
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Physics and Astronomy

B→ π`ν and Bs → K`ν decays in the
Continuum Limit of Lattice QCD

by

Ryan Christopher Hill

A thesis for the degree of
Doctor of Philosophy

April 2022

http://www.southampton.ac.uk




University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Physics and Astronomy

Doctor of Philosophy

B→ π`ν and Bs → K`ν decays in the Continuum Limit of Lattice QCD

by Ryan Christopher Hill

The Standard Model of particle physics is our current best model of the fundamental
mechanics of nature. However, it cannot explain all observed phenomena, and clearly
there must be new physics to uncover. At some level of precision, new physics effects
must enter standard model predictions, and present themselves as discrepancies
between observation and theory. Finding such clues at the precision frontier will
provide valuable input on the advancement of our theoretical understanding of
nature.

We see intriguing tensions between theoretical expectations and collider experiments
for semileptonic heavy-light decays. The expected unitarity of the
Cabbibo-Kobayashi-Maskawa (CKM) matrix is in tension with a combination of
theoretical calculations and experimental evidence at a 3σ level for the first row of the
matrix, and a similar 2− 3σ discrepancy is present between determinations of the
|Vub|matrix element from exclusive B→ π`ν decays and inclusive B→ Xu`ν decays.
Investigating CKM matrix elements such as |Vub| requires the theoretical calculation of
QCD form factors, which must be calculated non-perturbatively in the low energy
regime of QCD, in combination with observations of decay rates from the B-factories
and LHCb.

Here we present our work on determining the standard model QCD form factors for
B→ π`ν and Bs → K`ν using the non-perturbative lattice QCD technique. Our
calculations of these quantities are more precise than a previous 2015 determination
currently used in theoretical averages, and by updating these results we anticipate a
corresponding increase in precision in these averages. In addition, we investigate a
modification to standard lepton flavour universality ratios, which we demonstrate to
provide more precise predictions. We suggest that these ratios may be used as an
additional way to monitor lepton flavour universality.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a spectacularly successful theory of the
fundamental mechanics of nature, with no confirmed discrepancies between
experimental tests and theoretical calculation, in addition to a wealth of successfully
predicted phenomena. The SM is still however an incomplete theory, notably unable
to explain observed phenomena such as:

• The precise nature of neutrino masses and neutrino oscillations,

• The observed scale of the matter-antimatter asymmetry,

• The influence of dark matter and dark energy,

• Gravity.

There are numerous proposed extensions to the SM, with no successor yet clearly
crowned by experiment. Precision tests of SM quantities provide bounds on the form
that such extensions can take, by constraining the size of deviations from standard
model predictions, and by identifying signals of new physics that must be explained
by novel theoretical developments.

One such avenue of investigation is the unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. The magnitudes of the individual CKM matrix elements parameterise
the probability of one quark flavour decaying into another, and as a consequence of
unitarity all rows and columns of the matrix should sum in quadrature to 1. Violations
of CKM unitarity are strong indicators of unaccounted-for particles or decay paths
linked to new physics. As of 2020, a meta-analysis of existing data by the Particle Data
Group [4] finds a 3σ tension with unitarity in the first row of the CKM matrix, which
hints at new physics and warrants further investigation.

The CKM matrix element |Vub| is relevant for decays involving a b→ u transition. It
enters the first row of the CKM matrix and, as of 2020, is the least precisely determined
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matrix element [4]. It is also the element with the smallest magnitude in the first row
of the CKM matrix, which led to it historically being considered negligible in some
circumstances. This is, however, not the case — there exist prominent B-anomalies
between experiment and theory; such as a long-standing 2–3 σ discrepancy between
determinations of |Vub| from exclusive B→ π`ν and inclusive B→ Xu`ν decays,
where Xu is any charmless final state [4]. These facts make further refinements of |Vub|
and the resolution of such tensions an important direction of research.

Efforts to compute |Vub| from exclusive semileptonic decay modes require a union of
theoretical and experimental effort. The SM decay rate equations for tree-level
semileptonic B(s) decays currently feature two major sources of uncertainty - the decay
rates themselves, and quantities termed “QCD form factors” that summarise QCD
effects on the decay. The decay rates are experimentally measured at B-factories and
LHCb, whereas the QCD form factors must be determined via non-trivial theoretical
calculations.

The form factors must be calculated in the low-energy regime of QCD, where bound
quarks reside and the coupling constant becomes O(1), rendering a perturbative
expansion too difficult or simply impossible. In order to probe the
momentum-dependence of the form factors in this range, non-perturbative
approaches must be considered. A phenomenological method applicable for the more
energetic region of the low-energy regime is known as QCD sum rules [5], for which
global averages are provided by the Heavy Flavor Averaging Group [6]. For the very
low energy regime, there also exists a well-established first-principles, systematically
improvable method — a description of QCD termed “lattice QCD”, which is the
method employed in this work.

The central premise of Lattice QCD is to replace continuous space-time with a finite,
discrete lattice of space-time points equipped with a Euclidean metric. Regularising
QCD in this manner renders the path integral approach computationally tractable,
and hence accessible to simulation techniques [7]. By carefully considering the
renormalisation of the theory and phenomenology of the simulated processes, lattice
results can be extrapolated to the continuum and used to make SM predictions.

Lattice QCD for b physics comes with additional challenges. Discretisation errors on
fermions in Lattice QCD enter as several terms proceeding as powers of (mqa), with
mq the bare mass of a quark q and a the distance between lattice sites—the lattice
spacing—which are problematic for heavy quarks, where this product can easily
become O(& 1). Typical lattice spacings today fall in the 2–4 GeV−1 range due to
computational constraints, and the b quark mass in the MS scheme is determined to be
4.18+0.03

−0.02 GeV [4]; if a standard approach is employed, these parameters will lead to
uncontrolled errors on the b quark. In order to simulate b physics on the lattice,
alternative methods must be employed. Lattice QCD simulations of b-physics are
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therefore carried out with some carefully formulated technique, such as extrapolating
from simulations made with charm-like masses (as is done by the HPQCD
collaboration using Highly Improved Staggered Quarks (HISQ) [8]), or by using a
discretised effective action, such as Relativistic Heavy Quarks (RHQ) [9–11].

In this work, we present our calculations of the QCD form factors f+ and f0 for the
processes B→ π`ν and Bs → K`ν over the full allowed kinematic range. We simulate
b quarks with the Columbia formulation of the RHQ action [11], and all other quarks
with Shamir Domain-Wall fermions [12–16].

The sections of this thesis are organised as follows:

Chapter 2. First we give a brief introduction to Standard Model physics, highlighting the
origins of the CKM matrix and particular effective theories relevant for Lattice
QCD.

Chapter 3. Next we discuss how to discretise the continuum theory in order to make it
suitable for computer simulation via the Lattice QCD formalism, and why this is
both necessary and justified.

Chapter 4. In this section we discuss elements of Lattice QCD and continuum
phenomenology pertinent to B→ π`ν and Bs → K`ν decays.

Chapter 5. Next we return to the project to discuss the details of the simulation.

Chapter 6. The following section describes the analysis strategy, drawing on the
background built up in sections 2–4, and presents the results of the project.

Chapter 7. We finish by drawing conclusions about the project results and discussing the
future outlook.

My individual contributions to this project are as follows:

1. I performed the fits to extract Zbb
V in section 6.1;

2. I performed all B meson mass fits, and demonstrated the requirement for
point-point data to reliably fit the excited states in section 6.2;

3. I cross-checked the Bs, K, and π mass fits in section 6.2;

4. I performed all B→ π form factor fits and cross-checked the Bs → K fits in
section 6.3;

5. I performed the box analysis to obtain the systematic error due to the
uncertainty in the RHQ parameters in section 6.5.5;
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6. I constructed the total fit systematic and synthetic data points for B→ π, and
cross-checked these for Bs → K, in section 6.5;

7. I performed all z-fits for B→ π, and cross-checked Bs → K, in section 6.6;

8. I calculated the lepton universality ratios for B→ π, and cross-checked Bs → K,
in section 6.7.
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Chapter 2

The Standard Model

2.1 Introduction

The Standard Model is an SU(3)× SU(2)×U(1) gauge theory that describes the
quantum field theories of the strong, weak, and electromagnetic forces. As noted in
the introduction, the SM is remarkably successful. As an example, the value of the
anomalous magnetic moment of the electron is famously one of the most precise
measurements [4], predictions [17], and agreements—to around 10 significant figures,
with a discrepancy of little more than 1σ—in modern physics. Today, the only known
deviation from SM behaviour is the existence of neutrino masses. In the standard
formulation of the SM, neutrinos are chosen to be explicitly massless, and will require
the introduction of new physics to account for. The version of the SM presented here
will ignore the existence of neutrino masses for brevity.

Many elements of the Standard Model were predicted by theoretical developments
and later confirmed by experiment — what we would recognise today as a charm
quark was proposed by several individuals, including Bjorken and Glashow [18], and
was later a requirement of the Glashow–Iliopoulos–Maiani (GIM) mechanism as
published in 1970 before its eventual detection in 1974 via the J/ψ particle [19, 20]; and
a third generation of quarks was then predicted in 1973 by the development of the
Cabibbo-Kobayashi-Maskawa matrix [21, 22], which was originally proposed to
introduce CP-violation to the Standard Model and is now a cornerstone of
electroweak theory. The existence of the bottom and top quarks themselves were
experimentally confirmed in 1977 [23] and 1995 [24, 25], both at Fermilab. Electroweak
theory—generally attributed to Glashow, Salam, and Weinberg—is built on several
decades of theoretical development for the weak interaction and includes predictions
for the W± and Z bosons [26] that were experimentally confirmed in 1983 at CERN
[27, 28]. The most recent detections came in 2001, of the tau neutrino [29] and in 2012
of the Higgs boson [30, 31].



6 Chapter 2. The Standard Model

However, the Standard Model fails to provide an explanation for many other
phenomena; such as gravity, and the observed matter-antimatter asymmetry in the
universe due to an insufficient degree of CP-violation in the model. There are also a
number of tensions within the Standard Model which may or may not become
accepted violations of the SM as experimental measurements and theoretical
calculations improve, such as the ∼ 3σ tension in CKM matrix unitarity [4]. A
long-standing tension between theory and experiment for the anomalous magnetic
moment of the muon g− 2 has also historically been an exciting hint of new physics,
and as of April 2021 results from the Fermilab g− 2 experiment [32] place the tension
at 4.2σ. However, a recent Lattice QCD calculation of g− 2 from the
Budapest-Marseille-Wuppertal (BMW) collaboration [33] instead puts the tension at
2.4σ, substantially decreasing the tension between theory and experiment. The exact
status of this tension is currently unclear, but more experiments and calculations are
planned by various groups for the future.

Of particular relevance to this project are the “B-anomalies” present in lepton flavour
universality tests. Heavy-light (semi)leptonic decays are sensitive to the effects of
unknown heavy particles, which may modify the coupling of the weak bosons to
leptons. The effect of such particles would be indirectly observable as violating lepton
flavour universality — the statement that leptons couple to the weak bosons
uniformly under the SM. Presently, sizeable tensions exists for B→ D(∗)`ν and
B→ K(∗)`ν processes; the Heavy Flavour Averaging Group [6] provides an average of
experimental results [34–41] that is in tension with SM predictions [42–44] at a ∼ 3σ

level for B→ D∗`ν, and a 2.5σ discrepancy in the B+ → K+`+`− channel was
reported by LHCb in 2019 [45]. A recent 2021 result from LHCb also finds a 3.6σ

discrepancy in B0
s → φµ+µ− decays [46].

In this chapter, we begin with a general discussion of the language and features of
quantum field theories in section 2.2. The underlying physics of the Standard Model is
broken into sections on electroweak theory in section 2.3, in which we also discuss the
origin of mass and the CKM matrix; and on QCD in section 2.4, in which we also
discuss its approximate chiral symmetry—which is foundational to chiral
perturbation theory, presented in section 2.5. We finish the chapter by giving a brief
overview in section 2.6 of low-energy Standard Model physics with the heavy weak
bosons integrated out, which is highly relevant for latttice QCD calculations of
hadronic matrix elements for weak decays and flavour physics; and by introducing
the theoretical background for the semileptonic decays of interest to this project in
section 2.7. This section is largely based on the book by Peskin and Schroeder [47],
which can be consulted for a more thorough introduction to the topics presented here.
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2.2 Quantum Field Theories and Path Integral Quantisation

A modern understanding of quantum physics is primarily concerned with the
description of mathematical fields. The fields utilised in quantum field theories (QFTs)
are quantities that take some value over all space-time four-positions x. These fields
are not particles; they are highly abstract quantities that give rise to particles as
excitations of the fields. QFTs find their origin in the combination of quantum
mechanics with special relativity, which naturally gives rise to a many-body theory of
fields which accommodates particle creation and annihilation. The first phyiscal
interaction to be quantised in this manner was electromagnetism, giving rise to
quantum electrodynamics (QED). The subsequent development of theories describing
the weak and strong interactions has been outlined in the introductory section to this
chapter.

Traditionally, one begins by building a classical field theory, the fields of which are
then quantised to generate a quantum field theory. There are two main approaches to
quantising a field theory: “canonical quantisation”, following Dirac [48], where the
fields are interpreted as operators on a Fock space that satisfy specified equal-time
commutation relations; and “path-integral quantisation” following Feynman [49],
which integrates over all possible paths a particle can take, with each path weighted
by the action (up to a factor of i). The path-integral formulation is foundational to
lattice QCD, as will be discussed in chapter 3, and it will therefore be the formalism
we utilise throughout this work.

The path integral is defined for some observable O as

〈Ô〉 =
1
Z

∫
D[ψ1(x)...ψn(x)]OeiS[ψ1(x)...ψn(x)], (2.1)

where Ô is the operator for O operating on the Fock space of states, ψ1...ψn are the
fields of the theory, Z is the partition function

Z =
∫
D[ψ1(x)...ψn(x)]eiS[ψ1(x)...ψn(x)], (2.2)

and D is the integral measure, defining each path to be summed over in the integral:

D[ψ(x)] = lim
n→∞

n

∑
i

dψ(xi). (2.3)

The action S is described in terms of a Lagrangian density (abbreviated to just “the
Lagrangian”); which contains the dynamics of the theory:

S[ψ1(x)...ψn(x)] =
∫

d4xL[ψ1(x)...ψn(x)]. (2.4)

We can thus define a field theory by specifying its Lagrangian.
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The quantities 〈Ô〉 coming out of the path integral are matrix elements of the
operators Ô for the observable O. These matrix elements are interchangeably called
Green’s functions, n-point functions, correlation functions, and correlators, and are defined
as the vacuum expectation value of time-ordered products of operators

〈Ô〉 =
〈
0
∣∣ T
[
ψ̂1(x)...ψ̂n(x)

]∣∣ 0
〉

, (2.5)

where the ‘n’ in the name ‘n-point function’ refers to the number of operators in the
product, and ψ is a generic label for a field, irrespective of whether it is scalar, vector,
or fermionic. A particularly common function is the two-point function, also called
the propagator, which describes the probability of propagation between two spacetime
points: 〈

0
∣∣ T
[
ψ̂(x)ψ̂(y)

]∣∣ 0
〉

. (2.6)

Since it is relevant to the discussion of the necessity for non-perturbative methods in
QCD, it is worth taking a moment to discuss perturbation theory in terms of the path
integral. Here, perturbation theory manifests as splitting the action into a solvable
“free” part and a non-solvable “interacting” part, parameterised by some expansion
parameter g:

S = S0 + gSI . (2.7)

Without going into the details, the “free” part can then be calculated whilst the
“interacting” part can be expanded in terms of the parameter g. One finds that the
expansion parameter corresponds to the coupling strength of interacting field
theories, and since these coupling parameters are dependent on the energy scale of the
interaction—as we will note in section 2.4.1—perturbation theory is inevitably only
applicable over a certain range of energies. Unfortunately for QCD, this does not
cover the full kinematic range accessible to the decays of bound states, and in this case
we must look to non-perturbative approaches for answers instead.

2.3 Electroweak Theory

The electroweak interaction is described in the Standard Model by an SU(2)W ×U(1)Y

gauge theory, formalised in [26] as a renormalisable theory after several decades of
theoretical development. The subgroups of electroweak theory are the “weak isospin”
and “weak hypercharge” groups respectively, which are spontaneously broken to a
U(1)EM electromagnetic symmetry via the Higgs mechanism at low energies to leave a
massless photon and massive W± and Z vector bosons (which have “eaten” the three
Goldstone bosons corresponding to the broken symmetry generators).
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Since the theory carries an SU(2)W ×U(1)Y gauge symmetry, the fields of the SM
must take the following transformation laws for the SU(2)W and U(1)Y symmetries:

ψ(x)→ e
i
2 I3,ψTaθa(x)ψ(x), ψ(x)→

(
e

i
2 Yψβ(x) 0

0 e
i
2 Yψβ(x)

)
ψ(x), (2.8)

where Yψ is the weak hypercharge of the field ψ, Iψ is the weak isospin of ψ, and Ta are
the three generators of SU(2)W, which bear the relation

Ta =
σa

2
(2.9)

where σa are the Pauli matrices. Naturally, for fields that do not interact with the
electroweak force, these transformation rules are an identity transformation since
I3 = 0, Y = 0.

The minimally coupled electroweak covariant derivative therefore takes the form

Dµψ(x) = ∂µψ(x)− igW I3,ψTaWa
µψ(x)− i

2
gYYBµψ(x), (2.10)

where ψ is some SM field, gW is the SU(2)W weak isospin coupling, gY is the weak
hypercharge coupling, I is the weak isospin of ψ , and Y is the weak hypercharge of ψ,
Wa are the gauge fields of the three SU(2)W bosons, and B is the gauge field of the
U(1)Y boson. The lack of direct interactions between the Wa and B fields is guaranteed
by the fact that the generators of their gauge groups commute, i.e.

[Ta, Y] = 0. (2.11)

The weak isospin of a field is given by the SU(2)W representation the field is part of,
and the weak hypercharges of the fields are determined by choosing values such that
gauge anomalies in the theory vanish. For brevity, we will skip the calculation of the
hypercharges and refer to [47], which we shall directly quote the values from;
although here we use a convention where the weak hypercharges are twice the value
of those quoted in [47]. Table 2.1 summarises the values of weak isospin and weak
hypercharge which we will use in the proceeding sections.

The electroweak Lagrangian can be arranged as

LEW = LGauge + LFermions + LHiggs + LYukawa, (2.12)

with each of the four terms representing some thematic component of the theory. We
shall now visit each of these terms in series, before discussing the Higgs mechanism
and the effects it has on the fields of the Lagrangian.
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Field I3 Y Q
ve, vµ, vτ +1/2 -1 0
eL, µL, τL -1/2 -1 -1
eR, µR, τR 0 -2 -1
uL, cL, tL +1/2 +1/3 +2/3
dL, sL, bL -1/2 +1/3 -1/3
uR, cR, tR 0 +4/3 +2/3
dR, sR, bR 0 +2/3 -1/3

W± ±1 0 ±1
Z 0 0 0
γ 0 0 0
h -1/2 1 0

TABLE 2.1: The weak isospin eigenvalue (I3), weak hypercharge (Y), and electromag-
netic quantum number (Q) for the fields that enter the spontaneously-broken elec-
troweak Lagrangian. The electromagnetic quantum number is related to weak isospin

and weak hypercharge by Q = I3 + Y/2.

2.3.1 Gauge Term

The Gauge component describes the propagators and interactions of four gauge
bosons of the theory,

LGauge = −1
4

Wa
µνWaµν − 1

4
BµνBµν (2.13)

where Wa
µν is the field strength tensor that corresponds to the SU(2)W symmetry, with

a running over the three SU(2)W gauge bosons; and Bµν is the field strength tensor
corresponding to the U(1)Y symmetry.
Bµν is defined by

Bµν = ∂µBν − ∂νBµ (2.14)

where Bµ is the gauge field of the B boson. This contains only propagator terms, and
thus there are no self-interactions of the B boson, as expected from an Abelian gauge
group.

The field strength tensor of the non-Abelian SU(2)W group, however, does include
interactions terms between the three W fields:

Wa
µν = ∂µWa

ν − ∂νWaµ + igWεabc
[
Wb, Wc

]
. (2.15)

The W1, W2, and W3 bosons live in the adjoint representation of SU(2)W, and as such
form an SU(2)W-triplet and carry the weak isospins +1, 0, and -1 respectively. The four
electroweak bosons all carry a 0 weak hypercharge.
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2.3.2 Fermionic Term

The fermion fields and their couplings to the gauge bosons are described by the
fermionic part of the electroweak Lagrangian. The Lagrangian reads:

LFermions = iQ̄j /DQj + iūj /Duj + id̄j /Ddj
︸ ︷︷ ︸

Quarks

+ iL̄j /DLj + iēj /Dej
︸ ︷︷ ︸

Leptons

(2.16)

The quark component of the Lagrangian is split into three components. The Qj fields
are left-handed SU(2)W-doublets:

Qi =

((
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

))
, (2.17)

and the ui and di are right-handed SU(2)W-singlets:

ui = (u, c, t); di = (d, s, b). (2.18)

The Li fields are left-handed SU(2)W-doublets of electrons and neutrinos:

Li =

((
νe

eL

)
,

(
νµ

µL

)
,

(
ντ

τL

))
, (2.19)

and the ei are right-handed SU(2)W-singlets:

ei = (eR, µR, τR). (2.20)

Notably, there are no right-handed neutrinos in the SM, although right-handed
neutrinos are hypothesised as “Sterile Neutrinos” that do not interact via the
fundamental interactions of the SM, as a possible source of neutrino masses.
Given that the right-handed components of the fermions are SU(2)W-singlets and thus
take I = 0; the covariant derivative for right-handed fields has a zero SU(2)W term,
whereas the left-handed fields live in the fundamental representation of SU(2)W and
carry the weak isospins +1/2 and -1/2:

DµL = ∂µL− i
2

gW TaWa
µL− i

2
gYYLBµL, (2.21)

DµR = ∂µR− i
2

gYYRBµR, (2.22)

where DµL is the action of the covariant derivative on left-handed SU(2)W-doublets
and DµR is that for right-handed SU(2)W-singlets.
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2.3.3 Higgs and Yukawa Terms

The Higgs part of the Lagrangian describes the Higgs propagator and the coupling of
the Higgs and electroweak boson fields. It is given by

LHiggs = |Dµφ|2 − µ2|φ|2 − λ

2
(|φ|2)2 (2.23)

where µ2 is the mass of the Higgs field, λ is the coefficient of the quartic potential
term, and φ is a scalar SU(2)W-doublet termed the Higgs field, and given by

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (2.24)

The Higgs field lives in the fundamental representation of SU(2)W and hence φ+ and
φ0 have weak isospins of +1/2 and -1/2 respectively. The covariant derivative is again
given by (2.10).

The Yukawa term couples the Higgs field to the fermions, and is given by

LYukawa = Yij
L L̄iφej + Yij

d Q̄iφdj + Yij
u Q̄iφ†uj + h.c., (2.25)

where the Yij are Yukawa couplings for the generations i and j, which are complex
matrices that are not necessarily symmetric or Hermitian [47].

Thus far, we have described a theory of long-ranged weak-isospin and
weak-hypercharge interactions between massless fermions, mediated by four massless
gauge bosons. This, however, is not what we observe in nature — we see a weak force
that is a short-ranged interaction mediated by massive bosons, and an electromagnetic
force that is long-ranged and mediated by a massless boson, all of which interact with
massive fermion fields. The connection between these pictures is elucidated by
considering the µ2φ2 mass term in the Higgs sector, which via a change-of-variables in
the Higgs field termed spontaneous symmetry breaking introduces gauge-invariant mass
terms to the theory, driven by the Higgs and Yukawa sectors [50–52]. We will outline
this process, and its consequences, in section 2.3.4.

2.3.4 Electroweak Symmetry Breaking

Consider the Higgs potential [50–52],

VHiggs = µ2|φ|2 +
λ

2
|φ|4 (2.26)
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Taking the derivative with respect to |φ|2, we see that the potential has a minimum at

|φ| =
(−µ2

λ

)1/2

, (2.27)

and taking the second derivative gives us the requirement for this to be a minimum of
the potential:

λ > 0. (2.28)

The coefficient of the quartic term λ must necessarily be positive, else the potential has
no minimum and is thus unphysical. We will label the value given by (2.27) with v
and identify this as the vacuum expectation value of φ.

Armed with this information, let us now examine the µ2 parameter of (2.27). For a
positive µ2, we get a parabolic potential since the quadratic and quartic computents of
the potential sum to some value ≥ 0. In this regime, the Higgs field has a zero vacuum
expectation value and the fields of the Standard Model remain massless. However, if
we allow µ2 to become negative, the now negative quadratic term begins to compete
with the quartic term and we find that the potential falls to some minimum negative
energy given by (2.27), before becoming dominated by the quartic term. The vacuum
state of the Higgs field therefore acquires a non-zero expectation value, and becomes
degenerate under the SU(2)W gauge symmetry. The Higgs field must, however,
choose one of these states to exist in — and since they are all equivalent, the field can
fall into any under some particular infinitesimal perturbation. Although the
Lagrangian retains full SU(2)W ×U(1)Y symmetry when this occurs, making this
choice spontaneously breaks the SU(2)W gauge symmetry of the vacuum state.

This non-zero expectation value requires us to re-parameterise the Higgs field in such
a way that we can expand the field around a null expectation value. In order to make
this simple, we can pull out an SU(2)W rotation from the Higgs doublet defined in
(2.24)

φ(x) = ei σa
2 θa(x) 1√

2

(
0

v + h(x)

)
(2.29)

with 〈h〉 = 0. Note that the Higgs field in (2.29) has been redefined as the product of
some SU(2)W doublet and a gauge transform. We are perfectly free to fix this gauge,
and we will make the choice θa = 0, also known as the unitary gauge.

Note also that we have now aligned the vacuum expectation value of the Higgs field
without loss of generality with the vector

〈φ〉 =
1√
2

(
0
v

)
(2.30)

thanks to SU(2)W-invariance in the Lagrangian.
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To see what effects the acquisition of a non-zero vacuum expectation value has on
electroweak theory, we can insert the unitary gauge-fixed (2.29) into (2.23).

2.3.5 Gauge Boson Masses

We can first study what happens to the electroweak bosons by looking at the terms
quadratic in these fields alone:

Quad. =

∣∣∣∣∣

(
∂µ −

i
2

gW TaWa
µ −

i
2

YφBµ

)
1√
2

(
0
v

)∣∣∣∣∣

2

(2.31)

= −v2

8

∣∣∣∣∣∣

(
gWW3 + gYB gW(W1 − iW2)

gW(W1 + iW2) gYB− gWW3

)

µ

(
0
1

)∣∣∣∣∣∣

2

(2.32)

= −v2

8

(
g2

W

(
(W1

µ)2 + (W2
µ)2
)

+
(

gWW3
µ − gYBµ

)2
)

(2.33)

Noting the difference of two squares in the first term in (2.33), we can simplify this
expression by making the substitutions

W±µ = W1
µ ∓ iW2

µ (2.34)

Zµ =
1√

g2
W + g2

Y

(
gWW3

µ − gYBµ

)
(2.35)

Which gives us the result

− v2

8

(
g2

WWµ+W−µ + (g2
W + g2

Y)ZµZµ)2
)

, (2.36)

which looks like mass terms for these newly-defined W+, W−, and Z fields:

− m2
W

2
Wµ+W−µ −

m2
Z

2
ZµZµ, (2.37)

so we can identify the masses

mW =
vgW

2
, mZ =

v
√

g2
W + g2

Y

2
. (2.38)

We can see that the vacuum expectation value of the Higgs field leads to three massive
degrees of freedom in the theory: W+, W−, and Z bosons, which makes the weak
interaction they mediate short-ranged. We are still missing the fourth degree of
freedom in this new basis; we can identify this by normalising the remaining field in
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(2.32), which did not gain a mass term in (2.33):

Aµ =
1√

g2
W + g2

Y

(gWW3 + gYB) (2.39)

We can use this new basis for the fields to re-write the covariant derivative in terms of
our new fields,

Dµ = ∂µ− i
g√
2

(T+W+
µ + T−W−µ )− i

1√
g2

W + g2
Y

Zµ(g2
W I3− g2

YY)− i
gW gY√
g2

W + g2
Y

Aµ

(
I3 +

Y
2

)
,

(2.40)
where T± = 1

2 (σ1 ± σ2) = σ±, and I3 is the eigenvalue of the third component of the
weak isospin. The massless Aµ field is a product of the surviving U(1) symmetry of
the vacuum state, which observes the new gauge symmetry of the vacuum U(1)EM.
As implied by the subscript, we identify this as the photon field, and can therefore
read from the covariant derivative that

e =
gW gY√
g2

W + g2
Y

, Q = I3 +
Y
2

, (2.41)

where e is the electric charge and Q is the electric charge quantum number; here we
now see the origin of the relation between weak isospin and electic charge alluded to
in table 2.1.

By introducing the Higgs mechanism, we have a functional theory of the weak and
electromagnetic forces that reconciles the necessary symmetries with observed masses
of the weak bosons. Next, we shall see that the Higgs mechanism also generates the
masses of the fermion fields.

2.3.6 Fermion Masses and the CKM Matrix

After electroweak symmetry breaking, the Yukawa Lagrangian becomes [47]

LYukawa = −vYij
L ēi
(

1 +
h(x)

v

)
ej − vYij

d d̄i
(

1 +
h(x)

v

)
dj − vYij

u ūi
(

1 +
h(x)

v

)
uj + h.c.

(2.42)
where we have used our definition of the Higgs field in the broken symmetry regime,

φ =

(
0

v + h(x)

)
; φ† =

(
v + h(x)

0

)
(2.43)

and taken the appropriate dot product between the left-handed SU(2)W-doublets and
the Higgs field. We have obtained some interaction terms with the Higgs, and also
some terms that look suspiciously like mass terms, if not for the Yukawa coupling
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matrices—as we noted previously, there is absolutely no requirement for the Yukawa
couplings to be diagonal, although they are for the electron fields [47]. We therefore
have some distinction to draw in this framework for the quark fields; the quark mass
eigenstates that we are used to do not participate in the weak interaction in some
simple way, and the physics is more mathematically amenable when these fields are
packaged into a weak basis—alternatively called weak eigenstates—as in (2.42). We can
diagonalise the Yukawa coupling matrices to find the mass eigenstates; the
diagonalisation allows us to multiply out the matrix with the fermion fields into a sum
of terms without mixing between the fermion flavours, each acting as a mass term.

There should be a unitary transform between the mass and weak eigenstates in order
to maintain the normalisation of the theory, and it is a property of Hermitian matrices
that they are diagonalisable with unitary matrices. We should therefore seek to
diagonalise the products YqY†

q and Y†
q Yq, which are necessarily Hermitian by

construction:
YqY†

q = Uq M2
qU†

q ; Y†
q Yq = Wq M2

qW†
q (2.44)

where M is the diagonalised mass matrix, which we can relate to the Yukawa
couplings as [47]

Yq = Uq MqW†
q , (2.45)

where Uq and Wq are necessarily unitary, following the prior discussion. Replacing the
Yukawa couplings with this parameterisation, we can therefore obtain the
transformation rules between the mass and weak eigenstates

qi
R = W ij

q q̃j
R, qi

L = Uij
q q̃j

L, (2.46)

where q̃i
L/R are the mass eigenstates. We therefore identify the quark masses as

mi
q =

1√
2

Mii
q v. (2.47)

The discussion is not over at this point, however. We find that the mass matrices for
up-type and down-type quarks are not simultaneously diagonalisable; i.e. Uu 6= Ud.
This has serious implications for interaction terms involving both the up-type and
down-type quarks—terms that also involve a W± boson. These interaction terms for
the W+ take the shape [47]

1
2

ūi
Lγµdi

L, (2.48)

which in the mass eigenbasis looks like

1
2

¯̃ui
L(U†

uUd)ijγµd̃i
L. (2.49)

Since Uq are individually unitary, the product (U†
uUd)ij is also unitary; given that this

product appears in terms involving flavour-changing interactions, the elements of this
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matrix seem to act like the roots of transition probabilities between the flavours in ui

and di. We call this matrix the Cabibbo-Kobayashi-Maskawa (CKM) matrix, with the
definition

VCKM = U†
uUd =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (2.50)

We see that whenever a W+ boson enters an interaction, it brings with it a factor VCKM.
Conversely, the entry of a W− boson brings a factor of V∗CKM. Since every W±

interaction brings this matrix with it, it is universal feature of flavour-changing
charged currents; at least one matrix element should therefore enter every interaction
that involves a change in quark flavour. Every decay should consistently feature the
same values for the relevant entries of this matrix—this is a very strong constraint on
the physics of the Standard Model and is a prime candidate for testing. The fact that
this matrix is required to be unitary by definition constrains the possible values even
further, and testing the unitarity of the CKM matrix is a principal direction of research
today. The project presented in this thesis is one such contribution to this body of
work.

In fact, we can form stronger constraints on the CKM matrix than those discussed
already. The CKM matrix only has four independent parameters; we can absorb five
into the quark fields (the sixth parameter that might be expected to also disappear
must remain as an overall phase). There are many possible parameterisations; the
“Standard” parameterisation is of three real mixing angles (θ12, θ13, θ23)and one
CP-violating complex phase (δ13). The CKM matrix in terms of these parameters reads

VCKM =




c12c13 s12c13 s13eiδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13


 , (2.51)

where cab = cos(θab) and sab = sin(θab). The complex phase δ13 is the only source of
CP-violation in the Standard Model — CP-violation is theoretically also allowed in the
quark-flavour sector but experimentally non-existent, which we will briefly outline
when mentioning the Strong CP problem in section 2.4.2. It is important to note that
there is no CP-violation in the case of a two-generation model of quarks, as is the case
in the predecessor to the CKM matrix, the Cabibbo matrix [21]. Indeed, the motivation
for extending the Cabibbo matrix by including a third generation of quarks in the
Standard Model was expressly for the purpose of introducing a mechanism for
CP-violation [22].

The sizes of the CKM matrix elements are strongly hierarchical, with the largest values
along the principal diagonal of the CKM matrix, smaller entries on the first sub- and
super-diagonals, and the remaining two elements being the smallest. This hierarchy is
not immediately apparent in the “Standard” parameterisation, but an alternative
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“Wolfenstein” parameterision [53]—useful for analytical approximations of the CKM
matrix elements—makes this hierarchy explicit. The four Wolfenstein parameters are
related to the “Standard” parameters by

λ = s12, A = s23/s2
12

ρ = Re

(
s13eiδ13

s12s13

)
η = Im

(
s13eiδ13

s12s13

)

where the quantities

s12 = λ s23 = Aλ2 s13eiδ13 = Aλ3(ρ− iη)

are used to re-express the CKM matrix elements, to O(λ4), as

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 . (2.52)

The Wolfenstein parameters are all O(1) [4],

λ = 0.22653(48) A = 0.799+0.027
−0.028 ρ = 0.141+0.016

−0.017 η = 0.357± 0.011,

where ρ̄ = ρ(1− λ2/2 + ...) and η̄ = η(1− λ2/2 + ...), and the hierarchy of the CKM
matrix elements manifests via the leading-order term in λ for each element.

To finish off, we will also note that the existence of neutrino masses requires
additional terms in the Yukawa Lagrangian, which culminates in the introduction of
an analogous matrix to the CKM matrix for neutrinos called the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, needed to describe neutrino
oscillations [54, 55].

2.4 QCD

In this section, we will describe QCD largely in isolation from electroweak theory in
order to keep the discussion focused. We will make reference to electroweak theory
where appropriate, however.

Quantum Chromodynamics (QCD) is the quantum theory of the strong force, which
binds quarks together into composite particles (and provides the majority of the mass
for these composite states). It is an SU(3) gauge theory of quark-gluon interactions.
The QCD Lagrangian takes the form [47]

LQCD = −1
4

Gµν,aGa
µν + ψ̄i(i /D− 1

2
m2

ψ)ψi, (2.53)
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where roman indices are “colour indices” spanning the SU(3) representation of the
given object, the quark fields ψ are in the fundamental (triplet) representation of
SU(3), forming “colour triplets”; and Dµ is the QCD covariant derivative

Dµψ(x) = ∂µψ(x) + igSTa Aa
µ, (2.54)

where gS is the QCD coupling, Ta are the generators of SU(3) and Aa
µ are the gluon

fields, which enter the field strength tensor

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ + igS f abc Ab Ac, (2.55)

where f abc are the SU(3) structure constants. The gluon fields live in the adjoint (octet)
representation of SU(3), and in the trivial (singlet) representation of the electroweak
symmetries. As with SU(2)W, the non-Abelian property of SU(3) introduces
self-interaction terms between the gluons. By inspection, we can find three-gluon and
four-gluon self-interaction terms in the Lagrangian, in addition to interaction terms
involving two quarks and a gluon via the expansion of the covariant derivative.
Although the fermion fields have a built-in mass term, there is no such term for the
gluons, since it would not be SU(3)-invariant.

2.4.1 Confinement and Asymptotic Freedom

Roman indices in (2.53) indicate a “colour index”, which takes 3 values for the quarks
and 8 for the gluons. We call the three quark values “red”, “green”, and “blue”, and
anti-quarks carry “negatives” of these values we term “antired”, “antigreen”, and
“antiblue”. We can also define the gluon colour charges in terms of the quark charges
via the construction of the adjoint representation, but there is not a unique way of
doing this.

A curious property of colour-charged particles is that they exhibit a behaviour known
as colour confinement, where at energies below the confinement scale λConfinement ∼ 300
MeV [4] it is energetically favourable to form colour-neutral bound states. These
bound states are termed hadrons. Colour-neutrality is achieved by grouping colour
charges in red-green-blue triplets, or by pairing a colour with its anticolour. The
colourless three-quark bound state is known as a baryon, and the colourless
quark-antiquark pairs are known as mesons. These are not the only possible solutions;
the first confirmed detection of a tetraquark state (composed of two quarks and two
antiquarks) came in 2013 [56], and the first confirmed pentaquark state (comprising
four quarks and an antiquark) was announced in 2015 [57], after an unreproducible
2003 result from LEPS. Colourless gluonic bound states, identified by various names
such as glueballs, are also predicted by the Standard Model. In 2021, the discovery of a
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three-gluon vector state was claimed by the TOTEM [58] and DØ [59, 60] experiments,
following a joint analysis.

Colour confinement itself is a topic of great interest; it has no first-principles
quantitative explanation and deep connections to other aspects of QCD. The fact that
there is no first-principles explanation is rooted in the running of its coupling, gS, with
the energy scale. As described in detail in [61], the coupling strength of QCD
decreases with an increasing energy scale. This means that at sufficiently low
energies—or equivalently, sufficiently long distances—the theory becomes strongly
coupled as gs & 1. This strong-coupling regime overlaps with the confinement scale,
and renders a perturbative description of confinement inaccessible. Confinement is, at
least, an emergent property of lattice QCD—a well-established non-perturbative
description of QCD utilised by the project presented in this thesis—but this is
insufficient for an analytic proof of confinement.

Confinement is also related to the mass gap problem in Yang-Mills theories. For QCD
to exhibit a mass gap—i.e., for there to exist no massless degrees of freedom
orthogonal to the vacuum state—there can be no freely-propagating massless states.
For 3 colour states, this implies that the gauge symmetry of QCD must be SU(3),
rather than U(3), since U(3) Yang-Mills theory acts like SU(3) with an additional,
non-interacting gluon. A singlet gluon state such as this would be freely-propagating,
and result in no mass gap for QCD. The requirement of a mass gap for an interacting
quantum Yang-Mills theory such as QCD has not been mathematically proven, and as
such the role of confinement is highly relevant to the nature of the QCD gauge
symmetry.

A second important feature of QCD is seen at high energies. As found in 1973 by
Gross and Wilczek [62], and by Politzer [63], the coupling constant gS decreases
logarithmically with the energy scale — this is to say, the coupling constant
asymptotically approaches 0 as µ→ ∞. This behaviour is known as “asymptotic
freedom” — the theory approaches the non-interacting limit as the energy scale
increases. This avoids the existence of a pole at µ→ ∞, and as such there are no
obvious reasons why QCD should not be consistent at all energy scales µ. This is in
contrast to QED, which does exhibit such a “Landau pole”; the resolution of the
implied consistency problem is of great importance in quantum field theory.

2.4.2 Strong CP Problem

The QCD Lagrangian contains another term we have thus far omitted from (2.53) that
removes unphysical dynamics resulting from a U(1)A axial symmetry of the
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Lagrangian [64], which can be expressed in the form

3g2
Sθ

32π2 Gµν,aGa
µν, (2.56)

where θ is a CP-violating “vacuum angle”. This is a physically allowable second
source of CP violation in the Standard Model, in addition to the CKM matrix
discussed in section 2.3.6. However, experimental measurements of θ strongly
constrain its value to zero [4]. There is no explanation for this in the Standard Model,
and so this apparent coincidence is named the “Strong CP Problem”. It is one more
unresolved mystery in the Standard Model that is hoped to be explained by a
successor theory. An SM extension known as Peccei-Quinn theory [65] is a popular
proposed solution to the Strong CP Problem, which takes θ as an “axion field” rather
than a “vacuum angle”. Wilczek and Weinberg independently showed that the
existence of this field introduces a new boson, the “axion” [66, 67], which also turns
out to be a viable dark matter candidate [68]. Searches for the wide variety of axions
proposed in the wake of Peccei-Quinn theory [68] are therefore highly important to
the modern understanding of both QCD and cosmology.

Irrespective of the grand theoretical implications of this term, since experiment finds it
to be negligible it is generally omitted from SM calculations; we similarly ignore this
term in our Lattice QCD computations.

2.4.3 Quark Bilinears

As we have previously stated, the primary degrees of freedom in the confinement
regime of QCD are quark bilinears. The symmetries of QCD require us to consider the
existence of some transformation matrix Γ entering these bilinears, ψ̄Γψ. There are 16
possible elements of this structure, which can be grouped into five bilinears shown in
table 2.2 [47]. The structures transform differently under the Lorentz symmetry; the
pseudo-scalars and pseudo-vectors transform similarly to the scalars and vectors
respectively but pick up an additional minus sign. We can create or destroy particles
with the desired quantum numbers by choosing the appropriate bilinear; for this
project, we deal only the pseudo-scalar particles, but vector currents taking the form
of a vector bilinear are also present in order to implement the weak interaction.

2.4.4 Approximate Chiral Symmetry

The Particle Data Group currently reports the MS-scheme masses of the up, down,
and strange quarks as mu = 2.16+0.49

−0.26 MeV, md = 4.67+0.48
−0.17 MeV, and ms = 93+11

−5 MeV
respectively [4]. These masses are well below the characteristic scale of quark
confinement in the MS renormalisation scheme, ΛConfinement ∼ 300 MeV [4]. At this
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Structure Components Transformation
1 1 Scalar

γµ 4 Vector
σµν = 1

2 [γµ, γν] 6 Tensor
γµγ5 4 Pseudo-vector

γ5 1 Pseudo-scalar

TABLE 2.2: Quark bilinears of QCD.

energy scale, bound states of quarks become more useful degrees of freedom than the
quarks themselves. Chiral perturbation theory is an effective theory of bound states of
the pseudo-Nambu-Goldstone bosons of chiral symmetry breaking at low energies,
which is discussed in section 2.5. Chiral perturbation theory is also foundational to
heavy meson chiral pertubation theory, in which B and Bs mesons can be introduced as
“matter fields” under the surviving SU(3)V flavour symmetry, as we describe in
section 4.2.1. We use this heavy meson extension to parameterise the physical limit of
the B(s) decay simulations that constitute the main body of this thesis.

We can gain some insights into the behaviour of QCD by looking at the chiral limits
mu,d → 0 and mu,d,s → 0. The light-quark Lagrangian (which describes the up and
down quarks) takes the overall symmetry SU(2)L × SU(2)R ×U(1)V ×U(1)A. The
axial U(1)A symmetry is anomalous and is not a symmetry of QCD since it changes
the measure in the path integral [47, 69], and the U(1)V symmetry results in the
conservation of baryon number. Interactions between the quarks and gluons of QCD
lead the quark bilinears of (u, d) to acquire vacuum expectation values, which
spontaneously breaks the chiral symmetry SU(2)L × SU(2)R to the flavour symmetry
SU(2)V, which we term isospin. Under this symmetry, the massless up and down
quarks form a doublet:

Q =

(
u
d

)
. (2.57)

This also breaks the three generators of the doublet representation of SU(2)L × SU(2)R

to three massless Nambu-Goldstone bosons via Goldstone’s Theorem [70]. Outside of
the chiral limit, this symmetry is also explicitly broken by the non-zero quark masses;
this instead generates three massive Nambu-Goldstone bosons, also termed
pseudo-Nambu-Goldstone bosons. These three bosons are the π± and π0 mesons. The
differing electromagnetic charges of the up and down quarks provide an additional
source of explicit chiral symmetry breaking and hence contribute to the mesonic
masses, but at this energy scale the relative coupling strengths of the strong and
electromagnetic forces implies that the amount of symmetry breaking due to
electromagnetic effects is small compared to the strong force:

O
(

αEM

αS

)
∼ O(1/137) < 1%. (2.58)
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This is generally below the statistical error of current lattice QCD simulations,
including the ones presented in this document; and thus electromagnetic effects will
not be discussed further. We note, however, that some lattice QCD calculations have
now reached the level of precision at which both QED effects and isospin-breaking in
the quark masses must be considered. We will instead accept this as a systematic error
on the simulation results given that these effects are unresolvable for our purposes.
For numerical reasons it is however useful to work in the isospin limit where the up
and down quarks have the same, non-zero mass; this is discussed further in chapter 5.

The strange quark is also sufficiently light to be considered massless in the chiral limit
to a good approximation; in this instance we take (mu,d,s) = 0 which endows the
Lagrangian for the up, down, and strange quarks with an
SU(3)L × SU(3)R ×U(1)V ×U(1)A symmetry. The U(1)V and U(1)A are interpreted
identically to the case with just the massless up and down quark, and we also have the
SU(3)L × SU(3)R symmetry spontaneously break to an SU(3)V flavour symmetry.
Since we are now in the triplet representation of SU(3)V, there are eight generators
that are broken, generating the π±, π0, K±, K0, K̄0, and η mesons. The explicit breaking
of the chiral symmetry due to the mass and charge of the quarks is once again
responsible for giving these mesons masses under the approximate chiral symmetry of
QCD. The origin of these mesons as pseudo-Nambu-Goldstone bosons provides an
explanation for the unusually small masses of these mesons compared to other
hadrons.

2.5 Chiral Perturbation Theory

As noted in section 2.4.4, at energies below ∼ 300 MeV the primary degrees of
freedom of light quarks in QCD are bound states. We saw that the approximate chiral
symmetry of the QCD Lagrangian for the three lightest quarks generates eight
massive degrees of freedom, described by the meson octet π±, π0, K±, K0, K̄0, and η.
Chiral perturbation theory [71, 72] gives us a language to describe these mesons in a
perturbative manner, at the energy scale where individual quark fields are inaccessible
to perturbation theory. As will be discussed in chapter 3, lattice QCD simulations are
typically conducted at unphysical quark masses for computational efficiency; chiral
perturbation theory tells us how chiral symmetry constrains the dependence of the
masses and matrix elements of the of the eight pseudo-Nambu-Goldstone bosons on
the quark (or pion) masses, providing us with fit functions for chiral extrapolations. It
is worth noting that since the mass of the strange quark is significantly greater than
the mass of the up and down quarks, an effective theory of just the up and down
quarks should be more accurate than one that also approximates the strange as
obeying a chiral symmetry. However, since such a theory only describes pion states,
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the addition of the strange is necessary for the description of kaon states. If the kaon
states can be ignored, then SU(2) chiral perturbation theory is a sufficient description.

Chiral perturbation theory describes the octet field

Π =




π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6


 , (2.59)

which obeys the chiral symmetry SU(3)V. The effective Lagrangian is written in terms
of the unitary field

Σ = exp
(

2iΠ
f

)
, (2.60)

where f is the pion decay constant.

2.6 Weak Decay Effective Hamiltonians

The characteristic scale of QCD for three light quark flavours is ΛQCD ∼ O(200 MeV),
which describes the point at which perturbation theory begins to fail and
non-perturbative techniques must be used. The mass of the W± bosons are
∼ 80.3 GeV [4]; the distance traversed by the W± from the perspective of ΛQCD is
exceptionally small. Moreover, current Lattice QCD scales can typically resolve
masses up to 2-4 GeV; the W± bosons are simply too heavy to simulate on the lattice.
For these reasons, lattice QCD (and other low-energy descriptions) employs an
effective Hamiltonian that “integrates out” the W±, Z, and top quarks, treating
flavour-changing charged interactions as point-like contact terms [73]. Such an
approximation is also known as Fermi effective theory, given its relation to Fermi’s
theory of the weak interaction that preceded the notion of massive bosons and
electroweak theory.

To first order, the effective Hamiltonian from the operator product expansion [74–76] is

Heff =
GF

2 ∑
n

V(n)
CKMC(n)(µ)O(n)(µ), (2.61)

where GF is Fermi’s constant, V(n)
CKM are elements of the CKM matrix, C(n)(µ) are

“Wilson Coefficients” that are a function of the renormalisation scale µ� ΛQCD and
describe the influence of factors above this scale, and O(n)(µ) are local operators
implementing the flavour-changing contact term. The Wilson coefficients are
process-agnostic; they are also calculable in perturbation theory thanks to the
requirement that the renormalisation scale is well above ΛQCD.
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2.7 Semileptonic Decays

2.7.1 Decay Equations

The processes studied in this project are B→ π`ν and Bs → K`ν semileptonic decays,
and so we should at this point discuss the phenomenology of semileptonic decays in
the SM. The tree-level differential decay rate equations—neglecting electromagnetic
effects—for both processes follow the same shape:

dΓ(B(s) → P`ν)

dq2 =
G2

F|Vub|2
24π3

(q2 −m2
`)

2
√

E2
P −M2

P

q4MB(s)
×

[(
1 +

m2
`

2q2

)
M2

B(s)
(E2

P −M2
P)
∣∣ f+(q2)

∣∣2 +
3m2

`

8q2

(
M2

B(s)
−M2

P

)2 ∣∣ f0(q2)
∣∣2
]

, (2.62)

where B(s) is the B or Bs meson, P is either the K or π final state, q is the momentum
transfer from the initial state to the W± boson, GF is Fermi’s constant, and f+ & f0 are
semileptonic form factors for the particular decay mode.

Most quantities in (2.62) are known to a good precision, with averages provided by
the Particle Data Group [4] and the Flavour Lattice Averaging Group [77]. Four
quantities remain that require particular attention. These are the differential decay
rate, which is measured at LHCb and b-factories; |Vub|, the CKM matrix element
which is a primary target of this study; and the two QCD form factors f+ and f0. The
form factors are low-energy quantities that summarise the effect of QCD on the decay
rate of one meson into another, and must be computed non-perturbatively. Lattice
QCD can be applied to compute these form factors; determining the implied value of
|Vub| is then possible by inserting these numbers into (2.62) along with the latest
averages for the decay rate from experiment.

Since the CKM matrix should be unitary—as seen in section 2.3.6—the determination
of |Vub| should, when added in quadrature with the remaining elements of the
appropriate row or column of the CKM matrix, sum to 1. A deviation from this
quantity is a strong indicator of new physics, and by decreasing the error on both the
form factors and the differential decay rate we may see such a deviation emerge from
the statistics. As mentioned in chapter 1, there are several tensions involving |Vub|—
and at present, |Vub| is the least precisely determined matrix element.

The 2–3σ tension between |Vub| determinations from inclusive and exclusive
semileptonic decay modes has, at the time of writing, stood for over a decade. The
2021 FLAG report gives an average for the exclusive determination at
|Vub|excl. = 3.74(17)× 10−3 [77]—a change from |Vub|excl. = 3.43(14)× 10−3 in the 2019
report [78]—and the PDG gives value of |Vub|incl. = 4.49(28)× 10−3 for the inclusive
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W−
ν

u

u/d/s

FIGURE 2.1: The tree-level Feynman diagram of B(s) → P`ν decays. The CKM matrix
element |Vub| enters at the quark-W interaction vertex. The hadronic part of this dia-
gram is a three-point function of three quark propagators, which can be decomposed

in terms of QCD form factors.

mode [4]. Moreover, an alternative determination from leptonic decay modes sits at
|Vub|lep. = 4.03(37)(3)× 10−3 [4]; close to halfway between the two semileptonic
results and statistically compatible with both. Further muddying the picture is a
recent analysis from the Belle collaboration, |Vub|excl. = 4.10(09)(22)(15)× 10−3 [79], a
mere 1.3σ above the semileptonic result. Although more recent results appear to be
converging, more work must be done to ensure that the tension is decreasing. As
such, future developments on the horizon will provide more input on |Vub|. Aside
from the programme of steadily improving lattice QCD results, the Belle-II experiment
continues to study B decays, and is expected to have a lifetime production of 50 ab of
collision data [80].

2.7.2 Form factor definitions

The QCD form factors in (2.62) enter as a result of the hadronic interaction in the
decay, which is depicted in figure 2.1. We can therefore assess the hadronic part of the
decay in isolation in order to study the form factors. To do this, we can perform a
standard parameterisation of the hadronic matrix element 〈P|Vµ|B(s)〉,

〈P|Vµ|B(s)〉 = f+(q2)

(
pµ

B(s) + pµ
P −

M2
B(s)
−M2

P

q2 qµ

)
+ f0(q2)

(
M2

B(s)
−M2

P

q2 qµ

)
,

(2.63)
where Vµ is the b→ u flavour-changing vector current, pB(s) is the momentum of the
B(s) meson, pP is the momentum of the P meson, and qµ is the momentum transfer to
the W± boson. The momentum transfer is therefore defined by

q2 = (pµ
B(s)
− pµ

P)2. (2.64)

The calculation of these hadronic matrix elements forms the core focus of our Lattice
QCD computations, with the goal of extracting f+(q2) and f0(q2) in the continuum for
all allowed q2.
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2.7.3 Experimental Status

The Particle Data Group (PDG) provides averages for B→ π`ν decay rates, using data
from several experimental collaborations [4], and the Heavy Flavour Averaging Group
(HFLAV) also provides averages for heavy-quark decay channels [6]. The current PDG
average for the B0 → π−`+ν` fractional decay rate is 1.50(06) ×10−4, using BaBar
[81–83], Belle [84–86], and CLEO2 [87] data. The average for the B+ → π0`+ν`

fractional decay rate is 7.80(27) ×10−5, using BaBar [81–83], and Belle [84, 86] data.
These stand at a 4% and 3.5% error respectively. Taking into account the isospin factor
relating these decays, one would expect to find

B(B+)

B(B0)
=

τB+

2τB0
, (2.65)

where τ is the lifetime of the subscript particle. These ratios respectively evaluate to
∼ 0.52 and ∼ 0.54 using PDG averages [4], confirming this expectation.

The first experimental semileptonic Bs → K results, using the ratio of Bs → K to
Bs → Ds decay rates, were published in early 2021 by the LHCb collaboration [88] and
reported by HFLAV. LHCb gives a branching fraction of 1.06(05)(08)× 10−4 for
B0

s → K−µ+νµ; an error of ∼ 9%.

The Belle-II experiment is also actively collecting data and should provide new
experimental input on these decay modes, among many others, in the upcoming
years. The first measurement of B0

s → K−`+ν` is anticipated via the Υ(5S) resonance,
with an estimated 5-10% error for 1 ab−1 of data collected at ECM(Υ(5S)).

The Belle collaboration also provides forecasts for the precision of |Vub| estimates from
future lattice and Belle-II data. From the exclusive B→ π`ν channels, an uncertainty
of 1.0-1.7% in 10 years is predicted, down from 3.6-6.2% today, depending on the
method used and whether electromagnetic effects are included or not. The projection
for a determination from Bs → K`ν in 5 years—no 10-year-projection is given—is put
at 4.5-4.7%, depending on whether electromagnetic effects are included. An estimate
of 3.0-4.8% on the precision of |Vub| in 10 years from inclusive processes is also given,
mostly driven by an estimated 2.5-4.5% uncertainty in theoretical inputs.

2.7.4 Lattice Status

Presently, the Flavour Lattice Averaging Group uses results from three independent
computations of the Bs → K`ν [89–91] and B→ π`ν [90, 92, 93] form factors, a
detailed summary of which can be found in the 2019 FLAG report [78]. The form
factors are expressed in terms of parameterised functions which are discussed in detail
in section 4.2.2. The dominant parameter in the case of B→ π`ν has an error of 3.2%,
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FIGURE 2.2: Flavour Lattice Averaging Group averages [78] for the Bs → K`ν [89–91]
and B→ π`ν [90, 92, 93] f+ and f0 form factors. The variable z is a function of q2, used
to parameterise the extrapolation of lattice results across all accessible q2, as discussed

in section 4.2.2.

which has decreased from 7.3% in the 2015 edition of the FLAG report [94]. There is a
similar error of 3.8% for Bs → K`ν [78].

The results of this project will update the RBC/UKQCD data points [90] in both of
these averages. The FLAG average suggests that results with an error of ∼ 4% on the
dominant contributions to the form factor descriptions would constitute a valuable
addition to the available body of work.
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Chapter 3

Lattice QCD

3.1 Introduction

As we have discussed in the previous chapter, ground-state weak decays commonly
occur on an energy scale at which QCD is inaccessible to perturbation theory. Effective
theories such as chiral perturbation theory can approximate the behaviour of bound
states at these energy scales; but these are not exact formulations of QCD expressed in
terms of the fundamental fields that compose it. In this section, we will introduce
lattice QCD — a first-principles, systematically improvable formulation of QCD that
exhibits a well-defined reduction to continuum QCD in a suitable limit. Lattice QCD
is expressed in terms of the path integral formulation of quantum field theories, where
the definitions of n-point correlation functions are given by

〈O1...On〉 =
1
Z

∫
D[A, ψ, ψ̄]O1...OneiS[A,ψ,ψ̄], (3.1)

where S is the action, and the partition function Z is

∫
D[A, ψ, ψ̄]eiS[A,ψ,ψ̄]. (3.2)

We will begin in section 3.2 with a brief overview of the formulation and observables
of Lattice QCD. In section 3.3 we will address how to simulate the discretised path
integral, and in 3.4 we consider the problem of inverting the very large Dirac matrices
we encounter. In section 3.5 we will introduce the version of lattice QCD formulated
by Wilson, before expanding this in section 3.6 to consider additional ways of
discretising the QCD action that solve issues with the Wilson formulation. In section
3.7 we will discuss how to build correlation functions in lattice QCD from these
actions, and we conclude in section 3.8 by describing the required renormalisation
conditions. Much of this chapter is based on the textbook by Gattringer and Lang [95],
which provides a more comprehensive introduction to these topics.
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3.2 The Path Integral on the Lattice

3.2.1 Discretisation of Space-Time

When attempting to make calculations with the path integral in perturbation theory,
one quickly runs into divergent terms in the resultant expressions. These take the
form of ultraviolet (UV) divergences that are induced by unbounded momenta (such
as those in loops), and infra-red (IR) divergences that appear for massless fields with
vanishing momenta. In perturbation theory, these are dealt with using tricks such as
introducing a momentum-cutoff, Pauli-Villars regularisation [96], and the dimensional
regularisation procedure [97–99]. As Kenneth Wilson found in 1974, it is also possible
to establish a non-perturbative gauge-invariant regularisation of the path integral by
introducing minimum and maximum length scales in the form of a space-time lattice
[7].

These lattices are usually square in the spatial dimensions and elongated in the
temporal dimension such that there are N3 × NT lattice sites, where N is the number
of lattice sites assigned to each spatial dimension, and NT is the number of sites for the
time dimension. In order to resolve dynamics around the energy scale of interest Λ,
we require that

1
aN
� Λ� 1

a
, (3.3)

where a is the separation between lattice sites (or more succinctly, the “lattice
spacing”). Since we typically use Lattice QCD to study hadronic bound states, the
relevant energy scale is the confinement scale, ΛQCD, or a characteristic mass scale
around the nucleon mass of 1 GeV. Chiral perturbation theory power counting also
suggests a scale of 4π fπ ∼ 1 GeV. The finite, discrete lattice of points introduces
natural cut-offs for infra-red and ultraviolet divergences in the theory; the lattice
cannot resolve states with energies greater than 1/a, and states with energies lower
than 1/aN do not fit in the finite volume, and so we must make sure these scales are
sufficiently separated. Additional restrictions on these bounds may demanded be the
physics of interest, and we will see in section 3.6.2 that simulating quarks with b-like
masses places very expensive constraints on the lattice spacing if we do not use
additional tricks. Lattice calculations commonly take NT = 2N; however, this is not a
strict rule.

Since space-time is discretised, the action of the theory is a sum of the Lagrangian over
lattice sites rather than an integral over continuous space-time; i.e. we take

∫
d4x → a4 ∑

n
, (3.4)
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where n is a lattice site labelled with 4 integers for the 4 space-time dimensions of the
lattice.

3.2.2 Gauge Links

We should take care to ensure that the fermion fields transform correctly under their
gauge symmetries on the lattice. The fermions are invariant under an SU(3)

transform, so we should build a discrete covariant derivative that obeys this property,
similar to the continuum case. To begin, we will replace the space-time derivative
with a central difference:

∂µψ(x)→ ∆µψ(x) =
ψ(x + aµ̂)− ψ(x− aµ̂)

2a
, (3.5)

where µ̂ is a unit vector in the direction of µ. In order to preserve SU(3) invariance, we
introduce the quantity Uµ(x), which transforms as

Uµ(x)→ Ω(x)Uµ(x)Ω†(x + aµ), (3.6)

where Ω(x) is an SU(3) transform for a particular lattice site. We can then add this
factor to (3.5) as

∆µψ =
Uµ(x)ψ(x + aµ̂)−U−µψ(x− aµ̂)

2a
, (3.7)

where U−µ(x) = U†
µ(x− aµ), to generate SU(3)-invariant terms in the Lagrangian.

This new quantity Uµ(x) is related to the gauge field as

Uµ(x) = eigSaAµ(x). (3.8)

Since Uµ(x) is an element of SU(3) and Aµ is an element of the Lie algebra of Equation
(3.8) implies that the gauge fields do not live on the lattice sites like the fermion fields,
but rather on the links between the sites. For this reason, Uµ(x) is generally termed the
“link variable”.

The transformation property is also similar for any consecutive series of gauge links:

Uµ(x)Uν(x + aµ̂)→ Ω(x)Uµ(x)Ω†(x + aµ̂)Ω(x + aµ̂)Uν(x + aµ̂)Ω†(x + aµ̂ + aν̂),

(3.9)

= Ω(x)Uµ(x)Uν(x + aµ̂)Ω†(x + aµ̂ + aν̂), (3.10)

By chaining a number of link variables in a closed loop, the Ω transforms at the left
and right sides of this expression become Ω(x) and Ω†(x) respectively. Therefore, the
trace of a closed path is gauge invariant, since these remaining transforms cancel
under the cyclicity of the trace. Such an object is called a Wilson loop [7]; these are



32 Chapter 3. Lattice QCD

essential to a successful description of the gauge sector in the action, as we will
discuss in section 3.5.1.

3.2.3 Euclidean Space-Time

An integrand of the form eix is numerically unstable; it is an oscillatory function and
therefore experiences a high degree of cancellation between contributions to the sum
— a situation commonly termed “the Sign Problem”. Fortunately, we can sidestep this
issue by Wick rotating the integrand of (3.1) from Minkowski space-time to Euclidean
space-time by making the replacement t→ itE. Since the action is real-valued, the
exponential factor also becomes real-valued, and now resembles a Boltzmann factor
attached to the particular path it is evaluated for. We have therefore reduced QCD to
an exercise in numerical integration; we compute the weight for each path we choose
to evaluate and add it to the integral.

This also has the consequence that time can be treated like a fourth spatial dimension
of the lattice. From this point onwards, equations and definitions involving the
variable t in the context of lattice QCD computations refers to this Euclidean time. As
an aside, we also note that the finite Euclidean time can also be mapped to a finite
temperature.

3.2.4 Grassmann Variables and Wick’s Theorem

Fermions obey Fermi statistics; that is to say, fermions obey an anti-commutation
relation. Fermions are representable by anti-commuting Grassmann numbers — i.e.
the fermion fields obey

θ1θ2 = −θ2θ1, (3.11)

where θ1 and θ2 are Grassmann numbers. These variables behave in interesting ways
under integration; one result crucial to the formulation of lattice QCD is the
Matthews-Salam formula [100, 101], which proves that a Gaussian integral of
Grassmann variables is a matrix determinant:

∫ ( N

∏
k

dθkdθk

)
exp

{
N

∑
i,j

θi Mijθj

}
= −det[M]. (3.12)

By Wick rotating the QCD path integral to Euclidean space-time, we can find similar
factors appearing in the lattice QCD path integral, with the matrix M as the Dirac
operator. However, we typically deal with fermions of multiple flavours in the path
integral, and we also have additional factors of the fermion fields appearing in the
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integral from the observables we wish to compute the expectation values of:

〈θi1 θj1 ...θin θ jn〉 =
1

ZF

∫ ( N

∏
k

dθkdθk

)
(
θi1 θj1 ...θin θ jn

)
exp

{
N

∑
m,l

θm Mmlθl

}
(3.13)

The applicability of the Matthews-Salam formula to the path integral can be extended
via Wick’s theorem [102]:

1
ZF

∫ ( N

∏
k

dθkdθk

)
(
θi1 θj1 ...θin θ jn

)
exp

{
N

∑
m,l

θm Mmlθl

}
=

(−1)n ∑
P(1,2,...,n)

sign(P)
N

∏
k

(
M−1

)
ik ,jPk

, (3.14)

where P is a permutation of the Grassmann fields. This expression is only non-zero for
equal numbers of indices i and j, such that the Grassmann variables are required to
come in pairs — i.e. quark bilinears. The number of pairs N defines the number of
propagators in the correlation function.

This expression can also be depicted using an alternative notation which we will
employ in later sections and introduce now. For a given expectation value of N
fermion-antifermion pairs—let us use three for this illustration—we can
systematically enumerate all terms of the sum as all possible permutations of Wick
contractions of Fermion fields

〈θ3θ3θ2θ2θ1θ1〉 = 〈θ3θ3θ2θ2θ1θ1〉+ 〈θ3θ3θ2θ2θ1θ1〉+ 〈θ3θ3θ2θ2θ1θ1〉+

〈θ3θ3θ2θ2θ1θ1〉+ 〈θ3θ3θ2θ2θ1θ1〉+ 〈θ4θ3θ2θ2θ1θ1〉, (3.15)

where the pair

θiθ j (3.16)

is a Wick Contraction of the variables θi and θ j. In order to enumerate all contributing
terms, we simply have to form all possible Wick contractions of the fermion fields.
The Wick contraction of fermion fields of different flavour is zero, and as such we can
discard terms involving such contractions and only look for possible ways to “pair
up” fermion fields of the same flavour.

The Wick contraction defines which fermion fields enter a particular inverse Dirac
operator in the sum in (3.14); i.e. it is a pictoral representation of the spin indices of a
Dirac matrix. To find the sign of a term due to its particular permutation of fermion
fields, we simply anti-commute the fermion fields until all Wick contraction lines are
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“disentangled” — when contracted fermion fields are neighbouring each other as θiθ j:

〈θ3θ3θ2θ2θ1θ1〉 = −〈θ3θ1θ1θ3θ2θ2〉 (3.17)

= −
〈

M−1
31 M−1

13 M−1
22

〉
(3.18)

= −
〈

Tr
[

M−1
31 M−1

13

]
Tr
[

M−1
22

]〉
(3.19)

where in the first line the minus sign comes from the odd number of permutations of
fermion fields required order to re-arrange the fields, in the second line we express the
fields in terms of the inverse Dirac operators, and in the third line we make explicit the
fact that the indices of the inverse Dirac operators contract to make traces. Computing
these Dirac operators are, therefore, critical to performing lattice QCD calculations.

3.2.5 The Lattice QCD Path Integral

The preceding definitions are sufficient for us to write down a “lattice” version of the
QCD path integral for some observable O, in which we can separate the “fermion”
terms from the “gauge” terms to exploit the Grassmann nature of the fermion fields:

〈O〉 =
1
Z

∫
D[ψψ]D[U]e−SF [ψψU]e−SG [U]O[ψψU], (3.20)

where the partition function Z is given by

Z =
∫
D[ψψ]D[U]e−SF [ψψU]e−SG [U], (3.21)

and the fermion action SF is
SF = ∑

f
ψ f D f [U]ψ f , (3.22)

and D f is the Dirac matrix for the quark flavour f .

We can factorise this integral into a fermionic and a gauge part also, with the Fermion
path integral given by

〈O〉F =
1

ZF[U]

∫
D[ψψ]e−SF [ψψU]O[ψψU], (3.23)

with the Fermion partition function

ZF[U] =
∫
D[ψψ]e−SF [ψψU]. (3.24)

The integration measure D[ψψ] is a product of infinitesimal-Grassmann-variable
pairs, the function O is of Grassmann variable pairs, and the Fermion action is a
Gaussian exponent involving the Dirac operator. This allows us to use Wick’s
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Theorem (3.14) to integrate out the fermion fields, leaving us with the integral

〈O〉 =

∫
D[U]e−SG [U] ∏ f det[D f ]O[U, D−1

f ]
∫
D[U]e−SG [U] ∏ f det[D f ]

, (3.25)

reducing the involvement of the fermions to the Dirac operator. The integration
measure we are left with, D[U], is a Haar measure. The Lattice QCD Haar measure
defines the path integral over the SU(3)-valued gauge links, allowing us to perform
gauge-invariant integration over the SU(3) group. We will not discuss the details of
these integrals, such as how they tell us how to integrate out common links between
pairs of Wilson loops to “merge” them, but a good introduction can be found in
e.g. [95].

3.3 Simulating the Path Integral

3.3.1 Monte-Carlo Integration

Monte-Carlo integration is a technique for integrating expressions by summing
evaluations of the expression at random points in its domain. By doing so, we can
evaluate the average value of the function. To recover the original integral, we need
only multiply through by the volume of the domain. Mathematically, we can say

∫ b

a
f (x)dx = V〈 f 〉 = lim

N→∞

V
N

N−1

∑
n=0

f (xn), (3.26)

where we can also state the volume factor as the sum over the domain

V =
∫ b

a
dx. (3.27)

We use Monte-Carlo integration because its error scales as O(N−1/2)—that is to say,
the error reduces by a factor of two when we include four times as many points in the
integral. This may seem like very poor scaling behaviour, but when compared to other
techniques Monte-Carlo is the clear winner for lattice QCD, purely because the error
scaling has no dependence on the dimensionality of the problem. By comparison,
quadrature methods commonly have error scalings of O(N−2/d), O(N−4/d), and so
forth. For a very highly-dimensional integral such as the lattice QCD path
integral—where the integration variables are paths of gauge links, not just spatial
dimensions—these techniques are quickly overcome by the so-called “curse of
dimensionality”.

Returning to the path integral, we note that the main difference between the provided
Monte-Carlo definitions and the path integral is the fact that we also have additional
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terms multiplying the observable f (x) in the integral, in the form of a Boltzmann
factor e−SG and fermion determinants. These factors are variable, and provide a
“weight” for every potential contributing point to the Monte-Carlo sum — some
integration points are much more valuable than others, because they have a higher
weight and are hence larger contributions to the average. If we can bias our
random-number generator to preferentially select these more highly-weighted
contributions, we will more quickly converge on an acceptable answer. Such a
technique is known as “importance-sampling”, and it operates by selecting samples
from a non-uniform probability distribution.

For simplicity, let us first neglect the Fermion determinants when attempting to apply
importance sampling to the path integral. First we can note that by introducing a
weight in the sum, we must also introduce a corresponding weight in the volume
factor in order for it to correctly reproduce the sampled region

〈 f 〉 =

∫ b
a ρ(x) f (x)
∫ b

a ρ(x)dx
. (3.28)

We can re-parameterise the integral measure as a normalised probability density,

dP(x) =
ρ(x)dx∫
ρ(x)dx

, (3.29)

and therefore express the expectation value of f as

〈 f 〉 =
∫ b

a
dP(x) f (x) = lim

N→∞

1
N

N−1

∑
n=0

f (xn), (3.30)

where the xn are generated by the probability density dP(x).

Our path integral is already of the form in (3.28), and we can identity the integration
measure as D[U], the observable as O[U, D−1] and the weight (for now) as e−SG . The
probability density used to select gauge ensembles is the Gibbs measure,

dP[U] =
D[U]e−S[U]

∫
D[U]e−S[U]

. (3.31)

We will address the inclusion of the fermion determinants in this distribution in
sections 3.3.3 and 3.3.4.

We are left with the expression

〈O〉 = lim
N→∞

1
N

N

∑
n
O[Un, D−1], (3.32)
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and the question now is how to generate our new integration variables Un from the
Gibbs measure.

3.3.2 Markov Chains

We can generate paths Un by starting from an arbitrary path of gauge links, and
moving towards one that follows the required distribution by using the Markov chain
process to probabilistically perturb the links to a new path configuration. The
distinguishing feature of a Markov chain is ‘memoryless-ness” — the probability of
choosing a particular next step in the Markov chain of configurations between our
arbitrary path and the final result depends only on the current state and proposed
next state of the path. By carefully considering how to construct the transition
probability between update steps, we can formulate a Markov chain process that will
guide our starting guess towards the region of configuration-space that carries the
highest weight.

We can define the probability of selecting a particular next update step with the
transition probability

P(Un = U′|Un−1 = U) = T(U′|U). (3.33)

Furthermore, we require that the equilibrium state does not preferentially select some
direction, so the probability of reversing an update step must be equal to the
probability of traversing it. This is expressed in the balance equation

∑
U

T(U′|U)P(U) = ∑
U

T(U|U′)P(U′), (3.34)

and taking the right-hand sum shows that

∑
U

T(U′|U)P(U) = P(U′), (3.35)

since

∑
U

T(U|U′) = 1. (3.36)

This shows that P(U) is a fixed point of the system, and will be gradually evolved
towards as more update steps are applied to an arbitrary starting configuration.

However, we do not necessarily have access to all configurations required to satisfy
(3.34) at a given point in time. We can instead formulate a Markov chain on the
requirement that this holds term-wise with the detailed balance condition

T(U′|U)P(U) = T(U|U′)P(U′). (3.37)
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Given this problem, a typical lattice calculation will employ a certain number of
thermalisation steps to allow the algorithm to converge to equilibrium.

We now need some rule to generate the transition probabilities T(U). The Metropolis
algorithm is one method for deciding whether to accept a proposed configuration as
the next step in the Markov chain. The transition probability between the current
configuration U and proposed configuration U′ for a probability distribution ρ(U) can
be expressed as

Ti+1(U′|U) = min
(

1,
Ti(U|U′)ρ(U′)
Ti(U′|U)ρ(U)

)
, (3.38)

where the min clamps the probability to ≤ 100%.

3.3.3 Revisiting the Fermion Determinant

Having discussed the generation of integration variables in the absence of fermion
determinants, we now turn to the issue of including them. We should note that all we
have discussed so far is equivalent to setting the Dirac matrices to unit matrices; this is
known as the “quenched approximation”, since the determinants can be expressed as

det[D f ] = eTr[ln(D f )] = eTr[D−1
f ]

= e−Seff
F , (3.39)

which represents a Dirac matrix with identical quantum numbers on its indices. In
this case, the Dirac matrix is of a single quark that pops out the vacuum and returns to
its source — a vacuum fluctuation. Setting these Dirac matrices to one removes these
“sea-quark” effects from the simulation, “quenching” these excitations.

Modern simulations normally include the fermion determinants in the generation of
gauge configurations, in what are called “Dynamical Fermion” calculations. With the
inclusion of sea-quarks, we can capture contributions to observables resulting from
sea-quark interactions. The determinant is generally folded into the probability
distribution because treating it as an observable confounds the importance sampling,
since the determinant can cover many orders of magnitude depending on the
particular gauge configuration. However, including the determinant in the Gibbs
measure is not a straightforward task. The determinant is of a very large matrix,
which is a square matrix with dimension

N = M Lattice Sites× 4 Spin Indices× 3 Colour Indices. (3.40)

Typical decomposition methods for calculating matrix determinants run in O(n3)

time, which is problematic for a standard lattice of 106–108 sites. We can instead use a
Monte-Carlo-based approximation for the determinant by introducing bosonic
“pseudo-fermion” fields [103, 104]. We can define the determinant in terms of these
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pseudo-fermions by first considering

det A = π−N
∫
D[φR]D[φI ]e−φ† A−1φ, (3.41)

where φR and φI are the respective real and imaginary parts of the pseudo-fermion
field φ, and A is a matrix with eigenvalues λ that all have a positive real part
Re(λ) > 0. We identify A ≡ D f D†

f , and thus use this to determine the matrix
determinant. The pseudo-fermions are noisy estimators; we can compute the integral
by drawing the fields from a distribution and performing a Monte-Carlo integration.

3.3.4 Gauge Generation with Dynamical Fermions

If we consider again the Gibbs measure given in 3.31, we notice that it is highly local
in the quenched approximation—we can adjust very few gauge links independently
to construct a new Wilson loop. By contrast, adding the Seff. factor for dynamical
fermions causes it to become non-local via the introduction of the Dirac operator, and
so every gauge variable in the Wilson loop must enter the calculation of the update
step. Without some specialised technique, this can lead to very large changes in the
Wilson loop in a single update step, and hence a low acceptance rate, greatly
diminishing the efficiency of the algorithm since we will spend most of the execution
time computing update candidates that immediately get thrown away.

One common technique to address this problem, and the one used to generate the
gauge configurations used in this work, is the Hybrid Monte Carlo (HMC) [105]
algorithm (alternatively known as “Hamiltonian Monte Carlo” for its associations
with Hamiltonian mechanics). The HMC is one instance of a class of solvers based on
Molecular Dynamics techniques. Given our gauge configuration—a field of positions
in configuration space—we can follow a Hamiltonian-mechanical approach by
defining a “conjugate” field of momenta through configuration space, drawn from a
Gaussian distribution. Labelling the field positions as Q and the conjugate momenta
as P, this corresponds to a Hamiltonian

H[Q, P] =
1
2

P2 + S[Q], (3.42)

where S is the action. This Hamiltonian has the classical equations of motion, in
Monte Carlo time τ,

Ṗ = −∂H
∂Q

=
∂S
∂Q

, (3.43)

Q̇ =
∂H
∂P

= P, (3.44)
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which are the equations of a system of particles classically evolving in time. We can
solve these equations numerically by evolving the system for a number of time steps
ε = ∆τ, where the total number of steps is determined such that nε ≈ 1. This
evolution is called a “trajectory”, and it is deterministic. Since we have a finite step
size, numerical errors are inevitable, which pull the HMC away from the correct
trajectory. The HMC treats this by introducing a corrective Metropolis accept-reject
step,

T(Q′, P′|Q, P) = min
(

1,
exp(−H[Q′, P′])
exp(−H[Q, P])

)
, (3.45)

which would equal 1 for an exact solution, and is closer to 1 (and hence makes the
algorithm more efficient) for evolution strategies with smaller error terms.

So far, we have not seen how this algorithm is beneficial when we want to include the
fermion determinant in the action. We begin by writing the action with the fermionic
part in terms of the pseudo-fermion fields introduced in section 3.3.3,

S[U] = SG[U]− φ†
(

DD†
)−1

φ, (3.46)

where we now must update the pseudo-fermion fields in addition to the gauge links.
Similarly to the momentum generation for the gauge links, we can generate
Gaussian-distributed complex vectors χ, and then and convert these to
pseudo-fermions with φ = Dχ. We need then only treat the φ as external fields that
affect the trajectory of U, remembering to also update the φ vectors at each iterative
step. Forcing Q to obey the SU(3)-symmetry of U allows us to formulate the HMC
dynamics equations in terms of U and φ, and thus generate new gauge configurations.

3.3.5 Gauge Ensembles

We have now split the problem of computing the path integral into two broad parts —
generating gauge configurations, and computing a path integral of some observable
over those configurations. Since the configurations can be used to compute the path
integral of many different observables, it makes sense to generate a set of
configurations for re-use, in order to factorise out this cost of the simulation. Such a
set of configurations is called a gauge ensemble. These configurations are computed for
a particular lattice (and sea-quark action, if dynamical) and can then be used as
integration variables for fermionic observables.

Despite building up this set of machinery for computing the path integrals, we have
yet to define the gauge and fermion actions that enter the path integral. This proves to
be a deep and detailed topic, and we will briefly outline the first formulation of these
objects by Wilson in section 3.5, before moving onto more advanced and modern
techniques.
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3.4 Inverting the Dirac Operator

3.4.1 Quark Sources

3.4.1.1 Point Sources

The quark propagator—the inverse of the Dirac operator, D f —is a large matrix
connecting every (source site, spin, colour) combination to a (sink site, spin, colour)
combination. For this discussion, following [95], we refer to a (site, spin, colour)
combination as a ‘point’. A propagator equal to the full inverse Dirac operator is
referred to as an “all-to-all” propagator, since it connects every possible source point
to every possible sink point. However, since the entries of this large matrix will be
highly correlated due to translation invariance, we can be much more
memory-efficient by storing only the entries that describe the propagation from a
single source point to all sink points; such a restriction allows us to throw away
largely redundant, memory-intensive information about the source position (since the
matrix is highly correlated) whilst still maintaining all information necessary to make
a choice of sink position at a later date. This is equivalent to keeping a single column
of the propagator matrix [95],

D−1(x, y0)b,a0
b′ ,a′0

= D−1(x, y) b,a
b′ ,a′

δ(y− y0)δa′,a′0
δa,a0), (3.47)

where the “point source” is defined by

Sy0,a0,a′0
0 (y)a

a′
= δ(y− y0)δa′,a′0

δa,a0). (3.48)

The computation of (3.47) requires the implied sum over the 3 colour indices and 4
spin indices to be evaluated, for a total of 12 source points contributing to each
source-sink position pair. Since the Dirac operator is a gauge-dependent object, the
Dirac operator for each gauge configuration must individually have the point source
applied.

3.4.1.2 Gaussian Smeared Sources

Using point sources places the quark and anti-quark of the meson at the same lattice
site, which has a small overlap with the physical wavefunction. To increase the
overlap, we could use many point sources and insert functions to model the physical
wavefunction, but the number of Dirac operator inversions required would be
prohibitively expensive. We can instead increase this overlap and decrease the
excited-state contamination of the ground state by placing the quarks at separate
spatial lattice sites—but the same temporal site—by connecting them with some
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“smearing function”. A Jacobi smearing is a standard choice for the smearing, since it
follows the Gaussian shape common to many simple wavefunctions [106]. The Jacobi
smearing takes the form

M(x, y) =

(
1 +

σ2

4N

)
H(x, y) (3.49)

where σ is the smearing width, N is the number of smearing steps, and H(x, y) is
given by

H(x, y) =
3

∑
i=1

(
Ui(x)δ(x + î, y) + Ui(x− ĵ)δ(x− î, y)− 2δ(x, y)

)N
. (3.50)

3.4.1.3 Sequential Sources

Our three-point functions require the contraction of three propagators, with the
insertion of a vector current. Since we could in principle place the weak decay current
anywhere in the lattice, the propagation of a quark travelling from source→ current
→ sink should in principle require an expensive all-to-all propagator to compute.

We can escape this requirement by making use of the “sequential propagator”:

D−1
seq.(~x,~y)γ5 = ∑

z
D−1(x, z)ΓD−1(z, y)γ5, (3.51)

where Γ is the gamma structure required to create or annihilate the desired class of
quark bilinear, which allows us to bundle two propagators into a single object by
turning one propagator in a source term for the second, known as the “sequential
source”. Creating a sequential propagator will require an additional Dirac operator
inversion, but we can now re-use this building block like any other propagator to form
any correlation function in which the constituent pair of propagators may enter, and
we can also treat the three-point function contraction like a two-point function
contraction.

3.4.2 Inversion Algorithms

Many inversion algorithms converge in polynomial time, such as Gauss-Jordan
elimination (O(n3)). As we already discussed for computing matrix determinants, the
size of the matrices (12N2, with the number of lattice sites N typically 106–108) makes
such algorithms prohibitively expensive. We must instead turn to alternatives.

One class of alternatives is iterative solutions designed to solve linear systems. Many
of these algorithms, such as conjugate gradient [107] instead converge as some power
of the condition number κ of the matrix — for conjugate gradient, this is ∼ √κ for
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large n. The conjugate gradient method, which we utilise in our simulations via the
Chroma lattice QCD software package [108], will compute a point-source propagator
by solving

Dx = S (3.52)

for a Dirac operator D, point-source propagator vector x, and the source vector S.

It is important to note that the condition number of the Dirac matrix is dependent on
the quark mass. Smaller quark masses inflate the condition number of the Dirac
operator, making it more expensive to invert and more numerically unstable. For this
reason, many lattice QCD studies utilise unphysically heavy up- and down-quarks,
and extrapolate the masses of the resultant bound states to their physical values to
generate final results. We use this strategy in our calculation; the model for the
extrapolation procedure is given in section 4.2.1, and the details for the simulation are
given in chapter 5. Theoretical and computational advances have however made it
possible to produce viable calculations involving physical up- and down-quark
masses within the last decade.

3.5 The Wilson Formulation and Beyond

3.5.1 Gauge Actions

There is no one unique way to discretise QCD — as long as our choice of action
reduces to the continuum expression and is gauge invariant, we have significant
freedom in how we define QCD on the lattice. To build gauge-invariant measures of
the gauge fields, we can make use of the Wilson loop construction [7]—introduced in
section 3.2.2—which is some closed path of gauge links. The “plaquette” is the
smallest Wilson loop that can be formed, exploring four lattice sites in a square:

Uµν(x) = Uµ(x)Uν(x + aµ̂)U−µ(x + aµ̂ + aν̂)U−ν(x + aν̂). (3.53)

The Wilson gauge action [7] constructs a discretised QCD gauge action from the
plaquette:

SG[U] =
2
g2

S
∑
x

∑
µ<ν

Re
[
Tr
(
1−Uµν(x)

)]
(3.54)

=
a4

2g2
S

∑
x

Tr
(
Gµν(x)Gµν(x) +O

(
a2)) (3.55)

where gS is the QCD gauge coupling, and (3.55) has been obtained by
Taylor-expanding the elements of the plaquette about a, using the definition of the link
variable in (3.8). For a full explanation, see [95]. Since this is gauge invariant and
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reduces to the continuum expression when a→ 0, this is a perfectly valid choice for
the gauge action.

As indicated by (3.55), the Wilson gauge action reproduces the field strength tensor
product up to a O

(
a2) discretisation error. It is possible to obtain a better error scaling

or more desirable simulation properties by making a different choice of gauge action.
Two main methods for systematically improving errors are the Symanzik
improvement program [109–111]—which we will touch upon in section 3.5.5—and
renormalisation group transformations [112–114]. For this project, we utilise the
Renormalisation-Improved Iwasaki gauge action [115, 116], which is formulated using
the renormalisation group transform scheme and shares a general shape with the
Doubly-Blocked Wilson action [117, 118]:

S =
2
g2

{
c0 ∑ Tr(simple plaquette loop) + c1 ∑ Tr(rectangle loop)

+ c2 ∑ Tr(chair-type loop) + c3 ∑ Tr(three-dimensional loop) + constant
}

, (3.56)

where the “simple plaquette loop” is the plaquette found in the Wilson gauge action,
the “rectangle loop” is a 2× 1 planar loop, the “chair-type loop” is a 2× 1 non-planar
loop with a 90-degree bend between the two 1× 1 pieces, and the “three-dimensional
loop” is a six-link path connecting two opposite vertices of a cube. The
renormalisation constraint on the coefficients is c0 + 8c1 + 16c2 + 8c3 = 1 [116], and
the Iwasaki action takes c0 = 3.648, c1 = −0.331, c2 = 0, c3 = 0. The Doubly-Blocked
Wilson action is defined by c0 = 12.2552, c1 = −1.4069, c2 = 0, c3 = 0. We make use of
the Iwasaki gauge action because it has an O(a2)-improved discretisation error, and
because it allows for a small mres parameter in the Domain-Wall fermion action [119]
that we use for most of our fermions — see section 3.6.3 for a discussion of this action
and the relevance of this parameter. As input to our simulations, we use the Iwasaki
gauge ensembles calculated by the RBC-UKQCD collaboration [120–122].

3.5.2 Naı̈ve Lattice Fermions

We can make a first attempt at discretising the fermion terms in the action by defining
the fields at the lattice sites, and replacing derivatives with their discrete counterparts.
Such an action is known as the naı̈ve fermion action, which takes the form

S[ψ, ψ̄] = a4 ∑
x

ψ̄α(x)Dαβ(x)ψβ(x), (3.57)

where the Dirac operator is given by

Dαβ(x, y) = ∑
µ

(γµ)αβ

(
Uµ(x)δx+aµ̂,y −U−µ(x)δx−aµ̂,y

2a
+ Mδα,βδx,y

)
. (3.58)
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It may not be immediately apparent, but inverting this expression to obtain the
propagator for the quark field leads to a complication in the theory. We can elucidate
this by working in momentum space, so we can first Fourier transform the Dirac
operator to

D̃p = m +
i
a ∑

µ

γµ sin(pµa), (3.59)

which inverts to

D̃−1(p) =
m− ia−1 ∑µ γµ sin(pµa)

m2 + a−2 ∑µ sin2(pµa)
, (3.60)

which reduces to the expected continuum expression

lim
a→0

D̃−1(p) =
m− iγµ pµ

m2 + p2 . (3.61)

In the massless limit, we obtain a physical pole for the propagator at p = (0, 0, 0, 0).
However, due to the sine, we also get a pole when any element of p is π/a. This
generates a total of 24 = 16 poles - two per dimension. These are called “doublers”,
and it is necessary to remove these spurious poles to recover the physical continuum
behaviour. We will now take a look at a simple way to achieve this with the Wilson
action.

3.5.3 Wilson Fermions

The Wilson action removes the unphysical doublers in the continuum limit by adding
an additional term to the Dirac operator [7]:

D̃Wilson(p) = m +
i
a ∑

µ

γµ sin(pµa) +
1
a ∑

µ

(1− cos(pµa)). (3.62)

This term vanishes for p = (0, 0, 0, 0) and reproduces the naı̈ve lattice fermion result;
for any momentum with at least one component of π/a, this term instead acts like an
additional contribution to the mass:

m→ m +
2l
a

, (3.63)

where l is the number of components equal to π/a. This mass term becomes divergent
in the continuum limit, which causes the poles to decouple from the theory. The only
pole that remains is the physical one, which did not obtain this additional mass term.
The Wilson action does, however, come with a heavy cost: the Wilson term added to
the action explicitly breaks chiral symmetry. In fact, the Nielson-Ninomiya theorem
states that it is impossible to construct a local action that is both free of doublers and
preserves chiral symmetry in an even number of dimensions [123].
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This poses a particular problem: the spontaneous breaking of chiral symmetry is a
core feature of QCD, explaining the low masses of the pseudo-Nambu-Goldstone
boson octet and providing an effective field theory for the perturbative study of
low-energy QCD in the form of chiral perturbation theory. Without deeper inspection,
the Nielsen-Ninomiya theorem seems to place severe limitations on the applicability
of lattice QCD. In section 3.5.4, we will discuss how this situation can be avoided via
the Ginsparg-Wilson relation, and the consequences it has for the choices we make
when simulating the B(s) → P`ν processes.

3.5.4 Chiral Symmetry on the Lattice

In the previous section, we stated that the Nielsen-Ninomiya theorem [123] tells us
that no fermion action can be formulated that both preserves chiral symmetry and
exists in an even number of dimensions. There is a trick that allows us to get around
this theorem, however — the Ginsparg-Wilson relation [124] tells us how chiral
symmetry is broken on the lattice via a specific value of the {γ5, D} anti-commutator:

γ5D + Dγ5 = aDγ5D, (3.64)

which is a function of the lattice spacing a and hence matches the continuum
definition for chiral symmetry in the continuum. The Wilson action does not obey this
symmetry, nor do many other choices of action; we will return to the Ginsparg-Wilson
relation when we discuss Domain-Wall fermions in section 3.6.3, which obey it in a
strict limit.

Furthermore, with a description of how chiral symmetry is broken on the lattice, we
can find one avenue to rescue chirally asymmetric fermions as shown by Lüscher
[125]. Continuum fields may be expressed in a chiral basis in terms of left- and
right-handed Majorana spinor components, which is not possible for lattice fields with
broken chiral symmetry. However, when we match the lattice fields to the continuum
fields via renormalisation, we can form conditions on the renormalisation such that
QCD-like behaviour is recovered in the continuum by adding terms that reconstruct
the chiral basis of QCD. The question of recovering continuum QCD can then be
restated as a question of renormalising the lattice fields correctly; for chirally
asymmetry fermions, this will typically take the form of additive renormalisation
terms (see e.g. [126] for arguments). Lattice fields that obey the Ginsparg-Wilson
relation therefore have considerably simpler renormalisation considerations, although
the overlap operator (introduced in [127–130], modern formulation in [131]) is
presently the only known exact solution to the Ginsparg-Wilson relation (and was
shown to be a solution in [132]).
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3.5.5 Symanzik Improvement Program

The Symaznik improvement program is a prodecure for systematically reducing
discretisation errors on lattice fields by cancelling off error terms. To compare this to a
simple example—in the spirit of Gattringer and Lang [95]—consider approximating
the derivative of some function f (x) via the central difference

f (x + a)− f (x− a)

2a
= f ′(x) +

a2

6
f ′′′(x) +

a4

120
f ′′′′′(x) + ... (3.65)

where the right-hand-side has been obtained by Taylor-expanding the function about
±a,

f (x± a) = f (x)± a f ′(x) +
a2

2
f ′′(x)± a3

6
f ′′′(x) + ... (3.66)

The central difference has a leading O
(
a2) discretisation error on the derivative, as

seen in (3.65). By finding expressions for the error terms on the right-hand-side of
(3.65), we can obtain an expression for the central difference to an arbitrary degree of
precision O

(
a2n) by adding increasingly complex cancellation terms to the left-hand

side. For example, one of the ways we can express the third derivative is

f ′′′(x) =
f (x + 2a)− 2 f (x + a) + 2 f (x− a)− f (x− 2a)

2a3 +O(a2), (3.67)

and by adding this with a factor of −a2/6 to (3.65), we can improve the overall
discretisation error on f ′(x) to O

(
a4) by cancelling off the f ′′′(x) term. To improve the

error to O
(
a6), we would have to cancel off the O

(
a4) terms introduced by both the

central difference and (a2/6) f ′′′(x) approximations.

The Symanzik improvement program [109–111] follows the same spirit as this simple
example: expressing lattice fields as a series expansion of continuum quantities, and
using this to systematically improve discretisation errors on actions using these fields.
Lattice field calculations are considerably more involved than the example presented
so far, and the language used to compute the necessary cancellation terms is Symanzik
effective theory. Although we will not dive into the details of Symanzik improvement,
this sketch will serve as a useful reference for when we introduce the
Sheikholeslami-Wohlert (Clover) action in section 3.6.1, as a stepping stone to the
Relativistic Heavy Quark (RHQ) action we use to simulate b quarks in this work.

3.5.6 γ5-hermiticity

Many lattice Dirac operators possess γ5-hermiticity: a symmetry that states

(γ5Dµ(x))† = γ5D ⇒ Dµ(x)† = γ5Dµ(x)γ5. (3.68)
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Aside from being a useful trick to simplify expressions, this also implies that the
fermion determinant is real. The realness of the fermion determinant allows us to fold
it into the weighting factor of the Boltzmann distribution integrand and further
simplify the integration procedure.

Moreover, γ5-hermiticity is not restricted to the Dirac operator itself; the inverse also
inherits this property, extending its usefulness to the manipulation of Wick-contracted
fermion fields.

3.6 Fermion Actions

3.6.1 Clover Action

The Wilson action carries an O(a) discretisation error, which would make it the
leading source of error in a typical calculation. We outlined the Symanzik
improvement program in section 3.5.5, and are now in a position to ask a question:
what happens when we apply Symanzik improvement to the Wilson action?

Sheikholeslami and Wohlert made such a calculation in their 1985 paper [133], in
which they found O(a)-improvement can be obtained by adding a single term to the
Wilson action,

cswa4 ∑
x∈Λ

ψ̄(x) ∑
µ<ν

i
4

σµνĜµνψ(x), (3.69)

where σµν is the dimension-five operator

σµν =
[γµ, γν]

2i
, (3.70)

and Ĝµν is the discretised field strength tensor, which can be expressed in terms of a
sum of plaquettes originating at the lattice site at x,

Ĝµν =
i

8a2

(
Qµν(x)−Qνµ(x)

)
, (3.71)

with Qµν(x) the sum of plaquettes

Qµν(x) = Uµ,ν(x) + U−ν,µ(x) + U−µ,−ν(x) + Uν,−µ(x) (3.72)

and csw is a coefficient that can be non-perturbatively turned to obtain an
O(a)-improved discretisation error on the fermions. A first attempt at applying
Symanzik improvement suggests that five terms are necessary, but this can be reduced
to (3.69) by considering symmetry arguments and parameter redefinitions [133].
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This action is commonly known as the clover action, since in a 2D slice of the lattice
the four contributing plaquettes to Qµν are reminiscent of a clover with four square
leaves. For reasons that we will now discuss, we use an anisotropic version of the
Clover action to simulate the b quark.

3.6.2 RHQ Action

Putting a b quark on a lattice is not as straightforward as it is for lighter quarks.
Lattices in common use today typically have inverse lattice spacings of
∼ O(2− 4GeV), and the calculations presented in this thesis are no exception. The b
quark, however, has an MS-scheme mass of 4.18+0.03

−0.02 GeV [4]. In order to properly
resolve a field, we require

mq �
1
a
⇒ mqa� 1, (3.73)

since a acts as an ultraviolet cut-off. Discretisation errors related to the mass and
momentum enter as O((mba)n), O((pan)), and O((pa)(mba)n) [11], where n of
arbitrary order; therefore, placing a b quark with a physical mass on a typical lattice
will have very large or completely uncontrolled errors.

There are multiple ways to address this. One option is to use non-physical b quark
masses and extrapolate to a physical mass, which typically still requires use of an
effective action for reasonable masses to be taken, such as Highly Improved Staggered
Quarks [8]. Domain-wall fermion simulations are also becoming a potential approach,
with charm-like masses now feasible.

The approach taken by the Relativistic Heavy Quark (RHQ) action is to instead note
that, near rest, the heavy quark will have a mass much larger than its spatial
momentum. This allows us to expand the spatial components of the derivative Di in
powers of (a~p) via the Symanzik improvement programme (c.f. section 3.5.5), with the
aim of cancelling all divergent error terms, although we cannot do this for the
temporal direction and must maintain to all powers terms of the form (m0a) and D0

[9, 11]. This results in the Lagrangian of the effective action taking the form

Leff. = Leff.,−1 + Leff.,0 + Leff.,1 + ... (3.74)
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where we need only expand up to Leff.,1 for O(a) improvement, and the three terms
are given by

Leff.,−1 =ψ

(
1
2

B−1,1 + γ0D0C−1,1
)

ψ, (3.75)

Leff.,0 =ψ
({

~γ~D, B0,1
}

+ a
{[

~γ~D, γ0D0
]

, C0,1
})

ψ, (3.76)

Leff.,1 =aψ
(
~D2B1,1 + a

{
~D2, γ0D0

}
C1,1

+
[
γiγj

]
[Di, Dj]B1,2 + a

{{
γi, γj

} [
Di, Dj

]
, γ0D0

}
C1,2

+
[
γiγ0

]
[Di, D0]B1,3 + a

{{
γi, γ0

} [
Di, D0

]
, γ0D0

}
C1,3

)
ψ

(3.77)

where Bn,m and Cn,m are polynomials in m0a and D0, and both m0 and D0 are taken to
be O(a) to account for the situation where m0 ∼ a. One can then find redundancies in
this expression and rotate the quark fields to show that, to O(a), the the (m0a) and D0

terms captured by the B and C polynomials can be entirely summarised by three
parameters—m0a, csw, and ζ—which also cancel O(ap) discretisation errors [11].
Therefore, by inserting the correct values for these three parameters, the divergent
error terms can be cancelled to all orders. It turns out that the m0a parameter must be
set to the physical mass for the quark it represents, whereas csw and ζ parameters have
much more complicated definitions [11]. In a companion paper, the authors of the
Columbia formulation also describe a tuning methodology to determine the correct
values of the RHQ parameters [134]. The tuning procedure incurs an error on the three
input parameters m0a, csw, ζ which must be taken into account in the final systematic
error. A discussion of the RHQ tuning procedure is presented in section 5.3.3.

The RHQ action is based on the Fermilab action [9], and has been restated as both a
Tsukuba formulation [10] and a Columbia formulation [11], each with different
parameterisations of the input variables. In this work, we make use of the Columbia
formulation of the RHQ action, which is

a4 ∑
x,y

ψ̄(x)

[
γ0D0 + ζγi · Di −

a
2

(D0)2 − a
2

(Di)
2 + csw ∑

µ>ν

ia
4

σµν F̂µν

]
ψ(y) (3.78)

with the covariant derivatives

Dµψ(x) =
1
2a
[
Uµ(x)ψ(x + aµ̂)−U−µ(x)ψ(x− aµ̂)

]
, (3.79)

D2
µψ(x) =

1
a2

[
Uµ(x)ψ(x + aµ̂)−U−µ(x)ψ(x− aµ̂)− ψ(x))

]
. (3.80)

RHQ fermions, despite breaking chiral symmetry, can be multiplicatively
renormalised for on-shell Green’s functions [11]. We will discuss the determination of
the relevant renormalisation factors and relation to the heavy-light current bilinear in
section 3.8.
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3.6.3 Domain-Wall Fermion Action

The Domain-Wall Fermion (DWF) action [12–16] adds an unphysical discretised fifth
dimension, which when taken to infinity satisfies the Ginsparg-Wilson relation and
reproduces the overlap operator [131]. Since the infinite dimension cannot be
simulated on a computer, we must make an approximation that approximately
satisfies the Ginsparg-Wilson relation by instead introducing a dimension of length Ls.
It is also necessary to introduce a new mass parameter M5 that varies in this fifth
dimension, which plays the role of removing doublers from the action. We use the
Shamir variant of domain-wall fermions, with an action

SDWF = ∑
x,y

∑
s,r

Ψ(x, s)DDWF(x, s|y, r)Ψ(y, r), (3.81)

where x and y are co-ordinates on the 4D boundary of the 5D bulk, and s and r are
co-ordinates in the 5th dimension. The Dirac operator DDWF(x, s|y, r) can be separated
into a Wilson term and bulk term,

DDWF(x, s|y, r) = δs,rDDWFWilson(x, y) + δx,yD(5)
DWF(s, r), (3.82)

where DDWFWilson(x, y) is the Wilson Dirac operator stated in (3.58) with the mass
replaced with M5, and the the 5th dimension term

D(5)
DWF(s, r) = δs,r − (1− δs,Ls−1)P−δs+1,r − (1− δs,0)P+δs−1,r

+ m(P−δs,Ls−1δ0,r + P+δs,0δLs−1,r), (3.83)

where P± = (1± γ5)/2, the right- and left-handed chiral projectors. The mass m of
the fermion enters this term, rather than the Wilson action term.

The physical 4D fields can be extracted by making the projections

ψ(x) = P−Ψ(x, 0) + P+Ψ(x, Ls − 1), (3.84)

ψ(x) = Ψ(x, Ls − 1)P− + Ψ(x, 0)P+. (3.85)

From this definition, we can see that the left- and right-handed fields decouple as
Ls → ∞ and chiral symmetry is preserved. Since we will always have a finite Ls in a
numerical simulation, there will be some residual chiral symmetry breaking that
contributes to the quark mass. For Domain-Wall Fermions, this takes the form of a
simple linear combination

mq = m + mres (3.86)

where mres is the additional mass due to residual chiral symmetry breaking. Since the
residual mass is typically small, we can approximate Domain-Wall fermions as
satisfying the Ginsparg-Wilson relation, which greatly simplifies their
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renormalisation. As with the RHQ renormalisation factor, we will discuss the DWF
renormalisation in section 3.8.

For this work, we use Shamir Domain-Wall Fermions for all quark fields other than
the bottom quark.

3.6.4 RHQ-DWF Bilinear

The vector current Vµ
µ = x̄γµb carries a discretisation error of O(a). We can construct a

current with an O(a)-improved error by adding single-derivative operators to the
current, following the previous RBC-UKQCD Bs → K`ν, B→ π`ν paper [90]:

V1
µ = l̄(x)2

−→
D µb(x), (3.87)

V2
µ = l̄(x)2

←−
D µb(x), (3.88)

V3
µ = l̄(x)2γµ(γi ·

−→
D i)b(x), (3.89)

V4
µ = l̄(x)2γµ(γi ·

←−
D i)b(x), (3.90)

where the covariant derivatives are

−→
D µb(x) =

Uµ(x)b(x + aµ̂)−U−µ(x)b(x− aµ̂)

2
, (3.91)

l̄(x)
←−
D µ =

l̄(x + aµ̂)U†
µ(x)− l̄(x− aµ̂)U†

−µ(x)

2
. (3.92)

Denoting the unimproved vector current as V0
µ , these terms can then be added to the

temporal and spatial parts of the vector current with a set of matching coefficients:

V0(x) = V0
0 (x) + c3

t V3
0 (x) + c4

t V4
0 (x), (3.93)

Vi(x) = V0
i (x) + c1

i V1
i (x) + c2

i V2
i (x) + c3

i V3
i (x) + c4

i V4
i (x). (3.94)

These coefficients have been calculated to one-loop order [135] using mean-field
improved lattice perturbation theory [136], and we report these values when we
introduce the details of our lattice simulation in chapter 5. As with the two actions we
use, we will also discuss the current renormalisation in section 3.8.

3.7 Correlation Functions

3.7.1 Lattice Construction

As we discussed in 3.2.4, we can build correlation functions out of combinations of
quark bilinears of flavours f1 and f2, which are the annihilation and creation operators
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given respectively by:

OP = ψ
( f1)

(x)Γψ( f2)(x); O†
P = ±ψ

( f2)
(x)Γ†ψ( f1)(x), (3.95)

where Γ is the appropriate gamma structure for the bilinear, and the sign on the
creation operator is dependent on the particular gamma structure. For pseudoscalars,
the gamma structures are γ5 matrices:

OP = ψ
( f1)

(x)γ5ψ( f2)(y); O†
P = −ψ

( f2)
(y)γ5ψ( f1)(x), (3.96)

where we have used the fact that (γ5)† = γ5. The residual minus sign comes from the
re-ordering of the γ5 and γ0 matrices after taking the Hermitian conjugate to find an
expression in terms of ψ and ψ rather than ψ† and ψ.

We will also simplify our notation of writing inverse Dirac matrices in the Wick
contraction by directly assigning a symbol for the propagator:

G f (x, y)ab = ψ(x)
( f )
a ψ̄(y)

( f )
b , (3.97)

which describes a particle propagating from y to x, where colour indices are
suppressed and spin indices are indicated with roman letters.

One further property of great utility is γ5-hermiticity, which we covered in 3.5.6. We
we noted there, many propagators are γ5-hermitian, and this is a property of both
RHQ and DWF propagators. This property is defined by the relation

G f (x, y)†
ab = (γ5)acG f (y, x)cd(γ5)db. (3.98)

This allows us to re-use lattice propagators computed for the direction y→ x if we
need the same propagator for the direction x → y. As a simple example, the
computational cost of generating the quark propagators—generally the dominant
expense—for a meson composed of a quark and anti-quark of the same flavour can be
halved by re-using the quark propagator as the anti-quark propagator with this
relation.

3.7.2 Two-Point Functions

We can begin with a discussion of the analytical form of the two-point function, which
we can use to extract energies from the correlators. As we noted in section 2.7.2, this is
required in order to extract the form factors from the three-point functions.
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Pseudoscalar two-point functions are the product of a creation and annihilation
operator for a pseudoscalar P,

C2pt(t) = 〈OP(~x, t)O†
P(~0, 0)〉, (3.99)

which we can find an analytical expression for by making the individual expectation
values explicit, and pulling out the time-dependence of the operators,

C2pt(t) =
1
Z ∑

n,m

1
4EnEm

〈m|e−Ĥ(T−t)OP(~x, 0)e−Ĥt|n〉〈n|O†
P(~0, 0)|m〉, (3.100)

=
1
Z ∑

n,m

1
4EnEm

〈m|e−Em(T−t)OP(~x, 0)eEnt|n〉〈n|O†
P(~0, 0)|m〉, (3.101)

where the Es are energies of the nth state, and T is the lattice time extent. The explicit
form for the partition function is

Z = ∑
n

〈n|e−TH |n〉
2En

= ∑
n

e−TEn

2En
, (3.102)

which gives us the total expression

C2pt(t) =
∑n,m

1
4EnEm

〈m|e−Em(T−t)OP(~x, 0)e−Ent|n〉〈n|O†
P(~0, 0)|m〉

∑l
1

2El
e−TEl

. (3.103)

These operators must act on the ground states to create and annihilate the meson, so
throwing away any states where both n, m 6= 0 leaves us with

C2pt(t) = ∑
n,m

(
e−Ente−(T−t)E0

4EnE0

1

∑l
1

2El
e−TEl

〈0|OP(~x, 0)|n〉〈n|O†
P(~0, 0)|0〉+

e−Em(T−t)e−E0t

4E0Em

1

∑l
1

2El
e−TEl

〈m|OP(~x, 0)|0〉〈0|O†
P(~0, 0)|m〉

)
, (3.104)

which is a sum of forwards-propagating and backwards-propagating states,
normalised by a sum of finite-size effects. Since the n and m sums are now
independent, we can write them using a single n index. We can also cancel off a factor
of (1/2E0)e−TE0 in the expression:

C2pt(t) = ∑
n

(
e−∆Ent

2En

1
1 + E0

E1
e−T∆E1 + E0

E2
e−T∆E2 + ...

〈0|OP(~x, 0)|n〉〈n|O†
P(~0, 0)|0〉+

e−∆En(T−t)

2En

1
1 + E0

E1
e−T∆E1 + E0

E2
e−T∆E2 + ...

〈n|OP(~x, 0)|0〉〈0|O†
P(~0, 0)|n〉

)
, (3.105)
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If we can approximate the finite-size effects as negligible, we can say that

1 +
E0

E1
e−T∆E1 +

E0

E2
e−T∆E2 + ... ≈ 1 (3.106)

and write

C2pt(t) = ∑
n

(
e−∆Ent

2En
〈0|OP(~x, 0)|n〉〈n|O†

P(~0, 0)|0〉+

e−∆En(T−t)

2En
〈n|OP(~x, 0)|0〉〈0|O†

P(~0, 0)|n〉
)

, (3.107)

Since the quantities ∆En—which are the difference between the vacuum and state
energy—are what is actually measured, we will drop the delta from this expression as
just write En. Pulling out the momentum-dependence of the operations using the
Fourier transform and absorbing this into the energy definition, we can than identify
the matrix elements in this sum as the same values, and simplify the expression as

= ∑
n

ZaZb

2En

(
e−Ent + e−En(T−t)

)
(3.108)

where matrix element for the transition between the vacuum and energy state |n〉 for
the pseudoscalar P is

Za = |〈0|OP|n〉| = |〈n|O†
P|0〉|. (3.109)

For the case where the annihilation and creation operators share the same type of
source, we can state Za = Zb. We can see that the value of the correlation function is
exponential in the energy over time, and so for 0� t� T the ground state will
dominate, assuming a sufficiently large T. Such an expression behaves like a cosh
function defined between the times t = 0 and t = T.

Under an appropriate ratio, and assuming ground-state dominance, we can also
immediately isolate the ground-state energy. Since such a ratio will be contaminated
by excited-states for t ∼ 0, t ∼ T, we call this the “effective mass”. The ratio

meff(t + 1/2) = ln
(

C(t)
C(t + 1)

)
(3.110)

gives the effective mass for the region 0� t� T/2, where the forwards-propagating
state dominates. If we also wish to include the influence of the
backwards-propagating state, we can instead define the effective mass as

meff(t) = cosh−1
(

C(t + 1) + C(t− 1)

2C(t)

)
, (3.111)

since, as we noticed above, the ground-state correlator behaves like a cosh function.
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To compute the two-point functions under lattice QCD, we must calculate the
contributions to 〈OP(~x, t)O†

P(~0, 0)〉. We can do this by making all possible Wick
contractions between the quark fields composing the OP operators.

We will label the flavours of the two quarks in the meson as f1 and f2. For mesons
with f1 6= f2, we generate only a connected two-point correlation function, given by

〈OP(m)O†
P(n)〉conn. = −

〈
(ψ̄(m))

( f1)
a (γ5)ab(ψ(m))

( f2)
b (ψ̄(n))

( f2)
c (γ5)cd(ψ(n))

( f1)
d

〉

(3.112)

=
〈

(ψ(n))
( f1)
d (ψ̄(m))

( f1)
a (γ5)ab(ψ(m))

( f2)
b (ψ̄(n))

( f2)
c (γ5)cd

〉
(3.113)

=
〈

Tr
[
(G f1(n, m))da(γ5)ab(G f2(m, n))bc(γ5)cd

] 〉
(3.114)

=
〈

Tr
[
(G f1(n, m))da(G f2(n, m))†

ad

] 〉
(3.115)

where we have flipped the sign in (3.113) due to the anti-commutation of the
Grassmann-valued quark fields and used γ5-hermiticity in (3.115). In the above
expressions, the spin indices are made explicit and the colour indices are suppressed.

For f1 = f2, there is also a disconnected contribution:

〈OP(m)O†
P(n)〉disc. = −

〈
(ψ̄(m))

( f1)
a (γ5)ab(ψ(m))

( f1)
b (ψ̄(n))

( f1)
c (γ5)cd(ψ(n))

( f1)
d

〉

(3.116)

= −
〈

(ψ(m))
( f1)
b (ψ̄(m))

( f1)
a (γ5)ab(ψ(n))

( f1)
d (ψ̄(n))

( f1)
c (γ5)cd

〉

(3.117)

= −
〈

Tr
[
(G f1(m, m))ba(γ5)ab

]
Tr
[
(G f1(n, n))dc(γ5)cd

] 〉
. (3.118)

3.7.3 Three-point Functions

The three-point functions that we study are flavour-changing charged currents. For
this section, we will call the quark which does not change flavour the ”spectator”
quark and label it with (sp.). We will call the quark which does change flavour the
”valence” quark, and label the two flavours of this quark fi and f f for ”initial flavour”
and ”final flavour”. We therefore have the initial and final state annihilation operators

Oi(x) = ψ̄( fi)(x)γ5ψ(s)(x), (3.119)

O f (x) = ψ̄( f f )(x)γ5ψ(s)(x). (3.120)

To implement the change in flavour, we utilise the flavour-changing vector current

Vµ(x) = ψ̄( fi)(x)γµψ( f f )(x). (3.121)
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The three-point function itself is given by

C3pt(t, tsnk,~p) = ∑
x

e−i~px ·~x〈O f (~x, t)Vµ(~y, tsnk)O†
i (~0, 0)〉, (3.122)

= ∑
n,m

e−Ei
mte−E f

n(tsnk−t)

4Ei
mE f

n
〈0|O f |n〉〈n|Vµ|m〉〈m|O†

i |0〉, (3.123)

where tsnk is the time at which the final state is annihilated.

The flavours fi and f f must necessarily be different for a change of flavour to occur, so
we need only consider whether these fields can contract with the spectator quark to
determine the diagrams that contribute to the final amplitude.

For fi 6= sp., f f 6= sp., we again obtain only a connected diagram:

〈O f VµO†
i 〉conn. = −

〈
(ψ̄(z))( f f )

a (γ5)ab(ψ(z))
(sp.)
b (ψ̄(y))( fi)

c (γµ)cd(ψ(y))
( f f )

d (ψ̄(x))
(sp.)
e (γ5)e f (ψ(x))

( fi)
f

〉

(3.124)

=

〈(
ψ(y)

)( f f )

d

(
ψ̄(z)

)( f f )
a (γ5)ab

(
ψ(z)

)(sp.)
b

(
ψ̄(x)

)(sp.)
e (γ5)e f

(
ψ(x)

)( fi)

f

(
ψ̄(y)

)( fi)
c (γµ)cd

〉

(3.125)

=

〈
Tr
[(

G( f f )(y, z)
)

da
(γ5)ab

(
G(s)(z, x)

)
be

(γ5)e f

(
G( fi)(x, y)

)
f c

(γµ)cd

]〉

(3.126)

For f f = sp., there is an additional disconnected diagram:

〈O f VµO†
i 〉disc. f f = −

〈
(ψ̄(z))( f f )

a (γ5)ab(ψ(z))
( f f )

b (ψ̄(y))( fi)
c γ

µ
cd(ψ(y))

( f f )

d (ψ̄(x))
( f f )
e (γ5)e f (ψ(x))

( fi)
f

〉

(3.127)

= −
〈

(ψ(z))
( f f )

b (ψ̄(z))
( f f )
a (γ5)abψ(x))

( fi)
f (ψ̄(y))

( fi)
c γ

µ
cd(ψ(y))

( f f )

d (ψ̄(x))
( f f )
e (γ5)e f

〉

(3.128)

= −
〈

Tr
[
(G f f (z, z))ba(γ5)ab

]
Tr
[
(G fi (x, y)) f cγ

µ
cd(G f f (y, x))de(γ5)e f

]〉

(3.129)

= −
〈

Tr
[

G f f (z, z)γ5

]
Tr
[

G fi (x, y)γµG f f (y, x)γ5

]〉
(3.130)

and for fi = sp., we similarly have

〈O f VµO†
i 〉disc. fi = −

〈
(ψ̄(z))( f f )

a (γ5)ab(ψ(z))
( fi)
b (ψ̄(y))

( fi)
c γ

µ
cd(ψ(y))

( f f )

d (ψ̄(x))( fi)
e (γ5)e f (ψ(x))

( fi)
f

〉

(3.131)

= −
〈

Tr
[

G f f (y, z)γ5G fi (z, y)γµ
]

Tr
[
G fi (x, x)γ5

]〉
. (3.132)
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3.8 Continuum Renormalisation

As noted in previous sections, we must be careful when extrapolating lattice results to
the continuum because the lattice spacing a must taken to 0, removing the
UV-regulation. Renormalising the lattice results in order to make the extrapolation
well-defined can be a complex topic; for this project the procedure is relatively simple.
We introduced the renormalisation conditions for RHQ and DWF quarks in sections
3.6.2 and 3.6.3 respectively, and saw that—for our purposes—their bound states can be
multiplicatively renormalised. We have yet to discuss the renormalisation of the
RHQ-DWF bilinear, or the techniques by which we can obtain the renormalisation
factors. We can begin with the RHQ-DWF bilinear.

As we noted in section 2.7.2, we can obtain the form factors of interest from the matrix
elements 〈P|Vµ|B〉 that enter three-point functions. Following [137, 138], we
renormalise the current as

Zbl
V = ρ

√
Zbb

V Zll
V , (3.133)

where Zbb
V and Zll

V are renormalisation coefficients for the b→ b and l → l vector
currents, and ρ is a residual correction expected to be close to 1 due to most of the
contributions cancelling [139].

Since DWF propagators can be assumed to negligibly break chiral symmetry, we can
use the result that ZV = ZA under chiral symmetry to identify these up to O(amres).
We refer to [140] for the value of Zll

A calculated on the gauge ensembles utilised in our
calculation.

The coefficient Zbb
V can be computed from the vector current between two B(s) mesons

as [141]

Zbb
V =

〈B(s)B†
(s)〉

〈B(s)V0B†
(s)〉

, (3.134)

by using the fact that
Zbb

V 〈B(s)V0B†
(s)〉 = 2MB(s) , (3.135)

where V0 is the flavour-conserving current b̄γ0b, and we can determine the
renormalisation factor by fitting the ratio of the two-point to three-point function in
the region where the ground state is dominant.

The residual renormalisation coefficient ρ was calculated alongside the current
improvement coefficients [135] with mean-field improved lattice perturbation theory
[136]. Putting these pieces together, we can calculate the renormalisation coefficient
for the RHQ-DWF bilinear.
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Chapter 4

Lattice QCD for Heavy-Light
Semileptonic Decays

4.1 Calculation Background

4.1.1 Overview

In the previous chapters, we have introduced the background physics and calculation
techniques for our processes of interest, B→ π`ν and Bs → K`ν. As a reminder, we
ultimately seek to calculate the CKM matrix element |Vub| from the decay equation

dΓ(B(s) → P`ν)

dq2 =
G2

F|Vub|2
24π3

(q2 −m2
`)

2
√

E2
P −M2

P

q4MB(s)
×

[(
1 +

m2
`

2q2

)
M2

B(s)
(E2

P −M2
P)
∣∣ f+(q2)

∣∣2 +
3m2

`

8q2

(
M2

B(s)
−M2

P

)2 ∣∣ f0(q2)
∣∣2
]

, (4.1)

for the final state P = π or P = K, where the form factors f+(q2) and f0(q2) must be
calculated using non-perturbative techniques. Although we have outlined the
procedure by which these form factors are calculable with lattice QCD, we have yet to
introduce the methods we use to extract the form factors from the three-point
functions and the techniques to extrapolate the lattice results to the continuum limit,
and across the full q2 range accessible to the decay and experiment. We shall rectify
this situation in this chapter.

Experimental results typically probe the entire q2 range for these decays, although
they are more precise at low q2. For B→ π`ν this is 0 ≤ q2 ≤ 26.4 GeV2/c2, and it is
0 ≤ q2 ≤ 23.7 GeV2/c2 for Bs → K`ν.
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4.1.2 Form factors via f⊥ and f‖

As previously stated, the form factors f+ and f0 enter a standard parameterisation of
the matrix element 〈P|Vµ|B(s)〉,

〈P|Vµ|B(s)〉 = f+(q2)

(
pµ

B(s) + pµ
P −

M2
B(s)
−M2

P

q2 qµ

)
+ f0(q2)

(
M2

B(s)
−M2

P

q2 qµ

)
, (4.2)

where pB(s) is the momentum of the B(s) meson, pP is the momentum of the P meson,
and qµ is the momentum transfer to the W± boson. The momentum transfer is
therefore defined by

q2 = (pµ
B(s)
− pµ

P)2. (4.3)

However, (2.63) is a non-trivial expression to extract f+ and f0 from. We can make a
cleaner extraction of information from the matrix element by taking an alternative
parameterisation in terms of the form factors f‖ and f⊥:

〈P|Vµ|B(s)〉 =
√

2MB
[
vµ f‖(EP) + pµ

⊥ f⊥(EP)
]

(4.4)

where vµ is the B(s) meson four-velocity, and pµ
⊥ = pµ

P − (pP · v)vµ.

In the rest frame of the B(s) meson,

vµ → (1,~0), (4.5)

pµ
⊥ → (0, pi

P), (4.6)

which causes f⊥ and f‖ to each be dependent on either the spatial and temporal
components only:

f‖ =
〈P|V0|B(s)〉√

2MB(s)

(4.7)

f⊥ =
〈P|Vi|B(s)〉√

2MB(s)

1
pi (4.8)

where no sum is implied over i; f⊥ is equal for the three spatial dimensions. This
decoupling of the components of the matrix elements in the form factor definitions
greatly simplifies their extraction.

Ultimately, we are interested in f0 and f+. We can perform a simple linear
combination of f‖ and f⊥ to recover these form factors,

f0(q2) =

√
2MB

M2
B(s)

+ E2
P

[
(MB(s) − EP) f‖(q2) + (E2

P −M2
B(s)

) f⊥(q2)
]

, (4.9)
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f+(q2) =
1√

2MB(s)

[
f‖(q2) + (MB(s) − EP) f⊥(q2)

]
. (4.10)

4.1.3 Extracting Form Factors from Three-Point Functions

We have yet to discuss the issue of extracting 〈P|Vµ|B(s)〉 from the three-point
function, which contains several other factors. These factors could be removed via
appropriate data analysis, but we can instead take use alternative method of
cancelling off these additional factors by taking ratios of three-point and two-point
functions. In practice, correlations between the two-point and three-point functions
can yield improved statistics with this method.

Taking the definitions of two-point and three-point functions from (3.108) and (3.123),
we can see that

Cµ
B→π(t)√

CP(t)CB(s)(tsnk − t)
=

∑n,m
e−Ei

mte−E f
n(tsnk−t)

4Ei
mE f

n
Z(n)

P Z(m)
B(s)
〈P(n)|Vµ|B(m)

(s) 〉√(
∑n

e−Ent

2En
(Z(n)

P )2
) (

∑m
e−Em(tsnk−t)

2Em
(Z(m)

B(s)
)2
) . (4.11)

For 0� t� tsnk, it should be a good assumption that the ground-state is dominant.
We can then take m = 0, n = 0 in (4.11) and re-arrange to find

Rgnd(t, tsnk) = lim
0�t�tsnk

Cµ
B→π(t)√

CP(t)CB(s)(tsnk − t)

√
4EP MB(s)

e−tEP e−(tsnk−t)MB(s)
= 〈P|Vµ|B(s)〉.

(4.12)
We can also take a more relaxed time constraint by also including the first excited
states for B(s) and P. It can be useful to instead take a ratio of the three-point function
to “reduced” two-point functions,

C′P(t) =

(
∑
n

e−Ent

2En
(Z(n)

P )2

)
− e−E1t

2E1
(Z(1)

P )2, (4.13)

such that when we assume ground- and first-excited state dominance, C′P(t) is equal
only to the ground-state. This simplifies the expansion of (4.11), which reduces to
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three terms:

Rexc.(t, tsnk) = lim
0�t�tsnk

Cµ
B→π(t)√

C′P(t)C′B(s)
(tsnk − t)

√
4EP MB(s)

e−tEP e−(tsnk−t)MB(s)
(4.14)

= 〈P|Vµ|B(s)〉 +

〈P(1)|Vµ|B(0)
(s) 〉

√√√√Z(1)
P

Z(0)
P

√√√√E(0)
P

E(1)
P

√
e−t

(
E(1)

P −E(0)
P

)
+

〈P(0)|Vµ|B(1)
(s) 〉

√√√√√
Z(1)

B(s)

Z(0)
B(s)

√√√√√
E(0)

B(s)

E(1)
B(s)

√

e
−(tsnk−t)

(
E(1)

B(s)
−E(0)

B(s)

)

.

(4.15)

In practice, replacing the two-point functions with “reduced” two-point functions has
an insignificant effect on the results but increases numerical instability, so we use
(4.15) as a model for a ratio utilising the unaltered two-point functions.

4.2 Continuum Phenomenology

4.2.1 SU(2) Heavy Meson Chiral Perturbation Theory

Chiral perturbation theory (ChiPT), as introduced in section 2.5, is insufficient to
describe B(s) → P`ν processes in the continuum limit. These decays involve
heavy-quark fields not present in the octet field Π that describes only the
pseudo-Goldstone bosons living in the SU(3)V-flavour symmetry of ChiPT. A
synthesis of chiral perturbation theory and heavy quark effective theory (HQET),
termed heavy-meson chiral perturbation theory (HMChiPT), was formulated to
describe this situation [142–145]. A thorough review is available in Manohar and Wise
[146], which much of this discussion is based upon.

The starting point is to introduce a heavy-light super-field from HQET [146]

Ha =
1 + /v

2

[
(P∗µ )aγµ − Paγ5

]
, (4.16)

where (P∗µ )a and Pa annihilate vector and scalar heavy-light quark bilinears (such as B
and B∗) respectively, and v is the four-velocity of the heavy quark. The super-field Ha

transforms under a chiral symmetry SU(3)V-flavour subgroup as an anti-triplet

Ha → HbV†
ba, (4.17)
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where V†
ba is an SU(3)V transform, and Ha also transforms under an SU(2) heavy

quark spin symmetry from HQET as a doublet

Ha → DQ(R)Ha, (4.18)

where R is an element of the SU(3)R symmetry group of the ChiPT Lagrangian, and
DQ is an element of the SU(2) heavy quark spin symmetry. This HQET field is not
necessarily consistent with the ChiPT Lagrangian, since it does not transform under
the full SU(3)L × SU(3)R symmetry without a particular choice of representation
[146]. One such choice is

Ĥa = ĤbL†
ba, (4.19)

where L is an element of the SU(3)L symmetry. As a consequence of the implied parity
transformation law, it is useful to couple the H field not to the unitary field Σ
introduced in equation (2.60), but rather to the field

ξ =
√

Σ. (4.20)

These fields are the basis of HMChiPT. To describe the continuum behaviour of our
lattice simulations, we take full-QCD next-to-leading order expressions for the form
factors for this effective theory from [147]. We also note, following [148], that for
physical-mass strange quarks the full SU(3)L × SU(3)R chiral symmetry is an
unnecessary complication since there is no need to extrapolate in the strange quark
mass. We can therefore instead use the isospin-limit chiral symmetry SU(2)L × SU(2)R

which describes only the up and down quarks as briefly described in section 2.5. To
align conventions with [148], we will refer to this as SU(2) HMChiPT for brevity.
Furthermore, the pion/kaon final states in nearly all of the simulation
parameter-space have energies much larger than the rest masses. We can therefore
describe the form factors in the hard-pion/kaon limit, following [149]. The ultimate
product of these modifications is the two form factor descriptors

fpole(MP, EP, a) =
Λ

EP + ∆

(
c(0)

(
1 +

δ f (Mπ)− δ f (Mphys
π )

(4π f )2

)
+ c(1) ∆M2

P
Λ2 +

c(2) EP

Λ
+ c(3) E2

P
Λ2 + c(4)a2Λ2

)
, (4.21)

fno pole(MP, EP, a) =

(
c(0)

(
1 +

δ f (Mπ)− δ f (Mphys
π )

(4π f )2

)
+ c(1) ∆M2

P
Λ2 +

c(2) EP

Λ
+ c(3) E2

P
Λ2 + c(4)a2Λ2

)
, (4.22)
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where c(n) are fit parameters, ∆ is the energy of a resonance typically below the
production threshold of the decay, fπ is the pion decay constant, Λ is the chiral scale 1

GeV, ∆M2
P = M2

P −
(

Mphys
P

)2
, and δ f (Mπ) is a “chiral log” introduced by the one-loop

order terms. Its definition differs for the particular process we are interested in:

δ f B→π(Mπ) = −3
4

(1 + 3g2
b)M2

π log
(

M2
π

Λ2

)
, (4.23)

δ f Bs→K(Mπ) = −3
4

M2
π log

(
M2

π

Λ2

)
, (4.24)

where gb is the B∗Bπ coupling constant. We additionally add a finite-volume term by
modifying the chiral log as

M2
π log

(
M2

π

Λ2

)
→ M2

π log
(

M2
π

Λ2

)
+

4Mπ

L

L3

∑
~r 6=~0

K1 (|~r|Mπ L)

|~r| , (4.25)

where K1 is a modified Bessel function of the second kind, and~r is the spatial position
vector of a lattice site in the L3 volume.

4.2.2 z-expansions

Experiment results are generally binned into q2 values throughout the accessible q2

range; in order to make our lattice results available over the full q2 range we must
perform an extrapolation. The preferred way to do this is by using the z-expansion,
which requires us to change variables from q2 to z [150, 151]:

z(q2, t0) =

√
1− q2/t+ −

√
1− t0/t+√

1− q2/t+ +
√

1− t0/t+

, (4.26)

where t+ = MB(s) + MP and t0 is a free parameter. This parameterisation maps q2 on
to a unit circle, and allows us to expand the form factors as a convergent power series
in z:

Pi(q2)φi(q2, t0) fi(q2) =
∞

∑
k=0

a(k)
i (t0)z(q2, t0)k, (4.27)

where i is 0 or +, referring to a fit for f0 or f+ respectively; Pi are “Blaschke factors”
that must vanish for sub-threshold poles, and φi are “outer functions” that can be any
analytic function of q2. There is therefore a choice that can be made in the definition of
the outer function; different outer functions correspond to different parameterisations
in z. The free parameter t0 can also be chosen to accelerate the convergence of the
expansion.

There are two commonly-employed forms of this power series, known as the
Boyd-Grinstein-Lebed (BGL) [150] and Bourrely-Caprini-Lellouch (BCL) [152]
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parameterisations. In the BGL parameterisation, the outer functions are chosen such
that the coefficients a have a simple unitarity constraint [153]

N

∑
k=0

(a(k)
i )2 . 1, (4.28)

which is true for any order N. The BCL parameterisation, on the other hand, chooses
outer functions such that the functional form takes a simple shape, with a degree of
freedom can be removed from the series expansion to obtain the following expressions
for the form factors, for a pole at mpole:

f+(q2) =
1

1− q2/m2
pole

N−1

∑
k=0

a(k)
+

[
zk − (−1)k−K k

K
zK
]

(4.29)

f no pole
0 (q2) =

N−1

∑
k=0

a(k)
0 zk (4.30)

f pole
0 (q2) =

1
1− q2/m2

pole

N−1

∑
k=0

a(k)
0 zk (4.31)

The BCL parameterisation takes t0 to be

t0 = (Mi + M f )
(√

Mi −
√

M f

)2
, (4.32)

where Mi is the mass of the initial state, and M f is the mass of the final state.

For any z-expansion, we can also remove an additional degree of freedom by
enforcing the kinematic constraint that f0(0) = f+(0).

4.2.3 Lepton Universality Ratios

As we saw in in section 2.3, leptons of different flavours in the Standard Model couple
to the weak gauge bosons identically. This accidental flavour symmetry is known as
lepton universality, and is a prediction of the Standard Model. We should, therefore,
observe decay rates that depend only on their masses, and not on asymmetric
flavour-dictated interactions. One way to test this is to form ratios of the decay rates
for the individual flavours by integrating the differential decay rate over the kinematic
ranges accessible to the relevant lepton masses. With knowledge of the form factors
and the assumption of lepton universality, we can evaluate the ratio of decay rates
under the standard model. A deviation between the standard model prediction and
experimental results would then indicate lepton flavour universality violation, and a
signal of new physics. These “R ratios” have the key advantage that the CKM matrix
elements cancel in their construction, removing a large source of uncertainty.



66 Chapter 4. Lattice QCD for Heavy-Light Semileptonic Decays

The R ratio is defined as

R(P) =

∫ q2
max

m2
τ

dq2 dΓ(B(s)→Pτντ)
dq2

∫ q2
max

m2
`

dq2 dΓ(B(s)→P`ν`)
dq2

, (4.33)

where ` is either e or µ. This form of the ratio is chosen because the relatively large τ

mass makes the ratio sensitive to f0, whereas this term is negligible for e and µ masses.
This means that non-perturbative calculations are a requirement for determining these
ratios, as has been long known [154].

The traditional definition of the R-ratio given above does provide a test of lepton
universality, but has the drawback that it is insensitive to the q2 region m2

` ≤ q2 ≤ m2
τ.

We propose to use an alternative ratio to monitor lepton universality, following [155],
which addresses this issue. We implement this with two key changes to the ratio
definition:

• We change the lower integration limit of the denominator to m2
τ to match the

numerator, as proposed in [155–157],

• We modify the weighting on the form factors in the denominator to depend on a
common lepton mass, as in [155].

These changes make the largest part of the integrands—the FV term—the same in the
numerator and the denominator. We hope that this cancellation will lead to an
increase in precision when evaluating the new ratio with our lattice form factors.

To implement this, we first re-write the differential decay rate as

dΓ
(

B(s) → P`ν
)

dq2 = Φ(q2)ω`(q2)

[
F2

V +
(

F`
S

)2
]

, (4.34)

where

Φ(q2) = ηEW
G2

F|Vub|2
24π3 |~k|, (4.35)

ω`(q2) =

(
1− m2

`

q2

)2(
1 +

m2
`

2q2

)
, (4.36)

F2
V =~k2 ∣∣ f+(q2)

∣∣2 , (4.37)

(
F`

S

)2
=

3
4

m2
`

m2
` + 2q2

(
MB(s) −M2

P

)2

M2
B(s)

∣∣ f0(q2)
∣∣2 . (4.38)
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We now re-define the R-ratio as the “improved” R-ratio

Rimpr(P) =

∫ q2
max

m2
τ

dq2 dΓ(B(s)→Pτντ)
dq2

∫ q2
max

m2
τ

dq2 ωτ(q2)
ω`(q2)

dΓ(B(s)→P`ν`)
dq2

. (4.39)

Noting that the
(

F`
S
)2 term is negligible for e and µ masses, we can drop this term from

the denominator and simplify this expression to

Rimpr(P) ≈ 1 +

∫ q2
max

m2
τ

dq2Φ(q2)ωτ(q2)
(

Fτ
S
)2

∫ q2
max

m2
τ

dq2Φ(q2)ωτ(q2)F2
V

. (4.40)
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Chapter 5

Simulation Details and Data
Analysis

5.1 Introduction

Having introduced the background for the semileptonic processes B→ π`ν and
Bs → K`ν, and for the lattice formulation used to simulate these processes, we now
turn to the specifics of setting up our calculation. We will begin in section 5.2 with a
discussion of the ensembles that are used in this calculation, before moving on to the
simulation parameters of the fermion actions we use in section 5.3. In section 5.4 we
address the diagrams contributing to the quantities we need to compute, and any
further simulation parameters we have yet to discuss. We introduce the statistical
bootstrap in section 5.5, and describe how we can use it to propagate correlated errors
through our analysis. Finally, we discuss our data fitting procedure in section 5.6.

5.2 Lattice Ensembles

As mentioned in section 3.5.1, we use the RBC-UKQCD 2+1 flavour DWF-Iwasaki
gauge ensembles [120–122]. These ensembles make use of the
renormalisation-improved Iwasaki gauge action (section 3.5.1) and domain-wall
fermion sea quarks (section 3.6.3). These ensembles feature dynamical u, d, and s
quarks in the isospin limit, such that the u and d quarks share a unitary light quark
mass and become functionally degenerate flavours since electromagnetic effects are
also neglected. Hereafter we will refer to a light l quark in place of the lattice u and d
quarks. The existence of two degenerate flavours plus the independent strange quark
mass is represented by the “2+1 flavour” terminology in the gauge ensemble
definition. We note that 2 + 1 + 1 flavour gauge ensembles—which also include a
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Ensemble
L3 × T

/ a4
a−1

/ GeV
amsea

l amsea
s

Mπ

/ MeV
# Configs # Hits

C1 243 × 64 1.785 0.005 0.040 338 1636 1
C2 243 × 64 1.785 0.010 0.040 434 1419 1
M1 323 × 64 2.383 0.004 0.030 301 628 2
M2 323 × 64 2.383 0.006 0.030 362 889 2
M3 323 × 64 2.383 0.008 0.030 411 544 2
F1S 483 × 96 2.785 0.002144 0.02144 234 98 24

TABLE 5.1: The subset of RBC-UKQCD 2+1 flavour DWF-Iwasaki gauge ensembles
[120–122] used in this calculation. From left-to-right, we list the ensemble name, site
count per spatial (L) and temporal (T) dimension, inverse lattice spacing, light-quark
mass, pion mass, number of calculated gauge configurations, and time sources per
configuration. Both the lattice spacing and meson masses are determined from [162–
164], and the sea quarks are simulated with the Shamir domain-wall fermion action

[13, 14].

dynamical charm quark—are becoming more common in modern lattice calculations
where charm sea-quark effects contribute to the correlation functions (see recent
results by, e.g., [33, 158–161]).

A summary of important properties of the ensembles used in this calculation are given
in table 5.1. To improve statistics on our observables, we make multiple “hits” on
ensembles with fewer configurations. These are calculations on the same
configuration, but with a time and space translation of the source and sink
positions—shifting by a sufficient number of timeslices to acceptably suppress
correlations between measurements—that are averaged together to produce a
combined result per configuration. As noted in section 3.3, the simulated
configurations are separated sufficiently in Monte-Carlo time to suppress correlations
between them.

The reason for choosing these ensembles is to map out the a- and Mπ- dependence of
the f‖ and f⊥ form factors for B→ π`ν and Bs → K`ν (section 4.1.2), such that they
can be extrapolated to their continuum, physical-mass values with heavy meson chiral
perturbation theory (section 4.2.1). We highlight that the work presented in this
project features the F1S ensemble, which provides an additional lattice spacing not
present in the 2015 RBC-UKQCD calculation that this project seeks to update [90]. As
we will see in sections 6.4 and 6.5, this additional ensemble provides a substantial
improvement on the uncertainty in the continuum extrapolation.
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Ensemble L3 × T a−1

/ GeV
M5 Ls amsea

l amval
s amphys

s

C1 243 × 64 1.785 1.8 16 0.005 0.03224 0.03224(18)
C2 243 × 64 1.785 1.8 16 0.010 0.03224 0.03224(18)
M1 323 × 64 2.383 1.8 16 0.004 0.025 0.02477(18)
M2 323 × 64 2.383 1.8 16 0.006 0.025 0.02477(18)
M3 323 × 64 2.383 1.8 16 0.008 0.025 0.02477(18)
F1S 483 × 96 2.785 1.8 12 0.002144 0.02144 0.02167(20)

TABLE 5.2: Properties of the DWF propagators used in this project. As with the gauge
ensembles, the light and strange quarks are simulated with the Shamir domain-wall
fermion action [13, 14]. The light valence quarks are simulated at the same masses as
the light sea quarks, and the valence quarks use the values amval

l which are within 10%
of the physical quark masses.

5.3 Quark Propagators

5.3.1 DWF Propagators

Our l and s quark propagators are generated using the DWF action, using boundary
conditions anti-periodic in time. We use unphysical light-quark masses equal to those
of the sea quarks, and the strange quark masses are tuned to within 10% of their
physical value. We take M5 = 1.8, and Ls = 16 for the C and M ensembles, and
Ls = 12 for the F1S ensemble. All DWF propagators are generated with point sources.
We summarise the simulation parameters of the DWF quarks in table 5.2. We induce
momenta with norms that are integer multiples of lattice units in the DWF
propagators by inserting an appropriate momentum exponential at the propagator
source.

5.3.2 b Propagator

For b propagators, we utilise the RHQ action with boundary conditions anti-periodic
in time. We generate both point- and smeared-source propagators, with the latter
introduced to suppress excited-state contamination of the ground state. For the
smeared propagators, we use the smearing parameters determined in [165] for the C
and M ensembles, and for the F ensemble we scale these parameters to the F1S lattice
size. We will henceforth denote smeared operators with a tilde in any equations. The
RHQ parameters are given in table 5.4, after a discussion of the tuning procedure. The
smearing parameters are given in table 5.3.
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L3 × T a−1

/ GeV
σG NG

C 243 × 64 1.785 7.86 100
M 323 × 64 2.383 10.36 170
F 483 × 96 2.785 12.14 230

TABLE 5.3: Smearing parameters on the three lattice spacings used in this analysis.
Parameters on the C and M ensembles are repeated from [165], and the F ensemble
parameters have been scaled in accordance with the lattice spacing. The smearing
width for a Gaussian smearing function is given as σG, with the number of smearing

steps NG.

5.3.3 RHQ Action Tuning

The RHQ parameters am0, csw, ζ are tuned in accordance with the procedure given in
[165], based on the lattice spacing determined in [121, 162–164]. We use the Bs meson
to tune the parameters. The parameters are tuned such that the spin-averaged mass

MBs =
MBs + 3MB∗s

4
(5.1)

and hyperfine splitting
∆MBs = MB∗s −MBs (5.2)

reproduce their experimental values [4], and that the rest and kinematic masses of the
Bs meson are equal

MBs
1

MBs
s

= 1, (5.3)

i.e. the Bs meson obeys the continuum dispersion relation

E2
Bs

= M2
Bs

+ ~p2 (5.4)

up to O(~p4).

To carry out the tuning procedure, we match the physical observables to the RHQ
parameters in the region where we can assume a linear relationship,




MBs

∆MBs

MBs
1

MBs
s


 = J ·




m0a
csw

ζ


+ A, (5.5)

where J is a 3× 3 “gradient” matrix and A is an “intercept” vector. We construct J and
A by measuring the spin-averaged mass, hyperfine splitting, and rest/kinematic mass
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ratio as a set of vectors Y on seven parameter sets:

X0 =




m0a
csw

ζ


 , Xm0a+ =




m0a + σm0a

csw

ζ


 , Xm0a− =




m0a− σm0a

csw

ζ


 ,

Xcsw+ =




m0a
csw + σcsw

ζ


 , Xcsw− =




m0a
csw − σcsw

ζ


 ,

Xζ+ =




m0a
csw

ζ + σζ


 , Xζ− =




m0a
csw

ζ − σζ


 ,

and then construct J and A as

J =

(
Ym0a+ −Ym0a−

2σm0a
,

Ycsw+ −Ycsw−
2σcsw

,
Yζ+ −Yζ−

2σζ

)
, A = Y0 − J · X0. (5.6)

We can then obtain the tuned RHQ parameters by inverting (5.5) to linearly
interpolate within the parameter box as




m0a
csw

ζ




RHQ

= J−1 ·







MBs

∆MBs

MBs
1

MBs
s




PDG

− A


 , (5.7)

if the tuned parameters lie outside the initially chosen box—i.e. if the linear
relationship does not hold—we repeat the analysis on a new set of parameters guided
by the failed iteration step until we can successfully interpolate an RHQ parameter set
corresponding to the required PDG values. The specific values we take for the
spin-averaged mass and hyperfine splitting are, respectively,

MBs =
1
4

(
5366.82+0.22

−0.22 + 3× 5415.4+1.8
−1.4

)
MeV = 5403.26+1.8

−1.4 MeV, (5.8)

∆MBs = 48.6+1.8
−1.6MeV, (5.9)

which we refer to [4] for. We make a conservative choice for the error on the
spin-averaged mass by setting it equal to the full error on MB∗s ; the uncertainty in the
tuning procedure is in any case dominated by the error on ∆MBs . We take the tuned
parameters from [165] on the C and M as an initial guess for those ensembles, and use
these results scaled by the F ensemble lattice size to obtain an initial guess for the F
ensemble. We perform two iterations of the tuning procedure to obtain parameter sets
for each ensemble, and do not find evidence of curvature within the parameter box.
We cannot resolve a dependence of the RHQ parameters on the light sea-quark mass,
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and so we average determinations on the C and M ensembles—there is only one F
ensemble, so cannot also take an average for the fine lattice spacing—to obtain one set
of averaged RHQ parameters per lattice spacing.

Calculating the mass of the Bs and B∗s for a given set of RHQ parameters requires an
analysis of two-point functions for these mesons calculated using lattice QCD. Since
the technique will be described in section 6.2 during the presentation of the project
results, we refer ahead to that section for the fitting procedure so that we do not dilute
the discussion of the tuning procedure. To extract the masses, we use a ground state
analysis following section 6.2.

We must also consider systematic error effects on the values of the RHQ parameters.
The central values and errors of the RHQ parameters are reported in table 5.4, and we
will now discuss the systematics that enter our determination.

• First, we consider heavy-quark discretisation errors in the RHQ action using a
power-counting method, as discussed in [165], following the method outlined in
[166]. We re-tune the RHQ parameters using a spin-averaged mass, hyperfine
splitting, and rest/kinematic mass ratio adjusted by the uncertainties given in
[165], and take the subsequent change in the parameter values as a systematic
due to heavy-quark discretisation.

• We convert experimental data to lattice units using the lattice spacing during the
tuning procedure, and therefore must account for effect of the error on the lattice
spacing on the RHQ parameters. We re-tune on all ensembles with the lattice
spacings adjusted by ±1σ and take the largest deviation in the parameters for
each of the three lattice spacings as the error on the appropriate ensembles.

• We must also account for the experimental uncertainty on the PDG values that
enter the tuning procedure, in the form of the errors on the spin-averaged mass
and hyperfine splitting. We again re-tune the parameters with ±1σ on the
experimental inputs and take the largest deviation for each lattice spacing as the
error on the appropriate ensembles.

• We also account for the error due to a mis-tuning of the strange quark to its
physical mass. On the C ensembles, where we have tuned to the physical mass,
we re-measure the RHQ parameters using strange quarks of mass 0.030 and
0.040. We assume a linear dependence of the RHQ parameters on the strange
mass between these bounds, and estimate the effect on the RHQ parameters by
adjusting the strange mass by ±1σ from its physical value and calculating the
shift in the parameters from the slope. For the M ensembles, we have used a
strange mass not tuned to the physical value, but instead a value 1σ above at
0.025. Here, we include a second strange quark mass of 0.0272 and extrapolate
the RHQ parameters to the physical value to estimate the mis-tuning error. For
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a−1 / GeV m0a csw ζ

C 1.785 7.471(51)(75)(82)(45) 4.92(13)(28)(07)(24) 2.929(63)(100)(15)(03)
M 2.383 3.485(25)(38)(45)(31) 3.06(07)(18)(05)(15) 1.760(30)(58)(07)(02)
F 2.785 2.423(62)(36)(31)(29) 2.68(13)(15)(04)(13) 1.523(79)(43)(05)(02)

TABLE 5.4: RHQ parameter central values and errors on the C, M, and F groups of
ensembles. The quoted errors are, from left-to-right, the statistical error, heavy quark

discretisation error, lattice spacing error, and experimental error.

the F1S ensemble, we save computational resources by re-using the slopes from
the M ensembles—since the gradient of the slope decreases with increasing
lattice spacing—and make a conservative estimate of the mis-tuning error by
calculating the change in the RHQ parameters due to a ±2σ shift in the used
strange mass, which is within 1σ of the physical value. In all cases, we find a
potential mis-tuning error of ≤ 0.3%. Compared to the other systematics this is
small, and we neglect to include it in our final tally.

A plot of the dependence of the Bs → K`ν form factors on the RHQ parameters for the
C1 ensemble is given in figure 5.1. As shown in the plot, the form factors are linear in
the parameter in the vicinity of the box.

5.4 Correlators

5.4.1 Diagrams

We need to enumerate all diagrams contributing to the two-point and three-point
functions in our calculation. We refer back to section 3.7 for an enumeration of
possible contributing diagrams to the involved classes.

For the π±, we have two different quark flavours and thus only have a connected
diagram. The π0, however, has the quark content

uū− dd̄√
2

(5.10)

and in principle we should also have a disconnected contribution. However, since we
work in the isospin limit, i.e. we use a unitary light quark mass where mu = md, the
disconnected contributions from π0 final states cancel due to the masses being the
same, and we need only consider the connected diagram. This also has the
consequence that we need only a single connected diagram to describe all three π final
states, and they are hence indistinguishable in our calculation.

The kaon, B, and Bs mesons also only have a connected contribution due to having
two different quark flavours.
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FIGURE 5.1: Dependence of the form factors f0 and f+ on the RHQ parameters for
Bs → K`ν on the C1 ensemble. For all momenta, no evidence of curvature in param-
eter dependence is observed. Our tuned values are indicated by a vertical black line,
and the uncertainties by the grey bands. Points at different momenta for the same pa-
rameter values are offset for visual clarity; they take each the average RHQ parameter

value for each of the three clusters of points shown per plot.
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For the three-point functions, the Bs → K involves three distinct quark flavours and
thus only has a connected contribution. For B→ π, the B0 → π±`∓ν process involves
three distinct quark flavours and also only has a connected contribution. Following an
argument from isospin symmetry once more, the unitary light quark leads to a
cancellation in the expected disconnected diagrams for the charged B decay. We
therefore do not distinguish between these B→ π`ν decay paths in our results.

We therefore have only a single class of connected diagrams per correlation function
that must be computed.

5.4.2 Source-Sink Separation

When choosing the source-sink separation, we have multiple factors to consider. A
separation that is too small will not show a clear ground state signal, since
excited-state contaminations originating at the source and sink timeslices will not
have enough time to sufficiently decay. Conversely, increasing the source-sink
separation also increases the statistical error. We must therefore attempt to find a
balance that allows for a good ground state signal, whilst also giving us a good
statistical error. The optimal source-sink separation for the C ensembles was studied
in [90], and we re-use the separation for the C and M from here (20 and 26 timeslices
respectively). For the F1S, we take a source-sink separation of 30 timeslices. The F
separation has been chosen by scaling the C separation with the ratio of lattice
spacings on these ensembles, such that the distance is approximately equal in physical
units on all ensembles.

In [90], in order to determine the optimal source-sink separation, three-point functions
for several separations were generated. These were generated for the C1 and M1
ensembles, the ensembles with the lightest sea-quark masses, and hence the most
sensitive to excited-state effects on each lattice spacing. The separations that resulted
in ratios with a good balance between a clear plateau and error size were then taken as
the appropriate source-sink separations—20 and 26 on C1 and M1
respectively—which correspond to the same physical distance.

5.5 Statistical Techniques and Error Propagation

Correlators are defined as an average over path configurations, so in order to build
correlators we must average over our simulation results. However, this alone would
only give an average value of the correlator, so in order to estimate errors it is typical
to use resampling methods. A resampling method utilises averages of subsets of a
total sample to build a “resampled data set” that can be used to estimate statistical
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observables; for lattice QCD, this amounts to computing the properties of a list of
correlators built from various subsets of the total number of configurations available.
This list of resampled correlators can then be treated as samples from the underlying
distribution of the correlator, and we can perform operations on each of these
resamples individually to obtain similar estimators for secondary observables derived
from the correlators. In this way, we can propagate errors on to secondary observables
that also account for correlations in the data via these estimators of probability
distributions.

For this project we make use of bootstrap resampling [167]. For some random variable
x, the bootstrap defines a mean and variance for an estimator x̃ by generating a
resampled data set consisting of K “bootstrap samples” that can be used to compute
statistical properties. The mean and variance for the bootstrap estimator x̃ are given
respectively by

〈x̃〉 =
1
K ∑

k
bk; σ2

x̃ =
1
K ∑

k
(bk − 〈x̃〉)2 , (5.11)

where bk is the kth bootstrap sample — the average of N randomly selected values
from our data sample with replacement. We note that this particular implementation
of the bootstrap assumes that the measurements of x are uncorrelated; since each x
represents a configuration and we choose configurations sufficiently separated in
Monte-Carlo time to be uncorrelated, this is a valid assumption for our data. Note that
the definition of the bootstrap means that a single bootstrap average is virtually
guaranteed to include repeats of data points from the original sample; it is relatively
straightforward to demonstrate that each bootstrap sample is constructed from ∼ 63%
of the original sample for large N.

The number of bootstrap samples chosen is a free parameter; and the estimator x̃
converges to x in the limit K → ∞. A significant advantage of being free to choose the
number of bootstrap samples in each resampled data set is that it allows easy
comparison between data sets of different sizes. Table 5.1 shows that each of the six
ensembles used in this analysis have different sample sizes, so using a bootstrap
resampling scheme provides a simple and statistically sound way for us to compute
estimators for observables constructed from data over multiple ensembles, such as
those in the continuum limit of our simulation.

Since the bootstrap is constructed from averages of randomly-selected data points, the
bootstrap estimator carries with it an additional random-sampling error. As the
number of bootstrap samples increases, the size of this error will decrease and the
estimator error will converge to that of the original data set. For all quantities in this
project, we use 500 bootstrap samples.
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5.6 Data Fitting

5.6.1 General Procedure

Let us consider some vector of random variables y that we seek to describe with some
function f (α, x), where α is a vector of input parameters to f and x is a vector of
independent variables. We can use a tuning procedure in order to converge on the
vector α that best describes y given the function f . We follow a generalised
least-squares fitting procedure in order to optimise α. To do this, we seek to minimise
the χ2 value:

χ2 = r̂iWijr̂j (5.12)

where the residual r̂ is given by

r̂i = yi − f (α, xi) (5.13)

and the weight matrix W is the inverse of the covariance matrix C,

Cij =
〈
(yi − 〈y〉)

(
yj − 〈y〉

)〉
. (5.14)

We should bear in mind that we are minimising resampled data. This means that we
should not only minimise the χ2 for the mean of the resampled data, but also do this
minimisation for each individual bootstrap sample. In this way, we obtain a
distribution of values for α and can thus estimate the error on the fit parameters.
This means that each bootstrap sample should, in principle, have an individual weight
matrix constructed from the covariance matrix for the particular bootstrap sample
being fitted. However, in practice this can often prove numerically unstable. To obtain
a stable fit, we can make a frozen approximation where we use the covariance matrix of
the bootstrap mean to weight the fits to the individual bootstrap samples.

To minimise χ2, we use the MINPACK implementation of the Levenberg-Marquardt
algorithm library via the scipy package [168]. The Levenberg-Marquardt algorithm is
iterative, and at every iteration step shifts the fit parameters αi → αi + δi, where δi is
calculated from (

Jik Jkj + λ diag
(

Jik Jkj
))

δj = Jijr̂j, (5.15)

where Jij is the Jacobian matrix of f with respect to αi, and λ is a damping parameter
that can be tuned throughout the minimisation procedure. The algorithm has
converged when the size of δi is within a supplied tolerance.
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5.6.2 Goodness-of-fit

Having determined the optimal set of a parameters to match a particular function to
some data, we can then quantify the quality of the fit. The chi-squared
distribution—being the probability distribution for a quadrature sum of independent,
normally distributed random variables—can be used to draw certain conclusions
about our fit. The first statistic we can consider is the chi-squared per degree of
freedom, or “reduced chi-squared”. As the name implies, this is the ratio of the
chi-squared statistic to the number of degrees of freedom in the fit. The optimal value
of χ2

ν is 1; this implies that the average deviation of the fit from the data is in
agreement with the standard deviations of the data. The reduced chi-squared
therefore gives us a goodness-of-fit statistic; a χ2

ν � 1 implies that the fit model is not
appropriate for the data, and a χ2

ν < 1 is a product of overfitting, since we are claiming
better knowledge of the data than the error on the data.

We can make a more precise statement about the goodness-of-fit by using the χ2 to
compute a p-value. The p-value is a probability of obtaining a result in at least as
much tension with the null hypothesis as our observation, under the assumption that
the null hypothesis is true. For these fits, the null hypothesis is “the fit model does not
explain the data”, which we have a quantitative measure for with the reduced
chi-squared statistic. Our least-squares minimisation attempts to find the set of
parameters that makes the best case for the alternative hypothesis. Obtaining a bad
p-value—we will define the meaning of “bad” once we introduce a quantitative
descriptor of the p-value—suggests that either the null hypothesis is incorrect, or we
have obtained a very unlikely result. In order to decide whether to reject the null
hypothesis, we must decide what counts as an unacceptable level of probability.

The definition of the p-value means that we can calculate it from the cumulative
distribution function of our test statistic. The cumulative distribution function of the
χ2-distribution is given by

χ2
CDF

(
ν, χ2) = P

(
ν

2
,

χ2

2

)
, (5.16)

where P is the regularised lower incomplete gamma function. We can at this point
define two tests:

One-Tailed Test: Define the p-value as one minus the sum of probabilities
between χ2 = 0 and χ2 = χ2

fit:

p = 1− P
(

ν

2
,

χ2

2

)
. (5.17)
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The p-value peaks with a value of 100% at χ2
fit = 0, approaches 50% at χ2

fit/ν = 1
as ν→ ∞, and tends towards 0 as χ2

fit → ∞.

Two-Tailed Test: Define the p-value as twice the minimum value of a one-tailed
test and reversed one-tailed test:

p = 2 min
(

(P
(

ν

2
,

χ2

2

)
, 1− P

(
ν

2
,

χ2

2

))
. (5.18)

The p-value has a peak of 100% at a value of χ2
fit/ν that approaches 1 as ν→ ∞,

and tends towards 0 as χ2
fit → 0 and χ2

fit → ∞.

The one-tailed test only produces a low p-value for fits that do not describe the data
well, whereas the two-tailed test also punishes fits that exhibit over-fitting behaviour.
Functionally, the choice between these definitions boils down to what we consider a
“good” p-value. For the one-tailed test, values a little under 50% correspond to
χ2/ν ≈ 1, and both very large and very low p-values are bad. For the two-tailed test,
values a little under 100% correspond to χ2/ν ≈ 1, and anything far below this is bad.
The results presented in section 6 utilise the one-tailed p-value, for which the null
hypothesis is rejected if 5% < p < 95%.

It is extremely important to note that the rejection of the null hypothesis does not
imply that we should accept the alternative hypothesis as true; to do so is a false
dichotomy, since in our definition of the p-value we have already stated that statistical
outliers will also produce poor p-values. Moreover, without evidence external to the
fit, we cannot assume our chosen fit is the only fit with explanatory power — a
sufficiently long Taylor series could produce a good p-value, even if such a fit would
not tell us much. Ultimately, the p-value does not allow us to accept an alternative
hypothesis. Its role is only to tell us whether to reject our proposed fit.
Only if our alternative hypothesis is well-motivated with sufficient supporting
evidence or reasoning can we argue that the alternative hypothesis should be
accepted. In this project, all fit models considered are motivated by quantum field
theory — whether they are well-known calculations of correlation function behaviour
or relations motivated by effective field theory. Since the data we collect should also
be described by the specific quantum field theories our models are valid for, we can be
confident that a fit in sufficient tension with the null hypothesis allows us to take our
fit models as having explanatory power of the results — if we satisfy the assumptions
of said models.

5.6.3 Simultaneous Fits over Multiple Data Sets

It is often advantageous or necessary to simultaneously fit multiple data sets that each
share at least one descriptive parameter with at least one the fit models for another
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data set. This can be implemented by putting all relevant data into the data vector y
and assigning the appropriate fit model to different elements of y. The most
convenient way of doing this is to construct d such that all elements from a particular
data set are contiguous; and then we may define the fit function for the ith element of
y, fi(α, xi), as

fi(α, xi) =





0 ≤ i < n0 : g0(β0, xi),

n0 ≤ i < n1 + n0 : g1(β1, xi),

...

∑m−1
j=0 nj ≤ i < ∑m

j=0 nj : gm(βm, xi)

(5.19)

where nm is the number of elements in the mth data set entering the fit, gm is the
function applied to the mth data set, and βm is the subset of fit parameters α used by
the fit function gm. We need then only redefine the residual given in (5.13) by giving f
an index as

r̂i = yi − fi(α, xi). (5.20)

We can make adjustments to the covariance matrix of y to reflect assumptions about
the correlations between the multiple data sets in the fit. A common situation is where
the individual data sets should be correlated to themselves but not to each other; in
this case, we can set all covariances between variables from different data sets to 0. If y
is constructed such that it is the serial concatenation of the constituent data sets, we
can think about the covariance matrix as a block matrix, where the diagonal blocks are
covariance matrices of the input data sets and off-diagonal blocks are covariances
between data sets. To assume zero correlation between data sets, we set all
off-diagonal blocks to 0. We make use of such block-diagonal covariance matrices in
our continuum fits and q2 extrapolations, as presented in sections 6.4 and 6.6.
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Chapter 6

Results

6.1 Heavy Current Renormalisation

In order to non-perturbatively determine the heavy current renormalisation factor Zbb
V ,

we make fits to the ratio

C2(tsnk)

C3(t, tsnk)− C3(t− 1, tsnk)
= Zbb

V , (6.1)

where C3(t, tsnk) (see section 3.7 for general definitions of the correlation functions) is
a three-point Bs → Bs function involving the b→ b current bγ0b, and C2 is a Bs

two-point function. The results of these fits are given in table 6.1, alongside Zll
A taken

from [121]. Plots of the fits are given in figure 6.1. We obtain good p-values for all fits,
with errors ranging from 0.28% on the C1 ensemble to 0.07% on the F1S ensemble,
largely consistent on each lattice spacing.

Zll
A Zbb

V Fit Range p
C1 0.7172 9.095(25) [5, 16] 15%
C2 0.7178 9.136(21) [2, 17] 76%
M1 0.7449 4.777(11) [7, 19] 33%
M2 0.7452 4.772(06) [2, 24] 55%
M3 0.7453 4.769(07) [2, 24] 91%
F1S 0.7624 3.6240(24) [2, 28] 34%

TABLE 6.1: Renormalisation coefficients for the light- and heavy-quark currents. The
given fit ranges are inclusive, and both they and the p value are for the fits producing

the Zbb
V values. The corresponding Zll

A values are taken from [121].
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FIGURE 6.1: Fits to the ratio in 6.1 to extract the heavy current renormalisation factor
Zbb

V . From left-to-right, then top-to-bottom, are fits for the six ensembles C1, C2, M1,
M2, M3, and F1S.

6.2 Two-Point Function Energy Fits

If we refer back to our definitions of the ratios we use to extract form factors from
three-point and two-point functions in (4.12) and (4.15), we see that energies of the
initial and excited states enter these expressions. As we found in (3.108), the energy
also parameterises the analytic behaviour of the two-point functions of these states.
Taking into account the backwards-propagating state from periodic boundary
conditions, we can describe a lattice two-point function dominated by the ground and
first excited states as

C(t) =
n=1

∑
n=0

Z(a)
n Z(b)

n

2En

(
e−tEn + e−(T−t)En

)
, (6.2)

where n denontes the nth energy state.
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Since we only compute point-point data for the π and K mesons, we perform
single-correlator fits to extract energies. For the Bs and B mesons, we need the
smear-smear correlator for the three-point function ratios, but also compute
point-smear correlators for an improved mass-extraction signal. For the Bs meson, we
perform excited-state fits on the point-smear and smear-smear correlators
simultaneously to extract the ground and first excited state energies.

However, for the B meson, we find that both the smear-smear and point-smear
correlators suppress excited states so successfully that it is difficult to reliably extract
the first excited state on all ensembles, in particular the F1S. To remedy this situation,
we additionally computed point-point correlators for the B meson. Our fit strategy in
this instance is to perform ground state fits on the smear-point and smear-smear
correlators alongside an excited state fit on the point-point correlator simultaneously,
which stabilises the fits and reduces the error on the fit results. We note that including
the point-point correlator on the C2 ensemble for the B meson leads to an
unacceptable p-value, however, and for this ensemble we follow the Bs fit strategy of
extracting the excited state from the smear-smear and smear-point, since we can
obtain a sufficient signal here.

Three fits are performed to generate a single set of fit parameters. First, an
uncorrelated fit that excludes any excited states is performed on the input correlators.
The results of this fit are used as an initial guess for an uncorrelated fit including
excited states, the results of which are then in turn used as an initial guess for a final
correlated fit including excited states, from which we quote results. A summary of
mass fits on the four mesons is given in table 6.2, and full fit details are given in
appendix A. Plots of the mass fits are given in figures 6.2, 6.3, 6.4, and 6.5.

For final state mesons with momenta n2 > 0, we use the lattice dispersion relation to
calculate the higher-momentum masses from the rest mass,

Eldr
P = 2 arcsin−1

(√
sinh2

(
MP

2

)
+ ∑

i
sin2

(πni

L

))
, (6.3)

where ni is the ith component of the lattice momentum vector~n and L is the number
of sites per spatial dimension of the lattice.

6.3 Form Factor Extraction

As described in section 4.1.3, we extract the form factors f‖ and f⊥ by taking a ratio of
the three-point and two-point functions given by equation (4.12) and performing a fit
to the resultant plateau. Similar to the strategy for the two-point functions, we begin
by making an uncorrelated ground state fit to find a reliable estimate for the form
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M [MeV] C1 C2 M1 M2 M3 F1S
MBs 5.365(15) 5.368(15) 5.367(21) 5.371(20) 5.376(21) 5.365(21)
MB 5.302(15) 5.318(15) 5.307(20) 5.314(20) 5.318(20) 5.291(21)
MK 0.5472(18) 0.5827(18) 0.5371(22) 0.5583(23) 0.5753(25) 0.5314(27)
Mπ 0.3398(13) 0.4330(14) 0.3019(16) 0.3625(16) 0.4115(19) 0.2674(16)

TABLE 6.2: Ground-state masses for the four mesons involved in this calculation. Re-
sults are for correlated-in-time fits including the ground and first excited states of the
mesons. K and π fits are to a single correlator, Bs fits are to smear-point and smear-
smear correlators, and the B fits are to point-point, smear-point, and smear-smear cor-

relators. Full fit information is given in Appendix A.

6 8 10 12 14 16 18 20
t

2.90

2.95

3.00

3.05

3.10

3.15

3.20

M
B ef

f.

Point-Point
Smear-Point
Smear-Smear

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

2.900

2.925

2.950

2.975

3.000

3.025

3.050

M
B ef

f.

Smear-Point
Smear-Smear

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
t

2.1

2.2

2.3

2.4

M
B ef

f.

Point-Point
Smear-Point
Smear-Smear

5 10 15 20 25 30
t

2.1

2.2

2.3

2.4

2.5

M
B ef

f.

Point-Point
Smear-Point
Smear-Smear

5 10 15 20 25 30
t

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M
B ef

f.

Point-Point
Smear-Point
Smear-Smear

10 15 20 25 30 35
t

1.6

1.7

1.8

1.9

2.0

2.1

2.2

M
B ef

f.

Point-Point
Smear-Point
Smear-Smear

FIGURE 6.2: Two-point function fits to the B meson correlator. From left-to-right, then
top-to-bottom, are fits for the six ensembles C1, C2, M1, M2, M3, and F1S.
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FIGURE 6.3: Two-point function fits to the Bs meson correlator. From left-to-right, then
top-to-bottom, are fits for the six ensembles C1, C2, M1, M2, M3, and F1S.

factors. We then use this estimate in the initial guess for an uncorrelated excited state
fit, which again informs a correlated excited state fit. The excited state fit we use is a
slightly repackaged form of (4.15),

〈P|Vµ|B(s)〉+ α

√
e−t

(
E(1)

P −E(0)
P

)
+ β

√

e
−(tsnk−t)

(
E(1)

B(s)
−E(0)

B(s)

)

, (6.4)

where we have made the definitions

α = 〈P(1)|Vµ|B(0)
(s) 〉

√√√√Z(1)
P

Z(0)
P

√√√√E(0)
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E(1)
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, (6.5)

β = 〈P(0)|Vµ|B(1)
(s) 〉

√√√√√
Z(1)

B(s)

Z(0)
B(s)

√√√√√
E(0)
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E(1)
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. (6.6)
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FIGURE 6.4: Two-point function fits to the π meson correlator. From left-to-right, then
top-to-bottom, are fits for the six ensembles C1, C2, M1, M2, M3, and F1S.

In principle, we know the eight Z and E factors that enter these definitions and could
just fit the two extra unknown matrix elements; however, the precise value of these
matrix elements is unimportant to us — we merely need to capture the
time-dependence of the excited state contaminations of the plateau and account for
these effects in the fit. It proves to be more numerically stable to just fit the α and β

parameters as coefficients of the time-dependencies, and so we prefer this rescaled
approach over fitting the excited-state matrix elements.

The motivation for including excited states was driven by large excited state
contaminations in some ratios, in particular on the F1S B→ π`ν data and for some
higher-momentum states, where it is not obvious where the plateau lies. We checked
the excited state fit against our estimates for the ground state plateau fit, and find
excellent agreement with deviations of less than 1σ. We also attempted to include a
fourth term in the excited state fit, parameterising the contribution of both the B(s) and



6.3. Form Factor Extraction 89

4 6 8 10 12 14 16 18
t

0.30

0.35

0.40

0.45

0.50

0.55

M
K ef

f.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
t

0.3

0.4

0.5

0.6

0.7

0.8

M
K ef

f.
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
K ef

f.

5 10 15 20 25
t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
K ef

f.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
t

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
K ef

f.

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
t

0.19

0.20

0.21

0.22

0.23

0.24

M
K ef

f.

FIGURE 6.5: Two-point function fits to the K meson correlator. From left-to-right, then
top-to-bottom, are fits for the six ensembles C1, C2, M1, M2, M3, and F1S.

P mesons in the first excited state. Although this produced successful fits to several
ratios and provided excellent descriptions on some F1S ratios across many timeslices,
the fits were unstable for many ratios and so we elected to use three-term excited state
fits across all ratios. Good p-values are obtained for all fits, as shown in the full results
tables given in appendix A.

As stated in section 2.7.2, we obtain the form factors f⊥ and f‖ from the fitting
procedure, which must then be linearly combined in order to give f+ and f0. In tables
6.3 and 6.4, we quote the f0 and f+ values resulting from the combination of our fit
results for Bs → K`ν and B→ π`ν respectively. Full fit results for f⊥ and f‖ are given
in appendix A.
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n2 C1 C2 M1 M2 M3 F1S
f Bs→K
0 0 0.8700(93) 0.8691(89) 0.882(12) 0.881(12) 0.904(21) 0.860(10)

f Bs→K
0 1 0.7284(90) 0.7384(88) 0.739(13) 0.731(10) 0.765(18) 0.771(11)

f Bs→K
0 2 0.635(12) 0.654(12) 0.650(16) 0.648(12) 0.663(19) 0.705(14)

f Bs→K
0 3 0.563(20) 0.598(19) 0.582(27) 0.574(18) 0.603(23) 0.655(17)

f Bs→K
0 4 0.536(32) 0.560(28) 0.494(42) 0.511(31) 0.540(47) 0.600(21)

f Bs→K
+ 1 1.987(27) 1.947(24) 2.029(35) 2.010(33) 2.054(63) 2.261(37)

f Bs→K
+ 2 1.542(27) 1.511(25) 1.551(34) 1.583(31) 1.622(50) 1.841(32)

f Bs→K
+ 3 1.239(36) 1.264(34) 1.234(48) 1.306(36) 1.303(46) 1.591(36)

f Bs→K
+ 4 1.075(53) 1.118(48) 1.004(78) 1.087(51) 1.094(62) 1.425(49)

TABLE 6.3: Results for the form factors f0 and f+ for the Bs → K`ν process. The form
factors are calculated as a linear combination of f⊥ and f‖, as given by equation (4.2).
The results are obtained from correlated-in-time fits to the ratios given by (4.12), using
the excited-state fit ansatz provided in (6.4). Full fit information for the constituent f⊥

and f‖ fits are given in Appendix A.

n2 C1 C2 M1 M2 M3 F1S
f B→π
0 0 0.966(12) 0.913(13) 1.047(18) 1.002(16) 0.945(13) 1.050(26)

f B→π
0 1 0.758(16) 0.748(13) 0.813(25) 0.762(21) 0.761(15) 0.862(26)

f B→π
0 2 0.654(28) 0.661(21) 0.692(40) 0.664(24) 0.639(23) 0.750(34)

f B→π
0 3 0.557(54) 0.614(39) 0.509(77) 0.592(43) 0.584(39) 0.696(42)

f B→π
0 4 0.448(86) 0.554(52) 0.60(14) 0.45(16) 0.453(72) 0.639(91)

f B→π
+ 1 2.241(52) 2.089(39) 2.376(79) 2.286(62) 2.203(48) 2.890(88)

f B→π
+ 2 1.676(74) 1.570(43) 1.69(11) 1.765(68) 1.699(61) 2.129(66)

f B→π
+ 3 1.29(17) 1.386(70) 1.34(23) 1.381(95) 1.262(81) 1.832(88)

f B→π
+ 4 1.01(29) 1.124(96) 1.05(46) 0.95(19) 1.09(13) 1.51(16)

TABLE 6.4: Results for the form factors f0 and f+ for the B → π`ν process. The form
factors are calculated as a linear combination of f⊥ and f‖, as given by equation (4.2).
The results are obtained from correlated-in-time fits to the ratios given by (4.12), using
the excited-state fit ansatz provided in (6.4). Full fit information for the constituent f⊥

and f‖ fits are given in Appendix A.

6.4 Chiral Continuum Fits

We extrapolate our results to the continuum with the SU(2) heavy-meson chiral
perturbation theory expressions given in equations (4.21) and (4.22). We use (4.21) for
f0 and f+ on both the Bs → K`ν and B→ π`ν processes, taking into account the
relevant poles at ∆ = MB∗ −MB(s) . For f0, the B∗ state carries the quantum numbers
JP = 0+, and for f+ it takes 1−. For the 1− state, we make use of the PDG average [4],
and for the 0+ state we use the theoretical estimate from [169] since no experimental
result is available. The numerical values of the constants used in these fits can be
found in table 6.5.

For both Bs → K`ν and B→ π`ν, we find that the coefficient of the E2 term is
compatible with 0 and do not include it in the fit. When considering the systematic
error due to the choice of continuum extrapolation function, we include a fit variation
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fπ ∆0 ∆+ gb Λχ

Bs → K`ν 130.2 MeV 263 MeV -41.6 MeV - 1 GeV
B→ π`ν 130.2 MeV 305 MeV 45.2 MeV 0.57 1 GeV

TABLE 6.5: Summary of input constants to the continuum fits for both processes.
We take fπ from [78], the physical B(s) and B∗(1−) masses from [4] and theoretical
B(0+) mass from [169] in order to calculate ∆0 and ∆+, and gb—the B∗Bπ coupling

constant—from [170].

c1 c2 c3 c4 c5 p
f Bs→K
0 0.529(30) 0.21(11) 0.366(92) -0.243(69) -0.073(58) 87%

f Bs→K
+ 1.762(38) -0.04(28) -0.724(39) - -0.24(14) 48%

f B→Pi
0 0.502(25) 0.11(12) 0.45(11) -0.30(11) -0.171(58) 87%

f B→Pi
+ 1.678(62) 0.26(39) -0.650(87) - -0.34(21) 79%

TABLE 6.6: Chiral-continuum fit results using NLO SU(2) HMχPT to extrapolate lat-
tice results to 0 lattice spacing and physical meson masses.
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FIGURE 6.6: Chiral continuum fits for Bs → K`ν. The left plot is for f0, and the right
for f+. The vertical black line indicates the minimum E value at E = Mphys

K . The black
fit line and grey band are the continuum result and error band respectively.

that does include this term, as will be presented in section 6.5. The fit coefficients for
our preferred fits on Bs → K`ν and B→ π`ν are given in table 6.6. Since there are only
four fits to report with little additional information necessary, we quote
goodness-of-fit statistics in table 6.6 rather than appendix 6.6. Plots of the fits are given
in figures 6.7 and 6.6.

6.5 Synthetic Continuum Data and Systematic Errors

6.5.1 Synthetic Data

Having extrapolated our lattice form factors to their continuum limits, we now need
to extrapolate across the full q2 range using the z-expansion (section 4.2.2). In order to
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FIGURE 6.7: Chiral continuum fits for B → π`ν. The left plot is for f0, and the right
for f+. The vertical black line indicates the minimum E value at E = Mphys

π . The black
fit line and grey band are the continuum result and error band respectively.

do this, we construct “synthetic data points” at reference q2 values accessible to our
simulations—equally spaced in z, the q2-dependent expansion parameter used as the
independent variable in the z-expansion—such that we have continuum data to fit the
z-expansion to.

We choose a number of synthetic data points corresponding to the number of degrees
of freedom afforded by our continuum fits. We have five degrees of freedom from the
fit parameters; the degrees of freedom in the lattice spacing and pion mass become
fixed in the continuum, allowing us to take three synthetic data points. However, the
removal of the E2 term from the f+ fits costs us another degree of freedom, and we
therefore use only two synthetic data points for f+. We construct the data points
between q2 = 17.5 GeV and q2 = MB(s) −MP for both processes, with the third f0

data-point taken at a value of q2 corresponding to the z halfway between the z-values
of the high and low q2 points.

We also at this point account for systematic errors affecting the continuum result by
including these in the total uncertainty of the synthetic data, as described in section
6.5.10. In the remainder of this section, we enumerate the potential contributions to
the total error budget from systematic errors and assess their size.

6.5.2 Continuum Fit Systematic

We consider a source of systematic error from the specific forms of our fit Ansätze.
The results quoted in section 6.4 are for our preferred choice, but we should consider
alternative fit forms resulting from uncertainties on the input constants and the
significance of terms in the fit. We perform the following variations to the fit, and take
the largest percentage deviation

∣∣( f preferred − f variation)/ f preferred
∣∣ at each reference q2
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value out of all variations as the systematic error on that data point due to the fit
Ansätze:

• The fit form given in equation 4.21, including finite-volume corrections,

• No finite-volume correction,

• Removing the data points at n2 = 0 ( f0 only),

• Removing the data points at n2 = 4,

• Removing the chiral logarithms (“analytic” fit form),

• Removing the M2
π term,

• Removing the a2 term,

• Replacing fπ with the chiral limit value of f0 = 112 MeV [121],

• Replacing fπ with the Kaon decay constant fK = 155.6 MeV [4],

• Varying the f0 pole mass by 100 MeV,

• Varying the f+ pole mass by 30 MeV for Bs → K,

• Varying the f+ pole mass by 10 MeV for B→ π,

• Varying gb by 1σ = 0.08 (B→ π only).

We report fit coefficients for each variation in appendix A. Plots of the fit variations
over the statistical error on the continuum fits are given in figures 6.8 and 6.9.
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6.5.3 Lattice Scale Uncertainty

We do not include a systematic for the lattice scale uncertainty, because we already
include this in the statistical error of our physical-unit quantities that enter the
continuum extrapolation. For each lattice spacing, we build 500 Gaussian-distributed
data points—one for each bootstrap sample—centred on the central value of each
lattice spacing and distributed with the corresponding standard deviation, and
multiply the bootstrap samples of our lattice-unit quantities by these in order to
propagate the uncertainty.

6.5.4 Valence Strange Quark Mass Uncertainty

We account for any mis-tuning in the valence strange quark mass, since the Bs → K`ν

form factors feature a valence strange quark. To do this, we re-compute form factors
on the C1 ensemble at two additional strange quark masses, and find a linear
interpolation for the form factor between these masses. Assuming this interpolation
holds on all ensembles, we then use it to compute the fractional change in the form
factors if we extrapolate the valence quark mass to the physical value as

∆ f0/+(ams)

∆ms
=

f0/+(ams)− f0/+(amphys
s )

f0/+(amphys
s )

· amphys
s

ams − amphys
s

, (6.7)

for each momentum on each ensemble, and use the largest deviation out of the
available momenta. The largest ∆ms is on the F1S ensemble, where we have
amsim

s = 0.02144 and amphys
s = 0.02167(20). This gives us a maximal deviation of

∆ms =

∣∣∣∣∣
amsim

s − (amphys
s + δamphys

s )

amphys
s

∣∣∣∣∣ ≈ 1.98%. (6.8)
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FIGURE 6.10: Dependence of the form factors f0 and f+ on the RHQ parameter amb for
B→ π`ν on the C1 ensemble. For all momenta, no evidence of curvature in parameter
dependence is observed. Our tuned value is indicated by a vertical black line, and the

uncertainty by the grey band.

Combined with the corresponding value of ∆ f0/+(ams)
∆ms

, this results in an overall
maximal change in the form factor of 0.2%. Since this is negligible compared to our
other systematic errors, we neglect this contribution.

6.5.5 RHQ Parameters

To estimate the systematic error on the form factors due to any mis-tuning of the RHQ
parameters, we partially repeat the box analysis from section 5.3.3. We re-compute the
form factors on six variations of the RHQ parameters {m0a± σm0a, csw ± σcsw , ζ ± σζ}
and make a fit linear in these three parameters to the seven form factor values
(including the central data point). We then linearly interpolate the central form factors
to those at the three sets of RHQ parameters constructed by increasing one parameter
by its uncertainty, and take the quadrature sum of the deviations as the systematic
from potential RHQ parameter mis-tuning. We obtain an overall error of 1.8% for f0

and 1.7% for f+.

6.5.6 Light Quark Discretisation

We assess several sources of systematic error for the light quarks. We account for the
dominant (aΛQCD)2 error in both the DWF quarks and gluons by including an a2 term
in the continuum fit. For higher-order terms, we take (aΛQCD)4 ∼ 0.10% as the
dominant systematic. We also account for errors from residual chiral symmetry
breaking from the DWF action, which amounts to amres ∼ 0.1%. There are also several
terms from the heavy-light current of size O(αsaml), O((aml)

2), and O(α2
s ΛQCD). The

first two of these effects are negligible at < 0.1%, whereas the third is ∼ 0.78%. We add
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the light-quark discretisation systematics in quadrature for an overall estimate of
0.79%.

6.5.7 Heavy Quark Discretisation

The RHQ action gives rise to a non-trivial lattice spacing dependence of the form
factors in the region m0a ∼ 1. This is due to a mismatch in the coefficients of the
higher-order operators in the continuum and discretised theories, with an error on
each operator O in the heavy-quark action and heavy-light current given by

(Clat − CQCD)〈O〉. (6.9)

We estimate the heavy quark discretisation errors using heavy quark effective theory
(HQET) power-counting, following the procedure outlined in appendix B of [141],
where the continuum and lattice versions of the HQET operators are determined and
their difference yields a set of “mismatch functions” that relate the RHQ form factors
to the physical observables for our tuned RHQ parameters. We calculate mismatch
functions for three sources of lattice spacing dependence. For O(a2) errors resulting
from the action, we have

fE(m0a, csw, ζ) =
1

8m2
Ea2
− 1

m2
2a2

, (6.10)

where

1
4m2

Ea2
=

ζ2

(m0a(2 + m0a))2 +
cswζ

m0a(2 + m0a)
(6.11)

1
m2a

=
2ζ2

m0a(2 + m0a)
+

ζ

1 + m0a
. (6.12)

The tree-level coefficients for the O(a2) improved heavy-light electroweak operators
are given by three mismatch functions,

fX1(m0a, csw, ζ) = −1
2

(
d2

1 −
ζ

2(1 + m0a)

)
, (6.13)

fX2(m0a, csw, ζ) = −1
2

(
d2

1 −
csw

2(1 + m0a)

)
, (6.14)

fY(m0a, csw, ζ) = −1
2

(
(ζ − csw)(1 + m0a)

m0a(2 + m0a)
− d1

m2a

)
, (6.15)

where
d1 =

ζ(1 + m0a)

m0a(2 + m0a)
− 1

2m2a
. (6.16)
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a−1 / GeV αs(a−1) E X1 X2 Y 3 f‖ f⊥
C 1.785 0.2320 0.47 0.67 1.13 1.07 0.93 2.24 2.60
M 2.383 0.2155 0.36 0.43 0.74 0.76 0.63 1.53 1.77
F 2.785 0.2083 0.34 0.35 0.63 0.66 0.54 1.33 1.53

TABLE 6.7: Summary of heavy quark discretisation error contributions, calculated us-
ing heavy quark effective theory using the central values of our non-perturbatively
tuned RHQ parameters, following appendix B of [141]. The total percentage error on
f‖ and f⊥ is calculated by adding the errors in quadrature, counting each error the
number of times it appears. The ‘E’ contribution to the action is counted twice, and
the ‘3’ action is counted twice for f‖ and four times for f⊥, appearing once for each

improvement term in the current.

The mismatch function for O(α2
s a, a2) errors resulting from the current is

f3(m0a, csw, ζ) = αsζ
2

2 + m0a
. (6.17)

where we take αs = αMS
s .

We take a power-counting approach to estimating the leading-order effects from these
three functions,

errorn ≈ fn(aΛQCD)k, (6.18)

where fn are the mismatch functions, ΛQCD ≈ 500 MeV as implied by fits to inclusive
B decays [171], and k is the leading-order lattice spacing dependence of the effects the
mismatch functions model; all such effects are O(a2) except for f3, which has a leading
O(a1) dependence. We obtain an estimate for the total error on the lattice form factors
by adding each error in quadrature, counting each error the number of times it occurs
in the action and improved current. We tabulate the errors in table 6.7, and propagate
the errors onto f+ and f0 by transforming these back to f‖ and f⊥, applying the errors,
and then transforming once more to f+ and f0. We use the estimate for our finest
lattice spacing on the F1S ensemble as the estimate for the discretisation error.

6.5.8 Renormalisation Factor

The renormalisation factor is constructed from three multiplicative constants—Zll
V ,

Zbb
V , and ρ—which we individually consider the errors of, and sum in quadrature to

obtain the overall renormalisation factor uncertainty. For Zll
V , we relate this to Zll

A via
the chiral-symmetry relation

Zll
V = Zll

A +O(amres). (6.19)

We take Zll
A from [121], and note that the overall error on Zll

A is negligible — it is
∼ 0.02% on the finer ensembles, and O(amres ≈ 0.007 at a ≈ 0.086 fm. The error on Zbb

V

from our determination is also small; at most ∼ 0.28%. The perturbative truncation
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f Bs→K
0 f Bs→K

+

q2 [GeV2] 17.5 20.94 23.71 17.5 23.71
f (q2) 0.481(13) 0.659(12) 0.861(15) 0.977(31) 3.126(63)

Statistics 2.6 1.8 1.7 3.2 2.0
Continuum Fit 1.9 1.7 1.8 3.5 2.7

RHQ 1.3 1.3 1.3 0.8 0.8
HQ 1.5 1.5 1.5 1.4 1.4

Renorm. 0.4 0.4 0.4 1.1 1.1
Imp. 0.1 0.1 0.1 0.3 0.3

IB 0.7 0.7 0.7 0.7 0.7
LQ 0.8 0.8 0.8 0.8 0.8

ms Sea 0.3 0.3 0.3 0.3 0.3
ms Val. 0.1 0.1 0.1 0.2 0.2

Total [%] 3.9 3.4 3.4 5.3 5.5

TABLE 6.8: Total error budget for the Bs → K`ν synthetic data. Errors are given in %.
We obtain the total error by adding all contributions in quadrature.

error on ρ is considerably larger and dominates the error estimate for the
renormalisation factor, at ρV0 ≈ 1.7% for f‖ and ρVi ≈ 0.6% for f⊥. The overall error is,
therefore, essentially equivalent to this perturbative truncation error. As with the
discretisation errors, we transform f0 and f+ back to f‖ and f⊥ in order to apply the
errors and correctly propagate them through to f0 and f+.

6.5.9 Isospin Breaking

The leading contribution to the isospin breaking from the valence quark masses is
estimated at O((md −mu)/ΛQCD) ∼ 0.5%, using md −mu = 2.38(18) MeV [172] and
ΛQCD = 500 MeV. Electromagnetic contributions are expected to be around
O(αs) ∼ 1/137 ≈ 0.7%, which we take as the overall systematic due to isospin
symmetry breaking.

6.5.10 Constructing the Synthetic Data Points

To construct the synthetic data points, we now sum all significant sources of
systematic error in quadrature with the statistical error to build our final error budget
at each reference q2 value. We combine these errors with the correlation matrix of the
data to obtain the corresponding covariance matrix. To construct the synthetic data
points, we then draw 500 Monte-Carlo samples from a multivariate Gaussian
distribution using this combined covariance matrix, centred on the reference q2 values.
The total error budget is plotted in figures 6.11 & 6.12, and given for each reference q2

value in tables 6.8 & 6.9.
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f B→π
0 f B→π

+

q2 [GeV2] 17.5 23.4 26.4 17.5 26.4
f (q2) 0.505(22) 0.875(23) 1.260(34) 1.012(63) 8.65(30)

Statistics 4.4 2.7 2.9 6.2 3.5
Continuum Fit 3.0 2.9 3.4 5.7 4.0

RHQ 1.3 1.3 1.3 0.8 0.8
HQ 1.5 1.5 1.5 1.4 1.4

Renorm. 0.4 0.4 0.4 1.1 1.1
Imp. 0.1 0.1 0.1 0.3 0.3

IB 0.7 0.7 0.7 0.7 0.7
LQ 0.8 0.8 0.8 0.8 0.8

Total [%] 5.8 4.6 5.1 8.7 12.5

TABLE 6.9: Total error budget for the B → π`ν synthetic data. Errors are given in %.
We obtain the total error by adding all contributions in quadrature.
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FIGURE 6.11: Total error budget for the Bs → K`ν form factors. On the left is f0, and
the right is f+. The synthetic data points are constructed using the total error given in

this plot at each reference q2 value.
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FIGURE 6.12: Total error budget for the B → π`ν form factors. On the left is f0, and
the right is f+. The synthetic data points are constructed using the total error given in

this plot at each reference q2 value.
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b+
0 b+

1 b0
0 b0

1 b0
2 p

Bs → K`ν 0.332(17) -1.34(12) 0.401(18) -2.54(13) 4.35(68) 86%
B→ π`ν 0.425(19) -0.668(77) 0.651(25) -1.884(83) 1.13(34) 40%

TABLE 6.10: The fitted coefficients of the z-expansions for the BCL fits, taking K = 2
for f+ and K = 3 for f0.

b+
0 b+

1 b0
0 b0

1 b0
2 p

Bs → K`ν 0.001365(69) -0.00454(44) 0.00377(15) -0.0110(13) -0.0106(63) 22%
B→ π`ν 0.00235(12) -0.00146(41) 0.01223(43) -0.0178(15) -0.0021(61) 3%

TABLE 6.11: The fitted coefficients of the z-expansions for the BGL fits, taking K = 2
for f+ and K = 3 for f0.
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FIGURE 6.13: The extrapolation over the full q2 range for Bs → K`ν using the BCL and
BGL fit forms.

6.6 z-expansion

Having built the synthetic data points, we can now use these in the z-expansion the
extrapolate the results over the full q2 range. In our z-expansions, we choose a number
of independent terms equal to the number of synthetic data points entering the fit, and
use the kinematic constraint that f0(0) = f+(0). This is implemented by removing the
b0

0 parameter as a degree of freedom in the fit, and constructing it from the other fit
parameters at each minimisation step such that the kinematic constraint is satisfied.
The fitted coefficients are presented in tables 6.10 and 6.11, alongside the constructed
b0

0, and plots of the z-expansions are found in figures 6.13 and 6.14.

6.7 |Vub| and Lepton Universality Ratios

Having obtained a description of f+ and f0 over the full q2 range, we can now obtain
estimates for the standard model parameter |Vub|, and for the lepton universality
ratios R and Rimpr introduced in section 4.2.3. Given our parameterisations of f0 and
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FIGURE 6.14: The extrapolation over the full q2 range for B→ π`ν using the BCL and
BGL fit forms.

f+, we can use these in equation (4.1) to obtain theoretical predictions for the
differential decay rates of Bs → K`ν and B→ π`ν, up to a factor of |Vub|2. Our
prediction for the decay rates with final state µ and τ leptons, using the BCL
parameterisation, is presented in figure 6.15.

As we noted in section 4.2.3, the lepton universality ratios are independent of |Vub|
due to the cancellation of pre-factors that do not depend on q2 in the decay rate
integrals. We calculate predictions for both the standard ratio R and the “improved”
ratio Rimpr using the BCL parameterisation, and present the ratios in table 6.12. We
also plot the unintegrated standard and improved ratios in figure 6.16.

As we see in table 6.12, the improved ratio has a substantially improved error over the
standard ratio as expected, with an approximately ∼2.5 more precise error for both
Bs → K`ν and B→ π`ν. If experimental results also show an improvement in
precision using this method, this would suggest that the improved ratio may be a
more powerful tool to monitor lepton universality violation — for Bs → K`ν and
B→ π`ν at least.

We obtain an error of 5.1% and 4.5% on the leading b+
0 parameter in the BCL

expansion for Bs → K`ν and B→ π`ν respectively. The respective results of 0.332(17)
and 0.425(19) are in excellent agreement with the previous determinations of these
parameters in the 2015 analysis of 0.338(24) and 0.410(39) (see appendix A of [90] for
z-parameterisation results), which by comparison have errors of 7.1% and 9.5%. We
see that the addition of the F1S ensemble greatly benefits the B→ π`ν calculation,
where the additional lattice spacing and closer-to-physical pion mass leads to a
significantly more precise chiral continuum extrapolation.

Our b+
0 coefficient has a similar uncertainty to the 5.0% error given by the 2019

Fermilab/MILC Bs → K`ν fit [91], and our result for the lepton universality ratio Rτ/µ

of 0.837(59) also compares favourably with the Fermilab/MILC result of 0.836(34). We
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R Rimpr.

Bs → K`ν 0.837(59) 1.544(43)
B→ π`ν 0.839(67) 1.631(59)

TABLE 6.12: Lepton universality ratios for the B → π`ν and Bs → K`ν processes. We
present results for both the “standard” R-ratio, and the “improved” R-ratio, using the
BCL parameterisation. The improved ratio shows substantially improved errors over
the standard approach. It is as yet unclear whether such an improvement would also

be visible in a similar ratio for experimental data.
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FIGURE 6.15: Standard Model predictions for the differential decay rate of B(s) → P`ν

for the muon (left) and tau (right) final-state leptons, up to a factor of |Vub|2.

also compare favourably with the 2014 HPQCD result [89] for the b+
0 parameter, which

has an error of 5.7%, but are in tension with the R-ratio determination of 0.695(50).
Our result for the B→ π`ν leading BCL coefficient also has a comparable error to the
2015 Fermilab/MILC analysis result of 3.9% [93].

The results of z-parameterisations across multiple independent calculations are
assessed by the Flavour Lattice Averaging Group (FLAG), in order to form a global
theoretical average for the form factor behaviour across q2. These combined averages
are then used to calculate |Vub| and lepton universality ratios in combination with
experimental data. The current FLAG averages [78] include those of the RBC/UKQCD
2015 analysis [90] for Bs → K`ν and B→ π`ν, which this project will update in future
publications. Given the substantial improvement in precision over the 2015 analysis,
we anticipate that these results will lead to more precise FLAG averages of |Vub| and
R, providing valuable input on CKM unitarity and the B-anomalies.
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Chapter 7

Conclusions

We have calculated standard model predictions of the form factors f0 and f+ for the
semileptonic decays Bs → K`ν and B→ π`ν, using RHQ bottom quarks and DWF
light & strange quarks. These calculations will provide future updates to the
published 2015 RBC/UKQCD [90] determinations of these form factors.

We obtain an error of 5.1% and 4.5% on the most significant BCL z-expansion
coefficient b+

0 for Bs → K`ν and B→ π`ν respectively. The corresponding 2015
RBC/UKQCD analysis for these decays found errors of 7.1% and 9.5%, highlighting
the fact that the addition of the F1S ensemble provides a useful additional constraint
on the continuum results, for B→ π`ν in particular. Our b+

0 coefficient has a similar
uncertainty to the 5.0% error given by the 2019 Fermilab/MILC Bs → K`ν fit [91], and
our result for the lepton universality ratio Rτ/µ of 0.837(59) also compares favourably
with the Fermilab/MILC result of 0.836(34). We also compare favourably with the
2014 HPQCD result [89] for the b+

0 parameter, which has an error of 5.7%, but are in
tension with the R-ratio determination of 0.695(50). Our result for the B→ π`ν

leading BCL coefficient also has a comparable error to the 2015 Fermilab/MILC
analysis result of 3.9% [93].

In addition to providing calculations of the standard lepton universality-testing ratios
R(π) & R(K), we also demonstrate that the modified ratios Rimpr(π) &
Rimpr(K)—proposed in [155] and informed by [155–157]—offer more precise
theoretical input on potential lepton flavour universality violation, with around a
∼ 2.5 more precise error in our determination. If a similar improvement is also seen in
ratios of experimental data, we propose that these ratios may provide a new,
important check on lepton flavour universality.

The results calculated in this work provide independent theoretical checks on the form
factors f0 and f+ for Bs → K`ν and B→ π`ν. Given the substantial improvement in
precision over the 2015 analysis, we anticipate that these results will lead to more
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precise FLAG averages of |Vub| and R from the Bs → K`ν and B→ π`ν channels,
providing valuable input on CKM unitarity, the B-anomalies, and the tension between
exclusive B→ π`ν & inclusive B→ Xu`ν decays.
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Appendix A

n2 f‖ α β fit range thinning p value
C1 f‖ 0 1.175(13) −0.686(59) -1.57(38) [4, 16] 1 36.89%
C1 f‖ 1 0.981(12) −0.409(35) -1.60(70) [5, 17] 1 75.14%
C1 f‖ 2 0.854(17) −0.43(13) -1.36(78) [5, 15] 1 54.77%
C1 f‖ 3 0.759(28) −0.273(85) -1.1(1.0) [5, 18] 1 49.91%
C1 f‖ 4 0.725(48) −0.36(24) -1.6(1.6) [5, 18] 1 84.88%
C2 f‖ 0 1.181(12) −0.676(75) -1.64(23) [3, 16] 1 25.89%
C2 f‖ 1 1.001(12) −0.441(25) -1.75(22) [3, 18] 1 41.23%
C2 f‖ 2 0.888(17) −0.339(28) -1.78(22) [3, 18] 1 56.16%
C2 f‖ 3 0.813(27) −0.179(73) -1.76(25) [3, 18] 1 58.44%
C2 f‖ 4 0.760(42) 0.09(28) -1.7(1.8) [5, 18] 1 56.98%
M1 f‖ 0 1.030(14) −3.0(1.7) -1.7(1.7) [7, 18] 1 54.91%
M1 f‖ 1 0.861(15) −1.7(1.1) -3.9(3.3) [8, 18] 1 46.25%
M1 f‖ 2 0.757(19) −0.46(12) 2.8(6.8) [9, 22] 1 88.14%
M1 f‖ 3 0.681(33) 0.0(1.2) -6.0(10) [9, 20] 1 69.73%
M1 f‖ 4 0.576(54) −0.4(1.2) 1.0(17) [9, 22] 1 26.71%
M2 f‖ 0 1.032(14) −0.68(25) -0.28(96) [7, 18] 1 33.47%
M2 f‖ 1 0.853(12) −0.278(81) -1.36(56) [6, 20] 1 60.85%
M2 f‖ 2 0.755(15) −0.213(44) -1.6(1.1) [7, 22] 1 64.34%
M2 f‖ 3 0.667(23) −0.22(12) -1.6(1.4) [7, 22] 1 55.64%
M2 f‖ 4 0.592(40) 0.15(33) 5.2(4.7) [8, 22] 1 85.79%
M3 f‖ 0 1.063(25) −0.40(12) -1.0(1.3) [7, 18] 1 50.12%
M3 f‖ 1 0.896(21) −0.254(66) -2.19(83) [6, 20] 1 40.77%
M3 f‖ 2 0.774(22) −0.208(40) -2.3(1.4) [7, 22] 1 26.79%
M3 f‖ 3 0.706(29) −0.00(10) -0.5(1.8) [7, 22] 1 36.31%
M3 f‖ 4 0.633(60) −0.41(27) -4.7(6.2) [8, 22] 1 27.53%
F1S f‖ 0 0.927(11) −67.0(35) 0.91(71) [12, 19] 1 24.17%
F1S f‖ 1 0.830(12) −150.0(110) -0.05(22) [10, 17] 1 35.48%
F1S f‖ 2 0.759(15) −110.0(100) -0.28(29) [10, 17] 1 46.78%
F1S f‖ 3 0.706(18) −4.7(3.8) -0.56(39) [10, 21] 1 70.99%
F1S f‖ 4 0.643(23) −2.4(5.8) -0.31(33) [10, 21] 1 58.65%

TABLE A.1: Excited state form factor fits for Bs → K`ν on all ensembles and momenta.
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n2 f⊥ α β fit range thinning p value
C1 f⊥ 1 1.493(22) −1.183(91) -2.82(71) [4, 17] 1 7.64%
C1 f⊥ 2 1.157(22) −0.70(11) -2.58(63) [4, 17] 1 5.40%
C1 f⊥ 3 0.924(31) 0.11(22) -2.36(70) [4, 17] 1 11.11%
C1 f⊥ 4 0.792(48) −0.39(49) -2.45(97) [4, 17] 1 15.66%
C2 f⊥ 1 1.456(19) −1.15(10) -2.82(82) [4, 17] 1 85.87%
C2 f⊥ 2 1.118(20) −0.62(10) -2.51(73) [4, 17] 1 70.86%
C2 f⊥ 3 0.931(29) −0.02(21) -2.21(74) [4, 17] 1 63.18%
C2 f⊥ 4 0.824(42) −0.36(54) -2.3(1.0) [4, 17] 1 59.88%
M1 f⊥ 1 1.763(32) −9.8(5.6) -2.4(4.9) [7, 18] 1 89.06%
M1 f⊥ 2 1.336(32) −1.04(18) -4.1(4.5) [7, 23] 1 23.00%
M1 f⊥ 3 1.049(48) −0.54(44) -0.0(12) [8, 23] 1 34.82%
M1 f⊥ 4 0.862(83) −0.8(1.1) -1.0(17) [8, 23] 1 65.78%
M2 f⊥ 1 1.752(32) −2.00(77) -4.3(1.5) [6, 18] 1 71.37%
M2 f⊥ 2 1.378(29) −0.83(15) -4.7(1.4) [6, 22] 1 56.64%
M2 f⊥ 3 1.142(35) −0.66(26) -4.7(1.6) [6, 22] 1 56.21%
M2 f⊥ 4 0.952(52) −0.85(57) -1.8(2.0) [6, 22] 1 87.33%
M3 f⊥ 1 1.781(59) −1.08(12) -1.5(2.0) [6, 22] 1 41.56%
M3 f⊥ 2 1.414(46) −0.71(11) -3.1(1.8) [6, 22] 1 35.51%
M3 f⊥ 3 1.119(45) −0.27(19) -2.00(45) [4, 22] 1 54.14%
M3 f⊥ 4 0.939(56) −0.36(39) -1.68(55) [4, 22] 1 75.35%
F1S f⊥ 1 2.128(37) −840.0(610) 2.2(1.2) [10, 17] 1 45.05%
F1S f⊥ 2 1.719(31) −300.0(360) 1.85(89) [10, 17] 1 25.52%
F1S f⊥ 3 1.482(37) −160.0(440) 0.71(78) [10, 17] 1 9.71%
F1S f⊥ 4 1.343(51) −170.0(550) 1.2(1.1) [10, 17] 1 89.05%

TABLE A.2: Excited state form factor fits for Bs → K`ν on all ensembles and momenta
for f⊥.
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FIGURE A.1: Excited state form factor fits for Bs → K`ν on the C1 ensemble.
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FIGURE A.2: Excited state form factor fits for Bs → K`ν on the C2 ensemble.
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FIGURE A.3: Excited state form factor fits for Bs → K`ν on the M1 ensemble.
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FIGURE A.5: Excited state form factor fits for Bs → K`ν on the M3 ensemble.
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FIGURE A.7: Excited state form factor fits for B→ π`ν on the C1 ensemble.
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n2 f‖ α β fit range thinning p value
C1 f‖ 0 1.253(16) −1.03(11) -1.50(47) [3, 15] 1 85.17%
C1 f‖ 1 0.988(22) −0.464(40) -1.97(46) [3, 17] 1 97.50%
C1 f‖ 2 0.856(39) −0.53(20) -2.23(52) [3, 16] 1 85.23%
C1 f‖ 3 0.730(75) −0.42(30) -1.75(60) [3, 18] 1 78.03%
C1 f‖ 4 0.58(13) −1.0(2.7) -1.28(84) [3, 15] 1 86.29%
C2 f‖ 0 1.205(17) −1.40(46) -1.71(21) [2, 16] 1 7.69%
C2 f‖ 1 0.990(17) −0.62(15) -1.71(18) [2, 17] 1 54.80%
C2 f‖ 2 0.878(29) −0.54(27) -1.69(18) [2, 16] 1 20.11%
C2 f‖ 3 0.814(55) 1.6(1.0) -2.02(53) [3, 16] 1 61.09%
C2 f‖ 4 0.739(74) 2.5(3.4) -2.00(71) [3, 16] 1 93.82%
M1 f‖ 0 1.168(20) −1.85(30) -1.49(25) [2, 18] 1 11.24%
M1 f‖ 1 0.915(30) −0.88(18) -2.04(46) [3, 20] 1 25.39%
M1 f‖ 2 0.785(48) −0.329(67) -1.2(1.0) [4, 24] 1 38.01%
M1 f‖ 3 0.565(95) 3.0(12) -1.55(56) [3, 15] 1 69.68%
M1 f‖ 4 0.70(18) 2.0(26) -2.3(1.0) [3, 15] 1 59.38%
M2 f‖ 0 1.130(18) −3.00(85) -1.5(1.0) [5, 15] 1 48.21%
M2 f‖ 1 0.862(24) −2.0(1.0) -2.0(1.1) [5, 15] 1 75.60%
M2 f‖ 2 0.751(28) −0.265(59) -1.70(31) [3, 23] 1 45.77%
M2 f‖ 3 0.672(52) −0.53(64) -1.47(31) [3, 21] 1 26.49%
M2 f‖ 4 0.51(21) 12.0(13) 140.0(150) [10, 15] 1 60.02%
M3 f‖ 0 1.075(15) −1.49(27) -1.16(57) [4, 18] 1 63.71%
M3 f‖ 1 0.868(18) −0.57(13) -1.61(52) [4, 20] 1 52.53%
M3 f‖ 2 0.726(28) −0.50(26) -1.59(51) [4, 20] 1 33.17%
M3 f‖ 3 0.673(48) −0.43(10) -1.52(30) [3, 25] 1 67.58%
M3 f‖ 4 0.505(90) −0.1(1.0) -0.94(41) [3, 22] 1 80.73%
F1S f‖ 0 1.075(27) −6.7(2.5) 0.38(67) [8, 15] 1 28.25%
F1S f‖ 1 0.889(27) −3.01(96) -0.88(17) [3, 17] 1 19.87%
F1S f‖ 2 0.779(36) −2.3(1.4) -0.71(26) [4, 17] 1 69.81%
F1S f‖ 3 0.723(46) 0.92(67) -0.88(17) [3, 20] 1 59.64%
F1S f‖ 4 0.67(10) −8.4(6.4) -0.35(95) [7, 16] 1 75.85%

TABLE A.3: Excited state form factor fits for B → π`ν on all ensembles and momenta
for f‖.
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FIGURE A.8: Excited state form factor fits for B→ π`ν on the C2 ensemble.
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n2 f⊥ α β fit range thinning p value
C1 f⊥ 1 1.689(44) −1.93(34) -2.12(81) [3, 15] 1 42.56%
C1 f⊥ 2 1.263(63) −0.90(25) -2.83(82) [3, 17] 1 36.10%
C1 f⊥ 3 0.98(15) 1.1(1.8) 47.0(44) [7, 15] 1 32.69%
C1 f⊥ 4 0.78(30) −18.0(13) 34.0(34) [6, 12] 1 63.43%
C2 f⊥ 1 1.566(32) −3.9(2.4) -2.9(2.1) [4, 14] 1 48.61%
C2 f⊥ 2 1.162(35) −2.0(1.3) -2.01(72) [3, 15] 1 59.52%
C2 f⊥ 3 1.039(59) −1.22(32) -2.16(84) [3, 18] 1 41.32%
C2 f⊥ 4 0.830(83) 0.5(7.4) -1.90(34) [2, 15] 1 40.49%
M1 f⊥ 1 2.056(78) −4.4(1.4) -1.8(2.3) [4, 18] 1 75.59%
M1 f⊥ 2 1.45(11) −1.8(1.2) -8.9(4.5) [5, 20] 1 65.52%
M1 f⊥ 3 1.22(25) −31.0(25) -13.8(6.5) [5, 15] 1 87.74%
M1 f⊥ 4 0.83(53) 48.0(58) 70.0(120) [8, 15] 1 21.61%
M2 f⊥ 1 2.001(60) −7.8(2.2) -3.5(1.3) [4, 16] 1 45.36%
M2 f⊥ 2 1.554(69) −2.97(92) -2.7(1.1) [4, 19] 1 92.81%
M2 f⊥ 3 1.206(98) −1.0(1.1) -2.1(1.3) [4, 22] 1 93.77%
M2 f⊥ 4 0.82(18) 11.0(11) 0.3(4.2) [5, 17] 1 84.76%
M3 f⊥ 1 1.921(47) −8.1(2.8) -2.5(1.2) [4, 16] 1 55.89%
M3 f⊥ 2 1.502(61) −3.7(1.7) -3.5(1.1) [4, 18] 1 74.72%
M3 f⊥ 3 1.076(83) −0.3(1.5) -1.75(23) [2, 20] 1 79.65%
M3 f⊥ 4 0.99(13) −4.4(4.0) -2.77(74) [3, 20] 1 88.71%
F1S f⊥ 1 2.730(89) −17.6(5.8) 3.9(5.1) [9, 17] 1 70.07%
F1S f⊥ 2 1.992(64) −5.7(1.1) 4.1(4.0) [8, 21] 1 58.21%
F1S f⊥ 3 1.721(96) −2.8(1.1) -1.0(1.3) [6, 22] 1 41.29%
F1S f⊥ 4 1.41(16) −1.0(1.3) 3.7(4.5) [8, 25] 1 34.14%

TABLE A.4: Excited state form factor fits for B → π`ν on all ensembles and momenta
for f⊥.
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FIGURE A.9: Excited state form factor fits for B→ π`ν on the M1 ensemble.
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FIGURE A.10: Excited state form factor fits for B→ π`ν on the M2 ensemble.
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FIGURE A.11: Excited state form factor fits for B→ π`ν on the M3 ensemble.
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FIGURE A.12: Excited state form factor fits for B→ π`ν on the F1S ensemble.
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