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Introduction

Let G be a group. Recall that G is said to be cohopfian if every injective endomor-

phism of G is surjective. It is immediate that the integers are not cohopfian, and one

might imagine that amongst groups belonging to the wider class of finitely generated

torsion-free nilpotent groups (henceforth the class of T-groups) one cannot find cohopfian

examples. That this is not the case was first observed by Smith [27], who manufactured

examples by examining sufficiently pathological nilpotent Lie algebras and appealing to

the Mal’cev correspondence. One has to look far to find these examples: any example

necessarily has Hirsch length at least 7 and class at least 3. Further work in this area was

undertaken by Belegradek [1], but a significant breakthrough was recently and almost

simultaneously achieved by Cornulier [7] and Deré [10], who characterised the property

of a T-group being cohopfian entirely in terms of the associated Lie algebra. A nontrivial

consequence of this is that being cohopfian is a commensurability invariant for the class

of T-groups.

We motivate our interest in this recent work by the following classical result concerning

the structure of soluble constructable groups. In the elementary amenable case, there

are many equivalent characterisations of this property in terms of various homological

and homotopical finiteness conditions: we refer the reader to [19] and the references

within for a detailed account of the various connections. A particular consequence of

these equivalent structural constraints is that the groups are nilpotent-by-abelian-by-

finite. The classical Bieri-Strebel invariants were defined in this setting in [2] and from

this paper we highlight the following result, simplified for ease of exposition.

Theorem ( [2, 5.2]). Suppose that G is a torsion-free finitely generated soluble group

with nilpotent normal subgroup N and abelian quotient G/N . Then the following are

equivalent.

1. G is constructable;

1



2 CONTENTS

2. there exists some g ∈ G and finitely generated H 6 N such that Hg 6 H and

N =
⋃
i>0

Hg−i
.

We remark here that a state of the art version of the above may also be found in [19].

In particular, if one is interested in the structure of these groups one method of attack

is to begin by considering endomorphisms of T-groups and the structure of the resulting

ascending unions.

Note in particular that outside of the polycyclic case, the nilpotent normal subgroup in

question is not finitely generated. Inspired by this, we have been considering endomor-

phisms of nilpotent groups which are not finitely generated, but are nevertheless of finite

rank. In particular, we obtain criteria for an individual endomorphism of a torsion-free

nilpotent group to be an automorphism, in terms of the induced action on the torsion-

free abelianisation and on the centre. Whilst the results we obtain are known in the

finitely generated setting (see the chapter for further details and references), dropping

this assumption adds several difficulties.

It is essentially elementary to show that the torsion-free abelianisation rather cleanly

detects the surjectivity of an endomorphism, but one encounters significantly more dif-

ficulty by considering only the restriction to the centre: indeed the naive requirement

that the restriction to the centre is an automorphism is far from sufficient. We refer the

reader to chapter 3 for details, noting that chapter 2 contains preparatory material.

In chapter 4, we continue our focus on nilpotent groups, but this time heavily exploiting

the Lie theoretic technology encoded in the Mal’cev correspondence. The first part is

concerned with a characterisation of so-called powered nilpotent groups - essentially

those which admit an endomorphism which acts as multiplication by a fixed nonzero

rational on the abelianisation. By using the above cited recent work of Cornulier [7] we

find that these correspond exactly to the class of nilpotent groups whose associated Lie

algebra is ‘Carnot’. Loosely speaking, this property may be thought of as being opposite

to cohopfian in a strong sense.

We end chapter 4 with a section which generalises results of Segal [26] concerning how

the Mal’cev correspondence behaves with respect to T-groups. In particular, we remove

the need to consider a specific representation and also generalise certain statements to

Lie rings.
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Chapter 5 contains an explicit construction of the free k-Lie algebra on a k-module,

where k is a Dedekind domain. Our construction involves specific representations of

the tensor and universal enveloping algebras. The first section of this chapter outlines

a useful perspective from which one can easily deduce the existence of various adjoint

functors: this is the language of algebraic functors and categories. In particular the

existence of the aforementioned adjoint is easily obtained.

The thesis concludes with an explicit characterisation of the socle series of a semisimple

module over a commutative Von Neumann regular ring, in terms of certain topological

features of the spectrum. Originally this work was completed in the case of certain special

semisimple modules over CCp∞ - the motivation being to extend the novel techniques

of Kropholler’s theorem concerning soluble groups of finite cohomological dimension

[18]. It was later found that the results hold in far more generality. The results in

this chapter prove several conjectures of Usher’s thesis [29] and fit rather cleanly with

previous literature - see the final sections of the chapter for more details.





Chapter 1

Background group theory

In this first chapter we introduce some standard material to be used throughout the

thesis. For the most part we will concern ourselves with infinite nilpotent groups of

finite rank (we make this more precise later), and occasionally the more general class of

infinite soluble groups of finite rank.

In the first section we detail the existence of certain canonical homomorphisms associated

to any ascending or descending central series of any group, terminating or not. Next we

specialise to the nilpotent case and establish some fundamental results concerning torsion

and divisibility in this class, before introducing the crucial notion of an isolator. We then

introduce two notions of rank: Hirsch length, for soluble groups in particular; and the

Prüfer rank defined for any group. We note in particular that for the class of torsion-free

nilpotent groups these coincide. We conclude the chapter by discussing classical results

due to Mal’cev: the radicable hull, or Mal’cev completion of a nilpotent group, and the

Mal’cev correspondence between certain nilpotent groups and Lie algebras.

Since the material here is well-known, we will occasionally only give the idea of the

proof, or even just a direct reference. Nevertheless the proofs that we give here are our

own, unless referenced otherwise.

Our convention for commutators in the following is:

[x, y] := x−1y−1xy,

[x1, . . . , xn] := [[x1, . . . , xn−1], xn].

5



6 Chapter 1 Background group theory

1.1 The tensor power maps and their duals

In this section we document a tensor power map associated to any descending central

series of a group, terminating or not. Dually, we discuss certain maps involving groups

of homomorphisms associated to any ascending central series, again terminating or not.

We will state the results in sufficient generality for later use.

This first lemma is presumably well known but we have been unable to find a reference

for the general formulation we need. For the case when the descending series is precisely

the lower central series, one reference is for example [21, 1.2.11].

Lemma 1.1.1. Let G be a group and σ an endomorphism of G. Suppose we are given

a sequence of subgroups

G = G1 > G2 > · · ·

such that σ(Gi) 6 Gi for each i, and such that for each i, j > 1 we have inclusions

[Gi, Gj ] 6 Gi+j .

Denote by Z[σ] the monoid ring on σ. Then for each i > 1 there are homomorphisms of

Z[σ]-modules

Gi
/
Gi+1 ⊗Z G

/
G2 −→ Gi+1

/
Gi+2 ,

xGi+1 ⊗ gG2 7−→ [x, g]Gi+2,

and hence also module homomorphisms

(
G
/
G2

)⊗i −→ Gi
/
Gi+1 ,

where we equip tensor products with the diagonal action.

Proof. The details here are routine in view of the following standard commutator iden-

tities, holding for any x, y, z in any group:

[x, yz] = [x, z][x, y][x, y, z],

[xy, z] = [x, z][x, z, y][y, z].
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The equivariance follows immediately from the fact that endomorphisms commute with

commutators.

The following lemma is perhaps less well-known but nevertheless elementary. We will

apply it to the isolated central series, to be introduced in a later section.

Lemma 1.1.2. Let G be a group and (Gi)i>1 a descending series as in lemma (1.1.1).

Then the image of the tensor power map

(
G
/
G2

)⊗i −→ Gi
/
Gi+1 .

is precisely γi(G)Gi+1

/
Gi+1 .

Proof. We first note that for each i > 1, we have γi(G) 6 Gi by the very definition

of the series. Thus the statement makes sense, and we also obtain an epimorphism

G/γ2(G)� G/G2. We also note that the tensor power maps for the lower central series

are certainly surjective, and furthermore that tensor powers of surjective maps are also

surjective.

The following diagram is thus obtained, where the right hand vertical map is canonical,

and the horizontal maps are as in lemma (1.1.1).

(
G
/
γ2(G)

)⊗i

����

// // γi(G)
/
γi+1(G)

��(
G
/
G2

)⊗i
// Gi
/
Gi+1

It is routine to check that it is commutative, and the result now follows, using the fact

that the left hand vertical map is surjective.

We now concern ourselves with the dualized versions of the maps we have introduced

above. In the sequel we will apply this only for the upper central series of a nilpotent

group, but we give an analogous treatment to the above since this unifies the exposition.

It is important to note here that we will impose stronger conditions on the endomorphism

in question: the definition of the action makes this transparent. In the sequel we will
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need to deal with the situation where the endomorphism does not a priori satisfy this

stronger requirement: this will occupy much of chapter 3.

Once again this result is presumably well-known in this generality, but we are unaware

of a reference. For the case when the ascending central series in question is precisely the

upper central series, one reference is for example [21, 1.2.19].

Lemma 1.1.3. Let G be a group and σ an endomorphism of G which induces an auto-

morphism of the abelianisation of G, denoted by σ̄. Suppose we are given a sequence of

subgroups

1 = G0 6 G1 6 · · ·

such that for each i > 0 we have σ(Gi) 6 Gi and an inclusion [G,Gi+1] 6 Gi. Denoting

again by Z[σ] the monoid ring on σ, we have for each k > 0 a homomorphism of Z[σ]-

modules

Gk+2/Gk+1 −→ Hom
(
G/G′, Gk+1/Gk

)
,

xGk+1 7−→ (gG′ 7→ [x, g]Gk),

where σ acts on the right hand side by sending θ to the map θσ, which for gG′ in G/G′

is defined by

θσ(gG′) = σθ
(
(σ̄)−1(gG′)

)
.

Proof. This is proved in a similar manner to lemma (1.1.1).

Note that we have a slightly weaker assumption on our central series compared to lemma

(1.1.1): in that lemma we use G/G2 there whilst only G/G′ here.

We immediately deduce the following corollary for the upper central series. We state

this separately since it will be used multiple times in the sequel.

Corollary 1.1.4. Let G be a nilpotent group and denote the terms of the upper central

series of G by Zi. Furthermore let α be an automorphism of G. Then for each k > 0

there is an α-equivariant injective map

Zk+2/Zk+1 −→ Hom(G/G′, Zk+1/Zk)

xZk+1 7−→ (gG′ 7→ [x, g]Zk).
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Proof. With lemma (1.1.3) in view, we need only check the injectivity of the maps in

question, but this is elementary.

1.2 Cokernels of abelianisation maps

Let G be a group and H a subgroup of G. Then the inclusion of H into G induces a

natural map of abelianisations H/H ′ −→ G/G′ with cokernel G/HG′. Broadly speaking,

the aim of this section is deduce information about H by imposing information on this

cokernel, especially in the nilpotent setting. Generalisations of the results in this section

will be explored in chapter 2, but the fundamental results in this section are needed

earlier.

We begin with a pair of presumably well known elementary observations, whose state-

ment only differs in the order of quantifiers. Therefore we prove only the first. Although

in the sequel we will only require the result for Z-modules, we state it in full generality

here.

Lemma 1.2.1. Let R be a commutative ring with 1, and (fi : i = 1, . . . , n) a collection

of R-module maps.

1. For each i, put Ii := Ann(Cokerfi). Then we have an inclusion

I1 · · · In 6 Ann(Coker(f1 ⊗ · · · ⊗ fn)).

2. If each fi has torsion cokernel, then f1 ⊗ · · · ⊗ fn also has torsion cokernel.

Proof. As noted above, we prove only the first part, the second part being essentially

the same proof.

Note that for a module map f : M −→ N , the condition r ∈ Ann(Cokerf) is equivalent

so saying that for every n ∈ N , rn ∈ Imf . To fix notation, suppose that fi : Mi −→M ′i ,

and pick ri ∈ Ii so that r := r1 · · · rn ∈ I1 · · · In. Now let

x =
∑
j

m′1j ⊗ · · · ⊗m′nj ∈M ′1 ⊗ · · · ⊗M ′n.
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Then for each m′ij ∈M ′i there is some mij ∈Mi with fi(mij) = rim
′
ij , so that

rx = r1 · · · rn
∑
j

m′1j ⊗ · · · ⊗m′nj

=
∑
j

r1m
′
1j ⊗ · · · ⊗ rnm′nj

=
∑
j

f1(m1j)⊗ · · · ⊗ fn(mnj)

∈ Imf1 ⊗ · · · ⊗ fn.

It now follows that I1 · · · In 6 Ann(Coker(f1 ⊗ · · · ⊗ fn)), as desired.

As the following example shows, we cannot replace the product of annihilators in the

above with the sum. Furthermore we see that the tensoring of maps does not commute

with taking cokernels, even though the tensor product commutes with colimits.

Example 1.2.2. Consider the Z-module inclusion ι : 2Z ↪−→ Z. The annihilator of the

cokernel of this map is the ideal I := (2). The tensor square of this map is (up to

isomorphism) the inclusion 4Z ↪−→ Z. We thus have

I + I = (2) + (2) = (2) 66 (4) = Ann(Coker(ι⊗ ι)).

Moreover we note that Coker(ι⊗ ι) = Z/4Z 6∼= Z/2Z = Coker(ι)⊗ Coker(ι).

The next lemma is an immediate application of these results. We will immediately

proceed to apply the first part, whilst an application of the second part will come in

chapter 2.

Proposition 1.2.3. Let G be a group and H a subgroup of G. For i > 1 consider the

natural maps

γi(H)
/
γi+1(H)

βi // γi(G)
/
γi+1(G) .

We consider two situations.

1. If G/HG′ has exponent dividing k, then Coker(βi) has exponent dividing ki.

2. If G/HG′ is torsion, then Coker(βi) is also torsion.

Proof. Note that the cokernel of the abelianisation map β1 is G/HG′. Thus the first

condition is equivalent to saying that (k) 6 Ann(Coker(β1)). We construct a commuta-

tive diagram as follows, where the first two vertical maps are as in lemma (1.1.1) applied
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to the lower central series.

(
H/H ′

)⊗i
����

β1
⊗i

//
(
G/G′

)⊗i
����

// // Coker(β1
⊗i)

����

γi(H)
/
γi+1(H)

βi // γi(G)
/
γi+1(G) // // Cokerβi

The result now follows upon applying the respective parts of lemma (1.2.1).

We may now show the following powerful result in the nilpotent setting, to be used

multiple times in the sequel.

Proposition 1.2.4. Let G be a nilpotent group of class c, H 6 G, and |G : HG′| = k.

Then for all g ∈ G, gk
1+···+c ∈ H.

Proof. The proof is by induction on the class c, the case c = 1 being trivial.

Thus suppose G is nilpotent of class c and the result is true for nilpotent groups of class

c− 1. By induction we deduce that for all g ∈ G, gk
1+···+c−1 ∈ Hγc(G), so in particular

gk
1+···+c−1

= hz for h ∈ H and z ∈ γc(G). Lemma (1.2.3) now implies that the image of

γc(H) in γc(G) has index dividing kc, so that zk
c ∈ H. Noting that z is central we see

then that

gk
1+···+c

= (hz)k
c

= hk
c
zk

c ∈ H,

as desired.

1.3 Torsion-free and divisible nilpotent groups

In this section we will see in particular that for the class of nilpotent groups, the proper-

ties of being torsion-free and divisible are detectable by the centre. The main tool here

will be the upper central maps described in section (1.1).

We recall that for a prime p, a group G is p-divisible if for all x ∈ G there exists some

y ∈ G for which x = yp. Then for a set π of primes, we say that G is said to be π-divisible

if it is p-divisible for each p ∈ π. We begin with a pair of elementary observations.

Lemma 1.3.1. Let A,B be abelian groups. Then if B is torsion-free, so is Hom(A,B).

If in addition B is π-divisible for a set π of primes, then again so is Hom(A,B).
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Proof. These are both elementary. For the first part, suppose nf = 0 for some n > 1

and homomorphism f : A→ B. Then if a ∈ A, we find nf(a) = 0 so that f(a) = 0 since

B is torsion-free.

For the second part, let p ∈ π and f as above. Then define g : A→ B by setting g(a) to

be the p-th root of f(a). This is well-defined and a homomorphism since B torsion-free

gives that p-th roots are unique.

This leads us to the following fundamental result concerning the extent to which the

centre controls torsion in a nilpotent group.

Proposition 1.3.2. Let G be a nilpotent group. Then G is torsion-free if and only if

Z(G) is torsion-free.

Proof. Let k > 0. Denoting the terms of the upper central series by Zk, we show that

Zk+1/Zk is torsion-free implies Zk+2/Zk+1 is torsion-free. Since extensions of torsion-

free groups are torsion-free, this will immediately yield the result.

We recall from corollary (1.1.4) that there is an injective homomorphism

Zk+2/Zk+1 ↪−→ Hom(G/G′, Zk+1/Zk),

induced by the bracket. The result now follows by lemma (1.3.1).

We have the following useful corollary:

Corollary 1.3.3. Suppose G is torsion-free and nilpotent. Then G/Z(G) is torsion-free.

Proof. This latter group has centre Z2/Z1, which is torsion-free by the proof of propo-

sition (1.3.2). This proposition now yields the result.

Among the many useful consequences of the above result are the following two lemmas

concerning divisibility in nilpotent groups; the first establishing that divisibility is unique

in the torsion-free setting, and the second that the divisibility of a nilpotent group is

detectable from its centre.

Lemma 1.3.4. Let G be a torsion-free nilpotent group, and let x, y ∈ G have xn = yn

for some n > 1. Then x = y.
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Proof. We induct on the class c of G, the case c = 1 being clear. Suppose then that

c > 1 and let Z denote the centre of G. By corollary (1.3.3) we know that G/Z is

torsion-free nilpotent of smaller class. In particular we deduce that x = yz for some

central z. But this implies that zn = 1 and so G torsion-free yields that z = 1, and we

may conclude.

Next we have an analogue of proposition (1.3.2).

Lemma 1.3.5. Let G be a torsion-free nilpotent group and π a set of primes. Then G

is π-divisible if and only if Z(G) is.

Proof. The if direction of this result has an identical proof to that of proposition (1.3.2),

once we know that central extensions of π-divisible groups are again π-divisible: but

this is elementary.

For the only if direction, we need to show that the centre is indeed a π-divisible subgroup.

Thus choose z central in G and p ∈ π so that there is some y ∈ G with yp = z. But then

this y represents a torsion element of G/Z(G), and so y ∈ Z(G) as desired, by lemma

(1.3.3).

1.4 Isolators in nilpotent groups

A distinguishing feature of nilpotent groups amongst soluble ones is the extent to which

torsion may be controlled. This section, containing various related results used through-

out the sequel, may be viewed as an illustration of this fact. As a consequence, we

will deduce in particular that the set of torsion elements in a nilpotent group forms a

subgroup. The material here is standard, and our main reference is [21, 2.3].

Definition 1.4.1. Let G be a nilpotent group and H a subgroup of G. Then the isolator

of H in G, denoted either H or I(H), is defined to be the subgroup

H = {g ∈ G : gl ∈ H for some l > 1}.

In order for this definition to make sense it is required to show that such a set is indeed

a subgroup. This is the content of the next result, an easy corollary of the results we

have established in section (1.2).
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Proposition 1.4.2. Let G be a nilpotent group and H a subgroup of G. Then the

isolator of H in G is indeed a subgroup.

Proof. The only nontrivial axiom is closure under multiplication. Thus let x, y ∈ H, so

that there exist s, t > 1 with xs and yt both in H. Put K := x, y and L := xs, yt ,

and note that |K : LK ′| < ∞ so that proposition (1.2.4) gives some l > 1 for which

(xy)l ∈ L 6 H. Thus xy ∈ H as required.

Note that in any nilpotent group, the isolator of the trivial subgroup is precisely the set of

torsion elements - and we deduce in particular that this set is closed under multiplication.

We proceed now to introduce and discuss the isolated central series.

Definition 1.4.3. For a group G, we define the i-th term of the isolated central series

of G to be Γi(G) := γi(G), denoted simply by Γi if there is no ambiguity.

Note that we do not require that the group be nilpotent: one may view this group as

the preimage of the torsion subgroup of the nilpotent quotient G/γi(G), noting that the

set of torsion elements in a nilpotent group form a subgroup, being precisely the isolator

of the trivial subgroup.

We now show that it is indeed a central series.

Lemma 1.4.4. For any group G, the series defined by Γi(G) is indeed a central series,

and each term is fully invariant.

Proof. We show first that Γi is fully invariant: if σ is an endomorphism of G, and x ∈ Γi

so that xl ∈ γi for some l > 1, we find that σ(x)l = σ(xl) ∈ σ(γi) 6 γi, recalling that γi

is a fully invariant subgroup of G.

We need to show then that for each i > 1, Γi/Γi+1 is central in G/Γi+1. For simplic-

ity suppose that Γi+1 is trivial, so that G is torsion-free, and we need to show that

Γi is central in G. Thus G is nilpotent of class i so that γi is central, and more-

over by lemma (1.3.3) we have that G/Z(G) is torsion-free. Consider the natural map

G/γi −→ G/Z(G). The subgroup Γi/γi on the left hand side is torsion and hence lies

in the kernel, which is Z(G)/γi. This is the desired inclusion.

The isolated descending central series may be characterised as the fastest descending

central series with torsion-free factors, as we see next.
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Lemma 1.4.5. For a group G, the series defined by Γi(G) is the fastest descending

central series such that the factor groups are torsion-free.

Proof. Suppose that Ki is a descending central series with torsion-free factor groups.

Since it is a central series, we deduce immediately that γi 6 Ki for each i. Now consider

the map G/γi −→ G/Ki, with kernel Ki/γi. The subgroup Γi/γi is torsion, and hence

lies in the kernel, since the right hand side is torsion-free. Thus Γi 6 Ki as desired.

We now specialise to the torsion-free nilpotent setting and link the various central series.

Lemma 1.4.6. Let G be a torsion-free nilpotent group of class c. Then for any 0 6 i 6 c−1

we have

γc−i 6 Γc−i 6 Zi+1.

Proof. We have that γc−i 6 Zi+1 since the lower central series is the fastest descending

series. Lemma (1.4.5) gives that Γc−i 6 Zi+1, since in a torsion-free group the sections

of the upper central series are torsion-free by proposition (1.3.2).

Remark 1.4.7. We might hope additionally that Zi 6 γc−i in the above. But, for

example, we may take Tr1(3,Z) × Z of class 3 with 1 × Z central but not contained in

the derived subgroup. Thus Z1 66 γ2 here.

We now state a useful corollary of a fundamental result due to Hall concerning the

relationship between isolators and verbal subgroups.

Lemma 1.4.8 ( [15, 4.6]). Let G be a nilpotent group with subgroups H1, . . . ,Hn. Then

we have an inclusion [H1, . . . ,Hn] 6 [H1, . . . ,Hn].

Proof. This follows immediately from the corollary following the cited lemma, applied

to the word θ(x1, . . . , xn) := [x1, . . . , xn].

This then yields the following general result.

Lemma 1.4.9. Let G be a nilpotent group, and suppose that H 6 G has H = G. Then

for each i > 2, we have that γi(H) = Γi(G).

Proof. It is an immediate consequence of the lemma above applied to Hj = H for each j

that γi(G) = γi(H) 6 γi(H). Taking isolators, this yields the inclusion Γi(G) 6 γi(H).

The other inclusion follows by taking isolators on the inclusion γi(H) 6 γi(G).



16 Chapter 1 Background group theory

We now show that the isolated central series satisfies the conditions of lemma (1.1.1),

so that we deduce the existence of certain tensor power maps. The details are contained

in the next lemma.

Lemma 1.4.10. Let G be a torsion-free nilpotent group and σ an endomorphism of G.

Then for any i > 1 we have that σ(Γi) 6 Γi. Furthermore given also j > 1, we find that

[Γi,Γj ] 6 Γi+j.

Proof. We have already seen in lemma (1.4.4) that the terms of the isolated central

series are fully invariant. It thus suffices to prove the second part. Indeed for i, j > 1,

we first recall the standard fact that [γi, γj ] 6 γi+j . Applying now lemma (1.4.8) we

deduce that [Γi,Γj ] 6 [γi, γj ] 6 γi+j = Γi+j .

We may now immediately deduce the following.

Lemma 1.4.11. Let G be a torsion-free nilpotent group and σ an endomorphism of G.

Then there are Z[σ]-module homomorphisms

αi :
(
G
/

Γ2

)⊗i −→ Γi
/

Γi+1 .

Furthermore the image of αi is precisely γiΓi+1

/
Γi+1 .

Proof. In view of lemmas (1.1.1) and (1.1.2), we see that the details are contained

precisely in lemma (1.4.10).

1.5 Hirsch length

In this section we introduce the notion of Hirsch length, a generalisation of the torsion-

free rank of abelian groups. For the most part, the material here is standard. For a

reference we suggest for example [21, Section 5].

In this section, all groups will be assumed to be soluble, if we do not mention this. We

recall firstly the definition of Hirsch length.

Definition 1.5.1. Let G be a soluble group. The Hirsch length of G, denoted by h(G),

is defined to be

h(G) :=
∑
i>1

dimQQ⊗
(
G(i)/G(i+1)

)
.
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Note that this number could be infinite, even for finitely generated G: for example

the finitely generated metabelian group Z o Z has infinite Hirsch length. Moreover, the

following group G, due independently to Baumslag [3] and Remeslennikov [25], is finitely

presented soluble, still metabelian, and with G′ of infinite rank.

G = a, s, t|at = aas, [a, as] = [s, t] = 1 .

Note also that if we take a different series exhibiting a group as soluble to define Hirsch

length, we obtain the same number by the Schreier refinement theorem. We use this

fact without mention in the sequel.

Hirsch length is a well behaved property, as the following lemma shows.

Proposition 1.5.2. The finiteness of Hirsch length is preserved by subgroups, quotients,

and extensions. More precisely: if G is a group of finite Hirsch length and is an extension

of N by Q, then h(G) = h(N) + h(Q). Moreover, if H is a (not necessarily normal)

subgroup of G, then h(H) 6 h(G).

Proof. These are all immediate consequences of the Schreier refinement theorem, com-

bined with the fact that the torsion-free rank of abelian groups is a well-behaved invari-

ant.

The only groups of Hirsch length zero are torsion groups, as we see next.

Lemma 1.5.3. A group G has h(G) = 0 if and only if it is torsion.

Proof. If h(G) = 0, then G is an extension of torsion groups, the result being clear for

abelian groups. The converse is clear.

For the rest of this section, we will concern ourselves with subgroups of maximal Hirsch

length. This property is well behaved with respect to subgroups and intersections:

Lemma 1.5.4. Suppose that H 6 K 6 G with h(H) = h(G) <∞. Then h(K) = h(G).

Furthermore if N P G then h(H ∩N) = h(N).

Proof. By the monotonicity of Hirsch length given in proposition (1.5.2), we deduce that

h(H) 6 h(K) 6 h(G), so that we may immediately deduce h(K) = h(G).
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For the second part, we have by the second isomorphism theorem and proposition (1.5.2)

that

h(N ∩H) = h(H)− h(H/H ∩N)

= h(H)− h(HN) + h(N)

= h(H)− h(H) + h(N) = h(N)

where h(HN) = h(H) by the first part.

As a first example, finite index subgroups certainly have maximal Hirsch length:

Lemma 1.5.5. Suppose H 6f G and h(G) <∞. Then h(H) = h(G).

Proof. Assume first that H is normal. Then the result is a consequence of the previous

two lemmas. For the general case, select N normal of finite index in G, and contained

in H. Then h(H) = h(N) = h(G), as desired.

We will be interested in finding settings where the converse of lemma (1.5.5) holds. It

fails in general even for minimax groups, for example Z 6 Z[1/2]. However we will see

that for minimax groups, finite generation is sufficient. To ease the exposition we make

a definition, for the purposes of the rest of the section.

Definition 1.5.6. Let G be a soluble group of finite Hirsch length. If every subgroup of

maximal Hirsch length has finite index, then we call G slender.

Note that there is the unrelated notion of slender groups in abelian group theory: irrel-

evant here. It is important to notice that slender groups are closed under extensions:

Proposition 1.5.7. Suppose that N P G and that both N and G/N are slender. Then

G is slender.

Proof. Suppose that H 6 G has h(H) = h(G). It follows from proposition (1.5.2)

and lemma (1.5.4) that h(HN/N) = h(G/N) so that HN 6f G by hypothesis. Then

h(H ∩ N) = h(N) by lemma (1.5.4) so that H ∩ N 6f N again by hypothesis. But

|N : N ∩H| = |HN : H|, so that H 6f HN 6f G, giving the desired result.

We immediately deduce the following corollary.

Corollary 1.5.8. Polycyclic groups are slender.
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Proof. The result is clear for finitely generated abelian groups. Apply proposition

(1.5.7).

We now show that finitely generated minimax groups are slender. We thank Peter

Kropholler here for pointing out the reduction step in lemma (1.5.10).

Proposition 1.5.9. Suppose G is finitely generated minimax. Then G is slender.

Proof. We induct on the derived length of G. If G is abelian the result is clear. Thus,

take A = G(d−1) > G(d) = 1 and suppose that H 6 G has h(H) = h(G). Since G/A is

finitely generated of smaller derived length, and h(HA/A) = h(G/A), we deduce by the

inductive hypothesis that HA 6f G, and in particular that HA is finitely generated.

By lemma (1.5.10) below we may assume that A is a finitely generated ZHA module. It

now suffices to show that H 6f HA. Since A is an abelian normal subgroup of G, we

have that H ∩A P HA, and thus we obtain a splitting

HA

H ∩A
∼=

A

H ∩A
o

H

H ∩A
.

It follows from our assumption that h(A/H ∩ A) = 0, so that it is a torsion abelian

group. The key observation is that since A is finitely generated as a module, we have

that A/H∩A cannot have any Cp∞ sections, since Cp∞ cannot be finitely generated as a

module over any ring. It follows that it is finite, and hence |HA : H| = |A : A∩H| <∞

as desired.

Lemma 1.5.10. Let G = HA be a finitely generated group with A an abelian normal

subgroup of G. Then there is a subgroup A0 of G with the following properties:

1. A0 6 A and A0 P G

2. HA0 = HA

3. A0 is a finitely generated ZG module.

Proof. We write G = HA = 〈h1a1 . . . , hnan〉, and claim that

A0 := 〈a1, . . . , an〉H

is a suitable subgroup. We verify the claims, which are routine. Since A is normal in G,

it follows that A0 6 A. By construction it is normalised by H, and since A is abelian
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it is also normal in A. Thus it is normal in HA = G. Furthermore we also have that

HA0 = HA, since it contains the generators hiai. Finally A0 is normally generated by

the ai, and so it is indeed a finitely generated ZG module.

We now have the following useful result concerning endomorphisms of certain soluble

groups:

Proposition 1.5.11. Let G be a finitely generated torsion-free minimax group, and

σ : G −→ G an endomorphism. Then σ is injective if and only if σ(G) 6f G.

Proof. If σ is injective, then certainly h(σ(G)) = h(G), since these groups are isomorphic.

By proposition (1.5.9) we deduce immediately that σ(G) 6f G.

Conversely, set K to be the kernel of σ. Combining lemma (1.5.5) and proposition

(1.5.2), we deduce that h(K) = 0. Thus K is torsion by lemma (1.5.3). But now since

G is torsion-free we find that K is trivial, so that σ is injective as claimed.

We conclude this section with the following elementary diagram, which is used in the

sequel without mention.

Remark 1.5.12. Let G be a nilpotent group, and suppose that H 6 G. We then have

the following implications.

h(H) = h(G) <∞

f.g.

}� � 

H 6f G

h(G)<∞

=E

.6 H = G

h(G)<∞

X`

1.6 Prüfer rank

In this section we introduce the Prüfer rank of a group, which does not require solubility

to define. In the soluble setting the main difference between the Prüfer rank and Hirsch

length is the detection of torsion. In the sequel we will tend to use Hirsch length, and

thus the main aim of this section is to outline why for torsion-free nilpotent groups the

Hirsch length and Prüfer rank coincide, modulo a technical lemma.
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Definition 1.6.1. Let G be a finitely generated group. Then we define d(G) to be the

cardinality of a minimal generating set for G. If now G is arbitrary, we define the Prüfer

rank of G to be

r(G) := sup{d(H) : H a finitely generated subgroup of G},

or ∞, in case the supremum does not exist.

As with Hirsch length, the Prüfer rank is a well behaved invariant. This next result

should be compared with proposition (1.5.2): it is a weaker result but holds in far

greater generality: as mentioned before, we do not require that the group in question is

soluble.

Proposition 1.6.2. Finite Prüfer rank is preserved by subgroups, quotients, and exten-

sions. More precisely: if G has finite Prüfer rank and is an extension of N by Q, then

r(G) 6 r(N) + r(Q) and r(Q) 6 r(G). Moreover, if H is a (not necessarily normal)

subgroup of G, then r(H) 6 r(G).

Proof. The result for subgroups and quotients being clear, we show the desired inequality

for extensions. Thus let H 6 G be a finitely generated subgroup. Choose left coset

representatives (xi : i ∈ I) of H ∩N in H. Then since H is finitely generated, there exist

finitely many elements xjiwi with wi ∈ H ∩ N for which H = xjiwi . Note also that

we obtain a further equality H = xji , wi . Working modulo H ∩ N and applying the

second isomorphism theorem we may bound the number of xji by r(Q) and moreover

we may bound the number of wi by r(N) since these all lie in N . In particular we may

generate H with no more than r(N)+r(Q) elements and thus we have the desired bound

on d(H).

We now proceed to discuss the link between Prüfer rank and Hirsch length. Of course

the main obstruction here is the presence of torsion. We first discuss an elementary link

in the abelian setting.

Lemma 1.6.3. Let A be a torsion-free abelian group and l ∈ N. Then the following are

equivalent.

1. h(A) = l;

2. r(A) = l;
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3. A embeds into an l-dimensional rational vector space with torsion quotient.

Proof. We show that 1 and 2 are both equivalent to 3.

Firstly then, suppose that A is torsion-free abelian group of Hirsch length l. Modulo

each abelian section in the derived series, we may select a maximal linearly independent

set of elements. Lifting all of these back to A we find a copy of Zl 6 A with torsion

quotient, a consequence of the results in the previous section. Then tensoring this

inclusion with Q we find A 6 Ql, since Q is flat and kills torsion. Moreover the quotient

is still torsion, being an image of Ql/Zl. Conversely, the fact that subgroups of finite

dimensional rational vector spaces with torsion quotient have the same Hirsch length is

immediate from proposition (1.5.2) and lemma (1.5.3).

Now suppose that A has Prüfer rank l. Now A certainly embeds into a rational vector

space, and by considering the Q-span of a maximal linearly independent (of cardinality

l by our hypothesis) set we see that it lies in a finite dimensional rational vector space.

If the quotient were not torsion, we could lift back a suitable element to contradict

maximality. For the converse, select a basis which lies in A. Then if we could find some

finitely generated subgroup of A of higher rank, we could extend a generating set of

minimal cardinality to a basis of the vector space for a contradiction.

We may now easily deduce the following.

Proposition 1.6.4. Let G be a torsion-free soluble group. Then if G has finite Hirsch

length it has finite Prüfer rank, and r(G) 6 h(G). Conversely, if G has finite Prüfer

rank then its Hirsch length is also finite.

Proof. We induct on the derived length of G, the abelian case being lemma (1.6.3).

Suppose then that G has derived length greater than 1. Since G/G′ need not be torsion

free we consider the isolator Γ2(G). Then if G has finite Hirsch length, the quotient

G/Γ2(G) does also, and hence has finite Prüfer rank bounded by its Hirsch length by

lemma (1.6.3). In particular

r(G) 6 r(Γ2(G)) + r(G/Γ2(G)) 6 h(Γ2(G)) + h(G/Γ2(G)) = h(G),

by propositions (1.6.2) and (1.5.2).

The converse is essentially an identical proof, although we cannot expect a similar bound

since we only have an inequality in proposition (1.6.2).
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For certain classes of soluble groups these invariants do coincide. One key result to

establish this is the following, which holds in much greater generality - see the cited

references for more details. We concern ourselves only with the nilpotent case in the

sequel and thus we only state a special case here. Recall that a T-group is a finitely

generated torsion-free nilpotent group.

Lemma 1.6.5 ( [21, 5.2.9] [36]). Let G be a T-group of Hirsch length r. Then for any

prime p, there exists an elementary abelian section of G of order pr.

We then have the following link between Prüfer rank and Hirsch length.

Proposition 1.6.6. Let G be a torsion-free nilpotent group. Then G has finite Hirsch

length if and only if it has finite Prüfer rank, and moreover these invariants coincide.

Proof. By proposition (1.6.4) it suffices to show that if G has Hirsch length r then it

has Prüfer rank at least r. Select a finitely generated subgroup H 6 G of Hirsch length

r. To see that this is possible one may for example take the subgroup generated by

the preimages of a maximal linearly independent set in the abelianisation. Then one

may see that such a subgroup has maximal Hirsch length by considering for example

the tensor power maps (1.1.1). Now select a prime p and apply lemma (1.6.5) to this

H to find subgroups K C L 6 H with L/K elementary p-abelian of rank r. Note that

L is finitely generated since H is polycyclic and requires at least r generators, since the

elementary abelian section does. Thus d(L) > r which sets the Prüfer rank of G to be

at least r, as desired.

1.7 The Mal’cev Completion

In this section we introduce the Mal’cev completion, or radicable hull, of a torsion-free

nilpotent group, the idea being to embed such a group into a divisible one in a minimal

fashion. The analogy for torsion-free abelian groups is with the injective hull: obtained

by tensoring with Q. Our main references here are [15, 21, 26, 31]. We first give the full

statement in the categorical framework.

Mal’cev Completion ( [31, 8.5]). The inclusion of the category of radicable torsion-free

nilpotent groups into the category of torsion-free nilpotent groups admits a left adjoint

(−)Q, called the Mal’cev Completion functor. In particular to any torsion-free nilpotent

group N there is an injective group homomorphism ι : N −→ NQ, where NQ is a rad-

icable torsion-free nilpotent group, obeying the following universal property: given any
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group homomorphism f : N −→ R where R is a radicable nilpotent group, there exists a

unique group homomorphism fQ : NQ −→ R such that the following diagram commutes.

N

ι

��

f

  

NQ
∃!fQ

// R

As per Warfield [31], it is a standard argument to see that this adjunction exists. The

work is in showing that for N torsion-free nilpotent the canonical map N → NQ is

injective. We discuss here one coherent way to realise the Mal’cev completion concretely

and obtain the injectivity of the canonical map. Our discussion will roughly follow that

of [21, 2.1]. One starts by considering the finitely generated case. Thus let G be a T-

group of Hirsch length n. Since the sections of the upper central series are torsion-free,

one may refine it to be a series where the sections are all infinite cyclic. If one lifts cyclic

generators back to G, say to x1, . . . xn, then an easy induction shows for each element a

of G there exist unique integers r1, . . . , rn such that a = xr11 · · ·xrnn . We notate this by

xr for short with r := (r1, . . . , rn). One says that the sequence of elements x1, . . . , xn

forms a fundamental basis of G.

By this (set-theoretic) correspondence we may interpret the multiplication and powering

maps in G as vectors of functions as follows, where r, s ∈ Zn and l ∈ Z.

xr · xs = x
α1(r,s)
1 · · ·xαn(r,s)

n ,

(xr)l = x
β1(r,l)
1 · · ·xβn(r,l)

n .

The bulk of the work is now in the following well-known result due to Hall.

Proposition 1.7.1 ( [15, 6.5]). Let G be a T-group with functions αi : Z2n −→ Z and

βj : Zn+1 −→ Z obtained as above from a choice of fundamental basis. Then each αi and

βj is a polynomial function with rational coefficients.

One may now proceed to define the Mal’cev completion GQ of a T-group G of Hirsch

length n. As a set, this is defined to be Qn, and the group operations are defined by

extending the polynomials αi and βj uniquely - this is possible since knowing the values

of a polynomial on the integers determines the polynomial. That this is a group is a
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consequence of the fact that the group axioms for G express themselves purely as equa-

tions involving the aforementioned polynomials: thus they hold in GQ. Furthermore,

one may directly see that this construction is unique up to unique isomorphism.

Finally, one generalises the construction to a torsion-free nilpotent groupN by expressing

it as a direct limit of its finitely generated subgroups and completing each subgroup in

a compatible manner.

We mention another approach to the Mal’cev completion of a T-group, also based on

a linearity result due to Hall. Recall that Tr1(n, k) denotes the group of n × n upper

triangular matrices with entries in a ring k and with 1s on the main diagonal. We then

have

Proposition 1.7.2 ( [15, 7.5]). Every T-group may be embedded as a subgroup of

Tr1(n,Z) for some n.

Thus for a T-group G one may isolate the image of G in Tr1(n,Q) to obtain the Mal’cev

completion, as this latter group is radicable. This is the approach taken by Segal in [26].

We consider as an illustration of these ideas the case of the Heisenberg group.

Example 1.7.3. The integral Heisenberg group H is defined by

H :=


1 Z Z

1 Z

1

 = Tr1(3,Z).

We may give an explicit fundamental basis as x1, x2, x3 defined by

x1 :=


1 1 0

1 0

1

 ,

x2 :=


1 0 0

1 1

1

 ,

x3 :=


1 0 1

1 0

1

 .
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One then verifies immediately the following, where each of ri, sj and l are integers:

xr11 x
r2
2 x

r3
3 · x

s1
1 x

s2
2 x

s3
3 = xr1+s1

1 xr2+s2
2 xr3+s1s2+r1r2+r1s2+s3

3 ,

(xr11 x
r2
2 x

r3
3 )l = xlr11 xlr22 x

(l+1
2 )r1r2+lr3

3 .

In particular, we see that β3 does not have integer coefficients in this case.

Note that the Mal’cev completion of H is precisely

HQ :=


1 Q Q

1 Q

1

 = Tr1(3,Q).

We will proceed to list various specific properties of the Mal’cev completion which we

require later. Thus we give more details in this final section. Recall that two abstract

groups are said to be commensurate if they have isomorphic subgroups of finite index.

Proposition 1.7.4. Two T-groups are commensurate if and only if they have isomorphic

Mal’cev completions.

Proof. We first show that if H 6f G are T-groups, then HQ ∼= GQ. This is an easy

consequence of our earlier discussion: one sees that one way to characterise GQ amongst

radicable torsion-free nilpotent groups is that for each x ∈ GQ there is some n > 1 for

which xn ∈ G. To see this, note that this is inherent in the particular construction we

outline above. Then the functorality is saying that this is true of any particular Mal’cev

completion. Bearing this in mind it follows immediately from the fact that H has finite

index in G that HQ ∼= GQ.

Thus suppose G and H are commensurate T-groups, so that there are subgroups K 6f G

and L 6f H with K ∼= L. But then by our earlier remark and the functorality of the

Mal’cev completion we deduce GQ ∼= KQ ∼= LQ ∼= HQ as desired.

Conversely, suppose that GQ ∼= HQ. By considering the image of H in GQ we may

suppose that both G and H are subgroups of GQ. Suppose H is generated by h1, . . . hr.

Since H 6 GQ, there exists some n > 1 for which hni ∈ G for each i. But now the

subgroup K := hni : 1 6 i 6 r has finite index in H: certainly it does modulo H ′ and

we may then appeal to proposition (2.1.5). Thus since K 6 H ∩ G 6 H we deduce

H ∩G 6f H.
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By symmetry H ∩G also has finite index in G, and we may conclude.

We will need to consider how the Mal’cev completion behaves with respect to endomor-

phisms of nilpotent groups of finite rank (with sections (1.5) and (1.6) in view, we see

that we may take either finite Hirsch length or finite Prüfer rank here). We start with

a general lemma with no finiteness of rank assumption, and denote isolators by bars.

Lemma 1.7.5. Let f : M → N be a homomorphism of nilpotent groups of finite rank,

and let f× denote the induced homomorphism on the Mal’cev completion. Then f×

extends f , and furthermore we have Kerf× = Kerf and Imf× = Imf .

Proof. That f× extends f is a consequence of the injectivity of the natural mapN → NQ.

The two stated equations follow immediately from the definitions and lemma (1.3.4).

We then have the following crucial corollary in the finite rank case: note in particular

the surjectivity of the induced map.

Corollary 1.7.6. Let N be a nilpotent group of finite rank and σ an injective endomor-

phism of N . Then the induced endomorphism σ× is an automorphism of NQ extending

σ.

Before we conclude this section, we briefly discuss how the upper central series interacts

with the Mal’cev completion.

Proposition 1.7.7. Let N be torsion-free nilpotent and set R := NQ. Then for each

i > 0, we have that Zi(N) = Zi(R) ∩N .

Proof. We induct on i, the base case of i = 0 being trivial. It will suffice to show that

Zi(N) 6 Zi(R), so assume this is true at the (i − 1)st step. Thus let x ∈ Zi(N) and

w ∈ R, so that wn ∈ N for some n > 1. Then certainly [x,wn] ∈ Zi−1(N) 6 Zi−1(R).

Set H1 = x and H2 = wn . Then note that, denoting isolators by bars,

[x,w] ∈ [H̄1, H̄2]

6 [H1, H2]

6 Zi−1(N)

6 Zi−1(R)

= Zi(R),

as desired, where the first inclusion is lemma (1.4.8).
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The following is an immediate and useful consequence of the above proposition.

Corollary 1.7.8. Let N be torsion-free nilpotent of finite rank and σ an injective en-

domorphism of N . Then the upper central series of N is preserved by σ.

Proof. Fix i > 0 and set R := NQ. Then, using proposition (1.7.7) and corollary (1.7.6),

we find

σ
(
Zi(N)

)
= σ×

(
Zi(R)

)
∩ σ(N) = Zi(R) ∩ σ(N) 6 Zi(N),

as desired.

1.8 The Mal’cev Correspondence

Following on naturally from the previous section, we end this chapter with a brief in-

troduction to the Mal’cev correspondence. This is an equivalence of categories between

rational nilpotent Lie algebras and torsion-free radicable nilpotent groups. The main

reference here is [17].

We may state immediately

The Mal’cev Correspondence ( [17, p. 118]). The categories of rational nilpotent Lie

algebras and of torsion-free radicable nilpotent groups are equivalent. To each torsion-

free radicable nilpotent group G we may associate its Lie algebra log(G), and conversely

given a rational nilpotent Lie algebra L the associated group is exp(L).

We state the correspondence here removed from its geometric context. One may view

torsion-free radicable nilpotent groups as unipotent algebraic groups over Q, and thereby

realise the correspondence by associating to such a group its tangent space at the identity

with its induced Lie algebra structure. It is then a theorem of algebraic groups that this

correspondence does indeed induce an equivalence of categories. In this regard we refer

the reader to [14]. The approach of Khukhro in [17], which we outline in some detail

below, is to explicitly witness the correspondence for free objects and then to generalise

this to all objects.

A further approach to the correspondence is outlined in [31]: one may view the corre-

spondence explicitly inside a certain completed group algebra.

Before sketching a way to construct the correspondence, we state the main result we

require in the sequel.
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As per Segal in [26, p. 102], we define, given a tuple e = (e1, . . . , er) of positive integers,

[x, y]e := [x, y, . . . , y︸ ︷︷ ︸
e1

, x, . . . , x︸ ︷︷ ︸
e2

, y, . . . ].

We now cite certain formulae pertaining to the Mal’cev correspondence, including the

celebrated Baker-Campbell-Hausdorff formula and its inverse, which exhibit the uniform

way in which the lie algebra structure determines the group structure, and vice versa.

Theorem 1.8.1 ( [17, p. 118]). There exist constants ae, be, ce, de ∈ Q, for each vector

of positive integers e, such that log and exp formally obey the following relations for all

X,Y, g, h:

log(exp(X) exp(Y )) = X + Y +
∑
e

ae[X,Y ]e (1.8.1)

log[exp(X), exp(Y )] =
∑
e

be[X,Y ]e (1.8.2)

exp(log(g) + log(h)) = gh
∏
e

[g, h]cee (1.8.3)

exp[log(g), log(h)] =
∏
e

[g, h]dee (1.8.4)

More precisely, given any pair (L,G) consisting of a finite dimensional nilpotent Lie

algebra with expL = G its associated radicable nilpotent group, then the formulas above

are valid for any x, y ∈ L and g, h ∈ G, noting that they are finite by nilpotency.

We now proceed to outline an argument to establish the Mal’cev correspondence. Our

brief exposition here closely follows that of Khukhro [17], although at the end we do

differ slightly. The strategy is to first manufacture the correspondence in the free set-

ting and deduce the Baker-Campbell-Hausdorff formula and its variants here. Next,

one sets up the correspondence objectwise by artificially defining new operations us-

ing the aforementioned formulae. That this process works will follow from the freeness

assumption.

Thus, let X be a set and c > 1. We consider the free nilpotent of class c associative

Q-algebra on X, denoted simply by A. Concretely, this has Q-basis monomials x1 · · ·xk
where k 6 c and each xj ∈ X, multiplication is concatenation, and any (c + 1)-fold

product of elements of X vanishes. By setting [x, y] := xy − yx, one endows A with

a rational Lie algebra structure. Now let L denote the sub Lie ring of A generated by

X. Then we may realise the free nilpotent of class c rational Lie algebra on X as a

subalgebra of A as QL = {rl : l ∈ L}, as remarked by Khukhro [17, p. 102].
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Adjoin now a formal identity 1 to A by considering the algebra Q ⊕ A and consider

the subset 1 + A = {1 + a : a ∈ A}. We formally define maps log : 1 + A → A and

exp: A→ 1 +A as follows:

log(1 + a) := a− a2

2
+ · · ·+ (−1)i−1a

i

i
+ · · · ,

exp(a) := 1 +
a

1
+ · · ·+ ai

i!
+ · · · .

Note that these are well-defined by our nilpotency assumption. Furthermore, since

an element of an associative algebra commutes with its powers, it is a straightforward

verification that these maps are mutually inverse.

It is important to notice that 1 +A is in fact a group under multiplication with identity

1, the inverse of 1 + a being 1 − a + · · · + (−1)c−1ac. Inside this group one wishes to

identify the free nilpotent group of class c on X, and one may do so rather explicitly, as

in the following.

Proposition 1.8.2 ( [17, Theorem 9.2]). The set {ex : x ∈ X} 6 1 +A freely generates

a free nilpotent group G of class c.

One may now properly introduce the Baker-Campbell-Hausdorff formula in this setting.

Theorem 1.8.3. For x, y ∈ A free nilpotent of class c we define the polynomial Hc(x, y)

to satisfy

eHc(x,y) = exey.

Then if x, y ∈ X, we have that Hc(x, y) ∈ QL.

Note that by the freeness assumption we have that for any c, i > 1, the polynomial Hc

is a truncation of Hc+i, in the obvious sense. In particular we may consistently define

the power series H as in theorem (1.8.1) above. An important corollary of the fact that

the finite polynomials lie in QL is the following.

Corollary 1.8.4 ( [17, Theorem 9.2]). The set eQL is a group, and furthermore is the

Mal’cev completion of G defined in proposition (1.8.2).

Using the machinery we have outlined above, one may now proceed to establish the

Mal’cev correspondence in general. Suppose that we wish to witness the correspondence

for a particular finite dimensional nilpotent rational Lie algebra M of class c. Formally,

the corresponding group is the set eM = {ex : x ∈ M}, with group operation defined
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by ex · ey := eHc(x,y). The fact that this operation defines a group is a consequence of

corollary (1.8.4). Take for example the case of the associative law. We require that for

all x1, x2, x3 in M that Hc((Hc(x1, x2), x3) = Hc(x1, Hc(x2, x3)). Denote A as above

to be the free nilpotent of class c associative Q-algebra on {a1, a2, a3} so that the Lie

algebra QL is free on this set, as remarked above. By corollary (1.8.4) we certainly have

Hc((Hc(a1, a2), a3) = Hc(a1, Hc(a2, a3)). Now using our freeness assumption map QL

onto M via ai 7→ xi to achieve the desired result. In a similar manner one may establish

the reverse direction of the correspondence.





Chapter 2

Supplement results for nilpotent

groups

In a group G, a supplement of a subgroup H 6 G is a subgroup K such that G = HK.

By an almost supplement of H we will mean a subgroup K such that HK is close to G

in some sense - for example it has the same rank, or is of finite index. In this section we

discuss various results, some of which are well known, concerning the role of supplements

and their generalisations in nilpotent groups. In the first section we discuss subgroups

for which the derived subgroup is a supplement, or almost one. We then move to discuss

the isolated derived subgroup and its almost supplements in various contexts.

2.1 Almost supplements of the derived subgroup

Here we will see in particular that the derived subgroup is only a supplement for the

whole group. Interestingly for finitely generated soluble groups we will even see that

this property of the derived subgroup characterises nilpotent groups. More generally,

we may think of the results in this section as an illustration of the extent to which the

abelianisation controls the subgroup structure of a nilpotent group.

We begin with a useful and elementary illustration of this principle.

Proposition 2.1.1. Let G be a nilpotent group, H 6 G such that G = HG′. Then

G = H.

33
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Proof. We induct on the class c of G, the case c = 1 a triviality. If c > 1 we deduce by

induction that G = Hγc(G). But then

G = HG′ = H(Hγc(G))′ = HH ′ = H,

as desired.

Alternatively, one may take k = 1 in proposition (1.2.4).

Interestingly we find that proposition (2.1.1) admits a partial converse. We first require

a lemma, which is a trivial consequence of two lemmas in [21], generalising in particular

a classical theorem due to Wielandt [35]. Recall for a group G, we denote by Frat(G)

the Frattini subgroup of G, defined to be the intersection of all maximal subgroups.

Lemma 2.1.2. Let G be a finitely generated soluble group. Then G′ 6 Frat(G) if and

only if G is nilpotent.

Proof. If G′ 6 Frat(G), we deduce immediately that G/Frat(G) is polycyclic, so that [21,

7.4.10] yields that G is polycyclic. But now [21, 1.3.20] yields that G is nilpotent, as

desired. The converse is also supplied by [21, 1.3.20].

We now have

Proposition 2.1.3. Let G be a finitely generated soluble group such that for all sub-

groups H 6 G, HG′ = G =⇒ H = G. Then G is nilpotent.

Proof. By lemma (2.1.2), it suffices to show that G′ 6 Frat(G), where Frat(G) is the

Frattini subgroup of G. To this end, suppose that H is a maximal subgroup. The

hypothesis immediately yields that H = HG′, so that G′ 6 H, as desired.

We turn to studying almost supplement results for nilpotent groups, beginning by think-

ing of ‘almost’ as being ‘has finite index in’. In the case of a normal subgroup we have

a general result:

Proposition 2.1.4. Let G be a nilpotent group, H P G, and |G : HG′| < ∞. Then

|G : H| <∞.

Proof. Select a transversal to HG′ in G and let S be the (finitely generated) subgroup

it generates, so that G = SHG′. Since H is normal, SH is a subgroup and the corollary
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above implies that G = SH. But now G/H is finitely generated and torsion. Since it is

nilpotent, it is also finite, as desired.

In the finite Prüfer rank situation we may show more.

Proposition 2.1.5. Let G be a nilpotent group of finite Prüfer rank, H 6 G, and

|G : HG′| <∞. Then |G : H| <∞.

Proof. We induct on the length of a subnormal series for H, the base case being the

theorem above. Thus suppose H P L 6f G. Then L/H is of finite Prüfer rank and is

of finite exponent. Thus it is finite, again since it is nilpotent.

We move next to the most general almost supplement result we will prove, where I

denotes the isolator operator.

Proposition 2.1.6. Let G be nilpotent and H a subgroup of G satisfying I(HG′) = G.

Then I(H) = G.

Proof. The proof is by induction on class, the case c = 1 being trivial. Assume that G

has class c > 1 and write γc := γc(G). One verifies immediately that

I

(
Hγc
γc

G′

γc

)
=
I(HG′)

γc
=
G

γc
.

Thus by induction we deduce that I(Hγc) = G. To conclude we claim that I(Hγc) 6 I(H).

Suppose then that g ∈ G has some n > 1 with gn = hz for h ∈ H and z central. By the

second part of lemma (1.2.3) we see that γc(G)/γc(H) is torsion, so that there is some

m > 1 with zm ∈ H. Applying the centrality of z we deduce that gnm = hmzm ∈ H, as

desired.

We have the following useful corollary of the above.

Corollary 2.1.7. Let G be a nilpotent group of finite Hirsch length, and H a subgroup

of G. Then h(HG′) = h(G) =⇒ h(H) = h(G).

Proof. It suffices to show that for a nilpotent group of finite Hirsch length, the condition

h(H) = h(G) is equivalent to I(H) = G. For H normal this is clear. For general H we in-

duct on subnormality length to findK withHCK 6 G and h(K) = h(G) ⇐⇒ I(K) = G.

If now h(H) = h(G), then certainly h(H) = h(K) so that I(H) = K and I(K) = G.

Since I is a closure operator we deduce that I(H) = G.
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Conversely if I(H) = G, then I(K) = G so that h(K) = h(G). But K/H is torsion and

hence h(H) = h(K) = h(G) as desired.

Among the various applications of this general result we mention the following.

Corollary 2.1.8. Let G be nilpotent of finite Hirsch length and of class c. Suppose

h(G/G′) = n. Denote the free nilpotent group on n generators of class c by Fn,c. Then

we have that h(G) 6 h(Fn,c).

Proof. Select x1, . . . , xn ∈ G which map to linearly independent elements mod Γ2(G).

Let the subgroup they generate be H. Then the obvious epimorphism Fn,c −� H shows

that h(H) 6 h(Fn,c). But by construction G/HΓ2(G) is torsion, from which we easily

deduce that G/HG′ is torsion. In particular we deduce that h(HG′) = h(G), and the

above result yields that h(H) = h(G), as desired.

2.2 Almost supplements of the isolated derived subgroup

One might hope that an adjusted version of proposition (2.1.1) holds, where we replace

G′ by Γ2(G) but insist on G torsion-free. Although this holds for abelian groups, this

cannot hold for nilpotent groups in general. We will identify precisely the class of

counterexamples in the finitely generated case, and then finally see that in an important

case the result does hold, namely in the case where the subgroup is isomorphic to the

whole group.

We would specifically like to express our gratitude to Dr Koeck for his careful reading

of a previous version of this section, where a crucial error was found.

We begin with a result in the positive direction.

Lemma 2.2.1. Let G be a nilpotent group, and H 6 G with Hγ2(G) > Γ2(G). Then

G = HΓ2(G) only if G = H.

Proof. This follows immediately from proposition (2.1.1): note thatG = HΓ2(G) 6 Hγ2(G),

so that H = G.

The following lemma now identifies precisely the class of counterexamples, in the case

G is finitely generated and torsion free.
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Lemma 2.2.2. Let G be a T-group. Then there exists a proper subgroup H <f G with

G = HΓ2(G) if and only if γ2(G) 6= Γ2(G).

Proof. If such a subgroup exists, then by lemma (2.2.1) we find Hγ2(G) 6> Γ2(G), so

that γ2(G) 6= Γ2(G). Conversely since G is finitely generated, the torsion subgroup

Γ2(G)/γ2(G) of the abelianisation admits a complement H/γ2(G). Then G = HΓ2(G)

and we have that γ2(G) < Γ2(G) yields H < G.

We devote the rest of this section by showing that every commensurability class of non-

abelian T-group admits a counterexample. By lemma (2.2.2) we see that it suffices to

find a commensurate T-group which has torsion in its abelianisation. It thus suffices to

prove the following proposition.

Proposition 2.2.3. Let G be a non-abelian T-group. Then there is a finite index sub-

group H 6 G such that H/H ′ is not torsion-free.

We remark that the fact that there is always a finite index subgroup of a T-group with

torsion-free abelianisation is a (deservedly) far better known and more useful lemma.

Arguably then, the preceding proposition may be regarded as lying on a tangent. Nev-

ertheless we feel it is of note, the proof being of independent interest and the result

curious in and of itself. To prove it we require three lemmas.

Lemma 2.2.4. Let G be a T-group with Γ2(G) = γ2(G). Then for any H 6f G, we

have that H/H ′ is torsion-free if and only if H ′ = H ∩G′.

Proof. Consider the natural map H/H ′ −→ G/G′. This has kernel H ∩G′/H ′, which is

a finite group since H ′ 6f G′, as may be seen directly, or by appealing to lemma (1.4.9).

Thus if H/H ′ is torsion free this subgroup is trivial, so that H ′ = H ∩ G′. Conversely

if this subgroup is trivial then the natural map is injective and H/H ′ is a subgroup of

G/G′, torsion-free by hypothesis.

The following lemma may be found in the literature, and is proved by examining the

collection process for nilpotent groups.

Lemma 2.2.5 ( [21, 2.2.5]). If G is a nilpotent group of class c and p a prime exceeding

c, then Gp := gp : g ∈ G consists of p-powers, so that in fact Gp = {gp : g ∈ G}.

Finally we require the following.
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Lemma 2.2.6. Let G be a T-group of class c. Then for almost all primes p, we have

that γc(G) 66 Gp.

Proof. We prove the lemma for any prime p > c which does not divide the order of

the finite abelian group Γc(G)/γc(G). Now as a finitely generated torsion-free abelian

group, γc(G) cannot be p-divisible. Thus select z ∈ γc(G) \ γc(G)p. We claim that z is

not an element of Gp. By lemma (2.2.5) it suffices to show that it is not a p-th power of

another element, noting that we assumed that p > c. If it is, we find some w ∈ G with

wp = z. But then by definition w represents a torsion element in Γc(G)/γc(G), and so

by the coprimality hypothesis on p we have w ∈ γc(G). But z was chosen to have no

p-th root in γc(G), a contradiction.

We may now prove the main proposition.

Proof (of proposition 2.2.3). If G/G′ already has torsion, then we are done. Thus sup-

pose that Γ2(G) = γ2(G) so that lemma (2.2.4) applies. Select p prime to satisfy

lemma (2.2.6), and hence pick some z ∈ γc(G) \ Gp. We claim that H := Gp z

has torsion abelianisation. With lemma (2.2.4) in view, it will suffice to show that

z ∈ H ∩ G′ \ H ′. Indeed z ∈ H by construction, and z ∈ G′ since c > 2 by hypoth-

esis (note: it is here that we see where our proof fails for the abelian case). Finally

H ′ = [Gp z ,Gp z ] = [Gp, Gp] 6 Gp, by the centrality of z. Since z 6∈ Gp by construc-

tion, in particular z 6∈ H ′, as desired.

The desired corollary is then

Corollary 2.2.7. In any non-abelian T-group, there exists a finite index subgroup G

with a proper subgroup H <f G with G = HΓ2(G).

Proof. This is an immediate corollary of proposition (2.2.3) and lemma (2.2.2).

Nevertheless, there is an important special case where this result does hold, namely

when the subgroup is a homomorphic image of the group. This holds for torsion-free

nilpotent groups of finite rank, as we will see in the next section. See in particular

theorem (3.1.3).



Chapter 3

Endomorphisms of nilpotent

groups of finite rank

In this chapter, we concern ourselves with criteria which guarantee the bijectivity of an

endomorphism of a nilpotent group of finite rank. By finite rank we mean either finite

Hirsch length or finite Prüfer rank: by proposition (1.6.6) these coincide. We prove two

results here. Stated briefly, we will show that both the the torsion-free abelianisation

and centre detect whether an endomorphism is an automorphism. In certain special

cases, these results are known.

In particular, suppose an endomorphism σ of a T-group induces an isomorphism on

the centre. Then (independent) work of Farkas [13] and Wehrfritz [32] shows that σ is

necessarily an automorphism. Meanwhile Wehrfritz [32] demonstrates that in the finite

rank setting, still torsion-free and nilpotent, the result does not always hold.

For π a set of rational primes, we obtain sufficient criteria in the π-divisible case by

considering a generalisation of integer-like endomorphisms to so-called π-like endomor-

phisms. Invertible integer-like endomorphisms (the case π = ∅) are discussed in the

context of nilpotent groups in [9]. Briefly, integer-like endomorphisms are those that

preserve a maximal rank torsion-free finitely generated abelian group in the Lie alge-

bra of the Mal’cev completion. As a special case of theorem (3.2.5), we then have the

following.

Theorem. Let N be torsion-free nilpotent of finite rank, and σ an integer-like endo-

morphism with detσ
∣∣
Z(N)

= ±1. Then σ is an automorphism of N .

39
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We give counterexamples (see 3.2.6) to show that one must have a condition on the deter-

minant and furthermore that some version of integer-like must be considered. Meanwhile

Farkas and Wehrfritz, again independently, show that an endomorphism of a polycyclic-

by-finite group which induces an isomorphism on the Zaleskii subgroup is an automor-

phism - see also the later paper of Wehrfritz [33] in this context. We give an example

(see 3.2.7) to show that this cannot be generalised to finitely generated minimax groups.

On the other hand, we show (theorem (3.1.3)) that the torsion-free abelianisation always

detects the surjectivity of an endomorphism, a more straightforward result. This is the

content of the first section of this chapter, since certain results are required later.

3.1 Detecting surjectivity on the torsion-free abelianisa-

tion

We begin with a certain rigidity result for torsion-free abelian groups of finite rank.

Recall that for an abelian group A and natural number l > 0, the subgroup A[l] of A is

by definition the subgroup consisting of elements of order dividing l.

Recall also that given a group G with subgroup H and an endomorphism σ of G, H

is said to be invariant under σ, or preserved by σ, if σ(H) 6 H, and stabilised by σ if

σ(H) = H.

We then have the following.

Lemma 3.1.1. Let p be a prime, and T a p-torsion abelian group with T [p] finite. Then

every injective endomorphism of T is surjective.

Proof. Let σ be an injective endomorphism of T . Since T =
⋃
i>0 T [pi] and these are

fully invariant subgroups, it suffices to show that the restriction of σ to T [pi] is surjective

for each i. Since σ is injective, it will suffice to show that these subgroups are all finite.

The case i = 1 is our hypothesis, so assume that T [pi] is finite and note that T [pi+1] is

an extension of T [p] by pT [pi+1] 6 T [pi]. Conclude.

The following useful proposition will be used in both parts of this chapter.

Proposition 3.1.2. Let A be a torsion-free abelian group of finite rank and B a subgroup

of the same rank. Suppose σ is an endomorphism of A which stabilises B. Then σ is an

automorphism of A.
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Proof. By the five lemma, it will suffice to show that the induced endomorphism on A/B

is surjective. One verifies immediately from the necessary injectivity of σ on A that is

also injective on this quotient. Moreover, decomposing the torsion group A/B into its

primary components, we may assume that A/B is p-torsion for some prime p. Lemma

(3.1.1) now applies due to our finiteness of rank assumption.

We are now in a position to prove the following result. As mentioned before, one way of

interpreting this result is as a supplement result in the sense of section 2.2. In particular

we see that the presence of the endomorphism is key.

Theorem 3.1.3. Let N be torsion-free nilpotent of finite rank, and σ an endomor-

phism of N which induces an automorphism on the torsion-free abelianisation, so that

σ(N)Γ2(N) = N . Then σ is an automorphism of N .

Proof. Note firstly that σ is necessarily injective by corollary (2.1.7). We induct on

the class c of N , the case c = 1 being clear. For N of class c > 1, a further Hirsch

length argument shows that the induced map σ̄ : N/Γc(N)→ N/Γc(N) is injective. By

induction we deduce that N = σ(N)Γc(N).

Consider now the Z[σ]-module homomorphism αc as in lemma (1.4.11). Since by hy-

pothesis σ acts as an automorphism on N/Γ2(N), the image γc(N) of αc is stabilised

by σ. Proposition (3.1.2) applies and we deduce that σ(Γc(N)) = Γc(N). Finally

N = σ(N)Γc(N) = σ(N)σ(Γc(N)) = σ(N), as desired.

3.2 Detecting surjectivity via the centre

Let N be a torsion-free nilpotent group of finite rank and σ an injective endomorphism

of N . Furthermore denote by R the Mal’cev completion of N and σ× the induced

automorphism of R. Note that the upper central series of N is indeed preserved by σ:

this is corollary (1.7.8). Together with the map β1 obtained from corollary (1.1.4) by

taking k = 0, the natural maps Z(N) → Z(R) and N/N ′ → R/R′ induce maps which
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fit together as below.

Z2(N)/Z1(N)

β1
��

Hom(N/N ′, Z(N))
γ
// Hom(N/N ′, Z(R))

OO

δ

Hom(R/R′, Z(R))

(3.2.1)

The required properties of this sequence are detailed in the following proposition.

Proposition 3.2.1. Let N , R, σ, σ× be as above and consider diagram (3.2.1). We

claim the following.

1. γ is injective.

2. δ is an isomorphism.

3. δ−1 ◦ γ ◦ β1 is a Z[σ×]-module map.

4. δ−1 ◦ γ is a Z[σ−1
× ]-module map, provided that σ(Z(N)) = Z(N).

Proof. The first claim is an immediate consequence of the injectivity of Z(N)→ Z(R).

That δ is an isomorphism follows from the fact that Z(R) is a Q-vector space and the

map N/N ′ → R/R′ is naturally isomorphic to tensoring with Q.

For the third part, note that σ× has a well defined action (as specified in lemma (1.1.3))

on Hom(R/R′, Z(R)) since it is an automorphism of R. In order to show it is equivariant,

let wZ be an element of Z2(N)/Z1(N). It is required to show that we have an equality

of maps

(
δ−1 ◦ γ ◦ β1

)
(σ(w)Z) =

((
δ−1 ◦ γ ◦ β1

)
(wZ)

)σ×
: R/R′ −→ Z(R).

Since δ is an isomorphism it suffices to check that these are equal after precomposing

with the natural map N/N ′ → R/R′. It thus suffices to show that if x ∈ N that

((
δ−1 ◦ γ ◦ β1

)
(σ(w)Z)

)
(xR′) = σ×

(((
δ−1 ◦ γ ◦ β1

)
(wZ)

)
(σ−1
× (x)R′)

)
.
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The left hand side now immediately reduces to [σ(w), x], so that this equality holds if

and only if

σ−1
× [σ(w), x] =

((
δ−1 ◦ γ ◦ β1

)
(wZ)

)
(σ−1
× (x)R′). (3.2.2)

Note that σ−1
× (x) may not lie in N , but there certainly exists some l > 1 for which

σ−1
× (x)l ∈ N . Taking the l-th multiple in Z(R) of the right hand side of equation (3.2.2)

we thus see that

l ·
((

δ−1 ◦ γ ◦ β1

)
(wZ)

)
(σ−1
× (x)R′) =

((
δ−1 ◦ γ ◦ β1

)
(wZ)

)
(σ−1
× (x)lR′)

= [w, σ−1
× (x)l]

= l · [w, σ−1
× (x)].

Appealing to the unique divisibility of Z(R) we deduce that the right hand side of

equation (3.2.2) is precisely [w, σ−1
× (x)] = σ−1

× [σ(w), x], as desired.

We now show the final part, and note here that the very fact that the abelian group

Hom(N/N ′, Z(N)) is a Z[σ−1
× ]-module is because σ restricted to the centre is an isomor-

phism. Thus it is exactly here that use our hypothesis. Indeed, given θ : N/N ′ −→ Z(N)

and g ∈ N we find that θσ
−1
× (gN ′) is precisely

σ−1
× θ
(
σ(g)N ′

)
∈ σ−1
× (Z(N)) = Z(N).

We now show that δ−1 ◦ γ is indeed σ−1
× -equivariant. Thus let θ : N/N ′ −→ Z(N). We

need to show that

δ−1 ◦ γ
(
θσ
−1
×
)

=
(
δ−1 ◦ γ(θ)

)σ−1
×

as maps R/R′ −→ Z(R). As above it suffices to check for g ∈ N that we have

δ−1 ◦ γ
(
θσ
−1
×
)
(gR′) = σ−1

×

((
δ−1 ◦ γ(θ)

)
(σ(g)R′)

)
.

The left hand side is just θσ
−1
× (gN ′) = σ−1

× θ
(
σ(g)N ′

)
by our calculation above. Thus

the equation holds precisely when
(
δ−1 ◦ γ(θ)

)
(σ(g)R′) = θ

(
σ(g)N ′

)
, but this is again

true by definition of the maps under consideration.

For the rest of this section, π will denote a (possibly empty) set of prime numbers. We

begin by recalling the following standard notions. A π-number is a rational integer with
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all prime divisors contained in π, and we notate Z[1/π] := {mn : m ∈ Z, n a non-zero

π-number}. Finally a π-unit is a unit in this ring. If π = {p}, we notate Z[1/π] = Z[1/p]

as usual. We now introduce the notion of π-like morphisms.

Definition 3.2.2. Let V be a rational vector space of dimension n <∞, and let ν be an

automorphism of V . We say that ν is π-like if one of the following equivalent conditions

hold.

• The coefficients of the characteristic polynomial of ν lie in Z[1/π].

• There exists some W 6 V preserved by ν with W ∼= Z[1/π]n.

Now let σ be an injective endomorphism of a torsion-free nilpotent group N of finite

rank. We say that σ is π-like if the induced automorphism of the associated rational Lie

algebra of N is π-like.

The equivalence of these two conditions is standard linear algebra. In case π = ∅, this

is the notion of integer-like automorphisms, as considered in [?]. This is a particularly

well-behaved class of endomorphisms, as we see next.

Proposition 3.2.3. Let N be torsion-free nilpotent of finite rank and σ an injective

endomorphism of N . Then the following are equivalent.

1. σ is π-like.

2. For any central series of N preserved by σ with torsion-free sections, the action of

σ on each section is π-like.

3. The induced map on N/Γ2(N) is π-like.

Proof. 1 =⇒ 2: Mal’cev complete at the central series to obtain a decomposition of the

associated rational Lie algebra V as 0 = V0 6 V1 6 · · · 6 Vr = V with σ×(Vi) = Vi for

each i, where σ× is the induced automorphism. Let the characteristic polynomial of the

induced automorphism on the section Vi/Vi−1 be fi and the characteristic polynomial

of σ× be f . We obtain a factorisation f = f1 · · · fn. By hypothesis f has coefficients in

Z[1/π], and Gauss’ Lemma implies that each fi has coefficients in this ring too.

2 =⇒ 3: Trivial.

3 =⇒ 1: Select a subgroup isomorphic to a free Z[1/π]-module of maximal rank in

N/Γ2(N) preserved by σ. The image of this subgroup under the tensor power maps
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described in lemma (1.4.11) show that the action on each section of the isolated central

series is π-like. Upon Mal’cev completing, this factorises the characteristic polynomial

of the induced automorphism σ× into polynomials with coefficients in Z[1/π]. Conclude.

A trivial consequence of the above proposition is the following, which we state separately

for later clarity.

Corollary 3.2.4. Let V be a finite dimensional Q-vector space and ω a π-like automor-

phism of V . Suppose that U is a subspace of V stabilised by ω. Then ω
∣∣
U

is π-like.

We may now show the following.

Theorem 3.2.5. Let N be a π-divisible torsion-free nilpotent group of finite rank, and

let σ be a π-like endomorphism of N such that detσ
∣∣
Z(N)

is a π-unit. Then σ ∈ Aut(N).

Proof. The proof is by induction on the class c of N . If c = 1 and N has rank n, select

W ∼= Z[1/π]n preserved by σ and W 6 N . Then the hypothesis on the determinant

implies that σ(W ) = W , and we may conclude with proposition (3.1.2).

Thus suppose c > 1. By considering N/Z(N) of smaller class and centre Z2(N)/Z1(N),

it will suffice to show that the determinant of the induced map on Z2(N)/Z1(N) is also

a π-unit, noting also that N/Z(N) is still π-divisible by the results of section (1.3). In

order to proceed, we will show that the action of σ−1
× on Hom(R/R′, Z(R)) is π-like.

This will follow from the final part of proposition (3.2.1) once we know that the action

of σ−1
× on Hom(N/N ′, Z(N)) is π-like. Since Z(N) is torsion-free, it is equivalent to

show this for Hom(N/Γ2(N), Z(N)). Our hypothesis implies, by proposition (3.2.3),

that the action of σ on N/Γ2(N) is π-like. Moreover by our determinant hypothesis we

may deduce that the action of σ−1 on Z(N) is π-like. Thus there are subgroups S, T

of N/Γ2(N) and Z(N) respectively, both of maximal Hirsch length and isomorphic to

direct sums of copies of Z[1/π], with σ(S) 6 S and σ−1(T ) 6 T . Consider the subgroup

HS,T 6 Hom(N/Γ2(N), Z(N)), consisting by definition of those f for which f(S) 6 T .

One may conclude by observing that HS,T is preserved by σ−1, and that HS,T is of

maximal Hirsch length and also isomorphic to a direct sum of copies of Z[1/π].

Now let U be the Q-span of the image of Z2(N)/Z1(N) in Hom(R/R′, Z(R)) under

δ−1 ◦ γ ◦ β1, in the notation of proposition (3.2.1). Then in particular σ−1
× (U) = U and

corollary (3.2.4) applies with ω = σ−1
× : denoting the map σ× induces on U by σ̄×, we
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deduce that (det σ̄×)−1 is a π-number. Moreover det σ̄× is a π-number by proposition

(3.2.3). Thus it is a π-unit, as desired.

We now justify why we prove theorem (3.2.5) under the stated hypotheses.

Example 3.2.6. We consider the nilpotent group

N :=


1 Z Z[1/2]

1 Z[1/2]

1

 6 GL3(Q), Z(N) =


1 0 Z[1/2]

1 0

1

 ,

with endomorphisms

ϕ1


1 a c

1 b

1

 =


1 2a c

1 b/2

1

 , ϕ2


1 a c

1 b

1

 =


1 2a 2c

1 b

1

 .

Both ϕ1 and ϕ2 are injective endomorphisms of N which are not surjective, but induce

isomorphisms on the centre.

The first example demonstrates that we must assume that the induced map on the

torsion-free abelianisation is π-like. (Note that π = ∅ here.) However proposition

(3.2.3) shows that this already implies that the whole endomorphism is π-like, whence

this hypothesis. Meanwhile, the second endomorphism is π-like but the determinant on

the centre is not a π-unit, whence our second hypothesis.

It is shown independently in [13] and [32] that an endomorphism of a polycyclic-by-finite

group which restricts to an isomorphism of the Zaleskii subgroup is an automorphism.

(Recall that the Zaleskii subgroup is the centre of the Fitting subgroup of the group

modulo its largest normal periodic subgroup). We now show that this cannot hold in

the finitely generated minimax setting.

Example 3.2.7. Let N be as above and set

t :=


1/2

1

1

 , x :=


1

1

2

 .

Then G := N, x is finitely generated minimax with Fitting subgroup N . Conjugating

by t gives a proper inclusion Gt < G and moreover induces ϕ2 on N above. The Zaleskii
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subgroup here is precisely the centre of the Fitting subgroup, where our endomorphism

induces an isomorphism.





Chapter 4

Applications of the Mal’cev

correspondence

In this chapter we concern ourselves with deducing structural information about nilpo-

tent groups using the associated Mal’cev Lie algebra. The first section will deal with

gradings on Lie algebras and is a minor extension of work by de Cornulier in [7], and

the second section will extend various results due to Segal in [26].

4.1 Carnot gradings and powered nilpotent groups

In this section we concern ourselves with a strong negation of the cohopfian property,

that of being powered. Loosely speaking that there is an injective endomorphism of

the group acting as powering on the abelianisation. The notion of a Carnot grading is

discussed in some detail in the work of de Cornulier in [7] and it is from here that we

have the idea for the main result. In particular, we aim to show the following.

Proposition 4.1.1. Let Γ be a T-group. Then Γ is powered if and only if the Lie algebra

associated to the Mal’cev completion of Γ is Carnot.

We first introduce the relevant notions.

Definition 4.1.2. Let G be a radicable torsion-free nilpotent group of finite rank. Given

λ ∈ Q×, we say that an automorphism ϕ of G is a λ-powering automorphism if the

following diagram commutes, where the vertical maps are the canonical projections, and

×λ denotes the map given by multiplication by λ.

49
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G

����

ϕ
// G

����

G
/
γ2(G)

×λ
// G
/
γ2(G)

We say that G is powered if there exists a λ-powering automorphism of G for some

λ ∈ Q× \ {±1}. We say that a T-group is powered if its Mal’cev completion is powered.

One defines in an identical fashion the notion of a λ-powering automorphism of a finite

dimensional rational Lie algebra, and thus also the notion of a powered Lie algebra.

Note that this is well defined here since the abelianisation of a Mal’cev complete nilpotent

group is torsion-free. As one would hope, one has that a radicable nilpotent group is

powered if and only if its corresponding Lie algebra is:

Lemma 4.1.3. Let G be a torsion-free radicable nilpotent group of finite rank with

associated Lie algebra g. Then G is powered as a group if and only if g is powered as

a Lie algebra. More precisely, for any λ, a λ-powering automorphism ϕ of G induces a

λ-powering automorphism of g, and vice versa.

Proof. Note firstly that an automorphism ϕ of G is λ-powering if and only if for each

g ∈ G one has that ϕ(g)g−λ ∈ γ2(G). Analogously for g, an automorphism ψ is λ-

powering if and only if for each x ∈ g one has that ψ(x)− λx ∈ γ2(g).

With this in mind, suppose that ϕ is λ-powering for G, and let ϕ̂ be the induced

automorphism of g. Given x ∈ g, we then have that

ϕ̂(x)− λx = log ◦ϕ ◦ exp(x) + log(exp(x)−λ)

= log(ϕ(exp(x)) exp(x)−λw),

for some w ∈ γ2(G), by an application of the inverse Baker-Campbell-Hausdorff for-

mula (1.8.3). But now by hypothesis on ϕ, we see that this final element lies in

log(γ2(G)) = γ2(g), as desired.
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Conversely, suppose that ψ is a λ-powering automorphism for g with induced automor-

phism ψ̂ on G. Then for any g ∈ G, we have

ψ̂(g)g−λ = exp ◦ψ ◦ log(g) exp(−λ log(g))

= exp(ψ(log(g))− λ log(g) + w′),

for some w′ ∈ γ2(g), in this case by the Baker-Campbell-Hausdorff formula (1.8.1). Again

by hypothesis on ψ this yields that this last element lies in exp(γ2(g)) = γ2(G).

The following lemma is also true in the group setting, but is not required in the sequel.

Lemma 4.1.4. Let g be a powered finite dimensional nilpotent rational Lie algebra, and

let ψ be a λ-powering automorphism for g. Then for each i > 1, ψ acts as multiplication

by λi on γi(g)/γi+1(g).

Proof. The proof is by induction on i, the case i = 1 true by hypothesis. Consider

then x ∈ γi(g) for some i > 1. Since ψ is linear, we may assume that x = [y, z] for

some y ∈ g and some z ∈ γi−1(g). Since ψ is powering, we find some y′ ∈ γ2(g) such

that ψ(y)− λy = y′, and by the inductive hypothesis we find some z′ ∈ γi(g) for which

ψ(z)− λi−1z = z′. We then compute

ψ(x) = [ψ(y), ψ(z)]

= [λy + y′, λi−1z + z′]

= λi[y, z] + [λy, z′] + [y′, λi−1z] + [y′, z′]

∈ λix+ [g, γi(g)] + [γ2(g), γi−1(g)] + [γ2(g), γi(g)]

⊆ λix+ γi+1(g),

where the final inclusion holds due to the Jacobi identity. This completes the proof.

We now turn to the notion of a graded Lie algebra. The next few definitions and the

following proposition are adapted from de Cornulier in [7].

Definition 4.1.5 ( [7, p. 16]). Let g be a Lie algebra over a ring R, and let (A,+) be

a magma (that is, a set with a single associative binary operation, denoted +). We say

that g is graded in A if there exists a decomposition

g =
⊕
α∈A

gα,
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of g as an R-module, with the property that [gα, gβ] ⊆ gα+β for each α, β ∈ A.

We introduce now the notion of a Carnot graded Lie algebra.

Definition 4.1.6 ( [7, Definition 3.3]). A grading on a Lie algebra g is said to be Carnot

if the grading is in the positive integers and the Lie algebra is generated by g1. A graded

Lie algebra is Carnot-graded if the grading is Carnot. Finally we say that a Lie algebra

is Carnot if it admits a Carnot grading.

To any Lie algebra there is associated a canonical Carnot-graded Lie algebra (not nec-

essarily isomorphic):

Definition 4.1.7 ( [7, Definition 3.4]). Let g be a Lie algebra with lower central series

(γi(g))i>1. The associated Carnot-graded Lie algebra of g is defined to be

Car(g) :=
⊕
i>1

γi(g)
/
γi+1(g) ,

with Lie bracket induced from the bracket on g.

For any Lie algebra g, Car(g) is indeed Carnot graded, and up to isomorphism all Carnot

gradings look like this:

Lemma 4.1.8 ( [7, Proposition 3.5]). A Lie algebra g is Carnot if and only if it is

isomorphic to Car(g). Furthermore for any Carnot grading on g, there is an isomorphism

of graded Lie algebras g ∼= Car(g).

The key step to proving proposition (4.1.1) is now the following lemma, one direction of

which is essentially contained in [7].

Lemma 4.1.9. Let g be a finite dimensional nilpotent rational Lie algebra. Then g is

powered if and only if it is Carnot.

Proof. If we assume that g is Carnot, then we may equip g with a Carnot grading

g =
⊕

i>1 gi. Given now λ ∈ Q× \ {±1} arbitrary, we may define an automorphism ψ of

g which acts on gi as multiplication by λi. This is a Lie algebra homomorphism since

if x ∈ gi and y ∈ gj , we have that ψ[x, y] = λi+j [x, y] = [λix, λjy] = [ψ(x), ψ(y)]. To

see that it is a powering automorphism, choose an isomorphism of graded Lie algebras

g ∼= Car(g) as in lemma (4.1.8) to see that γ2(g) =
⊕

i>2 gi, which yields that mod γ2(g),

ψ acts as multiplication by λ, as desired.
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Conversely, suppose that we are given a λ-powering automorphism ψ of g for some

λ ∈ Q× \ {±1}. We claim that this map is diagonalisable. Indeed, we show that the

minimum polynomial of ψ divides the polynomial
∏c
i=1(X − λi), where c denotes the

nilpotency class of g. To see this it suffices to see that the endomorphism
∏c
i=1(ψ − λi)

of g is the zero map.

More precisely, we claim by induction on j that
∏j
i=1(ψ−λi)(g) ⊆ γj+1(g). When j = 1

this is the definition of a λ-powering automorphism. For the inductive step, we see that

lemma (4.1.4) yields an inclusion (ψ − λj+1)(γj+1(g)) ⊆ γj+2(g). Combining this with

the inductive hypothesis then gives the result.

One thus obtains an eigenspace decomposition g =
⊕

i>1Eλi(ψ). It remains to check

that this is a Carnot grading. Indeed, given x ∈ Eλi(ψ) and y ∈ Eλj (ψ), one has

ψ[x, y] = [ψ(x), ψ(y)] = [λix, λjy] = λi+j [x, y], so that [x, y] ∈ Eλi+j (ψ), as desired.

Finally since Eλ1(ψ) ∼= g/γ2(g), we see that the algebra is indeed generated by the

degree 1 component, as desired.

In the presence of lemma (4.1.3), we see that the previous lemma proves proposition

(4.1.1).

4.2 Uniformly sandwiching T-groups

The Mal’cev correspondence is a categorical equivalence for radicable nilpotent groups,

but one often works with specific T-groups. It is of interest then to see to what extent

the correspondence can be made to work in the finitely generated setting. Immediately

one can find examples of T-groups for which their logarithm is not even closed under

addition: it is well known that one only needs to pass to a finite index subgroup or

overgroup to arrange for the image under the logarithm to be a subgroup. Our aim here

will be to generalise a result in this direction due to Segal in [26]. We are interested

principally in removing the dependence of the constants on a specific representation,

and also to generalise a specific result to closure under the Lie bracket. In detail, our

aim will be to show the following.

Proposition 4.2.1. Let G be a torsion-free radicable nilpotent group of finite rank and

of class at most c. There exists a constant α, which depends on c only, such that for any

subgroup Γ 6 G, we have that the images of Γα and (Γ1/α)α are Lie subrings of logG.
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Before embarking on the proof, we require a specific result concerning log. This is an

immediate generalisation of corollaries 2 and 3 to be found in [26, pp. 102-103].

Lemma 4.2.2. Let G be a torsion-free radicable nilpotent group of finite rank and of

class at most c. Given elements x1, . . . , xs ∈ G, we have a relation of the form

[log(x1), . . . , log(xs)] = log[x1, . . . , xs] +
∑
i

si log vi, (4.2.1)

where each of the vi is an iterated commutator of length at least s+ 1 in x1, . . . , xs, and

the constants si ∈ Q depend only on c.

Proof. This follows from the cited results, with two modifications. One first notes that

the eventual vanishing of commutators is a consequence of bounded nilpotency class.

To see that the coefficients are suitably universal in this setting, one first performs the

proof in the Mal’cev completion of the free nilpotent group of class c on x1, . . . , xs, and

then specialises to G.

The following is an adapted and generalised version of [26, Lemma 1, p. 105].

Lemma 4.2.3. Suppose Γ is a T-group of class at most c, ΓQ its Mal’cev completion,

and H P Γ. Denote by γj the jth term of the lower central series of Γ. Then there

exists a constant r, depending only on c, such that for any 0 6 t 6 c− 1,

r2t−1Z log(γc−t ∩H) ⊆ log(γc−t ∩H). (4.2.2)

We have the following immediate corollary of the above lemma.

Corollary 4.2.4. Suppose Γ is a T-group of class at most c, and let ΓQ be its Mal’cev

completion. There exists a constant m, depending only on c, such that

mZ log Γ ⊆ log Γ.

Proof. It suffices to take H = Γ and t = c − 1 in lemma 4.2.3, so that m = r2c−1−1

works.

Proof (of lemma 4.2.3). Let Fc = Fc(x, y) denote the free nilpotent group of class c on

x, y. Now choose r ∈ N so that for each vector e of positive integers corresponding to a
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commutator [x, y]e of total length at most c, we have that

ae[log(x), log(y)]e ∈
1

r

∑
f

Z log[x, y]f. (4.2.3)

That this constant exists depends on lemma 4.2.2, and that it depends only on c is a

consequence of the universality of the ae and the freeness of Fc.

Now let j > 1. Then for any g1, . . . , gs ∈ γj ∩H, we have

log(g1) + · · ·+ log(gs)− log(g1 · · · gs) ∈
1

r

∑
f

Z log(γj+1 ∩H) (4.2.4)

This follows by induction on s from the following more general observation to be used

later: given also i > 1 and any pair x ∈ γi ∩H, y ∈ γj ∩H, we have that

log(x) + log(y)− log(xy) = −
∑
e

ae[log(x), log(y)]e

∈ 1

r

∑
f

Z log[x, y]f

⊆ 1

r

∑
f

Z log(γi+j ∩H), (4.2.5)

where the final line follows since for any vector e of positive integers we have the inclusion

[γi ∩H, γj ∩H]e ⊆ γi+j ∩H.

We now show that 4.2.2 holds when t = 0. Since γc ∩H is central, we see immediately

that

r20−1Z log(γc−0 ∩H) = Z log(γc ∩H) = log(γc ∩H).

Thus suppose t > 0 and that (4.2.2) holds for all 0 6 q < t. Take λ ∈ Z log(γc−t ∩H),

so that we have

λ = log(g1) + · · ·+ log(gs),

with each gi ∈ γc−t ∩H. Our observation in line (4.2.4) yields that

r2t−1
λ− log(w) ∈ r2t−1−1Z log(γc−(t−1) ∩H),
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where w = (g1 · · · gs)r
2t−1

. By induction we have some ht−1 ∈ γc−(t−1) ∩ H such that

r2t−1
λ = log(w) + log(ht−1), and applying our observation in line (4.2.5) we see that

r2t−1+1λ = log(w′) + µ,

for w′ = (wht−1)r and µ ∈ Z log(γc−(t−2)∩H) at least (in fact µ ∈ Z log(γ2(c−t)+1)∩H)).

Now by induction again we have that r2t−2−1µ ∈ log γc−(t−2) ∩H, so that there is some

ht−2 ∈ γc−(t−2) ∩H with r2t−2−1µ = log(ht−2), yielding

r2t−1+2t−2
λ = log(w′′) + log(ht−2).

Continue this process to find z ∈ γc−t ∩H and h0 ∈ γc ∩H.

r2t−1+2t−2+···+20λ = log(z) + log(h0)

= log(zh0),

the last line following by the centrality of h0. Since 2t−1 + 2t−2 + · · ·+ 20 = 2t− 1, we’ve

shown

r2t−1λ ∈ log(γc−t ∩H),

as desired.

We next have the following key lemma. This is a generalised and adapted version

of [26, Lemma 3, p. 112].

Lemma 4.2.5. Suppose Γ is a T-group of class at most c, let ΓQ be its Mal’cev com-

pletion, and suppose that K P G 6 ΓQ. There exists a constant l ∈ N, depending on c

only, such that for all g ∈ G and k ∈ K we have

log(g) + l log(k) ∈ logK g (4.2.6)

l log(g) + log(k) ∈ logK gl (4.2.7)

[l log(g), log(k)] ∈ logK gl (4.2.8)

Proof. We first of all refine the definition of r in lemma (4.2.3) as follows. Let again

Fc = Fc(x, y) denote the free nilpotent group of class c on x, y. For each vector e of

positive integers corresponding to a commutator [x, y]e of total length at most c, ensure
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that

ae[log(x), log(y)]e ∈
1

r

∑
f

Z log[x, y]f,

as before, and that furthermore

be[log(x), log(y)]e ∈
1

r

∑
f

Z log[x, y]f.

We note that the proof of lemma 4.2.3 still goes through with this r.

The strategy of the proof is now as follows. We will show by induction on i that if

K 6 γc−i, then equations (4.2.6), (4.2.7) and (4.2.8) hold with l = r2i . Then since

K 6 γc−(c−1) = G, we take l = r2c−1
to complete the proof.

If i = 0 then K is central, and we immediately see

log(g) + r log(k) = log(gkr) ∈ logK g ,

r log(g) + log(k) = log(grk) ∈ logK gr ,

[r log(g), log(k)] = 0 ∈ logK gr ,

as desired.

Now we suppose that i > 1 and that equations (4.2.6), (4.2.7) and (4.2.8) hold with

l = r2i−1
for any K 6 γc−(i−1). Furthermore suppose that K 6 γc−i, and set H = [K,G].

Then H 6 [γc−i, G] = γc−(i−1), and moreover H P G.

Now let g ∈ G and k ∈ K, and note that for any l ∈ N,

log(g) + l log(k)− log(gkl) = −
∑

ae[log(g), l log(k)]e

= −l
∑

ael
ne [log(g), log(k)]e

∈ l

r

∑
f

Z log[g, k]f,

where ne + 1 is the number of occurrences of Y in [X,Y ]e. Taking now l = r2i and

noting that [g, k]f ∈ H for all f, we have that

log(g) + l log(k)− log(gkl) ∈ r2i−1Z logH.



58 Chapter 4 Applications of the Mal’cev correspondence

But now applying lemma (4.2.3) with t = i− 1 and Γ = K, we see that

r2i−1−1Z logH ⊆ logH.

Combining now the previous two lines and noting that 2i − 1 = 2i−1 − 1 + 2i−1 we find

some h ∈ H for which

log(g) + l log(k) = log(gkl) + r2i−1
log(h).

Applying now by induction line (4.2.6) for K = H and g = gkl yields

log(gkl) + r2i−1
log(h) ∈ logH gkl

⊆ logK g ,

as desired. To verify line (4.2.7), we interchange the roles of g and k in the above to

deduce that for some h ∈ H,

l log(g) + log(k) = log(glk) + r2i−1
log(h).

Applying again by induction line (4.2.6) yields

log(glk) + r2i−1
log(h) ∈ logH glk

⊆ logK gl ,

as desired.

To verify line (4.2.8), we begin by noting from (1.8.2) that for any l ∈ N,

[l log(g), log(k)]− log[gl, k] = −
∑
e6=(1)

be[l log(g), log(k)]e

= −l
∑
e6=(1)

bel
ne [log(g), log(k)]e

∈ l

r

∑
f

Z log[g, k]f,

where here ne denotes the number of occurrences of X in [X,Y ]e. Now proceeding

exactly as above we find some h ∈ H for which

[l log(g), log(k)] = log[gl, k] + r2i−1
log(h).
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A final inductive application of line (4.2.6) yields

log[gl, k] + r2i−1
log(h) ∈ logH [gl, k]

⊆ logK gl ,

as desired.

The main application of this lemma is as follows, a generalisation of [26, Theorem 4, p.

113].

Theorem 4.2.6. Suppose Γ is a T-group of class at most c, let ΓQ be its Mal’cev

completion, and let l = l(c) be as in lemma (4.2.5). If Γ P Γ1/l = 〈g1/l : g ∈ Γ〉, then

log Γ is a Lie subring of log ΓQ.

Proof. Let x, y ∈ Γ. Then x = gl for some g ∈ Γ1/l. By lemma (4.2.5) with K = Γ and

G = Γ1/l we have

log(x) + log(y) = l log(g) + log(y) ∈ log Γ gl = log Γ,

so that log Γ is a Z-submodule, and furthermore by lemma (4.2.5) again

[log(x), log(y)] = [l log(g), log(y)] ∈ log Γ gl = log Γ,

So that log Γ is closed under the bracket, as desired.

We now have the following corollary of this theorem, the deduction of which is identical

to the deduction of [26, Theorem 5, p. 114]. This corollary is itself a generalisation of

this theorem.

Corollary 4.2.7. Let G be a Mal’cev complete nilpotent torsion-free group of finite rank

and of class at most c. There exists a constant α, which depends on c only, such that

for any subgroup Γ 6 G, the images of Γα and (Γ1/α)α are Lie subrings of logG.





Chapter 5

Free constructions in algebra

Let k be a commutative ring with unity. In this section we will discuss the left adjoint

to the forgetful functor

U : k-Mod −→ k-Lie,

where by k-Mod we mean the category of k-modules and by k-Lie we mean the category

of Lie algebras over k. We will begin by outlining a very general and useful theory which

shows why this adjunction (and many others) exist, before proceeding to give an explicit

construction of this object in case k is a Dedekind domain.

5.1 Categorical universal algebra

Here we outline a particular perspective which allows us to immediately deduce the

existence of various adjoint functors. Our main reference throughout is Borceux [4,

Chapter 3]. Nothing in this section is new, but we feel that this perspective is under-

represented in the group theoretic literature, and so we give a brief exposition here.

We begin by rethinking the notion of group. We claim in particular that the axioms of

a group may be interpreted solely in terms of morphisms and commutative diagrams in

the category of sets. In particular, if G is a group there is inherent the following data:

• a binary operation m : G2 → G,

• an inverse function ι : G→ G and
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• an identity, which may be thought of as a function G0 → G.

Now we claim that each axiom which specifies how these functions interact may be

expressed as the commutativity of a certain diagram. For example, one sees immediately

that the commutativity of the following diagram expresses exactly the associative axiom

in G.

G3

id×m

��

m×id
// G2

m

��

G2 m // G

(5.1.1)

It is an instructive exercise to write the correct diagrams encoding the other axioms.

Generalising, one says that the theory of groups consists in three operations, of arity

varying from 0 to 2, obeying certain commutative diagrams. One immediate issue is

that the above describes only the fact that this G is a group: a set-theoretical remedy

to this problem is contained in [4, p. 123]. We will omit the potentially delicate issues

here and outline the categorical framework only. Thus we now define what we mean by

an algebraic theory in full generality.

Definition 5.1.1 ( [4, 3.3.1]). An algebraic theory is a category T with

obT = {xi : 0 6 i < ω}

consisting of distinct objects, where xi is the categorical product of i copies of x1.

A model of T is a functor T −→ Set which preserves products, and a homomorphism

between two models is a natural transformation of functors. The category of all models

of T is denoted by ModT .

Since this section is for the most part expository, we illustrate these ideas through several

examples.

Example 5.1.2. We consider the following examples.

1. Let us examine exactly how groups form an algebraic theory in this precise sense.

The theory T of groups will have at the very least objects {xi : 0 6 i < ω}, with xi

the i-fold product of x1. Note that as part of this definition there is an abundance

of morphisms enforced by the fact that the category has products.
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To this set of morphisms we add the following, as per our discussion above: a

morphism m : x2 → x1, a morphism ι : x1 → x1 and finally a morphism e : x0 → x1:

x2

m
��

x1 ι
ff

x0

e

OO

Finally we insist that these morphisms obey various relations, those which encode

the axioms as commutative diagrams.

For example, we insist that m ◦ (id ×m) = m ◦ (m × id) as per diagram (5.1.1)

above. This clearly satisfies the requirements of a category.

We claim that the models of this theory may be thought of as groups in an obvious

way. Indeed a model is precisely a functor F : T → Set which preserves products.

Thus the image of xi is Gi for one particular set G := F (x1). But now the

functorality of F and our construction of T means exactly that G is a group as

per our discussion above. (Note that G must be nonempty by the presence of the

0-ary axiom.) Furthermore we clearly see that any particular group fits into this

framework.

Finally, it is an easy check to see that the notion of homomorphism and natural

transformation of functor coincide under this correspondence. Thus we see that

the category of models over this theory is equivalent to the category of groups.

2. The category of modules over a ring k is also an algebraic category. There is a

subtlety in encoding the notion of a k-module as we did for groups above: a priori,

a k-module M is equipped with a map

k ×M −→M

encoding the scalar multiplication. The way to remedy this, as per [4, 3.3.5.g] is to

add, for each r ∈ k, a unary operation M →M representing scalar multiplication

by this particular r. Now the module axioms are easily expressed as commutative

diagrams.

3. It is now easy to deduce that both the category of k-Lie algebras and associative

k-algebras are algebraic in this sense.
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4. The theory of sets is trivially algebraic - we add no extra morphisms other than

those required by the definition.

5. For a nonexample, we may take the category of fields. Intuitively it seems reason-

able that this cannot be algebraic: we need to insist that 0 6= 1, and furthermore

that the inverse map is partially defined. This seems difficult to prescribe in terms

of a commutative diagram, and indeed we will prove in example (5.1.6) that this

category cannot be algebraic.

We now introduce the relevant notion of morphism of theories.

Definition 5.1.3 ( [4, 3.7.1]). Let T1 and T2 denote algebraic theories, with

obTj = {xij : 0 6 i < ω}.

A morphism of theories T1 −→ T2 is a functor which preserves finite products and sends

x1
1 to x1

2. Such a morphism of theories induces a functor

ModT2 −→ ModT1 .

The induced functor is by definition an algebraic functor.

The main theorem we wish to state is the following.

Theorem 5.1.4 ( [4, 3.7.7]). Algebraic functors have left adjoints.

Example 5.1.5. The most elementary example of an algebraic functor is one induced by

an inclusion of algebraic theories. For example, the algebraic theory of monoids includes

into the algebraic theory of groups, and the induced algebraic functor, up to equivalence,

is the forgetful functor from the category of groups to the category of monoids. The left

adjoint of this functor is the Grothendieck completion functor.

The theory of sets includes into any algebraic theory, and one obtains an algebraic

functor sending any model of a theory to its underlying set: this is the traditional

‘forgetful functor’. That this functor will always have a left adjoint is the existence of

free objects on sets: for example, free groups, free monoids, free semigroups and free

commutative rings (=polynomial rings) all arise in this context.

We can now also show the following.
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Example 5.1.6. The category of fields is not algebraic. To see this suppose it is

algebraic, so that there exists the notion of a free field on a set. Denote this functor by

F , and let the characteristic of F (∅) be p. Select a field Fq of characteristic q 6= p and

note that

∅ = HomField(F (∅), Fq) = HomSet(∅, Fq) = {∅},

for a contradiction.

Of particular use in the next section is the following corollary.

Corollary 5.1.7. The forgetful functor

k-Lie −→ k-Mod

admits a left adjoint.

Proof. The categories k-Mod and k-Lie are both model categories of the corresponding

algebraic theories of k-modules and k-Lie algebras, respectively. We deduce that the

forgetful functor is algebraic, since it is induced by an inclusion of theories. Thus it has

a left adjoint by theorem (5.1.4).

5.2 The free Lie algebra on a module

The aim of this section will be to establish a concrete realisation of the free lie algebra on

a module - that is, the adjoint whose existence is guaranteed by corollary (5.1.7). This

construction is mentioned in the literature for k = Z [22, p.3] but not proven. Before we

state the result, we introduce several other related functors which will play a role. Note

that in the sequel when we refer to a commutative diagram of functors we only insist

that it is commutative up to a natural isomorphism.

Proposition 5.2.1. Let k be a commutative ring with unity and consider the following

commutative diagram of functors, where k-Assoc denotes the category of unital asso-

ciative k-algebras, and the functor ( )L sends an algebra A to the Lie algebra with the

same underlying module structure and equipped with the commutator bracket defined for
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a, b ∈ A by [a, b] := ab− ba.

k-Assoc

( )L

{{

forget

$$

k-Lie
forget

// k-Mod

Each of these functors has a left adjoint, and we obtain a commutative diagram of left

adjoint functors:

k-Assoc

k-Lie

U

;;

k-Mod
L

oo

T

dd

Here, T denotes the tensor algebra functor, and U denotes the universal enveloping

algebra functor. Given a k-Lie algebra L with Lie bracket [−,−], we may take U(L) to

be the quotient of T(L) by the ideal x⊗ y − y ⊗ x− [x, y] : x, y ∈ L .

Proof. That L exists is corollary (5.1.7). The remaining details here are standard, see

for example [8].

Our construction of L will depend on the following result concerning the universal en-

veloping algebra due to Higgins [16], a corollary of the Poincaré-Birkhoff-Witt Theorem.

Theorem 5.2.2. [16] Let k be a Dedekind domain, and let M be a k-Lie algebra. Then

the canonical map M −→ U(M) is injective.

We now state our construction of L. We thank Peter Kropholler here for the diagram-

matic representation of this proof.

Theorem 5.2.3. Suppose that k is a Dedekind domain and M a k-module. We may

then take L(M) to be the Lie subalgebra of (T(M))L generated by (the canonical image

of) M .

Proof. We will show in particular that M , together with the natural map M → L(M),

satisfies the required universal property. Precisely, we will show that given any k-Lie

algebra L and k-module homomorphism f : M → L, there is a unique k-Lie algebra
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homomorphism f̄ : L(M)→ L such that the following diagram commutes.

M

��

f

!!

L(M)
∃!f̄

// L

(5.2.1)

Since by definition the image of M in L(M) generates the Lie algebra, the uniqueness

of any extension is clear. Thus is suffices to show existence.

The first step is to consider the composition π ◦T (f) : T (M)→ U (L), where π denotes

the canonical projection, recalling our definition of the universal enveloping algebra as

in proposition (5.2.1). Applying the functor ( )L we obtain a commutative square, where

the vertical maps are canonical.

M
f

//

��

%%

L

ι

��

L(M)

zz $$

f̄

::

(T (M))L
(π◦T (f))L

// (U (L))L

The left hand map certainly factorises through L(M), and now the composition

L(M)→ (T (M))L → (π ◦T (f))L

has image contained in ιL, since L is a Lie algebra. But the injectivity of ι as per theorem

(5.2.2) yields the desired factorisation of this latter map into f̄ . That this choice of f̄

makes diagram (5.2.1) commute requires a final application of the injectivity of ι.

This categorical perspective allows us to obtain easily the following. Note that we do

not require k to be a Dedekind domain here.

Proposition 5.2.4. Let ( )ab denote the abelianisation functor k-Lie −→ k-Mod defined

by quotienting out by the commutator ideal. Then ( )ab ◦ L is naturally isomorphic to

the identity functor. That is, the abelianisation of the free Lie algebra on a k-module M

is isomorphic to M .
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Proof. Define a functor F : k-Mod −→ k-Lie defined by turning a module into a Lie

algebra with the same underlying module and trivial bracket. One checks immediately

that this is right adjoint to our abelianisation functor. There is a commutative diagram

of functors

k-Mod

F

zz

id

��

k-Lie

forget
$$

k-Mod

and hence a commutative diagram of left adjoints

k-Mod

k-Lie

( )ab

::

k-Mod

id

OO

L

dd

whence our result.



Chapter 6

Semisimple modules over Von

Neumann regular rings

In this chapter, we establish a direct link between the derived sets of a certain topological

space and the socle series of a semisimple module over a Von Neumann regular ring. In

particular, the work fits nicely with earlier work of Tiwary [28] and Usher [29].

6.1 Internal and external derived sets

In this section, we introduce the necessary topological lemmas for the following sections.

We begin with the following fundamental definition, where we recall that for a subset Y

of a topological space X, the set Y ′ is by definition the set of limit points of Y in X.

Definition 6.1.1. Let X be a topological space and Y ⊆ X. The internal derived sets

of Y , denoted Y (α), are defined for any ordinal α as follows:

Y (α) :=


Y if α = 0(
Y (α−1)

)′ ∩ Y (α−1) if α is a successor ordinal⋂
β<α Y

(β) if α a limit ordinal
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Similarly the external, or relative derived sets of Y , denoted Y α, are defined for any

ordinal α > 1 as follows:

Y α :=


Y ′ if α = 1(
Y α−1

)′
if α is a successor ordinal > 1⋂

β<α Y
β if α a limit ordinal

We remark briefly that the reason we define the relative version only for non-zero ordinals

is that we do not wish to insist that Y α ⊆ Y for limit ordinals α.

These notions of derived set are certainly different. For example, consider the set

X := {1/n : n > 1} ⊂ R. Then ∅ = X(1) ( X1 = {0}. For closed sets, however, it

is easy to see that these notions coincide, and more generally it is not difficult to relate

these two notions of derived set, as follows.

Lemma 6.1.2. Let X be a topological space and Y ⊆ X. Then for any ordinal α > 1,

Y α = Y (α).

Proof. We first note that the result is certainly true if Y is closed in X, since closed sets

contain their limit points. Therefore to show the result for a general Y , it suffices to

show for all ordinals α > 1 that Y α = Y α. For α = 1 this is the elementary fact that

Y ′ = Y ′, and an induction completes the result.

We now introduce the following property of a topological space.

Definition 6.1.3. A topological space X is said to be scattered if every nonempty subset

has an isolated point.

We may immediately characterise this property in terms of the interior derivatives of a

set, as follows. Note that we could also use the relative derived sets in the next result

since there is no subspace involved. Nevertheless we state it in this way for clarity in

the sequel.

Lemma 6.1.4. A space X is scattered if and only if there exists an ordinal α for which

X(α) is empty.

Proof. Suppose firstly that X is not scattered, so that there exists some nonempty subset

Y of X which has no isolated point. It follows that Y ′ = Y . Taking limit points again
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yields that Y ′′ = Y ′. In particular we have that Y ⊆
⋂
αX

(α), so that no derivative of

X can ever be empty.

If conversely we have that X(α) is nonempty for each α, it follows that their intersection

Y :=
⋂
αX

(α) satisfies Y ′ = Y and is nonempty: in particular it has no isolated points.

For the remainder of this section we concern ourselves with the relative derivatives of

a set, discussing various results needed in the sequel. As we progress, we will require

further separation properties of the ambient space. It will become clear later why we

consider the internal derived sets: these arise naturally in the work of Tiwary. We begin

with the following pair of elementary observations.

Lemma 6.1.5. Let X be a topological space and Y ⊆ X. Let x ∈ X and suppose that for

some ordinal α we have x ∈ Y α, and suppose that U is an open set containing x. Then

firstly U ∩
(
Y \U

)α
= ∅, so that in particular x 6∈

(
Y \U

)α
, and secondly x ∈ (U ∩Y )α.

Proof. We prove these each by induction. The first statement is clear when α = 1. Thus

suppose that U ∩
(
Y \ U

)α
= ∅ for some ordinal α, and suppose that

y ∈ U ∩
(
Y \ U

)α+1
= U ∩

((
Y \ U

)α)′.
But then U is an open set containing y, and y is a limit point of

(
Y \ U

)α
, so that

U ∩
(
Y \ U

)α
cannot be nonempty, a contradiction.

Assume now that α is a limit ordinal and that the result is true for all smaller ordinals.

Then

U ∩
(
Y \ U

)α
= U ∩

⋂
β<α

(
Y \ U

)β
=
⋂
β<α

U ∩
(
Y \ U

)β
= ∅,

as desired.

We move to the second claim. This is also clear when α = 1, so assume the result for an

ordinal α and suppose that x ∈ Y α+1. Then there is some y ∈ Y α∩
(
U \{x}

)
, so that by

induction y ∈ (U ∩Y )α. In particular y ∈ (U ∩Y )α∩
(
U \ {x}

)
, so that x ∈ (U ∩Y )α+1,

as desired.

Thus assume that α is a limit ordinal and that the result is true for all smaller ordinals.

Then if we suppose that x ∈ Y α, we have that x ∈ (U ∩Y )β for any β < α by induction.

In particular x ∈
⋂
β<α(U ∩ Y )β = (U ∩ Y )α, as desired.
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It is clear that the internal derived sets of a subset always form a descending sequence

of sets. If we impose a mild separation axiom on our space we may also deduce this for

the relative derived sets.

Lemma 6.1.6. Let X be a T1 space, or equivalently a space with closed singletons [12,

p.37], and suppose that Y ⊆ X. Then the relative derived sets of Y in X form a

descending series, so that if 1 6 β 6 α are ordinals, there is an inclusion Y β ⊇ Y α.

Proof. The key point is that in a space with closed singletons, the set Y ′ is closed in X,

and hence contains its limit points. Thus an easy induction gives the result.

In particular we have the following useful corollary of the above.

Corollary 6.1.7. Let X be a T1 space, and A1, . . . , An a finite collection of subsets of

X. Then for all ordinals α > 1, we have that Aα1 ∪ · · · ∪Aαn =
(
A1 ∪ · · · ∪An

)α
.

Proof. By induction on the number of sets it suffices to consider the case n = 2. The

case α = 1 is the elementary fact that A′1 ∪A′2 =
(
A1 ∪A2

)′
and indeed this settles the

case of a successor ordinal. Thus assume that α is a limit ordinal and that the result is

true for all ordinals β < α. We need to show that

⋂
β<α

Aβ1 ∪A
β
2 =

( ⋂
β<α

Aβ1
)
∪
( ⋂
β<α

Aβ2
)
.

The inclusion of the right hand side into the left is trivial, so pick an element x in the

left hand side and suppose it does not belong to
⋂
β<αA

β
2 , so that there is some ordinal

β0 for which x 6∈ Aβ02 By lemma (6.1.6) we see that there is some ordinal β0 such that

for all ordinals β0 6 β < α, we have that x 6∈ Aβ2 . We deduce by our hypothesis that

for each of these ordinals x ∈ Aβ1 . A further application of lemma (6.1.6) yields that

x ∈
⋂
β<αA

β
1 , as desired.

We will also require the following separation lemma, where we require that the space is

Hausdorff.

Lemma 6.1.8. Let X be a Hausdorff space, and Y ⊆ X. Suppose that α is an ordinal

and Y α = {x1, . . . , xn} for some finite n. Then there exists a partition of Y into subsets

Yi such that Y α
i = {xi} for each 1 6 i 6 n.
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Proof. Since X is Hausdorff we may find pairwise disjoint open sets Ui 3 xi for each

1 6 i 6 n. Now set

Yi :=

Y ∩ U
c
2 ∩ · · · ∩ U cn i = 1;

Y ∩ Ui otherwise.

These sets clearly form a partition of Y , and we immediately deduce that Y α
i ⊆ {x1, . . . , xn}

for each i. We show firstly that xj 6∈ Y α
i for j 6= i. An application of lemma (6.1.5)

gives that Uj ∩
(
Y \ Uj

)α
= ∅, but by construction we have that Yi ⊆ Y \ Uj . Thus

Uj ∩ Y α
i = ∅, so that xj 6∈ Y α

i . It thus suffices to show that xi ∈ Y α
i , but another

application of lemma (6.1.5) gives xi ∈ (Ui ∩ Y )α ⊆ Y α
i , as desired.

We conclude this section with an elementary fact concerning compact T1 spaces.

Lemma 6.1.9. Let X be a compact T1 space and Y ⊆ X. Then Y ′ is empty if and only

if Y is finite.

Proof. Suppose firstly that Y is finite and let x ∈ X. Then x cannot be a limit point

of Y . Indeed, let y1, . . . , yn be the elements of Y which are distinct to x. Then

U := {y1}c ∩ · · · ∩ {yn}c is an open neighbourhood of x since X is T1, and for this

set
(
U \ {x}

)
∩ Y = ∅, as desired.

Conversely suppose that Y is infinite and that Y has no limit points in X. Then for

each x ∈ X there is an open Ux 3 x for which Ux ∩ Y ⊆ {x}. But then the open cover(
Ux : x ∈ X

)
of X cannot have any finite subcover, since we would need infinitely many

to even cover Y .

6.2 Von Neumann regular rings

In this section we briefly introduce the class of rings under consideration. There are of

course other notions of regularity for rings, which we do not concern ourselves with here.

Definition 6.2.1. A ring R is said to be (Von Neumann) regular if for all a ∈ R there

exists x ∈ R for which a = axa.

As a first example, recall that a ring R is boolean if for all x ∈ R, x2 = x. Thus certainly

a boolean ring is regular. Rather more nontrivially, we have the following motivating

example:
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Proposition 6.2.2 ( [6], [30]). Let k be a field and G a group. Then kG is regular if

and only if G is locally finite and the characteristic of k does not divide the order of any

finite subgroup of G.

Interestingly enough, the condition of a ring being regular is seen rather cleanly by the

module category:

Proposition 6.2.3 ( [20, 4.21]). Let R be a ring. Then the following are equivalent:

1. R is regular;

2. every right R-module is flat;

3. every cyclic right R-module is flat.

Furthermore in the commutative setting we have the following:

Proposition 6.2.4 ( [20, 3.73]). A commutative ring R is regular if and only if every

simple R-module is injective.

A well-known property of regular rings is that their spectrum is Hausdorff and totally

disconnected. This we show now.

Lemma 6.2.5. Let R be a commutative regular ring. Then

Spec(R) := {P 6 R : P a prime ideal of R}

is Hausdorff and totally disconnected.

Proof. Recall that a basis for the Zariski topology on Spec(R) consists of the sets

Df := {P : f 6∈ P},

where f ranges over elements of R. Thus suppose now that P and Q are distinct prime

ideals of R. Select a ∈ P \Q, and choose x for which a = axa. This gives an equality of

principal ideals (a) = (ax), so that these elements are associate and hence we also have

that ax ∈ P \ Q. Consider now the open sets Dax and D1−ax of Spec(R). Certainly

P ∈ D1−ax and Q ∈ Dax, and we claim moreover that there is a partition

Spec(R) = Dax tD1−ax,
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from which the result will follow. That the union is the whole space is clear: no proper

ideal can contain both ax and 1−ax. Finally noting that ax(1−ax) = 0, we see that any

prime ideal must contain one of these elements, so that the intersection is empty.

Remark 6.2.6. If R is commutative regular, then every prime ideal is maximal. To see

this, select a prime ideal P . Then the quotient ring is a regular domain, which is clearly

a field. Thus P is maximal as desired.

In particular Spec(R) is precisely the space of maximal ideals in R.

We proceed to specialise to our setting, beginning with a definition. The terminology

here is due to Tiwary [28].

Definition 6.2.7. Let R be a commutative regular ring, P a maximal ideal of R, and

M a semisimple R-module. Then the R/P -monotypic component of M , denoted MP ,

is by definition the direct sum of all submodules of M isomorphic to R/P . If m ∈ M ,

write mP for the component of m in MP .

Furthermore we define the following subsets of the (maximal) spectrum of R:

Supp(M) := {P ∈ Spec(R) : MP 6= 0},

supp(m) := {P ∈ Spec(R) : mP 6= 0}.

The monotypic components of a semisimple module are injective, as we see next. Tiwary

does prove this, but our proof is different.

Lemma 6.2.8. Let R be commutative regular. Then for any maximal ideal P , any

direct sum of copies of R/P is injective over R.

Proof. Let M =
⊕

i∈I R/P be any such direct sum. Since R is regular, each R/P

is injective by proposition (6.2.4), and as such the module
∏
i∈I R/P is injective over

R. But M is an R/P -module summand of this larger module, and in particular an

R-summand, so that it is injective over R as desired.

Now let M be semisimple over R, commutative and regular. Set X := Supp(M). Then

there is a canonical decomposition and inclusion

M =
⊕
P∈X

MP ↪−→
∏
P∈X

MP , (6.2.1)
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the right hand side of which is injective over R by the previous lemma. Thus in particular

the injective hull of M lies in between these two modules. This was identified explicitly

by Tiwary, whose work we will describe in section (6.4).

6.3 Limit points and the socle series

In this section we establish a precise link between the external derived sets and the socle

series of a particular module, combining the results of the previous two sections.

We recall firstly the following.

Definition 6.3.1. Let M be a module over a ring. Then the socle of M , denoted

soc(M), is defined to be the join of the simple submodules of M . More generally the

socle series
(
Sα(M)

)
α>0

of M (with each term denoted Sα if the context is clear), is an

increasing sequence of submodules indexed by ordinals, where S0(M) = 0 and we define

Sα+1(M)/Sα(M) := soc(M/Sα(M)), and for a limit ordinal α we define

Sα(M) :=
⋃
β<α

Sβ(M).

We may now state

Theorem 6.3.2. Let R be a commutative Von Neumann regular ring and M a semisim-

ple R-module. Set X := Supp(M). Then for any ordinal α > 1 we have an equality

Sα

( ∏
P∈X

MP

)
=

{
m ∈

∏
P∈X

MP :
(
supp m

)α
= ∅
}
. (6.3.1)

Proof. The proof will be by transfinite induction on α.

Consider first the case α = 1. In view of lemma (6.1.9), we see that equation (6.3.1)

holds for α = 1 precisely when

soc

( ∏
P∈X

MP

)
=
⊕
P∈X

MP .

The sum is semisimple and hence certainly contained in the socle. Thus it will suffice

to show that if m is a simple submodule of
∏
P MP , then supp(m) is a singleton.

Suppose not, so that there are distinct maximal ideals P,Q ∈ supp(m). Choose r ∈ P \Q

and consider the element n := rm. It follows that nP = rmP = 0 and nQ = rmQ 6= 0,
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since for a maximal ideal I the annihilator of any nonzero element of MI is pre-

cisely I. But then n is a nonzero element of the simple module m , so that in fact

m = n . We deduce that there is some s ∈ R for which m = sn, and in particular

supp(m) = supp(sn) 63 P , a contradiction.

Now suppose that we know the result for some ordinal α, and let m ∈
∏
P∈XMP . We

claim that in order to show the result for α+ 1, it suffices to show the following:

m + Sα
Sα

is simple ⇐⇒
(
supp m

)α
a singleton.

We show first that this does indeed suffice. Thus let m ∈ Sα+1. Then m = m1 + · · ·+mn

for some mi, each generating a simple module modulo Sα. Then by hypothesis this gives

that each (supp mi)
α is a singleton. Furthermore one has an inclusion

supp m ⊆
n⋃
i=1

supp mi,

whence corollary (6.1.7) yields that

(
supp m

)α ⊆ n⋃
i=1

(
supp mi

)α
is finite. In particular by lemma (6.1.9) we see that (supp m)α+1 is empty as required.

Conversely, suppose that (supp m)α+1 is empty, so that (supp m)α is finite, again by

lemma (6.1.9). Now by an application of lemma (6.1.8) we may find finitely many

elements m1, . . . ,mn such that m = m1 + · · ·+mn and each (supp mi)
α is a singleton.

Our hypothesis implies that each mi generates a simple module modulo Sα, so that m

lies in the socle of this quotient, as desired.

We now prove that the claim does indeed hold. Recall that we assume that equation

(6.3.1) holds at α. Firstly then, suppose that m generates a simple module in the

quotient by Sα. We want to show that (supp m)α is a singleton. Certainly it is not

empty: m is not an element of Sα and we may apply our induction hypothesis. Thus

we assume for a contradiction that it contains two distinct elements P,Q. Recalling the

basic open sets Df = {I : f 6∈ I} of the spectrum, select disjoint open neighbourhoods

Dr 3 Q and Ds 3 P , so that in particular r ∈ P \ Q. As above, consider the element

n := rm. There are now two cases to consider: either n ∈ Sα or not.
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Suppose firstly that n ∈ Sα, so that (supp n)α is empty by induction. We claim that

there is an inclusion

Dr ∩ supp m ⊆ supp n.

Indeed if I is in the left hand side then r 6∈ I and mI 6= 0, so that nI = rmI 6= 0, again

using the elementary remark concerning annihilators. This yields the contradictory

Q ∈
(
Dr ∩ supp m

)α ⊆ (supp n
)α

= ∅,

where the first containment is by lemma (6.1.5).

Thus now suppose that n 6∈ Sα. Then by our simplicity assumption, there exists some

t ∈ R for which m − tn ∈ Sα. Applying now the induction hypothesis to this element

we deduce that
(
supp(m− tn)

)α
is empty. We now claim that there is an inclusion

Ds ∩ supp m ⊆ supp(m− tn).

Again let I be in the left hand side. Then since Dr and Ds are disjoint, it follows that

I 6∈ Dr, so that r ∈ I. In particular 1− tr cannot be in I since it is a proper ideal. Thus

mI 6= 0 gives (m− tn)I = (1− tr)mI 6= 0, as needed. Applying now again lemma (6.1.5)

we obtain the contradictory

P ∈
(
Ds ∩ supp m

)α ⊆ (supp(m− tn)
)α

= ∅,

as desired.

Conversely, we need to show that if
(
supp m

)α
= {P}, then the module it generates

modulo Sα is simple. It suffices to show that it is annihilated by P , so suppose that for

some a ∈ P we have that am 6∈ Sα. Select some x for which a = axa. We claim that

there is an inclusion

supp(am) ⊆ supp(m) \D1−ax.

Indeed suppose that I is in the left hand side, so that in particular a 6∈ I. Then I 6∈ D1−ax

if 1 − ax ∈ I. But 0 = a − axa = a(1 − ax) ∈ I and I prime imply that 1 − ax ∈ I

as desired. Now taking derived sets and applying again lemma (6.1.5) we deduce that(
supp am

)α
is empty, which by induction gives that am ∈ Sα, a final contradiction.
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It remains to show the case of a limit ordinal α. Thus suppose the result for all smaller

nonzero ordinals. Recall that by definition

Sα =
⋃
β<α

Sβ.

Thus if m ∈ Sα then m ∈ Sβ for some β < α. By induction we have that (supp m)β is

empty, so that

(supp m)α =
⋂
β<α

(supp m)β (6.3.2)

is also empty.

Conversely suppose that (supp m)α is empty. By line (6.3.2) we see that (supp m)α is

an intersection of closed (and hence compact) sets, so that they cannot all be nonempty

by Cantor’s intersection theorem. Thus there is some β < α with (supp m)β empty, so

that by induction m ∈ Sβ ⊆ Sα. The proof is now complete.

6.4 Injective hulls and the work of Tiwary

The following result identifies the injective hull of a semisimple module over a regular

ring as a submodule of the product of monotypic components, as in equation (6.2.1).

Theorem 6.4.1 ( [28, Theorem 2]). Let R be a commutative Von Neumann regular ring

and M a semisimple R-module, and set X := Supp(M). Then the injective hull of M

in
∏
P∈XMP is precisely

H(M) :=

{
m ∈

∏
P∈X

MP : supp(m) is scattered

}
.

We proceed to link this with the socle series by making the following definition.

Definition 6.4.2. Let M and X be as in theorem (6.4.1). For any ordinal α, define

Hα

( ∏
P∈X

MP

)
:=

{
m ∈

∏
P∈X

MP :
(
supp m

)(α)
= ∅
}
, (6.4.1)

noting in particular the use of internal derived sets.

Applying this we obtain the following.
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Corollary 6.4.3. Let M and X be as in theorem (6.4.1). Consider the socle series

(Sα)α>1 and the series (Hα)α>1 introduced above of
∏
P∈XMP . Then for each ordinal

α > 1 there is an inclusion Sα 6 Hα, and furthermore there is an equation

H(M) =
⋃
α

Hα.

Proof. For an ordinal α > 1, the inclusion Sα 6 Hα is precisely the fact that for any

space X and subset Y ⊆ X one has an inclusion Y (α) ⊆ Y α.

The fact that the union of the Hα’s is the injective hull is theorem (6.4.1) and lemma

(6.1.4).

6.5 Usher’s conjectures

We move now to the work of Usher in his thesis [29]. The following definition is given

for modules over kG, for some field k and group G. We note that this holds in more

generality and give this definition here.

Definition 6.5.1 ( [29, 4.2.1]). Let k be a field and A a (unital) k-algebra. For an

A-module M , we proceed to define an ordinal sequence Lα(M) as follows. Firstly we

set L0(M) := 0 and for a successor ordinal α, we define Lα(M)/Lα−1(M) to be the

largest locally finite-dimensional submodule of M/Lα−1(M). For a limit ordinal α we

put Lα(M) :=
⋃
β<α Lβ(M).

This agrees with the socle series in the commutative setting, as we show next. We

require the following lemma.

Lemma 6.5.2. Let k be a field and A a commutative unital k-algebra. Then simple

modules over A are finite-dimensional.

Proof. A simple module over A carries a field structure and is certainly finitely generated

as a k-algebra. Now recall Zariski’s lemma: the fact that finitely generated k-algebras

which are fields form finite extensions over k. Thus we may conclude.

Lemma 6.5.3. Let k be a field, A a commutative unital k-algebra and M a semisimple

A-module. Then for all ordinals α, we have that Lα(M) = Sα(M).
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Proof. Plainly, it suffices to check the case of a successor ordinal α. Furthermore since

Lα(M)/Lα−1(M) = L1

(
M/Lα−1(M)

)
, it even suffices to consider the case α = 1. The

inclusion L1(M) 6 soc(M) = S1(M) is clear, and the reverse inclusion is supplied by

lemma (6.5.2).

Now let k be an algebraically closed field, A a locally finite abelian group, and M a

semisimple module over kA such that MP is one dimensional for each P ∈ Spec(M). In

this special setting Usher conjectures in [29, 7.7.6] the exact statement of our theorem

(6.3.2), albeit using the ordinal sequence Lα instead of the socle series (equal here by

our lemma above), which we show more generally for the class of commutative Von

Neumann regular rings and all semisimple modules. Progress was made towards the

successor ordinal case, see [29, 7.7.1, 7.7.4].

Furthermore, Usher conjectures a connection between the union of the sequence Lα and

the injective hull. This is supplied by Tiwary’s result [28, Theorem 2] which we give

above as theorem (6.4.1).





Bibliography

[1] I. Belegradek. On co-Hopfian nilpotent groups. Bull. London Math. Soc. 35(6),

805–811, 2003.

[2] R. Bieri and R. Strebel. A geometric invariant for nilpotent-by-abelian-by-finite

groups. J. Pure Appl. Algebra, 25(1):1–20, 1982.

[3] G. Baumslag. A finitely presented metabelian group with a free abelian derived

group of infinite rank. Proc. Amer. Math. Soc., 35, 61-2, 1972.

[4] F. Borceux. Handbook of Categorical Algebra, volume II. Cambridge University

Press, 1994.

[5] N. Bourbaki. Commutative Algebra, Addison-Wesley, 1972.

[6] I. G. Connell, On the group ring, Can. J. Math. 15, 650-685, 1963.

[7] Y. de Cornulier. Gradings on Lie algebras, systolic growth, and cohopfian properties

of nilpotent groups. Bull. Soc. Math. France 144(4): 693–744, 2016.

[8] J. Dixmier. Enveloping algebras, Graduate Studies in Mathematics, 11, Providence,

R.I.: American Mathematical Society, 1996.
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