
Research Article
A Framework to Predict the Molecular Classification and
Prognosis of Breast Cancer Patients and Characterize the
Landscape of Immune Cell Infiltration

Kun Zheng ,1 Zhiyong Luo,2 Yilu Zhou,3,4 Lili Zhang,1 Yali Wang,1 Xiuqiong Chen,1

Shuo Yao,1 Huihua Xiong,1 Xianglin Yuan,1 Yanmei Zou,1 Yihua Wang ,3,4

and Hua Xiong 1

1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan 430030, China
2Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan 430030, China
3Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
4Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK

Correspondence should be addressed to Yihua Wang; yihua.wang@soton.ac.uk and Hua Xiong; cnhxiong@tjh.tjmu.edu.cn

Received 28 November 2021; Revised 25 March 2022; Accepted 16 May 2022; Published 7 June 2022

Academic Editor: Po-Hsiang Tsui

Copyright © 2022 Kun Zheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is known that all current cancer therapies can only benefit a limited proportion of patients; thus, molecular classification and
prognosis evaluation are critical for correctly classifying breast cancer patients and selecting the best treatment strategy. These
processes usually involve the disclosure of molecular information like mutation, expression, and immune microenvironment of
a breast cancer patient, which are not been fully studied until now. Therefore, there is an urgent clinical need to identify
potential markers to enhance molecular classification, precision prognosis, and therapy stratification for breast cancer patients.
In this study, we explored the gene expression profiles of 1,721 breast cancer patients through CIBERSORT and ESTIMATE
algorithms; then, we obtained a comprehensive intratumoral immune landscape. The immune cell infiltration (ICI) patterns of
breast cancer were classified into 3 separate subtypes according to the infiltration levels of 22 immune cells. The differentially
expressed genes between these subtypes were further identified, and ICI scores were calculated to assess the immune landscape
of BRCA patients. Importantly, we demonstrated that ICI scores correlate with patients’ survival, tumor mutation burden,
neoantigens, and sensitivity to specific drugs. Based on these ICI scores, we were able to predict the prognosis of patients and
their response to immunotherapy. Together, these findings provide a realistic scenario to stratify breast cancer patients for
precision medicine.

1. Introduction

Breast cancer (BRCA) has now risen to become the most
common malignant tumor throughout the world and the
second leading cause of cancer-related death in women.
The US added 270,000 new diagnosed cases and more
than 40,000 deaths in 2020 [1, 2]. Due to its considerable
influence on public health worldwide, the molecular mech-
anisms of breast cancer-like associated genes and pathways

[3], metastasis [4], and drug responses [5, 6] have been
widely studied. Over recent years, there have been great
advances in treatment strategies for BRCA including surgical
resection, chemotherapy, radiotherapy, targeted therapy, and
endocrine therapy. However, due to factors such as local
recurrence, distant metastasis, and high tumor heterogeneity,
the prognosis of BRCA patients is still unsatisfactory [7, 8].

The tumor microenvironment (TME) includes tumor
cells, tumor-infiltrating lymphocytes (TILs), and stromal
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components, which can serve as a key mediator of cancer
progression and treatment outcome [9, 10]. Over the past
few years, numerous studies have shown that TILs play key
roles in tumor extension, recurrence, metastasis, and thera-
peutic response to cancer immunotherapy [11–13]. For
example, naive CD8+ T cells, when bound and activated by
antigen-presenting dendritic cells, would become effector T
cells, which could then recognize and kill tumor cells by
releasing granzymes to induce apoptosis [14]. Chemokines
secreted by tumor cells, such as C-C Motif Chemokine
Ligand 2, C-C Motif Chemokine Ligand 5, and colony stim-
ulating factor 1, can recruit M2-type tumor-associated mac-
rophages, and their abundance in TME correlates with a
poor prognosis [15].

Cancer immunotherapy, including immune checkpoint
inhibitors, has provided clinical benefit to the treatment of
many BRCA patients through direct or indirect effects on
TILs, reversing the TMEs to immune-permitted environ-
ments from immunosuppressive ones [16]. Promising out-
comes in response to antibodies to programmed cell death
1 (PD-1) or antibodies to programmed cell death ligand
1(PD-L1) therapy for BRCA have been reported in recent
years [17–19]. However, the immune microenvironment of
BRCA remains poorly understood, and this treatment can
only benefit a limited proportion of patients [20, 21]. There-
fore, identification of potential biomarkers is in urgent
clinical need to enhance precision prognosis and therapy
stratification for BRCA patients.

In our study, the gene expression profiles of 1,721 BRCA
patients were analyzed by CIBERSORT and ESTIMATE
algorithm, by which we obtained a comprehensive intratu-
moral immune landscape. The immune cell infiltration
(ICI) patterns of BRCA were classified into 3 separate sub-
types according to the infiltration levels of 22 immune cells.
The differentially expressed genes (DEGs) between these
subtypes were further identified, and ICI scores were calcu-
lated to assess the immune landscape of BRCA patients.
Importantly, we demonstrated that ICI scores correlate with
patients’ survival, tumor mutation burden (TMB), neoanti-
gens, and sensitivity to specific drugs. Based on these ICI
scores, we were able to predict the prognosis of patients
and their response to immunotherapy. Together, these find-
ings provide a realistic scenario to stratify BRCA patients for
precision medicine.

2. Materials and Methods

2.1. Source of Cohort Datasets and Immune-Related Data
and Preprocessing. The training datasets of BRCA for this
study were integrated from two separate cohorts (TCGA-
BRCA and Yau-cohort), with only tumor samples retained.
The expression profile data of TCGA-BRCA cohort (consid-
ering only protein-coding mRNA) were downloaded from
The Cancer Genome Atlas (TCGA) database by Genomic
Data tools (https://portal.gdc.cancer.gov/projects/TCGA-
BRCA). The fragments per kilobase million values were
downloaded via TCGAbiolinks [22] package and trans-
formed to transcripts per million, with the ensemble ID
matrix converted to a gene symbol matrix and other forms

for subsequent analysis. The Yau-cohort dataset [23], inte-
grated by Dr. Yau from four studies (GSE2034, GSE5327,
GSE7390, and NKI295), was downloaded from the online
database University of California Santa Cruz (UCSC) Xena
browser (https://xenabrowser.net/). It contains the gene
expression matrix along with clinical information of 682
breast cancer patients. At last, the batch effects caused by
nonbiological technical bias were reduced through “Com-
bat” algorithm [24].

The clinical information for the TCGA-BRCA cohort
was extracted from the pan-cancer data, which included
age, sex, clinicopathological stage, TNM stage, and PAM50
subtype, and only overall survival (OS) was considered.
The Yau-cohort cohort considered OS, age, and PAM50
subtype. A total of 1721 breast cancer samples were gener-
ated after kicking out the samples with incomplete clinical
information and survival time and male breast cancer sam-
ples. To analyze the efficiency of immunotherapy, the R
package IMvigor210CoreBiologies [25] obtained from the
work of Snyder et al. was used as a validation dataset, which
included expression profiles, survival outcomes, and immu-
notherapy response results in metastatic uroepithelial cancer
patients treated with anti-PD-L1 agent atezolizumab.

2.2. Consensus Clustering of TME Immune Cell Infiltration.
The CIBERSORT and ESTIMATE algorithms were com-
bined to reckon the abundance and infiltration levels of
22 immune cell species of the integrated BRCA cohort
[26, 27]. LM22 signature matrix, which provided a gene
expression signature set of 22 immune cell subtypes and
CIBERSORT source code, was downloaded from the CIBER-
SORT website (https://cibersortx.stanford.edu/). Unsuper-
vised clustering analysis of ICI of each sample was
performed using R package “ConsensusClusterPlus” [28],
which classified the tumor ICI pattern of BRCA patients into
different subtypes (maxK, the maximum number of classifi-
cations K = 3). 90% of the samples have been repeated 500
times, ensuring stability of the classification. Calculation of
distances was measured using Spearman’s distance measure
and Ward’s linkage.

2.3. Identification of DEGs between ICI Subtypes and Gene
Signature Generation. To identify genes associated with ICI
patterns, we applied the R package “limma” [29] to deter-
mine the DEGs between different ICI subtypes and plotted
the DEGs heatmap using the “ComplexHeatmap” R package
[30]. The significance cutoff criteria used to distinguish
DEGs were set as fold change ðFCÞ > 1:5 and adjusted false
discovery rate ðFDRÞ < 0:05.

To quantify the ICI pattern of a single tumor patient, we
established a scoring system, ICI gene signature, to confirm
the ICI pattern for each BRCA patient, and we termed it
ICIscore. The steps to establish an ICI gene signature are
as follows: Firstly, the DEGs were analyzed by unsupervised
cluster analysis using the R package “ConsensusCluster-
Plus.” The maximum number of classifications is 3, and
the distances were calculated using Pearson’s distance
measure and complete linkage, which divided the TCGA-
BRCA cohort into 3 genomic clusters, namely, ICI gene
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clusters A, B, and C. And then, Pearson’s correlation analysis
was done on the mRNA expression values of all TCGA
samples with the three gene clusters, and the DEGs with
positive and negative correlation with clustering features
were, respectively, defined as ICI signature genes A and B.
Then, the Boruta algorithm was used to reduce the dimen-
sionality of different ICI signature genes. Finally, two total
scores were calculated using single sample gene set enrich-
ment analysis (ssGSEA): (1) ICI score A which is from ICI
signature gene A and (2) ICI score B which is from ICI sig-
nature gene B: ICI score = ICI score A − ICI scoreB, with
median as the cutoff value to determine the high ICI group
and the low ICI group. When survival analyses were per-
formed with ICI score groups, we only picked out genes
whose P value < 0.05 in the univariate survival analysis.
Principal component analysis (PCA) was used to calculate
the ICI score for each patient, and PCA1 was calculated as
the signature score using PCA: ICI score = jPCA1 positivej
+ jPCA1 negativej. Patients were reclassified as high and
low ICI score groups using the median as the cutoff value.

2.4. Collection and Analysis of Somatic Mutation Data. The
copy number variant (CNV) data of TCGA-BRCA cohort
were obtained from the firehose database (http://gdac
.broadinstitute.org/), and mutant annotation format (MAF)
files were downloaded from the cBioportal database (http://
www.cbioportal.org/). To determine the TMB of BRCA, we
matched TCGA-BRCA MAF files with ICI-related expres-
sion profiles and used the R package “maftools” to calculate
the TMB [31]. Based on the OncodriveCLUST algorithm
[32], we used the positional information of the somatic
mutation sites to cluster the driver genes from different ICI
score groups and used the “maftools” package to draw a
waterfall map of the top 25 driver genes in the two groups.
The CNV analysis was performed with the GenePattern
online analysis tool (https://www.genepattern.org/) and
visualized with the “maftools” package.

2.5. Identification of Sensitive Drugs and Other Biological
Processes Correlated with ICI Gene Signatures. The drug.txt
is a dataset for the sensitivity and response of cancer cells
to therapeutic drugs obtained from the online database
Genomics of Drug Sensitivity in Cancer (GDSC), used to
predict IC50 with R package “pRRophetic” [33, 34]. We
assessed the IC50 values in both ICI score groups using
Wilcoxon’s test, then compared the differences in sensitivity
between ICI score groups on more than 100 drugs, and
graphed the top 12 (according to P value) differentially
response drugs. Wilcoxon’s test was also used to compare
the differential expression of neoantigen between ICI score
groups. Sample data used for predicting neoantigen number
in the TCGA-BRCA cohort were from a research already
published in 2015 by Rooney et al. [35].

Additionally, we separately performed Gene Ontology
(GO) enrichment analysis of ICI gene signatures A and B
via the “org.Hs.eg.db” R package to explore the biological
process, cellular composition, and molecular function that
they may participate in. After differential expression analysis
with the “limma” package for high or low ICI score groups,

the differentially expressed genes were subjected to Gene
Set Enrichment Analysis (GESA), and the gene sets
“h.all.v7.2.symbol” were downloaded from the Molecular
Signatures Database (MSigDB) (http://www.gsea-msigdb
.org/gsea/msigdb) for running GESA analysis. To confirm
the difference in the efficacy of anti-PD-L1 immunotherapy
between the two ICI score groups in the validation cohort,
IMvigor210, objective remission rate bar graphs were plotted
for the ICI score groups using “GSVA” R package [36].

2.6. Statistical Analysis. All statistical analyses were per-
formed using R software (version 3.6.2). Wilcoxon’s test
was used to compare the differences between two groups,
and the Kruskal-Wallis test was used to compare the differ-
ences between more than two groups. The Kaplan-Meier
survival curves were plotted using the R package “survmi-
ner” for different subgroups, such as ICI clusters, ICI gene
clusters, ICI gene signatures, and TMB subgroups, in
relation to survival. Log-rank test was used for statistically
significant differences. The R packages “ComplexHeatmap”
and “ggplot” were used to draw heatmaps, scatter plots,
violin plots, and other plots. Correlation coefficients were
calculated by using Spearman’s analysis. Two-tailed P <
0:05 was considered a statistically significant difference.

3. Results

3.1. The Immune Cell Infiltration (ICI) Landscape in BRCA
Immune Microenvironment. We first performed PCA of
integrated gene expression profiles of 1,721 BRCA patients
from the training cohort consisting of the TCGA-BRCA
and Yau cohorts by using Combat algorithm to eliminate
batch effects across cohorts (Figure 1(a)). Subsequently, we
performed the CIBERSORT algorithm combined with the
ESTIMATE algorithm to determine the abundances of 22
immune cells as well as the enrichment scores of stromal
cells (stromal score) and immune cells (immune score) in
BRCA patients in this cohort (Supplementary Table 1). We
performed an unsupervised cluster analysis of this cohort
by ConsensusClusterPlus R package to divide BRCA
patients into 3 separate subtypes based on ICI patterns,
referred to as ICI clusters I, II, and III, respectively
(Figure 1(b)). A hotspot matrix of correlation coefficients
was created to demonstrate the overall landscape of
interactions among immune cells in the TME of BRCA
patients, including their immune scores and stromal scores
(Figure 1(c)).

To explore the inherent biological differences between
the different ICI subtypes, we compared the composition
of immune cells in the 3 ICI clusters. As shown in
Figure 1(d), ICI cluster I was characterized by high level
M2 macrophages, neutrophils, resting mast cells, activated
natural killer (NK) cells, resting CD4+ T cells, and gamma
delta T cell infiltration; patients from ICI cluster II had a
higher density of memory B cells, activated dendritic cells,
resting dendritic cells, M1 macrophages, monocytes, mem-
ory activated CD4+ T cells, CD8+ T cell, follicular helper T
cells, plasma cells, and regulatory T cells, while ICI cluster
III displayed an increase in naïve B cells, naïve CD4+ T cells,
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Figure 1: The immune-cell infiltration (ICI) landscape in BRCA immune microenvironment. (a) PCA of integration of expression profiles
of TCGA-BRCA and Yau cohorts by Combat algorism to eliminate batch effects of different cohorts. (b) Heatmap with unsupervised
clustering analysis of tumor-infiltrating immune cells in TCGA-BRCA and Yau cohorts. (c) Hotspot plot for correlation matrix of
immune cells in three ICI clusters, including their immune scores and stromal scores. Red indicates positive correlation, and blue
indicates negative correlation. (d) Box plot for abundance of each immune infiltrating cells in the three ICI clusters. The asterisks
represent the statistical P value (Kruskal-Wallis test, ∗P < 0:05, ∗∗P < 0:01, and∗∗∗P < 0:001). (e) Survival analysis for three ICI clusters of
1721 breast cancer patients from TCGA-BRCA and Yau cohorts using Kaplan-Meier curves. The log-rank test showed that P = 0:007.
Violin plots of the differential expression of (f) PD1 and (g) PD-L1 (only for TCGA-BRCA cohort) among the three ICI clusters. The
statistical differences among ICI clusters were compared by the Kruskal-Wallis test (P < 0:001).
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resting NK cells, M0 macrophages, and activated mast cell
infiltration. Survival analysis conducted on these 3 ICI sub-
types showed significant differences among them, with ICI
clusters I and II being associated with better prognosis and
patients in ICI cluster III having a poorer OS (log-rank test,
P = 0:007; Figure 1(e)). In addition, we analyzed the expres-
sion of PD-1 and PD-L1 in each ICI subtype (Figures 1(f)
and 1(g)). The results of Kruskal-Wallis test showed higher
expression of PD-1 and PD-L1 in ICI cluster II, while their
expressions were lowest in ICI cluster III.

3.2. Identification and Comprehensive Analysis of
Immunogenic Gene Clusters. To elucidate the potential char-
acteristics of the different immunophenotypes, we conducted
the limma package to identify DEGs among ICI clusters I, II,
and III (FC = 1:5, FDR = 0:05). Based on the above cutoffs,
we identified 665 DEGs (213 in ICI cluster I, 239 in ICI clus-
ter II, and 213 in ICI cluster III; Supplementary Table 2) and
used the ComplexHeatmap package to generate a heatmap of
all DEGs. Hereafter, we focused our analysis on the TCGA-
BACR cohort as it had comprehensive information on
clinical aspects. We performed an unsupervised clustering
analysis of these DEGs and divided the TCGA-BRCA
cohort into 3 distinct ICI genomic phenotypes, named ICI
gene clusters A, B, and C, respectively (Figure 2(a)). We
defined all above DEGs with positive association with
these 3 ICI gene clusters as ICI signature genes A, while
the rest of DEGs were termed as ICI signature gene B.
By down-dimensioning the ICI signature genes using
Boruta algorithm to reduce redundant genes, we finally
obtained 216 genes in ICI signature gene A and 164 in
ICI signature gene B (Supplementary Table 3).

In Figure 2(b), we figured out the prognostic differences
among these ICI gene clusters, and we confirmed that ICI
gene clusters A and B had a better prognosis, and the
prognosis of ICI gene cluster C was poorer (log-rank test,
P = 0:04). Figures 2(c) and 2(d) show the results of gene
ontology (GO) enrichment analysis of both ICI signature
gene groups in the 3 functional groups, biological process,
cellular component, and molecular function, respectively,
which were significantly enriched in items related to immu-
nity. Given that the immune system can exert both antitu-
mor and protumor activities [37, 38], we next explored the
level of immune infiltration cells among different gene clus-
ters, and the box plot showed that gene clusters A and B with
favorable prognosis had higher immune and stromal scores
(Figure 2(e)). Besides, there were the highest infiltrations of
M1 macrophages, CD8+ T cells, memory activated CD4+ T
cells, memory B cells, activated dendritic cells, and plasma
cells within ICI gene cluster B, showing the active immune
phenotype. In contrast, the level of infiltration of these TILs
was very low in the poorly prognosed ICI gene cluster C.
The three ICI gene clusters also showed significant differ-
ences in the expression levels of PD-1 and PD-L1. There
were relatively high expression levels of PD-1 and PD-L1
in ICI gene clusters A and B, while they had the lowest
expression levels in ICI gene cluster C (Figures 2(f) and
2(g)). From the above comprehensive analysis of immuno-
genic gene clusters, we demonstrated that there is a signifi-

cant correlation between the level of ICI and prognosis in
different gene clusters.

3.3. Immune-Cell Infiltration (ICI) Score Construction. Given
the individual heterogeneity of the TME, we quantified the
ICI pattern of BRCA patients. We calculated 2 summary
scores, that is, ICI score A from ICI signature gene A and
ICI score B from ICI signature gene B, using ssGSEA. The
ICI score of each patient of TCGA-BRCA cohort was
determined using the difference between ICI scores A and
B. The high ICI score group and low ICI score group were
defined using median as the cutoff value. The distribution
of ICI scores and survival of patients in ICI gene clusters
are shown in Figure 3(a) and Supplementary Table 4.

We further analyzed the differences in the expression of
immunoreactive-related genes in the high or low ICI score
groups to determine the status of immune activity or toler-
ance in each group. Among them, CD274, HAVCR2, CTLA4,
LAG3, PDCD1, and IDO1 were chosen as immune inhibitory
genes [39], while CD8A, GZMA, PRF1, CXCL10, CXCL9,
TNF, and TBX2 as immune stimulatory genes [40]. As we
can observe in Figure 3(b), the expression levels of all
immunoreactive-related genes were significantly elevated in
the high ICI score group. We performed the differential
expression analysis of genes in the high or low ICI score
groups using the limma package (FC = 1:5, FDR = 0:05)
and obtained 890 DEGs. Our subsequent GSEA analysis of
these DEGs showed that the high ICI score group was
significantly enriched in allograft rejection, E2F targets,
G2M checkpoint, interferon gamma response, and MYC
target V2 pathways, while the low ICI score group was
mainly enriched in epithelial mesenchymal transition,
estrogen response early, protein secretion, TGF-β signaling,
and UV response pathways (Figures 3(c) and 3(d) and
Supplementary Table 5). In addition, when we compared
the relationship between ICI scores and prognosis, we only
selected genes with P value < 0.05 in the univariate
survival analysis. We then used PCA to calculate the ICI
score for each patient. Patients were redivided into high
and low ICI score groups using the median value as the
cutoff. The Kaplan-Meier curves in Figure 3(e) indicated
that patients of the high ICI score group have significantly
longer survival than those of the low ICI score group (log-
rank test, P = 0:033).

3.4. Correlation between Immune Cell Infiltration (ICI)
Scores and Tumor Mutation Burden (TMB). Numerous
studies have suggested that the immune phenotype may be
associated with alterations in the tumor genome [41, 42].
To validate this hypothesis, we tested the relationship
between TMB and ICI scores in the TCGA-BRCA cohort
and found that patients in the high ICI score group had
more TMB (Kruskal test, P = 0:002; Figure 4(a)). Besides,
the scatter plot of the association between TMB and ICI
scores also showed a positive association (Pearson’s
correlation = 0:324, P < 0:001; Figure 4(b)). In our stratified
survival analysis, which divided patients into different sub-
groups according to TMB and ICI scores (calculated by
using PCA), we found that patients with high level of TMB
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Figure 2: Identification and comprehensive analysis of immunogenic gene clusters. (a) Heatmap with unsupervised clustering analysis of all
DEGs in the three ICI patterns, dividing TCGA-BRCA patients into three genomic clusters, defined as ICI gene clusters A-C. Rows represent
genes and columns represent samples. (b) Survival analysis for the three ICI gene clusters in TCGA-BRCA patients using Kaplan-Meier
curves. The log-rank test showed that P = 0:04. Functional annotation of ICI gene clusters (c) A and (d) B using GO enrichment
analysis. The circle size of the bubble plots represented the number of enriched genes. (e) Box plot for abundance of each immune
infiltrating cell in the three ICI gene clusters. The asterisks represented the statistical P value (Kruskal-Wallis test, ∗P < 0:05, ∗∗P < 0:01,
and‑P < 0:001). Violin plots of the differential expression of (f) PD1 and (g) PD-L1 among the three ICI gene clusters. The statistical
differences among ICI gene clusters were compared by Kruskal-Wallis test (P < 0:001).
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and low ICI scores had the worst prognosis (log-rank test,
P = 0:039; Figure 4(c)). We also performed clustering analy-
sis by using the position information of somatic mutations
to identify mutation driver genes in different ICI score sub-
groups, and mapped the waterfall of the top 25 most signif-
icant mutation driver genes using the maftools package
(Figure 4(d)). Expression profiles of patients in distinct ICI
score groups in the TCGA-BRCA cohort were matched with
CNV data downloaded from the firehose database, and the
GISTIC2.0 module of the GenePattern online tool was used
to analyze the status of CNV in different groups. The results
from the analysis were visualized using the maftools package
and are presented in Figures 4(e) (high ICI score group) and
Figure 4(f) (low ICI score group). We found that both high
and low ICI score groups had many copy number variations,
but high ICI score groups had more CNVs. The regions sig-
nificantly amplified in the high ICI score group of patients
involved 11q13.3, 17q12, and 8q24.21, while 11q13.3
spanned the CCND1 gene. Significantly deleted regions in
the high ICI score group included 9p21.3, which spans the
tumor suppressor genes CDKN2A and CDKN2B.

3.5. Integrative Analysis of Immune Cell Infiltration (ICI)
Scores on Drug Response. Furthermore, we selected genes
from various pathways related to tumor immune processes
and classified the immune-related genes of our interest into
gene set 1 (Figure 5(a)) and gene set 2 (Figure 5(b)) and then
created a heatmap of these genes in the high or low ICI score
groups. From Figure 5(a), we found that most of the genes
related to diverse immune pathways were upregulated in
the high ICI score group and downregulated in the low ICI
score group. Figure 5(b) shows a significant increase of genes
related to pathways such as cytotoxic cells, effector memory
CD8, macrophages, and T cells in the high ICI score group.
Both Figures 5(a) and 5(b) show that patients with Luminal
A BRCA are mostly enriched in the low ICI score group. In
addition to TMB, we also noted the positive correlation
between ICI scores and neoantigens (Wilcoxon’s test, P <
0:001) (Figure 5(c)). We downloaded a dataset of drugs sen-
sitive to the treatment of cancer from the GDSC website,
from which we compared the differences in the sensitivity
of high or low ICI groups to more than 100 drugs used to
treat tumors (Supplementary Table 6). The top 12 drugs
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Figure 3: Immune-cell infiltration (ICI) score construction. (a) Alluvial diagram showing the distribution of ICI gene clusters in different
ICI score groups and survival status of TCGA-BRCA patients. (b) Box plot for the relative expression of immune checkpoint-associated
genes in different ICI score groups. Among them, CD274, HAVCR2, CTLA4, LAG3, PDCD1, and IDO1 are inhibitory genes, and CD8A,
GZMA, PRF1, CXCL10, CXCL9, TNF, and TBX2 are stimulatory genes. The asterisks represent the statistical P-value (Kruskal-Wallis
test, ∗P < 0:05, ∗∗P < 0:01, and∗∗∗P < 0:001). GESA enrichment maps for (c) high and (d) low ICI score groups. Allograft rejection, E2F
targets, G2M checkpoint, interferon gamma response, and MYC target V2 pathways were enriched in the high ICI score group.
Epithelial mesenchymal transition, estrogen response early, protein secretion, TGF-β signaling, and UV response pathways were
enriched in the low ICI score group. (e) Survival analysis for high or low ICI score groups (calculated by using PCA) in TCGA-BRCA
patients using Kaplan-Meier curves. The log-rank test showed that P = 0:033.
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Figure 4: Correlations between immune-cell infiltration (ICI) scores and tumor mutation burden (TMB). (a) Differences in TMB between
high or low ICI score groups (Kruskal test, P < 0:001). (b) Scatter plot of correlation between ICI scores and the mutational burden in the
TCGA-BRCA cohort (Pearson’s correlation =0.133, P < 0:001). (c) Stratified survival analysis of TCGA-BRCA patients stratified by both
TMB and ICI scores (calculated by using PCA) using Kaplan Meier curves. The log-rank test showed that P = 0:039. (d) Waterfall plots
of the top 25 significantly driver mutated genes in the high (left) or low (right) ICI score groups. Each column represents for individual
patients, and the bar plot on top shows the TMB. GISTIC2.0-based copy number variant (CNV) analysis of (e) high or (f) low ICI score
groups visualized by maftools.
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with differential treatment responses according to P value
ranking are illustrated in Figure 5(d), from which it was
clear that high ICI scores may lead to increased sensitivity
of BRCA to drugs such as imatinib, CCT007093, MK-2206,
CHIR-99021, FH535, and KIN001-135. All the above results
may provide new perspectives for investigating the role of
individual gene mutations in the immune microenvironment
and immunotherapy of cancer.

In recent years, blockade therapy targeting immune
checkpoints has emerged as a mainstream immunotherapy
with the potential to significantly improve the survival of
cancer patients, but only small numbers of patients have
responded to this treatment [17, 18]. Markers that can
effectively predict the effect of immunotherapy are limited;
therefore, to validate the role of ICI scores constructed in
BRCA patients in predicting patients’ response to immuno-
therapy, we selected the IMvigor210 cohort of metastatic
uroepithelial cancer patients with immunotherapy received
as a validation cohort to test the potential to forecast
immunotherapy benefit of the ICI scores we established.
Encouragingly, in the IMvigor210 cohort, we found that
ICI scores were in a significantly positive correlation with
the objective response rate (ORR) for anti-PD-L1 therapy
(Wilcoxon’s test, P = 0:002; Figure 5(e)). Moreover, in this

cohort, patients with high ICI scores had significantly longer
survival (log-rank test, P = 0:02; Figure 5(f)). What is more,
we found the high ICI score group had a higher ORR after
anti-PD-L1 treatment (Figure 5(g)). In conclusion, these
data suggest that the ICI scores can predict the responses
to immunotherapy.

4. Discussion

Immunotherapy has changed the treatment and prognosis
for many malignancies. In recent years, immunotherapy
using checkpoint blockades have proven to generate unprec-
edented and durable responses in patients suffering from
diverse cancers [43–45]. In BRCA, building on the favorable
results of the Phase III IMpassion130 trial [46] and the
Phase III KEYNOTE-355 trial [47], the U.S. FDA has accel-
erated approval for the PD-L1 inhibitor atezolizumab as well
as the PD-1 inhibitor pembrolizumab, combined with che-
motherapy, for the treatment of locally advanced or metasta-
tic PD-L1-positive triple-negative BRCA (TNBC) patients in
2019 and 2020, respectively [48]. In recent years, there has
been increasing evidence that patterns of the immune sys-
tem play a key role in determining both the response to
treatment and survival of BRCA patients [49]. These data
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Figure 5: Integrative analysis of immune-cell infiltration (ICI) scores on drug response. Heatmap of immune-related genes in different ICI
score groups. The immune-related genes were divided into two groups: (a) gene set 1 and (b) gene set 2. The ICI cluster, ICI gene cluster,
PAM50 subtype, age, tumor stage, and survival status were used as patient annotations. (c) Differences in neoantigen between high or low
ICI score groups. (d) Comparison of drug sensitivity in high or low ICI score groups (Wilcoxon’s test, P < 0:001). The box plots show the
differences in IC50 values for the top 12 drugs sorted by P value. (e) Boxplot for the distribution of ICI scores of patients in different anti-
PD-L1 therapeutic responses in IMvigor210 cohort (Wilcoxon’s test, P = 0:002). (f) Survival analysis for high or low ICI score groups in
IMvigor210 cohort patients using Kaplan-Meier curves. The log-rank test showed that P = 0:02. (g) Bar graph showing the proportion of
patients with various clinical responses (responder: complete response (CR)/partial response (PR); nonresponder: stable disease (SD)/
progressive disease (PD)) to anti-PD-L1 immunotherapy in the high or low ICI score groups of the IMvigor210 cohort.
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and the clinical use of immune checkpoint blockers in a vari-
ety of solid tumors have also demonstrated striking success
[50, 51]. Stromal TIL concentration shows a linear relation-
ship with clinical outcome in different clinical subtypes of
BRCA [49]. For example, it has been shown that HER-2+
BRCA and TNBC have higher levels of TILs and PD-L1
expression in TME at diagnosis than luminal BRCA, which
can be predicted to benefit more from adjuvant and neoad-
juvant chemotherapy, are more likely to respond to PD-1/
PD-L1 blockade, and have longer survival [52–54]. How-
ever, the use of immunotherapy in BRCA remains limited
and only a minority of patients would benefit from it. Poor
immunogenicity, T-cell infiltration in TME, and enhanced
immunosuppression have been identified as potential chal-
lenges to successful immunotherapy for BRCA [55]. There-
fore, the development of more efficient biomarkers for
predicting response and resistance to therapy, as well as the
recognition of environmental modifiers to immunity (muta-
tional load, neoantigens, and sensitive combination therapeu-
tics), is important to improve the efficacy of immunotherapy.
It will be of great help to choose the appropriate timing and
patients for immunotherapy, patients should be detected
markers of immunotherapy response when initial diagnosis,
and immunotherapy should be used in treatment as early as
possible [56]. In this study, we developed a method to quantify
ICI in TME of BRCA patients—ICI score, and our results
demonstrated that this score can be used as a predictor to
assess the effectiveness and prognosis of immunotherapy.

Many studies have demonstrated the importance of an
abundant and active BRCA TME in forecasting the response
of tumor patients to immunotherapy [57, 58]. For example,
tumors with increased TILs, positive PD-L1, and elevated
tumor-infiltrating CD8+ T cells exhibit a higher response
rate to immunotherapy. Such tumors are considered
“inflamed” or “hot” tumors. In contrast, “noninflamed” or
“cold” tumors with lower TILs, PD-L1 expression, and
CD8+ T cell infiltration are less likely to respond to immu-
notherapy [56]. In this study, we analyzed the ICI patterns
of 1721 BRCA samples from the integrated cohort and clas-
sified BRCA into three separate immune subtypes and ICI
clusters I, II, and III. The results of our analysis suggested
that patients in ICI clusters I and II with higher TILs infiltra-
tion, PD-L1 expression, and high immune scores had longer
survival. This is consistent with previous studies [35, 59].
These findings illustrated that the preexistent immune
responses in TME can have an impact on the prognosis of
BRCA patients as well as on the degree of benefit from
immunotherapy. However, it is not sufficient to rely solely
on the immune phenotype of the tumor to project the
response to immunotherapy. Alterations of certain mole-
cules during tumor progression may also interfere with the
interaction between immune cells or between immune cells
and tumor cells, thereby disrupting the balance of immune
resistance and activation in tumors [38]. However, how the
genomic landscape in BRCA shapes and influences antitu-
mor immunity is not yet clear.

Systematic analysis of tumor immune-related gene
expression profiles can shed further light on the relationship
between tumor genetics and TME. Genetic characterization

may also assist in identifying suitable BRCA patients for
immunotherapy. We clustered the cohort again based on
DEGs between the previous ICI clusters, divided TCGA-
BRCA patients into new ICI gene clusters, and defined ICI
signature genes. Among these different ICI gene clusters,
we discovered that ICI gene cluster C with the lowest levels
of activated TILs, immune score, and stromal score exhib-
ited an immune exhausted phenotype. On the contrary,
ICI gene clusters A and B had higher inflammatory cell infil-
tration, immune scores, and stromal scores. And we also
observed that ICI gene cluster B had a promising immune
activation phenotype because of the highest content of mac-
rophages, resting NK cells, memory activated CD4+ T cells,
plasma cells, CD8+ T cells, etc. [60, 61]. Meanwhile, patients
in ICI gene cluster B had the highest expression of PD-1 and
PD-L1 and a more optimistic prognosis. We speculated that
patients with ICI gene cluster B may be more likely to benefit
from immunotherapy. The opposite is the case for patients
with ICI gene cluster C, probably because their immune
exhausted phenotype may lead to tumor cells evading the
immune system and not responding to immunotherapy.
Our study is following previous studies [62]. These findings
suggested that combining the synthetic features of ICI pro-
files with expression patterns of immune-related genes in
TME may become a promising approach to developing
more precise immunotherapy regimens for BRCA patients.

Due to the high individual heterogeneity of TME, we
used the ssGSEA method to establish ICI scores for patients
in the TCGA-BRCA cohort and to quantify the ICI pattern
for each patient. We found that the expression of most of
the immune-related genes was higher in the group that
had high ICI scores. GSEA analysis of the low ICI score
group showed significantly enriched in TGF-β signaling
pathway, epithelial mesenchymal transition, etc. Notably,
TGF-β is a gene that is known to be involved in immuno-
suppressive pathways [37]. In addition, we found that our
constructed ICI scores also correlated with TMB and neoan-
tigens that also could predict response to immunotherapy
[42, 63]. TMB levels and the number of neoantigens were
significantly higher in the high ICI score group. Both sur-
vival analysis and stratified analysis indicated that higher
ICI scores conferred a better prognosis for patients. More-
over, patients with high TMB and low ICI scores had the
shortest survival. We also observed that different ICI score
groups were associated with altered tumor driver genes
(e.g., PI3KCA, TP53, and CDH1) and gene copy number.
High or low ICI scores also showed significant differences
in sensitivity to certain other target drugs.

The ability of our established ICI score to predict
response to immunotherapy in tumor patients was validated
in a cohort of metastatic uroepithelial cancer patients treated
with anti-PD-L1 agents (IMvigor210) [64]. Our results
showed that ICI scores were significantly higher in patients
who had a response to immunotherapy than in those who
did not. Patients from the high ICI score group had longer
survival and higher ORR. However, lacking data from a
cohort of BRCA patients receiving immunotherapy, addi-
tional prospective trials are needed to validate these predic-
tors that we constructed in the TCGA-BRCA cohort. In
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summary, our analysis has revealed environmental and
genetic mechanisms affecting tumor-immune interactions
in BRCA, and our constructed ICI score may serve as a pow-
erful marker for predicting patient prognosis and the extent
of benefit from immunotherapy.

5. Conclusions

In summary, our analysis has revealed environmental and
genetic mechanisms affecting tumor-immune interactions
in BRCA, and our constructed ICI score may serve as a pow-
erful marker for predicting patient prognosis and the extent
of benefit from immunotherapy.
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