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Abstract Radially polarised solid-state lasers offer at-
tractive improvements in materials processing applica-
tions, but selection and stabilisation of the appropriate
radially polarised mode is much more challenging than
for the fundamental mode. Here, we demonstrate auto-
mated stabilisation of a radially polarised Ho:YAG laser
by utilising laser mode analysis computed from a convo-
lutional neural network. The neural network predicts the
transverse modal content from single plane intensity im-
ages with high accuracy on timescales of a few millisec-
onds, permitting real-time self-adjustment of the laser
cavity. Radially polarised emission has been maintained
across a 30 W range of pump power, with the stabilisa-
tion of other arbitrary laser modes using the same neural
network also demonstrated.

1 Introduction

Radially polarised transverse laser modes have a polari-
sation which continuously varies across the beam profile,
with the electric field directed radially outwards from the
centre of the mode. This leads to a polarisation discon-
tinuity at the centre of the mode and hence the inten-
sity falls to zero at the centre, resulting in a ‘donut-like’
appearance. The lowest order radially polarised mode
shares the same intensity profile as the LGy, (Laguerre-
Gaussian) transverse mode, and has shown particular
promise in applications such as high-resolution imaging
[1], particle acceleration [2] and laser materials process-
ing [3]. To this end, the use of radially polarised modes
in melt shearing laser cutting applications may enable
cutting efficiencies which are 1.5-2 times higher than
linearly polarised and circularly polarised beams [4].
Solid-state laser sources are an attractive platform
for generating radial polarisation as thermally-induced
stress birefringence and the associated bifocussing in the
gain medium can be exploited to permit relatively easy

selection of a radially polarised mode [5]. However, due
to the thermal dependence of this process, it is generally
difficult to control the output power via variation of the
pump power without adversely affecting the laser’s radial
polarisation purity.

Furthermore, extra-cavity control of the laser power
at a specific pump power cannot be accomplished with a
half-wave plate and polariser in the same way that it can
be for a linearly polarised laser source, so an alternative
strategy is required whereby the laser resonator length
is continuously re-optimised as the pump power is varied
to maintain mode purity. While the beam degradation
produced by a change in the pump power can generally
be compensated by adjusting the laser cavity, the need
for frequent optimisation of the system restricts the real-
world usage of radially polarised sources.

If the modal purity optimisation could be performed
in real-time by an automated feedback protocol, the im-
plementation of radially polarised sources in a variety
of applications would be much more attractive. To this
end, a range of simple, fast and accurate techniques for
the measurement of modal purity have recently been
demonstrated using deep learning convolutional neural
networks (CNNs) [6-8]. Such use of a CNN has been
shown to allow high-accuracy predictions of laser modal
content using single plane intensity distributions on a
sub-millisecond timescale [7,8].

In this paper, we present the application of a bespoke
CNN as a pseudo-quantitative modal purity metric to
enable real-time feedback control of a radially polarised
solid-state laser. By predicting the modal content of the
laser output from two cameras (with and without a lin-
ear polariser), a control algorithm can be employed to
automatically adjust the laser cavity in order to improve
the quality of the desired transverse laser mode. As such,
we demonstrate self-stabilisation of a radially polarised
Ho:YAG laser across 30 W of pump power variation.

Recently, there have been major advancements in
pattern recognition algorithms facilitated by the use of



deep learning CNNs, which can extract characteristics or
features of an image rather than identifying more sim-
plistic linear relationships between patterns of data and
a series of labels and parameters. To process an image
with a CNN, the input is subject to a multitude of convo-
lutional filter transformations, arranged in a ‘deep’ series
of layers. By connecting the layer outputs with optimally
weighted nodes in the network (known as ‘neurons’), the
convolutional filters are able to assign image characteris-
tics such as edges, arrangements of edges and collections
of arrangements to an output which documents the fea-
tures recognised by the network [9].

The relationship between the data characteristics and
the labels/parameters is learned automatically in an it-
erative process, where the CNN is provided with a set of
training data containing known features. Initial neuron
weightings are iteratively adjusted in order to minimise
the error between the output feature vector from the
network and the known feature vector from the training
data. The main computational load of implementing the
CNN occurs in the training of the network, which may
take many hours, such that the final optimised algorithm
is very fast at performing data feature recognition.

The speed of CNNs and their ability to predict pa-
rameters from complex non-linear problems lends them
to applications in optical physics where dynamics can be
difficult to model and takes place on short timescales.
Recent applications have included laser mode-locking
[10], imaging [11,12], microscopy [13] and coherent beam
combination [14]. Furthermore, CNNs have been used to
rapidly predict the relative modal compositions of solid-
state and fibre laser beam profiles [7,8].

In contrast, traditional (non-CNN) modal content
prediction algorithms have relied on experimentally [15—
19] or computationally [20-22] intensive methods, re-
quiring computation times on the order of hundredths
of a second or more [23]. As such, CNN modal predic-
tion techniques can enable substantially faster and com-
putationally less intensive optimisation of the transverse
mode in a solid-state laser when compared to the more
traditional algorithms that are used for the computation
of modal content.

2 Machine learning mode identification

Here, we have developed a bespoke CNN for the anal-
ysis of single plane intensity images, typical of those
obtained from low-cost CCD and microbolometer-based
beam imaging cameras. Figure 1 provides a visualisation
of the structure of the final CNN, where a 120 x 120 8-
bit greyscale image is input into the network, with the
image size stipulated by the camera sensor resolution
(FLIR Lepton 3.0). The input image is then convolved
with 8 filters of 5 x 5 dimensions, after which a recti-
fied linear unit (ReLU) layer is used to set any resulting
negative values to zero. The rectified convolution results
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Fig. 1 Visualisation of the CNN structure.

are then down-sampled using a pooling layer with size 2
and stride 2, where the input is divided into rectangu-
lar regions and the maximum of each region is output
as the down-sampled result. These steps are repeated
twice more, with the original image becoming increas-
ingly down-sampled while the convolution processes in-
crease the contrast of key features.

A fully connected layer with 4,096 elements then mul-
tiplies the outputs of the previous layers by a weighting
vector and adds a bias vector, where the values of the
weight and bias are established during the training pro-
cedure. A dropout layer is then included which discards
20% of the weighted data to help prevent over-fitting
in the next layer. Finally, another fully connected layer
with N elements (where N is the number of modes) is
combined with a regression layer in order to estimate the
modal composition of the input image.

To train the CNN, 23,000 120 x 120 8-bit greyscale
images of transverse laser modes were generated from
the equations for the intensity distributions of Hermite-
Gaussian (HG) and Laguerre-Gaussian (LG) modes. In
particular, nine transverse laser modes were selected,
based on those that were observed during construction
of the Ho:YAG laser: HGgg, HGg1, HG11, LGg1, LGgo,
LG03, LGQ47 LG05 and LGOG.

The generated beam profiles each had randomised
orientations, positions, radii, and intensities in order to
emulate realistic experimental conditions that would be
encountered during operation. Incoherent combinations
of neighbouring mode orders were also included in the
data, with the intensity-normalised percentage modal
composition of each training image recorded in a label
vector. Images comprised of filtered Gaussian noise were
used to train the CNN to recognise the absence of a laser
beam on the camera.

The network was trained for 2,000 epochs on a Nvidia
RTX 2060 GPU, taking approximately 80 minutes to
complete. The training iteratively increased the scale of
the parameters until the improvement in the theoret-
ical modal content prediction accuracy was negligible.
A second set of 7,300 randomised beam images was also
generated theoretically, to be used as the validation data
for the training process.
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Fig. 2 Optical schematic of the 2090 nm radially polarised Ho:YAG rod laser.

3 Radially polarised Ho:YAG laser

To demonstrate machine learning stabilisation of a radi-
ally polarised transverse mode, an end-pumped Ho:YAG
laser was constructed, as shown in Figure 2. The laser
cavity was formed between a highly reflective (HR, R
= 99.9% at 2.1 pm) mirror and a partially reflective out-
put coupler (OC, R = 50% at 2.1 um) mirror, both being
plane-parallel and anti-reflection (AR)-coated at 1.9 pm.
The laser had a 250 mm total cavity length and con-
tained a Ho: YAG rod crystal that was 40 mm long, 5 mm
in diameter and 0.5 at.% Ho-doped, with AR coatings
for 1.9 and 2.1 pm wavelengths on each end. The rod was
mounted in a water-cooled copper heatsink maintained
at 18°C and positioned close to the HR mirror.

An f = 40 mm intra-cavity lens was positioned close
to the output coupler mirror. This lens was mounted
onto a computer-controlled translation stage driven by
a stepper motor, allowing the separation between the
lens and the output coupler to be varied. The lens posi-
tion was used to control the size of the cavity modes
within the Ho:YAG crystal and therefore modify the
overlap with the population inversion, allowing the pre-
ferred laser modes to be selected.

The radially polarised mode of interest shares the
same donut-shaped intensity profile with the azimuthally
polarised and randomly polarised LGp; modes. As a re-
sult, these modes are essentially degenerate (in terms of
the spatial overlap with the inversion distribution), hav-
ing nominally the same threshold pump power. However,
this degeneracy can be lifted by the thermally-induced
stress birefringence and bifocussing in the Ho:YAG crys-
tal by virtue of different thermal lens strengths, which
can be exploited to favour preferred lasing on the radially
polarised mode via careful optimisation of the resonator
length and/or position of the intra-cavity lens [24].

The Ho:YAG laser was pumped by a home-built 52
W thulium fibre laser, locked to 1907 nm with a pair of
fibre Bragg gratings. The fibre laser itself was pumped
by three 793 nm fibre-coupled diode lasers (DILAS 35 W
in a 105/125 um 0.22 NA fibre) combined by a 3x1 pump
combiner (Gooch and Housego). The 1907 nm laser light
was emitted from a 10pm 0.15 NA single-mode pas-
sive fibre, with a maximum measured beam propagation
factor (M?) of 1.03 at 52 W. This was spliced onto a
105/125um 0.22 NA multimode fibre, which itself was
spliced onto a low-loss adiabatically-tapered 100/200 pm
capillary fibre with an outer fluorine-doped 0.22 NA ring

(tapered and spliced by Gooch and Housego), with a
theoretical M? of around 36. The capillary fibre condi-
tioned the pump beam into a ring of light which was
relay-imaged into the Ho:YAG crystal via a 6x tele-
scope, formed from an f = 25 mm and an f = 150 mm
plano-convex lens pair. As a result, the pump telescope
produced a 1.2 mm diameter pump spot waist within
the Ho:YAG crystal. The ring-shaped pump spot profile
was utilised as it can allow maximum extraction of the
population inversion when the laser is operating on the
donut-shaped LGg; cavity mode.

A verification of the laser’s ability to operate on the
radially polarised transverse mode was undertaken for
28 W of launched 1907 nm pump power and 6 W of
2090 nm output power. When the intra-cavity lens po-
sition was optimised for radially polarised emission, the
M? was measured to be 2.0 and 2.1 in the = and y axes
respectively (Figure 3), which closely matches the the-
oretical value of 2.0 for a pure LG transverse mode.
The polarisation purity of the radially polarised laser
was also measured in order to evaluate the desired laser
output quality. To do so, a sample of the laser beam was
passed through a linear polariser and onto an imaging
sensor (FLIR Lepton 3.0), generating a two-lobe inten-
sity pattern that is aligned with the polariser axis for an
incident radially polarised beam (Figure 4). Variation of
the beam intensity was mapped along a circular path
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Fig. 3 Beam propagation factor (M?) of the radially po-

larised Ho:YAG laser at 28 W of incident pump power, indi-

cating a high quality LGoi1 mode. Inset: near-field 1907 nm

pump beam profile.



Fig. 4 (a) Radially polarised beam profile at 28 W of in-
cident pump power; (b)—(e) two-lobe intensity patterns for
the radially polarised beam transmitted through a linear po-
lariser. The polariser axis is orientated as shown by the ar-
rows.

which intersects both maxima of the two-lobe pattern.
The intensity map, I, was fitted to the function

I =a+bsin?(0 +c¢) + dsin(f + f), (1)

where 6 is the azimuthal angle and a, b, ¢, d and f are
the fitting coefficients. From Equation 1, the radial po-
larisation purity can be defined as

b

P= a+b’ @
where P can take values between 0 and 1, such that 0
represents no radial polarisation in the beam and 1 indi-
cates a perfect radially polarised transverse mode. With
28 W of 1907 nm pump power and 6 W of 2090 nm
Ho:YAG output, the linear polariser was rotated in four
45° increments (Figure 4b—e). By maintaining a two-lobe
pattern at diagonal orientations of the polariser (Figure
4d and 4e), the emission is confirmed as being radially
polarised and not an incoherent superposition of degen-
erate HGg; and HGy transverse modes. For the four
polariser images of Figure 4, the lowest polarisation pu-
rity value of the Ho: YAG source was measured to be P =
0.96, indicating a high-purity radially polarised output.

4 Gradient descent locking

Figure 5 shows a conceptual schematic of the process
used to lock the laser onto the desired transverse mode.
The output beam from the Ho:YAG laser is imaged onto
two cameras via a 50/50 beamsplitter. The second cam-
era is placed behind a linear polarisation filter in a ro-
tation mount, allowing simultaneous imaging of the in-
tensity profile and polarisation state of the laser. The
camera images are then fed into the CNN, which out-
puts a vector defining the predicted modal composition.

If the laser emission has some presence of higher-
order transverse modes with more complicated polarisa-
tion states, the vectorial output from the CNN will differ
between the polarised and unpolarised camera views. For
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Fig. 5 Feedback loop schematic for the stabilisation of mode
purity with a convolutional neural network (CNN). The po-
larised and unpolarised beam profiles are analysed for modal
composition, with the Ho:YAG intra-cavity lens adjusted to
optimise the cavity for the chosen transverse mode.

instance in the case of the radially polarised LGg; mode,
the CNN will identify an LGy, mode for the unpolarised
camera and an HGy; mode for the polarised camera (like
those shown in Figure 4). Based on the output of the
CNN, a direction of travel is sent to the stepper motor
that moves the intra-cavity lens. From multiple passes
through the control loop, the lens position is optimised
for emission of the desired transverse mode.

To lock onto a particular mode, a one-dimensional
gradient descent algorithm has been implemented. The
CNN provides a vector output of the predicted modal
content for the beam, F , whilst the desired mode is de-
fined by a separate vector, l_j, which take the form:

F = [FiGoys Fricus, Ficors * FlGums FiGa.)  (3)

D = [Ducy, DGy, Dicors * DLGums DiiGan). (4)

From this, we can define an error function as the length
between the two vectors given as

_IB-F

F="U8

: (5)
such that

\/(FHGOD - DHG00)2 + (FLGuxn - DLGnm)2
\/N )
(6)
where N is the number of components in the vector. If
there is a good match between the desired and obtained
vectors, the error function (E) will tend to 0, which in-
creases up to 1 as the mode quality deviates from the
desired mode. When locking with the gradient descent
algorithm, the error function is calculated for a series
of neighbouring positions of the intra-cavity lens. The
gradient of the error at these positions is then calcu-
lated and a step of the central position is undertaken

E =
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in the direction specified by the negative gradient. This
process is then repeated until the error reaches an ac-
ceptable threshold, or can be left running if changes in
the underlying parameter space are expected.

In this implementation, we are specifically interested
in locking onto the radially polarised LGg; transverse
mode. A single error vector from just one camera image
would not be sufficient as the intensity distribution and
the polarisation distribution must be fed into the locking
algorithm to distinguish the radial, azimuthal and ran-
dom LGy; polarisations. As such, an error signal from
the polarised camera (FEpo1) and the unpolarised camera
(Eunpot) are combined as

Etot = Epol : Eunpol~ (7)

Here, the intra-cavity lens position was dithered to take
5 equally spaced readings of the error function either side
of the current central position, after which the gradient
is calculated and a positional step made in the direction
of reduced error. The process is then repeated on the
new central position. The spacing of the dithered posi-
tions was set to be small compared to the distances over
which the laser modal content would change, such that
the dithering should not greatly affect the modal quality.

5 Experimental results
5.1 Without mode stabilisation

When the mode stabilisation system was not in use, the
output purity varied quite significantly as the 1907 nm
pump power was increased (red line in Figure 6 and Fig-
ures 7a—e). At pump powers below 28 W (but above
threshold), the laser emission was a combination of the
fundamental HGgg mode and the radially polarised LGy
mode (Figure 7a), dominated by the presence of HGgg
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——Radial LG01 stabilisation

0'2 1 1 1 1 1 1
20 25 30 35 40 45 50

Launched 1907 nm pump power (W)

Fig. 6 Variation of the radial polarisation purity as a func-
tion of incident pump power when the machine learning sta-
bilisation is, or is not, being used.
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stabilisation stabilisation stabilisation
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Fig. 7 Ho:YAG output beam profiles through a linear polar-
isation filter at a selection of 1907 nm pump powers (21-49
W) for the situations with: (a)—(e) no modal stabilisation in
use, (f)—(j) radial LGo; stabilisation in use and (k)—(0) HGgo
stabilisation in use.

and giving P values as low as 0.21. At pump powers close
to 28 W, excellent radial polarisation purity up to P =
1.00 was achieved as the laser cavity had been initially
aligned here. When the pump power increased beyond
28 W, the radial polarisation purity fell rapidly (down
to P = 0.54 at 52 W of pump power) and the output
was increasingly formed of the randomly polarised LGy
transverse mode due to uncompensated changes in the
Ho:YAG thermal lensing.

At 28 W of pump power, the unstabilised laser out-
put demonstrated M? values of 2.0 and 2.1 in the z and y
directions respectively, whilst at 49 W the M? measure-
ment yielded 2.1 and 2.0 in = and y respectively. The
stable M? values across the pump power range suggest
that the beam radius has remained largely consistent
throughout operation of the laser, even when the active
stabilisation system is not being used.

In Figure 8, the situation where no modal stabili-
sation was used has produced the highest output slope
efficiency (67%) and the highest output power level (22
W) as the laser was allowed to adapt it’s modal content
when the thermal lens strength was increasing, finding
other higher-order transverse modes that can operate
with greater gain extraction than the radially polarised
LGy mode.
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Fig. 8 Output power curves for the Ho:YAG laser with ei-
ther no machine learning stabilisation, radial LGo; stabilisa-
tion or fundamental HGgo stabilisation.

5.2 With radial LGg1 stabilisation

When utilising the machine learning feedback system
to provide stabilisation of the radially polarised LGgy
transverse mode, the polarisation purity was maintained
above P = 0.86 for the full range of pump powers (blue
line in Figure 6). The maintenance of high quality ra-
dial polarisation can also be seen from images (f)—(j)
in Figure 7. The radially-stabilised polarisation purity
reached a maximum value of P = 0.95 across the full
range of pump powers. While this maximum polarisa-
tion purity is lower than the unstabilised situation, we
attribute this to the continuous dithering of the intra-
cavity lens, causing the system to oscillate around the
optimal value rather than locking onto it.

With increased pump power, the range of intra-cavity
lens positions that support radially polarised emission is
narrowed. As a result, it is preferable to have very fine
movements of the intra-cavity lens at high pump powers
to ensure that the optimal position is not missed and
the gradient locking approach can still operate appro-
priately. To this end, it is the relatively large step size of
our system that we believe to be the likely cause of the
gradual reduction in polarisation purity, P, as a function
of pump power in the case of active mode stabilisation.
Even so, the beam propagation factor remained effec-
tively unchanged when using radial stabilisation (M2 =
2.0 and Mg = 2.1 at 28 W of pump versus M2 = 2.0
and M?/ = 2.0 at 49 W of pump). To this end, we con-
clude that the machine learning stabilisation system has
maintained a stable beam radius across the full range of
available pump powers.

5.8 With HGyo stabilisation

To explore the versatility of transverse mode stabilisa-
tion with the CNN developed here, the system was al-
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tered to stabilise the laser output on the fundamental
HGgp mode. Such a modification only required the de-
sired mode vector, ﬁ, to be changed (a single line of
code), with no changes to the training data. In Figure
7(k)—(0), it can be seen that HGgg emission was main-
tained at all pump powers. At 49 W of pump power, the
M? of the HGg-stabilised beam was measured to be 1.3
and 1.4 in the z and y axes respectively.

The somewhat poor mode quality can be attributed
to the large spatial mismatch between the HGgg cavity
mode and the ring-shaped 1907 nm pump spot. Here,
the pump spot is much larger than the HGgg transverse
mode, producing diffraction losses of the cavity mode as
well as gain extraction by the higher-order modes that
have more spatial overlap with the ring-shaped inversion
profile. Furthermore, as the HGgg transverse mode sig-
nificantly overlaps with the central un-pumped region of
the Ho:YAG crystal, the HGgy mode has reduced energy
extraction efficiency, a lower output power (18 W) and
a poorer slope efficiency (55%), as shown in Figure 8.

Despite the reduced beam quality observed during
the HGqo stabilisation (a mode which the cavity is not
optimised for), the system has shown the capability to
lock onto an arbitrary transverse mode that it has been
conditioned to identify from the training data set. Such
modal flexibility and stabilisation is attractive for use
in complex materials processing applications where an
assortment of beam profiles and polarisation states can
be used in quick succession for the highest throughput
and minimum additional expense. For more complex vec-
tor beam profiles, it may be necessary to use more than
two beam imaging cameras in order to view the beam
through multiple linear polarisation filters orientated at
different angles simultaneously, while also expanding the
machine learning code and stabilisation loop to incorpo-
rate the additional data inputs.

6 Conclusion

Stress-induced birefringence in solid-state gain media is
a simple method for generating radially polarised trans-
verse laser mode emission, but is typically only optimised
for excellent modal purity and polarisation purity across
a narrow range of output powers.

Here, we have incorporated a real-time feedback sys-
tem to automatically correct for degradation of the ra-
dial polarisation as a function of pump power. The out-
put beam profile from a radially polarised Ho:YAG laser
was imaged with and without a linear polariser, and
analysed by an in-house-developed convolutional neural
network (CNN). Based on the discrepancy between the
laser modal composition and the desired mode of op-
eration, the CNN automatically re-positioned an intra-
cavity lens via a gradient descent algorithm.

Stabilisation of the radially polarised LGy; output
has been demonstrated across a 30 W pump power range,



Stabilisation of transverse mode purity in a radially polarised Ho:YAG laser using machine learning 7

maintaining polarisation purity above P = 0.86 at all
times. In the absence of transverse mode stabilisation,
good polarisation purity was only achieved around one
pump power before degrading into the randomly po-
larised LGg; mode, with P dropping to 0.54 as the pump
power increased. The laser has also been stabilised on the
HGgp mode across the full range of pump powers, follow-
ing a simple modification to the stabilisation code. Utilis-
ing the rapid image processing capabilities that machine
learning can achieve, the ability to generate high pu-
rity radially polarised beams at a range of output power
levels without manual cavity re-alignment offers a new
level of flexibility not currently available from radially
polarised laser sources targeted at laser materials pro-
cessing applications.

Supplementary material

The data underpinning this publication can be found in
the University of Southampton repository at
https://doi.org/10.5258 /SOTON/D2142.
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