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Abstract
Radially polarised solid-state lasers offer attractive improvements in materials processing applications, but selection and 
stabilisation of the appropriate radially polarised mode is much more challenging than for the fundamental mode. Here, we 
demonstrate automated stabilisation of a radially polarised Ho:YAG laser by utilising laser mode analysis computed from a 
convolutional neural network. The neural network predicts the transverse modal content from single plane intensity images 
with high accuracy on timescales of a few milliseconds, permitting real-time self-adjustment of the laser cavity. Radially 
polarised emission has been maintained across a 30 W range of pump power, with the stabilisation of other arbitrary laser 
modes using the same neural network also demonstrated.

1  Introduction

Radially polarised transverse laser modes have a polarisation 
which continuously varies across the beam profile, with the 
electric field directed radially outwards from the centre of 
the mode. This leads to a polarisation discontinuity at the 
centre of the mode and hence the intensity falls to zero at 
the centre, resulting in a ‘donut-like’ appearance. The low-
est order radially polarised mode shares the same intensity 
profile as the LG01 (Laguerre-Gaussian) transverse mode, 
and has shown particular promise in applications such as 
high-resolution imaging [1], particle acceleration [2] and 
laser materials processing [3]. To this end, the use of radially 
polarised modes in melt shearing laser cutting applications 
may enable cutting efficiencies which are 1.5–2 times higher 
than linearly polarised and circularly polarised beams [4].

Solid-state laser sources are an attractive platform for 
generating radial polarisation as thermally-induced stress 
birefringence and the associated bifocussing in the gain 
medium can be exploited to permit relatively easy selection 
of a radially polarised mode [5]. However, due to the thermal 

dependence of this process, it is generally difficult to control 
the output power via variation of the pump power without 
adversely affecting the laser’s radial polarisation purity.

Furthermore, extra-cavity control of the laser power at a 
specific pump power cannot be accomplished with a half-
wave plate and polariser in the same way that it can be for a 
linearly polarised laser source, so an alternative strategy is 
required whereby the laser resonator length is continuously 
re-optimised as the pump power is varied to maintain mode 
purity. While the beam degradation produced by a change in 
the pump power can generally be compensated by adjusting 
the laser cavity, the need for frequent optimisation of the 
system restricts the real-world usage of radially polarised 
sources.

If the modal purity optimisation could be performed in 
real-time by an automated feedback protocol, the implemen-
tation of radially polarised sources in a variety of applica-
tions would be much more attractive. To this end, a range of 
simple, fast and accurate techniques for the measurement of 
modal purity have recently been demonstrated using deep 
learning convolutional neural networks (CNNs) [6–8]. Such 
use of a CNN has been shown to allow high-accuracy pre-
dictions of laser modal content using single plane intensity 
distributions on a sub-millisecond timescale [7, 8].

In this paper, we present the application of a bespoke 
CNN as a pseudo-quantitative modal purity metric to enable 
real-time feedback control of a radially polarised solid-state 
laser. By predicting the modal content of the laser output 
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from two cameras (with and without a linear polariser), a 
control algorithm can be employed to automatically adjust 
the laser cavity to improve the quality of the desired trans-
verse laser mode. As such, we demonstrate self-stabilisation 
of a radially polarised Ho:YAG laser across 30 W of pump 
power variation.

Recently, there have been major advancements in pat-
tern recognition algorithms facilitated by the use of deep 
learning CNNs, which can extract characteristics or features 
of an image rather than identifying more simplistic linear 
relationships between patterns of data and a series of labels 
and parameters. To process an image with a CNN, the input 
is subject to a multitude of convolutional filter transforma-
tions, arranged in a ‘deep’ series of layers. By connecting 
the layer outputs with optimally weighted nodes in the net-
work (known as ‘neurons’), the convolutional filters are able 
to assign image characteristics such as edges, arrangements 
of edges and collections of arrangements to an output which 
documents the features recognised by the network [9].

The relationship between the data characteristics and the 
labels/parameters is learned automatically in an iterative 
process, where the CNN is provided with a set of training 
data containing known features. Initial neuron weightings 
are iteratively adjusted to minimise the error between the 
output feature vector from the network and the known fea-
ture vector from the training data. The main computational 
load of implementing the CNN occurs in the training of the 
network, which may take many hours, such that the final 
optimised algorithm is very fast at performing data feature 
recognition.

The speed of CNNs and their ability to predict parameters 
from complex non-linear problems lends them to applica-
tions in optical physics where dynamics can be difficult to 
model and take place on short timescales. Recent applica-
tions have included laser mode-locking [10], imaging [11, 
12], microscopy [13] and coherent beam combination [14]. 
Furthermore, CNNs have been used to rapidly predict the 
relative modal compositions of solid-state and fibre laser 
beam profiles [7, 8].

In contrast, traditional (non-CNN) modal content predic-
tion algorithms have relied on experimentally [15–19] or 
computationally [20–22] intensive methods, requiring com-
putation times on the order of hundredths of a second or 
more [23]. As such, CNN modal prediction techniques can 
enable substantially faster and computationally less intensive 
optimisation of the transverse mode in a solid-state laser 
when compared to the more traditional algorithms that are 
used for the computation of modal content.

2 � Machine learning mode identification

Here, we have developed a bespoke CNN for the analysis of 
single plane intensity images, typical of those obtained from 
low-cost CCD and microbolometer-based beam imaging 
cameras. Figure 1 provides a visualisation of the structure 
of the final CNN, where a 120 × 120 8-bit greyscale image 
is input into the network, with the image size stipulated by 
the camera sensor resolution (FLIR Lepton 3.0).

The input image is then convolved with eight filters of 
5 × 5 dimensions, after which a rectified linear unit (ReLU) 
layer is used to set any resulting negative values to zero. The 
rectified convolution results are then down-sampled using 
a pooling layer with size 2 and stride 2, where the input is 
divided into rectangular regions and the maximum of each 
region is output as the down-sampled result. These steps 
are repeated twice more, with the original image becoming 
increasingly down-sampled while the convolution processes 
increase the contrast of key features.

A fully connected layer with 4096 elements then multi-
plies the outputs of the previous layers by a weighting vector 
and adds a bias vector, where the values of the weight and 
bias are established during the training procedure. A dropout 
layer is then included which discards 20% of the weighted 
data to help prevent over-fitting in the next layer. Finally, 
another fully connected layer with N elements (where N is 
the number of modes) is combined with a regression layer to 
estimate the modal composition of the input image.

To train the CNN, 23,000 120 × 120 8-bit greyscale 
images of transverse laser modes were generated from the 
equations for the intensity distributions of Hermite-Gaussian 
(HG) and Laguerre-Gaussian (LG) modes. In particular, nine 
transverse laser modes were selected, based on those that 
were observed during construction of the Ho:YAG laser: 
HG00 , HG01 , HG11 , LG01 , LG02 , LG03 , LG04 , LG05 and LG06.

The generated beam profiles each had randomised orien-
tations, positions, radii, and intensities to emulate realistic 
experimental conditions that would be encountered during 

Fig. 1   Visualisation of the CNN structure
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operation. Incoherent combinations of neighbouring mode 
orders were also included in the data, with the intensity-
normalised percentage modal composition of each training 
image recorded in a label vector. Images comprised of fil-
tered Gaussian noise were used to train the CNN to recog-
nise the absence of a laser beam on the camera.

The network was trained for 2000 epochs on a Nvidia 
RTX 2060 GPU, taking approximately 80 min to complete. 
The training iteratively increased the scale of the param-
eters until the improvement in the theoretical modal content 
prediction accuracy was negligible. A second set of 7300 
randomised beam images was also generated theoretically, 
to be used as the validation data for the training process.

3 � Radially polarised Ho:YAG laser

To demonstrate machine learning stabilisation of a radially 
polarised transverse mode, an end-pumped Ho:YAG laser 
was constructed, as shown in Fig. 2. The laser cavity was 
formed between a highly reflective (HR, R = 99.9% at 2.1 
μm ) mirror and a partially reflective output coupler (OC, R 
= 50% at 2.1 μ m) mirror, both being plane-parallel and anti-
reflection (AR)-coated at 1.9 μ m. The laser had a 250 mm 
total cavity length and contained a Ho:YAG rod crystal that 
was 40 mm long, 5 mm in diameter and 0.5 at.% Ho-doped, 
with AR coatings for 1.9 and 2.1 μ m wavelengths on each 
end. The rod was mounted in a water-cooled copper heatsink 
maintained at 18◦ C and positioned close to the HR mirror.

An f = 40 mm intra-cavity lens was positioned close to 
the output coupler mirror. This lens was mounted onto a 
computer-controlled translation stage driven by a stepper 
motor, allowing the separation between the lens and the 
output coupler to be varied. The lens position was used to 
control the size of the cavity modes within the Ho:YAG 
crystal and therefore modify the overlap with the population 
inversion, allowing the preferred laser modes to be selected.

The radially polarised mode of interest shares the same 
donut-shaped intensity profile with the azimuthally polar-
ised and randomly polarised LG01 modes. As a result, these 
modes are essentially degenerate (in terms of the spatial 
overlap with the inversion distribution), having nominally 
the same threshold pump power. However, this degeneracy 
can be lifted by the thermally-induced stress birefringence 

and bifocussing in the Ho:YAG crystal by virtue of differ-
ent thermal lens strengths, which can be exploited to favour 
preferred lasing on the radially polarised mode via careful 
optimisation of the resonator length and/or position of the 
intra-cavity lens [24].

The Ho:YAG laser was pumped by a home-built 52 
W thulium fibre laser, locked to 1907 nm with a pair of 
fibre Bragg gratings. The fibre laser itself was pumped by 
three 793 nm fibre-coupled diode lasers (DILAS 35 W in a 
105/125 μm 0.22 NA fibre) combined by a 3 × 1 pump com-
biner (Gooch and Housego). The 1907 nm laser light was 
emitted from a 10 μm 0.15 NA single-mode passive fibre, 
with a maximum measured beam propagation factor (M2 ) 
of 1.03 at 52 W. This was spliced onto a 105/125 μm 0.22 
NA multimode fibre, which itself was spliced onto a low-
loss adiabatically-tapered 100/200 μm capillary fibre with 
an outer fluorine-doped 0.22 NA ring (tapered and spliced 
by Gooch and Housego), with a theoretical M 2 of around 36. 
The capillary fibre conditioned the pump beam into a ring 
of light which was relay-imaged into the Ho:YAG crystal 
via a 6 × telescope, formed from an f = 25 mm and an f = 
150 mm plano-convex lens pair. As a result, the pump tel-
escope produced a 1.2 mm diameter pump spot waist within 
the Ho:YAG crystal. The ring-shaped pump spot profile was 
utilised as it can allow maximum extraction of the popu-
lation inversion when the laser is operating on the donut-
shaped LG01 cavity mode.

A verification of the laser’s ability to operate on the radi-
ally polarised transverse mode was undertaken for 28 W of 
launched 1907 nm pump power and 6 W of 2090 nm output 
power. When the intra-cavity lens position was optimised 
for radially polarised emission, the M 2 was measured to be 
2.0 and 2.1 in the x and y axes respectively (Fig. 3), which 
closely matches the theoretical value of 2.0 for a pure LG

01
 

transverse mode. 
The polarisation purity of the radially polarised laser was 

also measured to evaluate the desired laser output quality. 
To do so, a sample of the laser beam was passed through a 
linear polariser and onto an imaging sensor (FLIR Lepton 
3.0), generating a two-lobe intensity pattern that is aligned 
with the polariser axis for an incident radially polarised 
beam (Fig. 4).

Fig. 2   Optical schematic of the 2090 nm radially polarised Ho:YAG rod laser
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Variation of the beam intensity was mapped along a cir-
cular path which intersects both maxima of the two-lobe 
pattern. The intensity map, I, was fitted to the function

where � is the azimuthal angle and a, b, c, d and f are the 
fitting coefficients. From Eq. 1, the radial polarisation purity 
can be defined as

where P can take values between 0 and 1, such that 
0 represents no radial polarisation in the beam and 1 
indicates a perfect radially polarised transverse mode. 
With 28 W of 1907 nm pump power and 6 W of 2090 nm 
Ho:YAG output, the linear polariser was rotated in four 45◦ 
increments (Fig. 4b–e). By maintaining a two-lobe pattern 
at diagonal orientations of the polariser (Fig. 4d and e), the 
emission is confirmed as being radially polarised and not 

(1)I = a + b sin2(� + c) + d sin(� + f ),

(2)P =
b

a + b
,

an incoherent superposition of degenerate HG01 and HG10 
transverse modes. For the four polariser images of Fig. 4, the 
lowest polarisation purity value of the Ho:YAG source was 
measured to be P = 0.96, indicating a high-purity radially 
polarised output.

4 � Gradient descent locking

Figure 5 shows a conceptual schematic of the process used 
to lock the laser onto the desired transverse mode.

The output beam from the Ho:YAG laser is imaged onto 
two cameras via a 50/50 beamsplitter. The second camera is 
placed behind a linear polarisation filter in a rotation mount, 
allowing simultaneous imaging of the intensity profile and 
polarisation state of the laser. The camera images are then 
fed into the CNN, which outputs a vector defining the pre-
dicted modal composition.

If the laser emission has some presence of higher-order 
transverse modes with more complicated polarisation states, 
the vectorial output from the CNN will differ between the 
polarised and unpolarised camera views. For instance in 
the case of the radially polarised LG01 mode, the CNN will 
identify an LG01 mode for the unpolarised camera and an 
HG01 mode for the polarised camera (like those shown in 
Fig. 4). Based on the output of the CNN, a direction of travel 
is sent to the stepper motor that moves the intra-cavity lens. 
From multiple passes through the control loop, the lens 
position is optimised for emission of the desired transverse 
mode.

To lock onto a particular mode, a one-dimensional 
gradient descent algorithm has been implemented. The CNN 
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Fig. 3   Beam propagation factor (M2 ) of the radially polarised 
Ho:YAG laser at 28 W of incident pump power, indicating a high 
quality LG

01
 mode. Inset: near-field 1907 nm pump beam profile

Fig. 4   a Radially polarised beam profile at 28 W of incident pump 
power; b–e two-lobe intensity patterns for the radially polarised beam 
transmitted through a linear polariser. The polariser axis is orientated 
as shown by the arrows

Fig. 5   Feedback loop schematic for the stabilisation of mode purity 
with a convolutional neural network (CNN). The polarised and unpo-
larised beam profiles are analysed for modal composition, with the 
Ho:YAG intra-cavity lens adjusted to optimise the cavity for the cho-
sen transverse mode
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provides a vector output of the predicted modal content for 
the beam, � , whilst the desired mode is defined by a separate 
vector, � , which take the form:

From this, we can define an error function as the length 
between the two vectors given as

such that

where N is the number of components in the vector. If there 
is a good match between the desired and obtained vectors, 
the error function (E) will tend to 0, which increases up to 1 
as the mode quality deviates from the desired mode. When 
locking with the gradient descent algorithm, the error func-
tion is calculated for a series of neighbouring positions of 
the intra-cavity lens. The gradient of the error at these posi-
tions is then calculated and a step of the central position is 
undertaken in the direction specified by the negative gradi-
ent. This process is then repeated until the error reaches an 
acceptable threshold, or can be left running if changes in the 
underlying parameter space are expected.

In this implementation, we are specifically interested in 
locking onto the radially polarised LG01 transverse mode. A 
single error vector from just one camera image would not 
be sufficient as the intensity distribution and the polarisation 
distribution must be fed into the locking algorithm to distin-
guish the radial, azimuthal and random LG01 polarisations. 
As such, an error signal from the polarised camera ( Epol ) and 
the unpolarised camera ( Eunpol ) are combined as

Here, the intra-cavity lens position was dithered to take 5 
equally spaced readings of the error function either side of 
the current central position, after which the gradient is calcu-
lated and a positional step made in the direction of reduced 
error. The process is then repeated on the new central posi-
tion. The spacing of the dithered positions was set to be 
small compared to the distances over which the laser modal 
content would change, such that the dithering should not 
greatly affect the modal quality.

(3)� = [FHG00
,FHG11

,FLG01
,⋯FLGnm

,FHGnm
]

(4)� = [DHG00
,DHG11

,DLG01
,⋯DLGnm

,DHGnm
].

(5)E =
‖� − �‖
√
N

,

(6)E =

�
(FHG00

− DHG00
)2 +⋯ + (FLGnm

− DLGnm
)2

√
N

,

(7)Etot = Epol ⋅ Eunpol.
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not, being used

Fig. 7   Ho:YAG output beam profiles through a linear polarisation fil-
ter at a selection of 1907 nm pump powers (21–49 W) for the situa-
tions with: a–e no modal stabilisation in use, f–j radial LG
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 stabilisa-
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5 � Experimental results

5.1 � Without mode stabilisation

When the mode stabilisation system was not in use, the out-
put purity varied quite significantly as the 1907 nm pump 
power was increased (red line in Figs. 6 and 7a–e).

At pump powers below 28 W (but above threshold), the 
laser emission was a combination of the fundamental HG00 
mode and the radially polarised LG01 mode (Fig. 7a), domi-
nated by the presence of HG00 and giving P values as low 
as 0.21. At pump powers close to 28 W, excellent radial 
polarisation purity up to P = 1.00 was achieved as the laser 
cavity had been initially aligned here. When the pump power 
increased beyond 28 W, the radial polarisation purity fell 
rapidly (down to P = 0.54 at 52 W of pump power) and the 
output was increasingly formed of the randomly polarised 
LG01 transverse mode due to uncompensated changes in the 
Ho:YAG thermal lensing.

At 28 W of pump power, the unstabilised laser output 
demonstrated M 2 values of 2.0 and 2.1 in the x and y direc-
tions respectively, whilst at 49 W the M 2 measurement 
yielded 2.1 and 2.0 in x and y respectively. The stable M 2 
values across the pump power range suggest that the beam 
radius has remained largely consistent throughout operation 
of the laser, even when the active stabilisation system is not 
being used.

In Fig. 8, the situation where no modal stabilisation was 
used has produced the highest output slope efficiency (67% ) 
and the highest output power level (22 W) as the laser was 
allowed to adapt its modal content when the thermal lens 
strength was increasing, finding other higher-order trans-
verse modes that can operate with greater gain extraction 
than the radially polarised LG01 mode.

5.2 � With radial LG
01

 stabilisation

When utilising the machine learning feedback system to 
provide stabilisation of the radially polarised LG01 trans-
verse mode, the polarisation purity was maintained above 
P = 0.86 for the full range of pump powers (blue line in 
Fig. 6). The maintenance of high quality radial polarisation 
can also be seen from images (f)–(j) in Fig. 7. The radially-
stabilised polarisation purity reached a maximum value of 
P = 0.95 across the full range of pump powers. While this 
maximum polarisation purity is lower than the unstabilised 
situation, we attribute this to the continuous dithering of the 
intra-cavity lens, causing the system to oscillate around the 
optimal value rather than locking onto it.

With increased pump power, the range of intra-cavity 
lens positions that support radially polarised emission 
is narrowed. As a result, it is preferable to have very fine 
movements of the intra-cavity lens at high pump powers 
to ensure that the optimal position is not missed and the 
gradient locking approach can still operate appropriately. To 
this end, it is the relatively large step size of our system that 
we believe to be the likely cause of the gradual reduction 
in polarisation purity, P, as a function of pump power in 
the case of active mode stabilisation. Even so, the beam 
propagation factor remained effectively unchanged when 
using radial stabilisation (M2

x
 = 2.0 and M 2

y
 = 2.1 at 28 W of 

pump versus M 2
x
 = 2.0 and M 2

y
 = 2.0 at 49 W of pump). To 

this end, we conclude that the machine learning stabilisation 
system has maintained a stable beam radius across the full 
range of available pump powers.

5.3 � With HG
00

 stabilisation

To explore the versatility of transverse mode stabilisation 
with the CNN developed here, the system was altered to 
stabilise the laser output on the fundamental HG00 mode. 
Such a modification only required the desired mode vector, 
� , to be changed (a single line of code), with no changes to 
the training data. In Fig. 7k–o, it can be seen that HG00 emis-
sion was maintained at all pump powers. At 49 W of pump 
power, the M 2 of the HG00-stabilised beam was measured to 
be 1.3 and 1.4 in the x and y axes respectively.

The somewhat poor mode quality can be attributed to the 
large spatial mismatch between the HG00 cavity mode and 
the ring-shaped 1907 nm pump spot. Here, the pump spot 
is much larger than the HG00 transverse mode, producing 
diffraction losses of the cavity mode as well as gain 
extraction by the higher-order modes that have more spatial 
overlap with the ring-shaped inversion profile. Furthermore, 
as the HG00 transverse mode significantly overlaps with the 
central un-pumped region of the Ho:YAG crystal, the HG00 
mode has reduced energy extraction efficiency, a lower 
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output power (18 W) and a poorer slope efficiency (55% ), 
as shown in Fig. 8.

Despite the reduced beam quality observed during the 
HG00 stabilisation (a mode which the cavity is not optimised 
for), the system has shown the capability to lock onto an 
arbitrary transverse mode that it has been conditioned to 
identify from the training data set. Such modal flexibility 
and stabilisation is attractive for use in complex materials 
processing applications where an assortment of beam pro-
files and polarisation states can be used in quick succession 
for the highest throughput and minimum additional expense. 
For more complex vector beam profiles, it may be necessary 
to use more than two beam imaging cameras to view the 
beam through multiple linear polarisation filters orientated 
at different angles simultaneously, while also expanding the 
machine learning code and stabilisation loop to incorporate 
the additional data inputs.

6 � Conclusion

Stress-induced birefringence in solid-state gain media is a 
simple method for generating radially polarised transverse 
laser mode emission, but is typically only optimised for 
excellent modal purity and polarisation purity across a nar-
row range of output powers.

Here, we have incorporated a real-time feedback system 
to automatically correct for degradation of the radial polari-
sation as a function of pump power. The output beam profile 
from a radially polarised Ho:YAG laser was imaged with 
and without a linear polariser, and analysed by an in-house-
developed convolutional neural network (CNN). Based 
on the discrepancy between the laser modal composition 
and the desired mode of operation, the CNN automatically 
re-positioned an intra-cavity lens via a gradient descent 
algorithm.

Stabilisation of the radially polarised LG01 output has 
been demonstrated across a 30 W pump power range, main-
taining polarisation purity above P = 0.86 at all times. In the 
absence of transverse mode stabilisation, good polarisation 
purity was only achieved around one pump power before 
degrading into the randomly polarised LG01 mode, with P 
dropping to 0.54 as the pump power increased. The laser 
has also been stabilised on the HG00 mode across the full 
range of pump powers, following a simple modification to 
the stabilisation code. Utilising the rapid image processing 
capabilities that machine learning can achieve, the ability 
to generate high purity radially polarised beams at a range 
of output power levels without manual cavity re-alignment 
offers a new level of flexibility not currently available from 
radially polarised laser sources targeted at laser materials 
processing applications.
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