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Abstract 16 

It is known that all current cancer therapies can only benefit a limited proportion of patients, 17 
thus molecular classification and prognosis evaluation are critical for correctly classifying 18 
breast cancer patients and selecting the best treatment strategy. These processes usually 19 
involve the disclosure of molecular information like mutation, expression, and immune 20 
microenvironment of a breast cancer patient, which are not been fully studied untill now. 21 
Therefore, there is an urgent clinical need to identify potential markers to enhance molecular 22 
classification, precision prognosis and therapy stratification for breast cancer patients. In this 23 
study, we explored the gene expression profiles of 1,721 breast cancer patients through 24 
CIBERSORT and ESTIMATE algorithms, then we obtained a comprehensive intra-tumoral 25 
immune landscape. The immune cell infiltration (ICI) patterns of breast cancer were 26 
classified into 3 separate subtypes according to the infiltration levels of 22 immune cells. The 27 
differentially expressed genes between these subtypes were further identified and ICI scores 28 
were calculated to assess the immune landscape of BRCA patients. Importantly, we 29 
demonstrated that ICI scores correlate with patients' survival, tumor mutation burden, 30 
neoantigens, and sensitivity to specific drugs. Based on these ICI scores, we were able to 31 
predict the prognosis of patients and their response to immunotherapy. Together, these 32 
findings provide a realistic scenario to stratify breast cancer patients for precision medicine. 33 

Introduction 34 

Breast cancer (BRCA) has now risen to become the most common malignant tumor 35 
throughout the world and the second leading cause of cancer-related death in women. The US 36 
added 270,000 new diagnosed cases and more than 40,000 deaths in 2020 [1, 2]. Due to its 37 
considerable influence on public health worldwide, the molecular mechanisms of breast 38 
cancer-like associated genes and pathways [3], metastasis [4], and drug responses [5, 6] have 39 
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been widely studied. Over recent years, there have been great advances in treatment strategies 40 
for BRCA including surgical resection, chemotherapy, radiotherapy, targeted therapy, and 41 
endocrine therapy. However, due to factors such as local recurrence, distant metastasis, and 42 
high tumor heterogeneity, the prognosis of BRCA patients is still unsatisfactory [7, 8].  43 

The tumor microenvironment (TME) includes tumor cells, tumor-infiltrating lymphocytes 44 
(TILs), and stromal components, which can serve as a key mediator of cancer progression 45 
and treatment outcome [9, 10]. Over the past few years, numerous studies have shown that 46 
TILs play key roles in tumor extension, recurrence, metastasis, and therapeutic response to 47 
cancer immunotherapy [11, 13]. For example, naive CD8+ T cells, when bound and activated 48 
by antigen-presenting dendritic cells, would become effector T cells, which could then 49 
recognize and kill tumor cells by releasing granzymes to induce apoptosis [14]. Chemokines 50 
secreted by tumor cells, such as C-C Motif Chemokine Ligand 2, C-C Motif Chemokine 51 
Ligand 5, and colony stimulating factor 1, can recruit M2-type tumor-associated 52 
macrophages, and their abundance in TME correlates with a poor prognosis [15].  53 

Cancer immunotherapy, including immune checkpoint inhibitors, has provided clinical 54 
benefit to the treatment of many BRCA patients through direct or indirect effects on TILs, 55 
reversing the TMEs to immune-permitted environments from immunosuppressive ones [16]. 56 
Promising outcomes in response to antibodies to programmed cell death 1(PD-1) or 57 
antibodies to programmed cell death ligand 1(PD-L1) therapy for BRCA have been reported 58 
in recent years [17]-[19]. However, the immune microenvironment of BRCA remains poorly 59 
understood and this treatment can only benefit a limited proportion of patients [20],[21]. 60 
Therefore, identification of potential biomarkers is in urgent clinical need to enhance 61 
precision prognosis and therapy stratification for BRCA patients.  62 

In our study, the gene expression profiles of 1,721 BRCA patients were analyzed by 63 
CIBERSORT and ESTIMATE algorithm, by which we obtained a comprehensive intra-64 
tumoral immune landscape. The immune cell infiltration (ICI) patterns of BRCA were 65 
classified into 3 separate subtypes according to the infiltration levels of 22 immune cells. The 66 
differentially expressed genes (DEGs) between these subtypes were further identified and ICI 67 
scores were calculated to assess the immune landscape of BRCA patients. Importantly, we 68 
demonstrated that ICI scores correlate with patients' survival, tumor mutation burden (TMB), 69 
neoantigens, and sensitivity to specific drugs. Based on these ICI scores, we were able to 70 
predict the prognosis of patients and their response to immunotherapy. Together, these 71 
findings provide a realistic scenario to stratify BRCA patients for precision medicine. 72 

Materials and Methods 73 

Source of cohort datasets and immune-related data and preprocessing 74 

The training datasets of BRCA for this study were integrated from two separate cohorts 75 
(TCGA-BRCA and Yau-cohort), with only tumor samples retained. The expression profile 76 
data of TCGA-BRCA cohort (considering only protein-coding mRNA) were downloaded 77 
from the Cancer Genome Atlas (TCGA) database by Genomic Data tools 78 
(https://portal.gdc.cancer.gov/projects/TCGA-BRCA). The fragments per kilobase million 79 
values were downloaded via TCGAbiolinks [22] package and transformed to transcripts per 80 
million, with the ensemble id matrix converted to a gene symbol matrix and other forms for 81 
subsequent analysis. The Yau-cohort dataset [23], integrated by Dr. Yau from four studies 82 
(GSE2034, GSE5327, GSE7390, and NKI295), was downloaded from the online database 83 
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University of California Santa Cruz (UCSC) Xena browser (https://xenabrowser.net/). It 84 
contains the gene expression matrix along with clinical information of 682 breast cancer 85 
patients. At last, the batch effects caused by nonbiological technical bias were reduced 86 
through "Combat" algorithm [24]. 87 

The clinical information for the TCGA-BRCA cohort was extracted from the pan-cancer 88 
data, which included age, sex, clinicopathological stage, TNM stage, and PAM50 subtype, 89 
and only overall survival (OS) was considered. The Yau-cohort cohort considered OS, age, 90 
and PAM50 subtype. A total of 1721 breast cancer samples were generated after kicking out 91 
the samples with incomplete clinical information and survival time and male breast cancer 92 
samples. To analyze the efficiency of immunotherapy, the R package 93 
IMvigor210CoreBiologies [25] obtained from the work of Snyder et al. was used as a 94 
validation dataset, which included expression profiles, survival outcomes and immunotherapy 95 
response results in metastatic uroepithelial cancer patients treated with anti-PD-L1 agents 96 
atezolizumab. 97 

Consensus clustering of TME immune cell infiltration 98 

The CIBERSORT and ESTIMATE algorithms were combined to reckon the abundance and 99 
infiltration levels of 22 immune cell species of the integrated BRCA cohort [26, 27]. LM22 100 
signature matrix, which provided a gene expression signature set of 22 immune cell subtypes 101 
and CIBERSORT source code were downloaded from the CIBERSORT website 102 
(https://cibersortx.stanford.edu/). Unsupervised clustering analysis of ICI of each sample was 103 
performed using R package "ConsensusClusterPlus" [28], which classified the tumor ICI 104 
pattern of BRCA patients into different subtypes (maxK, the maximum number of 105 
classifications K = 3). 90% of the samples have been repeated 500 times, ensuring stability of 106 
the classification. Calculation of distances using Spearman's distance measure and Ward's 107 
linkage. 108 

Identification of DEGs between ICI subtypes and gene signature generation 109 

To identify genes associated with ICI patterns, we applied the R package “limma” [29] to 110 
determine the DEGs between different ICI subtypes and plotted the DEGs heatmap using the 111 
“ComplexHeatmap” R package [30]. The significance cutoff criteria used to distinguish 112 
DEGs were set as fold-change (FC) > 1.5, adjusted false discovery rate (FDR) < 0.05.   113 

To quantify the ICI pattern of a single tumor patient, we established a scoring system, ICI 114 
gene signature, to confirm the ICI pattern for each BRCA patient, and we termed it ICIscore. 115 
The steps to establish an ICI gene signature are as follows: Firstly, the DEGs were analyzed 116 
by unsupervised cluster analysis using the R package "ConsensusClusterPlus". The maximum 117 
number of classifications is 3 and the distances were calculated using the Pearson distance 118 
measure and complete linkage, which divided the TCGA-BRCA cohort into 3 genomic 119 
clusters, namely, ICI gene clusters A, B, and C. And then, Pearson correlation analysis was 120 
done on the mRNA expression values of all TCGA samples with the three gene clusters, and 121 
the DEGs with positive and negative correlation with clustering features were, respectively, 122 
defined as ICI signature genes A and B. Then Boruta algorithm was used to reduce the 123 
dimensionality of different ICI signature genes. Finally, two total scores were calculated 124 
using single sample gene set enrichment analysis (ssGSEA): (1) ICI score A which is from 125 
ICI signature gene A; (2) ICI score B which is from ICI signature gene B. 𝑰𝑰𝑰𝑰𝑰𝑰 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 =126 
𝑰𝑰𝑰𝑰𝑰𝑰 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑨𝑨 − 𝑰𝑰𝑰𝑰𝑰𝑰 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑩𝑩, with median as cutoff value to determine high ICI group and 127 
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low ICI group. When survival analyses were performed with ICI score groups, we only 128 
picked out genes whose P-value < 0.05 in the univariate survival analysis. Principal 129 
component analysis (PCA) was used to calculate the ICI score for each patient, and PCA1 130 
was calculated as the signature score using PCA: 𝑰𝑰𝑰𝑰𝑰𝑰 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = |𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑| +131 
|𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏|. Patients were reclassified as high and low ICI score groups using 132 
median as the cutoff value. 133 

Collection and analysis of somatic mutation data 134 

The copy number variant (CNV) data of TCGA-BRCA cohort were obtained from the 135 
firehose database (http://gdac.broadinstitute.org/), and mutant annotation format (MAF) files 136 
downloaded from the cBioportal database (http://www.cbioportal.org/). To determine the 137 
TMB of BRCA, we matched TCGA-BRCA MAF files with ICI-related expression profiles 138 
and used the R package "maftools" to calculate the TMB [31]. Based on the 139 
OncodriveCLUST algorithm [32], we used the positional information of the somatic mutation 140 
sites to cluster the driver genes from different ICI score groups, and used the "maftools" 141 
package to draw a waterfall map of the top 25 driver genes in the two groups. The CNV 142 
analysis was performed with the GenePattern online analysis tool 143 
(https://www.genepattern.org/) and visualized with the “maftools” package. 144 

Identification of sensitive drugs and other biological processes correlated with ICI gene 145 
signatures 146 

The drug.txt is a dataset for the sensitivity and response of cancer cells to therapeutic drugs 147 
obtained from the online database Genomics of Drug Sensitivity in Cancer (GDSC), used to 148 
predict IC50 with R package “pRRophetic” [33, 34]. We assessed the IC50 values in both ICI 149 
score groups using Wilcoxon test, then compared the differences in sensitivity between ICI 150 
score groups on more than 100 drugs, and graphed the top 12 (according to P-value) 151 
differentially response drugs. Wilcoxon test was also used to compare the differential 152 
expression of neoantigen between ICI score groups. Sample data used for predicting 153 
neoantigen number in the TCGA-BRCA cohort were from a research already published in 154 
2015 by Rooney MS et al. [35]. 155 

Additionally, we separately performed Gene Ontology (GO) enrichment analysis of ICI gene 156 
signatures A and B via the “org.Hs.eg.db” R package to explore the biological process, 157 
cellular composition and molecular function that they may participate in. After differential 158 
expression analysis with the “limma” package for high or low ICI score groups, the 159 
differentially expressed genes were subjected to Gene Set Enrichment Analysis (GESA), and 160 
the gene sets “h.all.v7.2.symbol” were downloaded from the Molecular Signatures Database 161 
(MSigDB) (http://www.gsea-msigdb.org/gsea/msigdb) for running GESA analysis. To 162 
confirm the difference in the efficacy of anti-PD-L1 immunotherapy between the two ICI 163 
score groups in the validation cohort, IMvigor210, objective remission rate bar graphs were 164 
plotted for the ICI score groups using "GSVA" R package [36]. 165 

Statistical analysis 166 

All statistical analyses were performed using R software (version 3.6.2). The Wilcoxon test 167 
was used to compare the differences between two groups and the Kruskal-Wallis test was 168 
used to compare the differences between more than two groups. The Kaplan-Meier survival 169 
curves were plotted using the R package “survminer” for different subgroups, such as ICI 170 
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clusters, ICI gene clusters, ICI gene signatures, and TMB subgroups, in relation to survival. 171 
Log-rank test was used for statistically significant differences. The R packages 172 
“ComplexHeatmap” and “ggplot” were used to draw heatmaps, scatter plots, violin plots, and 173 
other plots. Correlation coefficients were calculated by using Spearman analysis. Two-tailed 174 
P < 0.05 was considered a statistically significant difference. 175 

Results 176 

The immune cell infiltration (ICI) landscape in BRCA immune microenvironment 177 

We first performed PCA of integrated gene expression profiles of 1,721 BRCA patients from 178 
the training cohort consisting of the TCGA-BRCA and Yau cohorts by using Combat 179 
algorism to eliminate batch effects across cohorts (Figure 1a). Subsequently, we performed 180 
the CIBERSORT algorithm combined with ESTIMATE algorithm to determine the 181 
abundances of 22 immune cells as well as the enrichment scores of stromal cells (Stromal 182 
Score) and immune cells (Immune Score) in BRCA patients in this cohort (Supplementary 183 
Table 1). We performed an unsupervised cluster analysis of this cohort by 184 
ConsensusClusterPlus R package to divide BRCA patients into 3 separate subtypes based on 185 
ICI patterns, referred to as ICI clusters I, II and III, respectively (Figure 1b). A hotspot matrix 186 
of correlation coefficients was created to demonstrate the overall landscape of interactions 187 
among immune cells in the TME of BRCA patients, including their immune scores and 188 
stromal scores (Figure 1c).  189 

To explore the inherent biological differences between the different ICI subtypes, we 190 
compared the composition of immune cells in the 3 ICI clusters. As shown in Figure 1d, ICI 191 
cluster I was characterized by high level M2 macrophages, neutrophils, resting mast cells, 192 
activated natural killer (NK) cells, resting CD4+ T cells and gamma delta T cells infiltration; 193 
patients from ICI cluster II had a higher density of memory B cells, activated dendritic cells, 194 
resting dendritic cells, M1 macrophages, monocytes, memory activated CD4+ T cells, CD8+ 195 
T cell, , follicular helper T cells, plasma cells and regulatory T cells; while ICI cluster III 196 
displayed an increase in naïve B cells, naïve CD4+ T cells, resting NK cells, M0 macrophages 197 
and activated mast cells infiltration. Survival analysis conducted on these 3 ICI subtypes 198 
showed significant differences among them, with ICI clusters I and II being associated with 199 
better prognosis and patients in ICI cluster III having a poorer OS (log-rank test, P = 0.007; 200 
Figure 1e). In addition, we analyzed the expression of PD-1 and PD-L1 in each ICI subtype 201 
(Figures 1f and 1g). The results of Kruskal-Wallis test showed higher expression of PD-1 and 202 
PD-L1 in ICI cluster II, while their expressions were lowest in ICI cluster III. 203 
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 204 

Figure 1: The immune-cell infiltration (ICI) landscape in BRCA immune microenvironment. (a) PCA of 205 
integration of expression profiles of TCGA-BRCA and Yau cohorts by Combat algorism to eliminate batch 206 
effects of different cohorts. (b) Heatmap with unsupervised clustering analysis of tumor-infiltrating immune 207 
cells in TCGA-BRCA and Yau cohorts. (c) Hotspot plot for correlation matrix of immune cells in three ICI 208 

clusters, including their immune scores and stromal scores. Red indicates positive correlation and blue indicates 209 
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negative correlation. (d) Box plot for abundance of each immune infiltrating cells in the three ICI clusters. The 210 
asterisks represented the statistical P-value (Kruskal-Wallis test, *P < 0.05, **P < 0.01, ***P < 0.001). (e) 211 

Survival analysis for three ICI clusters of 1721 breast cancer patients from TCGA-BRCA and Yau cohorts using 212 
Kaplan-Meier curves. The log-rank test showed that P = 0.007. (f and g) Violin plots of the differential 213 
expression of PD1 (f) and PD-L1 (g) (only for TCGA-BRCA cohort) among the three ICI clusters. The 214 

statistical differences among ICI clusters were compared by Kruskal-Wallis test (P < 0.001). 215 

Identification and comprehensive analysis of immunogenic gene clusters 216 

To elucidate the potential characteristics of the different immunophenotypes, we conducted 217 
the limma package to identify DEGs among ICI clusters I, II, and III (FC = 1.5, FDR = 0.05). 218 
Based on the above cutoffs, we identified 665 DEGs (213 in ICI cluster I; 239 in ICI cluster 219 
II; and 213 in ICI cluster III; Supplementary Table 2) and used the ComplexHeatmap 220 
package to generate a heat map of all DEGs. Hereafter, we focused our analysis on the 221 
TCGA-BACR cohort as it had comprehensive information on clinical aspects. We performed 222 
an unsupervised clustering analysis of these DEGs and divided the TCGA-BRCA cohort into 223 
3 distinct ICI genomic phenotypes, named ICI gene cluster A, B and C, respectively (Figure 224 
2a). We defined all above DEGs with positive association with these 3 ICI gene clusters as 225 
ICI signature genes A, while the rest DEGs were termed as ICI signature genes B. By down-226 
dimensioning the ICI signature genes using Boruta algorithm to reduce redundant genes, we 227 
finally obtained 216 genes in ICI signature gene A and 164 in ICI signature gene B 228 
(Supplementary Table 3). 229 

In Figure 2b, we figured out the prognostic differences among these ICI gene clusters, and we 230 
confirmed that ICI gene clusters A and B had a better prognosis, and the prognosis of ICI 231 
gene cluster C was poorer (log-rank test, P = 0.04). Figures 2c and 2d showed the results of 232 
gene ontology (GO) enrichment analysis of both ICI signature gene groups in the 3 functional 233 
groups, biological process, cellular component, and molecular function, respectively, which 234 
were significantly enriched in items related to immunity. Given that the immune system can 235 
exert both antitumor and protumor activities [37,38], we next explored the level of immune 236 
infiltration cells among different gene clusters, and the box plot showed that gene clusters A 237 
and B with favorable prognosis had higher immune and stromal scores (Figure 2e). Besides, 238 
there were the highest infiltrations of M1 macrophages, CD8+ T cells, memory activated 239 
CD4+ T cells, memory B cells, activated dendritic cells, and plasma cells etc. within ICI gene 240 
cluster B, showing the active immune phenotype. In contrast, the level of infiltration of these 241 
TILs was very low in the poorly prognosed ICI gene cluster C. The three ICI gene clusters 242 
also showed significant differences in the expression levels of PD-1 and PD-L1. There were 243 
relatively high expression levels of PD-1 and PD-L1 in ICI gene clusters A and B, while they 244 
had the lowest expression levels in ICI gene cluster C (Figures 2f and 2g). From the above 245 
comprehensive analysis of immunogenic gene clusters, we demonstrated that there is a 246 
significant correlation between the level of ICI and prognosis in different gene clusters. 247 
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 248 

Figure 2. Identification and comprehensive analysis of immunogenic gene clusters. (a) Heat map with 249 
unsupervised clustering analysis of all DEGs in the three ICI patterns, dividing TCGA-BRCA patients into three 250 

genomic clusters, defined as ICI gene clusters A-C. Rows represent genes and columns represent samples. (b) 251 
Survival analysis for the three ICI gene clusters in TCGA-BRCA patients using Kaplan-Meier curves. The log-252 
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rank test showed that P = 0.04. (c and d) Functional annotation of ICI gene clusters A (c) and B (d) using GO 253 
enrichment analysis. The circle size of the bubble plots represented the number of enriched genes. (e) Box plot 254 

for abundance of each immune infiltrating cells in the three ICI gene clusters. The asterisks represented the 255 
statistical P-value (Kruskal-Wallis test, *P < 0.05, **P < 0.01, ***P < 0.001). (f and g) Violin plots of the 256 

differential expression of PD1 (f) and PD-L1 (g) among the three ICI gene clusters. The statistical differences 257 
among ICI gene clusters were compared by Kruskal-Wallis test (P < 0.001). 258 

Immune-cell infiltration (ICI) score construction 259 

Given the individual heterogeneity of the TME, we quantified the ICI pattern of BRCA 260 
patients. We calculated 2 summary scores, that is, ICI score A from ICI signature gene A and 261 
ICI score B from ICI signature gene B, using ssGSEA. The ICI score of each patient of 262 
TCGA-BRCA cohort was determined using the difference between ICI scores A and B. The 263 
high ICI score group and low ICI score group were defined using median as the cutoff value. 264 
The distribution of ICI scores and survival of patients in ICI gene clusters were shown in 265 
Figure 3a and Supplementary Table 4.  266 

We further analyzed the differences in the expression of immunoreactive-related genes in the 267 
high or low ICI score groups to determine the status of immune activity or tolerance in each 268 
group. Among them, CD274, HAVCR2, CTLA4, LAG3, PDCD1, and IDO1 were chosen as 269 
immune inhibitory genes [39], while CD8A, GZMA, PRF1, CXCL10, CXCL9, TNF and TBX2 270 
as immune stimulatory genes [40].  As we can observe in Figure 3b, the expression levels of 271 
all immunoreactive-related genes were significantly elevated in the high ICI score group. We 272 
performed the differential expression analysis of genes in the high or low ICI score groups 273 
using the limma package (FC = 1.5, FDR = 0.05) and obtained 890 DEGs. Our subsequent 274 
GSEA analysis of these DEGs showed that the high ICI score group was significantly 275 
enriched in allograft rejection, E2F targets, G2M checkpoint, interferon gamma response and 276 
MYC targets V2 pathways; while the low ICI score group was mainly enriched in epithelial 277 
mesenchymal transition, estrogen response early, protein secretion, TGF-β signaling and UV 278 
response pathways. (Figures 3c and 3d and Supplementary Table 5). In addition, when we 279 
compared the relationship between ICI scores and prognosis, we only selected genes with P-280 
value < 0.05 in the univariate survival analysis. We then used PCA to calculate the ICI score 281 
for each patient. Patients were redivided into high and low ICI score groups using the median 282 
value as the cutoff. The Kaplan-Meier curves in Figure 3e indicated that patients of the high 283 
ICI score group have significantly longer survival than those of the low ICI score group (log-284 
rank test, P = 0.033). 285 
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 286 

Figure 3. Immune-cell infiltration (ICI) scores construction. (a) Alluvial diagram showing the distribution of ICI 287 
gene clusters in different ICI score groups and survival status of TCGA-BRCA patients. (b) Box plot for the 288 

relative expression of immune checkpoint-associated genes in different ICI score groups. Among them, CD274, 289 
HAVCR2, CTLA4, LAG3, PDCD1 and IDO1 are inhibitory genes, CD8A, GZMA, PRF1, CXCL10, CXCL9, TNF 290 

and TBX2 are stimulatory genes. The asterisks represented the statistical P-value (Kruskal-Wallis test, *P < 291 
0.05, **P < 0.01, ***P < 0.001). (c and d) GESA enrichment maps for high (c) and low (d) ICI score groups. 292 
Allograft rejection, E2F targets, G2M checkpoint, interferon gamma response and MYC targets V2 pathways 293 

pathways were enriched in the high ICI score group. Epithelial mesenchymal transition, estrogen response early, 294 
protein secretion, TGF-β signaling and UV response pathways were enriched in the low ICI score group. (e) 295 
Survival analysis for high or low ICI score groups (calculated by using PCA) in TCGA-BRCA patients using 296 

Kaplan-Meier curves. The log-rank test showed that P = 0.033. 297 

Correlation between immune cell infiltration (ICI) scores and tumor mutation burden 298 
(TMB) 299 

Numerous studies have suggested that the immune phenotype may be associated with 300 
alterations in the tumor genome [41, 42]. To validate this hypothesis, we tested the 301 
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relationship between TMB and ICI scores in the TCGA-BRCA cohort and found that patients 302 
in the high ICI score group had more TMB (Kruskal test, P = 0.002; Figure 4a). Besides, the 303 
scatter plot of the association between TMB and ICI scores also showed a positive 304 
association (Pearson correlation = 0.324, P < 0.001; Figure 4b). In our stratified survival 305 
analysis, which divided patients into different subgroups according to TMB and ICI scores 306 
(calculated by using PCA), we found that patients with high level of TMB and low ICI scores 307 
had the worst prognosis (log-rank test, P = 0.039; Figure 4c). We also performed clustering 308 
analysis by using the position information of somatic mutations to identify mutation driver 309 
genes in different ICI score subgroups, and mapped the waterfall of the top 25 most 310 
significant mutation driver genes using the maftools package (Figure 4d). Expression profiles 311 
of patients in distinct ICI score groups in the TCGA-BRCA cohort were matched with CNV 312 
data downloaded from the firehose database, and the GISTIC2.0 module of the GenePattern 313 
online tool was used to analyze the status of CNV in different groups. The results from the 314 
analysis were visualized using the maftools package and are presented in Figures 4e (high ICI 315 
score group) and 4f (low ICI score group). We found that both high and low ICI score groups 316 
had many copy number variations, but high ICI score groups had more CNVs. The regions 317 
significantly amplified in the high ICI score group of patients involved 11q13.3, 17q12 and 318 
8q24.21, while 11q13.3 spanned the CCND1 gene. Significantly deleted regions in the high 319 
ICI score group included 9p21.3, which spans the tumor suppressor genes CDKN2A and 320 
CDKN2B. 321 
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 322 

Figure 4. Correlations between immune-cell infiltration (ICI) scores and tumor mutation burden (TMB). (a) 323 
Differences in TMB between high or low ICI score groups (Kruskal test, P < 0.001). (b) Scatter plot of 324 

correlation between ICI scores and the mutational burden in the TCGA-BRCA cohort (Pearson correlation = 325 
0.133, P < 0.001). (c) Stratified survival analysis of TCGA-BRCA patients stratified by both TMB and ICI 326 
scores (calculated by using PCA) using Kaplan Meier curves. The log-rank test showed that P = 0.039 (d) 327 

Waterfall plots of the top 25 significantly driver mutated genes in the high (left) or low (right) ICI score groups. 328 
Each column represented for individual patients, and the bar plot on top showed the TMB. (e and f) GISTIC2.0-329 

based copy number variant (CNV) analysis of high (e) or low (f) ICI score groups visualized by maftools. 330 

Integrative analysis of immune cell infiltration (ICI) scores on drug response 331 

Furthermore, we selected genes from various pathways related to tumor immune processes 332 
and classified the immune-related genes of our interest into gene set 1 (Figure 5a) and gene 333 
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set 2 (Figure 5b), and then created a heat map of these genes in the high or low ICI score 334 
groups. From Figure 5a, we found that most of the genes related to diverse immune pathways 335 
were upregulated in the high ICI score group and downregulated in the low ICI score group. 336 
Figure 5b showed a significant increase of genes related to pathways such as cytotoxic cells, 337 
effector memory CD8, macrophages, and T cells in the high ICI score group. Both Figures 5a 338 
and 5b showed that patients with Luminal A BRCA are mostly enriched in the low ICI score 339 
group. In addition to TMB, we also noted the positive correlation between ICI scores and 340 
neoantigens (Wilcoxon test, P < 0.001) (Figure 5c). We downloaded a dataset of drugs 341 
sensitive to the treatment of cancer from the GDSC website, from which we compared the 342 
differences in the sensitivity of high or low ICI groups to more than 100 drugs used to treat 343 
tumors (Supplementary Table 6). The top 12 drugs with differential treatment responses 344 
according to P-value ranking were illustrated in Figure 5d, from which it was clear that high 345 
ICI scores may lead to increased sensitivity of BRCA to drugs such as imatinib, CCT007093, 346 
MK-2206, CHIR-99021, FH535 and KIN001-135 and so on. All above results may provide 347 
new perspectives for investigating the role of individual gene mutations in the immune 348 
microenvironment and immunotherapy of cancer. 349 

In recent years, blockade therapy targeting immune checkpoints has emerged as a mainstream 350 
immunotherapy with the potential to significantly improve the survival of cancer patients, but 351 
only small numbers of patients have responded to this treatment [17, 18]. Markers that can 352 
effectively predict the effect of immunotherapy are limited; therefore, to validate the role of 353 
ICI scores constructed in BRCA patients in predicting patients' response to immunotherapy, 354 
we selected the IMvigor210 cohort of metastatic uroepithelial cancer patients with 355 
immunotherapy received as a validation cohort to test the potential to forecast 356 
immunotherapy benefit of the ICI scores we established. Encouragingly, in the IMvigor210 357 
cohort, we found that ICI scores were in a significantly positive correlation with the objective 358 
response rate (ORR) for anti-PD-L1 therapy (Wilcoxon test, P = 0.002; Figure 5e). 359 
Moreover, in this cohort, patients with high ICI scores had significantly longer survival (log-360 
rank test, P = 0.02; Figure 5f). What is more, we found the high ICI score group had a higher 361 
ORR after anti-PD-L1 treatment (Figure 5g). In conclusion, these data suggest that the ICI 362 
scores can predict the responses to immunotherapy. 363 
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 364 

Figure 5. Integrative analysis of immune-cell infiltration (ICI) scores on drug response. (a and b) Heatmap of 365 
immune-related genes in different ICI score groups. The immune-related genes were divided into two groups: 366 

gene set 1 (a) and gene set 2 (b). The ICI cluster, ICI gene cluster, PAM50 subtype, age, tumor stage and 367 
survival status were used as patient annotations. (c) Differences in neoantigen between high or low ICI score 368 

groups. (d) Comparison of drug sensitivity in high or low ICI score groups (Wilcoxon test, P < 0.001). The box 369 
plots show the differences in IC50 values for the top 12 drugs sorted by P-value. (e) Boxplot for the distribution 370 
of ICI scores of patients in different anti-PD-L1 therapeutic responses in IMvigor210 cohort (Wilcoxon test, P = 371 
0.002). (f) Survival analysis for high or low ICI score groups in IMvigor210 cohort patients using Kaplan-Meier 372 

curves. The log-rank test showed that P = 0.02. (g) Bar graph showing the proportion of patients with various 373 
clinical responses (responder: complete response (CR)/ partial response (PR); non-responder: stable disease 374 

(SD)/progressive disease (PD)) to anti-PD-L1 immunotherapy in the high or low ICI score groups of the 375 
IMvigor210 cohort. 376 



 15 

Discussion 377 

Immunotherapy has changed the treatment and prognosis for many malignancies. In recent 378 
years, immunotherapy using checkpoint blockades have proven to generate unprecedented 379 
and durable responses in patients suffering from diverse cancers [43, 45]. In BRCA, building 380 
on the favorable results of the Phase III IMpassion130 trial [46] and the Phase III 381 
KEYNOTE-355 trial [47], the U.S. FDA has accelerated approval for the PD-L1 inhibitor 382 
atezolizumab as well as the PD-1 inhibitor pembrolizumab, combined with chemotherapy, for 383 
the treatment of locally advanced or metastatic PD-L1-positive triple-negative BRCA 384 
(TNBC) patients in 2019 and 2020, respectively [48]. In recent years, there has been 385 
increasing evidence that patterns of the immune system play a key role in determining both 386 
the response to treatment and survival of BRCA patients [49]. These data and the clinical use 387 
of immune checkpoint blockers in a variety of solid tumors have also demonstrated striking 388 
success [50, 51]. Stromal TILs concentration shows a linear relationship with clinical 389 
outcome in different clinical subtypes of BRCA [49]. For example, it has been shown that 390 
HER-2+ BRCA and TNBC have higher levels of TILs and PD-L1 expression in TME at 391 
diagnosis than luminal BRCA, which can be predicted to benefit more from adjuvant and 392 
neoadjuvant chemotherapy, are more likely to respond to PD-1/PD-L1 blockade and have 393 
longer survival [52-54]. However, the use of immunotherapy in BRCA remains limited and 394 
only a minority of patients would benefit from it. Poor immunogenicity, T-cell infiltration in 395 
TME, and enhanced immunosuppression have been identified as potential challenges to 396 
successful immunotherapy for BRCA [55]. Therefore, the development of more efficient 397 
biomarkers for predicting response and resistance to therapy, as well as the recognition of 398 
environmental modifiers to immunity (mutational load, neoantigens, and sensitive 399 
combination therapeutics) is important to improve the efficacy of immunotherapy. It will be 400 
of great help to choose the appropriate timing and patients for immunotherapy, patients 401 
should be detected  markers of immunotherapy response when initial diagnosis and 402 
immunotherapy should be used in treatment as early as possible [56]. In this study, we 403 
developed a method to quantify ICI in TME of BRCA patients - ICI score, and our results 404 
demonstrated that this score can be used as a predictor to assess the effectiveness and 405 
prognosis of immunotherapy.  406 

Many studies have demonstrated the importance of an abundant and active BRCA TME in 407 
forecasting the response of tumor patients to immunotherapy [57, 58]. For example, tumors 408 
with increased TILs, positive PD-L1, and elevated tumor-infiltrating CD8+ T cells exhibit a 409 
higher response rate to immunotherapy. Such tumors are considered "inflamed" or "hot" 410 
tumors. In contrast, "non-inflamed" or "cold" tumors with lower TILs, PD-L1 expression, and 411 
CD8+ T cell infiltration are less likely to respond to immunotherapy [56]. In this study, we 412 
analyzed the ICI patterns of 1721 BRCA samples from the integrated cohort and classified 413 
BRCA into three separate immune subtypes, ICI clusters I, II, and III. The results of our 414 
analysis suggested that patients in ICI clusters I and II with higher TILs infiltration, PD-L1 415 
expression, and high immune scores had longer survival. This is consistent with previous 416 
studies [59, 60]. These findings illustrated that the preexistent immune responses in TME can 417 
have an impact on the prognosis of BRCA patients as well as on the degree of benefit from 418 
immunotherapy. However, it is not sufficient to rely solely on the immune phenotype of the 419 
tumor to project the response to immunotherapy. Alterations of certain molecules during 420 
tumor progression may also interfere with the interaction between immune cells or between 421 
immune cells and tumor cells, thereby disrupting the balance of immune resistance and 422 
activation in tumors [38]. However, how the genomic landscape in BRCA shapes and 423 
influences antitumor immunity is not yet clear. 424 
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Systematic analysis of tumor immune-related gene expression profiles can shed further light 425 
on the relationship between tumor genetics and TME. Genetic characterization may also 426 
assist in identifying suitable BRCA patients for immunotherapy. We clustered the cohort 427 
again based on DEGs between the previous ICI clusters, divided TCGA-BRCA patients into 428 
new ICI gene clusters, and defined ICI signature genes. Among these different ICI gene 429 
clusters, we discovered that ICI gene cluster C with the lowest levels of activated TILs, 430 
immune score, stromal score, exhibited an immune exhausted phenotype. On the contrary, 431 
ICI gene clusters A and B had higher inflammatory cell infiltration, immune scores, and 432 
stromal scores. And we also observed that ICI gene cluster B had a promising immune 433 
activation phenotype because of the highest content of macrophages, resting NK cells, 434 
memory activated CD4+ T cells, plasma cells, CD8+ T cells, etc. [61,62].  Meanwhile, 435 
patients in ICI gene cluster B had the highest expression of PD-1 and PD-L1 and a more 436 
optimistic prognosis. We speculated that patients with ICI gene cluster B may be more likely 437 
to benefit from immunotherapy. The opposite is the case for patients with ICI gene cluster C, 438 
probably because their immune exhausted phenotype may lead to tumor cells evading the 439 
immune system and not responding to immunotherapy. Our study is following previous 440 
studies [63]. These findings suggested that combining the synthetic features of ICI profiles 441 
with expression patterns of immune-related genes in TME may become a promising approach 442 
to developing more precise immunotherapy regimens for BRCA patients. 443 

Due to the high individual heterogeneity of TME, we used the ssGSEA method to establish 444 
ICI scores for patients in the TCGA-BRCA cohort and to quantify the ICI pattern for each 445 
patient. We found that the expression of most of the immune-related genes was higher in the 446 
group that had high ICI scores. GSEA analysis of the low ICI score group showed 447 
significantly enriched in TGF-β signaling pathway, epithelial mesenchymal transition, etc. 448 
Notably, TGF-β is a gene that is known to be involved in immunosuppressive pathways [37]. 449 
In addition, we found that our constructed ICI scores also correlated with TMB and 450 
neoantigens that also could predict response to immunotherapy [42, 64]. TMB levels and the 451 
number of neoantigens were significantly higher in the high ICI score group. Both Survival 452 
analysis and stratified analysis indicated that higher ICI scores conferred a better prognosis 453 
for patients. Moreover, patients with high TMB and low ICI scores had the shortest survival. 454 
We also observed that different ICI score groups were associated with altered tumor driver 455 
genes (e.g., PI3KCA, TP53, CDH1) and gene copy number. High or low ICI scores also 456 
showed significant differences in sensitivity to certain other target drugs. 457 

The ability of our established ICI score to predict response to immunotherapy in tumor 458 
patients was validated in a cohort of metastatic uroepithelial cancer patients treated with anti-459 
PD-L1 agents (IMvigor210) [65]. Our results showed that ICI scores were significantly 460 
higher in patients who had a response to immunotherapy than in those who did not. Patients 461 
from the high ICI score group had longer survival and higher ORR. However, lacking data 462 
from a cohort of BRCA patients receiving immunotherapy, additional prospective trials are 463 
needed to validate these predictors that we constructed in the TCGA-BRCA cohort. In 464 
summary, our analysis has revealed environmental and genetic mechanisms affecting tumor-465 
immune interactions in BRCA, and our constructed ICI score may serve as a powerful marker 466 
for predicting patient prognosis and the extent of benefit from immunotherapy. 467 
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Conclusions 468 

In summary, our analysis has revealed environmental and genetic mechanisms affecting 469 
tumor-immune interactions in BRCA, and our constructed ICI score may serve as a powerful 470 
marker for predicting patient prognosis and the extent of benefit from immunotherapy. 471 
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