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Abstract

Radially polarised solid-state lasers offer attractive improvements in materials processing applications, but selection and
stabilisation of the appropriate radially polarised mode is much more challenging than for the fundamental mode. Here, we
demonstrate automated stabilisation of a radially polarised Ho: YAG laser by utilising laser mode analysis computed from a
convolutional neural network. The neural network predicts the transverse modal content from single plane intensity images
with high accuracy on timescales of a few milliseconds, permitting real-time self-adjustment of the laser cavity. Radially
polarised emission has been maintained across a 30 W range of pump power, with the stabilisation of other arbitrary laser

modes using the same neural network also demonstrated.

1 Introduction

Radially polarised transverse laser modes have a polarisation
which continuously varies across the beam profile, with the
electric field directed radially outwards from the centre of
the mode. This leads to a polarisation discontinuity at the
centre of the mode and hence the intensity falls to zero at
the centre, resulting in a ‘donut-like’ appearance. The low-
est order radially polarised mode shares the same intensity
profile as the LG, (Laguerre-Gaussian) transverse mode,
and has shown particular promise in applications such as
high-resolution imaging [1], particle acceleration [2] and
laser materials processing [3]. To this end, the use of radially
polarised modes in melt shearing laser cutting applications
may enable cutting efficiencies which are 1.5-2 times higher
than linearly polarised and circularly polarised beams [4].
Solid-state laser sources are an attractive platform for
generating radial polarisation as thermally-induced stress
birefringence and the associated bifocussing in the gain
medium can be exploited to permit relatively easy selection
of a radially polarised mode [5]. However, due to the thermal
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dependence of this process, it is generally difficult to control
the output power via variation of the pump power without
adversely affecting the laser’s radial polarisation purity.

Furthermore, extra-cavity control of the laser power at a
specific pump power cannot be accomplished with a half-
wave plate and polariser in the same way that it can be for a
linearly polarised laser source, so an alternative strategy is
required whereby the laser resonator length is continuously
re-optimised as the pump power is varied to maintain mode
purity. While the beam degradation produced by a change in
the pump power can generally be compensated by adjusting
the laser cavity, the need for frequent optimisation of the
system restricts the real-world usage of radially polarised
sources.

If the modal purity optimisation could be performed in
real-time by an automated feedback protocol, the implemen-
tation of radially polarised sources in a variety of applica-
tions would be much more attractive. To this end, a range of
simple, fast and accurate techniques for the measurement of
modal purity have recently been demonstrated using deep
learning convolutional neural networks (CNNs) [6-8]. Such
use of a CNN has been shown to allow high-accuracy pre-
dictions of laser modal content using single plane intensity
distributions on a sub-millisecond timescale [7, 8].

In this paper, we present the application of a bespoke
CNN as a pseudo-quantitative modal purity metric to enable
real-time feedback control of a radially polarised solid-state
laser. By predicting the modal content of the laser output
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from two cameras (with and without a linear polariser), a
control algorithm can be employed to automatically adjust
the laser cavity to improve the quality of the desired trans-
verse laser mode. As such, we demonstrate self-stabilisation
of a radially polarised Ho: YAG laser across 30 W of pump
power variation.

Recently, there have been major advancements in pat-
tern recognition algorithms facilitated by the use of deep
learning CNNs, which can extract characteristics or features
of an image rather than identifying more simplistic linear
relationships between patterns of data and a series of labels
and parameters. To process an image with a CNN, the input
is subject to a multitude of convolutional filter transforma-
tions, arranged in a ‘deep’ series of layers. By connecting
the layer outputs with optimally weighted nodes in the net-
work (known as ‘neurons’), the convolutional filters are able
to assign image characteristics such as edges, arrangements
of edges and collections of arrangements to an output which
documents the features recognised by the network [9].

The relationship between the data characteristics and the
labels/parameters is learned automatically in an iterative
process, where the CNN is provided with a set of training
data containing known features. Initial neuron weightings
are iteratively adjusted to minimise the error between the
output feature vector from the network and the known fea-
ture vector from the training data. The main computational
load of implementing the CNN occurs in the training of the
network, which may take many hours, such that the final
optimised algorithm is very fast at performing data feature
recognition.

The speed of CNNs and their ability to predict parameters
from complex non-linear problems lends them to applica-
tions in optical physics where dynamics can be difficult to
model and take place on short timescales. Recent applica-
tions have included laser mode-locking [10], imaging [11,
12], microscopy [13] and coherent beam combination [14].
Furthermore, CNNs have been used to rapidly predict the
relative modal compositions of solid-state and fibre laser
beam profiles [7, 8].

In contrast, traditional (non-CNN) modal content predic-
tion algorithms have relied on experimentally [15-19] or
computationally [20-22] intensive methods, requiring com-
putation times on the order of hundredths of a second or
more [23]. As such, CNN modal prediction techniques can
enable substantially faster and computationally less intensive
optimisation of the transverse mode in a solid-state laser
when compared to the more traditional algorithms that are
used for the computation of modal content.
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2 Machine learning mode identification

Here, we have developed a bespoke CNN for the analysis of
single plane intensity images, typical of those obtained from
low-cost CCD and microbolometer-based beam imaging
cameras. Figure 1 provides a visualisation of the structure
of the final CNN, where a 120 x 120 8-bit greyscale image
is input into the network, with the image size stipulated by
the camera sensor resolution (FLIR Lepton 3.0).

The input image is then convolved with eight filters of
5 X 5 dimensions, after which a rectified linear unit (ReLU)
layer is used to set any resulting negative values to zero. The
rectified convolution results are then down-sampled using
a pooling layer with size 2 and stride 2, where the input is
divided into rectangular regions and the maximum of each
region is output as the down-sampled result. These steps
are repeated twice more, with the original image becoming
increasingly down-sampled while the convolution processes
increase the contrast of key features.

A fully connected layer with 4096 elements then multi-
plies the outputs of the previous layers by a weighting vector
and adds a bias vector, where the values of the weight and
bias are established during the training procedure. A dropout
layer is then included which discards 20% of the weighted
data to help prevent over-fitting in the next layer. Finally,
another fully connected layer with N elements (where N is
the number of modes) is combined with a regression layer to
estimate the modal composition of the input image.

To train the CNN, 23,000 120 x 120 8-bit greyscale
images of transverse laser modes were generated from the
equations for the intensity distributions of Hermite-Gaussian
(HG) and Laguerre-Gaussian (LG) modes. In particular, nine
transverse laser modes were selected, based on those that
were observed during construction of the Ho:YAG laser:
HGy, HG,, HG,, LGy, LGy,, LGy3, LGy, LGys and LGy

The generated beam profiles each had randomised orien-
tations, positions, radii, and intensities to emulate realistic
experimental conditions that would be encountered during
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Fig. 1 Visualisation of the CNN structure
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operation. Incoherent combinations of neighbouring mode
orders were also included in the data, with the intensity-
normalised percentage modal composition of each training
image recorded in a label vector. Images comprised of fil-
tered Gaussian noise were used to train the CNN to recog-
nise the absence of a laser beam on the camera.

The network was trained for 2000 epochs on a Nvidia
RTX 2060 GPU, taking approximately 80 min to complete.
The training iteratively increased the scale of the param-
eters until the improvement in the theoretical modal content
prediction accuracy was negligible. A second set of 7300
randomised beam images was also generated theoretically,
to be used as the validation data for the training process.

3 Radially polarised Ho:YAG laser

To demonstrate machine learning stabilisation of a radially
polarised transverse mode, an end-pumped Ho:YAG laser
was constructed, as shown in Fig. 2. The laser cavity was
formed between a highly reflective (HR, R = 99.9% at 2.1
pm) mirror and a partially reflective output coupler (OC, R
= 50% at 2.1 pm) mirror, both being plane-parallel and anti-
reflection (AR)-coated at 1.9 pm. The laser had a 250 mm
total cavity length and contained a Ho: YAG rod crystal that
was 40 mm long, 5 mm in diameter and 0.5 at.% Ho-doped,
with AR coatings for 1.9 and 2.1 pm wavelengths on each
end. The rod was mounted in a water-cooled copper heatsink
maintained at 18°C and positioned close to the HR mirror.
An f = 40 mm intra-cavity lens was positioned close to
the output coupler mirror. This lens was mounted onto a
computer-controlled translation stage driven by a stepper
motor, allowing the separation between the lens and the
output coupler to be varied. The lens position was used to
control the size of the cavity modes within the Ho:YAG
crystal and therefore modify the overlap with the population
inversion, allowing the preferred laser modes to be selected.
The radially polarised mode of interest shares the same
donut-shaped intensity profile with the azimuthally polar-
ised and randomly polarised LG, modes. As a result, these
modes are essentially degenerate (in terms of the spatial
overlap with the inversion distribution), having nominally
the same threshold pump power. However, this degeneracy
can be lifted by the thermally-induced stress birefringence

and bifocussing in the Ho: YAG crystal by virtue of differ-
ent thermal lens strengths, which can be exploited to favour
preferred lasing on the radially polarised mode via careful
optimisation of the resonator length and/or position of the
intra-cavity lens [24].

The Ho:YAG laser was pumped by a home-built 52
W thulium fibre laser, locked to 1907 nm with a pair of
fibre Bragg gratings. The fibre laser itself was pumped by
three 793 nm fibre-coupled diode lasers (DILAS 35 W in a
105/125 pm 0.22 NA fibre) combined by a 3x1 pump com-
biner (Gooch and Housego). The 1907 nm laser light was
emitted from a 10 pm 0.15 NA single-mode passive fibre,
with a maximum measured beam propagation factor (M?)
of 1.03 at 52 W. This was spliced onto a 105/125 pm 0.22
NA multimode fibre, which itself was spliced onto a low-
loss adiabatically-tapered 100/200 um capillary fibre with
an outer fluorine-doped 0.22 NA ring (tapered and spliced
by Gooch and Housego), with a theoretical M? of around 36.
The capillary fibre conditioned the pump beam into a ring
of light which was relay-imaged into the Ho: YAG crystal
via a 6X telescope, formed from an f =25 mm and an f =
150 mm plano-convex lens pair. As a result, the pump tel-
escope produced a 1.2 mm diameter pump spot waist within
the Ho: YAG crystal. The ring-shaped pump spot profile was
utilised as it can allow maximum extraction of the popu-
lation inversion when the laser is operating on the donut-
shaped LG, cavity mode.

A verification of the laser’s ability to operate on the radi-
ally polarised transverse mode was undertaken for 28 W of
launched 1907 nm pump power and 6 W of 2090 nm output
power. When the intra-cavity lens position was optimised
for radially polarised emission, the M2 was measured to be
2.0 and 2.1 in the x and y axes respectively (Fig. 3), which
closely matches the theoretical value of 2.0 for a pure LG,
transverse mode.

The polarisation purity of the radially polarised laser was
also measured to evaluate the desired laser output quality.
To do so, a sample of the laser beam was passed through a
linear polariser and onto an imaging sensor (FLIR Lepton
3.0), generating a two-lobe intensity pattern that is aligned
with the polariser axis for an incident radially polarised
beam (Fig. 4).

HR 2.1 ym
200 ym =25 mm AR 1.9 pm =40 mm =75 mm
195027W capillary fibre il l
nm I |-=
Tm fibre u 0.5 at.% u [I D 2090 nm
=150 mm 40 x 5 mm R=50% OC
Ho:YAG rod AR 1.9 uym

Fig. 2 Optical schematic of the 2090 nm radially polarised Ho: YAG rod laser
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Fig.3 Beam propagation factor (M2) of the radially polarised
Ho:YAG laser at 28 W of incident pump power, indicating a high
quality LG, mode. Inset: near-field 1907 nm pump beam profile
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Fig.4 a Radially polarised beam profile at 28 W of incident pump
power; b—e two-lobe intensity patterns for the radially polarised beam
transmitted through a linear polariser. The polariser axis is orientated
as shown by the arrows

Variation of the beam intensity was mapped along a cir-
cular path which intersects both maxima of the two-lobe
pattern. The intensity map, /, was fitted to the function

I =a+bsin* (0 + ¢) + dsin(d +f), (1)

where 6 is the azimuthal angle and a, b, ¢, d and f are the
fitting coefficients. From Eq. 1, the radial polarisation purity
can be defined as

b
p=—2_
a+b’ &

where P can take values between 0 and 1, such that
0 represents no radial polarisation in the beam and 1
indicates a perfect radially polarised transverse mode.
With 28 W of 1907 nm pump power and 6 W of 2090 nm
Ho:YAG output, the linear polariser was rotated in four 45°
increments (Fig. 4b—e). By maintaining a two-lobe pattern
at diagonal orientations of the polariser (Fig. 4d and e), the
emission is confirmed as being radially polarised and not
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Fig.5 Feedback loop schematic for the stabilisation of mode purity
with a convolutional neural network (CNN). The polarised and unpo-
larised beam profiles are analysed for modal composition, with the
Ho:YAG intra-cavity lens adjusted to optimise the cavity for the cho-
sen transverse mode

an incoherent superposition of degenerate HG,; and HG
transverse modes. For the four polariser images of Fig. 4, the
lowest polarisation purity value of the Ho: YAG source was
measured to be P = 0.96, indicating a high-purity radially
polarised output.

4 Gradient descent locking

Figure 5 shows a conceptual schematic of the process used
to lock the laser onto the desired transverse mode.

The output beam from the Ho: YAG laser is imaged onto
two cameras via a 50/50 beamsplitter. The second camera is
placed behind a linear polarisation filter in a rotation mount,
allowing simultaneous imaging of the intensity profile and
polarisation state of the laser. The camera images are then
fed into the CNN, which outputs a vector defining the pre-
dicted modal composition.

If the laser emission has some presence of higher-order
transverse modes with more complicated polarisation states,
the vectorial output from the CNN will differ between the
polarised and unpolarised camera views. For instance in
the case of the radially polarised LG, mode, the CNN will
identify an LG,;; mode for the unpolarised camera and an
HG,; mode for the polarised camera (like those shown in
Fig. 4). Based on the output of the CNN, a direction of travel
is sent to the stepper motor that moves the intra-cavity lens.
From multiple passes through the control loop, the lens
position is optimised for emission of the desired transverse
mode.

To lock onto a particular mode, a one-dimensional
gradient descent algorithm has been implemented. The CNN
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provides a vector output of the predicted modal content for
the beam, F, whilst the desired mode is defined by a separate
vector, D, which take the form:

F= [FHG(M)’ FHGII ’ FLGm >t FLGnm’ FHG ] (3)

nm

D = [Dyg,» Pna,,» Prg,,» = Prg,,» Pra,, ) 4)

From this, we can define an error function as the length
between the two vectors given as

o _ID-F| S
N )
such that
\/(FHGUO - DHGOO )2 Tt (FLGnm - DLGnm )2
E = ) (6)

VN

where N is the number of components in the vector. If there
is a good match between the desired and obtained vectors,
the error function (E) will tend to 0, which increases up to 1
as the mode quality deviates from the desired mode. When
locking with the gradient descent algorithm, the error func-
tion is calculated for a series of neighbouring positions of
the intra-cavity lens. The gradient of the error at these posi-
tions is then calculated and a step of the central position is
undertaken in the direction specified by the negative gradi-
ent. This process is then repeated until the error reaches an
acceptable threshold, or can be left running if changes in the
underlying parameter space are expected.

In this implementation, we are specifically interested in
locking onto the radially polarised LG, transverse mode. A
single error vector from just one camera image would not
be sufficient as the intensity distribution and the polarisation
distribution must be fed into the locking algorithm to distin-
guish the radial, azimuthal and random LG, polarisations.
As such, an error signal from the polarised camera (Epol) and

the unpolarised camera (E,, ) are combined as

Elot = Epol : Eunpol' 7)

Here, the intra-cavity lens position was dithered to take 5
equally spaced readings of the error function either side of
the current central position, after which the gradient is calcu-
lated and a positional step made in the direction of reduced
error. The process is then repeated on the new central posi-
tion. The spacing of the dithered positions was set to be
small compared to the distances over which the laser modal
content would change, such that the dithering should not
greatly affect the modal quality.

o
o

Polarisation purity, P
o o
» o

—No stabilisation
——Radial LG01 stabilisation

0.2 * . * * .
20 25 30 35 40 45 50
Launched 1907 nm pump power (W)

Fig.6 Variation of the radial polarisation purity as a function of inci-
dent pump power when the machine learning stabilisation is, or is
not, being used

Without Radial LGg1 HGoo
stabilisation stabilisation stabilisation

(a) (f) (k)
21 W S 0.
(b) (9)
@ (4
Q)
) o
»
()

Fig.7 Ho:YAG output beam profiles through a linear polarisation fil-
ter at a selection of 1907 nm pump powers (21-49 W) for the situa-
tions with: a—e no modal stabilisation in use, f-j radial LG, stabilisa-
tion in use and k—o0 HG stabilisation in use
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Fig.8 Output power curves for the Ho:YAG laser with either no
machine learning stabilisation, radial LGy, stabilisation or fundamen-
tal HG,, stabilisation

5 Experimental results
5.1 Without mode stabilisation

When the mode stabilisation system was not in use, the out-
put purity varied quite significantly as the 1907 nm pump
power was increased (red line in Figs. 6 and 7a—e).

At pump powers below 28 W (but above threshold), the
laser emission was a combination of the fundamental HG,
mode and the radially polarised LG\ mode (Fig. 7a), domi-
nated by the presence of HG, and giving P values as low
as 0.21. At pump powers close to 28 W, excellent radial
polarisation purity up to P = 1.00 was achieved as the laser
cavity had been initially aligned here. When the pump power
increased beyond 28 W, the radial polarisation purity fell
rapidly (down to P = 0.54 at 52 W of pump power) and the
output was increasingly formed of the randomly polarised
LGy, transverse mode due to uncompensated changes in the
Ho:YAG thermal lensing.

At 28 W of pump power, the unstabilised laser output
demonstrated M? values of 2.0 and 2.1 in the x and y direc-
tions respectively, whilst at 49 W the M? measurement
yielded 2.1 and 2.0 in x and y respectively. The stable M?
values across the pump power range suggest that the beam
radius has remained largely consistent throughout operation
of the laser, even when the active stabilisation system is not
being used.

In Fig. 8, the situation where no modal stabilisation was
used has produced the highest output slope efficiency (67%)
and the highest output power level (22 W) as the laser was
allowed to adapt its modal content when the thermal lens
strength was increasing, finding other higher-order trans-
verse modes that can operate with greater gain extraction
than the radially polarised LG,;; mode.
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5.2 With radial LG, stabilisation

When utilising the machine learning feedback system to
provide stabilisation of the radially polarised LG, trans-
verse mode, the polarisation purity was maintained above
P = 0.86 for the full range of pump powers (blue line in
Fig. 6). The maintenance of high quality radial polarisation
can also be seen from images (f)—(j) in Fig. 7. The radially-
stabilised polarisation purity reached a maximum value of
P = 0.95 across the full range of pump powers. While this
maximum polarisation purity is lower than the unstabilised
situation, we attribute this to the continuous dithering of the
intra-cavity lens, causing the system to oscillate around the
optimal value rather than locking onto it.

With increased pump power, the range of intra-cavity
lens positions that support radially polarised emission
is narrowed. As a result, it is preferable to have very fine
movements of the intra-cavity lens at high pump powers
to ensure that the optimal position is not missed and the
gradient locking approach can still operate appropriately. To
this end, it is the relatively large step size of our system that
we believe to be the likely cause of the gradual reduction
in polarisation purity, P, as a function of pump power in
the case of active mode stabilisation. Even so, the beam
propagation factor remained effectively unchanged when
using radial stabilisation (M2 = 2.0 and M? = 2.1 at 28 W of
pump versus Mi = 2.0 and Mi = 2.0 at 49 W of pump). To
this end, we conclude that the machine learning stabilisation
system has maintained a stable beam radius across the full
range of available pump powers.

5.3 With HG, stabilisation

To explore the versatility of transverse mode stabilisation
with the CNN developed here, the system was altered to
stabilise the laser output on the fundamental HG,, mode.
Such a modification only required the desired mode vector,
D, to be changed (a single line of code), with no changes to
the training data. In Fig. 7k—o, it can be seen that HG, emis-
sion was maintained at all pump powers. At 49 W of pump
power, the M? of the HG-stabilised beam was measured to
be 1.3 and 1.4 in the x and y axes respectively.

The somewhat poor mode quality can be attributed to the
large spatial mismatch between the HG,, cavity mode and
the ring-shaped 1907 nm pump spot. Here, the pump spot
is much larger than the HGy, transverse mode, producing
diffraction losses of the cavity mode as well as gain
extraction by the higher-order modes that have more spatial
overlap with the ring-shaped inversion profile. Furthermore,
as the HG, transverse mode significantly overlaps with the
central un-pumped region of the Ho: YAG crystal, the HG,
mode has reduced energy extraction efficiency, a lower
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output power (18 W) and a poorer slope efficiency (55%),
as shown in Fig. 8.

Despite the reduced beam quality observed during the
HG, stabilisation (a mode which the cavity is not optimised
for), the system has shown the capability to lock onto an
arbitrary transverse mode that it has been conditioned to
identify from the training data set. Such modal flexibility
and stabilisation is attractive for use in complex materials
processing applications where an assortment of beam pro-
files and polarisation states can be used in quick succession
for the highest throughput and minimum additional expense.
For more complex vector beam profiles, it may be necessary
to use more than two beam imaging cameras to view the
beam through multiple linear polarisation filters orientated
at different angles simultaneously, while also expanding the
machine learning code and stabilisation loop to incorporate
the additional data inputs.

6 Conclusion

Stress-induced birefringence in solid-state gain media is a
simple method for generating radially polarised transverse
laser mode emission, but is typically only optimised for
excellent modal purity and polarisation purity across a nar-
row range of output powers.

Here, we have incorporated a real-time feedback system
to automatically correct for degradation of the radial polari-
sation as a function of pump power. The output beam profile
from a radially polarised Ho: YAG laser was imaged with
and without a linear polariser, and analysed by an in-house-
developed convolutional neural network (CNN). Based
on the discrepancy between the laser modal composition
and the desired mode of operation, the CNN automatically
re-positioned an intra-cavity lens via a gradient descent
algorithm.

Stabilisation of the radially polarised LGy, output has
been demonstrated across a 30 W pump power range, main-
taining polarisation purity above P = 0.86 at all times. In the
absence of transverse mode stabilisation, good polarisation
purity was only achieved around one pump power before
degrading into the randomly polarised LG, mode, with P
dropping to 0.54 as the pump power increased. The laser
has also been stabilised on the HG, mode across the full
range of pump powers, following a simple modification to
the stabilisation code. Utilising the rapid image processing
capabilities that machine learning can achieve, the ability
to generate high purity radially polarised beams at a range
of output power levels without manual cavity re-alignment
offers a new level of flexibility not currently available from
radially polarised laser sources targeted at laser materials
processing applications.
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