectroscopic redshift measured from the identified host galaxy.
This constitutes the DES photometric SN sample and it is an order
of magnitude larger than the sample used for the first published cos-
mological results. This increases the statistical power of the DES SN
sample significantly, but with the complication of additional sources
of systematic uncertainties that need to be considered, for example,
those due to the photometric classification of the SNe, and due to the
efficiency of measuring host galaxy redshifts.
The DES photometric SN sample includes a fraction of core col-

lapse SN events photometrically similar to SNe Ia but with a different
astrophysical origin, and therefore different intrinsic brightnesses.
Modelling this population of contaminants, and assessing the impact
on cosmology, is one of the key challenges to fully exploit the DES
photometric SN sample. This modelling is complex and depends on
realistic simulations of core collapse SNe, which can be combined
with simulations of SNe Ia to build mock catalogues of the DES-SN
sample. These simulations are used for modelling selection effects
and biases, and to generate training samples for SN classification al-
gorithms, i.e., algorithms designed to identify the type of a SN from
photometric data alone.
In the last decade, various SN photometric classifiers have been

developed, and algorithms that exploit machine-learning techniques
typically outperform other classifiers based on a template fitting ap-
proach (e.g. Lochner et al. 2016; Boone 2019; Möller & de Boissière
2020). However, the performance of machine-learning photometric
classifiers is fundamentally dependent on homogeneous, represen-
tative and large training samples, with >100,000 events required in
some cases. Unfortunately, spectroscopically confirmed SN samples
are significantly more limited in size, usually biased towards brighter
events and discovered in lower surface brightness local environments
where it is easier to observe a spectrum with the signal-to-noise ad-
equate for classification.
Using such spectroscopically-confirmed SN samples as training

samples is therefore not a viable option, and instead representative
training samples are typically generated with simulations.
For similar reasons, the validation and testing of photometric clas-

sifiers also requires realistic simulations and cannot be performed
on data alone. However, the training, validation and testing of pho-
tometric classifiers on samples (either real or simulated) can lead to
over-fitting and over-estimations of sample purity, particularly if the
training samples contain only a limited snapshot of the true astro-
physical diversity of the SN population.
Therefore, tests of the true performances of photometric classi-

fiers must be carefully designed to avoid overestimating the accuracy
of these algorithms and, for future cosmological analysis, this is
ultimately as important as developing photometric classification al-
gorithms. The methods presented here aim to address this critical
validation issue.
There have been many attempts to improve the simulations of core

collapse SNe. The initial set of core collapse templates published for
the Supernova Photometric Classification Challenge (SNPhotCC;
Kessler et al. 2010a,b), have been updated with models of type IIb
SNe and SN1991bg-like SNe Ia from Jones et al. (2017) in order
to augment the diversity of simulated contamination. The Photomet-
ric LSST Astronomical Time-Series Classification Challenge Team
(PLAsTiCC; The PLAsTiCC team et al. 2018; Kessler et al. 2019a)
further improved and expanded this library, including other types of
transients and exploring other techniques to augment template di-
versity. Independently, a new library of core collapse templates has
been presented by Vincenzi et al. (2019). These templates are built
from core collapse SNe using high-quality photometry and spec-
troscopy, and they have been robustly extended to ultraviolet (UV)
wavelengths. Simulations also rely on core collapse SN luminosity
functions and rates, for which several measurements have been re-
cently published (Strolger et al. 2015; Shivvers et al. 2017; Graur
et al. 2017; Vincenzi et al. 2019; Frohmaier et al. 2020).
There are many elements of uncertainty in simulations of core

collapse SNe, especially at intermediate and high redshift. Most
measurements of core collapse SN demographics available in the
literature are based on small and primarily low-redshift samples
(𝑧 . 0.05), whereas SN surveys like DES probe a significantly
larger range in redshift (𝑧 . 1.2). For example, results from the
Pan-STARRSMediumDeepSurvey (Jones et al. 2017, 2018) demon-
strated that simulations based on currently published measurements
of core collapse SN global properties, do not accurately reproduce
the core collapse contamination observed in high-redshift Hubble
residuals. They find that in order to reproduce the contamination ob-
served in the Pan-STARRS photometric SN sample, the luminosity
functions from Li et al. (2011) need to be brightened by one magni-
tude, and the brightness dispersion for SNe Ib/c reduced by 55 per
cent.
Finally, the effects of inaccurate modelling of core collapse SNe

are easily conflated with another important uncertainty in SN sam-
ples: selection effects. Simulations of photometric SN experiments
like Pan-STARRS and DES require modelling of the SN detection
efficiency and the efficiency of measuring host galaxy spectroscopic
redshifts. While the SN detection efficiency has been robustly mod-
elled for numerous surveys over the past decade using image-based
simulations (e.g., Dilday et al. 2008; Perrett et al. 2012, and for DES,
Kessler et al. 2015, Kessler et al. 2019b), there is very limited work
on how to model selection effects from host galaxy spectroscopic
redshift surveys using a similar first principles modelling approach,
and significant fine-tuning is usually applied.
In this paper, we present a set of realistic simulations of the DES

photometric SN survey for which we significantly improve the mod-
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elling of core collapse SNe and of the efficiency of measuring spec-
troscopic redshifts of SN host galaxies. The improvements in the
core collapse SN modelling are due to the implementation of high
quality templates and other published measurements of global core
collapse SN properties. To improve the modelling of the spectro-
scopic redshift efficiency, we explore a novel, data-driven approach
and model the spectroscopic redshift efficiency as a function of host
galaxy properties. We improve the simulation of SN host galaxies,
and associate hosts to simulated SNe using published measurements
of SN rates as a function of galaxy properties. The simulations pre-
sented in this paper constitute the foundation for a robust estimation
of cosmological biases due to the core collapse SN contamination
expected in the DES photometric SN sample.
We present an overview of the DES SN sample in Section 2, and

describe how we estimate and model selection effects from the host
spectroscopic redshift survey in Section 3. In Section 4 we present
the baseline approach to build simulations of the DES photometric
SN sample. In Section 5 we compare our simulations and the DES
SN dataset and we evaluate how well our simulations reproduce core
collapse SN contamination in the DES sample. In Section 6, we test
how sensitive our results are to our assumptions and the choices of
template libraries used to generate core collapse SN simulations. We
summarise in Section 7 and discuss future directions.

2 THE DES PHOTOMETRIC SN SAMPLE

DES is an optical imaging survey designed to constrain the properties
of dark energy and other cosmological parameters by combining
four different astrophysical probes: weak gravitational lensing, large
scale structure, galaxy clusters and SNe Ia (Abbott et al. 2019). The
imaging data are acquired by the Dark Energy Camera (DECam;
Flaugher et al. 2015), mounted on the Blanco 4-m telescope at the
Cerro Tololo Inter-American Observatory. DES surveyed 5000 deg2
of the southern hemisphere sky over six years. For time-domain
science, DES monitored ten 3-deg2 fields with an average cadence
of 7 days in the 𝑔𝑟𝑖𝑧 filters during the first five years. Eight of these
ten fields (X1, X2, E1, E2, C1, C2, S1, S2) were observed to a single-
visit depth of 𝑚 ∼ 23.5mag (‘shallow fields’), and two (X3, C3) to
a depth of 𝑚 ∼ 24.5 mag (‘deep fields’).
In this section, we present the DES photometric SN sample. This

is defined as the sample of SN Ia-like events discovered by DES over
five years of observations and for which a spectroscopic redshift for
the identified host has been obtained. The discovery and photometry
of DES SNe are presented in Section 2.1, and the host galaxy iden-
tification and spectroscopic redshift measurements in Sections 2.2
and 2.3. In Section 2.4, we discuss how SN Ia-like events are se-
lected from the data, and their light curves fitted using SN Ia spectra
energy distribution (SED) models. In this analysis we neither dis-
cuss nor apply cuts based on SN Ia photometric classifiers, which
are often used in SN cosmological analysis to improve the purity
of photometrically-selected SN samples. This is to intentionally en-
hance core collapse contamination in the DES sample and better
analyse the properties of this population of contaminants.

2.1 SN discovery and photometry

In DES-SN, the Difference Imaging pipeline (diffimg, Kessler et al.
2015) is used to discover and estimate the flux of new transients
via image subtraction, comparing new observations with previously
collected reference images. The detections are passed through an

automated artefact rejection algorithm (autoscan; Goldstein et al.
2015).
diffimg is an efficient tool for the rapid identification of transients

and the estimation of their fluxes at the two per cent level. However, it
does not provide photometric measurements at the level of precision
and accuracy required for SN Ia cosmology. The DES-SN three-year
(DES-SN3YR) cosmological analysis therefore used the technique
of scene modelling photometry (SMP; Holtzman et al. 2008; Astier
et al. 2013; Brout et al. 2019a). The SMP algorithm simultaneously
models the time-varying flux of a transient and the time-independent
background flux from the host galaxy. SMP does not require im-
age remapping and it determines robust uncertainties. However, it is
computationally more expensive to run compared to diffimg. The
ongoing effort of running SMP on the full DES SN sample will
be essential for cosmological measurements; however, diffimg pho-
tometry is adequate for developing many SNIa-cosmology analysis
methods, including the methods presented in this paper.
We use as our initial sample of candidate SNe all DES events

with at least two detections (in any filter, separated by at least one
night) with a signal-to-noise ratio (SNR) greater than five, and that
passed autoscan. These criteria are designed to remove asteroids
and artefacts, while allowing relatively low SNR detections to be
included. The total number of photometric transients that pass these
requirements is roughly 30,000. We emphasise that not all of these
transients are SNe, and certainly not all the SNe have adequate light-
curve quality and redshift information to be used for cosmological
measurements.
During survey operations, the light curve of each DES transient

was also fit with the Photometric SuperNova IDentifier software
psnid (Sako et al. 2011), a SN photometric classifier tool based on
template fitting techniques. This code provided an estimate of the
time of peak brightness and a preliminary classification of the SN
type.

2.2 Spectroscopic followup

Spectroscopic redshift information on the DES SN candidates is
available from a number of sources:

• During the course of the DES survey, a wide range of telescopes
was used for the spectroscopic follow-up of DES SN candidates
(e.g., Smith & D’Andrea et al. 2018). These spectra provide SN
classifications and redshifts based on SN spectral features.1

• The same telescope programmes also provide spectroscopic
redshift measurements from host galaxy spectral features appearing
in the SN spectra.

• Using the AAOmega spectrograph on the 3.9-m Anglo-
Australian Telescope (AAT), spectroscopic redshifts for thousands
of galaxies identified as hosts of DES transients were measured as
part of the OzDES programme (Yuan et al. 2015; Childress et al.
2017; Lidman et al. 2020). The OzDES survey is the primary source
of spectroscopic redshifts in the DES photometric SN sample.

• Various external redshift catalogues are available in the litera-
ture from spectroscopic surveys in the same fields as those monitored
by DES-SN.

Each source of spectroscopic redshift introduces different selection

1 The list of telescopes used for the spectroscopic follow-up of DES SN
candidates includes: the 4-metre Anglo-Australian Telescope, the European
Southern Observatory Very Large Telescope, Gemini, Gran Telescopio Ca-
narias, Keck, Magellan, MMT, and South African Large Telescope.
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effects in the DES-SN sample. We describe how these selection
effects are modelled in Section 3.

2.3 Host galaxy association

For eachDES transient, themost likely host galaxy has been identified
using the directional light radius (DLR)method (Sullivan et al. 2006;
Gupta et al. 2016) applied to galaxies in the SVA1-COADD GOLD
image catalogue (Rykoff et al. 2016). This catalogue uses data in the
DES-SN fields collected during the DES ‘Science Verification’ (SV)
survey. Within the OzDES survey, a galaxy identified as the host of a
DES transient is spectroscopically observed if the following criteria
are satisfied:

(i) The galaxy has the smallest DLR among all catalogue entries
and has DLR < 7, is brighter than 24.5mag in 𝑟 band, is not flagged
as a star (see Wiseman et al. 2020, for more details), and is not in a
catalogue of known variable stars and AGN (the so-called ‘VETO’
catalogue);
(ii) At least 30 per cent of the detections of the transient passed

autoscan, the transient has at least one detection with a SNR>5 in
two filters, and at least one filter with two detections with SNR>5;
(iii) The transient is not detected in multiple seasons (i.e., it is not

a long duration transient such as a superluminous SN, a likely AGN,
or a variable star);
(iv) The day of peak brightness estimated by psnid fitting lies

within a DES season.

This set of criteria defines the list ofOzDES targets. If a spectroscopic
redshift has already been measured by a published redshift survey, or
if a spectroscopic redshift has been measured from galaxy features
in a live SN spectrum, the galaxy is assigned a lower priority or not
targeted at all. In this analysis, we consider OzDES spectroscopic
redshifts measured with a confidence level higher than 95 per cent2
and, if multiple sources of spectroscopic redshift are available for the
same host galaxy, we select the OzDES spectroscopic redshift as the
more accurate redshift.
After using these host galaxy associations and measurements in

the DES-SN3YR analysis, high-quality depth-optimised coadds have
been published by Wiseman et al. (2020). These coadds have been
built combining the highest quality DES-SN images taken before and
well after SN detection, with a limiting magnitude of 𝑔 ∼ 27mag,
around 1–1.5mag deeper then the SV data. As discussed byWiseman
et al. (2020), the host galaxy association was revised when upgrading
from SV data to the deeper coadds: ' 1.1 per cent of SNe matched
to a potential host in SV data had a different host identified with
the new coadds. We use these revised associations, and all host
galaxy photometric properties are determined from the Wiseman
et al. (2020) stacks. In this paper, we define the host galaxy apparent
magnitudes,𝑚host, as the Kron-like MAG_AUTOmagnitudes measured
with SExtractor (Bertin & Arnouts 1996) from the deep coadds.
We identify 7,697 galaxies that satisfy the OzDES selection cuts

listed above. For 5,049 galaxies, we have a secure redshift measure-
ment. Table 1 contains a summary of the sources of redshifts.

2 A spectroscopic redshift measured with a confidence level higher than 95
per cent corresponds to a quality flag𝑄 = 3, see Lidman et al. (2020) section 4
for further details on the OzDES redshift flag scheme.

Table 1. Summary of redshift sources for DES SNe.

Redshift source SN redshifts % of Total
All 5049 -
OzDES 4419 87.52
Galaxy features in SN spectra 65 1.29
External Catalogues 565 11.19
SDSS 136 2.69
VIPERS 105 2.08
2dF archival redshifts𝑎 101 2.00
GAMA 99 1.96
NED 32 0.63
PanSTARRS+MMT 31 0.61
ACES 19 0.38
Others𝑏 42 0.83
SN features in SN spectra𝑐 81 –

𝑎 Archival redshifts from DEVILS, LADUMA and PanSTARRS SN
survey.
𝑏 Other external catalogues include VIMOS VLT Deep Survey (VVDS),
ATLAS, MUSE, Ultra Deep Survey (UDS).
𝑐 SNe for which the only source of spectroscopic redshift is the SN
spectrum itself, and either a faint host (𝑚host > 24 for 26 SNe) or no host
(55 SNe, ‘hostless’SNe) is detected in the deep coadds. These events are
excluded from our analysis.
References: Tasca et al. (2017); Weiner et al. (2005); Newman et al.
(2013); Scodeggio et al. (2018); Geha et al. (2017); Herenz et al. (2017);
Colless et al. (2003); Baldry et al. (2018); Mao et al. (2010); Nanayakkara
et al. (2016); Ahumada et al. (2020); Muzzin et al. (2012); Le Fèvre et al.
(2013); Bradshaw et al. (2013); Davies et al. (2018); Jones et al. (2018);
Baker et al. (2019).

2.4 SALT2 fitting and selection cuts

To standardise the SNe Ia brightnesses, the light curves of DES
transients with an identified host galaxy and spectroscopic redshift
are fit with the SALT2 light-curve model (Guy et al. 2007, 2010a).
SALT2 fits provide an estimate of the epoch of SN peak brightness
𝑡0, a stretch-like parameter 𝑥1, a colour parameter 𝑐 and the normal-
isation parameter 𝑥0. SALT2 model fitting is implemented with the
snana light-curve fitting programme and uses the 𝜒2 minimization
algorithm MINUIT to estimate the best-fitting value and uncertainty
of each SALT2 parameter. The SALT2 parameters are then used to
estimate the SN distance modulus, 𝜇obs, defined as (e.g. Tripp 1998;
Astier et al. 2006):

𝜇obs = 𝑚𝐵 + 𝛼𝑥1 − 𝛽𝑐 +M𝐵 (1)

where 𝑚𝐵 is defined as −2.5 log10 (𝑥0) and M𝐵 is the absolute
brightness for a SN Ia with 𝑥1 = 0 and 𝑐 = 0. 𝛼 and 𝛽 are global
nuisance parameters that ‘standardise’ the SN Ia brightnesses, usually
determined from a global fit of the Hubble diagram. The residuals
from a cosmological model Δ𝜇 (often termed ‘Hubble residuals’) are
then defined as

Δ𝜇 = 𝜇obs − 𝜇theory (C, 𝑧) (2)

where 𝜇theory is the theoretical distancemodulus, which is dependent
on the cosmological parameters, C.
In our analysis, we assume M𝐵 = −19.365 and we set 𝛼 and

𝛽 equal to the values measured by Dark Energy Survey (2019b),
i.e., 𝛼 = 0.146, 𝛽 = 3.03. For both observed and simulated SNe, we
measure SN distance moduli, 𝜇obs, fixing these nuisance parameters.
The values of 𝛼 and 𝛽 found by Dark Energy Survey (2019b) are also
used as the input values for the simulations. We calculate Hubble
residuals assuming a flat ΛCDM cosmological model with Hubble
constant 𝐻0 = 70 km s−1Mpc−1 andΩ𝑀 = 0.311 (following Planck
Collaboration et al. 2020). While these Hubble residuals are very
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Table 2. DES photometric SN sample: summary of data cuts.

Data cut Number Number
remaining rejected

SNe associated with a spectroscopic redshift 5049𝑎
Fit by SALT2 3627𝑏
‘transient_status’ flag 3401 226
Visual inspection 2802 599𝑐
Loose SALT2-based cuts 2553 249
SALT2-based cuts from Betoule et al. (2014) 1606 947
𝑎 Including 54 SNe/hosts located in the DECam inter-CCD chip gaps;
𝑏 We exclude events for which the redshift is estimated from SN spectral
features in the SN spectrum;
𝑐 Out of the 599 visually inspected events, only 112 would pass the
loose SALT2 cuts and only eight would pass the Betoule et al. (2014)
SALT2-based cuts.

useful for evaluating our simulations, we note that they do not have
the level of accuracy required for a cosmological measurement for
several reasons: they are measured from diffimg photometry, we
have not included bias corrections for the SN population, we have
not included SN systematic uncertainties, and therefore we have not
optimised the values of 𝛼 and 𝛽.
To ensure meaningful light-curve fits with the SALT2 model the

following selection requirements are applied: i) two filters with at
least one epoch with SNR>5, ii) at least one data point before the
time of peak brightness 𝑡0, and iii) at least one data point ten days
after 𝑡0. Out of 5,049 transients with a host galaxy redshift, 3,627
satisfy these criteria and are successfully fit with the SALT2 model.
This sample of events includes a significant fraction of transients

that are clearly not SNe Ia or core collapse SNe (e.g., AGN, variable
stars, or long duration transient events). We use the ‘transient_status’
flag defined by Smith & D’Andrea et al. (2018) to identify multi-
season transients, which removes 226 events. Finally, we visually
inspect all the remaining transients, and remove artefacts and events
that show long term variability (removing an additional 599 events).
These single-season requirements reduce the sample to 2,802 visually
confirmed SN-like events.
After light-curve fitting, we consider two sets of additional re-

quirements based on the fitted SALT2 parameters:

(i) ‘Loose’ SALT2-based cuts (𝑥1 ∈ [−4.9, 4.9] and 𝑐 ∈
[−0.49, 0.49]). This set of cuts intentionally enhances contamina-
tion in the data, and therefore allows us to better analyse the proper-
ties of contamination in our sample. After applying these cuts, 249
additional SNe are rejected from the sample (i.e., 2,553 SNe remain);
(ii) The set of SALT2 cuts applied by Betoule et al. (2014)

and Jones et al. (2017) (𝑥1 ∈ [−3, 3], 𝑐 ∈ [−0.3, 0.3], 𝜎𝑥1 < 1,
𝜎peakMJD < 2 days, and fit probability >0.001).3 These cuts are
generally adopted in SN Ia cosmology analyses to control contami-
nation from peculiar SNe Ia or other peculiar thermonuclear SNe that
are not well described by a SALT2 model. This set of cuts reduces
the data to 1,606 SNe (approximately 30 per cent of the sample is
rejected).

In Table 2 we report a summary of the various cuts.

3 Fit probabilities are based on the fit reduced 𝜒2 and quantify how well
each light curve is described by the SALT2 model assuming the photometric
uncertainties are Gaussian.

3 SPECTROSCOPIC REDSHIFT EFFICIENCY

As part of a SN Ia cosmology analysis, modelling selection effects is
essential to estimate bias corrections and simulate training samples.
Detection efficiency and photometric instrumental effects for the
DES SN program have been characterized and presented by Kessler
et al. (2015). In this analysis, we mainly focus on selection effects
due to the requirement of a host galaxy spectroscopic redshift. This
is a critical selection effect in the DES SN dataset – it shapes the
redshift distribution of the sample and introduces biases towards SNe
in bright, emission line galaxies for which measuring a spectroscopic
redshift is easier.
In this section, we describe our approach for the modelling of the

spectroscopic redshift efficiency (𝜀𝑧spec ), i.e., the overall efficiency
of obtaining spectroscopic redshifts in DES and how we incorporate
this in our simulations of the DES SN sample.

3.1 A novel approach to modelling selection effects

Previous analyses of photometric SN samples (Jones et al. 2017,
2019) have modelled 𝜀𝑧spec as a one-dimensional function of redshift,
tuning 𝜀𝑧spec so that the simulations reproduce the observed redshift
distribution. By construction, this efficiency function is tailored to a
specific choice of volumetric SN rates, it does not depend on galaxy
properties, and it is applied to all types of SNe. While this approach
guarantees a good agreement in the redshift distribution between
data and simulations, it does not account for brighter galaxies being
more likely to get a spectroscopic redshift and, as a consequence,
that SNe exploding in bright and high mass galaxies are more likely
to be selected.
Our approach is substantially different in two respects. First, we

measure 𝜀𝑧spec from the data – the sample of host galaxies that satisfy
the criteria listed in Section 2.3, and therefore have been targeted in
the OzDES survey. Second, we measure 𝜀𝑧spec as a function of SN
host galaxy properties. Using the sample of targeted galaxies, we
calculate the fraction of galaxies with and without a spectroscopic
redshift and measure the efficiency as a function of the host galaxy
brightness and other observables, including the host galaxy 𝑔 − 𝑟

colour and the epoch of SN discovery.
Our efficiency function can be integrated into simulations, but it

in turn requires the simulations to include host galaxies with realis-
tic properties. In particular, our simulations need to account for the
strong dependence of SN rates on galaxy properties (for a given SN,
not every galaxy is equally likely to be the host galaxy, depending on
the galaxy stellar mass and/or the galaxy star formation rate). Using
empirical SN rate models, the simulated host galaxies should repro-
duce the properties and brightness distributions of the observed SN
host galaxies. This approach is fundamentally data driven, and takes
into account the fact that different types of SNe explode in different
populations of galaxies with different brightness distributions.
In this implementation, a goodmatch between simulations and data

is not guaranteed, as none of the parameters is tuned to ensure this.
Our method also enables a novel independent astrophysical test of
whether measurements of SN rates and their dependencies on galaxy
properties are well understood across the redshift range covered by
the DES SN sample.

3.2 Efficiency of the spectroscopic redshift survey

Spectroscopic redshifts are available from various sources (Section
2.2), primarily from host galaxy spectral features and, when the
live SN spectrum is available, from SN spectral features. When the
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Figure 1. Top panels: For each pair of DES SN fields we present distributions of 𝑚host𝑟 for all host galaxies that passed the OzDES selection criteria listed
in Section 2.3 (black histogram), for host galaxies with a spectroscopic redshift from OzDES (light blue), from external catalogues (orange), and from galaxy
emission lines in SN spectra (dark red). Bottom panels: we show 𝜀𝑧spec vs 𝑚host𝑟 for each pair of SN fields (blue thick line) and for all other SN fields (thin grey
lines). The average host galaxy brightness is 𝑚host𝑟 ' 23mag in the deep fields (X3 and C3) and 𝑚host𝑟 ' 22mag in the shallow fields.

redshift is measured from galaxy spectral features, 𝜀𝑧spec depends
primarily on the brightness of the host galaxy and the host spectral
type. For a subset of 81 of the spectroscopically confirmed SNe (Ta-
ble 1), the redshift can only be estimated from SN spectral features,
and 𝜀𝑧spec depends on the brightness of the SN on the epoch of spec-
troscopic observation. Therefore, including SN events for which the
only source of redshift is from the SN spectral features would require
a very different and independent selection function (e.g. the selection
functions presented in Kessler et al. 2019b; Smith & D’Andrea et al.
2018). This is beyond the scope of this analysis, and we therefore
exclude this redshift information from this paper.
We measure 𝜀𝑧spec as a function of host galaxy brightness (Section

3.2.1), host galaxy observed colour (Section 3.2.2) and the year of
discovery of the SN (Section 3.2.3). We define the efficiency as the
ratio of the number of host galaxies for which a redshift is available
(either from OzDES or other catalogues), over the total number
of host galaxies that passed OzDES selection criteria. The OzDES
selection criteria are listed in Section 2.3, which are different from the
selection cuts used to define the final DES photometric SN sample
(Section 2.4).

3.2.1 Efficiency as a function of galaxy brightness

We first measure 𝜀𝑧spec as a function of 𝑚host𝑟 , presented in Fig. 1
for five sub-groups of DES SN fields. As expected, 𝜀𝑧spec is high
for bright host galaxy magnitudes, in many cases 100 per cent, and
drops sharply above 𝑚host𝑟 ∼ 21mag. The 50 per cent efficiencies
range from 𝑚host𝑟 ' 23 to 23.5mag.
The efficiency varies from field to field for several reasons. Firstly,

the two deep fields, X3 and C3, were prioritised by OzDES as they
include more SN candidates due to the deeper DES data. Secondly,
the E1 and E2 fields were observed more frequently as they have the
longest visibility window from the AAT. Finally, some fields have
more external redshifts available; for example, the X1 and X2 fields
overlap with the GAMA survey (Baldry et al. 2018).

3.2.2 Efficiency as a function of galaxy spectral type

𝜀𝑧spec depends not only on galaxy brightness but also on the galaxy
spectral type (e.g., it is easier to measure redshifts for emission
line galaxies). This dependence affects the fraction of core collapse
SN contamination in our sample as these events almost exclusively
explode in star forming galaxies (Li et al. 2011). Since the spectral
type is not available for all the targeted host galaxies, we consider
alternative proxies of galaxy spectral type, such as the observed 𝑔−𝑟

colour.
In Fig. 2, we present the distribution of observed 𝑔 − 𝑟 colours

for the sample of SN host galaxies that pass the OzDES criteria (see
Section 2.3). We separately measure 𝜀𝑧spec for the 25 per cent ‘red-
dest’ galaxies in the sample and for the remaining sample of ‘bluer’
galaxies (this corresponds to a threshold of 𝑔 − 𝑟 = 1.2mag). The
efficiency measured from the sub-sample of ‘redder’ galaxies is sys-
tematically lower than that measured from ‘bluer’ galaxies (5 per cent
lower at 𝑚ℎ𝑜𝑠𝑡

𝑟 =22mag and 15 per cent lower at 𝑚ℎ𝑜𝑠𝑡
𝑟 =23mag).

We implement this colour-dependency of 𝜀𝑧spec in our simulations.
We note that this colour-dependency is a second-order effect as the
OzDES programme is optimised to achieve a high completeness to a
magnitude limit of 𝑚host𝑟 24 and the OzDES strategy is to repeatedly
target SN host galaxies until the level of confidence is larger than 99
per cent (see Lidman et al. 2020, for details).

3.2.3 Efficiency as a function of the year of SN discovery

The OzDES programme ran between 2013 (first year of the DES
SN programme) and 2018 (one year after the end of the DES SN
programme), so that host galaxies of SN discovered in the last year
of DES could be observed. The number of nights allocated to OzDES
was progressively increased each year (see Lidman et al. 2020, for
details) in order to accommodate the increasing number of SNe
discovered by DES. The amount of fiber hours available at the end of
OzDES was not sufficient to achieve the same efficiency obtained for
hosts of SNe discovered earlier in the DES survey. For this reason,
we find that 𝜀𝑧spec decreases for SNe discovered in the fourth and fifth
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Figure 2. Panel (a): distribution of observed 𝑔 − 𝑟 colours for all host galaxies that passed the OzDES targeting criteria (open histogram) and hosts with
spectroscopic redshift (filled histograms). We define red galaxies as those with 𝑔− 𝑟 greater than 1.2, and blue galaxies as those with 𝑔− 𝑟 less than 1.2 (marked
by the vertical dotted line). Panel (b): 𝜀𝑧spec versus 𝑚host𝑟 for both red and blue galaxies (red and blue solid lines). The median brightness of our sample of SN
hosts is shown as the vertical dashed line, and it shows the magnitude at which most of the DES host galaxies are observed and therefore where discrepancies in
efficiency have the largest impact. Panel (c): 𝜀𝑧spec as a function of𝑚host𝑟 for SNe discovered in the first, second and third year of DES (2013–2015; dotted-dashed
line), for SNe discovered in the fourth year of DES (2016; dashed line) and in the fifth year of DES (2017; solid line). The limited observing time towards the
end of the OzDES program caused a small drop in 𝜀𝑧spec for Y4 and Y5.

years of DES. This trend is shown in Fig. 2(c) and is modelled in our
simulations for shallow and deep fields separately.

4 SIMULATIONS

We next describe the simulations that underpin our study of the sys-
tematic uncertainties introduced by contamination from core collapse
SNe. These simulations are designed to produce a realistic realisa-
tion of the DES photometric SN sample. In the following section
we present the ‘Baseline’ simulation based on assumptions about the
global properties of SNe Ia, peculiar SNe Ia and core collapse SNe. In
Section 6, we present additional simulations and explore alternative
core collapse SN modelling assumptions.

4.1 Implementation in SNANA

Synthetic SN light curves are generated and analysed using the Su-
perNova ANAlysis software (snana, Kessler et al. 2009),4 integrated
in the pippin pipeline framework (Hinton&Brout 2020).5 The snana
simulation generates realistic transient light curves from one or more
spectrophotometric models of transients. Kessler et al. (2019b, here-
after K19) present a detailed description of the simulations designed
to characterise and reproduce SNe Ia within the DES SN survey, and
in particular the DES-SN3YR sample. Here we briefly describe the
three main steps that constitute the snana simulation (see figure 1
in K19 for a schematic illustration) and highlight the assumptions
adopted in our analysis.
The first step is to generate a source SED model, selecting a spe-

cific SN population (see Section 4.2, 4.3 and 4.4) and astrophysical
effects that include host galaxy extinction, redshifting, cosmological
dimming, lensing magnification, peculiar velocity and Milky Way
extinction. In our analysis, we use where necessary a Cardelli et al.
(1989) dust law with 𝑅𝑉 = 3.1 for Milky Way and host galaxy
dust extinction. The integration of the generated SED model over
the DES filters provides an estimate of the ‘true’ magnitudes of the
source before observational noise is applied.

4 https://github.com/RickKessler/SNANA
5 https://github.com/Samreay/Pippin

The second step is to convert true magnitudes into observed fluxes
and calculate the flux uncertainties. This step uses the observing con-
ditions provided in a pre-computed observational library (referred to
as a ‘simlib’). The simlib includes measured photometric zero-
points, sky noise and point spread function (PSF) information at
10,000 random sky locations within the DES fields. Flux uncer-
tainties are estimated as the quadrature sum of the sky noise and
the Poisson noise from the source and the surface brightness of
the host galaxy. Host galaxies are selected from a galaxy catalogue
(‘HOSTLIB’). In Section 4.5, we present the HOSTLIB used for our
simulations and the recipe implemented for host galaxy associa-
tion. Finally, the extra source of anomalous noise introduced by the
diffimg pipeline is estimated and robustly modelled using a set of
separate image-based simulations for which ‘fake’ SNe are placed in
real DES images and processed through the same diffimg pipeline
as applied to the data (see Kessler et al. (2015) and section 6.4 in
K19 for an extended discussion).
The third and final step is to simulate the ‘trigger model’ for the

selection of events. Detection efficiency versus signal-to-noise ratio
is implemented as described in section 7.1 in K19. Following the
same DES trigger logic applied to real data, we select simulated
events that have at least one detection on two separate nights.
In the following subsections we describe the SED models used to

simulate different astrophysics transients and their implementation
in the simulation.

4.2 Simulations of ‘normal’ SNe Ia

We simulate normal SNe Ia, i.e., those that are used in cosmological
fitting, using the SALT2 SED model presented by Guy et al. (2007)
and trained on the Joint Lightcurve Analysis sample presented by
Betoule et al. (2014). Each SN Ia is generated with random redshift,
𝑡0, 𝑥1 and 𝑐 values. Redshifts are generated following the volumetric
rate presented by Frohmaier et al. (2019), who combined published
measurements fromDilday et al. (2008) and Perrett et al. (2012) with
new measurements from the Palomar Transient Factory (PTF; Law
et al. 2009). The 𝑡0 are randomly distributed within a time window
that starts two months before the beginning of DES and finishes two
months after the last visit of DES to the SN fields. The underlying
distributions of 𝑥1 and 𝑐 are taken from Scolnic & Kessler (2016).
For SN Ia intrinsic scatter, we adopt the ‘G10’ spectral variation
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model from Kessler et al. (2013) that is based on the wavelength-
dependent scatter presented by Guy et al. (2010b). Future analyses
will explore in greater depth other approaches to simulating SNe Ia
in DES, including different intrinsic scatter models (Brout & Scolnic
2020) and various effects of correlations between SNe Ia and host
galaxy properties (Sullivan et al. 2006; Smith et al. 2012; Rigault
et al. 2018; Smith et al. 2020). In this analysis, the only SN Ia-host
correlation that we model is between 𝑥1 and host galaxy stellar mass
(see Section 4.5 for details).

4.3 Simulations of peculiar SNe Ia

We include in our simulations two types of peculiar SNe Ia that may
appear as photometric contaminants in SN Ia samples: SN1991bg-
like SNe (Filippenko et al. 1992) and SN2002cx-like supernovae (Li
et al. 2003; Foley et al. 2013, hereafter SNe Iax). SN1991bg-like
(‘91bg-like’) SNe are sub-luminous compared to normal SNe Ia, and
characterised by fast-declining (small 𝑥1), light curves and redder
colours at peak. In our simulations, we use the SED library of 35
91bg-like events presented in PLAsTiCC (Kessler et al. 2019a). In the
original PLAsTiCC simulation, only five different SEDs were used
and no stretch diversity was simulated (see Section 4.2.2 in Kessler
et al. 2019a) due to an error in the generation of the models. For our
simulations the PLAsTiCC team have provided us with the correct
set of SED models. In Fig. 3 we present the 𝑔 − 𝑟 colour synthesised
at peak before observational noise is applied for our simulated 91bg-
like SNe. This sub-class of peculiar SNe Ia is significantly redder at
peak compared to normal SNe Ia.
SNe Iax (see Jha 2017, for a recent overview) generally rise and

decline faster than normal SNe Ia and are characterised by low-
velocity ejecta. Again, we use the model presented in PLAsTiCC,
based on SN2005hk (Phillips et al. 2007; Sahu et al. 2008). As
with normal SNe Ia, the absolute brightness of SNe Iax has been
shown to be correlated with light-curve width (Foley et al. 2013). To
reproduce this correlation and expand the diversity of SN Iaxmodels,
the PLAsTiCC team generatedmultiple SN Iax SEDs bywarping and
renormalising the original SN 2005hk template. This reproduces the
diversity of SNe Iax in terms of light curve shape and normalisation,
but leaves the colour properties at peak unchanged (see Fig. 3 and 4).
The colour evolution and scatter of SNe Iax are poorly understood.
However, as SNe Iax are believed to explode in younger environments
(Takaro et al. 2020), and are therefore likely to be affected by dust,
we opt to use dust extinction to introduce variation in the colour
of the models. The reddening within the host galaxy for SN 2005hk
is estimated to be 𝐸 (𝐵 − 𝑉) = 0.09 (Chornock et al. 2006), so we
correct the PLAsTiCC SN Iax models for 𝐸 (𝐵 − 𝑉) = 0.09, and
apply a range of host extinctions in the simulations. We adopt the
host extinction distribution described by Rodney et al. (2014) (which
we also adopt for core collapse SNe in the following sections), which
allow us to well reproduce the colour diversity observed for SNe Iax
(see Fig. 4).
Our revision of the original PLAsTiCC SN Iax models addresses

the issues identified by Popovic et al. (2020). They included the
PLAsTiCC SN Iax models in their simulations of the Sloan Digi-
tal Sky Survey (SDSS) photometric SN sample, and observed that
this significantly overestimates the predicted contamination, with the
simulated SNe Iax appearing bluer than other samples of observed
SNe Iax (see Fig. 4).

4.4 Simulations of core collapse SNe: baseline approach

Our Baseline core collapse SN simulations use the library of 67 SED
time-series templates presented by Vincenzi et al. (2019, hereafter
V19). This library combines spectroscopy and multi-band photom-
etry from 67 well-observed core collapse SNe across 6 different
subclasses (SN II, SN IIb, SN IIn, SN Ib, SN Ic and SN Ic-BL).
Each template covers 1600–11000Å; the UV coverage, in particular,
is critical when simulating core collapse SNe at high redshift. Fig. 3
shows the redshift evolution of the simulated 𝑔 − 𝑟 colour at peak for
different types of core collapse SNe compared to SNe Ia. We find
that core collapse events in our simulations have the expected colour
evolution. Stripped-envelope SNe are systematically redder at peak
compared to SNe Ia. SNe II, however, are significantly bluer events
and they follow the colour evolution expected from black body SEDs
at different temperatures.

By construction the V19 template library is biased towards bright
core collapse SNe and may not be representative of the intrinsic
brightnesses and relative rates of different sub-types. Luminosity dis-
tributions and relative rates are generally measured from magnitude-
limited samples such as the Lick Observatory Supernova Survey
sample (LOSS, Leaman et al. 2011; Li et al. 2011). As the SN events
in the LOSS sample do not have sufficient data quality to construct
SED templates, we adopt a hybrid approach and use the biased sam-
ple of SN events in the V19 template library and normalise it to
brightnesses and rates measured from the LOSS sample.

For core collapse SN relative rates, we use the measurements
presented by Shivvers et al. (2017). Using the LOSS sample and
revising the Li et al. (2011) measurement, Shivvers et al. (2017)
showed that in the local universe SNe II and stripped-envelope SNe
represent 69.6 per cent and 30.4 per cent of all core collapse SNe
respectively. Frohmaier et al. (2020) find a similar result using data
from PTF. Given the lack of measurements of relative rates at higher
redshifts, in our Baseline simulation we assume that these relative
rates do not evolve with redshift. We simulate core collapse SNe
assuming the rate follows the cosmic star formation history presented
in Madau & Dickinson (2014) normalised by the local SN rate of
Frohmaier et al. 2020.

For the luminosity functions, the baseline simulation uses themean
and r.m.s absolute brightnessesmeasured from the LOSS sample, and
we interpret these measurements as Gaussian luminosity functions.
These were revised in V19 following updated classifications pub-
lished by Shivvers et al. (2017) and they are reported in Table 5. We
use the set of V19 templates that has not been corrected for host-
galaxy dust extinction because the revised Li et al. (2011, hereafter
L11) luminosity functions are also measured from SNe not corrected
for host-galaxy dust extinction. As described by V19, each sub-type
of template is matched to its respective luminosity function applying
sub-type dependent magnitude offsets and dispersion.

The simulated core collapse SN contamination can vary signifi-
cantly depending on the choice of luminosity function, on whether
additional host extinction is simulated, and on the adopted distribu-
tion of host-galaxy dust extinction. As most of these quantities are
poorly constrained (especially at high redshift) we do not rely on
one single core collapse SN simulation but instead design a set of
simulations that explore these different assumptions, and we test how
our modelling choices affect our analysis. In Section 6, we present in
detail each core collapse simulation built for this analysis.
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Figure 4. 𝐵 − 𝑉 colour distribution at 𝐵-band peak for SNe Iax simu-
lated using the original PLAsTiCC models (dashed histogram), for the up-
dated SNe Iax model used in this analysis (solid histogram; Section 4.3)
and for seven observed SNe Iax with for which good 𝐵 and 𝑉 band pho-
tometry around peak has been published (grey-filled histogram, SN 2003gq,
SN 2005cc, SN 2005hk, SN 2008A, SN 2008ha, SN 2011ay, SN 2012Z from
Silverman et al. 2012; Foley et al. 2013; Stahl et al. 2019).

4.5 Simulating host galaxies

The rates of SNe in galaxies depend on the galaxy properties, such as
stellar mass (𝑀∗), star formation rate (SFR), andmetallicity (Sullivan
et al. 2006; Lampeitl et al. 2010; Li et al. 2011; Smith et al. 2012;
Johansson et al. 2013; Graur et al. 2015; Rigault et al. 2018; Graur
et al. 2017). For any given SN type, not every galaxy is equally
likely to be a host and, in addition, the likelihood of a SN host
having a spectroscopic redshift depends on the galaxy properties
(see Section 3.2). Therefore, realistic simulations require an accurate
modelling of how the SN rate and 𝜀𝑧spec are correlated with galaxy
properties. In this section we discuss our approach in the simulations.
A schematic illustration of galaxy association is presented in Fig. 5.

4.5.1 Simulating host galaxies of SNe Ia

We model correlations between SN Ia rates and galaxy properties
following a two-component parametrization (the ‘A+B’ model) in-
troduced by Mannucci et al. (2005). In this approach, the SN Ia rate

is described as the sum of two terms:

𝑅𝐴+𝐵
Ia (𝑀∗, SFR) = 𝐴 × 𝑀∗ + 𝐵 × SFR (3)

This model was implemented by Sullivan et al. (2006) to analyse
the Supernova Legacy Survey (SNLS) SN Ia sample. We use the
best-fitting 𝐴 and 𝐵 parameters presented by Sullivan et al. (2006).
To model the well-known correlation between SN Ia 𝑥1 and host

galaxy 𝑀∗ (e.g., figure 4 in Smith et al. 2020), we multiply the
SNLS SN Ia rate in equation 3 by an additional term (𝑅∗

Ia (𝑥1, 𝑀∗))
so that the rate of SNe Ia in galaxies with 𝑀∗ < 1010 𝑀� drops
monotonically to zero with decreasing 𝑥1. After analysing the DES-
SN3YR SN Ia sample and comparing the tail of SNe Ia with 𝑥1 <

0 in high mass galaxies (𝑀∗ > 1010 𝑀�) and low mass galaxies
(𝑀∗ < 1010 𝑀�), we model the relative probability of having a SNe
Ia with a SALT2 stretch 𝑥1 in a galaxy with stellar mass 𝑀∗ as:

𝑅∗
Ia (𝑥1, 𝑀∗) = 𝑒−𝑥

2
1 for 𝑥1 < 0 and 𝑀∗ < 1010 𝑀�

𝑅∗
Ia (𝑥1, 𝑀∗) = 1 for 𝑥1 > 0 and 𝑀∗ < 1010 𝑀�

𝑅∗
Ia (𝑥1, 𝑀∗) = 1 for ∀𝑥1 and 𝑀∗ > 1010 𝑀� .

(4)

As a result, the net rate applied for SNe Ia is:

𝑅Ia (𝑀∗, SFR, 𝑥1) ∝ 𝑅𝐴+𝐵
Ia (𝑀∗, SFR) × 𝑅∗

Ia (𝑥1, 𝑀∗). (5)

For peculiar SNe Ia we apply the same SN rate model used for normal
SNe Ia with some variations. 91bg-like SNe Ia primarily explode in
E/S0 galaxies (Howell 2001; Li et al. 2011), while SNe Iax are rarely
found in early-type galaxies (Takaro et al. 2020). Therefore, we set
the rate of 91bg-like (SNe Iax) to be zero in star forming (passive)
galaxies. In our analysis, a galaxy is defined as passive if its specific
star formation rate sSFR (the star-formation rate per unit stellar mass)
is smaller than 10−11.5 yr−1 (Fig. 6).

4.5.2 Simulating host galaxies of core collapse SNe

Core collapse SNe occur almost exclusively in star-forming galaxies
(Li et al. 2011; Kelly &Kirshner 2012; Graur et al. 2017). Graur et al.
(2017) measured the core collapse SN rate as a function of galaxy
properties for stripped envelope SNe and SNe II respectively. These
rates are calculated using core collapse SNe in the LOSS sample and
are presented as a function of 𝑀∗, which is correlated with SFR for
star forming galaxies. Following these measurements we model core
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Figure 5. Flow chart describing the host galaxy association in the SNANA simulations. Here we show an example of host galaxy association for SNe Ia, but
the same general process applies to other SN types. Equations 3, 4 and 6 in Section 4.5.1 and 4.5.2 describe SN rates as a function of galaxy properties (and
additionally 𝑥1 for SNe Ia) for all the SN types included in our simulations.
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Figure 6. Distribution of galaxy SFR (log(SFR)) versus galaxy stellar mass
(log(𝑀∗)) for all galaxies the HOSTLIB (grey symbols anf filled grey his-
tograms) and for four different types of simulated SNe: SNe Ia ( solid blue
line), peculiar SNe Ia (91bg-like and SNe Iax; dotted blue line), SNe Ibc
(solid orange line) and SNe II (dashed red line). The central 2D plot shows
the 68 per cent density contour for each SN type. Different types of SNe are
associated to host galaxies following the SN rates presented in Section 4.5.
The dashed grey line separates our definition of star forming (above the
line, i.e., log(sSFR) > −11.5) and passive galaxies (below the line, i.e.,
log(sSFR) < −11.5).

collapse SN rates as:

RIbc/II = 0 in passive galaxies

RIbc (𝑀∗) ∝ (𝑀∗/M�)0.36

RII (𝑀∗) ∝ (𝑀∗/M�)0.16
(6)

Graur et al. (2017) show that SNe II have a shallower dependency
on 𝑀∗ compared to stripped-envelope SNe, and this result has a
statistical significance of > 2𝜎. This difference implies that the ratio
between stripped-envelope SNe andSNe II (that on average is roughly
0.435; see Shivvers et al. 2017) varies depending on the host galaxy
𝑀∗; stripped-envelope SNe are ten times less common than SNe II
in low-mass galaxies, but almost 1/3 of the SN II rate in high-mass
galaxies. At higher redshifts, the DES photometric SN sample is
biased towards brighter and more massive galaxies as they are more
likely to get a spectroscopic redshift. This bias affects the composition
of core collapse SN contamination as a function of redshift and is
modelled in our simulations.

4.5.3 Host galaxy association in simulations

Following Smith et al. (2020), we select SN host galaxies from a
HOSTLIB (Section 4.1) generated from DES SV data. This cata-
logue includes ∼380,000 galaxies for which quantities like redshift
(spectroscopic or photometric), galactic coordinates, magnitudes and
Sérsic profiles (Sérsic 1963) have been measured. For each HOSTLIB
galaxy, 𝑀∗ and SFR are measured using the method presented by
Smith et al. (2020) (see section 2.2.2).
The completeness of the DES SV HOSTLIB is > 99 per cent for

𝑚host
𝑖

< 23.8mag and 50 per cent for 𝑚host
𝑖

< 24.75mag. Analysing
the SNLS spectroscopic SN Ia sample (Sullivan et al. 2010), the
fraction of SNe Ia in galaxies fainter than 23.8 is less than 15 per
cent for 𝑧 < 0.8 and approximately 30 per cent at 𝑧 = 1. This fraction
is likely to be higher for core collapse SNe that on average explode
in fainter galaxies. The depth of the DES SV HOSTLIB is one of the
limiting factors in our analysis and may result in an overestimate
of SNe at higher redshifts. We will explore the implementation of
deeper HOSTLIB catalogues in future articles.
In our simulations, the SN-to-galaxy association is implemented

as follows (see Fig. 5 for a schematic illustration). For a SN event
simulated at redshift 𝑧 we select all HOSTLIB galaxies within the
interval 𝑧 ± 0.002. Each galaxy within this redshift interval is then
weighted by the SN rate (Sections 4.5.1 and 4.5.2), so that high
mass galaxies are favoured and the large fraction of faint, low-mass
galaxies are given lower weight. The host is then randomly selected
from the weighted list of galaxies. We identify the location of the SN
within a host assuming that the distribution of SNe within their host
galaxies follows the galaxy light profile (Kelly et al. 2008). For each
epoch, the simulation computes the host galaxy fluxwithin the 2𝜎PSF
radius aperture from the location of the SN and this Poisson variance
is added to the flux variance. This galaxy variance affects the signal-
to-noise of the SN flux and its likelihood of being detected. Finally,
given the 𝑚host𝑟 and 𝑔 − 𝑟 colour of the selected host galaxy, as well
as the year of discovery of the simulated SN, we apply the efficiency
𝜀𝑧spec (Section 3) to determine whether a redshift is measured.
Our method for the simulation of SN host galaxies is a significant

improvement over earlier work. Our approach accounts for the fact
that SNe of different astrophysical origin occur in different types of
galaxies with different rates. Using our baseline simulation, we show
in Fig. 6 how simulated host galaxies of different types of SNe have
different distributions in terms of simulated 𝑀∗ and SFR. Compared
to published samples of SNe Ia and core collapse SNe (Wiseman et al.
2020; Perley et al. 2020; Li et al. 2011), our simulations reproduce
the observed host galaxy properties: the population of SN Ia hosts is
significantly skewed towards high mass galaxies, with a significant
fraction of events found in passive environments, while core collapse
SNe are preferentially hosted in star-forming galaxies with a larger
fraction of events found in lower mass galaxies.
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5 COMPARISON BETWEEN SIMULATIONS AND THE
DES PHOTOMETRIC SAMPLE

In Section 4 we presented the Baseline framework of our simulation,
the goal of which is to produce a simulation that matches the ob-
served SN populations and properties of the DES photometric SN
sample. In this section, we compare our Baseline simulation with
the DES photometric SN sample presented in Section 2.4. This com-
parison constitutes the core of this paper, and is essential to test the
astrophysical assumptions used in our simulations.
We present the simulation versus data comparisons for distribu-

tions of SN redshift, SALT2-fitted SN parameters, and Hubble resid-
uals as described in Section 2.4. To first order, the Hubble residual
distribution of SNe Ia can bemodelled as a symmetric Gaussian, with
a mean of zero and a standard deviation equal to the combination of
intrinsic scatter of the SN Ia sample and observational noise. Due to
the presence of core collapse SN contamination, however, the Hub-
ble residual distribution of a sample of photometrically-classified
SNe Ia will typically have an asymmetrical positive tail (Campbell
et al. 2013; Jones et al. 2017).6 Core collapse SNe have, on average,
fainter intrinsic brightnesses than SNe Ia, and are not standardizable
using equation (1). Applying the same equation to an intrinsically
fainter SN (like a core collapse SN) leads to an overestimate of the
SN distance modulus and thus positive Hubble residual (equation 2).
In Fig. 7 and 8, we present a comparison between our Baseline

simulation and the DES photometric SN sample for the distribu-
tions of SALT2 parameters (𝑚𝐵 , 𝑥1, 𝑐, 𝑡0) and their uncertainties,
redshift, maximum observed signal-to-noise ratio and Hubble resid-
uals. In Fig. 9, the same comparison is presented for 𝑚host𝑟 and host
galaxy observed 𝑔 − 𝑟 colour. We present results for deep and shal-
low fields separately, using the set of loose SALT2 cuts described in
Section 2.4. We combine 25 realisations of the Baseline simulation
(total of 60,000 simulated SNe) and normalise each histogram so
that the total number of SNe in the simulation is equal to the total
number of observed SNe (for deep and shallow fields separately).
We evaluate the level of agreement between data and simulation by
calculating the reduced chi-square 𝜒2𝜈 (the 𝜒2 per degree of freedom)
as described by Brout et al. (2019b, section 3.7.3). We report the 𝜒2𝜈
in each figure panel.
Qualitatively, the simulation reproduces the DES SN sample well.

This is a remarkable result considering the various assumptions that
underpin the simulation (e.g., the SN rates, host galaxy properties,
SN templates), and considering the inputs to the simulation have not
been tuned to match the data. In detail, in Fig. 7 and 8, we observe:

• In the 𝑥1 distribution, both data and simulation contain a tail of
high-𝑥1 events. This is caused by highly energetic stripped-envelope
SNe (SNe Ic, SNe Ic-BL), often characterised by slowly evolving
light curves, and by faster-declining SNe II compared to the general
SN II population, but which are still slower that SNe Ia.

• In the 𝑐 distribution, data and simulations show tails at bluer
and redder colours. The bluer tail is caused by SNe II, similar to hot
black bodies at peak and thus with bluer colours than SNe Ia. The
redder tail is mainly due to SNe Iax and stripped-envelope SNe (see
Fig. 3 and Fig. 11 for a visualisation of where stripped-envelope SNe
and SNe II lie in colour space compared to SNe Ia).

• The distribution of simulated 𝑡peak match the data well, sug-

6 Lensing magnification can also introduce an asymmetrical negative tail in
the Hubble residual distribution. However, this effect is significantly smaller
than the one introduced by core collapse contamination and it is not discussed
in this analysis.

gesting the time dependency of the spectroscopic redshift efficiency
presented in Section 3.2.3 is well modelled.

• The faint tail in the Hubble residuals, the clearest feature of
the presence of contamination in the data, is also well reproduced.
The ratio between the number of SNe with large Hubble residuals
(> 0.5, i.e., likely contaminants) and the number of SNe with small
Hubble residuals (< 0.5, i.e., likely SNe Ia) is 0.20 in data and 0.21
in simulations for the shallow fields. For deep fields, these numbers
are 0.34 and 0.30. In photometric SN sample analyses, this is the
first time that the contamination observed in the Hubble diagram
is explained and almost fully reproduced by a simulation, without
the requirement of significant fine tuning of our assumptions and
therefore lifting doubts on whether our knowledge of bright core
collapse SNe at high redshift present substantial gaps. The only
minor discrepancy we observe is that our simulation underestimates
the contamination in the deep fields by about 10 per cent. The 𝜒2𝜈
is larger than expected from statistical fluctuations, and the excess
is mainly driven by the bulk population of SNe Ia at small Hubble
residuals. These discrepancies arise because the Hubble residuals are
measured assuming values of the nuisance parameters 𝛼, 𝛽 andM𝐵 ,
and assuming a cosmological model.

The fact that our simulation reproduces the main features that can
be considered signatures of core collapse contamination is promising.
Nonetheless, some discrepancies between simulations and observa-
tions should be noted.

• In the redshift distributions in Fig. 7, we note an underestimate
of SN events at high redshift in the shallow fields, and in the deep
fields we highlight that the sharp dip observed at redshift z∼ 0.5 is
not correctly modelled by simulations;

• The observed and simulated 𝑥1 distributions agree well in the
shallow fields but not in the deep fields. Shallow and deep fields
probe slightly different redshift ranges and therefore different galaxy
populations. SALT2 𝑥1 is known to be correlated with galaxy prop-
erties such as galaxy stellar mass, and this discrepancy suggests that
our modelling of host mass-𝑥1 correlations and/or the HOSTLIB im-
plemented need to be improved;

• Distribution of maximum signal-to-noise ratio shows some dis-
crepancies at lower values, which calls for further improvements in
the modelling of flux uncertainties.

These discrepancies are unlikely to be solely due to an incorrect
modelling of core collapse SNe, as they occur in regions of the
parameter space that are primarily dominated by SNe Ia (e.g., high
redshift in the shallow fields, or near zero Hubble residual in the deep
fields). Further improvements in the modelling of flux uncertainties
and selection effects in the DES data may be required, as well as the
implementation of a deeper and more complete HOSTLIB that at high
redshift will affect the fraction of SNe simulated in faint hosts, i.e.,
that are unlikely to have a spectroscopic redshift. Further revision of
the modelling of SN Ia intrinsic properties (the intrinsic distributions
of 𝑥1 and 𝑐 and the intrinsic scatter) may also be needed. These
are all complex aspects of the analysis and we anticipate continued
improvements in future analyses.
Finally, Fig. 9b shows that the observed distribution of 𝑚host𝑟 , is

well reproduced by simulations. This agreement suggests that the
measurement of spectroscopic efficiency presented in Section 3 is
robust, and that the implemented SN rate models (Section 4.5) ade-
quately describe the data.
The importance of implementing a galaxy-dependent selection

in our simulations is demonstrated in Fig. 9a, the distribution of
𝑚host𝑟 from a simulation using the same inputs as the Baseline sim-
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Figure 7. Various comparisons of our ‘Baseline’ simulations and data. The simulations include ∼60,000 SNe (25 realisations of the DES photometric SN
sample) and the histograms are scaled to match the total number of events in the DES photometric sample. Top panels (from left to right): redshift, SN 𝑥1
and SN 𝑐; central panels: SN 𝑚𝐵 , MJD of peak brightness, and maximum observed SNR; lower panels (from left to right): uncertainties in the SALT2 fitted
parameters 𝑚𝐵 , 𝑥1 and 𝑐. We compare data (black points), all simulated SNe (SNe Ia, peculiar SNe Ia and core collapse SNe combined; grey filled histogram),
all non-Ia SNe (solid red line), peculiar SNe Ia only (SNe 91bg-like and SNe Iax; dotted line), SNe Ibc (thin solid orange line) and SNe II (dashed line). Results
are presented for the shallow and deep fields separately. The 𝜒2𝜈 is reported in each panel.
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Figure 8. As Fig. 7 but for Hubble residuals.

Table 3. True fraction of core collapse SNe for different SALT2-based cuts

Cut Fraction of non-Ia SNe (%)
only this cut exclude cut

Loose SALT2 cuts 22.5 - -
|𝑥1 |<3 18.7 18.7 7.8
|𝑐|<0.3 13.2 16.3 10.8
𝜎𝑥1 < 1 and 𝜎𝑡peak<2 10.9 18.6 9.2
Fit prob > 0.01 6.6 17.3 10.9

ulation, but with the exception that host galaxies are assigned ran-
domly (i.e., every galaxy has an equal probability of hosting a SN).
Since the HOSTLIB implemented in our simulations is complete to
𝑚𝑟 ' 23.8mag, at redshifts lower than 0.4–0.5 it is dominated by
faint and low mass galaxies. As a consequence, a large fraction of
SNe is simulated in faint galaxies and are rejected as the OzDES
selection function is applied. We note that small discrepancies are
observed in the distribution of 𝑔 − 𝑟 observed colours in the shallow
fields, with a fraction of the red galaxies (mostly passive environ-
ments, primarily populated by SNe Ia) missing from simulations.
This will be further investigated by implementing deeper and higher
quality galaxy catalogues in the simulations.
From the Baseline simulation, we can predict the expected core

collapse SN contamination in the DES SN Ia sample. Table 3 sum-
marises how this contamination depends on the different SALT2 and
light curve cuts that can be applied. For the loose SALT2 cuts, we
predict the fraction of non-Ia SNe to be around 22.5 per cent (2.6
per cent arising from peculiar SNe Ia, 5.7 per cent from SNe Ibc and
14.2 per cent from SNe II), and for the Betoule et al. (2014) SALT2
cuts, the fraction decreases to 6.6 per cent (1.8 per cent from peculiar
SNe Ia, 1.5 per cent from SNe Ibc and 3.3 per cent from SNe II). We

highlight that the SALT2 𝑐 and fit probability cuts remove the largest
fraction of contamination.
SNe II are the largest source of contamination as they are the

most common type of core collapse SN, and the brightest SNe II are
faster declining and therefore photometrically more similar to SNe Ia
than the generally fainter plateauing SNe II. However, examining the
Hubble residual distributions in Fig. 8 in detail we note that even
though SNe Ibc are not the primary source of contamination, they
have on average Hubble residuals closer to zero. In the next section,
we discuss how the contamination fraction predicted in the Baseline
simulation varies as different assumptions, modelling choices and
templates library are used.

6 TESTING ALTERNATIVE CORE COLLAPSE SNE
SIMULATIONS

We next analyse how changing the assumptions and modelling
choices discussed in Section 4.4 affects the results of this analysis
and in particular the predicted fraction of core collapse SN contami-
nation in the DES sample. We use eight additional core collapse SN
simulations generated by adjusting the luminosity functions, the host
galaxy dust extinction, the SN colour dispersion, and using different
libraries of core collapse SN SED templates. The simulations are
summarised in Table 4.

6.1 Luminosity functions

Luminosity functions, describing the distribution of absolute bright-
ness of the SNe, are a critical element of uncertainty in our anal-
ysis. Due to the relative faintness of core collapse SNe and thus
the Malmquist biases inherent in SN surveys, luminosity functions
are difficult to measure accurately and they depend on whether dust
extinction corrections are applied (Li et al. 2011; Richardson et al.
2014). These corrections are generally uncertain, and it is difficult
to disentangle the distribution of intrinsic brightness and the dis-
tribution of dust extinction. Currently, published measurements of
core collapse SN luminosity functions are based on local SNe (i.e.,
< 100Mpc). This low-redshift measurement adds further uncertainty
as the properties of core collapse SNe may evolve with redshift.
In our analysis, we model luminosity functions based on the

volume-limited LOSS sample (Leaman et al. 2011; Li et al. 2011),
taking into account the revised classification published by Shivvers
et al. (2017). We explore different parametrizations, which we sum-
marise in Table 5:

• We assume that the luminosity functions are described by a
Gaussian distribution, corresponding to the Baseline simulation pre-
sented in Section 4.4;

• We assume that the luminosity functions are described by a
skewed Gaussian distribution (‘Skewed LFs’). Table 5 shows the
parameters from skewed luminosity function fits to the revised LOSS
sample: mean standard deviation and skeweness. For all sub-types
we find a positive skewness, i.e., a larger tail on the fainter side of the
luminosity distribution, compatible with the interpretation of dust
extinction as the origin.

• We apply a redshift-independent offset to the mean of each
Gaussian luminosity function measured from the LOSS SN sample
(‘LFs+Offset’). The uncertainty on the mean for the LOSS lumi-
nosity functions is typically 0.2–0.4mag, and therefore adjustments
within this range are consistent with the baseline values. However,
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Figure 9. Same as Fig. 7, but for host galaxy𝑚host𝑟 (left panels) and host galaxy observed 𝑔−𝑟 colours (right panels). Panel (a) is for an incorrect implementation
where host galaxies are assigned randomly to simulated SNe, while panel (b) uses our Baseline simulation.

Table 4. Summary of alternative simulations for core collapse SNe

Label Template library Luminosity functions Dust model
Baseline V19 revised L11, Gaussian NA∗

Skewed LFs V19 revised L11, skewed Gaussian NA
LFs+Offset V19 revised L11 + offset NA
LFs 𝑧-evolving V19 revised L11 + 𝑧 evolution NA
Dust (H98) dereddened V19 revised L11, Gaussian Hatano et al. (1998)
Dust (R14) dereddened V19 revised L11, Gaussian Rodney et al. (2014)
Dust 𝑧-evolving dereddened V19 revised L11, Gaussian Hatano et al. (1998) +𝑧 evolution
J17 J17 adjusted LFs from L11 NA
PLAsTiCC PLAsTiCC PLAsTiCC NA

∗N/A: not applicable – simulations with core collapse SN templates that are not corrected for host dust extinction; additional extinction is not included.

Jones et al. (2017, hereafter J17) claim that the original LOSS lu-
minosity functions need to be shifted by approximately −1mag in
order to match core collapse SN contamination in the PanSTARRS
SN sample. Here we test the choice of an intermediate magnitude
shift of −0.5mag.

• We introduce a redshift-dependent drift to themean of theGaus-
sian luminosity functions (‘LF 𝑧-evolving’). This magnitude shift is
Δ𝑚 = −0.5𝑧mag and corresponds to a magnitude offset of −0.5mag
at 𝑧 = 1.

In addition to the four alternative luminosity functions, we include
luminosity functions implemented by J17 and in the PLAsTICC
simulations (these simulations are discussed in Section 6.3), with a
total of six luminosity functions tested in this work. These luminosity
functions are presented in Fig. 10 as distributions of Bessell 𝑅-
band peak absolute magnitudes (for consistency with the luminosity
functions presented by Li et al. 2011). The distributions are estimated
as follows. We consider the same input luminosity functions and
templates designed for the DES core collapse SN simulations tested
in this work, and estimate the 𝑅-band peak absolute magnitudes from
a set of 10,000 SN light-curves and examine the distributions. These
represent the effective underlying luminosity distributions used in
each core collapse SN simulation and allow a direct comparison
between different luminosity functions. The distributions presented

in the first panel of Fig. 10 match the analytical forms presented in
Table 5.

6.2 Host galaxy extinction

The star-forming hosts of core collapse SNe will typically contain
high abundances of gas and dust and thus dust extinction within the
host galaxy will be astrophysically important in our simulations. Two
sets of V19 templates are available: one not corrected for host dust
extinction (i.e., implicitly containing some extinction as observed
in the SNe) and one corrected for dust extinction (see Appendix A
of Vincenzi et al. 2019, for more details). This allows two imple-
mentations of host galaxy extinction and two methods of matching
simulated core collapse SNe to luminosity functions. In the first ap-
proach, core collapse SN events are simulated with their original
host reddening, and the simulated luminosity function is adjusted to
match the revised L11 luminosity functions. In the second approach,
simulated core collapse light-curves are synthesized from the unred-
dened SED models and applying arbitrary extinction models (thus
augmenting the diversity, see Fig. 11). The luminosity distribution
of the simulated events is matched to the revised L11 luminosity
functions only after the extinction is applied.

MNRAS 000, 1–21 (0000)



Selection efficiency and core collapse supernova simulations 15

20 18 16 14 12
Absolute Magnitude R-band

(b) J17

20 18 16 14 12
Absolute Magnitude R-band

Fr
eq

ue
nc

y 
D

en
si

ty
(li

ne
ar

 s
ca

le
)

(a) Li et al. Revised

-19.5 -18.5

20 18 16 14 12
Absolute Magnitude R-band

(c) PLAsTiCC

SNe Ia
SNe II
SNe Ibc

Figure 10. Distributions of simulated 𝑅-band absolute magnitudes at peak for various types of SNe. This series of panels summarises the different core collapse
luminosity functions tested in this work. For visualisation purposes we also show the luminosity distribution of SNe Ia. The relative normalisation between
SNe Ia and core collapse SNe is arbitrary, while the relative rate between stripped-envelope SNe (SNe Ibc) and hydrogen-rich SNe (SNe II) is preserved (roughly
0.435, see Shivvers et al. 2017). In panel (a), we use the luminosity functions presented by L11 and revised by V19. We present luminosity distributions derived
using both the Gaussian parametrization (Baseline, solid line) and the skewed Gaussian parametrization (Skewed LFs, dotted lines). The analytical forms of the
revised L11 luminosity functions are summarised in Table 5. The inset in the plot highlights differences in the brightest tail between the two parametrizations.
In panel (b) we show luminosity distribution from the J17 core collapse simulations; in panel (c) we show luminosity distributions estimated from simulations
generated using the PLAsTICC models (see Section 6.3).
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Figure 11. Simulated 𝑔− 𝑟 colour at peak brightness vs redshift for different SN types and templates. SNe Ia are generated as described in Section 4.2. Panel (a)
is as panel (c) in Fig. 3, but using the V19 templates and a dust extinction distribution from Hatano et al. (1998). In panel (b), core collapse SNe are simulated
using the J17 set of templates and adjusted luminosity functions; in panel (c) using PLAsTICC models generated using mosfit for stripped-envelope SNe and
non-negative matrix factorization for SNe II (see Section 6.3). We also show the 𝑔 − 𝑟 colour measured from black body SEDs at temperatures of 5000, 10000
and 50000K.

Table 5.Luminosity functions fromLi et al. (2011) with revised classification
from Shivvers et al. (2017)

SN type Revised LFs from Li et al. (2011)
Gaussian fit 𝑎 Skewed gaussian fit 𝑏

II† -15.97(1.31) -17.51 (2.01,3.18)
IIn -17.90(0.95) -19.13 (1.53,6.83)
IIb -16.69(1.38) -18.30 (2.03,7.40)
Ic -16.75(0.97) -17.51 (1.24,1.22)
Ib -16.07(1.34) -17.71 (2.11,7.15)
Ic/Ic-pec/Ic-BL -16.79(0.95) -17.74 (1.35,2.06)

𝑎 Gaussian fit (mean with standard deviation in parenthesis) of the dis-
tributions of 𝑅-band absolute magnitudes for the bias-corrected LOSS
sample. We use the Shivvers et al. (2017) classifications. Host extinction
corrections are not applied.
𝑏 Skewed Gaussian fit (mean with standard deviation and skewness in
parenthesis) of the distributions of 𝑅-band absolute magnitudes for the
bias-corrected LOSS sample. We use the Shivvers et al. (2017) classifi-
cations. Host extinction corrections are not applied.
† Following the classification scheme introduced byAnderson et al. (2014)
and applied by Shivvers et al. (2017), faster declining SNe II (often
referred as SNe IIL) and slower SNe II (often referred as SNe IIP) are
combined into a single SN II class.
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Figure 12. Simulated 𝐴𝑉 extinction in Dust(H98) simulation (host dust
extinction distribution from Hatano et al. 1998) and Dust(R14) simulation
(host dust extinction distribution from Rodney et al. 2014), see Section 6.2
for more details. Dashed vertical lines show the median simulated 𝐴𝑉 for
each distribution.
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We test both approaches and investigate different implementations
of host dust extinction:

• We assume that the host extincted V19 templates are repre-
sentative of the core collapse SN population in terms of extinction
properties at all redshifts. In other words, we apply no further host
extinction. This is our Baseline approach.

• We use the set of de-reddened V19 SEDs and apply the host ex-
tinction distribution predicted by Hatano et al. (1998) (‘Dust (H98)’).
The distribution of 𝐵-band extinction (𝐴𝐵) presented byHatano et al.
(1998) is converted into 𝐴𝑉 and fit with the sum of an exponential
distribution, exp(−𝐴𝑉 /𝜏), and a normal distribution N(𝜇, 𝜎); we
find 𝜏 = 0.05, 𝜎 = 0.5 and 𝜇 = 0.45. Fig. 12 shows the resulting
distribution of simulated 𝐴𝑉 . For this model, the median simulated
extinction 𝐴𝑉 is 0.35mag.

• Weuse the de-reddenedV19SEDs and the host extinction distri-
bution used by Rodney et al. (2014) (‘Dust (R14)’). This distribution
is approximated with the same expression adopted for Hatano et al.
(1998) but assuming 𝜏 = 1.7, 𝜎 = 0.6 and 𝜇 = 0. Fig. 12 shows the
resulting distribution of simulated 𝐴𝑉 . The choice of this distribution
results in higher values of extinction, with median simulated 𝐴𝑉 of
0.49mag. This choice is motivated by the fact that other compilations
of core collapse SNe from untargeted surveys (i.e., surveys not pri-
marily based on monitoring bright and typically dust-rich galaxies)
seem to have larger mean extinction values (Prentice et al. 2016).

• We use the de-reddened V19 SEDs and the host extinction dis-
tribution of Hatano et al. (1998), introducing a redshift dependency
in the dust extinction. The dust content of a galaxy correlates with
its SFR (Santini et al. 2014). Since the cosmic star formation in-
creases by ' 0.5 dex between redshifts 0 and 1 (Madau & Dickinson
2014), we assume that the median simulated extinction 𝐴𝑉 linearly
increases by a factor 3 to 𝑧 = 1 (‘Dust 𝑧-evolving’) and apply a shift
to the mean of the Gaussian component 𝜇 of Δ𝜇 = 0.4𝑧mag.

Fig. 3c and Fig. 11a show the simulated 𝑔 − 𝑟 colours at peak bright-
ness for different approaches: the Baseline approach, and the ap-
proach where the distribution of dust from Hatano et al. (1998) is
applied on the de-reddened templates (‘Dust (H98)’). In the second
case, the diversity of SN events simulated is significantly increased.

6.3 Comparing different libraries of templates

The most widely used library to date is that of the SN Photomet-
ric Classification Challenge (SNPhotCC; Kessler et al. 2010a,b),
built from publicly-available composite spectral time series 7 ad-
justed to match multi-band photometry for 41 well observed,
spectroscopically-confirmed core collapse SNe from various nearby
photometric surveys. J17 augmented this library with additional tem-
plates of SNe IIb and 91bg-like SNe Ia.
In Fig. 10b we show the distribution of 𝑅-band absolute magni-

tudes derived from the J17 core collapse SN simulations. J17 simulate
SNe IIb from a set of six SED templates without applying disper-
sion to the SED brightness, leading to the spikes in the luminosity
function, and assume for SNe Ib a luminosity function with the func-
tional form N(−18.26, 0.15), explaining the brightest peak in the
SN Ibc distribution. The bimodality for SNe II is due to SNe IIP and
SNe IIL being modelled separately, following the rates and luminos-
ity functions originally presented by Li et al. (2011). We note the J17
templates lack a robust extension into the UV, and therefore at higher

7 https://c3.lbl.gov/nugent/nugent_templates.html

redshifts the simulation does not generate 𝑔-band observations (see
Fig. 11b)
Kessler et al. (2019a) released a new library of core collapse SN

templates developed for PLAsTiCC, including two innovative ap-
proaches for simulating core collapse SNe. For stripped-envelope
SNe and SNe IIn, SED templates have been generated using the
Modular Open-Source Fitter for Transients (mosfit; Guillochon
et al. 2018) parametrization and following the theoretical models
of Villar et al. (2017) for these two classes of transients. For SNe
II, synthetic light curves were built applying dimensionality reduc-
tion techniques to a large sample of SN II multi-band light curves.
These techniques enable an order of magnitude increase in the num-
ber of SEDs generated (384 templates for SNe II, 836 for SNe IIn
and stripped-envelope SNe). In Fig. 10c and Fig. 11c we compare
luminosity distributions and colour properties of core collapse SNe
generated using PLAsTiCC templates with other core collapse SN
libraries. We note significant differences both in the distribution of
simulated absolute magnitudes and in the colour evolution compared
to simulations generated with V19 and J17 templates.

6.4 Analysis of Hubble residuals distributions

In Fig. 13, we present the simulated and observed Hubble residu-
als (equation 2) for each simulation (Table 4) and for the different
SALT2 cuts (Section 2.4). Table 6 presents the predicted fraction of
contamination from 91bg-like, SNe Iax, SNe Ibc and SNe II, and
the total contamination, for shallow and deep fields separately. Fi-
nally, Table 7 presents the 𝜒2𝜈 of Hubble residual distributions. 𝜒2𝜈
are estimated both for Hubble residuals < 0.5 (the ‘SN Ia dominated’
region) and > 0.5 (the ‘core collapse SN dominated’ region).
Generally, the agreement is good. As noted for the Baseline simu-

lation, the largest discrepancies are found at zero and negative Hub-
ble residuals where the contamination is small (Fig. 13), and this
drives the large value of 𝜒2𝜈 (Table 7). When loose SALT2 cuts are
applied, more significant discrepancies are found in the core col-
lapse SN simulations where the luminosity functions are artificially
brightened (‘LFs 𝑧-evolving’ and ‘LFs+Offset’). These simulations
overestimate the number of SNe with Hubble residuals > 0.5 by
approximately 20–25 per cent, disfavouring such adjustments. Sim-
ulations where larger host extinctions are applied (‘Dust (R14)’ and
‘Dust 𝑧-evolving’) underestimate the number of SNe with Hubble
residuals < 0.5 by 10 per cent.
When the cuts from Betoule et al. (2014) are applied, the simu-

lations accurately predict the number of events with large Hubble
residuals (HR> 0.5), with 𝜒2𝜈 values between 0.7 to 1.2 (Table 6).
The large discrepancies observed when applying only loose SALT2-
based cuts in simulations (LFs+Offset and LFs 𝑧-evolving) appear to
be partially resolved when tighter SALT2 cuts are applied. This sug-
gests that understanding how SALT2-based cuts affect core collapse
contamination is an important aspect in this type of analysis.
The ‘Skewed LFs’ simulation predicts one of the lowest values

of core collapse SN contamination. As shown in Fig. 10, a skewed
Gaussian parametrization of the luminosity functions produces less
bright events compared to a Gaussian parametrization of the lumi-
nosity functions. This shows that simulation of core collapse SNe
is sensitive to how the brighter tails of the luminosity functions are
modelled. Finally, we note that the PLAsTiCC simulation shows poor
agreement with the data, both before and after SALT2-base cuts.
Overall, the range of contamination predicted by our simulations

is small, with a minimum of 5.8 per cent of contamination pre-
dicted from the ‘Dust 𝑧-evolving LFs’ simulation (excluding PLAs-
TiCC simulation) to a maximum of 9.3 per cent contamination in
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Table 6. True fraction of contamination (averaged over 25 realisations).

Loose SALT2 cuts SALT2 cuts following Betoule et al. (2014)
Non-Ia fraction Fraction of Non-Ia fraction in Non-Ia fraction Fraction of Non-Ia fraction in

(%) 91bg, Iax, Ibc, II (%) Shallow&Deep (%) (%) Iax, Ibc, II † (%) Shallow&Deep (%)
Baseline 22.5 0.1, 2.5, 5.7, 14.2 21.6, 24.5 6.6 1.8, 1.5, 3.3 6.3, 7.2
Skewed LFs 20.4 0.1, 2.6, 4.4, 13.2 19.5, 22.5 6.0 1.8, 1.2, 3.0 5.8, 6.5
LFs z-evolving 27.5 0.1, 2.4, 7.1, 17.8 26.4, 30.0 8.0 1.7, 2.0, 4.3 7.7, 8.8
LFs+Offset 31.7 0.1, 2.2, 8.6, 20.7 30.8, 33.6 9.3 1.7, 2.7, 4.9 9.0, 10.0
Dust(H98) 22.0 0.1, 2.6, 6.1, 13.2 21.1, 24.1 6.9 1.8, 1.9, 3.2 6.6, 7.5
Dust(R14) 21.6 0.1, 2.6, 5.6, 13.3 20.8, 23.6 6.7 1.8, 1.6, 3.4 6.3, 7.8
Dust z-evolving 18.6 0.1, 2.7, 4.9, 10.9 17.8, 20.4 5.8 1.8, 1.3, 2.7 5.6, 6.3
J17 (PanSTARRS) 29.1 0.1, 2.3, 12.0, 14.7 27.9, 31.9 7.3 1.8, 3.1, 2.5 6.7, 8.9
PLAsTiCC 24.6 0.1, 2.5, 7.3, 14.3 23.1, 27.9 5.6 1.8, 1.7, 2.0 5.2, 6.5
† After SALT2-based cuts following Betoule et al. (2014) are applied, the predicted fraction of 91bg-like SNe Ia is less than 0.1 per cent.
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Figure 13. Distributions of observed and simulated Hubble residuals for the full range of simulations. Distributions are presented for the data (shallow and
deep field combined, black symbols) and for the 9 simulations summarised in Table 4 (see Section 6): both SNe Ia and core collapse SNe are combined in the
solid lines, and simulated core collapse SNe only are shown as shaded areas. Left: Sample selected applying loose SALT2-based cuts (𝑥1 ∈ [−4.9, 4.9] and
SALT2 𝑐 ∈ [−0.49, 0.49]). The fraction of core collapse SNe for each simulation is reported in Table 6 and is approximately a fourth of the sample. Right:
SALT2-based cuts from Betoule et al. (2014) are applied. The fraction of core collapse SNe in the simulations is reported in Table 6.

Table 7. 𝜒2𝜈 between observed and simulated events for different Hubble
residual ranges.

Loose SALT2 cuts Betoule et al. (2014)
SALT2 cuts

𝜒2𝜈 𝜒2𝜈
HR< 0.5 HR> 0.5 HR< 0.5 HR> 0.5

SNe Ia only 5.3 60.3 3.9 17.2
Peculiar Ia only† 5.0 29.3 3.9 5.9
Baseline 4.2 1.9 3.7 0.8
Skewed LFs 4.9 1.5 3.8 0.7
LFs 𝑧-evolving 3.9 1.8 3.6 1.0
LFs+Offset 4.1 1.8 3.5 0.9
Dust (H98) 4.0 1.7 3.7 0.9
Dust (R14) 4.0 2.4 3.6 1.2
Dust 𝑧-evolving 4.2 2.0 3.7 1.1
J17 (PanSTARRS) 6.7 3.0 4.2 1.2
PLAsTiCC 5.5 10.3 4.0 1.5
† Simulation generated including only SNe Ia and peculiar SNe Ia, SNe Iax
and 91bg-like SNe Ia.

the ‘LFs+Offset’ simulation. The average contamination among the
different tested scenarios is 7.0 per cent, and the r.m.s is 1.1 per
cent. We note that this is the contamination expected in the photo-

metric DES SN sample prior to the application of any photometric
classification algorithm. After photometric classification, the typical
contamination expected is likely to decrease substantially (Möller &
de Boissière 2020, Vincenzi et al. in prep).

7 SUMMARY AND FUTURE WORK

Wehave presented a set of simulations designed to reproduce theDES
photometric SN sample. The DES photometric SN sample includes
more than 2500 SNe with high-quality multi-band photometry and
spectroscopic redshifts from the identified SN host galaxies. It is the
largest sample of photometrically identified SNe Ia to date and in
this work we described how the sample has been collected and what
are the relevant cuts we applied to filter non-SN transients.
Our focus in this paper has been to model and reproduce with

simulations the population of contaminants observed in the DES
photometric sample, where we define as contaminants transients that
are photometrically similar to SNe Ia but are not standardisable
candles, i.e., peculiar SNe Ia and core collapse SNe. The simulations
presented in this work are a significant improvement compared to
previously published mock catalogues of photometric SN samples.
The principle advances are:
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(i) We use core collapse SNe that are synthesised from high-
quality templates. We explore different methods for implementing
host galaxy dust extinction and different luminosity functions, and
we demonstrate that the diversity and quality of the simulated core
collapse SN light-curves are significantly improved;
(ii) We use a host-galaxy spectroscopic redshift efficiency that is

modelled as a three-dimensional function of host galaxy brightness,
observed colours and year of SN discovery. This efficiency function
has been measured by analysing the sample of galaxies that hosted
DES SN candidates and comparing those for which a spectroscopic
redshift was obtained and those for which it was not;
(iii) We simulate SN host galaxies using published SN rates and

their dependency on host galaxy properties. This ensures that each
sub-type of transient is associated with a physically meaningful pop-
ulation of galaxies. This, combined with our measured efficiency
function, enable us to accurately model selection effects for every
type of transient, every type of galaxy, and every redshift range.

The ultimate test to verify if our simulations are realistic and phys-
ically accurate is to compare the simulated samples with the real
data. We find excellent agreement between our simulations and the
DES SN sample, both when loose and cosmology-like SALT2-based
cuts are applied. From our baseline simulation, we predict the frac-
tion of core collapse SN contamination in the DES SN sample to be
6.6 per cent after applying SALT2-based cuts similar to those in the
cosmological analysis from Betoule et al. (2014).
We additionally explore alternative template libraries, luminosity

functions and host galaxy dust extinction models. We consider nine
core collapse SN scenarios, designed to span a wide range of mod-
elling choices. We analyse this set of simulations and find that the
majority reproduce observed contamination well (with measured 𝜒2𝜈
between 0.8 and 1.4 for large Hubble residuals) and that the predicted
core collapse contamination varies between 5.8 and 9.3 per cent, with
an average of 7.0 and an r.m.s. of 1.1 . This suggests that, although
our knowledge of the global properties of core collapse SNe remains
incomplete, core collapse SN contamination in the DES photometric
SN sample can be well constrained.
While the agreement between data and simulations is already good,

some discrepancies remain and we anticipate improvements from
future analyses. Different ways of increasing the depth of the galaxy
library implemented in our simulations will be explored, either using
observations (i.e. deep coadds published by Wiseman et al. 2020) or
simulations (SkyPyCollaboration 2020). Additionally, themodelling
of SN Ia intrinsic properties and contribution of the host galaxy to
the observational noise will be studied.
This work lays the foundation for several analyses central to the

cosmological analysis of the DES photometric SN survey. The cos-
mological constraints obtained will depend more on our ability to
validate the true contamination rather than obtaining the smallest
prediction for that contamination. In future papers, we will use the
simulations presented here to train and test the photometric classi-
fiers that will be implemented in the cosmological analysis of the
DES SN sample. We will also measure systematic uncertainties and
potential biases in cosmological measurements due to core collapse
SN contamination. Finally, the methods and techniques used in this
work constitute a powerful tool to predict core collapse SN contam-
ination in future cosmological SN Ia samples and can be applied to
simulate SNe in time-domain surveys like the 10-year Legacy Survey
of Space and Time (Ivezić et al. 2019, LSST) and surveys with the
Nancy Grace Roman Space Telescope (Hounsell et al. 2018).
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