
UNIVERSITY OF SOUTHAMPTON

Entropy Network Fusion

by

James E. Strudwick

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Social Sciences

School of Mathematical Sciences

February 2020

https://www.southampton.ac.uk/
mailto:J.Strudwick@soton.ac.uk
https://www.southampton.ac.uk/about/departments/faculties/faculty-social-human-sciences.page
https://www.southampton.ac.uk/maths/

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL SCIENCES

SCHOOL OF MATHEMATICAL SCIENCES

Doctor of Philosophy

by James E. Strudwick

Thanks to the continual development of technology, a massive amount of data is now

being produced on a daily basis. Because of this, new methods for analysis are needed,

particularly ones that can analyse multiple datasets on the same set of objects. This is

especially relevant in systems biology, where different datasets probe different aspects of

the same underlying system. A popular and widely used method to analyse datasets is

to transform the data into networks. Networks help visualise and quantify connections

between samples, revealing structure and information that may not be visible at first,

hence the popularity of their use, particularly in the analysis of biological systems. En-

tropy Network Fusion (ENF) is a new methodology for fusing, or combining, together

multiple networks on the same set of objects (nodes) into one single output network. It

works by finding a solution (network) whose clustering structure is as close as possible

to the clustering structure of all the given input networks, using information-theoretic

entropy as a guiding principle. ENF is designed with a level of generality, such that it

is not restricted to any specific type of data, giving it a wide range of applications. We

tested our methodology on five cancer sets and compared the performance to Similar-

ity Network Fusion, a state-of-the-art network fusion algorithm. Whilst SNF may be

a faster method, the output from ENF is significantly better in terms of performance.

We then further developed an approximate version of our algorithm, approximate En-

tropy Network Fusion (aENF), which is significantly faster computationally for larger

networks, further increasing its range of application.

https://www.southampton.ac.uk/
https://www.southampton.ac.uk/about/departments/faculties/faculty-social-human-sciences.page
https://www.southampton.ac.uk/maths/
mailto:J.Strudwick@soton.ac.uk

Contents

List of Figures vii

List of Tables xi

Nomenclature xiii

Declaration of Authorship xvii

Acknowledgements xix

1 Introduction 1

1.1 Data Integration in System Biology . 5

1.2 Network Entropy . 14

1.3 Structural Reducibility . 15

1.3.1 Summary and Results . 15

1.3.2 Entropy and Multilayer Networks 17

2 Similarity Network Fusion 21

2.1 Review . 21

2.1.1 Summary and Results . 21

2.1.2 Pre-Processing . 22

2.1.3 Local and Global Networks . 23

2.1.4 Fusion Step . 24

2.2 The limit of SNF . 25

2.2.1 Two Layers . 25

2.2.2 SNF Tends to a Constant Matrix 27

3 Network Entropy 31

3.1 Classic to Quantum to Network . 31

3.2 Example Networks . 37

3.3 Network Entropy Examples . 42

3.4 Network QJSD Examples . 46

4 Entropy Network Fusion 55

4.1 Motivation . 55

4.2 Input . 57

4.3 Cost Function . 58

4.4 Gradient . 61

4.4.1 Derivative of Eigenvalues . 61

v

vi CONTENTS

4.4.2 Part 1: HN (G) . 63

4.4.3 Part 2: HN (aG+ gA) . 64

4.4.4 ENF Gradient . 65

4.4.5 Minimisation . 67

4.5 ENF Algorithm . 69

4.6 Convexity . 71

4.7 Computational Time Analysis . 73

4.8 Convergence . 73

5 Validation and Results on cancer datasets 81

5.1 Validation Tools . 81

5.1.1 Survival Analysis . 81

5.1.2 Clustering Comparison . 84

5.2 Results from SNF Data . 86

5.2.1 Naive Methods . 87

5.2.2 ENF Results . 88

5.2.2.1 Breast Cancer . 90

5.2.2.2 Colon Cancer . 97

5.2.2.3 Glio Cancer . 104

5.2.2.4 Kidney Cancer . 111

5.2.2.5 Lung Cancer . 118

6 aENF 125

6.1 Approximating Entropy . 125

6.2 Gradient of aENF . 129

6.2.1 Part 1 . 129

6.2.2 Part 2 . 130

6.3 Precise and Approximate Comparison . 130

6.3.1 Lung . 131

6.3.2 Glio . 135

7 Conclusion and Future Work 139

A Laplacian Identities 143

B Limit of a Matrix 145

C Second Derivative of ENF 149

C.1 Eigenvectors . 149

C.2 Second Derivative . 150

C.2.1 Part 1: HN (G) . 150

C.2.2 Part 2: HN (aG+ gA) . 151

Bibliography 153

List of Figures

1.1 DI illustration with SNF . 6

1.2 Stages of DI . 7

1.3 Example of MCIA . 10

1.4 Multilinks in Multiplex networks . 12

1.5 Multilayer reducibility illustration . 19

2.1 SNF algorithm illustration . 24

2.2 Difference between SNF and its limit . 28

3.1 Co-Spectral graphs . 37

3.2 Entropy of Standard Graphs . 40

3.3 Entropy-Edge location example . 43

3.4 Entropy Vs. RatioCut . 45

3.5 Modeling Eigenvalues . 46

3.6 Entropy of general forms . 47

3.7 Entropy of general forms with fixed values 47

3.8
√
JSN and Network rewiring . 49

3.9 Evolution of
√
JSN . 50

3.10 Distance between general forms . 51

3.11 Distance between general forms . 51

3.12 Illustration of
√
JSN using KNN . 52

vii

viii LIST OF FIGURES

4.1 Validation of formula for JSN derivative 66

4.2 Comparison of first order minimisers . 68

4.3 ENF time complexity . 75

4.4 ENF convergence check . 75

4.5 Embedding networks using MDS and
√
JSN 77

4.6 Convergence to a single known graph . 78

4.7 ENF reproducibility check . 78

4.8 Random initialisation versus Average initialisation 79

5.1 Breast input networks . 91

5.2 Breast cost history . 91

5.3 Breast networks embedding . 92

5.4 Breast SNF & ENF output . 92

5.5 Breast CI, NVI, NID for multiple clusters 95

5.6 Breast KM curves . 95

5.7 Colon input networks . 98

5.8 Colon cost history . 98

5.9 Colon networks embedding . 99

5.10 Colon SNF & ENF output . 99

5.11 Colon CI, NVI, NID for multiple clusters 102

5.12 Colon KM curves . 102

5.13 Glio input networks . 105

5.14 Glio cost history . 105

5.15 Glio networks embedding . 106

5.16 Glio SNF & ENF output . 106

5.17 Glio CI, NVI, NID for multiple clusters 109

5.18 Colon KM curves . 109

LIST OF FIGURES ix

5.19 Kidney input networks . 112

5.20 Kidney cost history . 112

5.21 Kidney networks embedding . 113

5.22 Kidney SNF & ENF output . 113

5.23 Kidney CI, NVI, NID for multiple clusters 116

5.24 Kidney KM curves . 116

5.25 Lung input networks . 119

5.26 Lung cost history . 119

5.27 Lung networks embedding . 120

5.28 Lung SNF & ENF output . 120

5.29 Lung CI, NVI, NID for multiple clusters 123

5.30 Lung KM curves . 123

6.1 Time analysis of approximation . 127

6.2 Error in approximating JSD distance . 128

6.3 aENF cost history on Lung data . 133

6.4 Lung CI, NVI, NID for multiple clusters, aENF solution 134

6.5 aENF cost history on Glio data . 136

6.6 Glio CI, NVI, NID for multiple clusters, aENF solution 137

List of Tables

1.1 Multilayer reduction results . 16

2.1 Published SNF p-values . 22

3.1 A table of the formulas calculated for the entropy of the respective graphs. 39

3.2 Rewiring strategies effect on average distance 48

4.1 Run times of different minimisation methods 69

5.1 Clustering intersection table . 84

5.2 Cluster Profiles from Averaging . 87

5.3 p-values from simple methods . 88

5.4 Random Clustering p-values . 88

5.5
√
JSN results for Breast Data . 94

5.6 CI results for Breast Data . 94

5.7 NVI results for Breast Data . 94

5.8 NID results for Breast Data . 94

5.9 Breast data survival quartiles . 96

5.10 Breast data p-values . 96

5.11 Breast data p-value for other clusters . 96

5.12
√
JSN results for Colon Data . 101

5.13 CI results for Colon Data . 101

5.14 NVI results for Colon Data . 101

xi

xii LIST OF TABLES

5.15 NID results for Colon Data . 101

5.16 Colon data survival quartiles . 103

5.17 Colon data p-values . 103

5.18 Colon data p-value for other clusters . 103

5.19
√
JSN results for Glio Data . 108

5.20 CI results for Glio Data . 108

5.21 NVI results for Glio Data . 108

5.22 NID results for Glio Data . 108

5.23 Glio data survival percentiles . 110

5.24 Glio data p-values . 110

5.25 Glio data p-value for other clusters . 110

5.26
√
JSN results for Kidney Data . 115

5.27 CI results for Kidney Data . 115

5.28 NVI results for Kidney Data . 115

5.29 NID results for Kidney Data . 115

5.30 Kidney data survival percentiles . 117

5.31 Kidney data p-values . 117

5.32 Kidney data p-value for other clusters . 117

5.33
√
JSN results for Lung Data . 122

5.34 CI results for Lung Data . 122

5.35 NVI results for Lung Data . 122

5.36 NID results for Lung Data . 122

5.37 Lung data survivial percentiles . 124

5.38 Lung data p-values . 124

5.39 Lung data p-value for other clusters . 124

6.1 Computation time for approximate JSD 128

LIST OF TABLES xiii

6.2 Polynomial order effect on computation time 129

6.3 Cost of Lung results from approximate and precise method 131

6.4 ENF vs aENF: Lung . 133

6.5 aENF lung p-values . 133

6.6 Cost of Lung results from approximate and precise method 135

6.7 ENF vs aENF: Glio . 136

6.8 aENF glio p-values . 136

Nomenclature

Dij The distance between vertex (patient) i and vertex j

µ Scale factor

Sij The similarity between vertex (patient) i and vertex j
(l) An object associated with the l-th layer

{S(l)} A collection of similarity matrices

wm A weight for a given layer

{S(l), wl} A collection of similarity matrices paired with weightings for each layer

θ The current output of ENF

t The sum of all the entries of θ

C({S(l)}, θ) The ENF cost of the set {S(l)} at θ

C̃({S(l)}, θ) The aENF cost of the set {S(l)} at θ

HC() The Shannon entropy of a probability distribution

KLC(|) The Kullback-Liebler divergence of two probability distributions

JSC(,) The Jensen Shannon Divergence between two probability distributions

HQ() The Von Neumann entropy of a density matrix

KLQ(|) The Kullback-Liebler divergence of two density matrices

JSQ(,) The Quantum Jensen Shannon Divergence between two density matrices

HN () The Von Neumann entropy of a network

H̃N () The approximate Von Neumann entropy of a network

JSN (,) The Quantum Jensen Shannon divergence of a network

J̃SN (,) The approximate Quantum Jensen Shannon divergence of a network

G An adjacency matrix of a symmetric graph

DG The degree matrix of the graph G

L(G) The Laplacian matrix of the graph G

L̄(G) The re-scaled Laplacian matrix of the graph G

λi The i-th eigenvalue of L(G)

σ() The set of eigenvalues of a matrix

yi, xi Left and right eigenvectors associated with the ith eigenvalue λi

E(k, f) The elementary change matrix in the (k, f)-entry (and (f, k)-entry)

EL(k, f) The Laplacian of an elementary change matrix

α The learning rate used in gradient descent

γ The gradient decay for the momentum term in gradient descent

xv

xvi NOMENCLATURE

aENF approximate Entropy Network Fusion

CI Concordance Index

CIA Co-inertia Analysis

DI Data Intergration

DPM Dirichlet Process Mixture

EM Expectation-Maximization

ENF Entropy Network Fusion

FD Finite Difference

GD Gradient Descent

IR Isoperimetric Ratio

IT Information Theory

JSD Jensen-Shannon divergence

KL Kullback-Liebler divergence

KNN K Nearest Neighbours

LRT Log Rank Test

MCIA Multiple Co-inertia Analysis

MDS Multidimensional Scaling

MI Mutual Information

MN Multilayer Network

NAG Nestrov accelerated gradient

NID Normalised Information Distance

NVI Normalised Variation of Information

PCA Principal Component Analysis

POD Percentage of Difference

PSDF Patient-Specific Data Fusion

QJSD Quantum Jensen-Shannon divergence

QM Quantum Mechanics

SNF Similarity Network Fusion

TMD Transcription Module Discovery

wENF weighted Entropy Network Fusion

Declaration of Authorship

I, James E. Strudwick declare that the thesis entitled Entropy Network Fusion and the

work presented in the thesis are both my own, and have been generated by me as the

result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• none of this work has been published before submission

• parts of this work have been published as:

Signed:...

Date:..

xvii

mailto:J.Strudwick@soton.ac.uk

Acknowledgements

Whilst a PhD can only belong to one person, the title attached to only one name, it is

by no means a solo effort. I would challenge anyone reading this to search history. Look

through all academia’s PhD students and I guarantee you none were done completely

on their own with no support of any kind. The same is true for the one whose final work

you hold in your hands now. Whilst I wish I could list every single person I want to

thank, sadly, I fear that list would grow too big. Thus I shall try to restrain myself, but

I do not make any promises.

First, and foremost, I would like to thank all my supervisors for their support during

this process. Particularly to Ruben for his patience, thoughts, honest feedback and for

reining me in when my intuition and excitement got ahead of me. Next I would like to

thank everyone from both the level 7 and level 8 office for making every day enjoyable

and all the sparks of ideas they set off. Particularly Fabio, Conrad and Kiko for their

patience to listen to the various ideas I had, for not dismissing them and giving them

their serious thought.

For those outside of the maths building, I would like to thank the Southampton Univer-

sity Archery Club for their fun adventures, you will never find a nicer group of people.

Matthew, Liam and Patrick, three people I now consider brothers, who kept me sane be

that via a few drinks, good food, board games or a combination of all three, thank you

so much. Sami, Geoff, Suz, who ever said gingers don’t have souls obviously never met

these three as they are the most wonderful people with the biggest hearts I’ve ever seen.

Finally, and most importantly, my Family. Thank you to all of them, and believe me,

there are a lot of them, but none deserve it more so than my Mum and Dad, Helen and

Trevor. As I sit here now, typing this, I’m struggling to find the right words. In fact,

I doubt there are words sufficient to convey everything I want to say. But I’ll give it

ago. Thank you for never wavering in your support, for giving me the strength to keep

going through the tough times, for your patience, understanding and love. Thank you

for telling me all my life that I can achieve anything and making me believe it. All of

this, and all that is to come, is thanks to you both.

Also my granddad, Michael Cole. One of the best and sharpest men I know, expert

Rum Boson and Master of the 1
2π
√
LC

.

xix

“Imagination is more important than knowledge. For knowledge is
limited, whereas imagination embraces the entire world.” -

A.Einstein

xxi

Chapter 1

Introduction

Development of new technologies designed to probe different aspects of biological systems

have led to a rapid increase in data generated from these systems [1–5]. For example,

these new technologies include next-generation DNA sequencing, microarray technolo-

gies and advances in mass spectrophotometry [1–6]. It can be argued that a more

complete understanding of how the underlying biological systems work can be gained

by combining these heterogeneous data sets and then analysing the results, rather than

analysing them separately [7–10]. For example, some features may only become appar-

ent when considered in conjunction with other datasets. Finding clinically meaningful

features in patients can then be used for instance for patient stratification, which is cru-

cial in drug trials. The process of combining different data sets is called data integration

(DI) [1, 7, 11] and the problem that arises is how to combine these data sets in order to

provide the most information about the corresponding system.

There are many methods for data integration, all having their strengths and weaknesses,

and objective they are based on. Because of this, there is no one method that is perfect

for every situation. One method may focus on identifying clusters, another looking for

key pathways (a collection of molecules controlling a particular feature) that emerge

or looking at how change propagates through the system. Some methods may only be

designed for the integration of particular types of datasets, or limited by their compu-

tational complexity in the number or size of the datasets. But across these existing

methods a range of techniques are used, such as Bayesian methods to estimate the most

likely clustering solution, correlation methods to find related features across datasets

and network based techniques to find, for example, common clusters. The benefits of DI

has been well documented in the literature; for example, iCluster [12] found a previously

undiscovered cancer cluster which was not apparent from the separate analysis of the

two datasets it used.

It has been commented that more tools utilizing network techniques are still needed [7]

and this is where this thesis aims to contribute. Networks can arise quite naturally

1

2 Chapter 1 Introduction

from data. Each sample in the given data takes on the form of node, and then the

nodes are connected to each other via an edge where the edge captures/encodes the

relationship between those two samples (nodes), normally a similarity, or dissimilarity

(e.g. distance) measure. For example, if the data contained information about city

features the edges could encode how similar each city in the data set is to each other or

simply the distance between those cities. The specific metric/measure used is left to the

user as some may be more appropriate for one dataset or task than another. Crucially,

this network representation often reveals structural information such as clusters, which

may not be apparent in the raw dataset.

This thesis’ main aim is the development of a new network data integration method

to combine multiple networks on the same set of objects but from different sources

into one summarising network. The ultimate goal is to identify the global structure in

terms of groups of similar nodes, formally clusters in the network. In the biomedical

context, where nodes represent patients, this approach increases the predictive power

and decision-making capability of the original datasets.

The motivating idea is that we can use a metric, from information theory, to compare

the networks seeing how similar/far apart they are in terms of their clustering structure.

By using standard minimisation methods, the new method will then return a network

that is as close as possible, with respect to this metric, to all of the input networks

simultaneously. Afterwards developing our methodology, we apply it to data from cancer

patients, in particular using 3 sets of omic data from the patients, and then analyse the

results that follow. In the solutions we find we examine the clustering structures and

the survival profiles of the respective clusters of patients. This information could then

be used to devise better/unique treatments for each cluster or help find new biologically

relevant features that identify the cluster.

This thesis is organised as follows. The rest of this Chapter discusses data integration in

system biology and network entropy. The first section looks at multiple aspects of data

integration methods: the need for it, how they can be categorised, the various stages that

they can be performed and existing methods. The second section details the concept of

entropy from Information Theory and how it has been used in the analysis of networks.

We look at particular methodology, which is not a typical fusion method as a single

output network is not guaranteed, that uses entropy in the integration (reduction) of

layers in a multilayer network: Structural reducibility of multilayer networks [13]. This

introduces a key concept that inspired our own new data integration methodology.

Chapter 2 consists of an in-depth look at a particular integration method, Similarity

Network Fusion [14], a competing state-of-the-art data fusion methodology. This method

is of particular interest because it is a network based method which utilises the local

structure during its integration process. We then examine it from a formal mathematical

point of view, as a matrix limit. If the procedure converges to a solution then this can

Chapter 1 Introduction 3

provide one unquestionable solution and by using mathematical tools this limit can

then be calculated, speeding up the method as well. We show that the limit can be

analytically computed in the case of two layers, but it is in fact a constant matrix.

In Chapter 3, we initiate our investigation into network entropy and how it can be

used in the context of data fusion. We explain how entropy in Information Theory can

be adapted to Quantum Mechanics and to Network Theory. The rest of the Chapter

explores network entropy: theoretical results on common familes of graphs, examples

providing an intuition of what structural properties it captures in networks and how this

extends into quantifying the distance between two networks.

Chapter 4 is the main contribution of this thesis and it describes our new data fusion

algorithm, Entropy Network Fusion (ENF). First we motivate the method and then

study it in more detail. ENF accepts as its input, a family of symmetric matrices,

each representing a similarity measure between nodes on one network, and outputs a

symmetric similarity matrix representing the ‘fused’ network. The cost function that

ENF is trying to minimise is based upon the average of squared errors using entropy and

a quantity called the Quantum Jensen-Shannon divergence and the output is obtained

as the solution of a minimisation problem. An adaptation called weighted ENF (wENF)

is include for the case when the layers are to be weighted differently. Afterwards, we

analytically derive both the first and second derivative of the cost function so that we

can use gradient descent to minimise this cost function. Finally we close out the chapter

by analysing the algorithm to ensure it behaves correctly. The first derivative is verified

by finite difference; we prove that the ENF cost function is a convex problem; the time

complexity of ENF, numerically, is shown to be linear with respect to the number of

layers and at most cubic with the number of nodes and finally test cases to make sure

sensible answers are given.

Chapter 5 consists of two main parts. The first covers the comparison tools that will

be used to validate the results from ENF. In the presence of survival data, one such

tool is survival analysis. For clusters identified in the data, survival analysis compares

the survival curves of each identified group and evaluates whether they are statistically

different. We also use network-theoretic measurements to validate the clustering results

obtained by ENF, for example by comparing them to the clustering of each individual

input network. In the second part of the chapter, we apply ENF to the SNF validation

data in [14], along with the results from two naive methods of data integration. The

comparison of ENF and SNF is the key focus as we perform a side by side comparison for

each of the 5 cancer data sets used in [14]. We find that whilst ENF is computationally

slower than SNF, overall ENF out performs SNF. We found evidence that ENF is more

robust against noise within the system; that structurally, the ENF solutions are closer

to the given input networks and that their clusterings are closer to ENF than SNF, with

respect to our validation metrics. With respect to the survival analysis, ENF produced

significant results for every dataset and for multiple clusters values.

4 Chapter 1 Introduction

Chapter 6 focuses on extending the scalability of ENF by reducing its computational

complexity. This is done by using a method to approximate network entropy and using

this to create a variation of ENF that we call approximate entropy Network Fusion

(aENF). This is followed by the derivation of its gradient. We then apply this new

variation to two of the data sets already used and then, using the quantities already

covered, make a comparison between the two variations. By using this approximation

we obtain a 54% and 73% speed up in computational time for the smallest and largest

of our test data sets respectively. The outputs from aENF are very close to those from

ENF with respect to our various validation measures. This thesis ends with Chapter 7,

which summarises and presents conclusions for our work, as well as possible directions

for future work.

Chapter 1 Introduction 5

1.1 Data Integration in System Biology

The development of high-throughput technologies in the Life Sciences, such as next-

generation sequencing, microarrays, RNA sequencing or mass spectrometry based pro-

teomics has lead to an overwhelming amount of omic data being produced [1–5, 15].

Omic data refers to multiple collections of genome-scale biological molecules each cap-

turing a different function/aspect of the biological system they originate from; data sets

such as genomics, transcriptomics or proteomics [8–10,16]. For example transcriptomics

datasets captures information about RNA transcripts and the active components of the

cell; proteomics techniques identify and quantify of proteins within the cell. Together,

these data types capture different aspects of the same underlying biological system,

mathematically a very complex dynamical system [15, 16]. In this thesis, we will be

looking at different omic datasets on the same group of patients with respect to a given

disease, in order to combine these multiple datasets into a single one (data fusion).

It has been reported that the pace at which omic data is being produced far surpasses

that of Moore’s law, which refers to how computing power and storage capacity doubles

every 18 months [7, 17]. Scientists use this data to stratify patients into subgroups,

relating to medication response or survival prospects, which is used to form treatment

decisions [15,18,19]. With the availability of this extra data, complex biological systems

can, and should, be studied as a whole. This would allow for knowledge discovery that

may not be attainable from the study of a single data type [7–9, 15]. Particularly, Liu

et al. [10] refer to the “emergent property”, relating to how some properties can “only

be observable when the system is studied as a whole and not as the sum of its parts”.

Hence this has led scientists to considering, and performing, data integration (DI).

Among the literature there is some ambiguity behind the term ‘Data Integration’. This

ambiguity is highlighted in [7] and can be seen in [20] where DI is used in the context of

fetching the raw data from multiple sources and bringing it together into one collection.

The context that DI is used in this thesis is as described above and in [1,7,11]: ‘the use

of multiple sources of information (or data) to provide a better understanding of a sys-

tem/situation/association/etc’. In the context of this thesis, we expect the development

of effective DI methods to have a significant impact in system biology and biomedicine.

Let us clarify this ambiguity further with a quick example of a method that will be

appearing frequently in this thesis, Similarity Network Fusion (SNF) [14]. Figure 1.1,

taken from [14] nicely illustrates SNF, which we shall discuss later in Chapter 2, but more

importantly how DI works. Panel (a) of Figure 1.1 starts with two separate datasets,

mRNA expression and DNA methylation but the rows in each dataset correspond to

the same object. I.e. the information in the first row of each dataset is from the same

patient. SNF compares how similar the patients are within each dataset, giving panel

(b), and uses networks to visualize this information, giving panel (c). From these two

panels we can see the different in structure between the two dataset, even though they

6 Chapter 1 Introduction

are datasets on the same patients. We assume that each data set captures a partial view

of the same underlying biological system. This justifies DI: by combining or integrating

the two datasets, we obtain more reliable information than by studying each system

separately and then combining the information. In the case of SNF, the networks in

panel (c) are combined into the network shown in panel (e), giving one single network

output, that has incorporated the information from both datasets revealing details that

would not be apparent from either dataset on its own.

Figure 1.1: Illustrating DI with SNF, taken from [14]. (a) The raw datasets where the
rows in each dataset correspond to the same patients. (b) For each dataset a similarity
matrix quantifying how similar the patients are to each other within that dataset.
(c) The similarity matrices are visualized using a network representation. As can be
seen there are very different structures even through the data originate from the same
set of people. (d) The fusion/integration process begins, combining the information
from each dataset together into one network. (e) The output from the fusion process
showing structure and information based on a more complete view of the whole system.

Revealing information that would not be apparent from either dataset alone.

Data integration can be done at three stages: an early stage, an intermediate stage

or a late stage. An early DI method consists of bringing all the information from the

separate sources into one data matrix and then performing an analysis. Intermediate

DI involves some initial analysis/representation of the separate data types and then

combining those representations. Lastly, late DI involves completely analysing each

data type and then combining the results [5, 18, 21]. Figure 1.2 from [11] provides an

intuitive illustration of these stages, referred here as concatenation, transformation and

model based respectively. These DI methods can then be further categorised in terms

of the objective that they seek. In [22] they argue that the objectives of DI methods

for omic data can be broadly separated into three categories. The first is the discovery

of molecular mechanisms, the second being the clustering of samples, such as patients,

and finally the prediction of an event (therapy efficiency, survival etc.).

Initially late DI methods were used, however there has been a shift towards interme-

diate methods due to a vast amount of studies concluding [7, 10, 22] that intermediate

DI methods outperform late DI methods or analyses with no integration at all. This

is illustrated particularly well in [12], where the authors present an intermediate DI

Chapter 1 Introduction 7

Figure 1.2: Illustration of the different stages of DI taken from [11]. (a) Concatena-
tion, or ‘early’ as we refer to it, has the datasets combined into one set and is then
analysed. (b) Transformation, what we call ‘intermediate’, has each dataset transformed
into a different form e.g. a network, which are then combined and then analysed. (c)
Model, or ‘late’ integration, analyses each dataset separately and then the results are

combined.

methodology called iCluster. Through their intermediate DI method, Shen et al [12]

identified a third, potentially novel, subgroup in the data from [23] which did not ap-

pear under a late DI approach. They also identified a fourth cluster, which was not

included as it did not show any patterns, though Shen et al [12] remark that patterns

might emerge if more data types were to be included (as they were only integrating

two datasets). Nevertheless, the discovery of this third subtype illustrates the power of

intermediate DI methods.

Many studies have concluded that the development of methods, particularly ones that

integrate more than two omic data types, is still needed [7, 10, 11, 15, 22]. Development

of DI methods is not an easy task as there are multiple challenges that any DI method

has to try and overcome. Challenges include the different dimensionality of each data

type, overcoming the noise present in the data, and the effective use of concordant

and discordant information. [1,12,14,17]. The contribution of this thesis is precisely the

development of a novel intermediate DI method, based on information-theoretic network

entropy.

In [22] the authors mention two binary features to describe DI methods, which are:

bayesian based and network based. The combination of these methods give rise to

8 Chapter 1 Introduction

4 categories: network free-bayesian free, network free-bayesian based, network based-

bayesian free, network based-bayesian based. A method is said to be bayesian based if the

method uses statistics to model the data starting from a reasonable set of assumptions.

Similarly, a method is said to be network based if the method uses networks/graphs

to represent the data/the interaction between variables. Applications and results from

graph theory can then be applied to help draw insight of the underlying biological

network. Networks are indeed a popular and widely used tool in the analysis of biological

systems [1, 22, 24]. A third binary feature we could include is whether the method is

supervised or unsupervised. Supervised methods use prior assumptions, for example,

an initial clustering structure or more weights to certain features, or other information

external to the data set. Methods without prior assumptions are classed as unsupervised.

An important problem with supervised methods is that they can skew the results and

fail to detect novel/new information beyond the initial assumptions. The end goal of this

thesis is to cluster patients based on the outcome their clinical/biological data without

any prior assumptions. In this thesis, we will present a new network based, bayesian

free, unsupervised DI method on clinical/biological data based on information theoretic

network entropy.

In the public domain there are many intermediate DI methods designed for omic data

with the goal of clustering. For example, in the network free-bayesian free category we

have Integromics [8] and MCIA [3], which we discuss below. Integromics [8] consists of

two approaches for integrating two omics data sets.

The first approach Integromics uses is a regularised version of canonical correlation

analysis (CCA) [25,26]. The original CCA [26] seeks out to find linear relationships and

correlations between variables from two different datasets on the same set of objects.

This is done by finding two vectors, that are a linear combination of the variables from

each dataset, that give the largest correlation. Assume we have two matrices X and Y

of order n × p and n × q, where n are the number of samples/objects and p, q are the

number of features for each data set. Also both sets of columns are assumed to be full

rank, mean centered and have a variance of 1. Let a and b be two vectors of coefficients

for a linear combination of the columns of X and Y respectively, which are calculated

by Xa and Y b. Then CCA seeks to solve:

ρ = max
a,b

cor(Xa, Y b).

That is, it finds vectors a and b that maximise the correlation between the two linear

combinations. Let SX and SY be the sample correlation matrices for X and Y . By

forming orthogonal projectors, PX = 1
nXS

−1
X X and PY = 1

nY S
−1
Y Y , the solutions to

the above maximisation can be found by an eigenvalue decomposition of PXPY and

PY PX .

Chapter 1 Introduction 9

This is where the original CCA starts to break when applied in a biological context.

A standard condition as to when to apply CCA is when n > p + q, that is when the

number of samples is greater than the total number of variables. The reason that CCA

can not/should not be applied when this condition fails is due to the inverse in the

orthogonal projectors. If p (or q) is greater than, or even close to n, then the matrix

SX (or/and SY) becomes singular or ill-conditioned. This means that the inverse can

either not be calculated, or it is unreliable. This situation is frequent with biological

data, where the number of features will often greatly outnumber the number of samples.

By introducing a regularisation, the problem can be avoided. The matrices SX and

SY are modified by adding on a non-negative multiple of the identity matrix, becoming

SX + λ1Ip and SY + λ2Iq. The rest of the procedure continues as before, with an

additional cross-validation step to tune λ1 and λ2

The other approach in Integromics, is a sparse version of Partial Least Squares (PLS)

[15, 27, 28], which simultaneously performs local regressions on two datasets X and Y ,

that have the same number of samples (i.e. rows) but different number of columns. It

assumes that the matrices can be written in a latent variable model, a technique that

we later see with iCluster, which is:

X = WxHx + εx

Y = WyHy + εy

Hx and Hy are referred to as loading vectors, Wx and Wy are the latent variables

(matrices) containing the regression coefficients and εx and εy are matrices added to

account for the noise/error. The objective of PLS is to find loading vectors that maximise

the covariance between Wx and Wy. To make PLS more applicable to biological omic

datasets the sparse version (sPLS) was made to help with the computation costs and

the interpretations of the results. The solutions are found using the eigenvectors from

a singular value decomposition of the product X ′Y . These are then modified to induce

sparsity using a soft-thresholding function.

Multiple co-inertia analysis (MCIA) [3] is an extension of co-inertia analysis (CIA),

which was originally only designed for the integration of two dataset on the same set

of objects. For the purpose of this explanation we assume that the number of the rows

(samples) for the datasets are the same but the number of columns vary. In MCIA

it still has the same motivating idea, transforming each dataset to the same (lower)

dimensional space an identifying co-relationships between the datasets. Both CIA and

MCIA transform the original tables of data into a form that captures how much variance

the entries contribute to the data. This new table/matrix X along wuth the matrices Dr

and Dc, that describe the amount of variation each row and column contributes, form

a triplet which is key for both methods. Both methods then use the triplets for each

dataset to form a version of a covariance matrix and then proceed to do an eigenvalue

10 Chapter 1 Introduction

Figure 1.3: Taken from [3] this shows a resulting plot from the MCIA method. The
colours are used to differentiates the cell lines taken from different tissues and the shapes

are used to represent the different datasets.

decomposition. The eigenvectors found from this are then used to create axes for each

dataset, all of the same dimension, that maximise the covariance between them. This

means that the samples have a set of coordinates for each dataset and can be plotted in

the same figure. In this figure, each dataset uses a different symbol for its samples, and

then the points representing the same sample in different data sets are join by a line. The

length of which is proportional to the divergence between the datasets, the shorter the

line the more strongly they agree. In the case of MCIA, as it integrates more than two

datasets, it uses an artificial reference centre for each sample from which the covariance

is maximised. Therefore in the corresponding plot, the different symbols corresponding

to the same sample are connected to the reference centre, as we see in Figure 1.3. The

length of the line from the reference centre to the symbol remains proportional to the

divergence of that dataset from the reference centre.

Examples in the category of network free-bayesian based are iCluster [12] and PSDF [19].

The main goal of iCluster [12] is to estimate a clustering structure that is common to

all of the data sets in a probabilistic framework. This is done by exploiting a con-

nection between K-means, Principal Component Analysis (PCA) and latent variable

models. Shen et al. start by discussing how K-means clustering can be solved optimally

through PCA. By reformulating the K-means cost function and allowing for a continuous

Chapter 1 Introduction 11

solution, rather than a discrete one, the problem is then solved by a eigenvalue decom-

position of X ′X, (where the column of X are the data points). Specifically by setting

Z∗ = (e1, . . . , eK)′ where ei are the eigenvectors associated to the K largest eigenvalues

of X ′X. The discrete structure, Z, can then be restored by either a QR decomposition

or a K-means algorithm on Z∗. Now the clustering problem can be represented by a

Gaussian latent variable model. That is the data, X, can be written as:

X = WZ + ε

Here Z is still the cluster matrix as a hidden (latent) variable, W is a coefficient matrix

that projects the sample into that space and ε is an error term added to account for the

noise/unique variances. Under additional assumptions, when considering a continuous

solution, Z∗, for this model, a likelihood based solution is available that utilises the

solution from above. The uniqueness of iCluster then arises by using this model to

estimate a single clustering that is common across multiple data sets, that is:

Xi = WiZ + εi

This is done by applying a Expectation-Maximization (EM) algorithm to a complete-

data log-likelihood function (with a lasso regularization). A likelihood function evaluates

how likely the current variable/parameters are given the data that has been observed,

the desired outcome is having parameters that maximise this. The EM algorithm does

just this by alternating between two steps. First is the E-step calculating the expected

solution for Z based on the current parameters and the subsequent step, the M-step,

is to update the current W and ε to maximise the likelihood for the current solution.

These steps are then repeated until the solutions and parameters have converged.

Patient-Specific Data Fusion (PSDF) [19] is a extension of the Transcription Module

Discovery (TMD) method in [29] to include feature selection. The method integrates

two datasets on a sample by sample basis, the samples being genes, to find samples that

are clustered together in both of the two datasets. These genes that are then clustered

together are then a potential transcription module which are a collection of co-regulated

genes that control a common biological function. The model for PSDF and TMD is

based on two-level hierarchy of Dirichlet Process Mixture models (DPMs). One level

controlling whether the data for a gene should be fused or not, and the second controlling

the clustering of the gene depending on if it’s fused or not.

Lastly, for network based-bayesian free methods, which are few in comparison to the

other categories, we have Multiplex [30] and SNF [14]. Multiplex [30,31] is not actually

a DI method, but is a framework that allows a user to jointly analyse multiple weighted

networks on the same set of objects that arise from each of the the different datasets.

Each different datasets is capturing a different interaction/aspect of the same system.

Given weighted networks Gα on N nodes with adjacency matrix Aα(= aαij ≥ 0), then

12 Chapter 1 Introduction

Figure 1.4: Here we have an illustration of multilinks in the case of two layers. There
are two different networks on the same 5 nodes. A multilink of type (1, 1) are pair of
nodes (1, 2), (2, 3) that have edges between them in both layers. Whereas the pair (2, 4)
would have a multilink of (1, 0) as they are only connected by an edge in the first layer.

Illustration taken from [30]

the degree, strength and inverse participation ratio for a node i in layer α are defined as:

kαi =
N∑
j=1

τ(aαij)

sαi =
N∑
j=1

aαij

Y α
i =

N∑
j=1

(
aαij
sαi

)2

where τ(x) = 1 if x > 0 and 0 otherwise. The degree simply captures how many con-

nections a given node has; the strength gives a indication of the importance of the given

node and the inverse participation ratio describes how evenly the edge weights of a node

are distributed or the number of effective links it has. By analysing these quantities and

their correlations information and insight can be gained about its structure. An exam-

ple is to look at the degree of nodes against their average strength/inverse participation

ratio. For a multiplex network, a collection of M weighted networks, these quantities

are generalised/extended to incorporate the concept of multilinks. Multilinks, −→m are

vectors of length M that are designed to characterise the multiple links between nodes

over the layers. The entries, mα, are binary indicating if edges exist in layer α, 1, or not

0. For example in the case of two layers the multilink (1, 1) would be characterising any

pair of nodes that have edges in both layers, like nodes 1 and 2 (and 2 and 3) in Figure

1.4. In total there are 2M different multilinks and a adjacency matrix A
−→m can be made

Chapter 1 Introduction 13

for each one, according to:

A
−→m
ij =

M∏
α=1

[τ(aαij)mα + (1− τ(aαij))(1−mα)]

With this the multidegree, multistrength and inverse multiparticipation ratio are defined

as:

k
−→m
i =

N∑
j 6=i

A
−→m
ij

s
−→m
i,α =

N∑
j 6=i

aαijA
−→m
ij

Y
−→m
i,α =

N∑
j 6=i

(
aαijA

−→m
ij∑N

r a
α
irA
−→m
ir

)2

Then these quantities can be analysed in the same fashion as the original quantities but

now factoring in how these connections are supported across different layers.

Similarity network fusion (SNF) models each data set as a network and takes the local

information from each network to propagate them into each others via an iterative

process. We will describe this method in more detail in Chapter 2, as we use it for

comparison and validation with our own novel DI method, Entropy Network Fusion

(ENF).

We have discussed several DI method, all of which have their own motivations with

resulting advantages and disadvantages. For example, all the methods in Intregromics

(CCA,RCCA,PLS,sPLS), CIA and PSDF only allow for the integration of 2 datasets,

arising from the design of the method. If a more complete understanding of a system

is to be had, then a DI method will need to be able to fuse more layers. Multiplex

is a framework for analysis of multiple networks rather than a DI method, analysing

the connections between nodes over the different layers. Because of its formulation and

complexity there is no apparent consensus on how to do clustering in a multiplex. In

MCIA, the raw datasets are transformed into one summarising the variation in that

dataset, this is repeated for all of the input datasets regardless of their origin. In some

cases this could be a too simplistic or an inappropriate treatment of the data. Some

datatypes might need to be treated differently or relationships between data might not

appear with such a simple treatment. Ideally a DI method should be able to handle

data from different sources appropriately. As for iCluster there is a potential issue

with computation complexity and prior assumptions. The calculations used in iCluster

become complex as the number of features rise, so a pre-selection of the features (genes)

to be used is typically done, using prior knowledge. This introduces the added risk of

omitting data that could be useful under the joint analysis or introducing a form of

bias. Note that in Wang’s paper [14] where they introduce SNF, the method we shall

14 Chapter 1 Introduction

be comparing ours to, they did a survival analysis (see Section 5.1.1) using SNF and

iCluster and compared the results. In it SNF out performed iCluster and they found that

iCluster was extremely sensitive with respect to the pre-selection of genes. Therefore if

our method out performs SNF, that implies it beats iCluster as well.

With our method we shall avoid having these issues. Our method will not require

a pre-selection of features, we shall be using a network representation encoding the

similarities between samples using all of the features if desired. The actual construction

of the networks is left to the user, allowing for different similarity measures to be used

for each dataset/data type. This and the ability to fuse more than 2 datasets, will give

our method a level of generality such that it will have a wider range of applications and

not be restricted to biological datasets only. Further by using a network representation

we shall also fulfill the demand for more network based DI methods, whilst being able

to draw on a whole area of results. For example, we’ve seen eigenvalues used in some

methods but not used in any using network methods. Eigenvalues of networks have a

connection to its clustering structure, in our own method we shall exploit this, as our

end goal is to cluster the nodes. Information-theoretic entropy, uses the eigenvalues of

a network to analyse it, this we discuss in the next section.

1.2 Network Entropy

Information-theoretic entropy has begun to emerge as a network analytic tool, which we

will discuss in this section. Shannon’s seminal paper, A mathematical theory of com-

munication [32], established the formulation of information-theoretic entropy and has

since expanded into a vast area [33]. In his paper, Shannon considers the problem of

measuring the uncertainty of a given event. Suppose that we have n events, with proba-

bilities p1, . . . , pn. Shannon considers three properties that the sought-after uncertainty

measure should have. The first is that it should be continuous in the probabilities pi.

The second is that, for uniform probabilities, pi = 1
n for all i, the measure should be

a monotonic increasing function of n. (That is, if all events are equally likely, the un-

certainty should increase as the number of events increase.) Finally, if an event can be

broken into two successive events then the total uncertainty should be the weighted sum

of uncertainty of the two sets of events. Shannon then proves that the only function to

satisfy these properties is:

HC = −K
n∑
i=1

pi log2 pi, (1.1)

for K a arbitrary positive constant. Note that this quantity HC is similar to the entropy

that appears in statistical mechanics [34], and hence the name. Also note that the base of

the logarithm is not restricted to be 2 as it corresponds to a choice of units, 2 is selected

so that the units. (In this case, the base 2 logarithm means the units of information are

bits.)

Chapter 1 Introduction 15

This quantity has been applied to analysis of classical networks [35]; used in cluster

comparison measures [36]; in measures for knowledge discovery and data mining [37].

Gradually it has been applied to complex networks. When applied to complex networks

it can be interpreted as quantifying how structured the network is based upon its key

features or, alternatively, the complexity of the system [38–43]. For example, in [44] the

authors quantify the dissimilarity between networks by using an entropy measure with

the degree distribution of the nodes. When clustering a network in [45] the authors use

entropy to evaluate the stability of the clusters and find any unstable nodes the network

may contain. Entropy is used in [46] to measure local randomness of integrated protein

interaction and mRNA expression networks to identify genes and pathways indicating

a more aggressive phenotype. More recently, entropy has been used in the data visu-

alisation method t-SNE, which reduces high dimensional points to a lower dimensional

space whilst preserving as much of the structure as possible [47]. In [13], which shall be

discussed in more depth in the next section, entropy is used to reduce redundancy that

can appear in multilayer networks. This last technique has been applied in the analysis

of brain activity [48, 49], with much success. The novelty of this thesis is the use of

network entropy as motivation for a DI method, as we will explain in Chapter 4.

1.3 Structural Reducibility

This section discusses in more detail the techniques used by De Domenico et al in

their article Structural reducibility of multilayer networks [13]. In this article they use

entropy as a measure of how much redundant information two networks on the same

set of vertices share. Then, they develop a data integration methodology to reduce the

number of layers minimising the information loss.

1.3.1 Summary and Results

A multilayer network (MN),M, is a collection of networks on the same set of n vertices

M = {M1, . . . ,Mm}. Each of these networks, referred to as a layer, represents a different

feature/relationship between these vertices. For example, the edges of a network could

be time dependent thus the layers correspond to the network at different points in time.

If these layers have edges between them, such as edges identifying nodes in different

layers, this construction is known as a multiplex [13, 41, 48, 50]. These MN can become

very large in terms of number of vertices and layers, with potentially lots of unique and

redundant information. Therefore a methodology to reduce this redundancy could lead

to a more compressed and effective representation of the MN, reduce the complexity

when performing basic structural analysis and even lead to insights about the source

of the layers and the relationship between them. This is the motivation behind the

methodology introduced by the authors, which we describe next.

16 Chapter 1 Introduction

Network N M Mopt max[q(·)] χ

Human HIV-1 1006 5 2 0.499 0.75
Terrorist network 78 4 2 0.239 0.67

Candida 368 7 4 0.527 0.50
Plasmodium 1204 3 2 0.500 0.50
S. cerevisiae 6571 7 4 0.115 0.50

Xenopus 462 5 3 0.424 0.50
FAO Trade Network 184 340 182 0.354 0.47

Table 1.1: A sample of results from application of the given method, more can be
found in [13]. N denotes the number of vertices in the network. M the number of
layers in the original system. Mopt the number of layers in the reduced system and
the distinguishability it achieves, max[q(·)]. χ corresponds to the reducibility of the

system.

De Domenico et al’s method proceeds as follows (see the next section for details): First,

using entropy, the Quantum Jensen-Shannon distance between all the pairs of layers

from the MN is computed. Then, the unique pair that realises the smallest distance is

then selected to be merged (integrated), which in this case is simply done by summing

the adjacency matrices, giving a reduced MN. This process then iterates until only one

network is left, the aggregated graph. The order at which these layers are combined

can be viewed as a hierarchical clustering of the layers. However, at each iteration,

the distinguishability from the aggregated graph is calculated and the reduced MN that

maximises the distinguishability is given as the result. In an ideal situation, rather than

selecting the pair that omits the smallest distance at each stage, you would consider all

possible partitions of the layers instead. However, the complexity of this would make it

computationally expensive, therefore pairs are only considered as a compromise.

De Domenico et al apply their methods to a vast selection of MNs, such as the gene

interactions in 13 different organisms from BioGRID [51], co-authorship networks, so-

cial systems and continental air transportation systems. The variety of these MN also

highlighted the adaptability of the method, with vertices ranging from 78 to 14065 and

layers from as few as 3 up to 340. Table 1.1 contains a sample of results, and the

complete set can be found in the original paper. As an example of the power of their

data integration entropy method, consider their analysis of the FAO (Food and Agri-

culture Organisation of the United Nations) network. Each layer represents a product,

with nodes representing countries and edges the import/export of the product between

those countries. With their method, the early stages of the aggregation corresponds to

products that have similar import export patterns, hence information is gained about

the grouping of products and the countries they travel from/to. This led to a reduction

from 340 layers to 182, close to 50%.

However, whilst this may seem like effective method it is not quite a proper/full DI

method. In the context that we are considering a DI give one single result in its output.

Whereas with this method we see that this is clearly not the case, as illustrated in Table

Chapter 1 Introduction 17

1.1, infact in the following breakdown of the method we see that it actively tries to

avoid giving one output. This still leaves the user with the issue of how to reconcile the

multiple ouputs and how to proceed forward. The method we will develop avoids this

issue by having a cost function to find one network that is as close as possible to all the

given inputs.

1.3.2 Entropy and Multilayer Networks

Whilst this subject forms the main content of this project and will be studied in depth

in Chapter 3, we quickly give the necessary definition to complete the review of [13]. To

calculate the entropy of a network given its adjacency matrix G, the first step is to form

the rescaled Laplacian matrix, sometimes called the density matrix [35], L̄(G), where

the eigenvalues sum to 1.

L̄(G) =
L(G)

Tr(L(G))
=
DG −G∑

ij Gij

Where DG is the degree matrix of the graph G. Then the entropy is given by:

H(L̄(G)) = −
∑

λk∈σ(L̄(G))

λk log2(λk), (1.2)

where λk are the eigenvalues of the rescaled laplacian matrix , and if any of the eigenval-

ues are equal to zero we set 0 log2(0) = 0. Using this, the distance between two networks

can be quantified using the Quantum Jensen-Shannon distance [43, 52] and this is the

metric used to select the two layers that are to be merged. Given two networks, Gi and

Gj , their distance is given by:

J(Gi, Gj) = H

(
L̄(Gi) + L̄(Gj)

2

)
− H(L̄(Gi)) +H(L̄(Gj))

2
. (1.3)

The unique pair (i 6= j) of networks that achieves the smallest value in this metric

are then selected to be fused together, by adding their respective adjacency matrices

together. The reasoning is that it is more desirable to fuse together layers that are the

most similar in structure (least information loss).

Once two layers are fused, they are removed from the MN and the new fused layer, the

summation of the two, is added in their place giving a new, reduced, multilayer network

R = {R1, . . . , Rl}. The average entropy of this reduced MN is then calculated, given

by:

H̄(R) =
H(R)

l
=

∑
Ri∈RH(L̄(Ri))

l
. (1.4)

18 Chapter 1 Introduction

Where l is the number of layers in the reduced MN. The next step is to compare the

reduced MN to the aggregated graph from the original MN by using the average entropy.

Here, A, is used to denote the aggregated graph from the original MN and HA is used

to denote its entropy. The reduced MN is then evaluated by using the distinguishability

of R from A, which is given by:

qA(R) = 1− H̄(R)

HA
, (1.5)

Once calculated, the distinguishability and the reduced network is stored, and the next

iteration begins. This process is then repeated until the reduced MN, R, has been

reduced to one layer, the aggregated graph. Upon completion the iteration that yielded

the largest distinguishability is selected and given as the solution.

The motivation behind this is that the best reduction possible is combining all the layers

into one, forming the aggregated graph. However in some situations doing this can result

in key structural information being lost. Information that appear in some layers but not

in others which then become lost in the cumulative noise. Hence by seeking the reduced

MN where the distinguishability is maximal, this will result in the fewest layers with the

most information possible. (One could think of it as the most ‘Dense’ reduced MN), in

terms of information.

The reducibility of the MN, M, is then defined as:

χ(M) =
M −Mopt

M − 1
, (1.6)

where M is the number of layers in the initial MN and Mopt is the number of layers in the

solution. This quantity is the ratio between the number of reduction made, (M −Mopt),

and the maximum number of reductions possible, (M − 1). Figure 1.5 is an image

illustrating the procedure, taken from the original paper.

Chapter 1 Introduction 19

Figure 1.5: Illustration of reduction of a multilayer network using entropy. Taken
from [13]. (a) Initial MN given as an input. (b) For all pairs of layers the Jensen-
Shannon distance is calculated. The pair achieving the smallest distance is selected to
be fused by adding together their respective adjacency matrices, giving a reduced MN.
(c) This process is then repeated with the reduced MN until it becomes one matrix,
forming a hierarchical clustering. At each each stage the distinguishability from the
aggregated graph is recorded. (d) The clustering maximising the distinguishability is

given as the output.

Chapter 2

Similarity Network Fusion

This Chapter will focus on a more in depth look at Similarity network fusion for aggre-

gating data types on a genomic scale by Wang et al. 2014. [14]. Similarity network fusion

(SNF) is a network based-bayesian free DI method that integrates patient specific data

that aims to cluster the patients into potentially novel groupings with different survival

profiles. Because of this it is a populate state-of-the-art method and falls into the same

category where we shall contribute, it also forms the start point of thesis’ work, hence

why we shall be taking a deeper look at it. This Chapter is split into two parts, first is

a review of the original method, second is original work done at the start of this thesis

trying to improve SNF by seeing if a limit can be taken.

2.1 Review

2.1.1 Summary and Results

The authors apply their new method to five different cancer data sets (lung, colon, glio,

breast and kidney), integrating data from three different sources (mRNA expression,

DNA methylation and miRNA expression). The size of these data sets, in terms of

patients, range from 92 (colon) to 215 (glio). Having applied SNF, the result is then

clustered using spectral clustering [53, 54]. These clusters are then evaluated using two

metrics: a cluster analysis using a silhouette score [55] and a survival analysis using a

log-rank test and calculating the associated p-values [56]. The p-values obtained from

their analysis is included in Table 2.1 for completeness.

The main steps, discussed in more detail below, of the SNF methodology are as follows.

First the data is preprocessed, removing any outliers, filling in any missing data and

then normalising the features. Next, for each data type, if not supplied, a similarity

network is generated. In the package supplied by Wang et al this is done by using the

21

22 Chapter 2 Similarity Network Fusion

Cancer Type Number of cluster p-value

GLIO 3 0.0002
Breast 5 0.0011
Kidney 3 0.029
Lung 4 0.02
Colon 3 0.00088

Table 2.1: Results of SNF applied to their 5 cancer sets [14], including the number of
clusters and the p-values obtained from a log-rank test.

Euclidean distance between the patients (the rows of the data type). From this a full

and sparse kernel is generated which captures the full and local similarity of that data

type. The integration step then begins, which entails using matrix products with the

various sparse kernels to update the full kernel. This is an iterative process and once

the desired number of iterations is complete the output is given by an average of all the

full kernels. Next we describe these steps in detail.

2.1.2 Pre-Processing

Before the method is applied the data must be preprocessed (‘cleaned’ in data analysis

terms) before it is in a suitable format for the method to be applied. Wang et al

performed three pre-processing steps to their data sets.

Firstly the authors remove any outliers that the data may contain. Secondly they filled

in any missing data. If a patient or a biological feature had 20% or more missing data

then this patient/feature was removed. If however, the missing data for this patient/fea-

ture was below this threshold then it was filled in using K nearest neighbour (KNN)

imputation [57]. The last step in pre-processing was to normalise each feature of the

data. Once these three steps have been completed then the data is considered ready to

have SNF applied to it.

The inputs have two components for each data type, a data matrix and a similarity

network. The data matrix, M , is a matrix containing the raw data, which has n rows,

the patients, and m columns, the measurements for each patient. Each row of this

matrix corresponds to all of the information for a single patient. The other input is a

similarity network on the set of patients to indicate which patients should be considered

as similar to each other. The formulation of this is left to the user, for example K

nearest neighbours or an all-to-all euclidean distance matrix. These similarity network

are denoted by G(k), the superscript (k) referring to the k-th data type or source.

Chapter 2 Similarity Network Fusion 23

2.1.3 Local and Global Networks

A weight matrix is used to capture all the patient similarity information. This is done

for each layer independently. The weight matrix is formed from the input graph G(k)

by the following:

W
(k)
ij = exp

(
−ρ

2(xi, xj)

µε
(k)
i,j

)
. (2.1)

The function ρ(xi, xj) is the euclidean distance between patient i and patient j from the

corresponding data matrix. The term ε
(k)
i,j is defined as:

ε
(k)
i,j =

mean(ρ(xi, N
(k)
i)) +mean(ρ(xj , N

(k)
j)) + ρ(xi, xj)

3
. (2.2)

Here, N
(k)
i stands for the neighbours of the vertex xi in the graph G(k), thus this is an

average of the average distance from xi and xj to their respective neighbours and their

distance to each other. The parameter µ is used to control the scaling, recommended

by the authors to be set in the range of [0.3, 0.8]. Note that 1 ≥ W
(k)
ij > 0. The more

dissimilar two patients are, the closer to zero the corresponding entry on the matrix is.

If two patients have identical data points then the corresponding entry will be equal to

one. In particular the diagonal entries of the matrix are all equal to one.

From this the so-called full kernel, denoted by P (k), is formed. This is done via a

normalisation of the weight matrix above:

P
(k)
ij =


W

(k)
ij

2
∑

l 6=iW
(k)
il

if i 6= j.

1

2
if i = j.

(2.3)

This normalisation makes it so that the rows of the matrix sum to one but such that

the diagonal entry is equal to a half. Next we form the sparse kernel, S(k), which is

produced in a similar fashion except in a given row only the information from the k

nearest neighbours is used. Hence this is only taking the local information into account.

This sparse kernel is formulated as follows:

S
(k)
ij =


W

(k)
ij∑

l∈N
′(k)
i

W
(k)
il

j ∈ N ′(k)
i .

0 otherwise.

(2.4)

Here N
′(k)
i are K nearest neighbours (KNN) of patient i in G(k) for a given K, this

includes themselves. This is equivalent to setting the values of points non-neighbouring

to zero. The underlying motivation behind this is that the information from local sim-

ilarities are more likely to be reliable than those further away. This completes the

components needed for the algorithm.

24 Chapter 2 Similarity Network Fusion

2.1.4 Fusion Step

Last is the integration process itself. The motivating idea is to infuse the full kernels with

the full information from each of the other full kernels. This will subsequently reinforce

or weaken the local similarities depending on how that similarity is supported across

the other data types. These kernels are updated simultaneously by taking an average of

the multiplication of the other full kernel with the corresponding sparse kernel. This is

an iterative process where the number of iterations is chosen before the process begins.

The process is defined below:

P
(k)
t+1 = S(k)

(∑
l 6=k P

(l)
t

m− 1

)
(S(k))T . (2.5)

For clarification P
(k)
t=0 = P (k) and m is the total data types. After each iteration the

full kernels are normalised again, rows summing to one and a half on the diagonal, as

in Eq. 2.3. This is to ensure that each patient is most similar to themselves and that

the final network is full rank. Wang et al report that doing this also leads to a quicker

convergence, needing about 20 iterations to converge. The method is defined to have

converged if the largest difference between iterations is smaller than 10−6. Lastly, the

output is given by the average of the P
(k)
t at the final iteration t:

F =

∑
k P

(k)
t

m
. (2.6)

Figure 2.1 is an image taken from [14], to illustrate the integration process.

Figure 2.1: Illustration of the SNF algorithm taken from [14]. (a) The raw data
from each source where the rows correspond to the patients. (b) For each data type a
similarity matrix quantifying how similar the patients are to each other is constructed.
(c) The similarity matrices are translated into similarity networks. (d) The fusion
process begins, updating each layer with the information from the other layers. (e) An

average of all the layers is given as the final output.

Chapter 2 Similarity Network Fusion 25

2.2 The limit of SNF

As SNF is an iterative algorithm, the process stops when it has ‘converged’ numerically,

that is, the difference between successive iterations becomes very small, less than 10−6

in the implementation by the authors [14]. It is therefore natural to ask whether a limit

of this process exists. If it does exist, the iterative procedure could be replaced by the

limit matrix, and the general conditions for the limit to exist can be studied. This would

shed light into the algorithm itself and its general applicability in a wider network data

integration setting.

2.2.1 Two Layers

For us to be able to calculate the limit, the process first required two main changes.

We first removed the normalisation step, to allow the SNF process to be written as a

recursive relation, without affecting the limit. One of the reasons for the normalisation

in the first place was to accelerate the convergence, therefore its removal should have

no effect other than slowing down the convergence. Also with calculating the limit this

becomes redundant. Another reason for its removal was because the operation could not

be achieved with linear matrix operations, meaning that the process could not be written

as recursive relations. The second main change was to ensure that each of the S(k) are

strongly connected and to scale it by 1
ρ(S(k))

, where ρ(S(k)) is the spectral radius of S(k).

These are conditions required to apply results for computing the limit (see Appendix B).

To ensure the S(k) are strongly connected, two solutions were available. The formulation

of S(k) comes from using KNN, the first solution is to select enough neighbours so that

the resulting matrix is strongly connected. The other solution would be to make the S(k)

symmetric, as the KNN algorthim is not a symmetric relationship. Then it would be

enough to make sure that enough neighbours are selected to make the matrix connected,

as symmetric connected implies strongly connected. Due to the antisymmetric nature of

KNN it may capture information that would be lost upon making it symmetric, therefore

we chose the former solution.

To begin with, we considered the simple case of two layers. From the definition for the

iterative process (Eq 2.5) there are two sets of equations.

P
(1)
t+1 = S(1)P

(2)
t (S(1))T . (2.7)

P
(2)
t+1 = S(2)P

(1)
t (S(2))T . (2.8)

Substituting one into the other leads to the recursive relations:

P
(1)
t+2 = S(1)S(2)P

(1)
t (S(1)S(2))T . (2.9)

P
(2)
t+2 = S(2)S(1)P

(2)
t (S(2)S(1))T . (2.10)

26 Chapter 2 Similarity Network Fusion

Solving recursively leads to:

P
(1)
2t = (S(1)S(2))tP

(1)
0 ((S(1)S(2))t)T . (2.11)

P
(2)
2t = (S(2)S(1))tP

(2)
0 ((S(2)S(1))t)T . (2.12)

At this stage the process is reduced to raising two matrices to a given power t and this

is where the limit can be taken. This gives:

P (1)
∞ = L12P

(1)
0 (L12)T , (2.13)

P (2)
∞ = L21P

(2)
0 (L21)T , (2.14)

where

L12 = lim
t→∞

(S(1)S(2))t,

L21 = lim
t→∞

(S(2)S(1))t.

So that the output of the process, on two layers, is given by:

F =
1

2

[
L12P

(1)
0 (L12)T + L21P

(2)
0 (L21)T

]
. (2.15)

This formulation reduces the process to calculating the limits L12 and L21, which from

the results in Appendix B, reduces further to calculating a left and right eigenvector

of the two products, S(1)S(2) and S(2)S(1). In essence the limit has all but one of the

eigenvalues tend to zero and therefore the eigenvector corresponding to the remaining

eigenvalue dominates the matrix powers. Note that the right or left principal eigenvectors

of a matrix correspond to a natural measure of centrality [58, 59]. Therefore, for the

two-layer case, we have a complete answer: a limit matrix which depends on the initial

full kernel in each layer, and the eigenvector centrality of the products of the sparse

kernels.

With this result the next step was to generalise this result to three or more layers.

However this small change makes the problem significantly harder as we can not simplify

the products as before. In the three layer case, proceeding in the same way as in the

two layer case, the equations from the iterative process have the form:

P
(i)
t+1 = S(i)P

(j)
t (S(i))T + S(i)P

(k)
t (S(i))T , (2.16)

which is in terms of the other two matrices, meaning that it is not possible to eliminate

both matrices and write the update equations in terms of the matrix we are updating.

Chapter 2 Similarity Network Fusion 27

Consider one of these equations after just one step and how its complexity has increased:

P
(1)
t+2 = S(1)

(
S(2)P

(1)
t (S(2))T + S(2)P

(3)
t (S(2))T

)
(S(1))T+

S(1)
(
S(3)P

(1)
t (S(3))T + S(3)P

(2)
t (S(3))T

)
(S(1))T . (2.17)

On l layers and after t steps in time, the equations would have (l − 1)t terms. This

complexity means that if the calculation of the limit was possible, other than by nu-

merical means, it would be extremely difficult. In any case, we found that the limit

actually tends to a constant matrix which we then subsequently proved, (shown in the

next subsection), and a constant solution is of no practical use. Therefore it shows that

SNF is highly dependant on the number of iterations as to the quality of the solution.

2.2.2 SNF Tends to a Constant Matrix

Initially, to show that the limit of SNF is a constant matrix, the maximum absolute

difference between the limit and the original method was analysed as the number of

iterations was increased. The results can be seen in Figure 2.2, the main plot shows

the difference at each stage up to 10, 000 iterations on a log scale. In the top right

corner we also include a plot of the first 50 iterations on a linear scale. As can be seen,

the initial difference decreases sharply before quickly slowing down. Given that all the

entries are bounded between zero and one the size of this change is still significant, but

does gradually decrease. This does imply that given enough iterations the difference

would tend to zero, supporting the conclusion. Intuitively, the information eventually

‘diffuses’ through the rest of the layers completely, giving a uniform output.

Now we prove that this is the case: in the limiting case, SNF converges to a constant

matrix. The normalisation in the formulation of the sparse kernel (Eq 2.4) makes all

the rows sum to one, that is:

S(k)1 = 1 · 1, (2.18)

where 1 is the column of all ones. Having being given this vector we can instantly apply

Theorem 8.3.9 from [60] to deduce the spectral radius. The theorem says that there are

no nonnegative eigenvectors of S(k) except for multiples of the Perron eigenvector p, the

vector associated with the spectral radius. This means that v = β−11, β ∈ R and:

S(k)v = 1 · v, (2.19)

28 Chapter 2 Similarity Network Fusion

Figure 2.2: Here we plot the maximum absolute value of the difference between the
limit of SNF and the original SNF method as the number of iterations increase, given
on a log scale. The plot in the top right corner shows the first 50 iterations on a linear

scale.

meaning that ρ(S(k)) = 1. Note here that all of the entries of the Perron eigenvector are

the same. The product of two sparse kernels also have rows that sum to one.

(S(j)S(k))1 = S(j)(S(k)1)

= S(j)1

= 1 (2.20)

Hence the product also has spectral radius equal to one and a right Perron vector where

the entries are the same. Now consider the limits formed in Eq. 2.13, which are formed

from the product of the left and right Perron vector (Eq B.12). Let x denote the right

Perron eigenvector, remembering xi1 = xj1 = α, α ∈ R as shown above, and let y denote

the corresponding left Perron vector. When computing the limit this gives:

Chapter 2 Similarity Network Fusion 29

Lij =
1

yx
(xy)ij

=
1

α
∑n

l=1 y1l
xi1y1j

=
1

α
∑n

l=1 y1l
xk1y1j as xi1 = xk1

= Lkj , (2.21)

a n×n matrix where all of the rows are equal. If a matrix is of this form it shall referred

to as equal-row equal. When a row equal matrix is multiplied with any other matrix:

(LP)ij =

n∑
k=1

LikPkj

=
n∑
k=1

LlkPkj from Eq 2.21

= (LP)lj , (2.22)

this results in another equal-row matrix. Finally, consider the product LP T where both

L and P are equal-row matrices. Then:

(LP T)ij =

n∑
k=1

Lik(P
T)kj

=

n∑
k=1

LikPjk

=

n∑
k=1

LakPbk as L and P are row equal

= (LP T)ab. (2.23)

This is a matrix where every entry is equal. Therefore a product of the form LPLT like

that we had in our limit method, Eq. 2.13, results in a constant matrix.

Next we move towards forming our own data integration method. This method will

draw upon the knowledge and insight gained from the study of the papers in Section

2.1 and Section 1.3. It will use entropy to capture the structural information from each

layer and use it to fuse the networks in a regression style fashion to find the one network

that is most similar to all of the given input networks. First we look at entropy and its

definition on networks in more detail.

Chapter 3

Network Entropy

In this thesis we use information-theoretic entropy as a cost function for our fusion

algorithm (ENF). Particularly, we shall be using the Jensen-Shannon Divergence as a

measure of distance between networks. In this chapter, we first discuss entropy, making

the transition from the classic definition, through to the quantum definition and then, its

adaptation to networks. After this, we present some formal results for network entropy

on some common families of graphs. Section 3.3 then discusses and shows examples to

help understand what entropy is capturing in networks. The final section discusses the

Jensen-Shannon divergence, which is defined in term of the network entropy, and forms

the basis of our data integration cost function.

3.1 Classic to Quantum to Network

As discussed in Section 1.2, Shannon’s formulation [32] of entropy is used to quantify how

much uncertainity there is in a given (discrete) probability distribution P = [p1, . . . , pn],

HC(P) = −K
n∑
i=1

pi log2 pi,

with the convention 0 log2(0) = 0. Where K is a positive constant to facilitate a change

of base for the logarithim. However entropy is considered in terms of Bits, base 2,

therefore proceeding forward K is set equal to 1. To compare two distributions, we can

use the Kullback-Liebler Divergence or Relative Entropy [33, 61–63].

KLC(P |Q) =
∑
i

pi log2

(
pi
qi

)
, (3.1)

with the conventions 0 log2(0
0) = 0, 0 log2(0

pi
) = 0 and pi log2(pi0) =∞, when pi 6= 0. It is

also non-negative and only equal to zero when P = Q [33,61]. This quantifies how much

31

32 Chapter 3 Network Entropy

the distribution P diverges from Q. For example, consider two dice and suppose we do

not know whether they are fair or biased and we wish to select the one that is closest to

being fair. After 100 rolls and recording the outcomes, the resulting observed probability

distribution shows die 1 only rolls 1’s, 2’s and 3’s with equal probability whilst die 2

only rolls 6’s. Comparing these distributions to that of a fair die we get a KL divergence

of 1 and 2.585 for each dice respectively. This shows that, out of the two available

options, die 1 diverges least from that of a fair die and the one that should be selected.

The Kullback-Liebler divergence does come with a couple of caveats, namely, that it is

unbounded and not symmetric. The anti-symmetric nature can be observed from Eq.

3.1. As for the unboundedness, given any distribution P , with more than 1 event, if

any entry of Q is equal to 0 when the corresponding entry in P is not, this will attain

a divergence of ∞. We consider instead a symmetrised version, the Jensen-Shannon

Divergence [61–63].

JSC(P,Q) =
1

2

[
KLC

(
P

∣∣∣∣P +Q

2

)
+KLC

(
Q

∣∣∣∣P +Q

2

)]
= HC

(
P +Q

2

)
− (HC(P) +HC(Q))

2
(3.2)

In fact, the square root of this quantity is a metric. It is symmetric, it is zero only when

the distibutions are equal and it obeys the triangle inequality [61–63]. Not only that, it

is also bounded between 0 and 1.

These were later extended to be used in the field of Quantum Mechanics (QM) to measure

the distance between quantum states or density operators, which generalise probability

distributions [61]. A density operator ρ is by definition a positive semidefinite matrix

whose (real, non-negative) eigenvalues add up to 1 [13, 40]. The quantum form of the

quantities above are [33,61–63]:

HQ(ρ) = −Tr[ρ log2(ρ)] = −
∑

γi∈σ(ρ)

γi log2(γi) (3.3)

KLQ(ρ|φ) = Tr[ρ(log2(ρ)− log2(φ))] (3.4)

JSQ(ρ, φ) =
1

2

[
KLQ

(
ρ

∣∣∣∣ρ+ φ

2

)
+KLQ

(
φ

∣∣∣∣ρ+ φ

2

)]
= HQ

(
ρ+ φ

2

)
− (HQ(ρ) +HQ(φ))

2
(3.5)

where σ(ρ) is the set of eigenvalues of ρ, including repeated eigenvalues and arranged

such that γi ≤ γi+1. Equation 3.3 and 3.5 are known respectively as the von Neumann

entropy and the quantum Jensen-Shannon divergence (QJSD), to make the distinction

between the classical and quantum forms [61–63].

Chapter 3 Network Entropy 33

It may not be apparent how the left hand side equals the right hand side in Eq 3.3, so

we shall explain this equality. The logarithm of a matrix is the infinite sum:

log(ρ) =
∞∑
k=1

(−1)k+1 (ρ− I)k

k
.

This is converted into base 2 by dividing by log(2). Given that we know ρ is a real

symmetric, positive semi-definite matrix it is diagonalisable. This means that it can be

decomposed as ρ = V DV −1, where D is a diagonal matrix containing the eigenvalues,

λ, as its entries and the columns of V are the eigenvectors. Using this in the logarithm

we get log(ρ) = V log(D)V −1. Now consider our expression.

−Tr[ρ log2(ρ)] = −Tr[(V DV −1)(V log2(D)V −1)] using ρ = V DV −1

= −Tr[V D log2(D)V −1] using V −1V = I

= −Tr[(D log2(D)V −1)V]

= −Tr[D log2(D)] = −
∑

γi∈σ(ρ)

γi log2(γi)

These quantities, HQ(ρ),KLQ(ρ|φ) and JSQ(ρ, φ), inherit the same properties as their

classical counterparts and, in particular, the square root of the QJSD is a metric. It

is still symmetric, which can be seen from the definition. The terms KLQ(ρ|σ) are

still non-negative and equal to zero if and only if the two density matrices are equal,

ρ = σ [61, 63–66]. This last fact can be seen by applying Klien’s inequality and using

the function t log2(t), as in [65,66], which gives:

Tr[A log2(A)−A log2(B)] ≥ Tr[A−B] = Tr[A]− Tr[B]

Where equality is obtained if and only if A = B. Which would make it equal zero, since

our matrices are rescaled to have trace equal to one. Furthermore, this means that
√
JSQ

is zero only when the density matrices are equal. As KLQ(ρ|ρ+φ
2) and KLQ(φ|ρ+φ

2) are

non-negative this means that for
√
JSQ to equal zero both parts must be equal to zero.

Therefore, from above, we must have ρ = ρ+φ
2 = φ. Finally, it satisfies the triangle

inequality [62].

Although these tools originated in QM and quantum information theory [61–63] they

have started to be applied to graphs and networks. As already discussed in Section 1.3,

the authors in [13] use the QJSD to determine which layers of a multilayer network to

fuse together in order to optimise the number of layers needed to represent their system.

In [44] they develop a method to compare the structural differences of networks, part

of which uses the classical JSD. Rossi et al. [67] use the QJSD to characterise graph

symmetries through quantum walks and in other papers [39,40] has been used to study

complex networks. Later in this chapter we show how the entropy and QJSD of graphs

is related to the clustering structure of the networks. The rest of the work in this thesis

34 Chapter 3 Network Entropy

presents a new way of fusing multiple networks and producing one network that is as

close as possible to the clustering structure of all of the given input network by using the

QJSD. For now we cover the definitions and the re-formulation to apply these quantum

quantities to graphs as in [13].

Definition 3.1. A weighted graph on n vertices can be represented by a real, symmetric

n × n matrix with non-negative entries G = (Gij) ∈ Symn×n(R≥0) with zero-diagonal.

Namely, there is an edge with weight Gij 6= 0, and no such edge if Gij = 0. This

definition can represent unweighted graphs (Gij=1 for all edges, by convention) and

undirected graphs (Gij = Gji for all i, j), as well as weighted self-loops (Gii 6= 0) but

not multi-edges. We restrict ourselves to positive edge weights, so that the associated

Laplacian matrix (see below) is positive semidefinite.

From this point on we implicitly identify a graph and its adjacency matrix G. When

studying graphs, the associated Laplacian matrix (defined below) is an important object

to consider. It has been shown that its spectral properties (eigenvalues and eigenvectors)

are closely related to structural properties of the graph, in particular its clustering

structure. For a simple example, note that the multiplicity of the 0 eigenvalue equals the

number of connected components of the network [68,69]. The Laplacian eigenvalues can

be used to estimate the number of clusters in a graph and the eigenvectors to find clusters

(eigengap and spectral clustering [53,54]); they can also be used to optimally embed the

network into n dimensions (spectral embedding [54,70]) among other applications.

Definition 3.2. The degree matrix, DG of an undirected, positively weighted graph

with adjacency matrix G = (Gij) is defined as:

DG,ij =


∑

i gik for i = j,

0 otherwise.

The Laplacian matrix for a graph G is then defined as:

L(G) = DG −G

Recall that an n× n symmetric matrix A is positive semidefinite if

xTAx ≥ 0 ∀x ∈ Rn

We next show that the graph Laplacian is a positive semidefinite matrix. The proof is

included so we can easily see how the rescaled Laplacian, which will be defined shortly,

is also a positive semidefinite matrix.

Chapter 3 Network Entropy 35

Lemma 3.3. The Laplacian matrix, as defined in Definition 3.2, is a positive semidef-

inite matrix.

Proof. Given a graph G, set G(u,v) to be the subgraph with only the edge (u, v) ∈ E(G),

on the same number of vertices. This graph G, and its adjacency matrix, can then be

written as the summation of all the adjacency matrices corresponding to the subgraphs

with one edge, G =
∑

(u,v)∈E(G)G(u,v). The laplacian, is linear with respect to addition,

shown in Appendix A and so can also be written as a summation of laplacians L(G) =∑
(u,v)∈E(G) L(G(u,v)). Then:

xTL(G)x =
∑

(u,v)∈E(G)

wuv(xu − xv)2

where wuv is the weight of the edge, which, as they are are all non-negative, means this

quantity is non-negative. Therefore it is a positive semidefinite matrix.

Next we show that we can normalise the Laplacian so that the sum of its eigenvalues is

1, that is, it becomes a density operator. Recall that the trace of a matrix is equal to

the sum of its eigenvalues [71]. Then:

Definition 3.4. The rescaled Laplacian matrix is defined as

L̄(G) =
L(G)

Tr(L(G))
=
DG −G∑

ij Gij

To see that this is still a positive semidefinite matrix, note that we have only divided

by a non-negative quantity. Therefore the proof remains the same as the one above

for the laplacian, but just with smaller positive edge weights. All in all, the rescaled

Laplacian becomes a density operator. With these results the entropy of a graph and the

QJSD between them can be calculated using the associated rescaled laplacian matrix.

To be explicit, we re-state the definitions of entropy, and of Jensen-Shannon distance,

for graphs.

Definition 3.5. Given a graph represented by an adjacency matrices G, we define its

entropy as:

HN (G) = −
n∑

λi∈σ(L̄(G))

λi log2(λi) (3.6)

= −
n∑

λi∈σ(L(G))

λi∑
j λj

log2

(
λi∑
j λj

)

Using σ(L̄(G)) to denote the set of eigenvalues of L̄(G) which are ordered such that

λi ≤ λi+1. To define the Jensen-Shannon distance between two graphs we use the

following.

36 Chapter 3 Network Entropy

Proposition 3.6. Given two graphs represented by adjacency matrices G1 and G2 then

the following is equivalent

HQ

(
L̄(G1) + L̄(G2)

2

)
= HN (g2G1 + g1G2)

where g1 =
∑

i,j G1,ij and g2 =
∑

i,j G2,ij.

Proof. Consider the following:

L̄(G1) + L̄(G2)

2
=

1

2

[
DG1 −G1

g1
+
DG2 −G2

g2

]
=

1

2

[
g2DG1 − g2G1 + g1DG2 − g1G2

g1g2

]
=
Dg2G1+g1G2 − (g2G1 + g1G2)

2g1g2

= L̄(g2G1 + g1G2)

The last line follows from noting that the numerator is the laplacian for the matrix

g2G1 + g1G2. Where the sum all of the entries is equal to 2g1g2 and therefore dividing

by this quantity gives the rescaled laplacian. This matrix g2G1 + g1G2 can then have

its entropy calculated as per Definition 3.5.

Definition 3.7. Given two graphs represented by adjacency matrices G1 and G2, we

define their their Jensen-Shannon distance as:

JSN (G1, G2) = HN (g2G1 + g1G2)− 1

2
(HN (G1) +HN (G2)) (3.7)

it can also be noted from our previous discussion, that the quantum JSQ, and therefore

the network JSN , are equal to zero if and only if the two density matrices are equal. For

networks, two rescaled laplacian matrices are equal if and only if the original laplacian

are scalar multiples of one another. To illustrate this further, consider Figure 3.1. These

are two non-isomorphic graphs taken from [72] with co-spectral laplacians, that is, they

have the same set of laplacian eigenvalues. Because of this, they achieve the same value

for their entropy, (namely 3.707). If we were using the classical version, their distance
√
JSC would be zero, despite the fact they are distinct (non-isomorphic) graphs. In fact,

the same issue would occur if we were to use the standard Euclidean distance between the

eigenvalues. Any non-isometric co-spectral graphs, graphs that can not be transformed

from one to the other by a function but both have the same set of laplacian eigenvalues,

would be distance zero apart which would mean we would no longer have a metric.

However, with the network definition, they have a non-zero distance
√
JSN = 0.1295.

This is because it also considers the average of the two density matrices and the change

in eigenvalues is not linear with respect to matrix addition. Similarly, even though they

have the same spectrum, their distance to a third graph are not necessarily equal. For

Chapter 3 Network Entropy 37

Figure 3.1: Two non-isomorphic, co-spectral graphs (same Laplacian eigenvalues)

have the same entropy. Hence the Jenssen-Shannon divergence,
√
JSC , between these

two graphs is zero. However, their Jenssen-Shannon distance,
√
JSN , is 0.1295, picking

up on these finer details and subtly in structure.

example their distances to the ring graph, on the same number of verticies, are 0.3183

and 0.3295 respectively.

3.2 Example Networks

Having described how to adapt the classical definition of entropy to networks, in this sec-

tion we present some results on the entropy of some common families of graphs/networks

and operations.

Definition 3.8. The following are common (undirected, unweighted) graphs that appear

in graph theory. (note that we labels vertices 1, 2, . . . n and identify each vertex with its

label i):

• The graph with n vertices where every pair of distinct vertices is connected by an

edge is called the complete graph on n vertices, written Kn [73, 74].

• The graph with n + m vertices and an edge between i and j for every 1 ≤ i ≤ n

and n+ 1 ≤ j ≤ m+ n is the complete bipartite graph Bn,m [73, 74].

• The star graph with n vertices is the graph Sn = B1,n−1 [73, 74].

• The path graph, Pn, with n vertices is the graph with edges {(i, i+ 1)}, 1 ≤ i < n

[73, 74].

• The ring graph with n vertices, Rn is the graph, Pn, with the extra edge {(1, n)}
[73, 74].

38 Chapter 3 Network Entropy

Lemma 3.9. The following are the eigenvalues of the laplacian for the graphs stated in

the previous definition.

• The laplacian eigenvalues for Kn are 0 with multiplicity 1 and n with multiplicity

n− 1.

• The laplacian eigenvalues for Bn,m are 0 with multiplicity 1, n with multiplicity

m− 1, m with multiplicity n− 1 and n+m with multiplicity 1.

• The laplacian eigenvalues for Sn are 0 with multiplicity 1, 1 with multiplicity n−2

and n with multiplicity 1.

• The laplacian eigenvalues for Rn are 2 − 2 cos
(

2π
n k
)

for 0 ≤ k ≤ n
2 each with

multiplicity 2 except for k = 0 and, when n is even, k = n
2 .

• The laplacian eigenvalues for Pn are the same as R2n.

With the eigenvalues for each of these graphs in hand, we now proceed to explicitly

calculate their entropy.

Lemma 3.10. The entropy of the complete graph Kn is HN (Kn) = log2(n− 1).

Proof. The trace (sum of the eigenvalues) is equal to n(n− 1) hence the entropy:

HN (Kn) = −
n∑

λi∈σ(LKn)

λi∑
λj

log2

(
λi∑
λj

)

= −
n∑
i=2

n

n(n− 1)
log2

(
n

n(n− 1)

)

= −
n∑
i=2

1

(n− 1)
log2

(
1

(n− 1)

)
= −(n− 1)

(n− 1)
log2

(
1

(n− 1)

)
= log2(n− 1).

Chapter 3 Network Entropy 39

Lemma 3.11. The entropy of the bipartite graph Bn,m is HN (Bn,m) = 1+ 1
2 log2 (mn)+

1
2m log2 (n) + 1

2n log2 (m)− n+m
2nm log2 (n+m).

Proof. The trace (sum of the eigenvalues) is equal to 2nm hence the entropy:

HN (Bn,m) = −
n+m∑

λi∈σ(LBn,m)

λi∑
λj

log2

(
λi∑
λj

)

= −n(m− 1)

2nm
log2

(n

2mn

)
− m(n− 1)

2nm
log2

(m

2mn

)
− n+m

2nm
log2

(
n+m

2mn

)
= −1

2
log2

(n

2mn

)
+

n

2nm
log2

(n

2mn

)
− 1

2
log2

(m

2mn

)
+

m

2nm
log2

(m

2mn

)
− n+m

2nm
log2

(
n+m

2mn

)
=

1

2
log2 (4mn) +

n

2nm
log2

(n

2mn

)
+

m

2nm
log2

(m

2mn

)
− n+m

2nm
log2

(
n+m

2mn

)
= 1 +

1

2
log2 (mn) +

1

2m
log2 (n) +

1

2n
log2 (m)− n+m

2nm
log2 (n+m) .

Corollary 3.12. The entropy of the star graph Sn is HN (Sn) = 1 + log2 (n− 1) −
n

2n−2 log2 (n).

An exact analytic result for the entropy of the ring and path graph is much more involved

so instead, we will compute it numerically. Table 3.1 below, summarises the formulas

for the entropy of the graphs we could obtain. Figure 3.2 illustrates the growth of the

entropies of the graphs Kn, Sn, Pn and Rn as n, the number of vertices, grows. Here we

have an indication of how entropy captures the structure and disorder of the graph. The

line for the complete graph is always above any of the other graphs. This is to be expected

as every node is connected to every other node making the graph have no structure

whatsoever and contains no information on how it should be clustered. Meanwhile the

ring graph and the path graph have more of a clear structure, reducing their entropy.

The path graph is always slightly below because it has one less edge, making a simpler

structure. We see the lowest entropy of the graphs that we have considered are the star

graphs. This is because, apart from one node, all the nodes are connected to the same

node. This has the simplest structure to describe with no ambiguity of how they should

be clustered together, resulting in having the lowest entropy. Next we show results about

the composition of disjoint graphs.

Graph Trace Entropy

complete n(n− 1) log2(n− 1)
bipartite 2nm 1 + 1

2 log2 (mn) + 1
2m log2 (n) + 1

2n log2 (m)− n+m
2nm log2 (n+m)

star 2n− 2 1 + log2 (n− 1)− n
2n−2 log2 (n)

Table 3.1: A table of the formulas calculated for the entropy of the respective graphs.

40 Chapter 3 Network Entropy

Figure 3.2: This figure shows the entropies of some of the standard graphs discussed
as the number of vertices increase. Specifically the complete graph Kn, path graph Pn,

the ring graph Rn and the star graph Sn

For the upcoming calculation, we recall that if a graph G is the disjoint union of two

graphs, G1, G2, then the spectrum of G is the union of the spectrum of G1 and G2. This

follows from the fact that the characteristic polynomial of a block diagonal matrix is the

product of the respective characteristic polynomials. We also require to calculate the

entropy of a normalised set of non-negative numbers. Therefore we make the following

definition.

Definition 3.13. Given a set of nonnegative numbers, {a1, . . . , an}, we define the

set entropy to be h̃({a1, . . . , an}) = −
∑n

i=1
ai∑
j aj

log2(ai∑
j aj

) with the convention of

0 log2(0) = 0.

Theorem 3.14. Let G be the disjoint union of two non-empty graphs G1, G2 then the

entropy is given by HN (G) = 1∑2
i=1 Ti

[∑2
i=1 TiHN (Gi)

]
+ h̃({T1, T2}) where T1, T2 are

the sum of the eigenvalues for G1 and G2 respectively.

Proof. Let HN (G1) = −
∑n

i=1
λi
T1

log2(λiT1) and HN (G2) = −
∑n

j=1
ρj
T2

log2(
ρj
T2

). Thanks

to the previous lemma the sum of the eigenvalues in G is T1 +T2. Therefore the entropy

Chapter 3 Network Entropy 41

is given by:

HN (G) = −

[
n∑
i=1

λi
T1 + T2

log2

(
λi

T1 + T2

)]
−

 n∑
j=1

ρj
T1 + T2

log2

(
ρj

T1 + T2

)
= − T1

T1 + T2

[
n∑
i=1

λi
T1

log2

(
λi
T1
· T1

T1 + T2

)]
− T2

T1 + T2

 n∑
j=1

ρj
T2

log2

(
ρj
T2
· T2

T1 + T2

)
= − T1

T1 + T2

[
n∑
i=1

λi
T1

log2

(
λi
T1

)
+

n∑
i=1

λi
T1

log2

(
T1

T1 + T2

)]

− T2

T1 + T2

 n∑
j=1

ρj
T2

log2

(
ρj
T2

)
+

n∑
j=1

ρj
T2

log2

(
T2

T1 + T2

)
=

T1

T1 + T2

[
HN (G1)− log2

(
T1

T1 + T2

)]
+

T2

T1 + T2

[
HN (G2)− log2

(
T2

T1 + T2

)]
=

1∑2
i=1 Ti

[
2∑
i=1

TiHN (Gi)

]
+ h̃({T1, T2}).

Note that Ti =
∑

j,k gjk is also the sum of all the edge weights. The above theorem can

then also be extended, by induction, to include multiple disjoint components, not just

two.

Corollary 3.15. Let G be the disjoint union of c non-empty graphs, G1, . . . , Gc then

the entropy is given by HN (G) = 1∑c
i=1 Ti

[
∑c

i=1 TiHN (Gi)] + h̃({T1, . . . , Tc}).

Corollary 3.16. If G = Gj , for all j, and not the empty graph, then the entropy of the

disjoint union of G1, . . . , Gc is given by HN (G) + log2(c)

Proof.

HN (G) =
1∑c
i=1 Ti

[
c∑
i=1

TiHN (Gi)

]
+ h̃({T1, . . . , Tc})

=
1

cTi
[cTiHN (Gi)]−

c∑
i=1

Ti
cTi

log2(
Ti
cTi

)

= HN (Gi)−
c

c
log2(

1

c
)

= HN (Gi) + log2(c).

42 Chapter 3 Network Entropy

3.3 Network Entropy Examples

In this section we discuss examples and results that help us gain insight of what entropy

captures in a network. Consider a graph made up of c disjoint complete graphs of m

vertices each. (This is the ideal case of a network with n = cm vertices and c identical

clusters.) The laplacian of G will be a block diagonal matrix whose eigenvalues is the

union of the eigenvalues of each block [68, 69]. Each block is a complete graph Km

with laplacian eigenvalues 0 with multiplicity 1 and m with multiplicity m− 1 [68, 69].

Therefore the spectrum (set of eigenvalues) of the laplacian of G is 0 with multiplicity c

and m with multiplicity c(m− 1). Normalising these such they sum to one they become

0 and 1
c(m−1) . Therefore calculating the entropy (from Eq. 1.2):

HN (G) = −
n∑
i=1

λi log2(λi)

= −c[0 log2(0)]− c(m− 1)

[
1

c(m− 1)
log2

(
1

c(m− 1)

)]
= 0− log2

(
1

c(m− 1)

)
= log2(cm− c)

= log2(n− c). (3.8)

This shows that the number of clusters that naturally arise within the network, encoded

by the eigenvalues, is linked to the entropy and decreases as the number of clusters

increase. Clearly this increases with the number of nodes, n, as more nodes leads to more

possibilities about how they should be clustered together and therefore more uncertainty.

Looking at this closer, the number of clusters, c, is bounded between 1 ≤ c ≤ n − 1.

These bounds correspond to when every node is grouped into one cluster and the other

being when only two are grouped together with every other node on its own. For the

above example, this means:

0 = log2(1) ≤ HN (G) ≤ log2(n− 1) (3.9)

The bounds seen above, maximal value of log2(n−1) and minimal value of 0, agrees with

results in the literature [32, 33, 35]. Equation 3.8 also reveals that two graphs, in our

simple example, shall have the same entropy if the difference between the total number

of nodes and clusters are equal. For example the graph K5 will have the same entropy

as the graph that is the disjoint union of two copies of K3.

Note that entropy is not only dependent on the number, or density, of edges, but their

location within the graph. For a simple example, consider the path graph Pn, and

the star graph Sn, on the same number n of vertices. Both of these graphs have the

Chapter 3 Network Entropy 43

same number of edges, n − 1, however by looking back at Figure 3.2 these graphs

have asymptotically different entropies, showing that entropy is not only effected by the

number of edges but how they are allocated. This is further supported by the example

graphs in Figure 3.3. Here 4 graphs are shown all with the same number of vertices and

all having 10 edges, apart from (C) which has 8. As can be seen the different possible

allocation of edges produces a range of values for the entropy. The effect of separate

components is apparent upon comparison of (A) and (D) but more important is the

comparison between (C) and (B). Here the ring graph, (C), has 2 edges less than that

of (B) but the entropy of (B) is significantly lower, hence showing that entropy is not

only effected by edge density but also its allocation.

Figure 3.3: Examples of how entropy is not only related to edge density but also
location. All of which have the same number of vertices, 8 and A, B, D having 10 edges
and C only 8 which is the Ring graph. We use H to denote the entropy for each graph.

A mathematical measure of how well connected a subgraph (cluster) of a network is to

the rest of the network is to measure the RatioCut [54]. The closer the value is to 0 the

easier that subset is to remove from the network, that is, the fewer number of edges,

relatively to its size, are needed to disconnect a subgraph from the rest of the network.

Below we show evidence that there is a link between the entropy of the network and the

RatioCut. Formally let G be a graph (network) with vertex set V and edge set E. Let

S be a subset of V representing the vertices of a subgraph or cluster and let S̄ be the

compliment of V (those not in V). The boundary, ∂S, is the sum of edge weights, wij ,

where one end of the edge is in the subset and the other is not, that is,

∂S =
∑

{i∈S,i∈S̄}

wij .

44 Chapter 3 Network Entropy

Then, given disjoint clusters of the node in a graph, Si, the RatioCut [54] is defined as:

RatioCut(S1, . . . , Sk) =
1

2

k∑
i=1

∂Si
|Si|

.

Where |Si| is the number of vertices in the subset. The 1
2 is included as each edge would

be counted twice. In the unweighted case, the upper bound is given by:

RatioCut(S1, . . . , Sk) ≤
1

2

k∑
i=1

|Si|(|V | − |Si|)
|Si|

=

∑k
i=1(|V | − |Si|)

2

=
k|V | −

∑k
i=1 |Si|

2
=
k|V | − |V |

2
=

(k − 1)|V |
2

In the case of k = 2 clusters, when this quantity is considered over of all possible subsets

of V (G) the minimum is referred to as the Cheeger constant of the graph G. This

constant is computationally hard to compute but can be estimated from the second

eigenvalue of the graph laplacian via the Cheeger inequality [69, 73, 75, 76]. Further, by

using a relaxation of the problem, the clustering that gives the RatioCut closest to this

estimate can be found from using the eigenvector associated with the second smallest

eigenvector. This method can also be used for k > 2 clusters and forms the basis

of spectral clustering [54]. To explore the relation between entropy and RatioCut we

conducted the following numerical experiment. An initial network was formed consisting

of multiple blocks of Kn, the complete graph on n vertices where n has been chosen

randomly, and then a random number of edges was added to the network. The RatioCut

was then calculated, with respect to the original blocks as the clusters and the increase

in entropy, as a percentage of maximum possible increase. This was then repeated

200 times and the results plotted against each other. After this the whole experiment

was then run again multiple times with different selections of Kn, in each setting, the

RatioCut was divided by its upper bound so that it was bounded between 0 and 1. A

selection of the results are shown in Figure 3.4 all showing the same conclusion, that the

entropy and the RatioCut increase proportionally as edges between clusters are added

and as the distinct clusters disintegrate.

Let us now bring our consideration of entropy back to eigenvalues. Eigengap [54] is a

way of inferring the number of clusters that a network naturally contains, this is done

by looking for the largest gap between two consecutive eigenvalues, which are arranged

in increasing order. When plotted, eigenvalues take an approximate “S” shape which

we can model using the Sigmoid function S(x):

S(x) =
1

1 + e−a(x−c) (3.10)

We see S(x) will go to 1 and 0 when x tends to +∞ and −∞ respectively and will equal
1
2 when x = c. The c controls the location of this center and a controls the gradient

Chapter 3 Network Entropy 45

Figure 3.4: Examples of how entropy increases proportionally to the RatioCut of the
clusters, for a selection of vertices and number of blocks. Each graph contains 200 data
points where the original network has had a random number of edges added to it and

the entropy and concordance calculated.

of the change over the center. (Note that this function is used in logistic regression

problems for classifying objects [77, 78].) Here we use S(X) it to model eigenvalues,

the center being the number of clusters that there are in the network and the gradient

eigengap/how well-defined those clusters are. Examples of these models are shown in

Figure 3.5 for a variety of settings, note that each setting has been scaled such that the

eigenvalues sum to 1, as they would when calculating entropy. To reiterate, this is an

approximation of eigenvalues, in a real situation they would not necessarily for a smooth

curve, but for our purpose here it is sufficient.

Now we have a model of all possible shapes of eigenvalues characterised by two param-

eters, a and c, and for each pair we can calculate the entropy. With a setting for a and

c selected we use the value of S(x) at x = 1, . . . , 20, as the eigenvalues of our ‘graph’.

After normailising the eigenvalues to sum to 1 the entropy is calculate as we normally

do in Eq. 3.6. We plotted the surface generated, Figure 3.6, by considering a over the

range [0, 2] and c over the range [1, 20]. Here we see two main effects. We see that as the

number of clusters increase, c, the entropy decreases. This not only agrees with our in-

tuition, more clusters means more structure resulting in a lower entropy, but it coincides

with our analysis at the start of this subsection (Eq 3.8). The other thing we see is the

effect of the gradient, a. As a increases, the eigengap for that cluster is becoming larger

meaning that those clusters are becoming more well defined, the structure stronger and

46 Chapter 3 Network Entropy

Figure 3.5: Modeling Eigenvalues using the Sigmoid function (Eq. 3.10). In the
legend the first number is the setting for the gradient, how well defined the number
of cluster are and the second value is the setting for the number of clusters. For each
setting the eigenvalues were re-scaled such that they summed to 1, as they would be in

the calculation for entropy.

more obvious, resulting in the entropy decreasing. This is further supported by Figure

3.7, which shows how the entropy changes for the same models but when one of the

variables, a or c is fixed.

3.4 Network QJSD Examples

In this final section we illustrate how the QJSD quantifies the distance between networks

with respect to structural differences. First we consider a rewiring of a highly clustered

network and the effects on the entropy and the
√
JSN . We generated our initial network

with distinct clusters using a Erdős-Rényi block model. In this model the nodes are

preallocated into clusters and then the edges between two nodes, i and j, are generated

according to the following scheme. If i and j are in the same cluster then the edge has

a high probability of being generated, if they are not in the same cluster then the edge

will have a very low probability of being generated.

As for the rewiring process, by rewiring we mean selecting a random existing edge,

remove it, and then adding a new random edge, such that we are not creating self loops

or multiple edges between two nodes. Given a sufficient number of rewires the structure

of the network will completely change from its initial structure to, eventually, an entirely

random structure (with fixed number of edges). We divided the rewiring process into

two stages. The first 300 rewirings were done within the clusters, the new edge was

Chapter 3 Network Entropy 47

Figure 3.6: Entropy of sets of eigenvalues that have been generated using our Sigmoid
model (Eq. 3.10), like those shown in Figure 3.5. The Centre is the location of the
eigengap/the number of clusters that there are and the Gradient is how large the

eigengap is/how well defined those clusters are.

Figure 3.7: Entropy of sets of eigenvalues that have been generated using our Sigmoid
model (Eq. 3.10), like those shown in Figure 3.5. (A) Shows the entropy when the centre
is fixed (c = 10) and the gradient changes. (B) Shows the entropy when the gradient is

fixed (a = 1) and the centre changes.

48 Chapter 3 Network Entropy

Rewiring Strategies Internal Global

Internal 0.1206 0.2009
Global - 0.2023

Table 3.2: Given the distance matrix shown in Figure 3.8 (B) this can be broken
into blocks corresponding to the different rewiring strategies. Then for each block we
calculate the average non-trivial distance, the results of which are shown in this table.

added within the same cluster as the edge that was removed. The last 300 rewirings had

no such restrictions so the new edge could be added anywhere. This was done to see

the effect of the rewiring restrictions on the entropy of the network, particularly how it

evolved, which are shown in Figure 3.8.

Figure 3.8 (A) shows the initial network on 100 vertices with 412 edges, generated by a

Erdős-Rényi block model, yielding a highly clustered network. This network was then

subjected to 600 rewirings, according to the strategy above, and the QJSD between

all the various stages of the rewiring computed. The results are shown in Figure 3.8

(B). Here, as expected, given a network at any stage, it is closest to those that are a

small number of rewiring away and gets further away as more rewiring occurs. This

is because within a few rewirings the structure of the network does not change that

significantly. In Figure 3.8 (C) we show the entropy at each step of the rewiring process,

including a moving average (using 20 points) to smooth out the curve. The fact that the

entropy changes, further suggests that entropy is affected by edge allocation, but what

is interesting to note is the effects of the rewiring restriction. Looking at the first 300

rewirings if the entropy was simply capturing the conductance or the isoperimetric ratio

of the graph then we would expect to see a straight line as the connections between the

clusters are not changing. However we can see that there are small changes in the entropy

(mean: 6.4366, standard deviation: 3.1× 10−2) showing that entropy is capturing more

that these quantities. But we can see it is heavily affected by the clustering of the network

as when the restriction is dropped, the entropy rapidly increases as the highly clustered

structure disintegrates (mean: 6.4606, standard deviation: 1.31 × 10−1). If we look at

the average non-trivial distances in the blocks corresponding to the different rewiring

strategies, this disintegration is also apparent. Table 3.2 shows that the average distance

increases (by 67%) when we switch from internal to global rewiring. This shows how

when the overall cluster structure is similar and small scale changes occur their distance

is smaller and when large scale changes occur this greatly increases the distance.

Another example of how QJSD captures this difference in clustering structure is shown

in Figure 3.9. Here disjoint copies of K10 form an initial graph, blue for 2 copies and

orange for 4. Then a random number of edges are added, between two of the blocks.

Once this is done then the distance between this edited network and the original,
√
JSN ,

is computed, and the results plotted. The graph shows that as the structure changes,

then the distance between the original and edited network increase respectively. The

blue line stabilises because the network tends to the complete network, there are only

Chapter 3 Network Entropy 49

Figure 3.8: (A) Shows the initial network to be rewired, which was created using a
Erdős-Rényi block model containing 100 nodes and 412 edges. (B) Shows a heatmap
of the

√
JSN distance between all the iterations during the rewiring process with the

axes denoting the iteration. (C) At each iteration the entropy HN was recorded and
plotted. During the first 300 iterations, the rewirings were done such that the new
edge was added to the same cluster it came from. After this point the restriction was

dropped allowing the new edge to be added anywhere.

two blocks of K10 and the addition of 100 edges transforms it into K20. As the orange

line is on 4 blocks and the edges being added is restricted to being added between the

same two blocks it does not stabilise. However if the restriction were removed and more

than 100 edges were added it would eventually stabilise as the graph would become the

complete graph K40.

Let us also consider our sigmoid model from the previous section (Eq.3.10) and how we

can analyse the QJSD with it. One feature that makes the analysis of the QJSD harder

is that the eigenvalue of the addition is not the addition of the eigenvalues of the two

matrices. However by imposing some conditions we can look at a subset of matrices

where this is possible to help provide understanding. Assume we have two laplacians,

G and H ∈ Mn and now let us suppose they are simultaneously diagonalizable. That

is there is an matrix S such that G = S−1ES and H = S−1FS where E and F are

diagonal matrices, containing their eigenvalues. Note though that the eigenvalues may

not be in the same order in both diagonal matrices, i.e in ascending order. However

for the purpose of this discussion we are going to make the extra assumption that they

are both arranged in ascending order. Altogether we have 1
2(G+H) = S−1 1

2(E + F)S

meaning, in this case, that the eigenvalues of the average matrix is the average of the

two sets of eigenvalues. Therefore, under these assumptions, we can easily calculate

50 Chapter 3 Network Entropy

Figure 3.9: Here we start with graphs that are made of disjoint copies of K10 and
then we add a number of edges randomly between two fixed clusters. The distance
between the modified graphs and their originals were recorded and then plotted against
the number of edges added. The blue line shows the change in

√
JSN when we began

with two blocks of K10 and the orange line is when begin with four blocks.

the QJSD between sets of eigenvalues that we have modeled with the sigmoid function

(Eq.3.10). This is the square root of the entropy of the average set minus the average

entropy of the two individual sets. Figure 3.10 shows the distance between a fixed set

of eigenvalues characterized by our sigmoid model using a = 0.9 and c = 8, and the sets

characterized by values on the x and y axis. This again shows QJSD is capturing and

quantifying the structural information, encoded within the eigenvalues. We see that

the distances get closer to zero as the structures become more and more similar, (as

a→ 0.9, c→ 8), particularly the number of clusters have the greatest effect in reducing

the distance. The only setting that achieves a value of zero is the one with the same

settings and small values in the neighborhood around it. Similar results were achieved

with other settings. This is also supported by Figure 3.11, where we calculate the

distance between two forms as we vary one variable at a time, keeping the other fixed.

The model we are computing the distance to is the same as before, the one charactised

by (a = 0.9, c = 8).

Our final example to illustrate how QJSD captures the structural difference between two

networks is using K-Nearest Neighbors (KNN) to “rewire” a network. Recall that KNN

works by looking at the distance from the current vertex to all of the others and then

only add a connecting edge to the closest K, which is selected by the user. Consider

Chapter 3 Network Entropy 51

Figure 3.10: Using our sigmoid model (Eq.3.10) and some additional assumptions

this figure show the
√
JSN between all the general forms characterised by a ∈ [0, 2], c ∈

[0, 20] and a fixed form a = 0.9, c = 8. As we can see the distance quickly tends to 0 as it
approaches the same setting, this is the only location equal to zero. The neighbourhood
around this is point has very small distances and we see that that achieving the same

number of clusters is a main factor of reducing the distance.

Figure 3.11: Using our sigmoid model (Eq.3.10) and some additional assumptions

this figure show the
√
JSN between a fixed form (a = 0.9, c = 8) and a form where we

vary one variable at a time (a or c). (A) Shows the effect on the distance when we fix
the gradient and vary the location of the centre. (B) Shows the effect on the distance

when we fix the centre and vary the value of the gradient.

52 Chapter 3 Network Entropy

Figure 3.12: Three clusters of points and the three KNN networks that arise as the
clusters are moved closer together. Network 1 has an entropy of 5.7311, network 2 with
5.742 and network with 5.7469. The central triangle is and embedding of these three

networks where the edges are equal to the
√
JSN between these networks.

Figure 3.12. Here, we have generated three clusters, of 20 points, from different bivariate

distributions, giving them a geometric embedding in the plane. Then we have formed a

KNN network with k = 7 and colored the nodes corresponding to each cluster. This time,

as opposed to simply randomly rewiring the network, we moved the outer clusters of

point, red and blue, in towards the middle cluster and then reformed the KNN network.

Initially, network 1 in Figure 3.12, these were centered at (−2, 3), (0, 2) and (2, 1) and

the outer two clusters were then moved at increments of 0.5, yielding networks 2 and

3. In the center of Figure 3.12 is a triangle with edges equal to the
√
JSN between the

networks.

In the first network, network 1, the clustering of the separate distributions are clear and

distinct, with only 3 edges in total connecting the clusters whose entropy is 5.7311. The

second network, after one increment, has a very similar structure to the first. Whilst

the number of edges between the clusters have increased, to 19, the separation of the

distributions is fairly clear and would mostly achieve the same clustering. This similarity

is reflected in their distance of 0.058989 how ever the increase in disorder is reflected

in its entropy rising to 5.742. Now compare the first network to the third. The third

network has had the outer clusters moved in by two increments and the resulting KNN

network formed has completely change. The distributions are no longer clear, its entropy

has risen to 5.7469, and if clustered would result a clustering different from that of the

other two networks. This difference between the first and third network can be seen with

the distance increasing up to 0.12731. This experiment was repeated 100 times, each

Chapter 3 Network Entropy 53

time using a different set of distributions to generate the points. In every single instance

the original network was closer to the second network than the third, with respect to
√
JSN , showing how

√
JSN captures the structural similarities between the networks.

Chapter 4

Entropy Network Fusion

This Chapter introduces our entropy-based data integration methodology which we call

Entropy Network Fusion (ENF). First we discuss the motivation behind ENF, followed

by a summary of the methodology. Then we take an in-depth look at the methodology,

starting with a discussion of the input data, the cost function, an adaptation for a

weighted version, followed by the derivation of the gradient for the cost function and an

numerical check that the gradient is correct. This Chapter concludes by studying the

convergence of our method. We are able to show that our cost function is both bounded

and convex, it produces sensible non-trivial answers with a very small variance in the

output when inititalised from different random points and that our derivation for the

gradient is correct.

4.1 Motivation

In Section 1.1 we explained how each omic data set probes a different aspect of the

same underlying biological system. For example transcriptomics captures information

about RNA transcripts and the active components of the cell; proteomics focuses on

the identification and quantity of proteins within the cell [16]. Each of these datasets

reflects a particular aspect of the same complex biological dynamical system, and a more

complete understanding will not arise from any single data set [7–9]. Therefore it makes

sense to combine, or integrate, the information on these data sets, as they all share the

same underlying ‘ground truth’, that is, each data set arises from the same underlying

biological system.

There are many methods available, as discussed in Section 1.1, for the integration of

omic datasets. Whilst all have to overcome the same set of challenges (dimensionality,

noise, concordant and discordant information [1, 12, 14, 17]), all of them have their own

sets of advantages, disadvantages and restrictions. Different methods may have distinct

55

56 Chapter 4 Entropy Network Fusion

objectives that they set out to achieve and may be designed for a specific data inte-

gration task. Therefore, the choice of integration tool will depend on the objective of

the analysis. In the case of this project, the objective is to cluster patient data into

clinically-consistent groups based on the integration of a more comprehensive set of

data, identifying potentially novel subgroups and new features of these subgroups. We

do this by encoding different omics data into networks, and then integrating, or fusing,

all networks into a single one, from which a clustering solution is obtained.

As previously discussed, representing these data sets as networks is a popular strategy

and widely used in the analysis of biological systems [1, 22, 24]. Representing the data

as networks not only helps with visualisation but also reveals structure that may not,

at first, be apparent. Many of these structural properties are encoded in the eigenvalues

and eigenvectors of matrices associated to the network, such as the graph laplacian. For

example, the multiplicity of the 0 eigenvalue equals the number of connected components

of the network [68, 69]; the eigenvalues are used to estimate the number of clusters and

the eigenvectors to find clusters (spectral clustering [53, 54]); they can also be used to

optimally embed the network into n dimensions (spectral embedding [54, 70]). Because

the goal of the project is to cluster patients, a network representation is appropriate.

Hence the result of any integration method should, in terms of structure, correspond

to the structure of the various sources used as close as possible. Therefore, using the

structural information during the integration process should be a key feature, and a

good proxy for this are the eigenvalues of the laplacian.

The network entropy is defined in terms of the (normalised) laplacian eigenvalues, (Eq

3.6 and [13]), and these eigenvalues are related to the structural properties of the net-

work. As reviewed in Section 1.2, entropy has been used to quantify the complexity of

networks and the distance/dissimilarity between networks [38–44]. This was then fur-

ther investigated and demonstrated in Chapter 3 showing how the structural differences

between networks is quantified by the QJSD. Therefore we shall use network entropy and

network QJSD to develop a network integration methodology which shall seek a single

network that is as close as possible, in terms of structure, to the given input networks.

We call this method Entropy Network Fusion (ENF).

Although this method is motivated by patient omic data, it can be applied to any general

network integration task that satisfies the same conditions/objectives. That is, if given

a set of networks on the same set of objects and the underlying true clustering structure

is being sought, then, ENF can accomplish this task.

Chapter 4 Entropy Network Fusion 57

4.2 Input

The inputs for ENF are l matrices of size n×n that represent (as adjacency matrices) l

similarity networks on the same set of n objects (in our case, n patients and l types of

omics data). Each of the similarity networks quantify how similar the set of patients are

with respect to a different data type. There are only two conditions that are enforced

upon the inputs. Firstly, the similarites of the network are bounded (normalised) be-

tween zero and one, such that if two patients are identical (in our network model) then

they have similarity equal to one, and zero for when they are completely dissimilar. As

standard in network clustering, the edge weights represent the cost of removing an edge,

hence the more similar two patients are, the higher the cost of assigning them to different

clusters. Secondly, the similarity networks must be undirected, as similarity is naturally

a symmetric relation. This means that the resulting matrices are symmetric and, in

particular, they have real eigenvalues and therefore the entropy can be calculated.

To allow for maximal range of application, ENF does not construct the similarity net-

works, leaving that to the user to create them how they wish. This is because the user

may have their own preferred method, the data they are working with may require the

similarities to be constructed in a particular fashion or they may even wish to have a

different method for each layer they construct. Regardless of how the user constructs

the network they must however satisfy the following requirements for ENF to be used:

Non-negative entries, that is, none of the edge weights can be negative; Symmetric, that

is, the edges can not be directed so that the similarity of object i to object j is the same

as the similarity of object j to object i; The entries are normalised such that 1 indicates

similarity and 0 indicates non-similarity. Note that there has been recent work extending

the entropy to directed networks [79], whose extension to QJSD and this method, could

be explored in future work.

To conclude this subsection, we cover a simple method a user can use to construct

similarity networks from the raw data as follows, after having normalised each column

of the data. First, for each data type, a euclidean distance matrix D should be created

between the n patients resulting in a n × n matrix. Then each of these matrices are

transformed according to:

Sij = exp

(
−Dij

µ

)
. (4.1)

Here µ is a scalar to control the drop off of the exponential, and will be referred to as

the scale factor. The scale factor is used to deal with the scaling problem that arises

from normalised high dimensional data, in that two points will typically have a larger

distance to each other in a higher dimensional vector space compared to their distance in

a lower dimensional space. If there is a large variance in the number of columns for the

different date sets there will be a corresponding variance in the distances matrices. This

can be referred to as the ‘Curse of Dimensionality’, hence the need for scaling of some

58 Chapter 4 Entropy Network Fusion

form. For ENF, µ, is set equal to the average of unique pairwise distance between points

in that given layer. This can be thought of transforming the distances to be percentages

above the average distance in the given layer and therefore brings different layers onto

the same scale. This transforms the distance matrices into similarity matrices. Equation

4.1 satisfies the requirement 0 ≤ Sij ≤ 1. Two patients, identical in every feature, have a

distance equal to zero and hence have similarity equal to one. The distance between two

patients will increase as they become more dissimilar, causing their similarity tending

towards zero. The symmetric requirement is fulfilled as euclidean distance is a symmetric

relationship and is preserved by our transformation.

4.3 Cost Function

As previously stated our objective is to find the network that is structurally closest to all

of the given input networks. This is an optimisation problem. These types of problems

occur everywhere, from investment portfolios (maximising return whilst minimising risk)

to optimum warehouse locations for delivery companies [80]. To solve these types of

problems, we need a way of measuring the goodness of a solution, namely a cost (or

objective) function. This function is then minimised or maximised, depending on the

setup, to find the ‘best’ solution [80]. The cost function used here is based upon the

average of squared errors, similar to that used in linear regression [77,78], and the error

is the distance between the networks as the square root of
√
JSN . Recall that JSN is

defined as:

JSN (G1, G2) = HN (g2G1 + g1G2)− 1

2
(HN (G1) +HN (G2))

As we saw in Chapter 3.4 JSN quantifies the difference in the clustering structure

between two networks by using the information contained in their eigenvalues. By using

this in our cost function our output shall have a structure that is as close as possible to

the structure of all the input networks, identifying structure that is common to all and

not being corrupted by conflicting information. We use θ to denote the adjacency matrix

of the network that is our current solution, when this is put into the cost function the

lower the resulting cost, the better the current solution is. Therefore the cost function

for ENF, C, at a given solution θ, is defined as:

C({S(l)}, θ) =
1

l

l∑
m=1

√
JSN (S(m), θ)

2

=
1

l

l∑
m=1

JSN (S(m), θ)

Chapter 4 Entropy Network Fusion 59

We can then rewrite the cost function in terms of the entropy of the networks only,

saving computational time, as

C({S(l)}, θ) =
1

l

l∑
m=1

[
HN

(
tS(m) + s(m)θ

)]
− 1

2l

l∑
m=1

[HN (S(m))]︸ ︷︷ ︸
constant

−1

2
HN (θ) (4.2)

where t =
∑

ij θij and s(m) =
∑

ij s
(m)
ij . By rewriting it in this form, the constant∑l

m=1[HN (S(m))], needs only to be calculated once at the very start of the process and

the entropy of θ is only needed to be calculated once per iteration. Instead of being

recalculated every iteration and distance.

Here, l is the number of layers (or datasets) being integrated; S(m) refers to the mth

similarity network, as used in Section 2.1 and Chapter 2.2; HN (·) is the network entropy

as defined in Eq. 3.6. At the start of the process θ is initialised to be a random symmetric

matrix of order n×n, n being the number of patients, with each entry between 0 and 1.

In practice we found that setting θ equal to the average of the given similarity matrices

greatly accelerated the convergence of ENF, which will be demonstrated in Section 4.8.

However if any of the given similarity matrices are on significantly different scale then

doing this will result in that layer dominating θ and in fact slowing down the convergence.

The cost function defined above also comes with the added properties of being bounded

and scale independent. The bounded property comes from the fact that the square root

of QJSD is bounded between 0 and 1 [61–63],

0 ≤
√
JSN (S(m), θ) ≤ 1

⇒ 0 ≤ JSN (S(m), θ) ≤ 1

⇒ 0 ≤ 1

l

l∑
m=1

JSN (S(m), θ) ≤ 1

As for the scale independence property this can be seen from a closer inspection of the

QJSD. Consider a real symmetric matrix A, then the eigenvalues of αA are the same as

those of A scaled by α, becoming αλi. When these eigenvalues are normalised, in the

calculation of the entropy, they become the same value:

αλi∑n
k=1(αλk)

=
αλi

α
∑n

k=1(λk)

=
λi∑n

k=1(λk)
.

60 Chapter 4 Entropy Network Fusion

Hence the entropy is equal, HN (αA) = HN (A). Then upon considering QJSD it can be

seen:

JSN (αA, βB) = HN

(
(βb)(αA) + (αa)(βB)

)
− 1

2
(HN (αA) +HN (βB))

= HN

(
(αβ)(bA+ aB)

)
− 1

2
(HN (A) +HN (B))

= HN (bA+ aB)− 1

2
(HN (A) +HN (B))

= JSN (A,B).

(Recall that a and b are the sum of the entries of A and B, respectively.) This means that

any scalar multiple of the given output will also achieve the same cost and performance.

Whilst in our main formulation of the ENF cost function the distance to each layer

is weighted equally, it can be easily extended to including weights for the distance to

each layer. This situation could arise if the user possess prior knowledge and wishes to

prioritize a particular layer in the fusion. The weighted ENF (wENF) cost function is

given by:

C({S(l), wl}, θ) =
1∑l

m=1w
2
m

l∑
m=1

(
wm

√
JSN (S(m), θ)

)2
(4.3)

=
1∑l

m=1w
2
m

l∑
m=1

[
w2
mHN

(
tS(m) + s(m)θ

)]
(4.4)

− 1

2
∑l

m=1w
2
m

l∑
m=1

w2
m[HN (S(m))]− 1

2
HN (θ)

where w1, . . . , wl are the corresponding weights for each layer. However in the analysis

performed in Section 5.2.2 we only explore the unweighted case.

Note that, in the ENF cost function, we explicitly compute the eigenvalues, and this

becomes the most costly computational step. However if the matrix formulation, (Eq.

3.3), were used in the cost function instead, this could give a speed-accuracy trade off.

The loss of accuracy results from the approximate calculation of log(ρ), which for a

matrix is given by an infinite sum. On the other hand, the computational speed gain

comes from avoiding the full eigenvalue computation and taking matrix products instead.

This is something that could be explored in future work

Chapter 4 Entropy Network Fusion 61

4.4 Gradient

With our cost function formed for this problem we now need to optimise it via some

algorithm. A popular way to minimise these functions is to use the derivative of the cost

function. By moving in the direction of the gradient, it will decrease the cost most rapidly

[80]. Hence the next step is to calculate the derivative. This requires differentiating our

cost function, to see how the entropy changes with respect to the eigenvalues. The

smoothness of our cost function follows from the continuity and differentiability of the

eigenvalues [81] and of the composition of smooth functions. Once we have the gradient

the cost function can then be minimised by gradient descent, or any other method that

the user wishes to implement. Note that in the following subsection some definitions are

repeated for completeness. As JSN is defined as HN (aG+ gA)− 1
2(HN (G) +HN (A)),

the computation of the gradient is divided into two parts, first HN (G) followed by

HN (aG+ gA).

4.4.1 Derivative of Eigenvalues

As network entropy is defined in terms of the eigenvalues of a matrix, first, we cover

the first derivative of eigenvalues. We use a perturbation theory result (Theorem 6.3.12,

from [71]) to this end. Suppose that we have a simple eigenvalue λ of a matrix M ,

with left and right eigenvectors yT and x. If M is subjected to a change E, then there

is a unique eigenvalue λ(t) of M + tE. This function, λ(t), is both continuous and

differentiable at 0, with limt→0 λ(t) = λ. But more importantly, the derivative at t = 0

is given by:
dλ

dt
=
yTEx

yTx
. (4.5)

Later we shall be abusing this notation slightly by using dλ
dE to represent the derivative,

this is because the particular change occurring in the matrix will be important. We

shall use E(i, j) to represent the elementary change in the (i, j)-th and (j, i)-th entry of

a adjacency matrix. Formally, this is another matrix that is defined as:

E(k, f)ij :=

1 (k = i, f = j) or (f = i, k = j),

0 otherwise.
(4.6)

This maintains the symmetric property of the matrix and of the underlying graph it

represents. Note for the graph it represents, the addition of the elementary change to

the adjacency matrix is just changing the value of one particular edge weight (k, f).

Recall from Chapter 3 that the entropy of a graph is defined in terms of the eigenvalues

of its laplacian,

HN (G) = −
∑

λi∈σ(L(G))

λi∑
j λj

log2

(
λi∑
j λj

)
(4.7)

62 Chapter 4 Entropy Network Fusion

Proceeding forward we use λi to denote the i-th eigenvalue of the matrix, yi and xi

to denote the left and right eigenvectors associated with λi, whose norms equal to one

and yji to denote the j-th entry of i-th vector. As we are dealing with real symmetric

matrices the left and right eigenvectors are in fact equal (yT = x).

Given a change in the original matrix G′ = G+ E(k, f), the new Laplacian is L(G′) =

L(G)+L(E(k, f)), since the Laplacian is linear. Therefore the change that is to be used

in the calculation of the derivative for the eigenvalues is L(E(k, f)) = EL(k, f). To be

explicit, it is defined as:

EL(k, f)ij = L(E(k, f))ij =


1 i = j = k, f

−1 (k = i, f = j) or (f = i, k = j)

0 otherwise

For the function HN (G), the change in the laplacian is the one described above, EL(k, f).

Therefore the derivative of its eigenvalues, λi, with respect to an elementary change is

given by using EL(k, f) in Eq 4.5.

∂λi
∂Gkf

=
dλ

dEL(k, f)
= xTi EL(k, f)xi

=
∑
a

∑
b

xaiEL(k, f)abxbi

= x2
ki − 2xkixfi + x2

fi

= (xki − xfi)2 (4.8)

Here we are abusing notation, by using ∂
∂Gij

to mean the derivative with respect to

the Gij and the Gji entry as both entries are being change to preserve the symmetric

property of the graph.

Note that if the two entries k and f are fixed, not equal, and this term is summed over

all the eigenvectors, indexed by i, then the sum is equal to 2, otherwise it is equal to 0,

n∑
i=1

(xki − xfi)2 = ||yk − yf ||2

= 〈yk − yf , yk − yf 〉

= 〈yk, yk〉 − 2〈yf , yk〉+ 〈yf , yf 〉

= 1 + 0 + 1 = 2 (4.9)

This is because the sum is equal to the norm of the difference between the k-th and f -th

left eigenvector. The final line follows from the eigenvectors having norm equal to 1

and eigenvectors corresponding to different eigenvalues are necessarily orthogonal. This

simplification will be used later on.

Chapter 4 Entropy Network Fusion 63

Next we consider the function HN (aG + gA), where A is being kept fixed and the

derivative is with respect to the entries of G. If G is subjected to an elementary change

in the (i, j)-entry, i 6= j, the resulting change that occurs in the laplacian can be seen in

the following:

L(a(G+ E(i, j)) + (g + 2)A) = L((aG+ gA) + (aE(i, j) + 2A))

= L(aG+ gA) + L(aE(i, j) + 2A)

= L(aG+ gA) + aL(E(i, j)) + 2L(A),

where a =
∑

ij Aij and g =
∑

ij Gij . (For a formal proof, see Appendix A.) Therefore the

change, in this case, that is used for the derivative of the eigenvalues is aEL(i, j)+2L(A).

Using this in Eq 4.5 gives the derivative of the eigenvalues of the laplacian:

∂λi
∂Gkf

= xTi (aEL(k, f) + 2L(A))xi

= a(xki − xfi)2 + 2xTi L(A)xi (4.10)

4.4.2 Part 1: HN (G)

Now that we have covered the preliminaries we now move onto calculating both the

first and second derivatives of both the necessary cases, beginning with HN (G). To

differentiate HN (G) with respect to the entries of the adjacency matrix of G, a change

of variables is needed as the entropy is defined in terms of the eigenvalues of the laplacian.

∂HN (G)

∂Gij
=

n∑
k=1

∂HN (G)

∂λk

∂λk
∂Gij

(4.11)

In the previous subsections we calculated the derivative of ∂λk
∂Gij

for this case, Eq 4.8.

Next we compute ∂HN (G)
∂λk

, differentiating entropy (Eq. 4.7) with respect to the λi. To

do this, the computation is divided into several stages for ease:

∂

∂λi

(
λk∑
j λj

)
=


∑

j 6=i λj
(
∑

j λj)2
k = i,

−λk
(
∑

j λj)2
otherwise.

(4.12)

∂

∂λi

(
log2

(
λk∑
j λj

))
=


∑

j 6=i λj
log(2)λi

∑
j λj

k = i,

−1
log(2)

∑
j λj

otherwise.
(4.13)

Combine these two to differentiate one term of Eq. 4.7, where k = i:

∂

∂λi

(
λi∑
j λj

log2

(
λi∑
j λj

))
=

∑
j 6=i λj

log(2)(
∑

j λj)
2

+

∑
j 6=i λj

(
∑

j λj)
2

log2

(
λi∑
j λj

)
(4.14)

64 Chapter 4 Entropy Network Fusion

For any other k:

∂

∂λi

(
λk∑
j λj

log2

(
λk∑
j λj

))
=

−λk
log(2)(

∑
j λj)

2
− λk

(
∑

j λj)
2

log2

(
λk∑
j λj

)
(4.15)

Therefore combining these together and setting T =
∑

j λj = Tr(L):

∂HN (G)

∂λi
=
−1

T 2

∑j 6=i λj

log(2)
+ (
∑
j 6=i

λj) log2

(
λi
T

)
+
∑
k 6=i

[
−λk

log(2)
− λk log2

(
λk
T

)]
=
−1

T 2

(
∑
j 6=i

λj) log2

(
λi
T

)
−
∑
k 6=i

[
λk log2

(
λk
T

)]
=
−1

T 2

(
∑
j 6=i

λj) log2

(
λi
T

)
−
∑
k 6=i

[
λk log2

(
λk
T

)]
+ λi log2

(
λi
T

)
− λi log2

(
λi
T

)
=
−1

T 2

(
∑
j

λj) log2

(
λi
T

)
−
∑
k

[
λk log2

(
λk
T

)]
=
−1

T

[
log2

(
λi
T

)
+HN (G)

]
(4.16)

Hence we have how the entropy changes with respect to the eigenvalues. Finally com-

bining (Eq 4.16) and (Eq 4.8) into (Eq4.11), the equation for the derivative of entropy

with respect to a particular entry is given by:

∂HN (G)

∂Gij
=
−1

T

n∑
k=1

[
log2

(
λk
T

)
+HN (G)

]
(xik − xjk)2

=
−1

T

n∑
k=1

[
(xik − xjk)2 log2 (λk)

]
+

2

T
log2(T)− 2

T
HN (G) (4.17)

If i = j then ∂HN (G)
∂Gij

= 0 and the last step is made by using (Eq 4.9).

4.4.3 Part 2: HN (aG + gA)

For this second case, the only difference between this and the first case is the change that

occurs in the laplacian and its corresponding effects on the derivative of the eigenvalues.

This was calculated in Subsection 4.4.1, specifically aEL(i, j)+2L(A), where a =
∑

i,j A.

The chain rule must still be applied, giving the same two components that we had in

the first case:
∂HN (aG+ gA)

∂Gij
=

n∑
k=1

∂HN (aG+ gA)

∂λk

∂λk
∂Gij

Chapter 4 Entropy Network Fusion 65

This first component, ∂HN (aG+gA)
∂λk

is exactly the same as the first case, resulting in Eq.

4.16. Combining this, as above, with the appropriate derivative of eigenvalues (Eq 4.10)

we arrive at:

∂HN (aG+ gA)

∂Gij
=
−1

T

n∑
k=1

[
log2

(
λk
T

)
+HN (aG+ gA)

] [
a(xik − xjk)2 + 2xTkL(A)xk

]
(4.18)

=
−1

T

n∑
k=1

log2 (λk)
[
a(xik − xjk)2 + 2xTkL(A)xk

]
+

2

T
[log2(T)−H(aG+ gA)]

[
a+

n∑
k=1

xTkL(A)xk

]
(4.19)

4.4.4 ENF Gradient

Finally, as differentiation is linear, we can combine the derivatives above to get the

derivatives of our ENF cost function Eq 4.2. For example, the first derivative is given

by:

∂C({G(l)}, θ)
∂θij

=
1

l

l∑
m=1

[
∂HN

(
tG(m) + g(l)θ

)
∂θij

]
− 1

2

∂HN (θ)

∂θij

=
−1

l

l∑
m=1

[
1

T (m)

n∑
k=1

[
log2

(
λ

(m)
k

T (m)

)
+HN (tG(m) + g(m)θ)

]
·

·
[
g(m)(x

(m)
ik − x

(m)
jk)2 + 2x

(m)T
k L(G(m))x

(m)
k

]]

+
1

2U

n∑
k=1

[
log2

(εk
U

)
+HN (θ)

]
(Xik −Xjk)2, (4.20)

where λ(m) ∈ σ(L(tG(m) + g(m)θ)), x
(m)
k is the right eigenvector associated with λ

(m)
k ,

T (m) =
∑

j λ
(m)
j , ε ∈ σ(L(θ)), Xk is the eigenvector associated to εk and U =

∑
j εj .

The corresponding second derivative is given by:

∂C(G(l), θ)

∂θαβ∂θij
=

1

l

l∑
m=1

[
∂HN

(
tG(m) + g(l)θ

)
∂θαβ∂θij

]
− 1

2

∂HN (θ)

∂θαβ∂θij
. (4.21)

The derivation of Eq 4.21 is given in Appendix C and can be used in second order

optimisation methods, such as Newtons method [80, 82]. However, this is very costly

in terms of computational power due to the vast number of terms that needs to be

calculated. If the network has n vertices then there are n(n−1)
2 variables hence n2(n−1)2

4

partial deriatives to compute. Therefore we proceed using only first order methods to

minimise the cost function.

66 Chapter 4 Entropy Network Fusion

We can numerically validate the correctness of our 1st derivative formula by comparing

it to the approximation given by Finite Difference (FD). Finite difference approximates

the gradient by making a small adjustment in a variable and looking at corresponding

change in the function. More specifically, the one-sided difference is given by the formula:

∂f

∂xi
(x) ≈ f(x+ εei)− f(x)

ε

where ε is the size of the adjustment and ei is unit basis of the entry being adjusted [80].

Figure 4.1 shows the comparison of Eq. 4.20 against FD when using a random graph, as

one of our input layers which remains fixed, and a tree graph for our θ , whose entries

the derivatives are being take with respect to. As we can see from Figure 4.1 D and

E, the structure of the two gradients are completely identical, including being on the

same numerical scale. This is confirmed further upon looking at Figure 4.1 F and noting

that the absolute difference of these two gradients is on the order of 10−6. This type of

analysis was repeated for other graphs and on the separate components of the gradient,
∂HNG
∂Gij

and ∂HN (aG+gA)
∂Gij

, achieving the same results.

Figure 4.1: Shown here are the results from the numerical comparison between the
FD estimation of the gradient and the formula derived in Eq. 4.20. (A) Is the graph
that is being kept fixed, the term G. (B) The graph that is being adjusted and the
gradient being calculated with respect to, θ. (C) The maximum absolute difference
between Eq. 4.20 and FD as 10−x decreases (the x-axis being the value for x). (D) The
estimated gradient produced by FD using ε = 10−5. (E) The gradient produced using
Eq. 4.20. The axes for these last two sub-figures correspond to the matrix entry. (F)

The absolute difference between (D) and (E)

Chapter 4 Entropy Network Fusion 67

4.4.5 Minimisation

As explained at the beginning of this subsection, we shall be using the 1st derivative

to minimise the cost function (Eq 4.2). There are multiple first order optimisation

procedures for minimising a function, so called because they use the first derivative of

the function. A selection of these methods are covered in [80, 82]. The most common

is Batch Gradient Descent or simply Gradient Descent. Here, for each iteration, the

entries of θij are adjusted according to:

θij − α
∂C({G(l)}, θ)

∂θij
. (4.22)

Here α is a learning rate variable that is set to control the descent. For this situation

after this adjustment is made, if any of the θij are less than 0 then they are set equal to

0. This is as θ is a graph with edge weights restricted to be non-negative. This is then

repeated for a given number of iterations.

Whilst gradient descent is the simplest method to implement, other methods are known

to converge faster. One such method consists of adding a momentum term [80, 82]. In

essence the momentum term accumulates past gradients: when they agree they increase

the corresponding change and when they dissagree they reduce the change. The solution

is adjusted according to:

νt = γνt−1 + α
∂C({G(l)}, θt)

∂θt

θt+1 = θt − νt (4.23)

where γ is a scalar in the range (0, 1), used to decay the past gradients, making recent

gradients more important than earlier ones.

There are three other methods that we wish to mention but we shall not be covering in

detail; they can be found in [80, 82]. The first is Nesterov accelerated gradient (NAG).

This looks ahead to incorporate the gradient of an approximation of the next iteration,

so the parameters can be updated more carefully. The drawback with this method is

that the computational time is doubled due to calculating another gradient. The next

two methods are similar in their motivation behind their design, these are Adagrad

and Adadelta. Both of these adapt their learning rates for each entry based on their

importance, rather than the adjustments being uniform. Where they differ is how they

adjust their learning rates. Adagrad uses the past gradients the determine how the

learning rate should be changed whilst Adadelta uses the previous updates and gradients

to determine its learning rate. In fact, Adadelta eliminates the learning rate entirely,

leaving it to figure out its own learning rate.

68 Chapter 4 Entropy Network Fusion

Figure 4.2: This figure shows the difference in cost history between the five first
order minimisation discussed: Gradient Descent (GD), Momentum (Mo), Nag (Na),
Adagrad (Ag) and Adadelta (Ad). These were given the same initial θ to start from,
same number of iterations (7500), same learning rate (105) and the same set of layers

to fuse (the layers in SNF for the breast cancer dataset, see Section 5.2.2.1)

Figure 4.2 shows a comparison of the cost histories from the five different methods

discussed. They were all given the same problem: the same input layers which were

the three used by SNF for the breast cancer data set (see Section 5.2.2.1); the same

learning rate, number of iterations (105 and 7500) and the same initial starting point.

The first thing to note is that apart from Adadelta all of the more sophisticated methods

converged faster than normal gradient descent. In fact looking at the cost of final GD

iteration, the momentum, NAG and adagrad method become less than this by iteration

963, 923, 675 respectively. In terms of computational time taken momentum and adagrad

took approximately the same time as GD, 6m30s, whereas NAG took almost twice as

long 11m30s. The precise run times are given in Table 4.1. As explained above this is

due to having to calculate and extra gradient at each step making NAG undesirable to

use. The results were the same when this analysis was run on the other data sets in

SNF. Proceeding forward, all that remains would be to choose which method to use out

of Momentum and Adagrad. In terms of distance they are less than 4.5 × 10−6 apart,

and as for validation quantities, discussed later in Section 5.1, they give the same values

for both solutions, meaning there is little difference between the two solutions and the

two methods. Hence we chose to proceed using momentum.

Chapter 4 Entropy Network Fusion 69

Method Time

Gradient descent 6m37s
Momentum 6m18s

NAG 11m18s
AdaGrad 6m22s
AdaDelta 6m9s

Table 4.1: The run times for the various minimisation methods shown in Figure 4.2.

4.5 ENF Algorithm

In summary, ENF takes m, n × n similarity networks as inputs and aims to find the

one network that is most similar, in terms of structure, to all of the given inputs, using

entropy and the JSN as proxy for structural equivalence between networks. This process

itself is done in a linear regression fashion [77,78] using QJSD, as it is applied in Section

1.3 (from [13]), as a cost function.

The process involves looking at the distance between the given input networks and

a initial network, then altering the structure of this inital network to minimise the

distances between them. This can intuitively be thought of as finding the network that

is closest to all of the networks at the same time, with θij , representing how similar

patient i and patient j are across all the layers. A summary of the algorithm can be

found in Algorithm 1.

The input of the algorithm is a set of similarity matrices and the number of iterations

for the algorithm to run for T . The remaining optional inputs control the momentum

gradient descent (learning rate α and momentum decay γ) as well as the initialisation

for θ (a random symmetric matrix, a layer, or the average of the input layers).

The algorithm first computes the average entropy of the input layers, as it remains

constant for the rest of the process. Next the iterative process begins. In each iteration

the algorithm calculates the cost of the current θ and then calculates the derivatives for

each entry of the current θ. After this every entry of the momentum term is updated,

it is reduced by multiplying by γ and then adding the current derivative multiplied by

the learning rate, α. This updated momentum term is then subtracted from θij and if

any of the entries become less than 0 that entry is set equal to 0, since we only allow

non-negative entries. Once the given number of iterations has been reached the process

terminates.

70 Chapter 4 Entropy Network Fusion

Algorithm 1: Entropy Network Fusion

1 function ENF (S(1), . . . , S(l), T, α, γ, I);
Input : l symmetric matrices of size n× n with entries between 0 and 1.

Number of iteration T .
Learning rate α ∈ R+. (Default α = n)
Gradient decay γ ∈ (0, 1). (Default γ = 0.9)
Initialisation I (Default - I = R random, I = A average, I = k layer k)

Output: n× n symmetric matrix θ = [θij]
2 if I ∈ {1, . . . , n} then

3 θ ← S(I)

4 else
5 if I = A then

6 θ ←
∑l

m=1 S
(m)

l
7 else
8 θ ← random symmetric matrix with entries between 0 and 1
9 end

10 end

11 y ← 1
l

∑l
m=1HN (S(m))

12 Initialise ν = (νij) to the zero n× n matrix
13 for k = 1, . . . , T do

14 Calculate the cost C({S(m)}, θ) as per Eq. 4.2

15 Calculate the gradient ∂C({S(m)},θ)
∂θij

for each entry as per Eq. 4.20

16 for i = 1, . . . , n do
17 for j = 1, . . . , n do

18 νij ← (γνij + α∂C({S(l)},θ)
∂θij

)

19 θij ← (θij − νij).
20 if θij < 0 then
21 θij ← 0
22 end

23 end

24 end

25 end

Chapter 4 Entropy Network Fusion 71

4.6 Convexity

A highly desirable property in any optimisation problem is convexity. Mathematically,

a real-valued function f : D → R where D ⊂ Rn, is convex if it satisfies two conditions.

The first is that its domain is a convex set. (A set is called convex if the line between

any two points of set is also contained in the set.) Second, it satisfies the following:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

for all α ∈ [0, 1] and x1, x2 in its domain [80]. This means that the line segment

connecting the value of the function between any two points is always greater than

or equal to the the value of any point in-between. The most important consequence of

convexity, for our minimisation purposes, is that the function has a global minimum, and

any local minimum found is also a global minimum [80]. If a function is not convex there

could be several local minima that are not global minima, and optimisation methods,

such as gradient descent, may find different minima depending on the initial starting

conditions. Now we show that our cost function for ENF (Eq 4.2) is indeed convex,

meaning that there is at most one global minimum and, if it exists, any optimisation

method will converge to it

Theorem 4.1. The cost function of ENF, is convex.

Proof. Our cost function, which we are going to show is convex, is Eq 4.2:

C(θ) =
1

l

l∑
m=1

[
HN

(
tS(m) + s(m)θ

)]
− 1

2l

l∑
m=1

[HN (S(m))]− 1

2
HN (θ)

=
1

l

l∑
m=1

JSN (θ, S(m))

We write this in terms of θ as the input layers remain constant and we start by showing

that JSQ = JSQ(θ) is convex with respect to θ. Recall from Section 3.1, (Eq 3.5), that

JSQ can be written as:

JSQ(ρ, σ) =
1

2

[
KLQ

(
ρ

∣∣∣∣ρ+ σ

2

)
+KLQ

(
σ

∣∣∣∣ρ+ σ

2

)]
From [63, 64] we know that KLQ(−|−) is jointly convex. That is let ρ(i) and σ(i) (1 ≤
i ≤ n) denote a set of density matrices and let αi be a set of non-negative real numbers

such that
∑

i αi = 1. Then:

KLQ(
∑
i

αiρ
(i)|
∑
i

αiσ
(i)) ≤

∑
i

αiKLQ(ρ(i)|σ(i)). (4.24)

72 Chapter 4 Entropy Network Fusion

First, from the definition of JSQ (Eq 3.5), we see that it contains the term KLQ(ρ|ρ+σ
2),

so we shall show that this term is convex. Consider a set of density matrices ρ(i) and

another set σ(i) where σ(i) = σ for all i. Then:

KLQ(
∑
i

αiρ
(i)|
∑

i αiρ
(i) + σ

2
) = KLQ(

∑
i

αiρ
(i)|
∑

i αiρ
(i) +

∑
i αiσ

(i)

2
)

= KLQ(
∑
i

αiρ
(i)|
∑
i

αi
ρ(i) + σ(i)

2
)

≤
∑
i

αiKLQ(ρ(i)|ρ
(i) + σ(i)

2
)

=
∑
i

αiKLQ(ρ(i)|ρ
(i) + σ

2
)

As previously discussed, the relative entropy is not symmetric and the case with the

terms swapped must also be considered. Given the same conditions:

KLQ(σ|
σ +

∑
i αiρ

(i)

2
) = KLQ(

∑
i

αiσ
(i)|
∑

i αiσ
(i) +

∑
i αiρ

(i)

2
)

= KLQ(
∑
i

αiσ
(i)|
∑
i

αi
σ(i) + ρ(i)

2
)

≤
∑
i

αiKLQ(σ(i)|σ
(i) + ρ(i)

2
)

≤
∑
i

αiKLQ(σ|σ + ρ(i)

2
)

Now combining these two we show that JSQ is convex, with respect to ρ, using the same

conditions.

JSQ(
∑
i

αiρ
(i), σ) =

1

2
[KLQ(σ|

σ +
∑

i αiρ
(i)

2
) +KLQ(

∑
i

αiρ
(i)|
∑

i αiρ
(i) + σ

2
)]

≤ 1

2
[
∑
i

αiKLQ(σ|σ + ρ(i)

2
) +

∑
i

αiKLQ(ρ(i)|ρ
(i) + σ

2
)]

=
∑
i

αi
1

2
[KLQ(σ|σ + ρ(i)

2
) +KLQ(ρ(i)|ρ

(i) + σ

2
)]

=
∑
i

αiJSQ(ρ(i), σ)

Chapter 4 Entropy Network Fusion 73

Hence we see that JSQ(θ), and JSN (θ), is convex with respect to θ. Using this we can

now construct our cost function.

C(α1θ1 + α2θ2) =
1

l

l∑
m=1

JSQ(α1θ1 + α2θ2, S
(m))

=
1

l
JSQ(α1θ1 + α2θ2, S

(1)) + · · ·+ 1

l
JSQ(α1θ1 + α2θ2, S

(l))

≤ α1

l
JSQ(θ1, S

(1)) +
α2

l
JSQ(θ2, S

(1)) + · · ·+ α1

l
JSQ(θ1, S

(1))

+
α2

l
JSQ(θ2, S

(1))

= α1
1

l

l∑
m=1

JSQ(θ1, S
(m)) + α2

1

l

l∑
m=1

JSQ(θ2, S
(m))

= α1C(θ1) + α2C(θ2)

Which is precisely the condition for convexity. Therefore we have shown that our cost

function for ENF, and wENF, is convex too.

4.7 Computational Time Analysis

To evaluate how our algorithm scales with respect to the input data, we performed

a numerical analysis to evaluate its computational complexity. In our experiment, we

generated the graphs to be integrated randomly with an edge probability of 0.7, and

random initial θ. We repeated the experiment 100 times for each combination of vertices

and layers, and the collection of time values averaged, the results of which can be seen

in Figure 4.3. From this it can be seen that the time complexity of the algorithm seems

linear on the number of layers, which is to be expected as the same calculations are

being repeated for the extra layers. As for the increase in vertices, Figure 4.3 shows

an increase that seems between a quadratic and cubic form, which is approximately the

complexity of computing eigenvalues and eigenvectors of symmetric matrices, the most

time-consuming part of our algorithm.

4.8 Convergence

In this section we report some validation tests for the ENF algorithm. In particular, we

test the effects of different learning rates on the algorithm convergence; that the output

from ENF produces a non-trivial answer containing useful information; the variance

arising from different initialisations of θ; the speed of convergence when starting from

the average graph and that ENF converges to a non-trivial answer.

74 Chapter 4 Entropy Network Fusion

In the first numerical test we designed, we generated 100 graphs on a given number of

vertices and then ENF performed on them individually. Their cost histories were then

averaged and plotted along with error bars equal to one standard deviation. We repeated

this for a selection of learning rates and then further on a different number of vertices.

The results are shown in Figure 4.4 and as can be seen the cost does converge/decrease

in every example. However it is curious to note that the convergence rapidly accelerates

as the learning rate increases, suggesting that an optimal learning rate could be larger

than 1. Typically in ML the learning rate is kept small as a learning rate that is too large

can cause the cost to diverge and increase rather than converge to a minimum [77, 78].

However with ENF we have found that a larger learning rate is required to have the

method converge in an acceptable time. Later in Section 5.2.2 when applying it to real

data we found an acceptable value for α was the number of node in the networks.

Another technique we will use to help visualise the results of ENF is Multidimensional

Scaling (MDS) [84] to embed the networks into R2. Given a set of distances MDS finds

the best set of points in a lower dimensional space (R2 in our case) whose distances are as

close as possible to the distances provided. When plotting using these lower dimensional

coordinates we refer to the axes as the MDS axes. The distances used in MDS, in this

case, were the distances between the networks, the square-root of JSN . An example of

this embedding can be found in Figure 4.5. In this example 8 graphs on 20 were fused

together: A bipartite graph with a 10 − 10 split; the complete graph; an Erdos-Renyi

block graph p = 0.4, q = 0.05; the path graph; A random graph with edge connection

p = 0.34; the ring graph; the star graph and a random tree graph. The average of these

graphs was also embedded and coloured red to highlight its position. Alongside these,

the evolution of the solution from ENF was also embedded and coloured with respect

to the cost at that point. As can be see from the figure the solution passes the average

graph indicating ENF producing a non-trivial answer, different from the average of the

networks. Knowing that ENF converges to a solution, next we tested if the output

being produced was a sensible answer. To test this, we gave ENF a single network,

initialised randomly, as a input and then evaluated the results. In theory, as there is

only one input, the result should be the same network. This test was run multiple times

with different graphs obtaining the same results, therefore only one set of results are

shown and discussed. These are shown in Figure 4.6, ENF was implemented with 400

iterations and α = 20. As the input network was unweighted, shown in Figue 4.6 A,

the output network was rescaled such that its maximum weight equaled 1. Figure 4.6 B

and C show the cost history from the process and the MDS embedding of the iterations,

which is explained shortly. From Figure 4.6 D we can see that the output network is

virtually the same except with some extra, extremely weak, edges. In total there are 13

extra edges whose mean weight is 1.9× 10−4 and maximum weight of 6.7× 10−4. When

these edges are thresholded out, the structure becomes identical to the input graph.

The other edges have a mean weight of 0.9997 and a standard deviation of 2.4 × 10−4,

making them extremely consistent and virtually equal.

Chapter 4 Entropy Network Fusion 75

Figure 4.3: Shows the results from the time analysis of ENF. For each combination
of vertices and layers, we timed 100 instances of one iteration of ENF and then plotted
the average time, colouring it proportionally to its value. The computer system used
to perform this test was the Iridis 4 computer cluster [83] and the test was computed
in parallel to reduce the overall time of the test. Specifically each node possessed 16

cores and allocated 4 Gb of RAM.

Figure 4.4: The results from the convergence check of the ENF algorithm. For each
setting of vertices and learning rate ENF was implemented on 100 different graphs, one
at a time. The resulting cost histories were then averaged and plotted with one standard
deviation. The legends show the value of the learning rate used in each setting. (A)

Graphs with 10 vertices. (B) Graphs with 20 vertices. (C) Graphs with 50 vertices.

76 Chapter 4 Entropy Network Fusion

Next, given that we typically inititalise ENF at a random start point, we tested the

consistency in the output of ENF. To do this we implemented ENF 100 times with the

same single target network. Each output was rescaled, such that the maximum value in

each adjacency matrix became equal to one, an acceptable adjustment because as shown

ENF is scale independent, and allows for the outputs to be more easily compared. To

measure the consistency we looked at the variance of each entry across all of the outputs.

If all the entries have a low variance then we can conclude that ENF is consistent. A

full boxplot of the entry-wise variances, as percentages of the mean entry-wise value,

is shown in Figure 4.7. As we can see the results showed variance in the range of

[0.09%, 1.3%], including the ones classed as outliers. This means that, regardless of the

initial point (random), it converges to the same target graph with small variance across

repetitions, showing that ENF is incredibly consistent with respect to the initialisation.

As we have been initialising ENF at a random θ we ran a subsequent test to look at

the effect of initialising θ at the average instead. In this, 6 graphs with 25 vertices were

randomly generated and then we implemented ENF twice on these same networks, once

with θ being initialised randomly, (and symmetrically) and the other with θ initialised at

the average of the given graphs, both using a learning rate of α = 2.5. This was repeated

100 times, averaging all of the cost history and plotting it with error bars equal to one

standard deviation. The results can be seen in Figure 4.8 which clearly shows that the

implementation with the average initialisation converges faster. However testing found

that if any one of the networks have values on a significantly different scale compared

to the others then this can in fact slow down the convergence, as the average would be

biased towards one of the input networks.

We also validated ENF is some biomedical data sets, this is discussed in Chapter 5.

Chapter 4 Entropy Network Fusion 77

Figure 4.5: Common graphs embedded with MDS using the square-root of JSN . The
graphs used: (1) Bipartite graph; (2) Complete graph; (3) Erdos-Renyi block graph;
(4) Path graph; (5) Random graph; (6) Ring graph; (7) Star graph and (8) Tree graph.
The long edges between the input graph are to illustrate the distance between them.
The red point is the average graph with its cost shown in the top right. The trail of
colour points is the evolution of the ENF output, every 100 iterations, coloured by its
cost at that point. The initial cost and the cost at the final iteration is shown in the

top right. This helps to illustrate that our method is finding a non trivial answer.

78 Chapter 4 Entropy Network Fusion

Figure 4.6: The results from our test that ENF recovers the input graph when there
is only one layer. (A) Plot of the small simple graph given to ENF as (single layer)
input. (B) The cost history from ENF. (C) The MDS embedding of the evolution of
the solution for every step, (see the main text for more details). (D) Plot of the output
network from ENF with its edges coloured proportional to its edge weight. As we see

the original input graph is recovered with a couple of extra, very weak edges.

Figure 4.7: Results from our initialisation consistency test. ENF was run 100 times
on the same graph (20 vertices), each time from a different random initialisation. After
rescaling such that the maximum value was equal to 1, the entry-wise variance was
calculated across all 100 instances. These variances have been plotted as a percentage

of the mean entry-wise value.

Chapter 4 Entropy Network Fusion 79

Figure 4.8: Shows the difference in speed of convergence when the average of the
input layers is used for the initialisation of θ instead of a random one. For each setting
100 implementations of ENF were done and the average cost history, with one standard

deviation, have been plotted.

Chapter 5

Validation and Results on cancer

datasets

After defining our novel network integration method, and some initial validation tests,

we will now apply ENF to real biomedical data to evaluate its performance. To allow a

side-by-side comparison with SNF, we will apply our algorithm to the same cancer data

sets in [14] when presenting SNF. This Chapter is divided into two Sections. The first

section explains the validation tools we shall use: abstract cluster comparison metrics,

and survival analysis (for the survival metadata in the cancer sets). The second section

contains the results and analysis from the application of ENF to the SNF cancer datasets

and the comparison with the SNF results. We will also compare our results with simpler

Data Integration methods (concatenation, averaging and random clustering).

5.1 Validation Tools

The Section covers the tools that will be used to evaluate and validate the results of our

algorithm. We will discuss survival analysis, as well as various metrics used to compare

clustering solutions.

5.1.1 Survival Analysis

Survival analysis consists of techniques to analyse data where the time until an event

occurs is of interest [56, 85]. The event in question can be patient time until recovery,

readmission or, as in this case, death. The time variable, t, is usually referred to as

survival time. These techniques also make use of what is known as censored data.

Censored data is where the exact survival time is unknown but, at the time recorded,

the subject was alive. Reasons why the exact survival time may be unknown can be the

81

82 Chapter 5 Validation and Results on cancer datasets

study ended or before exiting the study [56,85]. This survival data can be expressed as

a pair (ti, oi), where i is the subject index, ti is the time until the outcome oi, which is

equal to one if death occurred and zero if the data is censored.

Given this survival data a survival function or survival curve, S(t) can be constructed.

This survival function gives the probability that a person survives longer than time t

[56,85]. Theoretically, this is a smooth monotonically decreasing function where S(0) = 1

and S(∞) = 0, but in practice this is not necessarily the case. This function has to be

estimated from the data observed and as a result a step function, Ŝ(t) which will be

defined shortly, is obtained which is not a smooth function. Also, studies run for a fixed

length of time T and the event may not occur in that time frame for some individuals,

giving rise to censored data, hence Ŝ(T) may not equal 0 [56,85].

A popular method for estimating the survival function is the Kaplan-Meier estimator.

In summary, the observed data is used to estimate the survival probability at each time

t. This estimated probability, e(t), is defined as:

e(t) =
nt − dt
nt

, (5.1)

where nt is the number of people who are alive at time t and dt is the number of deaths

that occurred at time t [56,85]. If a censored observation and a death occur at the same

time then it is considered that the censored observation occurs ‘after’ the death (the

censored subject is included in nt). These are then multiplied together to obtain an

estimate of the overall survival function [56,85]:

Ŝ(t) =
t∏

k=1

e(k). (5.2)

These can then be plotted to obtain curves that will be seen later in this chapter,

typically when being plotted a cross will be marked on the curve at each censored data

point.

The survival curves can be analysed visually to extract information including estimated

percentile information. To do this graphically, given a percentile q, a horizontal line

is drawn at hight q on the y-axis (the survival probability). At the point where this

horizontal line first intersects the survival curve a vertical line is drawn and the corre-

sponding point on the x-axis is the time for that percentile [56]. As previously discussed

our survival curve, Ŝ(t), is an estimated function which may not reach zero by the end

of the study Ŝ(T). Therefore it may not be possible to calculate some percentiles as the

horizontal line will not intersect the curve. For example a survival curve that ranges

from 1 to 0.45 can estimate the 46th percentile but not the 44th. These percentiles can

be formally written [56] as:

t̂q = min
{
t : Ŝ(t) <

q

100

}
(5.3)

Chapter 5 Validation and Results on cancer datasets 83

Once a survival function has been constructed it can then be compared to other survival

functions. For example the patients can be grouped by the treatment they receive and

then a survival function can be made for each group. Conclusions about the effectiveness

of this treatment can then be inferred from the difference in survival functions. These

different survival curves can then be tested to see if they are statistically equivalent,

a popular choice being the log-rank test. The null hypothesis is that all the survival

curves are the same curve [56, 85]. The log rank test in essence compares the number

of observed deaths to the number of expected deaths [56,85], as follows. Let us assume

the case when there are two groups. Using the same notation as above let nij denote

the number of people alive at time i in group j and let dij be the number of those that

died at time i in group j. Then the expected number of deaths at time i for group j is

equal to

eij =
nij

ni1 + ni2
(di1 + di2). (5.4)

The total difference between the observed and expected for group j is given by

Oj − Ej =
∑
i

(dij − eij) (5.5)

This is then used to form the statistic for the log-rank test, which is given by:

LR =
(Oj − Ej)2

V ar(Oj − Ej)
(5.6)

where

V ar(Oj − Ej) =
∑
i

ni1ni2(di1 + di2)(ni1 + ni2 − di1 − di2)

(ni1 + ni2)2(ni1 + ni2 − 1)

This value, LR, is then tested under the χ2 distribution with 1 degree of freedom to

give a p-value. If the p-value is less than the given threshold then the null hypothesis

(the survival curves are the same) is rejected. For K groups it becomes more involved,

using covariances between the different Oj − Ej and the LR is considered under a χ2

distribution with K − 1 degrees of freedom. Exact details can be found in [56, 85]. In

the log rank test all parts of the curve are weighted equally but there are other tests

which apply weights to different parts of the curve. For example, the Peto test applies a

weight equal to the number of those at risk at the given time. This results in the failures

at the start receiving more weight than those at the end [56, 85]. Proceeding forward

the log rank test will be used so all parts of the curvival curve are considered equally.

84 Chapter 5 Validation and Results on cancer datasets

UTV V1 V2 . . . VC Σ

U1 n11 n12 . . . n1C a1

U2 n21 n22 . . . n2C a2
...

...
...

. . .
...

...
UR nR1 nR2 . . . nRC aR
Σ b1 b2 . . . bC N

Table 5.1: The number of elements that are in cluster i of U and cluster j of V ,
|Ui∩Vj |, is given by nij . The row and column sums are denoted by ai and bi respectively.

5.1.2 Clustering Comparison

This Section will cover the quantities that shall be used to evaluate the clustering results

of our method and any others we compare against. Where survival analysis can only

be done in the presence of survival data, these following quantities can be used in

any abstract network clustering situation. In particular we introduce network quality

measures: Normalised Variance of Information (NVI), Normalised Information Distance

(NID) and Concordance Index (CI). We will use them to compare the output from

the various fusion methods, hence some are needed tools to compare the clusterings

obtained.

First, we discuss NVI and NID following [86]. These quantities are metrics on clusterings

on the same graph. Having a metric enables us to directly compare clustering outputs.

These metrics use Information Theory and Entropy to evaluate how much information

two clusterings share: the more information they share, the closer they are.

Consider two clusterings, one that has R clusters and the other having C. Let us use

U and V as their clustering indicator matrices which are of order (n× R) and (n× C)

respectively. The entries of these matrices are binary, so either 1 or 0, where the (i, j)-

entry indicates if node i is a member of cluster j and each node is only a member

of one cluster. The first step to calculating NVI and NID is to look at their table of

intersections, that is, how many pairs of clusters overlap. This can be read off the

product UTV a matrix of order (R×C), where the (i, j) entry is the number of elements

that are in both cluster i of U and cluster j of V , |Ui ∩ Vj |. This gives a table/matrix

like the one shown in Table 5.1. From this table the following functions can be defined:

H(U) (Eq 5.7) is the entropy of the clustering U , to avoid confusion this shall be referred

to as the cluster entropy ; H(U, V) (Eq 5.8) is the joint entropy and I(U, V) (Eq 5.9) is

Chapter 5 Validation and Results on cancer datasets 85

the mutual information (MI).

H(U) = −
R∑
i=1

ai
N

log2

(ai
N

)
, (5.7)

H(U, V) = −
R∑
i=1

C∑
j=1

nij
N

log2

(nij
N

)
, (5.8)

I(U, V) =

R∑
i=1

C∑
j=1

nij
N

log2

(
Nnij
aibj

)
. (5.9)

In [86] the authors state that MI, as it is non-negative, can be used as a basic similarity

measure however they remark that a desirable feature of any cluster comparison is

normalisation. Given that MI is bounded by:

I(U, V) ≤ min{H(U), H(V)} ≤
√
H(U)H(V) ≤ 1

2
(H(U) +H(V)) ≤ . . .

≤ max{H(U), H(V)} ≤ H(U, V) (5.10)

multiple normalised measures can be constructed [86]. When these bounded quantities

are turned into normalised distance measures, only two turn out to be metrics. The

Normalised Variation of Information (NVI), Eq. 5.11 and the Normalised Information

Distance (NID) Eq. 5.12.

NV I(U, V) = 1− I(U, V)

H(U, V)
(5.11)

NID(U, V) = 1− I(U, V)

max{H(U), H(V)}
(5.12)

Therefore, the closer to zero these quantities are, the more similar they are. For example,

consider two clusterings that are identical but one has had its labels permuted. These

would have a distance of zero because they have the same information/structure. The

table of intersection in this case would only have one entry in each row/column that is

non-zero and we can re arrange it to look like the table below

UTV V1 V2 . . . VC Σ

U1 a1 0 . . . 0 a1

U2 0 a2 . . .
... a2

...
...

...
. . . 0

...
UC 0 . . . 0 aC aC
Σ a1 a2 . . . aC N

86 Chapter 5 Validation and Results on cancer datasets

At this point, the terms H(U), H(V) and H(U, V) are all equal. Therefore we just need

to show these are equal to I(U, V) and in this case, the non-zero terms in MI become

nij
N

log2

(
Nnij
aibj

)
=
ai
N

log2

(
Nai
aiai

)
=
ai
N

log2

(
N

ai

)
= −ai

N
log2

(ai
N

)
making the summation equal to that of H(U), H(V) and H(U, V). Hence the distance

between these two clusterings will be equal to 0. Whilst on the opposite end, a clustering

with one single cluster and another where every point is a cluster will have a maximal

distance of one. To see this, consider the table of intersections in this scenario, which

would look like the one below. Note that as we have only one row, each n1j is in fact

UTV V1 V2 . . . VC Σ

U1 b1 b2 . . . bC N

Σ b1 b2 . . . bC N

equal to its column sum bj . To show in this situation the NID and NVI are equal to one,

we only have to observe that the MI, I(U, V), is zero. The fraction inside the logarithm

of MI,
Nnij

aibj
, in this situation it becomes

Nbj
Nbj

= 1 and therefore the logarithm is zero for

all the terms. As QJSD is being used to find a network that is closest to the structure of

all of the given input networks, the above metrics shall be used to compare the clustering

of the ENF output to the clustering of each of the input networks.

In [14], the authors use Concordance Index (CI) to evaluate clusterings and, to keep the

comparison fair, this is included in our analysis as well. The CI takes two clusterings,

U and V , and measures how much agreement there is. It is bounded between 0 and

1, where the closer to 1 the more agreement between the clusterings. The CI can be

defined from some of the quantities defined above as

CI(U, V) =
I(U, V)√
H(U)H(V)

. (5.13)

This is simply the MI normalised by one of the bounds shown in Eq. 5.10. However, as

shown in [86], this quantity is not a metric, unlike NVI and NID, but since the CI is not

used as a metric this is not an issue.

5.2 Results from SNF Data

This Section contains results of various methods being applied to the cancer data sets

from [14] and a survival analysis performed. There were five data sets available for

analysis: Lung, Colon, GLIO, Breast and Kidney, each of which had data from three

sources: mRNA expression, DNA methylation and miRNA expression. Once integrated

together, the results were clustered, via spectral clustering [53,54]. This, along with the

survival data that was also available for each data set, allows for a survival analysis to be

Chapter 5 Validation and Results on cancer datasets 87

performed [56], to evaluate the difference in survival profiles. Additionally, we include

the results from two naive approaches: average and concatenation (Section 5.2.1).

5.2.1 Naive Methods

Before evaluating SNF and ENF, we apply two naive methods for DI to demonstrate why

more sophisticated methods are needed. The first is a intermediate DI method, which

is averaging: The output is simply the average of the similarity matrices. The second,

an early DI method, is Concatenation: Before any similarity matrix is formed the data

is concatenated into one data matrix and then a single similarity matrix, the output, is

formed. Concatenating the data removes all the partitioning that has naturally arisen

from the different sources and force the similarity measure to consider everything at the

same time. With the results from these naive methods they were then clustered, using

spectral clustering, into the same number of clusters that were used in SNF.

Upon construction of the average similarity matrix for the breast data, the resulting

matrix has diagonal entries equal to one and off diagonal entries that are all very similar

in value. Examination of these off diagonal entries show that they have a mean on the

scale of 10−8 and a variance that is less than 10−10, which could be the result of a

normalisation issue. Results like this are also obtained when the other cancer data sets

from SNF [14] are used. The cluster profiles from when these matrices are clustered are

shown in Table 5.2.

Data
Number of

clusters
|C1| |C2| |C3| |C4| |C5|

Kidney 3 120 1 1 - -
Breast 5 101 1 1 1 1
Colon 3 90 1 1 - -
Lung 4 103 1 1 1 -
Glio 3 212 1 2 - -

Table 5.2: After integrating the desired data set by averaging the similarity matrices
the results were then clustered into the corresponding number of clusters used in SNF.

This table shows the number of members in each cluster for each data set.

When these are clustered into k clusters, using spectral clustering, it mostly results in

k − 1 clusters containing one patient and the remaining patients in the last clusters.

This means that the method does not find any significant structure in the data. This

is further backed up by the p-values shown in Table 5.3 as unsurprisingly, none of the

survivial curves have a significant p-value. Therefore these results are of no practical

use, and simply aggregating the layers as a fusion method is ineffective.

For concatenation it can be seen from Table 5.3 that in all but one case, the concatenation

of the glio data, these naive methods do not tend to give significant solutions. This

supports the need for more sophisticated methods for combining the data.

88 Chapter 5 Validation and Results on cancer datasets

Data No. Clusters Aggregation p-value Concatenation p-value

Breast 5 0.981 0.331
Lung 4 0.1 0.639

Kidney 3 0.834 0.912
Colon 3 0.753 0.516
Glio 3 0.208 0.00121

Table 5.3: p-values from the log rank test on the SNF data after being integrated by
our two naive methods. The results from these data sets were then clustered according

to the corresponding number of clusters used in SNF.

We also compare our results to a random clustering. For each dataset, we clustered the

patients in to k clusters 1000 times for each k = 2, . . . , 5 and using the survival data p-

values calculated for each clustering. For each k, all of the p-values were then averaged

and the standard deviation calculated which are shown in Table 5.4. As we can see,

within one standard deviation, no results fall below the 0.05 significance threshold. Not

only does this show that it is highly unlikely to randomly obtain a significant clustering,

but it also gives a measure to compare against. If the p-values obtained from a method

are not outside this range then it is no better than clustering randomly.

2 3 4 5

Data Mean Std Mean Std Mean Std Mean Std

Breast 0.4808 0.2932 0.4857 0.2893 0.4708 0.2934 0.4687 0.2962

Colon 0.5102 0.2825 0.4847 0.2922 0.493 0.2844 0.4762 0.2758

Glio 0.8002 0.2916 0.5062 0.2923 0.4898 0.2927 0.476 0.2841

Kidney 0.4996 0.291 0.4863 0.2923 0.496 0.2864 0.4757 0.289

Lung 0.5072 0.289 0.5004 0.2933 0.4888 0.29 0.4957 0.2952

Table 5.4: Average p-values and standard deviations from clustering the patients
randomly into 2, 3, 4 or 5 clusters.

5.2.2 ENF Results

In this Section, we apply ENF and SNF to each of the cancer data sets from [14] and

make a side by side comparison of the results. To make a fair and effective comparison

between SNF and ENF, the similarity networks formed and used in the SNF process

were duplicated and then given to ENF as its inputs. For all of the data sets, ENF was

implemented using a learning rate equal to the number of patients, and for the number

of iterations we used 7, 500 for Breast, Colon, Lung, 10, 000 for Kidney and 15, 000 for

Glio. The number of iterations increased for Kidney and Glio as they had more patients

than the other three datasets and therefore require more time to converge. All of the

computations were done using Matlab 2017b.

Chapter 5 Validation and Results on cancer datasets 89

The following 5 subsections, one for each data set, follow the same structure. They

begin by visualising the input similarity networks, then the information from the fu-

sion process. This consists of the cost history given on a log scale, the embedding of

the evolution of the ENF output with the input networks, followed by a side by side

comparison of the ENF and SNF output. The distributions of the edge weights are also

considered to see which method is less noisy out of the two solutions. After this, we

then show tables summarising the results for each of the validation metrics, for both

methods. The subsections will then conclude with the survival plots and quartiles for

the clusters identified in ENF and the results from the log rank test on both outputs.

In terms of computational speed, SNF performs 20 iterations by default, completing

the computation for each cancer dataset in under a minute. On the other hand, with

the values that we use for ENF the time it takes to complete is longer: Breast dataset

6m18s; Colon dataset 4m24s; Glio dataset 103m37s; Kidney dataset 11m50s; Lung

dataset 6m35s. However, as we are using gradient descent, we can modify the learning

rate to decrease the number of iterations and hence the time required for the completion

of ENF on a given dataset.

90 Chapter 5 Validation and Results on cancer datasets

5.2.2.1 Breast Cancer

First, we show a colour plot of the input matrices (Figure 5.1). Note that layer 1 and 2

are on the scale 10−5 whilst layer 3 is on the scale of 10−3. Because of this we selected

a random initialisation of θ rather than an average initialisation. Otherwise the third

layer dominates the initialisation and as a consequence slows down the convergence.

Next the cost history is shown in Figure 5.2 so we can see the convergence of the method.

The cost initialised at 0.0453 and after the fixed number of iterations finished at 0.0173,

giving a reduction of 62%. For comparison, when we put the SNF solution into the ENF

cost function it achieved a cost of 0.0323, almost twice as much as our ENF solution.

We define the delta-change, δ, as the difference between the cost at the final iteration

and the cost 1000 iterations before (this is to gain a sense of how well converged the

current solution is). In this case the delta change is δ = −4.2× 10−11. Given how small

this change is, and how flat the tail end of Figure 5.2 is, this would indicate that the

method has (numerically) converged. Upon completion of ENF we embedded the result,

its evolution and the input networks into 3 dimensions as discussed in Section 4.8. This

is so that the method and its progression can be visualised and given some context in

relation to the inputs. This embedding we show in Figure 5.3, the points labeled 1 - 3

correspond to the input layers and the red point labeled ‘A’ corresponds to the average

graph. The average graph is closest to the third layer, which makes sense as it was on

a largest scale and dominates the average. However, it is not close to the centre, where

ENF finds the minimum cost. In Euclidean space, the point that minimises the average

of squared distances for a collection of points is its barycentre, or arithmetic average of

all the points. For a triangle this is in its interior near the middle, which is where our

intuition suspected the ENF solution would find the minimum solution.

Lastly, in Figure 5.4 we show the output of ENF side by side with SNF so that the

difference in the two results can be observed. Note the diagonal of SNF is all ones and

had to be removed otherwise the off diagonal structure would not be able to be seen

given how small they are in comparison. This was not an issue for ENF but was also

done to keep the comparison fair. The same results occured for the other data sets and

the same response was taken. Here we see that the structure of the ENF solution is

clearer and more well defined than that of the SNF solution. In terms of time taken for

ENF to complete, using α equal to the number of patients, 105, and 7500 iterations,

ENF took 6 minutes and 18 seconds to complete.

Having the results from both SNF and ENF we now evaluate both results using the

various metrics discussed in this thesis. For the evaluations that require a clustering,

both solutions were clustered into the same number of clusters used in the SNF paper

[14]. As for the method of clustering used, we used spectral clustering as this was the

method used in the SNF paper. For this data set, the number of clusters we used was 5.

If the number of clusters were to be chosen according the number of clusters that arose

Chapter 5 Validation and Results on cancer datasets 91

Figure 5.1: Heatmaps of the three adjacency matrices that were given as inputs to
ENF for the Breast dataset. These initial inputs were created by the SNF method and
so were given to ENF to keep our comparison as fair as possible. Layer 1 is mRNA

expression, Layer 2 is DNA methylation and Layer 3 is miRNA expression.

Figure 5.2: The value of the ENF cost function at each iteration of the integration
process.

92 Chapter 5 Validation and Results on cancer datasets

Figure 5.3: A visualisation of the networks embedded in R3 using MDS and the√
JSN as distances. The points labeled 1, 2 and 3 are the input networks shown in

Figure 5.1; the point labeled ‘A’ is the average of the input networks; the remaining
points are the complete history of theta coloured with respect to the cost at that time.
Note that the ENF converges to the approximate barycenter of the triangle (the point

equidistant to 1, 2 and 3), as expected.

Figure 5.4: Heatmaps of the resulting network adjacency matrices obtained from
SNF and ENF. Note that the diagonal was removed from both of these to improve the

resolution for the SNF solution, as in the main text.

Chapter 5 Validation and Results on cancer datasets 93

naturally then, by using eigengap, the number of clusters would be 2 and then 5 in that

order. Eigengap looks at intervals between the eigenvalues and uses that to determine

the number of clusters in the matrix best splits into [54]. In the following tables, Table

5.5, 5.6, 5.7 and 5.8, the first three columns have the method with the better value

coloured green and the other one coloured red. This is to differentiate which method is

better when comparing to each input layer. The last column contains the average of the

highlighted values for each method and to the side these average values are compared

and percentage improvements given. As can be seen, the average value for the distance

between output and the inputs has the largest reduction, which is to be expected as this

quantity is being minimised by our cost function. For the other values we see that whilst

they are slightly worse for layers 1 and 3 there is significant improvement with the values

for layer 2. Overall though the average values show that ENF generally outperform SNF.

As the above evaluations were done for a specific number of clusters, we give considera-

tion to the possibility of the solutions being clustered into a different number of clusters.

The average Concordance Index, NVI and NID were computed and plotted in Figure 5.5

when the output and the input networks were clustered into k = 2, . . . , 6 components.

This figure shows that for all clusters in this range, apart from k = 4, ENF produces

better results across all of our quantities.

Next, we performed a survival analysis on the clustered results from ENF. The survival

profiles for each of the clusters are shown in Figure 5.6 and their survival quartiles are

shown in Table 5.9. We see that the Green and Blue group have a similar profile in

that neither of them drop to 0%, and in fact they do not drop below 30%. This means

that after 100 and 190 months respectively 30% of patients in those subgroups are either

cured or survive past the end of the study. This may indicate subgroups that may be

more easily treatable and they only differ by the points in which they start to decline.

The Red and Yellow groups both experience rapid rates of decline, approximately 20

and 35 months for their IQR, differing in where the decline begins. This would indicate

that the cancer in these subgroups that develop faster that the others. The last group,

Orange, differs from the others by having the most steady rate of decline with an IQR

of 103 months. The Log-Rank Test (LRT) was run on the clustered results from SNF

and ENF and the resulting p-values shown in Table 5.10, both the SNF and the ENF

value is below the 0.05 significance threshold. In fact, we also put the other clustering

outputs of ENF from the range [2, . . . , 6] into the LRT and all the p-values obtained,

except for k = 3 were below the 0.05 significance threshold, shown in Table 5.11.

94 Chapter 5 Validation and Results on cancer datasets

√
JSN Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer1 0 - - - - -
Layer2 0.193 0 - - - -
Layer3 0.2096 0.2677 0 - - -
SNF 0.106 0.1646 0.2423 0 - 0.171
ENF 0.10 0.1404 0.1490 0.1244 0 0.1299 ↓ 24.04%

Table 5.5: Shows the distance,
√
JSN , between each of the networks and the result

from SNF and ENF. The last column denotes the average distance from the solutions to
the input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

CI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 1 - - - - -
Layer 2 0.1594 1 - - - -
Layer 3 0.2316 0.0857 1 - - -

SNF 0.4187 0.2546 0.3592 1 - 0.3442
ENF 0.3633 0.4646 0.2655 0.6953 1 0.3645 ↑ 5.9%

Table 5.6: Each of the networks, including the outputs, were clustered into five clusters
and then the CI (agreement) between each of the clusterings were calculated. The last
column denotes the average concordance between the solutions and the input layers.
Finally the number to the right shows the percentage decrease/increase of the average

ENF value compared to the average SNF value.

NVI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.9135 0 - - - -
Layer 3 0.8702 0.9553 0 - - -

SNF 0.7372 0.8544 0.7811 0 - 0.7909
ENF 0.7780 0.6983 0.8486 0.4731 0 0.7750 ↓ 2%

Table 5.7: Each of the networks, including the outputs, were clustered into five clusters
and the distance between each of the clusterings using the NVI metric was calculated.
The last column is the average of the distance from the solution to the input layers.
Finally the number to the right shows the percentage decrease/increase of the average

ENF value compared to the average SNF value.

NID Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.8495 0 - - - -
Layer 3 0.7962 0.9201 0 - - -

SNF 0.6251 0.7585 0.6470 0 - 0.6769
ENF 0.6409 0.5664 0.7691 0.3846 0 0.6588 ↓ 2.7%

Table 5.8: Each of the networks, including the outputs, were clustered into five clusters
and the distance between each of the clusterings using the NID metric was calculated.
The last column is the average of the distance from the solution to the input layers.
Finally the number to the right shows the percentage decrease/increase of the average

ENF value compared to the average SNF value.

Chapter 5 Validation and Results on cancer datasets 95

Figure 5.5: Tables 5.5 - 5.8 showed the values for CI, NVI and NID for the Breast
Cancer dataset for a fixed number of clusters, namely five. Here we show the average

values for these quantities for a range of clusters, two to six.

Figure 5.6: Kaplan-Meier survival curves for each of the five groups identified from
the results of ENF applied to the Breast cancer data. Contains 5 cluster: Red - 25
patients; Blue - 20 patients; Green - 19 patients; Yellow - 25 patients; Orange - 16

patients.

96 Chapter 5 Validation and Results on cancer datasets

Group t̂25 t̂50 t̂75

Red 55.6 90.7 90.7
Blue 112.3 129.6 -

Green 97.4 97.4 -
Yellow 37.7 51.4 55.8
Orange 37.5 72.5 140.4

Table 5.9: This table shows the respective survival quartiles from the survival curves
shown in Fig. 5.6.

Method p-value

SNF 2.17× 10−3

ENF 4.5× 10−3

Table 5.10: Given the clustering result, (5 clusters), from both ENF and SNF on the
Breast data, this table shows the p-values from the LRT.

Clusters p-value

2 1.3× 10−2

3 0.271
4 4× 10−4

6 1.6× 10−3

Table 5.11: This tables shows the p-values from the LRT when the ENF solution is
clustered into a different number of clusters.

Chapter 5 Validation and Results on cancer datasets 97

5.2.2.2 Colon Cancer

As we have already stated, this subsection and subsequent subsection follow the same

format as that of the previous section. To begin with, we show in Figure 5.7 the colour

plot of the input networks used in both SNF and ENF. Note that like with the breast

data layer 1 and 2 are on a much smaller scale, 10−5, than the third layer, 10−3. Again,

we selected a random initialisation of θ rather than an average initialisation to prevent

the skewed average from slowing down the convergence.

Next we have the outputs from the fusion procedure, starting with the cost history in

Figure 5.8. The cost initialised at 0.0329, finishing at 0.0172, a reduction of 53.2% and

the corresponding delta-change for this data set is δ = 1.5 × 10−9. This and Figure

5.8 would indicate that the solution has converged. For comparison, the SNF solution

achieves a cost of 0.0234 with respect to the ENF cost function. Once again, upon

completion of the process, we embedded the output, its evolution and the input networks

into 3 dimensions, shown in Figure 5.9. Here we again see the effect of the third layer

skewing the average by their proximity, but also we see the method has converged on

the at the barycenter, as expected. Lastly, Figure 5.10 shows the output of ENF side by

side with SNF. Whilst the structure of both results seems similar, the structure of the

ENF solution is clearer and more well-defined than that of the SNF solution.In terms of

time taken for ENF to complete, using α equal to the number of patients, 92, and 7500

iterations, ENF took 4 minutes and 24 seconds to complete.

Now that we have the results from both SNF and ENF we evaluate them using our

metrics. The evaluations requiring clustering used 3 clusters, matching that given in

the SNF paper and clustered using spectral clustering. If the number of clusters were

to be chosen according to the number of clusters that arose naturally then, by using

eigengap [54], the number of clusters would be 3 and then 2 in that order. The following

tables, Table 5.12, 5.13, 5.14 and 5.15, give the values, and average values, obtained for

both solutions which we have coloured in the same fashion as before. Once again we

see that for the distance between the networks, ENF has yielded a significant reduction,

compared to SNF, but it is not unsurprising. As we can see the only value where

ENF does not yield an improvement is with respect to the average NVI but this is an

extremely small increase. The rest however are all better than those obtained from SNF.

The reason why these values are so similar is that the ENF solution and the SNF are

very similar which is shown by their small distance from each other shown in Table 5.12.

98 Chapter 5 Validation and Results on cancer datasets

Figure 5.7: Heatmaps of the three adjacency matrices that were given as inputs to
ENF for the Colon dataset. These initial inputs were created by the SNF method and
so were given to ENF to keep our comparison as fair as possible. Layer 1 is mRNA

expression, Layer2 is DNA methylation and Layer 3 is miRNA expression.

Figure 5.8: The value of the ENF cost function at each iterations of the integration
process.

Chapter 5 Validation and Results on cancer datasets 99

Figure 5.9: A visualisation of the networks embedded in R3 using MDS and the√
JSN as distances. The points labeled 1, 2 and 3 are the input networks shown in

Figure 5.7; the point labeled ‘A’ is the average of the input networks; the remaining
points are the complete history of theta coloured with respect to the cost at that time,

converging to the (approximate) barycenter, as expected.

Figure 5.10: Heatmaps of the resulting network adjacency matrices obtained from
SNF and ENF. Note that the diagonal was removed from both of these, as explained

in the Breast cancer section, to improve the resolution for the SNF solution.

100 Chapter 5 Validation and Results on cancer datasets

Again, we give consideration to the effect of the number of clusters on the values of our

metrics. The average values are calculated for when the output and the input networks

were clustered into k = 2, . . . , 6 components and plotted in Figure 5.11. We see that

only for NVI, when k = 3, SNF beats ENF, which is extremely close. Apart from that,

all other values yield a good improvement. This shows that even though the results from

SNF and ENF are similar for this data set, ENF picks up subtler connections, producing

an overall better result than SNF.

The survival profiles for each of the clusters are shown in Figure 5.12. In this case the

three profiles are very distinct. Blue, containing 23% of the patients, has a 100% survival

rate; Green appears to have a consistent survival rate up untill a critical point, month

39, where it significantly decreases; Red however has a poor initial start with only 50%

of the groups living beyond 15 months, but stabilising after that. The survival quartiles

can be found in Table 5.16. The LRT was run on the clustered results from SNF and

ENF and the resulting p-values shown in Table 5.17, in this case only the ENF value

is below the 0.05 significance threshold, whereas the SNF solution is not, meaning that

there are significant difference between survival curves of the clustering found from the

ENF output. In fact, we also put the other clustering outputs of ENF from the range

[2, . . . , 6] into the LRT and all the p-values obtained, except for k = 6, were below the

0.05 significance threshold, shown in Table 5.18.

Chapter 5 Validation and Results on cancer datasets 101

√
JSN Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer1 0 - - - - -
Layer2 0.1841 0 - - - -
Layer3 0.2338 0.2497 0 - - -
SNF 0.1098 0.1429 0.194 0 - 0.1489
ENF 0.1141 0.1254 0.1508 0.0799 0 0.1301 ↓ 12.6%

Table 5.12: Shows the distance,
√
JSN , between each of the networks and the result

from SNF and ENF. The last column denotes the average distance from the solutions to
the input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

CI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 1 - - - - -
Layer 2 0.0129 1 - - - -
Layer 3 0.0309 0.076 1 - - -

SNF 0.2949 0.3932 0.0724 1 - 0.2535
ENF 0.2884 0.3594 0.1252 0.7435 1 0.2577 ↑ 1.7%

Table 5.13: Each of the networks, including the outputs, were clustered into three
clusters and then the CI (agreement) between each of the clusterings were calculated.
The last column denotes the average concordance between the solutions and the input
layers. Finally the number to the right shows the percentage decrease/increase of the

average ENF value compared to the average SNF value.

NVI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.9935 0 - - - -
Layer 3 0.9844 0.9606 0 - - -

SNF 0.8272 0.7555 0.9624 0 - 0.8484
ENF 0.8315 0.7809 0.9333 0.4087 0 0.8486 ↑ 0.02%

Table 5.14: Each of the networks, including the outputs, were clustered into three
clusters and the distance between each of the clusterings using the NVI metric was
calculated. The last column is the average of the distance from the solution to the
input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

NID Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.9871 0 - - - -
Layer 3 0.971 0.9284 0 - - -

SNF 0.7165 0.6208 0.9293 0 - 0.7555
ENF 0.7138 0.6422 0.8815 0.2797 0 0.7458 ↓ 1.28%

Table 5.15: Each of the networks, including the outputs, were clustered into three
clusters and the distance between each of the clusterings using the NID metric was
calculated. The last column is the average of the distance from the solution to the
input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

102 Chapter 5 Validation and Results on cancer datasets

Figure 5.11: Tables 5.12 - 5.15 showed the values for CI, NVI and NID for the Colon
Cancer data set for a fixed number of clusters, namely three. Here we show the average

values for these quantities for a range of clusters, two to six.

Figure 5.12: Kaplan-Meier survival curves for each of the three groups identified
from the results of ENF applied to the Colon cancer data. Contains 3 cluster: Red -

44 patients; Blue - 21 patients; Green - 27 patients.

Chapter 5 Validation and Results on cancer datasets 103

Group t̂25 t̂50 t̂75

Red 2 15 -
Blue - - -

Green 39 39 -

Table 5.16: This table shows the respective survival quartiles from the survival curves
shown in Figure 5.12

Method p-Value

SNF 8.21× 10−2

ENF 4.38× 10−2

Table 5.17: Given the clustering result, (3 clusters), from both ENF and SNF on the
Colon data, this table shows the p-values from the LRT.

Clusters p-value

2 2.6× 10−2

4 1.2× 10−2

5 2.7× 10−2

6 0.159

Table 5.18: This table shows the p-values from the LRT when the ENF solution is
clustered into a different number of clusters.

104 Chapter 5 Validation and Results on cancer datasets

5.2.2.3 Glio Cancer

Starting with the inputs, Figure 5.13 shows the colour plot of the input networks used

in both SNF and ENF, which has the same scale issue as the other data set and so a

random initialisation of θ implemented. The cost history from the ENF procedure is

shown in Figure 5.14. Starting at 0.0521 and finishing at 0.0279 this yields a reduction

of 46.5%. The SNF solution achieves a cost of 0.0415 in the ENF cost function. For this

data set the delta-change is δ = 3.5× 10−11. This and the cost history shown in Figure

5.14 indicates that this has converged. Once completed the networks were embedded

into 3 dimensions, in the same fashion as before which is shown in Figure 5.15. Following

this, Figure 5.16 shows the output of ENF side by side with SNF. Whilst the clusters

are not so clear and well defined we do see more structure in the ENF solution than the

SNF solution. In terms of time taken for ENF to complete, using α equal to the number

of patients, 215, and 15000 iterations, ENF took 1 hour, 43 minutes and 37 seconds to

complete. This large increase in time is due to the large number of patients and how

the complexity of eigenvalues grow.

Now we apply our metrics to the results from ENF and SNF. For the evaluations re-

quiring clusterings, 3 clusters were used matching that given in the SNF paper. If the

number of clusters were to be chosen according the number of clusters that arose natu-

rally then, by using eigengap [54], the number of clusters would be 2 and then 4 in that

order. The following tables, Table 5.19, 5.20, 5.21 and 5.22, give the values obtained for

both solutions and coloured in the same fashion as before. In this data set we have a

different situation. The only value where ENF does yield an improvement is with respect

to the QJSD, whilst the rest are worse by a very small amount. When we consider other

number of clusters, shown and plotted in Figure 5.17, we see that the values for SNF

and ENF are extremely close and similar. This indicates thats for for this data set, the

ENF and SNF solution are of similar quality.

Chapter 5 Validation and Results on cancer datasets 105

Figure 5.13: Heatmaps of the three adjacency matrices that were given as inputs to
ENF for the Glio dataset. These initial inputs were created by the SNF method and
so were given to ENF to keep our comparison as fair as possible. Layer 1 is mRNA

expression, Layer2 is DNA methylation and Layer 3 is miRNA expression.

Figure 5.14: The value of the ENF cost function at each iterations of the integration
process.

106 Chapter 5 Validation and Results on cancer datasets

Figure 5.15: A visualisation of the networks embedded in R2 using MDS and the√
JSN as distances. The points labeled 1, 2 and 3 are the input networks shown in

Figure 5.13; the point labeled ‘A’ is the average of the input networks; the remaining
points are every other point in the history of theta and coloured with respect to the

cost at that time. Again it appears to have converged at the barycenter.

Figure 5.16: Heatmaps of the resulting network adjacency matrices obtained from
SNF and ENF. Note that the diagonal was removed from both of these, as explained

in the Breast cancer section, to improve the resolution for the SNF solution.

Chapter 5 Validation and Results on cancer datasets 107

The survival profiles for each of the clusters are shown in Figure 5.18 and its survival

percentiles in Table 5.23. In this it can be seen that the Green group has better survival

prospects with an IQR of 37 month with 50% of surving beyond 18 months. This high-

lights the poorer prospects of the Red group as only 25% survive beyond 20.3 months.

The Blue group falls between the other two with a similar start to Red, but after month

20 has better a stronger profile. We ran the LRT on the clustered results from SNF and

ENF and the resulting p-values are shown in Table 5.24, both the ENF and SNF are

below the 0.05 significance threshold. In fact, we also put the other clustering outputs

of ENF from the range [2, . . . , 6] into the LRT and all the p-values obtained, except for

k = 2, were below the 0.05 significance threshold, shown in Table 5.25.

108 Chapter 5 Validation and Results on cancer datasets

√
JSN Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer1 0 - - - - -
Layer2 0.2916 0 - - - -
Layer3 0.2769 0.2838 0 - - -
SNF 0.2142 0.1888 0.2076 0 - 0.2035
ENF 0.1677 0.1702 0.1627 0.1192 0 0.1669 ↓ 18%

Table 5.19: Shows the distance,
√
JSN , between each of the networks and the result

from SNF and ENF. The last column denotes the average distance from the solutions to
the input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

CI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 1 - - - - -
Layer 2 0.0733 1 - - - -
Layer 3 0.0124 0.0629 1 - - -

SNF 0.1457 0.1838 0.1478 1 - 0.1591
ENF 0.1484 0.1327 0.1793 0.6276 1 0.1535 ↓ 3.55%

Table 5.20: Each of the networks, including the outputs, were clustered into three
clusters and then the CI (agreement) between each of the clusterings were calculated.
The last column denotes the average concordance between the solutions and the input
layers. Finally the number to the right shows the percentage decrease/increase of the

average ENF value compared to the average SNF value.

NVI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.9635 0 - - - -
Layer 3 0.9938 0.9685 0 - - -

SNF 0.9215 0.9027 0.9202 0 - 0.9148
ENF 0.9199 0.9325 0.9018 0.5434 0 0.9181 ↑ 0.4%

Table 5.21: Each of the networks, including the outputs, were clustered into three
clusters and the distance between each of the clusterings using the NVI metric was
calculated. The last column is the average of the distance from the solution to the
input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

NID Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.9449 0 - - - -
Layer 3 0.9881 0.9507 0 - - -

SNF 0.8567 0.8595 0.8558 0 - 0.8574
ENF 0.8558 0.9031 0.833 0.4005 0 0.8640 ↑ 0.8%

Table 5.22: Each of the networks, including the outputs, were clustered into three
clusters and the distance between each of the clusterings using the NID metric was
calculated. The last column is the average of the distance from the solution to the
input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

Chapter 5 Validation and Results on cancer datasets 109

Figure 5.17: Tables 5.19 - 5.22 showed the values for CI, NVI and NID for the Glio
Cancer data set for a fixed number of clusters, namely three. Here we show the average

values for these quantities for a range of clusters, two to six.

Figure 5.18: Kaplan-Meier survival curves for each of the three groups identified
from the results of ENF applied to the Glio cancer data. Contains 3 cluster: Red - 106

patients; Blue - 55 patients; Green - 54 patients.

110 Chapter 5 Validation and Results on cancer datasets

Group t̂25 t̂50 t̂75

Red 5.8 12 20.3
Blue 8.8 14.7 20.8

Green 10.2 18.3 47.1

Table 5.23: This table shows the respective survival quartiles from the survival curves
shown in Figure 5.18.

Method p-Value

SNF 6.31× 10−4

ENF 9.5× 10−3

Table 5.24: Given the clustering result, (3 clusters), from both ENF and SNF on the
Glio data, this table shows the p-values from the LRT.

Clusters p-value

2 0.49
4 3.9× 10−3

5 7.4× 10−3

6 8.6× 10−3

Table 5.25: This tables shows the p-values from the LRT when the ENF solution is
clustered into a different number of clusters.

Chapter 5 Validation and Results on cancer datasets 111

5.2.2.4 Kidney Cancer

To begin with Figure 5.19 shows the colour plot of the input networks used in both

SNF and ENF, which has the same scale issue as the other data set and so a random

initialisation of θ was implemented. The cost history, plotted in Figure 5.20, starts at

0.0484 and finishes at 0.017 giving a reduction of 64.8%. The SNF solution achieves a cost

of 0.0325 in the ENF cost function. For this data set the delta-change is δ = −1.5×10−11,

given how small this value is and Figure 5.20 this would indicate it has converged. Once

completed, we embedded the networks and the evolution of the solution into 3 dimensions

in the same fashion as before, shown in Figure 5.21. Following this, Figure 5.22 shows

the output of ENF side by side with SNF where the structure of the ENF solution is

still clearer and more well defined. In terms of time taken for ENF to complete, using

α equal to the number of patients, 122, and 10000 iterations, ENF took 11 minutes and

50 seconds to complete.

Following we have the various metrics evaluated for this data set, the evaluations requir-

ing clustering used 3 clusters, matching that given in the SNF paper. If the number of

clusters were to be chosen according the number of clusters that arose naturally then, by

using eigengap [54], the number of clusters would be 5 and then 2 in that order. Tables

5.26, 5.27, 5.28 and 5.29, give the values obtained both solutions and coloured in the

same fashion as before. Here we see significant improvements across all of our values.

Particularly for CI, whilst SNF agrees more with the third layer we see at least double

the amount of agreement with both the first and second layers. Even when we extend

the number of clusters and plot the average values, Figure 5.23, we see that for all k

in the given range the ENF values are much better than the SNF results. Overall this

indicates a much better solution from ENF.

112 Chapter 5 Validation and Results on cancer datasets

Figure 5.19: Heatmaps of the three adjacency matrices that were given as inputs to
ENF for the Kidney dataset. These initial inputs were created by the SNF method and
so were given to ENF to keep our comparison as fair as possible. Layer 1 is mRNA

expression, Layer2 is DNA methylation and Layer 3 is miRNA expression.

Figure 5.20: The value of the ENF cost function at each iterations of the integration
process.

Chapter 5 Validation and Results on cancer datasets 113

Figure 5.21: A visualisation of the networks embedded in R3 using MDS and the√
JSN as distances. The points labeled 1, 2 and 3 are the input networks shown in

Figure 5.19; the point labeled ‘A’ is the average of the input networks; the remaining
points are every other point in the history of theta and coloured with respect to the

cost at that time. As can be seen it has reached the barycenter.

Figure 5.22: Heatmaps of the resulting network adjacency matrices obtained from
SNF and ENF. Note that the diagonal was removed from both of these, as explained

in the Breast cancer section, to improve the resolution for the SNF solution.

114 Chapter 5 Validation and Results on cancer datasets

The survival profiles for each of the clusters are shown in Figure 5.24 and its survival

percentiles in Table 5.30. Again we see there are 3 distinct profiles, with Blue only

having a death and then no more; Red after suffering an initial decline stabilises at a

constant rate and finally Green with a constant rate of decline. The LRT was run on

the clustered results from SNF and ENF and the resulting p-values shown in Table 5.31,

only the ENF is below the 0.05 significance threshold whilst SNF is not. This means

that these clusters have distinct survival profiles that has not been attained by chance,

showing the effectiveness of ENF. When we also put the other clustering outputs of ENF

from the range [2, . . . , 6] into the LRT, this time none of the other p-values obtained

were below the 0.05 significance threshold, shown in Table 5.32.

Chapter 5 Validation and Results on cancer datasets 115

√
JSN Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer1 0 - - - - -
Layer2 0.2031 0 - - - -
Layer3 0.2258 0.2388 0 - - -
SNF 0.1892 0.1196 0.2180 0 - 0.1756
ENF 0.1201 0.1286 0.1411 0.1264 0 0.1299 ↓ 26%

Table 5.26: Shows the distance,
√
JSN , between each of the networks and the result

from SNF and ENF. The last column denotes the average distance from the solutions to
the input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

CI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 1 - - - - -
Layer 2 0.0266 1 - - - -
Layer 3 0.0628 0.0512 1 - - -

SNF 0.1092 0.1209 0.3536 1 - 0.1946
ENF 0.3197 0.2282 0.2634 0.3727 1 0.2704 ↑ 39%

Table 5.27: Each of the networks, including the outputs, were clustered into three
clusters and then the CI (agreement) between each of the clusterings were calculated.
The last column denotes the average concordance between the solutions and the input
layers. Finally the number to the right shows the percentage decrease/increase of the

average ENF value compared to the average SNF value.

NVI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.9865 0 - - - -
Layer 3 0.9676 0.9737 0 - - -

SNF 0.946 0.9385 0.7963 0 - 0.8936
ENF 0.8104 0.8712 0.8483 0.7818 0 0.8433 ↓ 5.6%

Table 5.28: Each of the networks, including the outputs, were clustered into three
clusters and the distance between each of the clusterings using the NVI metric was
calculated. The last column is the average of the distance from the solution to the
input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

NID Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.9751 0 - - - -
Layer 3 0.9408 0.9493 0 - - -

SNF 0.9237 0.9096 0.7377 0 - 0.8570
ENF 0.7033 0.7733 0.7406 0.7194 0 0.7390 ↓ 13.77%

Table 5.29: Each of the networks, including the outputs, were clustered into three
clusters and the distance between each of the clusterings using the NID metric was
calculated. The last column is the average of the distance from the solution to the
input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

116 Chapter 5 Validation and Results on cancer datasets

Figure 5.23: Tables 5.26 - 5.29 showed the values for CI, NVI and NID for the Kidney
Cancer dataset for a fixed number of clusters, namely three. Here we show the average

values for these quantities for a range of clusters, two to six.

Figure 5.24: Kaplan-Meier survival curves for each of the three groups identified from
the results of ENF applied to the Kidney cancer data. Contains 3 cluster: Red - 38

patients; Blue - 13 patients; Green - 71 patients.

Chapter 5 Validation and Results on cancer datasets 117

Group t̂25 t̂50 t̂75

Red - - -
Blue - - -

Green 37.2 74.1 -

Table 5.30: This table shows the respective survival quartiles from the survival curves
shown in Figure 5.24.

Method p-Value

SNF 0.138
ENF 3.52× 10−2

Table 5.31: Given the clustering result, (3 clusters), from both ENF and SNF on the
Kidney data, this table shows the p-values from the LRT.

Clusters p-value

2 0.844
4 0.147
5 0.104
6 0.211

Table 5.32: This tables shows the p-values from the LRT when the ENF solution is
clustered into a different number of clusters.

118 Chapter 5 Validation and Results on cancer datasets

5.2.2.5 Lung Cancer

Starting with the inputs for both fusions methods, Figure 5.25 shows the colour plot of

the input networks. As usual its still has the same scale issue as the other data set and

so a random initialisation of θ was implemented. The plot of the cost history is shown

in Figure 5.26 where it starts at 0.0546 and finishes at 0.0208, reducing by 62%. The

SNF solution achieves a cost of 0.0371 in the ENF cost function. For this data set the

delta-change is δ = 5.8 × 10−9, indicating convergence. Once completed, the networks

and the evolution of the solution were embedded into 3 dimensions, shown in Figure

5.27. Where we still see that the average graph is closest to the third layer due to its

scale. Following this, Figure 5.28 shows the output of ENF side by side with SNF where

the structure of the ENF solution has more contrast and is more well defined than SNF.

In terms of time taken for ENF to complete, using α equal to the number of patients,

106, and 7500 iterations, ENF took 6 minutes and 35 seconds to complete.

Following that we have the various metrics evaluated for this data set, the evaluations

requiring clustering used 4 clusters, matching that given in the SNF paper. If the number

of clusters were to be chosen according the number of clusters that arose naturally then,

by using eigengap [54], the number of clusters would be 3 and then 4 in that order. Tables

5.33, 5.34, 5.35 and 5.36, give the values obtained for both solutions and coloured in the

same fashion as before. These values show that overall the ENF solution is consistently

better than the SNF solution. Upon closer inspection we see that whilst all the values

for SNF are better with the second layer, indicating that SNF may be focusing on that

layer more than the others. Meanwhile ENF give a more balanced attention to all layers,

which is why we see the improvement in the other layers, particularly layer 1, where the

biggest improvement can be seen. When the number of cluster changed to extended to

run over a larger range and plot the average values we attain Figure 5.29. Whilst for

6 clusters the answer is unclear, this shows that for more than 3, 4, 5 clusters that the

ENF solution is still better than the SNF solution.

Chapter 5 Validation and Results on cancer datasets 119

Figure 5.25: Heatmaps of the three adjacency matrices that were given as inputs to
ENF for the Lung dataset. These initial inputs were created by the SNF method and
so were given to ENF to keep our comparison as fair as possible. Layer 1 is mRNA

expression, Layer2 is DNA methylation and Layer 3 is miRNA expression.

Figure 5.26: The value of the ENF cost function at each iterations of the integration
process.

120 Chapter 5 Validation and Results on cancer datasets

Figure 5.27: A visualisation of the networks embedded in R3 using MDS and the√
JSN as distances. The points labeled 1, 2 and 3 are the input networks shown in

Figure 5.25; the point labeled ‘A’ is the average of the input networks; the remaining
points are the complete history of theta coloured with respect to the cost at that time.

Figure 5.28: Heatmaps of the resulting network adjacency matrices obtained from
SNF and ENF. Note that the diagonal was removed from both of these, as explained

in the Breast cancer section, to improve the resolution for the SNF solution.

Chapter 5 Validation and Results on cancer datasets 121

The survival profiles for each of the clusters are shown in Figure 5.30 and its survival

percentiles in Table 5.37. Blue is clearly the stronger profile, with its 25th percentile

being larger than the 75th of all other groups. The remaining three groups have a similar

start until approximately month 25 where they being to diverge, with Green becoming

the weaker profile, compared to Red, which is reflected in the 75th percentile. We ran

the LRT on the clustered results from SNF and ENF and the resulting p-values shown

in Table 5.38, both the ENF and SNF are below the 0.05 significance threshold. This

means these survival profiles have not been attained by chance and are capturing some

biological mechanics at work, showing the effectiveness of ENF. In fact, we also put

the other clustering outputs of ENF from the range [2, . . . , 6] into the LRT and all the

p-values obtained, except for k = 2, were below the 0.05 significance threshold, shown

in Table 5.39.

122 Chapter 5 Validation and Results on cancer datasets

√
JSN Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer1 0 - - - - -
Layer2 0.2002 0 - - - -
Layer3 0.2377 0.292 0 - - -
SNF 0.1164 0.199 0.241 0 - 0.1854
ENF 0.1090 0.1499 0.1678 0.1295 0 0.1422 ↓ 23.3%

Table 5.33: Shows the distance,
√
JSN , between each of the networks and the result

from SNF and ENF. The last column denotes the average distance from the solutions to
the input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

CI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 1 - - - - -
Layer 2 0.2133 1 - - - -
Layer 3 0.0902 0.2142 1 - - -

SNF 0.2324 0.5643 0.3783 1 - 0.3917
ENF 0.3828 0.5397 0.4001 0.66 1 0.4408 ↑ 12.5%

Table 5.34: Each of the networks, including the outputs, were clustered into four
clusters and then the CI (agreement) between each of the clusterings were calculated.
The last column denotes the average concordance between the solutions and the input
layers. Finally the number to the right shows the percentage decrease/increase of the

average ENF value compared to the average SNF value.

NVI Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.8806 0 - - - -
Layer 3 0.9528 0.88 0 - - -

SNF 0.869 0.608 0.7673 0 - 0.7481
ENF 0.7636 0.6315 0.7504 0.5131 0 0.7152 ↓ 4.4%

Table 5.35: Each of the networks, including the outputs, were clustered into four
clusters and the distance between each of the clusterings using the NVI metric was
calculated. The last column is the average of the distance from the solution to the
input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

NID Layer 1 Layer 2 Layer 3 SNF ENF Average

Layer 1 0 - - - - -
Layer 2 0.7902 0 - - - -
Layer 3 0.9108 0.787 0 - - -

SNF 0.7851 0.4695 0.6462 0 - 0.6336
ENF 0.6346 0.4931 0.6221 0.4171 0 0.5833 ↓ 7.9%

Table 5.36: Each of the networks, including the outputs, were clustered into four
clusters and the distance between each of the clusterings using the NID metric was
calculated. The last column is the average of the distance from the solution to the
input layers. Finally the number to the right shows the percentage decrease/increase

of the average ENF value compared to the average SNF value.

Chapter 5 Validation and Results on cancer datasets 123

Figure 5.29: Tables 5.33 - 5.36 showed the values for CI, NVI and NID for the Lung
Cancer dataset for a fixed number of clusters, namely four. Here we show the average

values for these quantities for a range of clusters, two to six.

Figure 5.30: Kaplan-Meier survival curves for each of the four groups identified from
the results of ENF applied to the Lung cancer data. Contains 4 cluster: Red - 36

patients; Blue - 12 patients; Green - 26 patients; Yellow - 32 patients.

124 Chapter 5 Validation and Results on cancer datasets

Group t̂25 t̂50 t̂75

Red 8.1 25 54.1
Blue 60.8 70.1 122.3

Green 11.6 23 40
Yellow 3.2 26 47.8

Table 5.37: This table shows the respective survival quartiles from the survival curves
shown in Figure 5.30.

Method p-Value

SNF 4.49× 10−3

ENF 1.14× 10−2

Table 5.38: Given the clustering result, (4 clusters), from both ENF and SNF on the
Breast data, this table shows the p-values from the LRT.

Clusters p-value

2 0.2270
3 9.2× 10−3

5 2.1× 10−2

6 2.1× 10−2

Table 5.39: This tables shows the p-values from the LRT when the ENF solution is
clustered into a different number of clusters.

Chapter 6

aENF

One feature that limits the applicability of ENF is its computational time complex-

ity, since ENF depends on the full computation of all graph Laplacian eigenvalues and

eigenvectors. The computation time of which is approximately cubic on the number of

vertices, for larger networks, this may become an issue. As we will see in Figure 6.1,

computing the precise JSD takes ∼ 0.1 seconds for graphs with 200 vertices but rapidly

increases to ∼ 3 seconds for graphs with 400 vertices. Here, we explain how to approxi-

mate network entropy, which originates from the supplementary information of [13], and

develop a more computationally efficient method that we call aENF (approximate ENF),

specifically designed for large networks. We then show, numerically, how the approx-

imation is significantly faster than the exact version. Then, we calculate the formula

for its first derivative and proceed to run aENF, using momentum gradient descent to

minimise the function, on two of the cancer data sets, Lung and Glio, to illustrate the

benefits to be had from using the approximation. We compare the clustering solutions

of ENF and aENF, using our validation metrics, to asses how the quality of the solution

changes when we use the approximation. These show that the results from aENF are

very similar to those given by ENF, (for one data set they achieve the same clustering

output), but overall possess a small and expected decrease in quality. However there is a

significant speed increase, 54% and 73% respectively, making aENF more acceptable in

its range of applications. (We recommend when the number of nodes are: greater than

300 to use aENF; less than 150 to use ENF and either method for anything in between.)

6.1 Approximating Entropy

Motivated by the definition of Entropy (Eq.3.5), we consider the function f(λ) =

λ log2(λ), on the range of [0, 1], where f(0) = 0, as before. Let us approximate this

function by a polynominal of order q:

125

126 Chapter 6 aENF

f(λ) ≈
q∑

n=0

αnλ
n. (6.1)

where αn are the coefficients for the terms of the polynomial. These coefficients can be

found from a fitting procedure like linear regression that minimises squared errors. The

order of the polynomial, q, is a free parameter that the user can set (in our computations,

we used q=10). Note that the quality of the fit improves as q grows, at the cost of

increased computational time. Inserting this into the definition of entropy for networks

(Eq.3.5) gives an approximate entropy (which depends on q):

H̃N (G) = −
∑

λi∈σ(L̄(G))

q∑
n=0

αnλ
n
i

= −
q∑

n=0

αnTr(L̄
n(G))

= −α0N −
q∑

n=1

αnTr(L̄
n(G)). (6.2)

Recall here that L̄n(G) is the nth power of the rescaled laplacian matrix of the graph/ad-

jacency matrix G, N is the number of vertices and Tr is the trace of the matrix. Here

we have used that if λ is an eigenvalue of L̄(G) then λn is a eigenvalue of L̄n(G) [73]

and that the trace is linear. Rather than approximating f(λ) for the whole range [0, 1],

greater accuracy can be found by using the range [0, λmax], where λmax is the largest

eigenvalue. This largest eigenvalue can be approximated by λmax < 2dmax, [13, 71, 73]

where dmax is the largest element along its diagonal, that is, the maximal vertex degree

on the network. In [13] they report that for a network with 5000 nodes this yields a

speed up by over a factor of 10 and by using q = 10 with the restricted range above,

produces an error less than 0.1%.

Using this approximation method we can extend it to an approximation of the Jensen-

Shannon distance:

J̃SN (θ,G) = H̃N (gθ + tG)− H̃N (θ) + H̃N (G)

2
(6.3)

This gives us the aENF cost function:

C̃({S(l)}, θ) =
1

l

l∑
m=1

√
J̃SN (S(m), θ)

2

=
1

l

l∑
m=1

[
H̃N

(
tS(m) + s(m)θ

)]
− 1

2l

l∑
m=1

[H̃N (S(m))]︸ ︷︷ ︸
constant

−1

2
H̃N (θ) (6.4)

Chapter 6 aENF 127

Similar to our previous results, in the next section we calculate the gradients of both

parts so the same minimisation method as before can be implemented (gradient descent

with momentum). But first we report the computational time speed-up, in Figure

6.1. We generated two Erdős-Rényi random networks, whose edges were connected

with probability p ∈ [0.1, 0.5] and recorded the time taken for computing both the

precise distance and the approximation. This was then repeated 100 times and the

mean time was then plotted with error bars equal to one standard deviation. Here the

effect of computing the full spectrum of eigenvalues becomes apparent and how ENF can

become impractical to use for larger networks. Meanwhile by using the approximation a

remarkable speed-up is attained, making the complexity looking linear in this range. To

see how the computation time of the approximate JSN increases beyond this range, we

performed the same experiment for a selection of larger networks. For this we limited

ourselves to 10 repetitions and the mean time and standard deviation is shown in Table

6.1. When plotted and examined alongside Table 6.1 we can conclude this it is roughly

cubic, when the nodes are doubled we see an increase by a factor of 8 in the time

taken, implying the cubic nature. But as shown in Figure 6.1 this is still significantly

faster than the precise JSN . For example the time taken to compute the precise JSN

on a network with 800 nodes (∼26s, shown in Figure 6.1) is roughly the same as the

approximate JSN on 2000 nodes (∼28s shown in Table 6.1), further highlighting the

speed up. Therefore by using this approximation it will vastly increase the range of

applications that our method can be applied to. Looking at the subplot in Figure 6.1,

we would recommend that for applications where the number of nodes are: greater than

300 to use aENF; less than 150 to use ENF and for anything in between left to the user.

Figure 6.1: Computational time for exact and approximate Jensen-Shannon Distance
on two random Erdős-Rényi networks. For each number of nodes we took 100 samples
and plotted the mean time with error bars equal to one standard deviation. The insert

is a blow-up for the results up to 300 nodes.

128 Chapter 6 aENF

Nodes Mean time (s) Std (s)

1000 4.1 0.2
2000 28 0.9
3000 88.6 1.7
4000 206.3 4.3
5000 398.8 9.5
6000 682.8 14
7000 1077.3 21.9
8000 1606.1 34
9000 2272.3 38

Table 6.1: Average computation time for calculating the approximate JSD between
larger random networks, using 10 repetitions.

We also considered the error that occurs by using the approximation, specifically for

our choice q = 10. For this we generated pairs of Erdős-Rényi random networks, with

edge probabilities in the range of p ∈ [0.10.5], and calculated the percentage error in

the approximate JSN compared to the precise JSN . The mean error, with error bars

equal to one standard deviation, is shown in Figure 6.2. Here we see the error is in fact

fairly small: for the size of networks that we analyses in this thesis we see approximately

1% − 1.5% error. It also suggests that the growth in the error is linear with respect

to the number of nodes in the network along with the size of the error bars. This is

to be expected because as networks grow larger there is more room for more complex

structures to arise. However, note that this is only for one choice of polynomial degree q

and increasing it would further reduce the error in approximating the Jensen-Shannon

distance, by increasing the computational time.

Figure 6.2: Using 10 as the degree of the polynomial in the approximation, this figure

shows the resulting percentage error when approximating
√
JSN . For each number of

nodes we generate a pair of random Erdős-Rényi network and plotted the mean error
with the error bars equal to one standard deviation.

Chapter 6 aENF 129

To illustrate this we ran the following numerical experiment. For a selection of polyno-

mial orders q we generated pairs of Erdős-Rényi random networks, on 500 vertices with

edge probabilities in the range of p ∈ [0.1, 0.5], and timed how long it took to compute

the approximate JSN . This was repeated 100 times for each q, the final mean time and

standard deviation is given in Table 6.2. From it we can see the the computational cost

grows approximately linearly.

q Mean time (s) Std (s)

5 0.2385 0.0095
10 0.5262 0.0628
15 0.7721 0.0177
20 1.0353 0.0186

Table 6.2: The average computation time for calculating the approximate JSD as
the order of the polynomial used in the approximation is changed. For each order we

generate 100 pairs of Erdős-Rényi networks on 500 vertices.

6.2 Gradient of aENF

In this subsection we now calculate the first derivative of aENF so it can then be min-

imised by using gradient descent with momentum. As before we split this into the

calculation of ∂H̃N (θ)
∂θij

followed by the calculation of ∂H̃N (gθ+tG)
∂θij

.

6.2.1 Part 1

First we re-write Eq 6.2 in terms of the laplacian, as this were the changes will occur.

To do this we start by separating the division by the trace of L(θ), T :

H̃N (θ) = −α0N −
q∑

n=1

αnTr

((
L(θ)

T

)n)

= −α0N −
q∑

n=1

αn
Tn

Tr (Ln(θ)) (6.5)

Now we differentiate this with respect to the (i, j)-th (and (j, i)-th) entry of θ and from

Section 4.4.1 we know the corresponding change in the laplacian is EL(i, j). Note that

the −α0N term vanishes as it is a constant and remembering T is also a function of the

entries of θ which also needs to be differentiated.

130 Chapter 6 aENF

∂H̃N (θ)

∂θij
= −

q∑
n=1

αn

[
1

Tn
Tr
(
nLn−1(θ)EL(i, j)

)
− 2n

Tn+1
Tr (Ln(θ))

]

= −
q∑

n=1

αn

[
n

T
Tr
(
L̄n−1(θ)EL(i, j)

)
− 2n

T
Tr
(
L̄n(θ)

)]

= − 1

T

q∑
n=1

nαn
[(
L̄n−1(θ)ii + L̄n−1(θ)jj − 2L̄n−1(θ)ij

)
− 2Tr

(
L̄n(θ)

)]
(6.6)

The last step comes from considering only the diagonal entries of the product L̄n−1(θ)EL(i, j).

6.2.2 Part 2

Here we calculate the derivative of ∂H̃N (gθ+tG)
∂θij

, starting with as same rearrangement as

in Equ 6.5. Proceeding with the differentiation recall from Section 4.4.1 that the induced

change in laplacian for this case is gEL(k, f) + 2L(G).

∂H̃N (gθ + tG)

∂θij
= −

q∑
n=1

αn

[1

Tn
Tr
(
nLn−1(gθ + tG)(gEL(k, f) + 2L(G))

)
− 4gn

Tn+1
Tr (Ln(gθ + tG))

]
= − 1

T

q∑
n=1

nαn

[
Tr
(
L̄n−1(gθ + tG)(gEL(k, f) + 2L(G))

)
− 4gTr

(
L̄n(gθ + tG)

)]
= − 1

T

q∑
n=1

nαn

[
g
(
L̄n−1(gθ + tG)ii + L̄n−1(gθ + tG)jj

− 2L̄n−1(gθ + tG)ij
)

+ 2Tr
(
L̄n−1(gθ + tG)L(G)

)
− 4gTr

(
L̄n(gθ + tG)

)]
(6.7)

Together this gives us the gradient of aENF

∂C̃({G(l)}, θ)
∂θij

=
1

l

l∑
m=1

[
∂H̃N

(
tG(m) + g(l)θ

)
∂θij

]
− 1

2

∂H̃N (θ)

∂θij
(6.8)

6.3 Precise and Approximate Comparison

To assess the quality of aENF, we applied it to two of the SNF datasets, the Lung

and the Glio set. This would also allow for us to compare the precise and approximate

solutions and see what losses would occur from using the approximation.

Chapter 6 aENF 131

6.3.1 Lung

To make the comparison fair, we gave aENF: the same input layers; initalised θ at the

same starting point as used in ENF; the same number of iterations, 7500; used the same

value for α, 106, and the same value for the momentum decay γ = 0.9. Figure 6.3 shows

the cost and precise distance to the output from ENF at each iteration of the aENF

process, in blue and orange respectively. The cost initalised at 0.0542 and finished at

0.0209 yielding a reduction of 61.4% with a δ-change of 1.6× 10−12, this would suggest

that the method has successfully converged, which is also supported by the distance

to the ENF solution stabilising. To compare the final outputs, Table 6.3 has the cost

for both methods, aENF and ENF, for both solutions. We see that aENF produces

aENF Sol. ENF Sol.

aENF cost 0.0209 0.0210
ENF cost 0.0209 0.0208

Table 6.3: This table shows the output from both aENF and ENF and their respective
costs when put into each of the cost functions.

an output that is consistent in cost across both solutions and is also very close in cost

to the output of the exact method. This indicates that the two methods have found

very similar solutions. This is further supported by the distance to the output of ENF

stabilizing at 0.0103. As for the computational time, originally ENF took 6 minutes and

35 seconds to complete for this dataset. For aENF, it took 2 minutes and 54 seconds

to complete, yeilding a time reduction of 54%. Together this shows the effectiveness

of using the approximation, by obtaining an output that is very close to the precise

solution in a significantly smaller amount of time.

Next we evaluated the aENF solution using the validation quantities discussed in Section

5.1. When required, the number of clusters used was 4, to match the analysis in Section

5.2.2. Note that, using eigengaps, the number of clusters would be 3 and then 4 in that

order. A concise summary of the results are given in Table 6.4. As it can be seen in the
√
JSN values, the approximate solution are very similar to that of the precise solution

which is most likely a result of the two solution being so close to each other. In fact, they

are so close, that when clustered into 4 clusters they yield the same clustering solution.

In particular, it has the same values for the CI, NVI and NID.

Furthermore, when these quantities are extended to consider other k in the range

[2, . . . , 6], when k = 3 it also obtains the same clustering. As we did for ENF, we

plot the average for our validation quantities over this cluster range and show the re-

sults in Figure 6.4. When k = 2 we see that the approximate solution is better than the

precise one, however for k = 5 and 6 this is not the case. Applying the LRT (log rank

test) with the survival data to these clustering, we obtain the p-values in Table 6.5. All

of these are below the 0.05 significance threshold whereas with the precise method k = 2

132 Chapter 6 aENF

did not yield a significant p-value. This could be a coincidence or could be a result of

the information that is lost by using the approximation. Note also that the p-value for

k = 3 and 4 are the same as those obtained by the exact solution as they came form the

same clustering solution.

Chapter 6 aENF 133

Figure 6.3: The blue line shows the cost history of aENF at each iteration when

applied to the Lung dataset. The orange line shows the precise distance,
√
JSN , at

each iteration of aENF to output from ENF. Both are given on a log scale.

Method Layer 1 Layer 2 Layer 3 ENF Avg
√
JSN

ENF 0.109 0.1499 0.1678 - 0.1422
aENF 0.1101 0.1499 0.1680 0.0103 0.1427

CI
ENF 0.3828 0.5397 0.4001 - 0.4408
aENF 0.3828 0.5397 0.4001 1 0.4408

NVI
ENF 0.7636 0.6315 0.7504 - 0.7152
aENF 0.7636 0.6315 0.7504 0 0.7152

NID
ENF 0.6346 0.4931 0.6221 - 0.5833
aENF 0.6346 0.4931 0.6221 0 0.5833

Table 6.4: Validation quantities for ENF and aENF on the Lung SNF data using 4
clusters

Clusters p-value

2 0.0022
3 0.0092
4 0.0114
5 0.0165
6 0.0258

Table 6.5: p-values for aENF on Lung data

134 Chapter 6 aENF

Figure 6.4: Tables 6.4 showed the values for CI, NVI and NID for a fixed number
of clusters, four. Here we show the average values for these quantities for a range of

clusters, two to six.

Chapter 6 aENF 135

6.3.2 Glio

For our second dataset, we run aENF on the Glio data set as this was the largest in terms

of patients. Again, to make the comparison fair, we gave aENF: the same input layers;

initalised θ at the same starting point as used in ENF; the same number of iterations,

15000; used the same value for α, 215, and the same value for the momentum decay

γ = 0.9. Figure 6.5 shows the cost and precise distance to the output from ENF at each

iteration of the aENF process, in blue and orange respectively. The cost initalised at

0.0524 and finished at 0.0277 yielding a reduction of 47% with a δ-change of 2.9×10−11,

this would suggest that the method has successfully converged, which is also supported

by the distance to the ENF solution stabilising. Again, we compare the costs of both

solutions with respect to both the aENF and ENF cost function. The results are shown

in Table 6.6. We see both solutions are very consistent in the value they obtain and

aENF Sol. ENF Sol.

aENF cost 0.0277 0.0278
ENF cost 0.0279 0.0279

Table 6.6: This table shows the output from both aENF and ENF and their respective
costs when put into each of the cost functions.

actually achieve the same value in the exact ENF. This and the fact that the distance

between the aENF and ENF solution is 0.0092, indicates that the two solutions are

extremely similar, though not identical. As for the computational time, ENF originally

took 1 hour 43 minutes and 37 seconds (≈ 103.5 minutes). For aENF, it took 27 minutes

and 58 seconds to complete, yielding a time reduction of 73%. This further highlights

the computational advantage of using the approximation.

Again, we next evaluated the aENF solution using the validation quantities, using, when

required, k = 3 for the number of clusters, as before. If the eigengap were to be used

to select the number of clusters then is would be 2 and then 4 in that order. A concise

summary of the results are given in Table 6.7. The
√
JSN show similar values between

the two methods and that the approximate solution is very close to the precise solution.

However the effect of these small changes scale with the size of the networks, which is

why for the other quantities there is a large amount of agreement but not as much as

one would expect. Note we do see that the average of these quantities end up very close

to those of the precise solution.

Further, we consider our validation quantities over a larger range of clusters, k in the

range [2, . . . , 6], the averages of which we plot in Figure 6.6. Here we see that all of the

values across all of the k are very close to those of the precise solution. This is a result

of how close the two solutions are. Applying a the LRT with the survival data to these

clustering, we obtain the p-values in Table 6.8. All except k = 2 are below the 0.05

significance threshold which is the same as the precise method.

136 Chapter 6 aENF

Figure 6.5: The blue line shows the cost history of aENF at each iteration when

applied to the Glio dataset. The orange line shows the precise distance,
√
JSN , at each

iteration of aENF to output from ENF. Both are given on a log scale.

Method Layer 1 Layer 2 Layer 3 ENF Avg
√
JSN

ENF 0.1677 0.1702 0.1627 - 0.1669
aENF 0.1686 0.1687 0.1641 0.0092 0.1671

CI
ENF 0.1484 0.1327 0.1793 - 0.1535
aENF 0.1235 0.1527 0.1768 0.8012 0.1510

NVI
ENF 0.9199 0.9325 0.9018 - 0.9181
aENF 0.9342 0.9211 0.9032 0.3319 0.9195

NID
ENF 0.8558 0.9031 0.933 - 0.864
aENF 0.878 0.8865 0.8324 0.2127 0.8656

Table 6.7: Validation quantities for ENF and aENF on the Glio SNF data using 3
clusters

Clusters p-value

2 0.361
3 0.0036
4 0.0034
5 0.0117
6 0.0014

Table 6.8: p-values for aENF on glio data

Chapter 6 aENF 137

Figure 6.6: Tables 6.7 showed the values for CI, NVI and NID for a fixed number
of clusters, three. Here we show the average values for these quantities for a range of

clusters, two to six.

Chapter 7

Conclusion and Future Work

In summary this project set out to develop a new network based method for the inte-

gration of network-based data sets with the objective of clustering the samples the data

originate from, motivated by data integration of ’omic patient data sets. We started

by investigating an existing state-of-the-art data integration method in bioinformatics,

SNF [14]. First, we investigated whether a limit could be taken as originally it is an

iterative process. We showed that the iterative process on which SNF is based converges

to a constant matrix, hence this method is not robust in the limit.

The main result in this thesis is a new network based integration method, which we called

Entropy Network Fusion. It is based on a distance function (Quantum Jensen-Shannon

Distance, or QJSD) based on network entropy. This, in turn, uses the eigenvalues of the

normalised Laplacian of a network as proxies of their clustering structure of the network.

The intuition is that, given the same number of vertices, the closer two networks are with

respect to their clustering structure, the smaller their QJSD is. ENF finds the network

with a clustering structure (measured by their pairwise QJSD) that is closest to all of the

given input networks, with respect to the sum of squared distances. The input of ENF

are m arbitrary n by n real symmetric matrices representing m measures of pairwise

similarity between n objects. (It is up to the user to construct these similarity matrices.)

The cost function (sum of squared QJSDs to input networks) is minimised using gradient

descent with momentum, which is controlled by a learning rate α, and a decay term γ

to control the momentum. We have also showed that the function is convex, meaning

that there is only one optimal solution for a given set of input networks and regardless

of the initial starting point it will all converge to that one optimal solution.

When we tested our method, we used the data from the SNF paper [14] and compared our

method to SNF. As ENF is flexible with its inputs the input layers that are generated

by SNF were duplicated and given to ENF as its inputs, to make a fair comparison

between the two methods. We selected three clustering validation metrics (CI, NVI and

NID) to compare the clustering structures of the outputs and the inputs, and verify

139

140 Chapter 7 Conclusion and Future Work

which method produced an output whose clustering structure was more aligned with

the inputs. For these validation metrics overall we saw that the ENF results were better

than those of SNF, except for the Glio dataset. This means that ENF finds a solution

that is structurally closer to its inputs and capturing more of the information provided in

them. The Glio set, whilst is slightly worse for the particular k, has very similar values

to that of SNF across the full cluster range we examined. In the survival analysis we saw

all of the p-values obtained from the LRT were below the 0.05 significance level, with

p-values lower than SNF for 2 of the cancer data sets (Colon and Kidney). Furthermore,

for all of the datasets except Kidney, ENF also had other significant p-values in the

cluster range we examined. This shows ENF’s ability to find significant structure in

the data/from the networks that has a real world impact and can be used to make a

difference.

The most computationally demanding step in ENF is the calculation of the laplacian

eigenvalues, which has in general cubic time complexity on the number of nodes (pa-

tients). This is a potential restriction for large networks (typical genetic networks can

have over 10, 000 nodes/genes). In order to address this issue, we developed an approx-

imate version of ENF, called aENF, which can run on larger networks in an acceptable

time. Using a polynomial approximation we saw an expected decrease in the quality of

results, in comparison to the exact method, but aENF still produced significant p-values.

This shows that whilst the finer details of the solution maybe lost with the approxima-

tion, the overall clustering structure that it finds is still significant. It also achieves

massive acceleration in computation time, achieving a reduction of 54% and 73%. For

example, on the Glio data, the aENF method could have run for approximately 4 time

longer and would have finished at the same time as the ENF method. By which point

it may have matched or surpassed the quality of exact method. This trade-off, small

decrease in quality for a big speed reduction, is highly worthwhile and opens the door

to a larger range of application of ENF and aENF.

Our investigation into the use of network entropy in data integration suggested several

lines of research that we did not have time to explore. Here we describe some of those.

- Barycenter shortcut. For a collection of points in euclidean space, the point

that minimises the squared distance to all of the points is the barycenter, the

arithmetic mean of the points. Our cost function also minimises a sum of squared

distances but with respect to a different metric,
√
JSN . If an appropriate analogy

of the barycenter with respect to this metric could be found then ENF could utilise

this shortcut and be changed from an iterative procedure to a direct one. As we

saw in the MDS embedding of the ENF results, all of the solutions converged

to the barycenter of the triangle formed by the input layers. This could greatly

decrease its computational time and increase the range of applications for the

precise variation and also help with the other versions.

Chapter 7 Conclusion and Future Work 141

- Matrix cost function. In the ENF cost function, we explicitly compute the

eigenvalues, and this becomes the most costly computational step. However if

the matrix formulation, (Eq. 3.3), were used in the cost function instead, this

could result in speed-accuracy trade off. The loss of accuracy results from the

approximate calculation of log(ρ), which for a matrix is given by an infinite sum.

On the other hand, the computational speed gain comes from avoiding the full

eigenvalue computation and taking matrix products instead. This could potentially

lead to a version of ENF whose performance, with respect to speed and quality,

would be between that of ENF and aENF.

- Directed networks. As mentioned in Section 4.2 there has been recent work

extending entropy to directed networks [79]. Directed networks can be more in-

formative than undirected networks and appear naturally in applications. For

example k-nearest neighbours (KNN), which is a popular classification/regression

method, when applied to a network, does not produce in general a symmetric net-

work. (If point x is among the KNN of point y there is no guarantee that the

reverse is true.) We would like to extend ENF to accept directed networks as

input.

- Higher dimensions. Networks are a basic one-dimensional representation of

data (representing objects are nodes and pairwise similarities as edges, which are

0- respectively 1-dimensional geometrical or topological objects). These can be

further generalised into higher dimensional objects called simplicial complexes [87],

and potentially capture more subtle (higher-order) relationships within the data

that is be lost in a network representation. For example a 2-dimensional object

would consider the similarity of 3 patients at the same time rather than the 3 sets

of individual pairwise similarities. This could reveal more subtle relationships, and

new/further subtypes of cancer. Similar as to when Shen et al [12] found a new

breast cancer subtype by performing DI.

- Time series data Another avenue for research would be to investigate the ap-

plication of our work to time series data. Over time, patient data will change as

for example, their illness takes its course. As our method is a general network

data integration method, it can be applied to this or any other time series network

data. By using our method we could potentially identify groups of objects or pa-

tients that are consistently grouped together over the course of time, if they exist,

providing new insights.

- Feature Extraction. Given the results shown in Section 5.2.2, four out of the five

data sets had statistically significant p-values, this could be explored further to find

the defining features of the clusters. If, for each cluster, a defining set of features

can be found in the original data they can be compared to existing knowledge,

potentially providing new insights. This process is called feature extraction [88].

142 Chapter 7 Conclusion and Future Work

These defining features could then be used to build a ML classifier so when a

new patient needs to be clustered (classified), rather requiring all the features

from the patient, only the defining features need to be gathered. This would save

time, resources and reduced the time to provide the appropriate treatment to the

patient.

Appendix A

Laplacian Identities

The following are technical results that are used in the derivation of the gradient for the

ENF cost function in Section 4.4.

Given a Graph G, the degree matrix of G, DG is linear with respect to addition and

multiplication by a scalar:

DcG,ii =
∑
j

cGij

= c
∑
j

Gij

= cDG,ii (A.1)

DG+M,ii =
∑
j

(G+M)ij

=
∑
j

Gij +
∑
j

Mij

= DG,ii +DM,ii (A.2)

Consider the laplacian as defined in Definition 3.2. Thanks to what we showed above,

the laplacian is also linear with respect to addition and multiplication by scalar. We

have:

L(cG) = DcG − cG for c ∈ R

= cDG − cG

= cL(G) (A.3)

L(G+A) = DG+A − (G+A)

= DG +DA −G−A

= L(G) + L(A) (A.4)

143

144 Appendix A Laplacian Identities

Now the re-scaled laplacian is defined as:

L̄(G) =
L(G)

Tr(L(G))
=
DG −G∑

ij Gij
(A.5)

Where Tr(L(G)) =
∑

ij Gij =
∑

λk∈σ(L(G)) λk. Now we will show that the rescaled

laplacian is not linear with respect to addition and multiplication.

L̄(cG) =
DcG − cG∑

ij cGij
for c ∈ R

=
c(DG −G)

c
∑

ij Gij

=
DG −G∑

ij Gij

= L̄(G) (A.6)

Here we have shown that multiplication by any scalar results in the same rescaled lapla-

cian.

L̄(G+A) =
DG+A − (G+A)∑

ij(Gij +Aij)

=
(DG −G) + (DA −A)

g + a
setting g =

∑
ij Gij and a =

∑
ij Aij

= L̄(G) +
a

g + a

[
L̄(A)− L̄(G)

]
(A.7)

=
g

g + a
L̄(G) +

a

g + a
L̄(A) (A.8)

6= L̄(G) + L̄(A) (A.9)

Hence we see that the rescaled laplacian of a sum of matrices is not equal to the sum

of respective laplacian matrices. However we can show that the average of two rescaled

laplacians is equal to the laplacian of a weighted sum. Consider the following:

L̄(G) + L̄(A)

2
=

1

2

[
DG −G

g
+
DA −A

a

]
=

1

2

[
aDG − aG+ gDA − gA

ag

]
=
DaG+gA − (aG+ gA)

2ag

= L̄(aG+ gA) (A.10)

where g =
∑

ij Gij and a =
∑

ij Aij .

Appendix B

Limit of a Matrix

The following are technical results for calculating the limit of a matrix, which is required

in Chapter 2.2. The results used in this section come from “Matrix Analysis” by Horn

and Johnson [71]. Consider the set of all n by m matrices with real entries, which shall

be denoted by Mn,m. If n = m then this is written as Mn.

Definition B.1. Given a matrix A ∈ Mn, a vector X ∈ Cn and a scalar λ ∈ C such

that they satisfy:

Ax = λx

then λ is called an eigenvalue of A and x is its associated eigenvector. For a given matrix

A ∈Mn the set of all the eigenvalues of A, are called the spectrum of A and is denoted

by σ(A). The spectral radius of a matrix A is defined as ρ(A) = max{|λ| : λ ∈ σ(A)}.

Definition B.2. A matrix A ∈Mn is said to be reducible if either:

1) n = 1 and A = 0, or

2) n ≥ 2 and there is a permutation matrix P ∈Mn and some integer r with 1 ≤ r ≤
n− 1 such that:

P TAP =

[
B C

0 D

]
(B.1)

where B ∈Mr, D ∈Mn−r, C ∈Mr,n−r and 0 ∈Mn−r,r is a zero matrix.

A matrix A ∈Mn is said to be irreducible if it is not reducible.

Definition B.3. A directed graph Γ is strongly connected if between every pair of

distinct nodes vi, vj in Γ there is a directed path that begins at vi and end at vj .

Note that every matrix, A ∈Mn, can be interpreted as an adjacency matrix of a graph

on n vertices. Given an entry, Aij , this is the weight of the edge connecting vertex i to

145

146 Appendix B Limit of a Matrix

vertex j. If the entry is equal to zero then there is no edge between the two vertices’s.

Similarly if a entry Aij 6= Aji then there are directed edges between vertex i and vertex

j, or only one edge if either is equal to 0.

Definition B.4. The directed graph of A ∈Mn denoted by Γ(A) is the directed graph

on n nodes v1, . . . , vn such that there is a directed arc in Γ(A) from vi to vj with weight

aij if and only if aij 6= 0.

Definition B.5. A matrix is said to be strongly connected if and only if the directed

graph Γ(A) is strongly connected.

Definition B.6. A matrix A ∈Mn is said to be nonnegative, written A ≥ 0, if all of its

entries aij are nonnegative. Similarly we say a matrix A ∈ Mn is positive, A > 0, if all

of its entries aij are positive.

Definition B.7. For any given A = [aij] ∈Mm,n we define abs(A) = [|aij |] and I(A) =

[µij] in which µij = 1 if aij 6= 0 and µij = 0 if aij = 0. The matrix I(A) is called the

indicator matrix of A.

Theorem B.8. Let A ∈Mn. The following are equivalent:

1) A is irreducible.

2) (I + abs(A))n−1 > 0.

3) [I + I(A)]n−1 > 0.

4) Γ(A) is strongly connected.

5) A is strongly connected.

Proof. For a proof of this theorem the reader is referred to Theorem 6.2.24 in [71].

Theorem B.9. Given an A ∈Mn that is irreducible and nonnegative then:

1) ρ(A) > 0.

2) ρ(A) is an eigenvalue of A.

3) There is a positive vector x such that Ax = ρ(A)x.

4) ρ(A) is a algebraically (and geometrically) simple eigenvalue of A.

Proof. For a proof of this lemma the reader is referred to Theorem 8.4.4 in [71].

Definition B.10. The vector x that satisfies Ax = ρ(A)x, whose components sum to

1, is called the (right) Perron vector. There is analogous definition for the (left) Perron

vector, the vector y that satisfies yA = ρ(A)y, whose components sum to 1.

Appendix B Limit of a Matrix 147

Definition B.11. A nonnegative matrix A ∈ Mn is called primitive if it is irreducible

and the multiplicity of the eigenvalue with largest modulus is one.

Theorem B.12. Given a matrix A ∈Mn that is nonnegative and primitive, there is x

and y such that Ax = ρ(A)x,AT y = ρ(A)y, x > 0, y > 0 and xT y = 1. Then

lim
m→∞

[ρ(A)−1A]m = L > 0 (B.2)

where L = xyT .

Proof. For a proof of this theorem the reader is referred to Theorem in 8.5.1 [71].

Theorem B.13. If A ∈ Mn is nonnegative then A is primitive if and only if Am > 0

for some m ≥ 1.

Proof. For a proof of this theorem the reader is referred to Theorem 8.5.2 in [71].

Lemma B.14. If A ∈ Mn is nonnegative and irreducible, and if all the main diagonal

entries of A are positive then An−1 > 0, so A is primitive.

Proof. For a proof of this lemma the reader is referred to Lemma 8.5.4 in [71].

Appendix C

Second Derivative of ENF

In this appendix we calculate the second derivative of our cost function, namely

∂C(G(l), θ)

∂θαβ∂θij
=

1

l

l∑
m=1

[
∂HN

(
tG(m) + g(l)θ

)
∂θαβ∂θij

]
− 1

2

∂HN (θ)

∂θαβ∂θij

Although we do not use this due to its computational complexity we include it for

completeness.

C.1 Eigenvectors

When calculating the second derivative of our cost function we need to differentiate

eigenvectors with respect to the entry of the matrix. For this we use the results on

how to calculate these eigenvector derivatives from [89,90]. Given an eigenvector, xi, of

a real symmetric matrix, whose norm is equal to one, then the eigenvector derivative

can be expressed as a linear combination of the eigenvectors. Specifically, let E be a

perturbation in our matrix, M and consider M + tE for a real parameter t. Assuming

M has no repeated eigenvalues, which is the case in most empirical matrices, then a

eigenvector xi has a derivative of:

∂xi
∂E

=

n∑
k=1,k 6=i

Ωik,Exk (C.1)

where

Ωik,E =
xtkExi
λi − λk

. (C.2)

Now we consider the two cases we have in out cost function HN (G) and HN (aG+ gA).

When we have HN (G) we know the change in the laplaican is EL(k, f), as we worked

149

150 Appendix C Second Derivative of ENF

in Subsection 4.4.1. Therefore in this case we have the derivatives being:

∂xi
∂Gkf

=
n∑

k=1,k 6=i

xtkEL(k, f)xi
λi − λk

xk (C.3)

For our other case, HN (aG + gA), we calculated the resulting change in the matrix to

be aEL(k, f) + 2L(A), also in Subsection 4.4.1. Thus for this other case we have the

derivatives being:

∂xi
∂Gkf

=

n∑
k=1,k 6=i

xtk(aEL(k, f) + 2L(A))xi
λi − λk

xk (C.4)

C.2 Second Derivative

With the derivatives of eigenvectors calculated we now proceed to calculate the second

derivative of the ENF cost function.

C.2.1 Part 1: HN (G)

Recall from Eq 4.17 that the first derivative for is HN (G):

∂HN (G)

∂Gij
=
−1

T

n∑
k=1

[
(xik − xjk)2 log2 (λk)

]
+

2

T
log2(T)− 2

T
HN (G)

Now we differentiate again to obtain the second derivative. To keep it from becoming

unclear, we do this part by part.

∂

∂Gab

(
−2

T
HN (G)

)
=

2

T 2
HN (G)

n∑
k=1

∂λk
∂Gab

+
−2

T

∂HN (G)

∂Gab

=
2

T 2
HN (G)

n∑
k=1

(xak − xbk)2 +
−2

T

∂HN (G)

∂Gab

=
4

T 2
HN (G) +

−2

T

∂HN (G)

∂Gab

=
−2

T

(
−2

T
HN (G) +

∂HN (G)

∂Gab

)

Appendix C Second Derivative of ENF 151

∂

∂Gab

(
2

T
log2(T)

)
=
−2

T 2
log2(T)

n∑
k=1

∂λk
∂Gab

+
2

T 2 ln(2)

n∑
k=1

∂λk
∂Gab

=
−4

T 2
log2(T) +

4

T 2 ln(2)

=
−2

T

(
2

T
log2(T)− 2

T ln(2)

)

∂

∂Gab

(
−1

T

n∑
k=1

[
(xik − xjk)2 log2 (λk)

])
=

1

T 2

n∑
k=1

[
(xik − xjk)2 log2 (λk)

] n∑
k=1

[
∂λk
∂Gab

]
+

−1

T

n∑
k=1

[
(xik − xjk)2

λk ln(2)

∂λk
∂Gab

+

2(xik − xjk) log2 (λk)

(
∂xik
∂Gab

−
∂xjk
∂Gab

)]
Combing these three terms and simplifying we get:

∂HN (G)

∂Gab∂Gij
=
−2

T

(
∂HN (G)

∂Gab
+
∂HN (G)

∂Gij

)
+

4

T 2 ln(2)
− 1

T

n∑
k=1

[
(xik − xjk)2(xak − xbk)2

λk ln(2)

+ 2(xik − xjk) log2 (λk)

(
∂xik
∂Gab

−
∂xjk
∂Gab

)]

where ∂HN (G)
∂Gab∂Gij

= 0 if i = j or a = b (or both) and the eigenvector derivatives are

calculated according to Eq C.3.

C.2.2 Part 2: HN (aG + gA)

Recall from Eq 4.18 that the first derivative for HN (aG+ gA) is

∂HN (aG+ gA)

∂Gij
=
−1

T

n∑
k=1

log2 (λk)
[
a(xik − xjk)2 + 2xTkL(A)xk

]
+

2

T
[log2(T)−H(aG+ gA)]

[
a+

n∑
k=1

xTkL(A)xk

]

Next, like in the first case, we now differentiate the above expression to obtain the second

derivative. To keep it clear, we break it apart as follows:

∂H(aG+ gA)

∂Gαβ∂Gij
=

∂

∂Gαβ

(
−1

T

n∑
k=1

log2 (λk)
[
a(xik − xjk)2 + 2xTkL(A)xk

]
︸ ︷︷ ︸

P1

+

2

T
[log2(T)−H(aG+ gA)]

[
a+

n∑
k=1

xTkL(A)xk

]
︸ ︷︷ ︸

P2

)

152 Appendix C Second Derivative of ENF

Now resolving these two parts:

P1 =
2(a+

∑n
k=1 x

T
kL(A)xk)

T 2

n∑
k=1

log2 (λk)
[
a(xik − xjk)2 + 2xTkL(A)xk

]
+

− 1

T

n∑
k=1

[[
a(xαk − xβk)2 + 2xTkL(A)xk

] [
a(xik − xjk)2 + 2xTkL(A)xk

]
λk ln(2)

+ log2(λk)

[
4xTkL(A)

∂xk
∂Gαβ

+ 2a(xik − xjk)(
∂xik
∂Gαβ

−
∂xjk
∂Gαβ

)

]]

P2 = −
4(a+

∑n
k=1 x

T
kL(A)xk)

T 2
[log2(T)−H(aG+ gA)]

[
a+

n∑
k=1

xTkL(A)xk

]

+
2

T

[
2(a+

∑n
k=1 x

T
kL(A)xk)

T ln(2)
− H(aG+ gA)

∂Gαβ

][
a+

n∑
k=1

xTkL(A)xk

]

+
2

T
[log2(T)−H(aG+ gA)]

[
2

n∑
k=1

xTkL(A)
∂xk
∂Gαβ

]

Combing these back together we get

⇒ ∂H(aG+ gA)

∂Gαβ∂Gij
= −

2(a+
∑n
k=1 x

T
k L(A)xk)

T 2

(
H(aG+ gA)

∂Gij
+
H(aG+ gA)

∂Gαβ

)
+

4(a+
∑n
k=1 x

T
k L(A)xk)2

T 2 ln(2)

+
4

T
[log2(T)−H(aG+ gA)]

[
n∑
k=1

xTk L(A)
∂xk
∂Gαβ

]

− 1

T

n∑
k=1

[[
a(xαk − xβk)2 + 2xTk L(A)xk

] [
a(xik − xjk)2 + 2xTk L(A)xk

]
λk ln(2)

+ log2(λk)

[
4xTk L(A)

∂xk
∂Gαβ

+ 2a(xik − xjk)

(
∂xik
∂Gαβ

− ∂xjk
∂Gαβ

)]]

where we have use the eigenvector derivatives as calculated according to Eq C.4.

Bibliography

[1] Vladimir Gligorijević and Nataša Pržulj. Methods for biological data inte-

gration: perspectives and challenges. Journal of the Royal Society Interface,

12(112):20150571, 2015.

[2] Wenyuan Li, Shihua Zhang, Chun-Chi Liu, and Xianghong Jasmine Zhou. Iden-

tifying multi-layer gene regulatory modules from multi-dimensional genomic data.

Bioinformatics, 28(19):2458–2466, 2012.

[3] Chen Meng, Bernhard Kuster, Aed́ın C Culhane, and Amin Moghaddas Gholami.

A multivariate approach to the integration of multi-omics datasets. BMC bioinfor-

matics, 15(1):162, 2014.

[4] Paul Kirk, Jim E Griffin, Richard S Savage, Zoubin Ghahramani, and David L

Wild. Bayesian correlated clustering to integrate multiple datasets. Bioinformatics,

28(24):3290–3297, 2012.

[5] Jemila S Hamid, Pingzhao Hu, Nicole M Roslin, Vicki Ling, Celia MT Greenwood,

and Joseph Beyene. Data integration in genetics and genomics: methods and chal-

lenges. Human genomics and proteomics: HGP, 2009, 2009.

[6] Ashley J Vargas and Curtis C Harris. Biomarker development in the precision

medicine era: lung cancer as a case study. Nature Reviews Cancer, 16(8):525, 2016.

[7] David Gomez-Cabrero, Imad Abugessaisa, Dieter Maier, Andrew Teschendorff,

Matthias Merkenschlager, Andreas Gisel, Esteban Ballestar, Erik Bongcam-Rudloff,

Ana Conesa, and Jesper Tegnér. Data integration in the era of omics: current and

future challenges. BMC systems biology, 8(2):I1, 2014.

[8] Kim-Anh Lê Cao, Ignacio González, and Sébastien Déjean. integromics: an r

package to unravel relationships between two omics datasets. Bioinformatics,

25(21):2855–2856, 2009.

[9] Ettore Mosca and Luciano Milanesi. Network-based analysis of omics with multi-

objective optimization. Molecular BioSystems, 9(12):2971–2980, 2013.

153

154 BIBLIOGRAPHY

[10] Yuanhua Liu, Valentina Devescovi, Suning Chen, and Christine Nardini. Multi-

level omic data integration in cancer cell lines: advanced annotation and emergent

properties. BMC systems biology, 7(1):14, 2013.

[11] Marylyn D Ritchie, Emily R Holzinger, Ruowang Li, Sarah A Pendergrass, and

Dokyoon Kim. Methods of integrating data to uncover genotype-phenotype inter-

actions. Nature reviews. Genetics, 16(2):85, 2015.

[12] Ronglai Shen, Adam B Olshen, and Marc Ladanyi. Integrative clustering of multiple

genomic data types using a joint latent variable model with application to breast

and lung cancer subtype analysis. Bioinformatics, 25(22):2906–2912, 2009.

[13] Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. Struc-

tural reducibility of multilayer networks. Nature communications, 6:6864, 2015.

[14] Bo Wang, Aziz M Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu, Michael

Brudno, Benjamin Haibe-Kains, and Anna Goldenberg. Similarity network fu-

sion for aggregating data types on a genomic scale. Nature methods, 11(3):333–337,

2014.

[15] Sijia Huang, Kumardeep Chaudhary, and Lana X Garmire. More is better: recent

progress in multi-omics data integration methods. Frontiers in genetics, 8:84, 2017.

[16] Andrew R Joyce and Bernhard Ø Palsson. The model organism as a system: inte-

grating’omics’ data sets. Nature reviews. Molecular cell biology, 7(3):198, 2006.

[17] Bonnie Berger, Jian Peng, and Mona Singh. Computational solutions for omics

data. Nature reviews. Genetics, 14(5):333, 2013.

[18] Angela Serra, Michele Fratello, Vittorio Fortino, Giancarlo Raiconi, Roberto Tagli-

aferri, and Dario Greco. Mvda: a multi-view genomic data integration methodology.

BMC bioinformatics, 16(1):261, 2015.

[19] Yinyin Yuan, Richard S Savage, and Florian Markowetz. Patient-specific data fusion

defines prognostic cancer subtypes. PLoS computational biology, 7(10):e1002227,

2011.

[20] Vasileios Lapatas, Michalis Stefanidakis, Rafael C Jimenez, Allegra Via, and

Maria Victoria Schneider. Data integration in biological research: an overview.

Journal of Biological Research-Thessaloniki, 22(1):9, 2015.

[21] Derek Greene and Pádraig Cunningham. A matrix factorization approach for

integrating multiple data views. Machine Learning and Knowledge Discovery in

Databases, pages 423–438, 2009.

[22] Matteo Bersanelli, Ettore Mosca, Daniel Remondini, Enrico Giampieri, Claudia

Sala, Gastone Castellani, and Luciano Milanesi. Methods for the integration of

BIBLIOGRAPHY 155

multi-omics data: mathematical aspects. BMC bioinformatics, 17(Suppl 2):15,

2016.

[23] Jonathan R Pollack, Therese Sørlie, Charles M Perou, Christian A Rees, Stefanie S

Jeffrey, Per E Lonning, Robert Tibshirani, David Botstein, Anne-Lise Børresen-

Dale, and Patrick O Brown. Microarray analysis reveals a major direct role of dna

copy number alteration in the transcriptional program of human breast tumors.

Proceedings of the National Academy of Sciences, 99(20):12963–12968, 2002.

[24] Tero Aittokallio and Benno Schwikowski. Graph-based methods for analysing net-

works in cell biology. Briefings in bioinformatics, 7(3):243–255, 2006.

[25] Ignacio González, Sébastien Déjean, Pascal GP Martin, Olivier Gonçalves, Philippe

Besse, and Alain Baccini. Highlighting relationships between heterogeneous bio-

logical data through graphical displays based on regularized canonical correlation

analysis. Journal of Biological Systems, 17(02):173–199, 2009.

[26] Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–

377, 1936.

[27] Kim-Anh Lê Cao, Debra Rossouw, Christele Robert-Granié, and Philippe Besse. A

sparse pls for variable selection when integrating omics data. Statistical applications

in genetics and molecular biology, 7(1), 2008.

[28] Kim-Anh Lê Cao, Pascal GP Martin, Christèle Robert-Granié, and Philippe Besse.

Sparse canonical methods for biological data integration: application to a cross-

platform study. BMC bioinformatics, 10(1):34, 2009.

[29] Richard S Savage, Zoubin Ghahramani, Jim E Griffin, Bernard J De La Cruz, and

David L Wild. Discovering transcriptional modules by bayesian data integration.

Bioinformatics, 26(12):i158–i167, 2010.

[30] Giulia Menichetti, Daniel Remondini, Pietro Panzarasa, Raúl J Mondragón, and

Ginestra Bianconi. Weighted multiplex networks. PloS one, 9(6):e97857, 2014.

[31] Giulia Menichetti, Daniel Remondini, and Ginestra Bianconi. Correlations between

weights and overlap in ensembles of weighted multiplex networks. Physical Review

E, 90(6):062817, 2014.

[32] Claude E Shannon. A mathematical theory of communication. ACM SIGMOBILE

Mobile Computing and Communications Review, 5(1):3–55, 2001.

[33] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley

& Sons, 2012.

[34] Richard Chace Tolman. The principles of statistical mechanics. Courier Corpora-

tion, 1938.

156 BIBLIOGRAPHY

[35] Samuel L Braunstein, Sibasish Ghosh, and Simone Severini. The laplacian of a

graph as a density matrix: a basic combinatorial approach to separability of mixed

states. Annals of Combinatorics, 10(3):291–317, 2006.

[36] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures

for clusterings comparison: Variants, properties, normalization and correction for

chance. Journal of Machine Learning Research, 11(Oct):2837–2854, 2010.

[37] Yiyu Yao. Information-theoretic measures for knowledge discovery and data min-

ing. In Entropy Measures, Maximum Entropy Principle and Emerging Applications,

pages 115–136. Springer, 2003.

[38] Kartik Anand, Ginestra Bianconi, and Simone Severini. Shannon and von neumann

entropy of random networks with heterogeneous expected degree. Physical Review

E, 83(3):036109, 2011.

[39] Manlio De Domenico and Jacob Biamonte. Spectral entropies as information-

theoretic tools for complex network comparison. Physical Review X, 6(4):041062,

2016.

[40] Jacob Biamonte, Mauro Faccin, and Manlio De Domenico. Complex networks: from

classical to quantum. arXiv preprint arXiv:1702.08459, 2017.

[41] Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko Kivelä, Yamir

Moreno, Mason A Porter, Sergio Gómez, and Alex Arenas. Mathematical formula-

tion of multilayer networks. Physical Review X, 3(4):041022, 2013.

[42] Steven M Pincus. Approximate entropy as a measure of system complexity. Pro-

ceedings of the National Academy of Sciences, 88(6):2297–2301, 1991.

[43] Laura C Carpi, Osvaldo A Rosso, Patricia M Saco, and Mart́ın Gómez Ravetti. An-

alyzing complex networks evolution through information theory quantifiers. Physics

Letters A, 375(4):801–804, 2011.

[44] Tiago A Schieber, Laura Carpi, Albert Dı́az-Guilera, Panos M Pardalos, Cristina

Masoller, and Mart́ın G Ravetti. Quantification of network structural dissimilarities.

Nature communications, 8:13928, 2017.

[45] David Gfeller, Jean-Cédric Chappelier, and Paolo De Los Rios. Finding instabilities

in the community structure of complex networks. Physical Review E, 72(5):056135,

2005.

[46] Andrew E Teschendorff and Simone Severini. Increased entropy of signal transduc-

tion in the cancer metastasis phenotype. BMC systems biology, 4(1):104, 2010.

[47] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of machine learning research, 9(Nov):2579–2605, 2008.

BIBLIOGRAPHY 157

[48] Manlio De Domenico, Shuntaro Sasai, and Alex Arenas. Mapping multiplex hubs

in human functional brain networks. Frontiers in neuroscience, 10, 2016.

[49] Barry Bentley, Robyn Branicky, Christopher L Barnes, Yee Lian Chew, Evi-

atar Yemini, Edward T Bullmore, Petra E Vértes, and William R Schafer. The

multilayer connectome of caenorhabditis elegans. PLoS computational biology,

12(12):e1005283, 2016.

[50] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno,

and Mason A Porter. Multilayer networks. Journal of complex networks, 2(3):203–

271, 2014.

[51] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Bre-

itkreutz, and Mike Tyers. Biogrid: a general repository for interaction datasets.

Nucleic acids research, 34(suppl 1):D535–D539, 2006.

[52] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transac-

tions on Information theory, 37(1):145–151, 1991.

[53] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Advances in neural information processing systems, pages

849–856, 2002.

[54] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[55] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics, 20:53–65,

1987.

[56] David W. Hosmer, Stanley Lemeshow, and Susanne May. Applied Survival Analysis:

Regression Modeling of Time to Event Data. Wiley-Interscience, New York, NY,

USA, 2nd edition, 2008.

[57] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie,

Robert Tibshirani, David Botstein, and Russ B Altman. Missing value estimation

methods for dna microarrays. Bioinformatics, 17(6):520–525, 2001.

[58] Phillip Bonacich. Some unique properties of eigenvector centrality. Social networks,

29(4):555–564, 2007.

[59] Leo Spizzirri. Justification and application of eigenvector centrality. Algebra in

Geography: Eigenvectors of Network, 2011.

[60] Carl D Meyer. Matrix analysis and applied linear algebra, volume 2. Siam, 2000.

[61] Jop Briët and Peter Harremoës. Properties of classical and quantum jensen-shannon

divergence. Physical review A, 79(5):052311, 2009.

158 BIBLIOGRAPHY

[62] Pedro Lamberti, Ana Majtey, Antoni Borras, Montserrat Casas, and Angel Plas-

tino. Metric character of the quantum jensen-shannon divergence. Physical Review

A, 77(5):052311, 2008.

[63] Ana Majtey, Pedro Lamberti, and Domingo Prato. Jensen-shannon divergence as

a measure of distinguishability between mixed quantum states. Physical Review A,

72(5):052310, 2005.

[64] Benjamin Schumacher and Michael D Westmoreland. Relative entropy in quantum

information theory. Contemporary Mathematics, 305:265–290, 2002.

[65] Mary Beth Ruskai. Inequalities for quantum entropy: A review with conditions for

equality. Journal of Mathematical Physics, 43(9):4358–4375, 2002.

[66] Eric Carlen. Trace inequalities and quantum entropy: an introductory course.

Entropy and the quantum, 529:73–140, 2010.

[67] Luca Rossi, Andrea Torsello, Edwin R Hancock, and Richard C Wilson. Charac-

terizing graph symmetries through quantum jensen-shannon divergence. Physical

Review E, 88(3):032806, 2013.

[68] Bojan Mohar, Y Alavi, G Chartrand, and OR Oellermann. The laplacian spectrum

of graphs. Graph theory, combinatorics, and applications, 2(871-898):12, 1991.

[69] Fan RK Chung. Spectral graph theory. Number 92. American Mathematical Soc.,

1997.

[70] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for

embedding and clustering. In Advances in neural information processing systems,

pages 585–591, 2002.

[71] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press,

2012.

[72] Andries E Brouwer and Willem H Haemers. Spectra of graphs. Springer Science &

Business Media, 2011.

[73] Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer

Science & Business Media, 2013.

[74] Daniel A Spielman. Spectral graph theory lecture notes. http://www.cs.yale.

edu/homes/spielman/561/2009/lect02-09.pdf, 2009.

[75] Daniel A Spielman. Spectral graph theory and its applications. In Foundations

of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on, pages

29–38. IEEE, 2007.

[76] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business

Media, 2013.

http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf

BIBLIOGRAPHY 159

[77] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An intro-

duction to statistical learning, volume 112. Springer, 2013.

[78] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics New York, 2001.

[79] Cheng Ye, Richard C Wilson, César H Comin, Luciano da F Costa, and Edwin R

Hancock. Approximate von neumann entropy for directed graphs. Physical Review

E, 89(5):052804, 2014.

[80] Jorge Nocedal and Stephen J Wright. Numerical optimization 2nd. Springer, 2006.

[81] Jan R Magnus. On differentiating eigenvalues and eigenvectors. Econometric The-

ory, 1(2):179–191, 1985.

[82] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[83] Iridis 4 community pages. https://hpc.soton.ac.uk/community/projects/

iridis/wiki/Iridis_4_Hardware, August 2018.

[84] Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. Euclidean dis-

tance matrices: essential theory, algorithms, and applications. IEEE Signal Pro-

cessing Magazine, 32(6):12–30, 2015.

[85] David G Kleinbaum. Survival analysis, a self-learning text. Biometrical Journal,

40(1):107–108, 1998.

[86] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures

for clusterings comparison: Variants, properties, normalization and correction for

chance. Journal of Machine Learning Research, 11(Oct):2837–2854, 2010.

[87] Allen Hatcher. Algebraic topology. Cambridge University Press, 2001.

[88] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lotfi Zadeh. Feature Extrac-

tion: Foundations and Applications. Springer-Verlag Berlin Heidelberg, 2006.

[89] RL Fox and MP Kapoor. Rates of change of eigenvalues and eigenvectors. AIAA

journal, 6(12):2426–2429, 1968.

[90] Durbha V Murthy and Raphael T Haftka. Derivatives of eigenvalues and eigenvec-

tors of a general complex matrix. International Journal for Numerical Methods in

Engineering, 26(2):293–311, 1988.

https://hpc.soton.ac.uk/community/projects/iridis/wiki/Iridis_4_Hardware
https://hpc.soton.ac.uk/community/projects/iridis/wiki/Iridis_4_Hardware

	List of Figures
	List of Tables
	Nomenclature
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Data Integration in System Biology
	1.2 Network Entropy
	1.3 Structural Reducibility
	1.3.1 Summary and Results
	1.3.2 Entropy and Multilayer Networks

	2 Similarity Network Fusion
	2.1 Review
	2.1.1 Summary and Results
	2.1.2 Pre-Processing
	2.1.3 Local and Global Networks
	2.1.4 Fusion Step

	2.2 The limit of SNF
	2.2.1 Two Layers
	2.2.2 SNF Tends to a Constant Matrix

	3 Network Entropy
	3.1 Classic to Quantum to Network
	3.2 Example Networks
	3.3 Network Entropy Examples
	3.4 Network QJSD Examples

	4 Entropy Network Fusion
	4.1 Motivation
	4.2 Input
	4.3 Cost Function
	4.4 Gradient
	4.4.1 Derivative of Eigenvalues
	4.4.2 Part 1: HN(G)
	4.4.3 Part 2: HN(aG+gA)
	4.4.4 ENF Gradient
	4.4.5 Minimisation

	4.5 ENF Algorithm
	4.6 Convexity
	4.7 Computational Time Analysis
	4.8 Convergence

	5 Validation and Results on cancer datasets
	5.1 Validation Tools
	5.1.1 Survival Analysis
	5.1.2 Clustering Comparison

	5.2 Results from SNF Data
	5.2.1 Naive Methods
	5.2.2 ENF Results
	5.2.2.1 Breast Cancer
	5.2.2.2 Colon Cancer
	5.2.2.3 Glio Cancer
	5.2.2.4 Kidney Cancer
	5.2.2.5 Lung Cancer

	6 aENF
	6.1 Approximating Entropy
	6.2 Gradient of aENF
	6.2.1 Part 1
	6.2.2 Part 2

	6.3 Precise and Approximate Comparison
	6.3.1 Lung
	6.3.2 Glio

	7 Conclusion and Future Work
	A Laplacian Identities
	B Limit of a Matrix
	C Second Derivative of ENF
	C.1 Eigenvectors
	C.2 Second Derivative
	C.2.1 Part 1: HN(G)
	C.2.2 Part 2: HN(aG+gA)

	Bibliography

