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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

Aeronautics and Astronautics

Thesis for the degree of Doctor of Philosophy

AERODYNAMICS AND ACOUSTICS OF AEROFOILS IN SIMULATED GRID

TURBULENCE

by Stefan Andreas Petrikat

The interaction of turbulence with the leading edges of blades or vanes is a prominent

and often dominant noise source in many applications. Although it is reasonably well

understood for infinite aerofoils, the noise production of finite aerofoils has not been

extensively investigated to date. This thesis presents a methodology to investigate the

interaction of complex geometries, such as finite aerofoils, with homogeneous turbulent

flows. A turbulence creation method for large eddy simulations, capable of generating

evolving homogeneous turbulent flows, is investigated. It is shown that the method is

capable of creating turbulent flows similar to those found in grid turbulence experiments

and allows the turbulence production processes and development of anisotropy to be

investigated. A spectral criterion to quantify the anisotropy of the energy carrying

scales is presented and is shown to provide a more comprehensive description of the

anisotropy than other criteria. For the purpose of validation, and to establish a baseline

for the investigation of the interaction of a finite aerofoil with a turbulent flow, the

problem of a thick, infinite aerofoil immersed in turbulence is studied. Results are

compared against experimental and analytical methods. It is found that the numerical

method is capable of capturing thickness and non-compactness effects on the far-field

noise, demonstrating, for the first time, the applicability of a compressible large eddy

simulation on an unstructured mesh for the investigation of aerofoil interaction noise

with an evolving turbulent flow. Finally, the first investigation of a finite, thick, loaded

aerofoil in a turbulent flow is presented. By comparing the distortion of the turbulent

flow at the leading edge of the finite aerofoil to that of a corresponding infinite aerofoil,

indications are found that the tip effects are limited to the immediate vicinity of the

tip. The aerodynamics of the tip vortex interaction with the turbulence are assessed.

It is found that the simulated tip vortex exhibits vortex wandering, and a wrapping of

turbulent structures around the tip vortex is observed. Present results indicate that the

tip vortex has an asymmetric structure in the vicinity of the aerofoil. The analysis of

surface pressure spectra and cross-correlations, as well as the far-field noise emissions of

subsets of spanwise sections of the finite aerofoil, suggests that while the leading edge

noise is not significantly affected by the finiteness of the geometry, the tip vortex leads
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to a considerable attenuation of the pressure fluctuations on the suction side close to

the trailing edge, and thus to a reduction of the non-compactness effects of the aerofoil

sections closest to the tip.
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Chapter 1

Introduction

As the civil aviation sector expands, its environmental impact on the growing urban

society is felt to an ever-increasing degree. A combination of ecological and econom-

ical concerns have led to calls for aircraft to be less damaging to the environment, as

measured by emissions of carbon dioxide and nitrogen oxide, and to exhibit a higher

propulsive efficiency. At the same time, construction of airports has been held up, and

approach routes have been made more complicated by a population unwilling to suffer

from noise pollution caused by air traffic. Recognizing these demands, the Advisory

Council for Aviation Research and Innovation in Europe (ACARE) has set strict targets

to be reached by 2050: A 75% reduction of carbon dioxide, a 90% reduction of nitrogen

oxide, and a 65% reduction of perceived noise emission relative to the state of the art of

the year 2000 [1].

In many applications, the noise produced by the interaction of turbulence with the lead-

ing edges of blades and vanes of turbomachinery is a significant, and in some cases the

dominant source, of noise. Examples of such cases are the interaction between the wakes

of blades and the downstream vanes in the bypass ducts of shrouded fans, interactions

between pylon wakes and open rotors, or the significant noise being produced when a

boundary layer is ingested by a rotor.

Figure 1.1: Possible boundary layer interactions in case of a CROR.
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2 Chapter 1 Introduction

In particular the latter case has been found to be a prohibitive noise source of Counter

Rotating Open Rotors (CROR), which are often installed at the rear fuselage, where the

boundary layers developing on the fuselage have grown to appreciable sizes. Figure 1.1

illustrates the different noise sources which may occur during the operation of a CROR,

and which have so far prohibited their use in general aviation. Beside the interactions

between boundary layer of the nacelle and the rotor, which cannot be avoided, there is

in some cases also the fuselage boundary layer to consider, which may extend into the

rotor disk. As the blades pass through this boundary layer, they experience unsteady

loading, which leads to additional noise emissions.

Due to the large potential of CRORs, as well as other technologies such as engines

capable of boundary layer ingestion, to contribute to significant fuel savings [2], the

scientific community has been tasked to investigate the processes responsible for noise

production, and to optimize the design of next-generation engines. After significant

advances have been made in the understanding of tonal noise sources [3], a number of

researchers have contributed to the explanation and mitigation of blade self-noise and

wake interaction noise in steady flows [4; 5; 6; 7; 8]. However, the assumption that the

rotor is operating in a steady environment is not always applicable. Especially when the

CROR is installed, pylon, fuselage and under some circumstances wing root vortices, as

well as wing downwash, will all contribute to a considerably unsteady operating regime.

The influence of the pylon was identified quite early, and investigated by, among others,

Hoff [5], Ricouard et al. [9] and Sinnige et al. [10; 11]. However, much is still unknown

about the interactions between the boundary layers and the rotor, in particular in the

vicinity of large geometry changes, such as the tip of the blade.

Although analytical and numerical prediction methods exist for the interaction of blades

with turbulent flow, they are often limited to simple geometries, or require prohibitive

computational resources. Thus, for the development of capable and efficient analytical

prediction tools, a better understanding of the development of turbulent flows as well

as their interaction with aerofoils immersed in them is required.

As can be seen in Figure 1.1, a CROR contains a large number of sources. Without

an understanding of the majority of them, it is impossible to draw conclusions about

the remaining unknown sources when investigating a full CROR interacting with its

installation environment. In order to isolate the sources for unambiguous identification

and characterization, the problem will be simplified to a single blade of constant aerofoil

with a round tip, interacting with a turbulence. This approach is well suited for rotors

where the solidity is low, such as open rotors [12]. The only potential noise sources then

become leading edge noise, where the unsteady flow of the boundary layer interacts with

the leading edge, trailing edge noise, as well as aerofoil tip vortex formation noise.

For the remainder of this thesis, the single blade of constant aerofoil, i.e. the finite-span

wing, will be referred to as the “finite aerofoil”. Conversely, the term “infinite aerofoil”

will be used for a wing of essentially infinite span, which is realised using periodic

boundary conditions.
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1.1 Aims of the research

This research presented in this thesis is aimed to answer the following questions:

1. How is the anisotropy of the energy carrying scales produced and how does it

develop as it approaches an aerofoil?

2. Are large eddy simulations using unstructured grids a tool suitable for the invest-

igation of broadband leading edge interaction noise?

3. What are the characteristics of the tip vortex in a strongly turbulent flow?

4. How large are the impacts of the aerofoil tip geometry on turbulence statistics,

and therefore on noise production?

By doing so, this thesis aims to increase the understanding of anisotropic flows, and

investigate the applicability of large eddy simulations for aeroacoustic investigations for

the investigation of leading edge turbulence interaction noise. Finally, this thesis aims

to provide a proof of concept for the versatility of using LES on unstructured meshes

for aeroacoustic purposes by demonstrating the first numerical investigation of a finite

aerofoil, i.e. a finite-span wing, immersed in a turbulent flow.

1.2 Original contributions

1. The method of inlet-grid turbulence creation, previously proposed by Blackmore [13],

is applied to investigate the origin of anisotropy in turbulent flows produced by

grid-like turbulence generators.

2. A method to quantify the anisotropy of the energy carrying scales on a scale-

by-scale basis is proposed and applied to demonstrate the physical causes of the

complex development of the anisotropy in the vicinity of grid-like turbulence gen-

erators.

3. The inlet-grid method is applied to generate a turbulent flow in a compressible, un-

structured large eddy simulation with an infinite aerofoil immersed in turbulence,

demonstrating the capability of this approach to predict leading edge interaction

noise.

4. The inlet-grid method is applied for the simulation of a finite aerofoil immersed

in turbulence, allowing an in-depth investigation of the leading edge turbulence

interaction and noise emission of a finite aerofoil geometry. Additionally, first

results of the interaction of the tip vortex with surrounding turbulence in the

vicinity of an aerofoil are presented.
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A conference paper containing item 3 has been presented at the 24th AIAA/CEAS

Aeroacoustic Conference [14]. Items 1 and 2 have been submitted for review to the

Journal Physics of Fluids.

1.3 Thesis structure

This thesis presents the application of a flexible turbulence creation method for the

investigation of the development of the anisotropy close to the grid, for a proof-of-

concept case of an infinite aerofoil interacting with a strongly turbulent flow, as well as

for the investigation of a finite aerofoil immersed in homogeneous turbulence. The thesis

is structured as follows:

� Chapter 2 first introduces the basic concepts and nomenclature used in this thesis

and provides a review of the one of the most common methods to produce turbulent

flows, the turbulence grid. The state of the art of current understanding of leading

edge noise is discussed, and the literature concerning finite aerofoil aerodynamics

and aeroacoustics is summarized.

� Chapter 3 introduces the theory underpinning the simulation method of large

eddy simulation, as well as the basics of the hybrid methodology used to compute

far-field noise radiation. The effects of various changes in terms of numerical

schemes and solvers as well as boundary conditions are investigated to establish

comparability between the various simulations presented in this thesis.

� Chapter 4 demonstrates the relevance of the inlet-grid turbulence creation tech-

nique for the investigation of grid-generated turbulent flows and investigates the

development of the anisotropy of the energy carrying scales both qualitatively and

quantitatively. For the latter, the method of computing a spectral anisotropic

Reynolds stress tensor is proposed and applied. Finally, a discussion of Reynolds

effects is presented.

� Chapter 5 presents the use of the inlet-grid turbulence creation method for the

simulation of a leading edge turbulence interaction problem of a thick, infinite

aerofoil, using a compressible large eddy solver on an unstructured grid. The de-

velopment of the anisotropy towards the leading edge is compared to literature.

Aeroacoustic results are computed using a hybrid approach and compared against

the analytical method of Amiet [15]. Additionally, a comparison with an incom-

pressible simulation as well as with a case of an aerofoil at a small angle of attack

is conducted

� Chapter 6 presents the simulation case of a thick and loaded finite aerofoil im-

mersed in a turbulent flow. The aerodynamic phenomena of the interaction of the
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turbulent structures with the leading edge, as well as the interaction of the tip

vortex with the turbulence are investigated. Acoustic results are computed and

compared to the corresponding case of a thick and loaded infinite aerofoil.

� Chapter 7 presents the conclusions, and an outlook to potential future work.





Chapter 2

Literature review

This literature preview will establish the basic theory behind the description and analysis

of turbulent flows, and provide a review of the research conducted using one of the most

common methods to produce turbulence, the turbulent grid, in Sections 2.1 and 2.2,

respectively. The state of the art of knowledge concerning leading edge turbulence

interaction noise is reviewed in Section 2.4. Finally, the literature on finite aerofoils is

discussed in Section 2.5, with a focus on the interaction of tip vortices with turbulent

flows, as well as prior studies investigating the noise emissions of finite aerofoils.

2.1 Basics of turbulence

As the physics of turbulent flows is a vast topic, a comprehensive discussion is beyond

the scope of this literature research. For the purpose of this thesis, a review of the basic

concepts is provided only, with a more complete discussion given in textbooks such as

by Pope [16]. This section will review some of these concepts important when discussing

turbulence, and establish the nomenclature used in this thesis.

2.1.1 The statistical description of turbulence

Since turbulence is a highly complex phenomenon, it cannot be described as straight-

forward as mean or laminar flows. In order to be able to characterize it, it is necessary

use the methods of statistics. Given a velocity signal U , the signal can be split into a

steady and an unsteady part:

Ui = ui + 〈Ui〉, (2.1)

where u is the unsteady or fluctuating velocity, and 〈U〉 is the ensemble average of U

over time. The index i has the values 1, 2, 3 for the three flow components u1, u2 and

7
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u3 of streamwise, transverse and spanwise velocity fluctuations, respectively.

Similarly, the pressure p can be decomposed as:

p = p′ + 〈p〉, (2.2)

with p′ as the unsteady or fluctuating pressure and 〈p〉 as the ensemble average of p over

time.

An important quantity to describe the turbulent flow are the correlations, which quantify

the extent of coherent structures in time and space. For a homogeneous, statistically

stationary flow, the spatial two-point correlation of components i and j in direction k is

defined as the ensemble average of the product of the random variable evaluated at two

points in space, i.e.

Rkij(rd) = 〈ui(x + rd, t)uj(x, t)〉, (2.3)

where rd is the displacement vector from the position vector x. The spatial two-point

correlation provides information about the size of the turbulent eddies in the flow.

Conversely, the temporal correlation is defined as the average of the product of the

random variable at two points in time. Assuming a homogeneous, statistically stationary

flow, this quantity is only depending on the time difference τ between two arbitrary

moments in time. Therefore, it can be defined as:

Aij(τ) = 〈ui(x, t)uj(x, t+ τ)〉, (2.4)

For i = j, the autocorrelation Aii is obtained, which can be understood as a measure

of the “memory” of the signal. It quantifies the longevity of coherent structures in the

signal.

An important assumption, often made during investigation of turbulence, is to consider

the eddies to be frozen as they are convected downstream. In other words, the statistics

of the turbulent structures are assumed to not evolve rapidly enough in the time they are

convected past a measurement point. When doing so, it is possible to derive the spatial

structure of the turbulence from a temporal signal by multiplying it with the mean flow

velocity. This concept is known as Taylor’s hypothesis [17], and has been shown most

recently by Djenidi et al. [18] to be accurate in grid turbulence with uRMS/〈U〉 � 1,

where uRMS is the root mean square of the fluctuating velocity, whereas it fails especially

in free shear flows, as shown by Tong and Warhaft [19]. The error can be of the order of

uRMS/〈U〉, and it is thus imperative to be cautious when using this assumption. Lumley

[20] investigated the applicability of Taylor’s hypothesis by considering several criteria,

such as the criterion of Lin [21], and provided a lower bound for the assumption of frozen

turbulence. Lumley stated that provided Lin’s criterion,

〈U〉 � d〈U〉
dxi

2π/κi, (2.5)
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holds true, with κi being the wavenumber in direction i, then the effect of different

convection effects on the wavenumber components can be disregarded. If additionally,

the one-dimensional spectral energy Eii(κ) fulfils

Eij(κ)�� 〈U2〉/κi, (2.6)

then the eddies can be assumed to be frozen in the sense of Taylor.

Assuming statistic stationarity, and taking advantage of the assumption of frozen turbu-

lence, the longitudinal and transverse correlations for displacements r in the streamwise

direction, f(r) and g(r), respectively, can be obtained by normalizing the autocorrelation

of the axial and transverse component by the mean square velocity fluctuation, since:

f(r) = A11(τ)/〈u2
1〉 = R1

11(r)/〈u2
1〉, (2.7)

g(r) = A22(τ)/〈u2
2〉 = R1

22(r)/〈u2
2〉. (2.8)

Von Kármán and Howarth [22] showed that the two correlation functions are related by

g(r) = f(r) +
1

2
r
∂

∂r
f(r), (2.9)

in isotropic turbulence. From f and g two important length scales can be calculated: the

longitudinal integral length scale Iii and the longitudinal Taylor micro scale λ:

Iii =

∫ ∞

0
f(r) dr, (2.10)

λ =

√
−1

2
f ′′(0), (2.11)

where f′′ is the second derivative of f. While the integral length scale provides information

about the size of the largest eddies, the Taylor micro scale gives an indication of how

fast the flow evolves, i.e. how quickly large eddies dissipate into smaller eddies. In

this thesis, the common practice [23; 24; 25] of computing the integral length scale by

integrating the correlation function up to the point where it first crosses horizontal axis

was adopted.

2.1.2 Energy spectra and the energy cascade

When the two-point correlation is known for all values of the displacement vector rd,

the velocity spectrum tensor can be computed by [16]:

Φij(κ, t) =
1

(2π)3

∞y

−∞
e−iκ·rdRij(rd, t) drd. (2.12)
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It describes the energy content of the turbulence as a function of the wavenumber vector

κ. As it is a second order tensor function of a vector, it contains a considerable amount

of information. A more simplified description of the turbulence is provided by the energy

spectrum function E(|κ|, which is a scalar function of the wavenumber magnitude |κ|.
In order to remove the directional information, only half of the trace of the velocity

spectrum, i.e. 1
2Φii(κ), is considered. The energy spectrum function is then obtained

by integrating 1
2Φii(κ) over spheres S with radius |κ|, as given by [16]:

E(|κ|) =

∮
1

2
Φii(κ) dS(|κ|). (2.13)

Since E(|κ|) is easier accessible by experimental measurements, it has been extensively

studied. It has been found that the energy contained in the turbulent fluctuations

follows the so-called energy cascade. In virtually all turbulent flows, most of the energy

is contained in eddies of scales within the energy carrying range, i.e. up to the limit

of lEI = Iii/6. These eddies are considered anisotropic and large and are assumed to

be responsible for all large-scale flow phenomena. Below this limit, the energy spectra

obtain a universal shape, as was shown in many different experiments [26; 27; 28; 29].

Thus, eddies of these scales are commonly described as being within in the universal

equilibrium range. At a certain threshold in this range, viscous effects become dominant

over the inertial effects, and the turbulent motions are transformed into heat. This

threshold is commonly referred to as the Kolmogorov scales:

ηK = (ν3/ε)1/4, (2.14)

with the viscosity ν and the dissipation of turbulent kinetic energy ε. An intermediate

scale region, above the Kolmogorov scales yet below the energy carrying range, is the

inertial subrange. It is characterized by a distinct and universal decay following the

so-called Kolmogorov −5/3 spectrum, defined as [16]:

E(κ) = Cε2/3κ−5/3, (2.15)

with the constant C. The correct representation of this decay, as well as the larger

scales, is a crucial part when developing analytical or numerical methods or models for

turbulence simulation [30]. A number of models were suggested based on modelling the

spectral energy transfer rate, such as the proposals of Obukhov [31], Heisenberg [32]

and Pao [33]. Panchev [34] reviewed those among numerous others, finding that Pao’s

model is in better agreement with experimental data than the majority of alternatives.

However, in a later review, Pope [16] concluded that the model of von Kármán [22] is

superior to Pao’s model. Yet another alternative model was developed by Liepmann [35].

It has been found that while the Liepmanns spectrum provides an adequate description of

the energy containing range, the von Kármán spectrum provides an adequate description

of both the energy containing range and the inertial subrange [36]. Consequently, the



Chapter 2 Literature review 11

von Kármán spectrum was chosen as a reference spectrum for isotropic turbulence in

this study and was implemented for this work following the notation given by Amiet

[15]:

E(|κ|) =
I|κ|4

(1 + (|κ|/κe)2)17/6
, (2.16)

where

I =
55

9
√
π

Γ(5/6)〈u2
1〉

Γ(1/3)κ5
e

, κe =

√
π

I11

Γ(5/6)

Γ(1/3)
, (2.17)

where |κ| is the magnitude of the wave number vector, Γ is the gamma function, and

I11 is the axial integral length scale. The wave number is related to the frequency f by

κ = 2πf/U0. Following Pope [16], the one-dimensional velocity spectrum can then be

obtained from E(|κ|) by numerical integration of Eqn. (2.16) using,

Eii(κ1) =

∞x

−∞

E(|κ|)
2π|κ|2

(
1− κ2

i

|κ|2
)

dκ2 dκ3. (2.18)

2.1.3 The Reynolds-stress tensor and the Lumley triangle

The importance of the Reynolds-stresses in the description of turbulent flows arises from

the mean-momentum, or Reynolds equations, which are obtained when the Navier-Stokes

equations are decomposed into mean and fluctuating parts. The Reynolds equations are

then obtained as [16]:

D〈Uj〉
Dt

= ν∇2〈Uj〉 −
∂〈uiuj〉
∂xi

− 1

ρ

∂〈p〉
∂xj

, (2.19)

where D
Dt

is the mean substantial derivative, ν is the kinematic viscosity, and ∇ is the

gradient operator. The evolution of the mean flow quantities is therefore dependent on

the Reynolds-stress tensor term ∂〈uiuj〉. In the following, for the purpose of brevity,

the convention

uij = 〈uiuj〉, (2.20)

will be adopted for the components of the Reynolds Stress Tensor (RST). The RST can

be further distinguished into an isotropic and deviatoric anisotropic contribution. With

the isotropic stress defined as 2
3kδij , where k is the turbulent kinetic energy, and δij is

the Kronecker delta, the deviatoric anisotropic Reynolds-stresses is obtained as:

aij = uij −
2

3
kδij . (2.21)

As the proper description of the development of aij is critical to many turbulence mod-

elling approaches, the investigation of the governing principles for the development of

the Reynolds-stresses has received considerable interest [16; 37]. Reasonably successful

models have been developed based on the assumption that the mean rate of strain Sij
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and the anisotropic Reynolds-stresses are directly proportional to each other:

aij = 2ρνtSij , (2.22)

with νt being the turbulent viscosity, and ρ the density. This assumption, also known as

Boussinesq eddy-viscosity approximation, is the basis for the most common turbulent

flow simulation methods, the class of Reynolds Averaged Navier-Stokes (RANS) with

a modelled turbulent viscosity. The turbulent viscosity is obtained in these methods

either by a simple algebraic model, or by the solving of one or two transport equations

for the turbulent quantities. As discussion of these methods is beyond the scope of this

thesis, only an introduction to the turbulence model used in the presented Large Eddy

Simulation (LES), which was developed by Spalart and Allmaras [38] is provided in

Section 3.1.2.2.

The anisotropic Reynolds-stress tensor is a convenient quantity to investigate the return

to isotropy of turbulence. A very descriptive way of coupling the special states of

the invariants to the corresponding shape of the RST was suggested by Lumley and

Newman [39]. They introduced the so-called Lumley triangle, or anisotropy invariant

map (AIM) technique, which will be used extensively in Chapter 4. The normalized

anisotropic Reynolds-stress tensor (aRST), given by

bij =
aij
2k
, (2.23)

has zero trace, and has thus only two independent invariants:

II =
1

2
((bii)

2 − b2ii) =
1

2
((trace(bij))

2 − trace(b2ij)), (2.24)

III =
1

6
(bii)

3 − 1

2
· bii · b2jj +

1

3
bii = det(bij), (2.25)

following the notation in Pope [16], where trace denotes the trace, and det denotes the

determinant. Although Lumley and Newman [39] defined the AIM purely in terms of

II and III, the coordinates

η =
√
−II/3, (2.26)

ξ = 3
√
III/2, (2.27)

are used in the current analysis, yielding straight lines for the lower limits of the tri-

angle. On the Lumley triangle, several special states can be identified, as summarized

in Table 2.1.
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State of turbulence Invariants Shape of RST ellipsoid

1) Isotropic ξ = η = 0 Sphere

2) Two-component axisym-
metric

ξ = −1
6 , η = 1

6 Disk

3) One-component ξ = 1
3 , η = 1

3 Line

4) Axisymmetric, negative ξ η = −ξ Prolate spheroid (pancake
shaped)

5) Axisymmetric, positive ξ η = ξ Oblate spheroid (cigar
shaped)

6) Two-component η =
(

1
27 + 2ξ3

)(1/2)
Ellipse

Table 2.1: Special states of the Reynolds-stress tensor [16].

In η − ξ coordinates, Figure 2.1 (a) shows the extent of the AIM in which all states

of the RST must fall for physical flows. The lower two diagonal borders represent the

axisymmetric limits, with ξ < 0 being associated with a pancake-shaped RST, i.e. with

two main directions of stress, whereas ξ > 0 denotes states which are characterized by

a cigar-shaped RST, i.e. where the stress in one direction dominates.

−0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3 3)

1)

2)

4) 5)

6)

ξ

η

(a) Shapes of the aRST in the AIM. 3D aRST
shapes (blue meshes): Upper left: Pancake
shape; Upper right: cigar shape; lower middle:
Isotropic shape.

(b) The model of Chung and Kim [37].

Figure 2.1: The Lumley triangle.

In the past, efforts were undertaken to develop models able to predict the development

of the trajectories in the AIM which decaying turbulence follows as it develops towards

isotropy. A first, linear, model was introduced by Rotta [40], but a review of various

experimental data conducted by Chung and Kim [37] revealed a trend towards the

axisymmetric state with ξ positive, as shown in Figure 2.1 b). This was confirmed by

the later experiments of Choi and Lumley [41], who also showed that the rate of Return
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To Isotropy (RTI) was much lower for turbulence with a greater III. More recently,

Djenidi and Tardu [42] performed a Direct Numerical Simulation (DNS) with a grid-like

turbulence generator consisting of floating square grid elements, showing that the spatial

averages of the invariants in the transverse direction follow a perfectly axisymmetric

expansion on the RTI.

In order to study the effect of different starting states of the anisotropy invariants on the

trajectories on the AIM, Zusi and Perot [43] conducted several DNS where they used

axisymmetric expansion or contraction to achieve target values for II and III. They

find that their simulations do not show a RTI, but a return to the background level of

statistical anisotropy that the simulations began with. Furthermore, it is found that the

RTI occurs in two stages, a recovery stage immediately after removing the strain, and a

return stage where the velocity fluctuation anisotropy tends to zero.

2.2 Turbulence grids

One of the most common methods used in experiments to create turbulent flow are tur-

bulence grids. Their method of operation is quite simple: By installing several square

or round bars in a grid pattern in the flow, turbulence is created by the large number of

interacting wakes. Historically, the study of grid turbulence has attracted considerable

interest. This is partly due to the ease of its experimental creation, but also since there

is no remaining mean shear, the decay of the turbulence can be studied in isolation.

Furthermore, as grid turbulence is considered to be the closest approximation to ho-

mogeneous and isotropic turbulence, it is well suited to testing new theories, as Taylor

recognized in 1935 [44].

2.2.1 The decay of turbulence

Research in grid turbulence has, in many cases, focused on the determination of uni-

versal scaling laws for the dissipation of turbulence. Considerations based on the self-

preservation of the correlation functions lead to the prediction that the turbulent kinetic

energy of homogeneous, isotropic turbulence decays according to a power law [22; 45].

Comte-Bellott and Corrsin [26] define it as

u11

U2
0

=
1

A

(
x− x0

Gp

)−n
, (2.28)

with U0 as the mean streamwise velocity, n as the decay factor, x as the flow develop-

ment length in streamwise direction, x0 as a virtual origin, Gp as the grid period and A

as a constant. Since the actual grid position is irrelevant in fully developed flow [26], the

many investigations have focused on finding universally valid values for the exponent

n, resulting in a wide range of values [46]. This has led George [47] to suggest that
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there may not be a universal self-preserving state for grid-generated flows, i.e. a1 and

n both vary on initial conditions. Physically, this has the implication that there are

mechanisms by which the turbulence “remembers” its production processes, which is in

stark contrast to the established theories postulating the independence of the develop-

ment of turbulence from the initial conditions. Considering the dependence of virtually

all turbulence modelling approaches on the assumed universality of scalings such as

ε = Cεu3
1L11, where Cε is a positive constant [48], this open question is of great interest

to the research community. Experiments by Lavoie et al. [24] were aimed at determin-

ing the relationship between the initial conditions and the power-law exponent n, and

to evaluate the equilibrium similarity approach suggested by George [49], which allows

different similarity scales for second and third order velocity structure functions. It was

found that while initial conditions did affect n, the importance of the initial conditions

is diminished when the created turbulence has a more isotropic character. Furthermore,

the development of the second and third-order structure functions was found to only

approximately agree with the predictions of equilibrium similarity theory. It was con-

cluded that the influence of the initial conditions is primarily expressed via anisotropy

in the largest scales, which tend to increase the magnitude of the decay coefficient.

Recently, the advent of fractal grids has opened new pathways to the role of the various

scales in setting the level of dissipation in turbulent flows. Seoud and Vassilicos [50]

showed experimentally that fractal grids generate a region where the decay is locked

into a single length scale. As such, in this region, the classical high Reynolds number

scaling of the dissipation rate ε = Cεu3L does not hold, and the Taylor-based Reynolds

number Reλ is not proportional to the integral scale L divided by the Taylor microscale

λ. This non-classical decay behaviour was further investigated by Valente and Vassilicos

[51], who found that in these regions, an approximate proportionality between the L

and λ exists. The same authors showed subsequently [52] that this non-classical decay

behaviour is also exhibited by classical grids, provided the grid Reynolds number RGp

is high enough.

Inspired by these results, Krogstad and Davidson [53] used multi-scale grids as well as

a classical grid to investigate whether the very high decay components of turbulence

produced by fractal grids are caused by the significant inhomogeneity of the turbulence,

that persists far downstream the grid. While they concluded from their analysis that

the turbulence behind the used multi-scale grids is virtually identical to an equivalent

classical grid, in a re-analysis of their results Valente and Vassilicos [54] argued the tur-

bulence created by the two types of grid differs considerably. Furthermore, Valente and

Vassilicos argued that dependencies on the inflow conditions related to anisotropy are

unlikely to be causal for the observed differences, as the turbulence exhibited very small

levels of anisotropy throughout.

Most recently, a comprehensive experimental work concerning the evolution of the an-

isotropic turbulence and the effects of spatial confinement, i.e. when the integral length

scale is on the scale of the domain, on the decay was conducted by Esteban et al. [25]
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. In order to avoid invoking Taylor’s hypothesis, they used a zero-mean flow facility,

where the turbulence is created by arrays of randomly activated turbulent jets. They

observed two different decay regimes, and related the more rapidly decaying regime to

the “near-field” region a few integral length scales downstream of the grid, which is

likely strongly affected by turbulence production mechanisms and hence facility depend-

ent. Conversely, a second region of logarithmically decaying turbulence was related to

the “far-field” decay, with a decay exponent well within the range observed in wind-

tunnel experiments. Finally, an increasing spatial confinement of the largest scales was

observed to lead to an increasing decay coefficient.

2.2.2 Homogeneity and isotropy of grid turbulence

In order to unambiguously compare the experimental results from grid turbulence meas-

urements to analytical theories for homogeneous isotropic turbulence, it is of great im-

portance that the flow is as homogeneous and isotropic as possible. However, it was

soon realized that grid turbulence deviates from homogeneity and isotropy significantly,

if no countermeasures are taken, as shown by Grant and Nisbet [55]. As a measure to

neutralize the effect of the remaining transverse inhomogeneity, they proposed taking

the transverse average of flow quantities. In order to improve the isotropy of the flow,

Comte-Bellot and Corrsin [26] proposed the use of a contraction, which they showed to

be effective in equalizing the axial and transverse turbulent kinetic energies.

However, due to space constraints in experimental setups, this is not always possible,

and some inhomogeneity and anisotropy remains in the flow. This was most recently

illustrated by Ertunc et al. [56], who showed experimentally and using DNS that even

after the mean velocity field has obtained a state of homogeneity, significant inhomogen-

eity persists in the distribution of the Reynolds-stresses. They explain this behaviour

with the fast decay of the spatial inhomogeneity of the mean velocity, which reduces

the turbulence production and, consequently, the viscous diffusion, thereby preventing

homogenization of the Reynolds-stresses in the flow. Laizet and Vassilicos [57] presented

a first large-scale DNS of fractal and classical grids, focussing on homogeneity, vorticity

and intensity of the simulated turbulence. They found that fractal grids generate far

larger inhomogeneities than classical grids, which persist a significant distance down-

stream, while the turbulence vorticity and intensity is larger. Furthermore, they find

a clear dependence of the energy spectra on the position within the production regions

near the grid.

The reason for the anisotropy of grid generated turbulence remains poorly investigated,

as the highly inhomogeneous flow regime in the near-field of the grid represents a great

challenge for experimental investigation. However, over the years, a number of observa-

tions have been made. From the data of Comte-Bellot and Corrsin [26], a small trend

towards anisotropy with increasing grid Reynolds number is observed. Gad-el-Hak and

Corrsin [58] note that their active jet grid can reduce the anisotropy of the flow, if the
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jets are used in a coflow configuration, however at the expense of the turbulence intens-

ity. While the experiments of Lavoie et al. [23; 59; 24] extensively studied the effects of

initial conditions on grid turbulence, as discussed in Section 2.2.1, their investigations

did not cover the near-grid flow regime x/M < 20.

Discetti et al. [60], investigating the flow physics of fractal grids using PIV, showed that

the isotropy of the flow downstream of such grids is reduced as the wake of the largest

bar is approached. Valente and Vassilicos [61], also studying fractal grids, make a similar

conclusion from their study of the development of various integral length scales using

two-component hot-wire anemometry. An interesting study using DNS and a “grid-like”

turbulence generator, consisting of floating square elements, was conducted by Djenidi

and Tardu [42]. For the case of low-Reynolds number turbulence, they showed that the

return to isotropy is fast and follows a perfectly axisymmetric expansion.

2.3 Turbulence creation methods for large eddy simula-

tions

In order to investigate turbulent flows in simulations, methods are required which can

create realistic turbulence in the numerical domain. This is a complex problem, since

turbulence exhibits a random nature, but is also characterized by statistical correlations

in space and time which must be reproduced in order for the simulated turbulence to

behave like “real” turbulence. Roughly, the various proposed methods for turbulence

generation in LES can be classified into synthesis approaches, where a random fluctuation

is superimposed to the mean flow at the inlet, precursor methods where the turbulence

is precomputed prior to the main simulation and then introduced at the inlet, and

concurrent methods, where the turbulence is created directly in the domain through

suitable means at runtime.

2.3.1 Synthetic turbulence methods

The field of synthetic turbulence methods is both large and quickly evolving, as show-

cased by recent reviews such as Wu [62] and Dhamankar [63]. Within the class of

synthetic turbulence methods, a number of families may be identified:

� Fourier mode based methods produce a periodically fluctuating velocity field through

the superposition of appropriately weighted sinusoidal functions. With an increas-

ing number of modes, an increasingly broadband spectral content is achieved,

albeit one made up of a finite number of modes and often at a considerable com-

putational expense. However, as these methods are relatively simple to implement,

they have become popular and are widely available in industrial CFD codes.
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� Methods based on digital filters generate turbulent flows by filtering a random

source, such as white noise signals, in order to reproduce the target turbulent stat-

istics. The resulting velocity field is aperiodic and exhibits a broadband spectral

content.

� Synthetic eddy based methods create turbulent flows by summation of ideal ed-

dies, which may be described by velocity fields shaped according to Gaussian or

Mexican-Hat profiles. The produced turbulence is aperiodic and of a continuous

spectral density.

In particular for aeroacoustic purposes, an important aspect of a given turbulence gen-

eration method is that it should satisfy the divergence-free, or solenoidal, property for

an incompressible flow, i.e.:

∇ ·U = 0. (2.29)

Any method which violates this condition will lead to large erroneous pressure fluctu-

ations being introduced to the domain, as the LES procedure will generate pressure

variations to ensure that the velocity field inside the domain is divergence-free [64].

In addition, synthetic turbulence methods may exhibit fluctuations in terms of the in-

stantaneous mass flux across the inlet, since the velocity fluctuations prescribed by the

method may not have a mean of zero across the inlet[64]. This creates a significant

noise source with monopole characteristics [65]. Conversely, if the synthetic turbulence

generation method is applied to a plane within the domain, the sudden appearance of

vortical structures is also associated with the creation of significant spurious noise [66],

if no remediating measures are applied.

2.3.1.1 Fourier based methods

Using Fourier modes to generate a divergence-free turbulent flow was first proposed by

Kraichnan [67]. As Kraichnan’s model produces a Gaussian energy spectrum, which is

centred at a given wavenumber and thus fails to reproduce the turbulent energy con-

tent at higher wavenumbers, Karweit et al. [68] modified the method to obtain the von

Kármán spectrum. Kraichnan’s model was subsequently also adapted to the random

flow generation (RFG) method proposed by Smirnov et al. [69], which is capable of pre-

scribing a required Reynolds stress tensor by a tensor-scaling operation and a subsequent

orthogonal transformation of the velocity correlation tensor. While not divergence-free

in all cases, the RFG method has been implemented into the commercial CFD package

ANSYS Fluent, spurring the use of this method in various applications [70; 71; 72].

A major simplification of the RFG model was proposed by Batten et al. [73], who sugges-

ted Cholesky decomposing of the Reynolds stress tensor, thereby obtaining a procedure

which is both highly efficient and relatively straightforward to implement.

In order to allow use of the RFG model for non-Gaussian energy spectra such as often
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encountered in wind engineering applications, Huang et al. [74] suggested the genera-

tion of several independent velocity fields. More recently, Castro and Paz [75] expanded

the method proposed by Huang et al. to improve the control of statistical properties of

the turbulence. A divergence-free variant of the RFG method was proposed by Yu and

Bai [76], who suggested to take the curl of the potential field to achieve the solenoidal

property.

In practice, it has often been found that Fourier based methods require a significant

development length until the turbulence can be considered fully developed [77; 78]. An

example of an application of a Fourier based methods to a LES used for aeroacoustic pur-

poses is the study by Shur et al. , who used it in a zonal simulation to study the noise of

a trailing edge as well as the noise produced by a two-element aerofoil configuration[66].

2.3.1.2 Digital filter methods

One of the first digital filter methods for LES was proposed by Klein et al. [79]. By

applying digital filters, designed to establish a Gaussian two-point correlation function,

to random data, they were able to produce spatially correlated velocity fields, which

reproduce given Reynolds stress tensors, as well as the locally given autocorrelation

function. The method was subsequently generalized by di Mare et al. [80], who showed

that the use of an arbitrary correlation function, combined with a simplified method of

obtaining the filter coefficients, lead to a better agreement of the produced turbulent

flows with DNS.

Since the digital filter method developed by Klein et al. [79] involved an expensive 3D

filtering step of a volume of random data, Xie and Castro [81] proposed a modification,

in which the filtering is applied to transverse planes of random data only, and two

subsequent planes are then correlated using an exponential function. This approach, also

known as the Forward-Stepwise method (FSM), has been shown to be very promising

in terms of its capability to generate synthetic turbulence for LES and DES [82] in

applications where time averaged pressure and aerodynamic forces are of interest.

A drawback of the models of Klein [79] and Xie and Castro [81] is that the produced

velocity fields are not divergence free. Thus, it was observed by Kim et al. [65] that the

FSM in particular results in a considerable over-prediction of the pressure fluctuations.

Consequently, for aeroacoustic applications, Kim et al. proposed the use of a modified

inlet condition, which prescribes the velocity perturbations related to the turbulence not

to the inlet patch directly, but to a transverse patch near the domain inlet, where the

divergence-free criterion can be satisfied by a suitably altered velocity-pressure coupling

step. Both the modified inlet condition and an alternative correction of the instantaneous

mass flux at the inlet were shown to result in significant improvements of the computed

pressure fluctuations.
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2.3.1.3 Synthetic eddy approach

One of the early proposals to synthesize turbulence from individual vortices was made

by Sergent [83], who was able to prescribe two-dimensional velocity fluctuations of a

broadband spectrum at the inlet using this method. Known as the vortex method (VM),

it was later extended by Benhamadouche et al. [84] to three-dimensional turbulence

by the use of a one-dimensional Langevin equation for the streamwise component. It

since has been implemented in the commercial code Fluent. However, a fundamental

drawback of the VM approach is that the streamwise fluctuations are generated by a

separate equation, and are therefore uncorrelated with the other components [64]. A

method capable of accounting for the correlations of all flow components was proposed

by Jarrin et al. [85; 86] who suggested the use of arbitrarily shaped 3D vortices with

a prescribed Reynolds stress tensor. They reported superior performance in terms of

development length when compared to Batten’s Fourier based model [73], and good

agreement in the case of a turbulent flow over an aerofoil trailing edge between the

simulation and experimental reference data.

However, while the original method of Sergent [83] is divergence-free, the approach

adopted by Jarrin et al. [85] can violate the solenoidal condition. A modification of

their model was proposed by Poletto et al. [64], who redefined the shape functions with

constraints designed to create a divergence-free velocity field.

To date, digital filter methods have been found to lead to adaption distances on the

order of ten boundary layer thicknesses [81; 87].

2.3.1.4 Conclusions on the state of the art of turbulence generation methods

for LES

As outlined in the preceding sections, there has been a considerable amount of progress

in the field of synthetic turbulence methods in the recent years. However, in particular

for aeroacoustic purposes using hybrid methods, more work needs to be done to establish

these methods for the investigation of turbulence interaction noise. A method satisfying

the stringent requirements of aeroacoustic investigations is yet to be implemented in

more widely available CFD codes, even though several promising concepts exist, such

as the methods of Kim et al. [65] as well as Poletto et al. [64]. As a consequence,

most applications of synthetic turbulence methods in LES have so far been focused on

the investigation of the aerodynamic aspects of turbulent flows, as documented in the

reviews of Tabor and Baba-Ahmadi [30], as well as Dhamankar et al. [63].

2.3.2 Precursor and concurrent turbulence creation approaches

As noted by Tabor and Baba-Ahmadi [30], precursor simulation methods dominate in

terms of their capability to produce accurate results. However, they are often associated
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with a considerable computational expense, both in terms of generating the turbulence

as well as in terms of the storage requirements for the library of the turbulent velocity

field. In order to reduce the storage space, the stored turbulence is often reused, which

however may lead to an artificial repetitive behaviour at low frequency in the flow [30].

Another fundamental issue is the requirement to read large amounts of data each time

step, which can have an significant impact on simulation runtime [63].

A generally more efficient approach are flow recycling methods, which can be classified

as concurrent turbulence creation approaches. The turbulence generation is conducted

within the same domain as the object of interest. By mapping the flow through the

outlet of the domain onto the inlet, a fully developed state of the turbulence is achieved

relatively quickly. However, similar to the case of reusing the data as in precursor type

methods, spurious low-frequency behaviour has been found to negatively influence noise

level predictions when flow recycling is applied [88]. Nevertheless, when used in a hy-

brid approach for the prediction of trailing edge noise with LES, flow recycling has been

shown to be a promising turbulence generation method [89].

The most straightforward way of creating turbulence in a simulation are the transition-

based methods. Depending on the approach, transition is stimulated by artificial in-

stability waves, or by geometrical features. Examples of the latter approach are the

periodic blowing and suction features employed by Fasel et al. [90], the high aspect ra-

tio step such as used by Gloerfelt and Berland [91] as well as the wall-mounted cubes

proposed by Yang et al. [92] suitable for the creation of a turbulent boundary layer.

A method capable of creating a homogeneous turbulent flow comparable to that pro-

duced by the grids commonly used in wind tunnel experiments was proposed by Black-

more et al. [13]. By dividing the inlet of a domain into wall and inlet patches, a system

of wakes and jets is created, which produces turbulence in a very similar fashion to that

of a turbulence grid. Due to the grid geometry being approximated by a 2D pattern

on the inlet only, computationally expensive meshing of the grid geometry is avoided.

However, the production of the turbulence is different from the conditions in experiment

as the upstream conditions, e.g. boundary layer development, do not influence the eddy

shedding behind the “bars” through potential effects, as there is no upstream domain.

By changing the development length of the turbulence, grid dimensions and flow speeds,

integral length scales and energy spectra can be varied. In their paper, Blackmore et

al. [13] describe a parameter study for grid generated turbulence in an incompressible

flow and state a number of conditions for the production of realistic turbulence. Similar

devices were also used by Ertunc et al. [56] as well as Djenidi and Tardu [42] for the

study of turbulent flows.

As noted by Dhamankar et al. [63], the drawback of transition-based approaches con-

sists in the relatively long development distances required by them. In addition, it is

often not possible to precisely control the parameters of the produced turbulent flow.

However, in particular for aeroacoustic applications, they have been recognized as being

preferable to synthetic, precursor or flow-recycling methods [66; 91].
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As the inlet grid turbulence method proposed by Blackmore et al. [13] does not involve

any modelling steps, unlike many synthetic turbulence generation methods [30], does

not necessitate a computationally expensive precursor simulation to generate a library

of turbulent data for injection, is relatively simple to apply to existing CFD packages,

and can be expected to be reasonably devoid of spurious noise at low Mach number, it

was selected for this study.

2.4 The aeroacoustics of aerofoils

An isolated aerofoil in a steady flow will produce noise solely through the interaction

of the fluctuations within the turbulent boundary layer in the vicinity of the trailing

edge. In the absence of a turbulent incident flow, this is the total noise produced by an

aerofoil [4]. However, if the aerofoil is immersed in a turbulent flow, additional noise is

produced by the interaction of the turbulent eddies with the leading edge. The physical

cause for the leading edge noise was stated by Roger and Moreau [12] to be the rapid

change experienced by the turbulent motions as they are convected onto the leading

edge. Due to fluid compressibility, part of the inertia of the vortical motion is converted

into sound, which has a broadband character owing to the random nature of turbulent

flow. As the turbulent fluctuations interacting with the leading edge are often more

energetic than the turbulence in the boundary layer, the overall noise emissions levels

are in many cases dominated by the leading edge noise [93; 94; 95]. Consequently, the

investigation and prediction of leading edge noise has attracted considerable interest in

the past.

2.4.1 Experimental studies of leading edge noise

One of the earliest experimental investigations of leading edge noise was conducted by

Hersh and Meecham [96] in 1973. Investigating primarily the directivity pattern, they

showed that a small aerofoil in a turbulent flow radiates like a point dipole, provided

the dimension of the aerofoil is small relative to the wavelength of the radiated sound.

An extensive experimental campaign dedicated to the measurement of the far-field noise

of an aerofoil in a turbulent flow was conducted by Paterson and Amiet in 1976 [97].

Using a NACA 0012 aerofoil in an open-jet anechoic wind tunnel, they investigated the

noise emissions over a wide range of mean flow velocities and two different angles of

attack. The turbulence was created by means of a grid upstream of the nozzle, and a

reasonable level of isotropy and homogeneity was achieved. Noise levels and directivity

were measured by placing a number of microphones on an arc in the mid-span plane,

and corrections were applied to remove the background noise. They reported reasonable

agreement with the analytical leading edge noise theory formulated earlier by Amiet [15],

if a suitable correction for the effects of the jet shear layer is applied. They concluded
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that the inclusion of compressibility and source non-compactness in any theoretical for-

mulation is necessary for accurate amplitude and directivity predictions to be obtained.

Additionally, they observed that the effects of aerofoil thickness on the noise becomes

important at high frequency and low mean flow velocity. Furthermore, although they

reported a small angle of attack effect, they concluded that further investigations were

necessary before the angle of attack may be considered to be a small factor in terms of

leading edge noise emissions.

The effects of angle of attack as well as of the aerofoil shape were further investigated

by Moreau, Roger and Jurdic [98]. They reported no significant angle of attack effects,

and a considerable reduction of the turbulence interaction noise with increasing aerofoil

thickness. To account for the thickness effect, the authors presented semi-empirical cor-

rections to analytical methods. A later study of Moreau and Roger [95] was focused on

the comparison of trailing edge noise and leading edge noise and confirmed the earlier

finding of Paterson and Amiet [97] that over most of the frequency range, the leading

edge is the dominant source of noise. The self-noise of the aerofoil was reported to only

become significant at high angles of attack close to flow separation. Their results also

showed that the boundary layer driven pressure fluctuations, which cause the trailing

edge noise, are largely independent from the turbulence intensity of the external flow.

As such, the boundary layer was shown to be the sole source of the trailing edge noise,

while leading edge noise was associated with the interaction of external eddies only.

Thus, the two noise sources were reported to be uncorrelated.

Experiments conducted by Staubs [99] in a closed wind tunnel with a test section en-

closed by Kevlar panels, allowing measurements with minimal shear layers, showed angle

of attack effects especially for aerofoils where the ratio of turbulence integral length scale

to aerofoil chord is small. However, a later study in the same facility by Devenport, Staub

and Glegg [100] showed that while the angle of attack has a strong effect on the aerofoil

response function, the averaging effect of the isotropic turbulence spectrum reduces its

impact on the emitted noise. They illustrated with a panel method that angle of attack

effects may be significant provided the turbulence is anisotropic. Additionally, they re-

ported that the noise reductions of thicker aerofoils are not only determined by leading

edge radius and overall thickness.

The effects of aerofoil geometry were investigated extensively by Chaitanya et al. [94],

who confirmed the earlier finding of Paterson and Amiet [93] that the aerofoil thickness,

and the leading edge radius, are the main geometric parameters controlling turbulence

interaction noise. Conversely, angle of attack and camber were found to have only a

minor impact on the interaction noise, suggesting that mean loading does not affect the

distortion effects of the leading edge to a large degree. By performing Particle Image

Velocimetry (PIV) measurements, Chaitanya et al. were able to show that a sharper

leading edge is associated with stronger transverse velocity fluctuations than if the lead-

ing edge is blunter.
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An in-depth investigation of the development of unsteady quantities such as the Reynolds-

stresses at the leading edge was conducted by Santana et al. [101], who showed that the

distortion effects on the turbulence are concentrated in a narrow region immediately up-

stream the stagnation point of the leading edge. Within a distance on the order of the

leading edge radius, the turbulence intensity was reported to grow substantially, with

the axial and spanwise component increasing by the same amount, while the transverse

component increases by a factor of two more. It should be noted that simulations of

this region generally result in a significant increase of the transverse components, and a

strong decrease of the axial components [102; 103]. Based on these results, Santana et

al. proposed a modified turbulence spectrum to be used for noise prediction with Amiets

[15] theory.

Most recently, the investigation of the reduction of leading edge interaction noise by the

use of wavy leading edges has attracted considerable interest [104; 105; 106; 107]. The

underlying mechanism is that the sinusoidal variations of the chord length introduces a

spanwise correlation loss and modifies the response of the leading edge to the impinging

gusts from parallel cut-on modes to oblique cut-off modes [104]. Simulations of Haeri et

al. [105] showed this to be the case, with the correlation length of the fluctuation pressure

on the leading edge decreasing as a function of serration amplitude. A corresponding

noise reduction of up to 10 dB has been reported from experimental measurements of

Narayanan et al. [106].

2.4.2 Analytical models for leading edge noise

The first analytical work to describe the aerodynamic response from a flat plate interact-

ing with a parallel harmonic gust was developed by Sears [108]. A more comprehensive

model for oblique gusts, including the effects of compressibility, was later developed by

Amiet [109]. In his seminal paper in 1975, Amiet [15] used these models to predict the

noise emissions from a thin, unloaded aerofoil in a turbulent flow, modelling the leading

edge noise as a dipole.

x1

x3

x2

U

Figure 2.2: Aerofoil coordinate system.

For the purpose of illustration, the coordinate system as used for the subsequent dis-

cussion of Amiet’s model is shown in Figure 2.2 superimposed to a flat plate immersed

in a turbulent flow as indicated by the instantaneous velocity vector U. The aerofoil

is located in the x1-x3 plane, where x1 is defined as the streamwise direction and x3 is
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parallel to the span. In the following, the direction x1 will be referred to as chordwise,

and x2 as well as x3 as the transverse and spanwise directions, respectively.

By arguing that the only relevant fluctuations are the transverse velocity fluctuations,

Amiet [15] first derived an equation for the cross power spectral density (PSD) of the

surface pressure jump on two points on the aerofoil, SQQ, due to incoming isotropic

turbulence, as given by:

SQQ(xa, xb, ya, yb, ω) = (2πρ0c)
2U0

∫ ∞

−∞
g∗(xa,K0, κ3)g(xb,K0, κ3)

Φ22(K0, κ3)eiκ3(yb−ya) dκ3, (2.30)

where xa, ya and xb, yb are the coordinates along x1 and x3 of two points on the aerofoil

surface, κ3 is the spanwise wavenumber, g and g∗ are the transfer functions between tur-

bulent velocity and aerofoil pressure jump at the two points respectively, K0 = −ω/U0

where ω is a given angular frequency of the pressure jump, and Φ22 is the energy spec-

trum of the transverse velocity fluctuations as a function of the wavevector components.

Subsequently, with reference to the theories of Kirchhoff [110] and Curle [111], Amiet

[15] related the acoustic PSD in the far-field, Spp, to a distribution of dipoles on the

aerofoil surface, where the dipoles exhibit a strength equal to the force on the surface:

Spp(x1, x2, x3, ω) =

(
ωx2

4πc0σ2

)2 ∫∫∫∫
SQQ(xa, xb, ya, yb, ω)

e
iω
c0

[β−2(xa−xb)(M−x1/σ)+x3·(yb−ya)/σ] dxa dxb dya dyb, (2.31)

with x1, x2, x3 being the coordinates of a far-field observer, c0 is the speed of sound,

σ =
√
x2

1 + β2(x2
2 + x2

3) and β =
√

1−M , and M as the Mach number. The quadruple

integral of Eqn. (2.31) can be simplified by defining the chordwise integral of the surface

loading as

L(x1,K0, κ3) =

∫ c/2

−c/2
g(x0,K0, κ3)e

−iωx0(M−x1/σ)
c0β

2 dx0. (2.32)

As noted by Amiet [15], Eqn. (2.32) introduces the effects of non-compactness into

the acoustic solution. For small frequencies, the imaginary exponent is small as well,

and the integral is reduced to the sectional lift of the aerofoil, allowing use of distinct

high- and low frequency solutions for the aerofoil unsteady load response, equivalent

to the approach chosen by Paterson and Amiet [97]. This approach was also used in

the implementation of Amiet’s model for this thesis. As the ability to capture the

non-compactness effects was considered an important aspect of the simulation method

investigated in this thesis, the non-compactness effects are discussed in more detail in

Section 2.4.2.1.

The general expression derived by Amiet [15], Eqn. (2.31), is applicable to a large variety
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of cases. However, as Santana [101] pointed out, even in cases where the assumption

of a constant aerofoil section in the spanwise direction is true, the homogeneity of the

turbulence statistics in the spanwise direction may be compromised. This observation is

of particular interest for finite wings at an angle of attack, where the spanwise loading

distribution as well as the presence of the tip vortex may affect the development of the

turbulence upstream of the leading edge.

While the definition of L allows to compute the far-field PSD by integrating over the

spanwise wavenumber only, it requires the specification of a two-dimensional velocity

spectrum, which is difficult to obtain experimentally [16]. Facilitating the evaluation

of Eqn. (2.31) even further, Amiet [15] observed that as the aerofoil span increases,

i.e. when the spanwise extent becomes much larger than the spanwise turbulent length

scale, the contribution of skewed gusts diminishes, allowing to use a two-dimensional

compressible-flow aerofoil theory in the large span limit.

For the observer position defined in polar coordinates, as illustrated by Figure 2.4 with

the assumption of applicability of the two-dimensional compressible-flow aerofoil theory

and using a 2D Green’s function, Blandeau et al. [112] derived the PSD of the acoustic

pressure in the far-field per unit span as:

Spp(r0, θ, ω) =
πρ2

0c
2U0ω sin2 θ

8c0r0A(θ,M)3
|L(θ, κ1, 0)|2Φ22(κ1, κ3 = 0), (2.33)

where ρ0 is the density, and L(Θ, κ1) is the acoustic lift integral as a function of observer

angle and chordwise wavenumber, which is further discussed in Section 2.4.2.1. Since

the use of Eqn. (2.33) is the most amenable for experimental investigations, it has been

chosen also as a base of comparison for the noise results in this thesis.

For the practical evaluation of Eqn. (2.33), Φ22 is related to the energy spectrum as a

function of the magnitude of the wavevector E(|κ|) by,

Φ22(κ1, κ2, κ3) =
E(|κ|)
4πκ2

(1− κ2
2/κ

2). (2.34)

As discussed in Section 2.1.2, various model spectra are available for E(|κ|), of which

the von Kármánmodel [22] was selected for this study.

While Amiet’s model [15] has been recognized as being reasonably accurate for flat

plates, it fails to account for thickness and angle of attack effects, as was shown in the

experiments of Paterson and Amiet [97]. Subsequently, a number of authors suggested

corrections for the thickness effect, which is generally more dominant than angle of

attack effects [97; 12; 113]. Gershfeld [114] developed a method to compute leading

edge noise predictions for symmetric thick aerofoils. Following earlier studies of Hunt

[115], who computed the influence of a body in the flow on the turbulent spectrum using

a generalized rapid distortion theory, and based on their own experiments, Moreau,

Roger and Jurdic [98] proposed several semi-empirical corrections to Amiets [15] model

to account for aerofoil thickness and camber.
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2.4.2.1 Non-compactness effects

As discussed in the previous Section, the non-compactness effects are a consequence of

the two distinct solutions for the chordwise loading integral given by Eqn. (2.32), which

have been derived for two distinct ranges of the acoustic reduced frequency µa = ωc
2c0β2 .

For µa < π/4, the aerofoil can be considered compact, and the low frequency response

function as formulated by Amiet [109] is valid. In this range, Eqn. (2.32), for an observer

in polar coordinates r0, θ as illustrated in Figure 2.4, becomes [112]:

Llow(θ, κ1) =
S(µh)

β
eiµhf(M)

{
J0

(
µa

cos θ

A(θ,M)

)
− iJ1

(
µa

cos θ

A(θ,M)

)}
, (2.35)

with

S(µh) =
2

πµh[H
(2)
0 (µh)− iH(2)

1 (µh)]
,

f(M) =(1− β) ln(M) + β ln(1 + β)− ln(2),

A(θ,M) =
√

1−M2 sin2 θ,

where µh = µa/M , J0 and J1 are Bessel functions of the first kind while H0 and H1 are

Hankel functions of the second kind.

Conversely, for reduced frequencies µa > π/4, the assumption of compactness does no

longer apply to the aerofoil, which is taken into account by splitting the response function

into two terms:

Lhigh(θ, κ1) = L1(θ, κ1) + L2(θ, κ1). (2.36)

where the function L1 represents the leading edge scattering contribution, while the

function L2 represents the trailing edge back-scattering contribution to the far-field

noise. By defining the conjugate of the Fresnel integral E∗(z) following Amiet [116] as:

E∗(z) =
1√
2

∫ 2

0

e−iζ√
ζ

dζ, (2.37)

L1 and L2 are obtained as [112]:

L1(θ, κ1) =

√
2

πβ
√
µh(1 +M)Θ1

E∗(2Θ1)eiΘ2 , (2.38)

L2(θ, κ1) =
eiΘ2

πΘ1β
√

2πµh(1 +M)

[
i(1− e−i2Θ1) + (1− i)

×
{
E∗(4µaβ2)−

√
2

1 + cos θ
A(θ,M)

e−i2Θ1E∗(2Θ3)

}]
, (2.39)
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with

Θ1 =µa

(
1− cos θ

A(θ,M)

)

Θ2 =β2µh + µa

(
M − cos θ

A(θ,M)

)
− π

4
,

Θ3 =µa

(
1 +

cos θ

A(θ,M)

)
.

The effect of using either Eqn. (2.35) or (2.36) to compute the far-field SPL is illustrated

in Figure 2.3 (a).

40

45

50

55

60

65

0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π
µa

S
P

L
[d

B
/H

z]

Low freq. Eqn. (2.35)

High freq. Eqn. (2.36)

(a) High and low frequency noise solution for
θ = 90◦.

(b) Example of non-compactness effects in the
acoustic emissions of a thin aerofoil [12]. Ex-
perimental results at three flow speeds (solid),
Amiet’s model [15] Eqn. (2.33) (dashed), Non-
compactness dips (vertical dashed).

Figure 2.3: Illustration of non-compactness effects.

From Figure 2.3 (a), it is apparent that for µa > π/2, the effects of non-compactness are

considerable, with the low frequency solution predicting noise levels up to 15 dB higher

than the high frequency solution.

An example of the observation of these effects in experiment is shown in Figure 2.3 (b),

where the dips associated with the non-compactness are clearly visible for a thin aerofoil.

As noted by Roger and Moreau [12], at low Mach numbers, for an observer located

directly above the aerofoil, the dips coincide with the reduced frequencies κc = 2π and

κc = 4π.

For the more general case of an observer at an arbitrary position in the mid-span plane,

the frequencies of the local minima associated with the non-compactness effects are

approximated in the following, using the definition of the observer position as illustrated

in Figure 2.4. It is assumed that the connecting line between leading and trailing edge
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aligns with the direction of flow, and that the effects on sound propagation due to

non-uniform mean flow around the aerofoil are negligible.

x1

x2

θ
γLE γTE

rLE−O

rTE−O

r0

U0

Figure 2.4: Coordinate system for observer positions.

The observer position relative to the aerofoil mid-chord position is defined by the angle

θ and the radius r0. The radii and angles of the connecting lines between leading and

trailing edge, rLE−O, rTE−O, γLE and γTE are defined as shown in Figure 2.4. Geometric

considerations are then used to relate the leading edge and trailing edge radii to θ and

r0:

rLE−O =
√

(r0 · cos θ + c/2)2 + β2(r0 sin θ)2, (2.40)

rTE−O =
√

(r0 · cos θ − c/2)2 + β2(r0 sin θ)2. (2.41)

The angles for the lines connecting leading and trailing edge and the observer positions

are then:

γLE = arccos

(
r0 cos θ + c/2

rLE−O

)
, (2.42)

γTE = arccos

(
r0 cos θ − c/2

rTE−O

)
. (2.43)

The propagation times along the lines are now computed as:

τLE =
rLE−O

c0 + U0 cos γLE
, (2.44)

τTE =
rTE−O

c0 + U0 cos γTE
. (2.45)

The frequencies fc,1, fc,2 . . . fc,n of the non-compactness dips in the aerofoil far-field

spectra are now given as integer multiples of the base frequency fc,0 defined as:

fc,0 =
1

c
c0+U0

+ τTE − τLE
. (2.46)
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2.4.3 Numerical investigations of leading edge noise

While numerical studies of leading edge noise can investigate more complex geometries

than many analytical methods, due to the requirement of simulating the interaction of

inherently unsteady turbulent flows with objects in the flow, they are often associated

with considerable computational expense. The two main approaches used for the simula-

tion of leading-edge noise are hybrid methods and Computational AeroAcoustic (CAA)

methods that solve the Linearised Euler Equations (LEEs).

Hybrid methods split noise generation and radiation by the use a Computational Fluid

Dynamics (CFD) solver to compute the acoustic sources, and then use an acoustic

analogy such as those put forward by Lighthill [117], Curle [111] and Ffowcs-Williams

and Hawkings [118] in a post processing step to compute the radiation to the far-field.

Commonly, a free field Green’s function is used to describe the response of the prob-

lem geometry and physics to a perturbation, which carries the implicit assumption that

scattering effects are negligible.

Conversely, CAA methods allow to directly compute noise generation and radiation.

However, in addition to neglecting the effects of viscosity, depending on the formulation

of the LEEs and the underpinning assumptions, mean flow gradients as well as finite

frequency effects may not be accounted for by the CAA method.

2.4.3.1 CAA studies of leading edge noise

Since the generation of realistic turbulence in the numerical domain represents a con-

siderable challenge on its own [30], early studies focused on the interaction of harmonic

gusts with leading edges and the associated noise [119; 120]. Using a multi-frequency

harmonic gust approach in a CAA solver, Gill, Zhang and Joseph [121] investigated the

influence of a non-uniform mean flow, as is caused by the presence of an aerofoil in the

flow due to its potential effects, as well as the influence of viscosity. For this purpose,

mean flow results were computed with a commercial RANS solver, and interpolated on

the acoustic grid as a boundary condition for the subsequent LEE simulation. They

reproduced the expected decreases of noise emissions with thickness and leading edge

radius and showed that the non-uniform mean flow is essential to avoid over-predicting

the noise. This was shown to be related to the increased distortion of the gust wave-

front as the thickness of the aerofoil is increased, which leads to a reduction in the peak

transverse unsteady velocity values relative to those observed in thin aerofoils. In a later

study of Gill [7], it was concluded that while the accurate representation of the potential

flow surrounding an aerofoil is essential, the effect of viscosity on the background mean

flow is negligible for the purposes of the leading edge noise if the angle of attack is small.

The distortion of the energy spectrum by the aerofoil leading edge was investigated

further by Hainaut, Gabard and Clair [102]. Using stochastically synthesized turbu-

lence in a LEE solver, they found that the distortion of the transverse energy spectrum
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is wavenumber dependent and is affected by nose radius as well as the position and

magnitude of the maximum thickness.

2.4.3.2 Studies using hybrid methods

One of the earliest applications of a hybrid methodology to a leading edge turbulence

interaction problem was reported by Casalino, Jacob, and Roger [122]. They used an Un-

steady RANS (URANS) solver to simulate the oscillating wake of a rod interacting with

an aerofoil and computed the far-field radiation using the analogy of Ffowcs-Williams

and Hawkings (FW-H). Acoustic results were shown to be in good agreement with ex-

perimental measurements. They concluded that for applications at low Mach number,

volume sources are negligible, and thus physical surfaces are best suited as integration

surfaces for the FW-H solver.

The rod-aerofoil problem was subsequently used as a benchmark problem for hybrid

approaches by several authors, an overview of which was provided by Giret et al. [123].

In their work, they investigated the effects of using unstructured meshes on acoustic

results of complex geometries, albeit at the expense of numerical accuracy. They repor-

ted acceptable agreement with the experimental values, with some discrepancies at high

frequencies where quadrupole sources were observed to become significant.

A simulation of true broadband turbulence interacting with a leading edge using a hybrid

approach was conducted by Christophe [124]. The case consisted of an incompressible

LES of an infinite aerofoil, interacting with turbulence created by an upstream jet, as

shown in Figure 2.5.

Figure 2.5: Simulation setup of Christophe [124].

Unsteady surface pressure data was stored, and the far-field radiation was computed

using Curle’s analogy. Non-compactness effects were neglected, as the cut-off frequency

of the most resolved simulation was approximately 1 kHz, for which the aerofoil was

considered compact. The results were shown to be in agreement with experiments.

A first compressible LES, using a zonal approach, was conducted by Deniau et al. [125].

By treating the far-field with a RANS solver and restricting the LES domain to the im-

mediate vicinity of their thick, cambered aerofoil, they reduced computational expense

considerably. A divergence-free Fourier mode method was used to synthesize the tur-

bulence at the LES inflow boundary, with energy spectra based on experimental data.
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Although the LES was found to produce a large recirculation bubble close to the leading

edge, contaminating the acoustic results with additional trailing edge noise, acceptable

agreement was reported with experimental data when the sources were restricted to the

leading edge area during the acoustic post processing step.

2.4.4 Investigations of anisotropic turbulence

All the work discussed above assumed or investigated isotropic turbulence. This mostly

due to the fact that anisotropic turbulence is difficult to model and measure. Further-

more, in many applications, prediction methods modelling the energy spectrum with

isotropic models such as the von Kármán[16] and the Liepmann [35] model show reas-

onable agreement with experimental results. However, there are cases where the use of

an isotropic model will lead to inaccuracies. Such a case was first encountered by Sevik

[126], who investigated the sound radiation from a rotor subjected to turbulence. Since

he used a simplified cascade prediction model for the sound emissions, which did not

account for blade-to-blade correlation effects, he was not able to reproduce the broad-

ening of the tones around the blade passing frequency and harmonics, which creates

distinct humps in the spectrum. These correlation effects are caused by turbulent struc-

tures being stretched by the streamline curvature upstream of the rotor. The necessity

of accounting for the anisotropy was also shown by Ganz et al. [127] who investigated

the broadband noise emissions of a representative 18-inch fan rig. By comparing noise

emissions of the fan with and without boundary layer suction in the fan inlet, they

concluded that the rotor-boundary layer interaction is a significant source mechanism,

which is characterized by distinct humps in the noise spectra. They report that the

turbulent component in the streamwise direction is roughly twice as large the one in the

transverse direction.

In 1981, Kerschen and Gliebe [128] presented a model for anisotropic turbulence. Their

model is based on the theory of axisymmetric turbulence, which assumes that the vor-

tices in anisotropic turbulence still show a symmetry about the streamwise axis. This

is a reasonable assumption for turbulent boundary layers, as well as for rotor inflows,

where the vortices are stretched by streamline contraction [129]. The Kerschen and

Gliebe spectrum was subsequently used in a study by Posson et al. [130], focused on

broadband noise prediction of fan outlet guide vanes, to investigate the effect of different

turbulence models. They found that their noise prediction model is highly sensitive to

the parameters of the anisotropic model. They recommended that if the anisotropic

turbulence model cannot be conditioned by proper characterization of the turbulence

from experimental measurements, a simpler isotropic model should be used.

An extensive CAA study on the influence of anisotropy on leading edge noise was con-

ducted by Gea-Aguilera et al. [113]. They produced anisotropic turbulence by means

of the superposition of anisotropic Gaussian eddies and computed the noise by using

a LEE solver. Thickness effects are assessed, and similar trends are reported for both
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isotropic and moderately anisotropic flows, i.e. noise was observed to reduce at high

frequencies with increasing aerofoil thickness, and the angle of attack effects were found

to be small for both isotropic and moderately anisotropic turbulence. In a later work,

Gea-Aguilera [103] reported that the redistribution of energy in the velocity spectra, by

which anisotropic turbulent flows are characterized, affects the amount of energy which

produces leading edge noise.

2.5 Finite aerofoil aerodynamics and aeroacoustics

Finite aerofoils have attracted considerable interest in the past, as they produce tip

vortices responsible for the induced drag of aircraft wings, which represent a significant

danger for following aircraft. Furthermore, the interaction of the tip vortices with down-

stream leading edges represents a considerable source of noise, in particular in the case

of CRORs. However, the numerical simulation of the wing tip vortices is associated with

appreciable difficulties due to the strong unsteadiness of the tip vortex, combined with

the requirement of meshing the relatively complicated geometry of the wing tip. Historic-

ally, most simulations have been attempted using the Reynolds Averaged Navier-Stokes

(RANS) equations, as the Reynolds numbers encountered in engineering applications

often leads to prohibitive costs when LES is used. However, as RANS computations

require the use of a model for the turbulence to provide closure, uncertainties are intro-

duced.

Due to the high cost of LES of a finite aerofoil geometry, only a few simulations have

been reported to date. The development of a multi-block LES method with overset grid

capability was reported by Uzun, Hussaini and Streett [131] who used it for the study of

the tip vortex in a steady flow, finding good qualitative agreement between experiment

and numerical predictions. A hybrid RANS-LES simulation was conducted by Kolo-

menskiy, Paoli and Boussuge [132], which takes advantage of a RANS approach in the

near field of the aerofoil, whereas LES is used to predict the decay of the wing tip vortex

more accurately. An implicit LES, serving as a proof of concept for the application of

this method for these problems, was presented by Lombard et al. [133].

Conversely, several experimental studies have been conducted on finite aerofoils, both in

steady flow conditions [134; 135; 136], and when immersed in turbulence [137; 138; 139;

140]. As a complete summary of the vast literature on this topic is beyond the scale of

this work and can be found in reviews such as by Rossow [141] and more recently by

Hallock [142], only the main findings on tip vortex aerodynamics are summarized here,

followed by a discussion of studies focused on the noise emissions of finite aerofoils.

Following Bailey [140], the research topics commonly associated with the trailing vor-

tex problem are: Formation of vortex and roll-up phenomena, its velocity profiles, the

vortex wandering phenomena, the presence of turbulence in the vortex as well as the

interaction of the vortex with external turbulence.
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2.5.1 Vortex formation

The wing tip shape has considerable influence on the formation and downstream beha-

viour of the wing tip vortex. In the simplest case, with a rounded tip, it was shown by

Green [143] that the flow separates from the pressure surface and reattaches on the sur-

face section by the mid-chord location, whereas sharp edges may lead to the merging of

multiple smaller vortices forming from separating shear layers, as observed by Katz and

Galdo [144]. Further downstream, the wing wake rolls up in a spiral around the vortex.

This roll-up process was considered by Philips [145] to not be complete until the wake

spiral is indistinguishable from the vortex core, and thus roll-up was stated to persist

several wingspans downstream of the wing. Conversely, Shekarriz et al. [146] considered

roll-up complete when maximum vorticity is attained, which they found to be the case

directly downstream the trailing edge. Yet another definition, used by Ramaprian and

Zheng [147] relates the roll-up process to the symmetry of the vortex core. They reported

that the vortex core exhibits near-axisymmetry within two chord lengths downstream

the trailing edge, concluding that this type of roll-up process is completed relatively

quickly.

2.5.2 Vortex velocity profiles

Once the vortex core has attained near-axisymmetry, the typical radial profile of the

circumferential velocity UΘ of a vortex with a circulation strength Γ0 follows the well-

known Lamb-Oseen model, as illustrated in Figure 2.6.
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Figure 2.6: Radial profile of axisymmetric tip vortex following Lamb-Oseen
model.

Close to the centre of the vortex, the velocity profile is nearly linear, similar to a solid

body rotation. This region is commonly referred to the viscous core of the vortex, as

it is dominated by viscous effects. As the radius of maximum circumferential velocity

at r∗ is approached, the velocity gradient inverses until the profile resembles that of a

potential vortex.

While the circumferential velocity profile is approximated fairly accurately by the Lamb-

Oseen model for many tip vortices, the axial velocity profile is more dependent on vortex

formation processes. Studies conducted by Batchelor [148] showed that the axial velocity
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may exhibit either a jet-like or a wake-like behaviour. There are strong indications

that this phenomenon is Reynolds number dependent [135]. More recently, Anderson

and Lawson [149] investigated the axial flow and found that high angles of attack and

rounded tips produce jet-like flow, whereas lower angles of attack and square wing tips

were associated with wake-like flows. In the experimental study of Bailey [140], a wake-

like profile of the mean axial velocity was found for all investigated levels of turbulence

intensity, which was significantly affected by the vortex wandering.

2.5.3 Vortex wandering

Vortex wandering describes the phenomenon that in most experiments, the vortex core

tends to wander in a chaotic manner in the flow-normal plane, severely affecting meas-

urement quality. This has been most commonly attributed to free-stream turbulence

[136; 137]. Beninati and Marshall [139] found evidence in their experiments supporting

earlier computational results of Melander and Hussain [150] that the external turbulence

induces bending waves on the vortex.

Devenport [136] used an analytical approach to determine the magnitude of vortex wan-

dering and to correct the effects of it on their point measurements. They found that

there was a significant effect of wandering only on the point statistics measured within

the vortex core, and that the wandering occurred predominantly in a broad-band, low

frequency range. Bailey [140] reported indications that the vortex wandering is caused

by convective transport due to large-scale free-stream eddies.

2.5.4 Turbulence and instability in the vortex

The vortex core has been found in experiment to rapidly lead to relaminarization by

Chow [151], and later Devenport [136]. This had been attributed by Bradshaw [152] to

the high level of streamline curvature within the vortex core, which act in a stabilizing

way by impeding radial motions and increasing turbulence decay. While turbulence does

not persist in the core, the vortex frequently exchanges fluid with the surrounding flow,

partially relaminarizing it before ejecting it again, as shown in flow visualizations by

Bandyopadhyay et al. [153].

Recently, the investigation of turbulent fluctuations within the vortex has been found

to be a particular problem in the context of numerical studies, as many eddy-viscosity

based turbulence models are unable to properly reproduce the stabilizing effects of the

rotation in the tip vortex [154]. Corrections have been introduced to some models,

such as to the Baldwin-Barth model [154], as well as to the Spalart-Allmaras model

[155], but still significant inaccuracies remain, as shown for instance by Churchfield

and Blaisdell [156]. Furthermore, as by Holzäpfel pointed out [157], LES methods have

significant shortcomings when modelling vortex core evolution, since the development
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of turbulence in this region of very high vorticity is often not appropriately modelled

by the subgrid model, which is particularly critical as the vortex core regions are often

under-resolved. In addition, strongly rotating turbulent flows may exhibit an inverse

energy cascade, where energy is transported from the small to the large scales by the

successive merging of vortices [150]. This process, first described by Kraichnan [158] is a

phenomenon produced by turbulent flows of a quasi two-dimensional nature in the large

scales, and cannot be captured by strictly dissipative subgrid-scale models.

Considering these problems, exhibited by the majority of commonly used LES modelling

approaches [159], it is apparent that the prediction of the turbulence development within

the core regions of the tip vortex is associated with considerable uncertainties. However,

since prior studies of rotating flows in pipes showed the ability of even relatively simple

LES models to reproduce the main flow features [160; 161], it is expected that this

shortcoming is of negligible effect on the main focus of the thesis, which is the analysis

of the leading edge turbulence interaction noise of finite aerofoil geometries. In future

investigations, the problem geometry as used in Chapter 6 may be used to validate

advanced subgrid scale models such as proposed by Holzäpfel [162].

2.5.5 The interaction between a vortex and turbulence

A number of studies have been conducted to investigate the effect of a vortex on a

surrounding turbulent flow and vice versa. Melander and Hussain [150] used DNS to

observe that small-scale non-coherent turbulence was reorganized by the vortex, and

stretched by it, leading to an increase of the magnitude of the azimuthal component

of vorticity. Organized secondary structures, arranged in spirals around the vortex,

resulted. An example is shown in Figure 2.7, reproduced from the simulation of Marshall

and Beninati [163].

Melander and Hussain [150] observed that for low turbulence levels, the structures would

form, but decay together with the free-stream turbulence. For medium levels, the tur-

bulence within the secondary structures would be sustained, and the vortex coexisted

with them. At high levels, bending waves were induced in the vortex, which corrupted

the axisymmetry of the secondary structures.

A distinction of the effect of large and small turbulent eddies on the vortex tube was

first shown by Risso et al. in their DNS [164]. They state that while the large eddies of

the surrounding turbulence, by their deformation around the vortex axis, slow down and

straighten the curvature of the vortex significantly and are therefore causal for the col-

lapse of the vortex, the small eddies enhance the diffusion of vorticity out of the vortex

core. In the context of the incompressible Euler equations, i.e. the Navier-Stokes equa-

tions in the limit of infinite Reynolds number and low Mach number, this observation

can be understood as a consequence of the transition from a quasi two-dimensional flow,
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Figure 2.7: Turbulent structures wrapping around a vortex core [163].

i.e. the isolated vortex, to a three-dimensional flow by the interaction with the free-

stream turbulence. When the Euler equations are written in terms of vorticity, vorticity

is conserved in the 2D case, whereas in 3D the additional terms on the right hand side

of the vorticity equation, which are associated with vortex stretching and vortex tilting

due to the presence of secondary eddies, lead to vorticity no longer being conserved.

Finally, in their DNS simulations, Marshall and Beninati [163] found little evidence of

stripping of core fluid into the free-stream, except for immediately before the break-up

of the vortex in very high free-stream turbulence conditions.

2.5.6 The state of the art of the aeroacoustics of finite aerofoils

A limitation of many analytical and numerical tools for aeroacoustic noise prediction

is the assumption of an infinite span. The most widely used noise prediction method

of Amiet [15], given by Eqn. (2.31), requires both the aerofoil response to turbulent

gusts, as well as the turbulence statistics, to be constant at least on the order of the

spanwise turbulence length scale. Although this allows treatment of spanwise changing

flow conditions, as would be the case for finite aerofoils, by a strip theory approach [165],

this has led to most of the experimental and numerical investigations to feature infinite

aerofoil problems. Exceptions were the aeroacoustic investigations of a finite aerofoil

with a tripped boundary layer, conducted by Moreau et al. [166]. They compared their

noise measurements with predictions of a semi-analytical model by Brooks, Pope and

Marcolini [4; 167]. They showed that tip-vortex formation noise is a dominant noise

source, especially at higher angles of attack. Earlier experiments with a rounded tip

were conducted by Brooks and Marcolini [167]. Yet another experiment was conducted
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by Giez et al. [8]. Investigating an isolated, non-rotating aerofoil, data in support for an

analytical model for predicting interaction noise of an open rotor was acquired. They

showed that in the case of a swept aerofoil, a clear monotonic increase of noise level with

angle of attack can be observed. This is explained to be most likely due to the leading

edge vortex triggering the developing boundary layers.

2.6 Summary

This Chapter has introduced important concepts for the description of turbulence, with

a focus on the properties of the energy spectra as well as the description of the aniso-

tropy using the Reynolds-stress tensor and the Lumley triangle, both of which will be

used extensively in Chapter 4. A review of the literature regarding turbulence grids

was conducted, as the inlet grid turbulence creation method proposed by Blackmore

[13] produces turbulence in a very similar way. It was found that while a considerable

number of investigations have been conducted in the past, there are still open research

questions, such as the development and generation of turbulence anisotropy in the im-

mediate vicinity of the grid, as well as the long term development of the anisotropy.

Both of these problems will be addressed in Chapter 4.

The state of the art regarding leading edge turbulence interaction noise was discussed,

and it was found that the interaction of infinite aerofoils has been exhaustively investig-

ated using both analytical and numerical tools. However, these method are often limited

to simple geometries. This thesis will address this problem by demonstrating the use

of a highly versatile approach of a compressible LES on an unstructured mesh for the

investigation of a leading edge turbulence interaction problem of an infinite aerofoil in

Chapter 5. Subsequently, the methodology will be applied to the problem of a loaded,

thick, finite aerofoil in Chapter 6, allowing the investigation of the effects of the tip

vortex on the far-field noise emissions of an aerofoil in a turbulent flow for the first time.
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Numerical methodology

The investigation of turbulence development with the inlet grid turbulence creation

method proposed by Blackmore [13] is possible using a very uniform, isotropic mesh.

Under such circumstances, errors arising from inhomogeneities in the mesh are small,

and thus, highly accurate, albeit only conditionally stable numerical schemes can be

used. However, in most applied cases, such as the infinite and finite aerofoil interaction

cases, the geometry of interest makes the generation of a high quality mesh difficult, if

not impossible. At the same time, accurate results from LES is still desired. In these

situations, it is often difficult to assess the impact of using less accurate, yet stable

schemes, and to take the effects of the changing mesh quality into account.

This Chapter aims to conduct a sensitivity study to investigate the consequences of

changing case geometry and numerical schemes on the solution result. Due to the large

number of possible numerical schemes, boundary conditions and mesh quality criteria,

not all effects can be investigated. Analysis is concentrated on those changes which

were made during this research project. Therefore, dependence of the results on mesh,

boundary conditions and numerical schemes is presented.

The Chapter is structured as follows. In Section 3.1.1, the numerical methods of Large

Eddy Simulation (LES) and Detached Eddy Simulation (DES) are introduced, and the

governing equations for LES of incompressible and compressible flows are given. Addi-

tionally, the method chosen for aeroacoustic post processing is discussed. The effect of

conducting compressible or incompressible turbulent LES at relatively low Mach num-

bers is investigated in Section 3.2, as well as the effect of choosing more stable, but less

accurate upwind biased schemes over highly accurate, but oscillatory central schemes

for the discretisation of the convective term. Finally, the impact of different boundary

conditions on the development of the simulated turbulent flow is investigated in Section

3.3. Finally, the Chapter is summarized, and conclusions are given in Section 3.4.

39
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3.1 Numerical background

For the selection of the simulation method used in this study, a number of factors were

considered. Primarily, the method should be able to capture the relevant physics for the

prediction of broadband noise, however it should also be computationally affordable, it

should be versatile to support complex geometries such as finite aerofoils and it should

be accessible.

Considering the review documented in Section 2.4.3, CAA methods were deselected

based on the reasoning that while they are able to capture the relevant physics and

predict noise emissions to a high level of accuracy, they are inflexible in terms of which

geometries may be considered due to their very high mesh quality requirements.

Conversely, URANS methods, while computationally affordable and more versatile than

CAA methods, are in general limited to the prediction of tonal noise sources, where

they have been applied quite successfully [168; 169]. Most recently, some research groups

[170; 171] have been successful by combining URANS methods with synthetic turbulence

creation methods such as the random particle method (RPM) and fRPM methods pro-

posed by Ewert [172] and Siefert and Ewert [173] to create broadband turbulence, and

compute the noise emissions via a subsequent CAA step. However, these methods have

yet to find wider adoption outside of proprietary academic codes, and are furthermore

fundamentally limited, since the turbulent quantities for the RPM/fRPM turbulence

synthesizing are extracted from a URANS simulation with its associated modelling as-

sumptions.

The simulation method of LES has been shown in a number of prior investigations to

be both an accurate as well as versatile tool for aeroacoustic purposes, in particular if

the broadband noise is of interest [125; 169; 174; 175; 176], as it resolves the turbulent

fluctuations up to the cut-off frequency. Furthermore, as it is computationally relatively

affordable using modern research clusters and widely accessible, it was selected for this

study.

3.1.1 LES for turbulence development and aeroacoustic research

The simulation method of LES, first proposed by Smagorinsky in 1963 [177], has been

actively used by the scientific community for a wide range of applications. There are

four steps in a LES [16]:

1. A filtering operation, decomposing the velocity field into a filtered, or resolved

component, and a subgrid-scale component. The filtered velocity field represents

the motion of the large eddies, hence the name LES. This filter can be applied in

wavenumber space, or in physical space, using the numerical grid of the domain.

2. The evolution of the filtered velocity field is computed using equations derived from

the Navier-Stokes equations. The contribution of the subgrid-scale components
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is accounted for with the momentum equation, which contains the subgrid-scale

stress tensor.

3. In order to close the system of equations, modelling is necessary. This is most

commonly done with an eddy-viscosity model, like the Smagorinsky model [177].

4. Finally, the filtered equations are solved numerically, and an approximation of the

large-scale motions of one realization of the turbulent flow is obtained.

The fundamental assumption of this method is that the energy contained in the small

eddies is a negligible fraction of the overall turbulent kinetic energy. In addition, the

majority of common subgrid models is unable to properly reproduce inverse energy

cascades, such as present in strongly rotating flows, and consequently it is assumed that

the subgrid scales act exclusively as an energy sink. If these assumptions hold true, the

modelling error incurred is small. It is up to the user to ensure that this is the case, and

that LES is used appropriately. Typically, it is assumed that a LES is physical once at

least 80% of the energy is resolved [16].

While a LES incurs some accuracy loss compared to DNS due to the modelling of the

small scales, it has a major advantage. Whereas the computational cost for a DNS, due

to it resolving all scales, grows with 0.55Re6
λ [16], the computational cost for LES is,

depending on the application, less than 5% of a corresponding DNS [178], with little

impact on the accuracy. For the case of a boundary layer, Piomelli [179] estimated the

cost of a resolved LES to scale as Re0.6 for the outer layer, and as Re2.4 for the inner

layer. Thus, for the investigation of decaying turbulence, LES represents a promising

approach. This was recognized by Okong’o, Knight and Zhou [180], and later by Kang,

Chester, and Meneveau [181], who both evaluated several LES models in terms of their

capability to replicate low-order statistics of isotropic turbulence during decay.

For incompressible flows, the filtered Navier-Stokes equations underpinning the LES

methodology reduce to:

∂Ui
∂xi

= 0, (3.1)

∂Ui
∂t

+ ∂Uj
∂Ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
[ν + νSGS ]

∂Ui
∂xj

)
. (3.2)

with νSGS being the subgrid-scale viscosity. The overbar represents filtered, grid-scale

components. From left to right, the terms in Eqn. (3.2) are commonly referred to as the

transient, convective, pressure as well as the viscous term. The viscous term includes

a term for the residual stresses νSGS , which are introduced by the filtering operation.

These stresses are commonly approximated by a subgrid model. A large number of

variants exist, and reviews of recent progress have been conducted by Georgiadis [174]

as well as Piomelli [182]. One of the most widely used subgrid scale models was proposed
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by Smagorinsky [177], and is defined as:

νSGS =(Cs∆i)
2
√

2SijSij , (3.3)

Sij =
1

2

(
Ui
∂xj

+
Uj
∂xi

)
. (3.4)

with Cs being the Smagorinsky coefficient. Although the Smagorinsky model is known

to be overly dissipative, and its coefficient has only been accurately validated for decay-

ing turbulence [174], it has been recognized as sufficiently accurate in many applications

since the impact of the subgrid-scale motions on the low-order statistics of the larger

eddies is often negligible [178]. As such, it is used for the turbulence development invest-

igations of Chapter 4, where the development and decay of the large scales is of primary

interest.

In order to capture the non-compactness effect discussed in Section 2.4.2.1, the assump-

tion of incompressibility has to be abandoned, as the speed of sound in an incompressible

medium is infinite. Thus, the compressible Navier-Stokes equations have to be solved.

To facilitate the notation of the compressible Navier-Stokes equations for LES, Favre

filtering [183] is adopted. A Favre-filtered variable is then defined as

f̃ = ρf/ρ. (3.5)

Under the common assumptions reported by Piomelli [184], the filtered, compressible

Navier-Stokes equations for a perfect gas of constant molecular viscosity µ then take on

the form:

∂ρ

∂t
+
∂ρŨj
∂xi

= 0, (3.6)

∂ρŨi
∂t

+
∂ρŨiŨj
∂xj

= − ∂p

∂xi
+
∂σ̃ji
∂xj

− ∂τji
∂xj

(3.7)

ρẽ

∂t
+

∂

∂xk
(ρŨj ẽ) +

∂q̃j
∂xj

= −pS̃kk + σ̃jiS̃ij −
∂

∂xj
(ρ(Ũje− Ũj ẽ)), (3.8)

with the additional definitions

τij = ρ(ŨiUj − ŨiŨj), (3.9)

σ̃ij = 2νS̃ij +

(
ν̃2 −

2

3
ν̃

)
δijS̃kk, (3.10)

q̃j = −k̃ ∂T̃
x̃j
, (3.11)

where S̃ij is the filtered strain-rate tensor, µ2 is the bulk viscosity, e is the internal

energy per unit mass, and k̃ is the thermal conductivity at the filtered temperature T̃ .
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3.1.2 The near wall region treatment in LES

An area of particular concern when conducting LES is the treatment of any walls in the

domain. Towards the wall, the energy carrying scales becomes progressively smaller,

which leads to excessive resolution requirements [38; 179; 185]. Since wall-resolved LES

is infeasible for many practical applications, a number of proposals have been made to

reduce the cost of computing a turbulent boundary layer by means of modelling. Larsson

et al. [185] categorize wall-modelled LES in their recent review into wall stress models

and hybrid LES/RANS approaches.

3.1.2.1 Wall stress models

In wall stress models, the LES methodology is extended all the way to the wall, and a

model is used to adjust the wall stress based on information from the LES to allow the

number of grid points to be reduced. Examples are the two-layer model proposed by

Balaras and Benocci [186], the approach based on suboptimal control theory suggested

by Nicoud et al. [187], and the model developed by Schumann [188], which assumes the

existence of an equilibrium layer in a manner similar to wall functions used by common

RANS turbulence models.

In terms of accuracy and computational cost, Piomelli [179] concludes that the compu-

tational cost of hybrid LES/RANS methods is higher than of the different types of wall

stress models, with accuracy depending significantly on the application. Conversely,

Larsson et al. [185] argue that wall stress-models where the derefinement is limited to

the inner layer of the boundary layer have the potential to be significantly more accurate

than hybrid LES/RANS approaches where this is not strictly required, albeit at a much

increased computational cost.

3.1.2.2 Hybrid LES/RANS approaches

Hybrid LES/RANS approaches reduce the computational cost by computing the inner

layer of the boundary layer using RANS, and then using the wall shear stress as computed

by the RANS as input for the LES of the surrounding domain. The most well-known

hybrid LES/RANS approach was proposed by Spalart et al. [155]. In the so-called de-

tached eddy simulation approach, they suggested the use of the Spalart-Allmaras (S-A)

[38] turbulence model as a subgrid scale model, allowing for a straightforward coupling

of LES and RANS mode in the simulation. In the classic S-A turbulence model, the
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equation for the evolution of the eddy viscosity is given as [178]:

νt =ν̃fv1, (3.12)

∂ν̃

∂t
+ Uj

∂ν̃

∂xj
=cb1S̃ν̃ − cw1fw

(
ν̃

d

)2

+
1

σ

∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+
cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk
(3.13)

with

S̃ =S +
ν̃

κ2d2
fv2, (3.14)

S =
√

2ΩijΩij, (3.15)

where Ωij = 0.5(∂Ui/∂xj − ∂Uj∂xi) as the rotation tensor, and ds as the distance from

the closest surface. The remaining constants of the S-A model are omitted here and can

be found in Wilcox [178]. It follows from Eqn. (3.13) and Eqn. (3.15) that the evolution

of the eddy viscosity equation in the classical S-A model depends on the distance from

the closest surface, as well as the gradients of ν̃. Thus, the eddy viscosity does not decay

to zero in a free-stream, which can lead to non-physical diffusion [178].

For the purpose of using Eqn. (3.13) as a subgrid scale model, the distance d is replaced

with d̃, defined as

d̃ = min(d,CDES∆i), (3.16)

where CDES is an adjustable constant, which is set in accordance with measurements

from homogeneous turbulence [155], and ∆i is cell size, which is determined in the

presented work using the cube root procedure. With this modification, the model re-

turns the classical value of the S-A model for the eddy viscosity near a surface, whereas

at large distances the cell spacing is used for the computation of ν̃, yielding a behaviour

equivalent [189] to the classical model of Smagorinsky [177], given in Eqn. (3.4).

It is noted that, following Eqn. (3.13) and (3.16), the common practice of gradual dere-

finement of the mesh with distance from the surfaces results in a non-zero value of the

subgrid-scale eddy viscosity even far away from the surfaces. However, since a LES is

performed, the dissipation is the sum of subgrid-scale dissipation εSGS , which is a func-

tion of the subgrid-scale eddy viscosity, and the resolved, or grid-scale, dissipation εr,

which is not. Estimations by Leonard [190] show that εr amounts to at minimum of 20

to 40% of the total dissipation, with the subgrid dissipation representing the remainder

of the total dissipation. While the dissipation of the subgrid scales is modelled to be

isotropic, the resolved dissipation may not, and thus allow the LES to exhibit anisotropic

dissipation in a manner equivalent to observation from experimental flows [61].

Furthermore, it has been observed [191], that in meshes with ambiguous grid densities,

the standard formulation of DES will lead to grid induced separation, especially in thick

boundary layers. However, it is not expected that for the case of aerofoils at a small

angle of attack, as is investigated in this research, thick boundary layers will be created.
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For future investigations, which may feature larger angle of attacks to analyse the ef-

fect of stronger tip vortices, it may be advisable to use advanced formulations of DES,

such as delayed DES [192], which is better able to prevent grid induced separation, or

improved delayed DES [193], which incorporates a better reproduction of the log-layer.

DES has been shown to be superior to RANS and URANS particularly when used for the

prediction of strongly separated flows [194], albeit its performance regarding the accur-

ate simulation of boundary layers is case dependent [195], and will necessarily lag behind

that of wall-resolved LES and DNS, which however are will not become feasible to use

at realistic Reynolds numbers even on large research clusters in the near future [155].

3.1.3 Aeroacoustic post processing

As the created turbulence is not divergence-free, the noise emissions of the aerofoil can-

not be extracted directly from the unsteady pressure field, since the noise caused by

the hydrodynamic pressure fluctuations of the turbulence interferes with the acoustic

response of the aerofoil [113]. Furthermore, the relatively low order schemes of the used

finite volume code are not suitable for the accurate simulation of the acoustic waves to

the far-field.

Thus, a hybrid approach was adopted for the computation of the turbulence interaction

noise. In a first step, the unsteady pressure data, generated by the DES run using the

OpenFOAM CFD package was sampled on the aerofoil surface. The far-field radiation

was then computed using the commercial software FLUENTTM, which contains an im-

plementation of the acoustic analogy of Ffowcs-Williams and Hawkings (FW-H) [118],

according to the formulation 1A of Farassat [196]. For this purpose, the data output

of the DES was converted to FLUENT readable files using scripts written in the com-

mercial programming language MatlabTM. A free-field Green’s function is used, and a

uniform mean flow is assumed. Mesh information and observer positions were supplied,

and the post processing step was conducted in parallel on the computer clusters Iridis 4

and 5 of the University of Southampton.

By making use of an extraction of the unsteady pressure data directly on the aerofoil

surface, an impermeable sampling surface was realized. Thus, additional noise being

created by eddies passing through the FW-H surface is avoided [197]. The contribution

of the quadrupole sources in the boundary layer of the aerofoil was, due to its very lim-

ited size considering the small angle of attack and limited chord length, considered to

be negligible. Since the aerofoil is at rest relative to the observer, the use of the FW-H

analogy corresponds in this case to the analogy of Curle [111].

The analytical model chosen for validation was Amiets thin aerofoil model [15] according

to Eqn. (2.33), which was implemented using scripts written in MATLABTM. In this

work, the von Kármán spectrum, as defined in Eqn. (2.16), was used in Amiets model

as input for the energy spectrum.
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3.2 Effects of numerical schemes and solvers

When conducting simulations, numerical schemes and solvers are chosen according to

the physics of the problem, which determine the type of partial differential equation

which needs to be solved. Subsequently, it is highly desirable that numerical schemes

and solvers are kept unchanged to facilitate comparison across cases.

In this thesis, the two areas of interest pose unique requirements to the numerical pro-

cedure.

� The first area of interest, the analysis of the turbulence development behind the

inlet grid boundary condition, is a strictly incompressible problem, as it is restric-

ted by design to low Mach numbers and the acoustic aspect is not considered. As

such, the incompressible Navier-Stokes equations may be solved on a homogen-

eous grid of exclusively hexahedral cells, allowing the use of cell-centred schemes

for the discretisation of the convective term with minimal dissipative error, which

is considered best practice for LES [174].

� The second area of interest, the study of turbulence interaction noise of finite and

infinite aerofoils, in particular for frequencies and observer angles where the aero-

foil cannot be acoustically considered compact, is a compressible problem with

the additional complication of a solid body in the domain. Consequently, the

compressible Navier-Stokes equations have to be solved on a mesh capable of ac-

commodating a finite aerofoil, which exhibits a blunt trailing edge. For these types

of meshes, cell-centred schemes have been found to be unstable for the discretisa-

tion of the convective term, and second order upwind biased schemes have been

used instead.

As it is furthermore intended to be able to relate the findings of Chapter 4, which

deals with the first area of interest, to those of Chapters 5 and 6, which deal with the

second area of interest, the effect of changing the schemes for the discretisation of the

convective term, as well as conducting an incompressible Navier-Stokes LES as opposed

to a compressible LES is investigated in this Section.

The solvers used for all parts of this work are part of the well validated [198; 199; 200]

open source computational fluid dynamics package OpenFOAM 3.0. All simulations were

computed on the IRIDIS 4 and 5 computer clusters of the University of Southampton.

3.2.1 Numerical setup for methodology comparison study turbulence

development case

Figure 3.1 illustrates the setup chosen for the comparison of solvers and schemes, as well

as the “offset” plane and lines along which data sampling was conducted. Additionally,

the definition of the grid period Gp is given.
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Figure 3.1: Boundary conditions and probe positions. Illustration not to scale.

Figure 3.1 shows the data sampling positions. Velocity data for computation of cor-

relations and energy spectra was sampled on one plane, designated “Offset”, as it is

offset to the symmetry plane by Gp/2. On this plane, two lines are illustrated by the

dotted lines, the “Grid bar line” and the “Jet centre line”, for which in depth analysis

will be presented in Chapter 4. The centreline is illustrated with a dotted line. The

sampling frequency was greater than 5 kHz. Turbulent stresses were computed at all

cell centres at runtime, allowing to conduct analysis of turbulent stress based quantities

at all positions of the simulated domain.

As shown in Figure 3.1, the inlet was divided into wall and mass flow inlet patches

according to the methodology described by Blackmore et al. [13]. Boundary conditions

for the setup are given in Table 3.1.

Patch Variable Type Definition

Wall U Dirichlet U = (0, 0, 0)

p Neumann dp/ dx = 0

Inlet U Dirichlet U1 = ṁ/(Apρ0), U2 = U3 = 0

p Neumann dp/ dx = 0

Outlet1 U Mixed Eqn. (3.17)

p Neumann dp/ dx = 0

Sides U, p Periodic 1:1 field mapping to opposite boundary

Table 3.1: Boundary conditions of turbulence development setup

The outlet was set to a zero gradient condition, i.e. dp/dx = 0, also known as Neu-

mann boundary condition, as a constant value pressure boundary conditions would not

be appropriate considering the expected convection of eddies through the outlet. The

1In case of the incompressible simulations, a simpler Neumann boundary condition was used for the
velocity, as the primary investigation was focussed on the near-grid region.
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pressure is thus fixed in the domain by specifying a density in the mass flow inlet bound-

ary condition. A mixed boundary condition, which would set Neumann or a Dirichlet

boundary condition for flux out or into the domain, respectively, was applied for the

velocity at the outlet, and is given by

U =

{
dU/ dx = 0 if φp > 0,

U = (U0, 0, 0) if φp < 0.
(3.17)

where φp > 0 indicates flow out of the domain, φp < 0 indicates into the domain.

On each face of the inlet boundary patches, the velocity is set through the mass inlet

boundary conditions as a function of mass flow ṁ, patch area Ap, and the fixed density

ρ0. Period boundary conditions were chosen for all boundaries normal to the transverse

directions.

The grid setup chosen had a solidity of sG = 0.6, with a grid period of Gp = 0.06 m.

The mesh for the turbulence development simulations was created using the blockMesh

utility provided within OpenFOAM v3.0, generating a high quality isotropic hexahedral

mesh of 17.7×106 cells. The size of every cell in the domain was ∆c = ∆1 = ∆2 = ∆3 =

1.875 × 10−3 m, corresponding to 32 cells per grid period, which was chosen following

the recommendations of the parameter study of Blackmore [13]. The time step ∆t was

chosen to satisfy the Courant-Friedrichs-Lewy (CFL) condition,

CFL =
|U|∆t

∆c
≤ 0.9, (3.18)

where U is the mean flow velocity vector in a given cell. For the incompressible LES, the

pisoFoam solver implemented in OpenFOAM was used, which is transient and uses the

PISO algorithm proposed by Issa [201] for velocity-pressure coupling. Conversely, for

the compressible LES presented in this thesis, the solver rhoPimpleFoam was chosen,

which conducts pressure-velocity coupling with the merged PISO and SIMPLE [202]

algorithms. Similarly to SIMPLE, the PIMPLE algorithm solves the momentum equa-

tions repeatedly, and applies corrector steps as in the PISO algorithm. This allows to

use under-relaxation in the solving of the equations, which enhances stability by redu-

cing the change of the flow variables from one iterative step to the next. Although this

leads to an increase of convergence times, the gain in stability is considerable.

An analysis of the dissipation and dispersion error characteristics of the chosen numer-

ical schemes was conducted, and is documented in Appendix B.3. It was found that

CFL numbers lower than 0.5 are advisable to minimize the dissipation error, while CFL

numbers lower than 0.3 are advisable to minimize the dispersion error. Thus, for all

simulations presented in this thesis, a CFL number smaller than 0.5 was used once

quasi-steady state was achieved, which is furthermore considered best practice in order

to increase stability and decrease temporal numerical dissipation [174].
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3.2.2 Numerical convergence

The convergence of the numerical solution for a physical quantity is an important qual-

ity criterion, without which accurate and reliable analysis cannot be undertaken. In

experiment, the convergence of a certain quantity is often assured, since it is possible

to acquire data over an extended time period. Thereby, is ensured that sufficient stat-

istically uncorrelated samples are acquired [203]. Numerical simulations, however, are

limited in how much physical time can be simulated. Consequently, some quantities, in

particular the higher statistical moments of the turbulence, are affected from imperfect

convergence.

Compared to numerical simulations solving the compressible Navier-Stokes equations,

simulations solving the incompressible Navier-Stokes equations are associated with a

significantly lower computational cost, as the highest characteristic speed in an incom-

pressible problem is much lower than the speed of sound, and consequently a larger time

step can be used. Consequently, for the investigation of the convergence of the axial

turbulent stress component u11, as defined by Eqn. (2.20), as well as of the axial integ-

ral length scale I11, as defined by Eqn. (2.10), the turbulence development case at low

Reynolds number was used, which was computed using an incompressible LES. Figures

3.2 (a) and (b) shows the development of u11 and I11, respectively, at three points on

the centreline in the domain, when data over an increasingly larger time period is used

for the computation. The convergence time was non-dimensionalised by multiplying it

by the mean velocity at outlet, U0, divided by the final value of the integral length scale,

I11|final.
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(a) Convergence of u11.
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(b) Convergence of I11.

Figure 3.2: Convergence of Reynolds stresses and integral length scale.

From Figure 3.2 (a) it is apparent that the values obtained for the turbulent stresses

converge with data sampled for more than 2000 integral time scales, while Figure 3.2 (b)

shows that the integral time scales themselves require data to be sampled for at least

5000 integral time scales. Based on the values shown above, the uncertainty of the tur-

bulent stresses and the integral length scales is estimated to be less than 0.2% and 0.8%,
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respectively.

It is concluded that an extensive time scale is necessary for u11 and I11 to converge, in

particular in case of the latter. This is due to the fact that the longest scales, which

carry most of the energy, will only be sufficiently represented in a temporal average if

the time period over which it is computed is long enough. Consequently, experimental

and numerical investigations often acquire data over time periods equal to at least 105

times the integral time scale.

As discussed above, numerically solving the compressible Navier-Stokes equations is as-

sociated with considerably increased computational cost due to the higher characteristic

speeds involved. Considering the significantly increased cell count of the turbulence in-

teraction cases, discussed in Chapters 5 and 6, it was found infeasible with the available

computational resources to run the simulation for sufficient time to allow in particular

the integral length scale to converge. However, in these cases the quantities of interest

for which a converged solution is required are the aeroacoustic quantities.

In order to establish the time period sufficient for the convergence of aeroacoustic quant-

ities, the OverAll Sound Pressure Level (OASPL) of the infinite aerofoil case was com-

puted for an increasing time period, with the time non-dimensionalised by the streamwise

mean flow velocity U0 and the aerofoil chord length c. The results are shown in Figure

3.3.
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Figure 3.3: Convergence of OASPL levels of the infinite aerofoil simulation at
an observer angle of θ = 90.

From Figure 3.3, it is apparent that for times larger than tU0/c ≥ 50, the OASPL does

not deviate more than 0.25 dB from the final result for this observer angle.
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3.2.3 Impact of the assumption of compressibility on LES of highly

turbulent flows at low Mach number

In order to study the effect of the assumption of compressibility on the turbulence

produced by the inlet-grid methodology, and hence allow comparison of the results of

Chapter 4 to those of the Chapters 5 and 6, a study was conducted on the turbulence

development domain illustrated in Figure 3.1.

A second order backward-biased stepping scheme was used for the temporal discretiz-

ation. Gradient terms were computed using a second order accurate scheme based on

Gauss’ theorem, while the convection and diffusion terms are computed using a second

order central differencing scheme. Numerical oscillations were prevented by the use of

gradient limiter functions. These limiters react to excessive gradients by switching to

a lower order scheme, i.e. first order upwind [204]. Although this locally reduces the

accuracy, the benefit of suppressing oscillations is substantial. An analysis of the effect

of the use of these limiters was conducted and is documented in Appendix B. No effect

on dissipative or dispersive was found for the present levels of turbulence and Mach

number.

Figures 3.4 (a), (c) and (e) show the one-dimensional axial energy spectrum E11 for mean

Mach numbers M0 = 0.018, 0.088 and 0.177 respectively, while Figures 3.4 (b), (d) and

(f) show the one-dimensional transverse energy spectrum E22. In order to facilitate com-

parison between the Mach numbers, the spectra are given as a function of wavenumber

obtained for the position x/Gp = 30, where the mixing processes can be assumed to be

completed and transverse averaging can be used to reduce noise in the spectra. This is

necessary as the significantly more computationally expensive compressible simulations

prohibit sampling times of the same length as the incompressible simulations, and there-

fore require the averaging over space to produce equivalently smooth spectral shapes.

The spectra compared here are obtained by post processing data acquired to a physical

time equal to 10 throughflow times Tl for all Mach numbers. Tl is defined as

Tl = l/U0, (3.19)

where l is the length of the domain in the streamwise direction. The analytical model

spectra of von Kármán, provided as a reference, were computed with integral length scale

and axial stress extracted from the incompressible simulations at much longer physical

times, as shorter physical times led to a mismatch between analytical spectrum and LES

spectra. The cut-off wavenumber of the grid κc = 134 m−1, using the criterion of 25

points per wavenumber as established in Appendix B, is illustrated by the vertical dash

dotted lines in Figures 3.4 (a) - (f).



52 Chapter 3 Numerical methodology

100 101 102

10−5

10−4

10−3

κ1 [m−1]

E
1
1
[m

3
/s

2
]

Incompressible

Compressible

von Kármán

(a) M0 = 0.018.

100 101 102

10−5

10−4

10−3

κ1 [m−1]

E
2
2
[m

3
/s

2
]

Incompressible

Compressible

von Kármán

(b) M0 = 0.018.
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(c) M0 = 0.088.
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(d) M0 = 0.088.
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(e) M0 = 0.177.
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(f) M0 = 0.177.

Figure 3.4: Comparison of energy spectra from incompressible LES against
compressible LES. Mesh cut-off wavenumber illustrated by dash dotted line.

As Figures 3.4 (a) - (f) show, the principal effect of conducting a compressible LES for

the Mach number range investigated appears to be an increase in energy at the high

wavenumbers as the Mach number is increased. However, as this effect is beyond the

cut-off wavenumber, this is attributed to differences in the numerical dissipation and

dispersion characteristics. Close examination of the simulation output revealed small
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differences in the mean CFL numbers of the simulations, which will affect the dissipation

and dispersion error of the used numerical schemes, as discussed in Appendix B. Below

the cut-off wavenumber the spectra are observed to virtually collapse, which is expected

for turbulence at low Mach numbers such as the range investigated here.

The energy at low wavenumbers, which constitutes the majority of turbulent kinetic

energy, appears largely unaffected by the choice of a compressible or an incompressible

LES. In order to ascertain this observation, the development of the kinetic turbulent

energy over the length of the domain is shown in Figures 3.5.
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Figure 3.5: Development of k with mean flow Mach number. Comparison of
incompressible (solid) and compressible (dashed) LES.

It is apparent that the curves do, for all intents and purposes, collapse for all investigated

Mach numbers. Remaining uncertainties are likely due to the better convergence of the

incompressible LES.

3.2.4 Impact of using central versus upwind biased schemes

In the finite volume method, the convective term in Eqn. (3.2) is computed by apply-

ing Gauss’ theorem to the cell, thereby converting the volume integral into the sum

of the convective fluxes through the faces of cell. As the values for an arbitrary flow

quantity are known only at the cell centre, the face values of the flow quantities are

then approximated with a numerical scheme. When conducting LES, it is best prac-

tice to use numerical schemes of at least second order [174]. Furthermore, it is an area

of contention whether upwinded methods can be used for the convective term of Eqn.

(3.2), as their inherent dissipation introduces numerical error into the simulation. As

shown by Beaudan and Moin [205], even high order upwind biased numerical schemes

show significant dissipation, although advanced schemes such as the non-dissipative and

neutrally stable upwind scheme proposed by Karabasov and Goloviznin [206] have been

shown to be promising for noise prediction with LES [207]. However, they have yet to

be implemented in more widely available CFD packages.

While central schemes are preferred for LES due to their very low dissipation error,

the sensitivity of such schemes to grid stretching and outflow boundary conditions
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[208] makes the use of central schemes for more complex geometries, which often re-

quire unstructured meshes, difficult, if not impossible. Most recently, the application

of high order discontinuous Galerkin schemes [174] and schemes of the Taylor-Galerkin

family [123; 209] has shown promise. However, outside a small number of academic

codes, they have found little implementation to date.

The open source solver package OpenFOAM v3.0, while supporting a wide variety of

second order schemes, does not offer these advanced schemes yet. As such, the most ac-

curate scheme for the convective term available in OpenFOAM v3.0 is the second-order

central differencing scheme, which was found to be stable on the very regular, high qual-

ity, isotropic mesh used for the turbulence development simulations of Chapter 4. Using

this scheme, the face values of an arbitrary quantity φf on the cell i are computed as

φf,i =
φc,i−1 − φc,i+1

2∆i
, (3.20)

with φc,i−1 and φc,i+1 being the values of the quantity at the cell centres of the neigh-

bouring cells, and ∆i is the spacing of grid points in the direction of discretization.

Conversely, on the unstructured meshes for the turbulence interaction simulations, a

second-order upwind-biased scheme had to be used for reasons of stability. In this case,

the cell face value φf,i is computed using the value and the cell gradient of φ in the

upwind cell, as given by [210]:

φf,i =

{
φc,i + (∇φc,i) · dc,i if U > 0,

φc,i+1 + (∇φc,i+1) · dc,i+1 if U < 0.
(3.21)

where dc,i is the distance from the cell centre to the face of cell i.

Since the choice of the less accurate upwind biased scheme was only necessary for the

turbulence interaction cases, investigation of the effect of changing the schemes is con-

ducted using for the compressible LES only, as it was used extensively for the turbulence

interaction simulations. An investigation of the linear wave dissipation and dispersion

properties was conducted, and is documented in Appendix B.

In all simulations presented in this thesis the three-level, second order accurate, implicit

“backward” scheme, given by

∂φ

∂t
=

3φ− 4φn + φn−2

2∆t
, (3.22)

where n indicates the time level, was used for the transient term of Eqn. (3.2).

In order to quantify the effect of the increased numerical dissipation due to the up-

wind scheme, the energy spectra for the axial and transverse components at the position

x/Gp = 30, obtained from simulations conducted with the central scheme for the con-

vective term, are compared with those with the upwind biased schemes in Figures 3.6 (a)

and (b). Comparison is conducted for the highest Mach number only, i.e. M0 = 0.177.

The physical time simulated was equal to 10 throughflow cycles. Transverse averaging
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was used to reduce spectral noise.
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(a) Axial energy spectrum.
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(b) Transverse energy spectrum.

Figure 3.6: Comparison of energy spectra at x/Gp = 30 of obtained from a
compressible LES when using central or upwind biased numerical schemes. Mesh
cut-off wavenumber illustrated by dash dotted line.

It is apparent that the choice of the central scheme has two effects. The energy content

at the low wavenumbers is closer to the isotropic ratio of E11/E22 = 2, and the spectra

drop off more rapidly past the grid cut-off wavenumber. Considering the analysis of

the linear wave propagation properties documented in Appendix B, the latter effect is

related to the higher dissipative error of the upwind biased scheme. While the central

scheme does exhibit a considerable dispersive error, it is found here in agreement with

the observations of Mittal and Moin [208] that this does not affect the energy spectrum

due to the very homogeneous mesh, which does not feature any grid stretching. Thus,

the apparent mesh cut-off frequency is increased.

The effect of the choice of the numerical schemes on the Reynolds stresses and the

anisotropy is investigated in more detail in Figures 3.7 (a) and (b). Illustrated are

the development of the RST component u11 and of the anisotropy parameter γ12 =
√
u11/
√
u22, respectively, for both the central and upwind biased schemes, over the

length of the numerical domain.

As Figure 3.7 (a) shows now quantitatively, the decay of the turbulence is significantly

accelerated when using the upwind biased scheme. While both simulations exhibit a

linear region past distances of x/Gp = 16, the slope is steeper when the upwind biased

scheme is used, which is attributed to the higher dissipative error of the upwind biased

scheme as discussed in Appendix B. However, in terms of the magnitude of the RST

component u11, large differences appear only very close and very far from the grid,

illustrating that the differences in terms of the energy contained in the large and the

small scales have only a small effect on the magnitude of the Reynolds stresses, in

agreement with findings of Mittal and Moin [208] as well as Cao and Tamura [210].
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Figure 3.7: Development of RST based quantities with distance to inlet grid for
central and upwind biased schemes.

From Figure 3.7 (b) it is apparent that while the impact of the numerical schemes on

the magnitude of the Reynolds stresses is relatively minor, the effect observed in Figures

3.6 (a) and (b) that the axial and transverse scales are affected leads to differences of

the anisotropy parameter of approximately 10%, which is twice the spread observed in

the experiments of Comte-Bellot and Corrsin [26] for typical isotropic turbulence. Ad-

ditionally, the return to isotropy is accelerated when the upwind biased scheme is used.

At very large distances to the grid, the anisotropy parameter attains a value smaller

than unity for the simulation with the upwind biased scheme. While the anisotropy is

contained, as shown in Figures 3.6 (a) and (b), predominantly in the large scales, with

wavenumbers significantly below the cut-off frequency, leading to the dissipativeness

of the upwind biased schemes having less of an impact, it is observed that over long

flow distances, the larger dissipation error relative to the central schemes leads to an

un-physical development of the turbulence in the present LES. It is concluded that the

dissipative properties of the upwind biased schemes may lead to an underestimation of

the anisotropy in a flow, and its long-term development.

Considering the conclusions of Figures 3.6 (a) and (b) as well as of Figure 3.7 (b), indica-

tions exist that the correlation of the largest scales is significantly reduced by the choice

of an upwinded scheme. At x/Gp = 30, Taylor’s frozen turbulence hypothesis [17] can be

invoked, and the spatial correlation of the scales can be investigated using the autocor-

relations of the unsteady velocities. Figure 3.8 (a) and (b) compare the autocorrelations

for the axial and the transverse component at x/Gp = 30 of the two simulations with

central and with upwind biased schemes. The time shift axis is non-dimensionalised by

using the temporal integral time scale of the simulation using central schemes, which

is deemed to be the more accurate. In order to provide context on the isotropy of the

flow, the analytical relation according to von Kármán-Howarth [22] is indicated by the

dashed lines.
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Figure 3.8: Comparison of correlation functions for central scheme against up-
wind biased scheme, when used in a compressible solver. Analytical relation
according to von Kármán-Howarth [22], given in Eqn. (2.9) shown dashed.

From Figures 3.8 (a) and (b) it is apparent that when central schemes are used for the

convective term, the turbulence exhibits a more anisotropic character at the large scales,

considering that the integrals of the two autocorrelations up to the zero crossing point

are larger and lower, for the axial and the transverse component, respectively, than

when upwind biased schemes are used. At the same time, the comparison of the von

Kármán-Howarth relations to the actual autocorrelations of the transverse component

reveals that the simulation using central schemes exhibits a more isotropic flow at the

small scales, as the analytical relation collapses completely with the autocorrelation for

time shifts τU0/I11 < 0.2.

While the use of gradient limiters has been known to introduce additional dissipation

errors, a linear wave propagation analysis conducted to investigate this did not show

any effect of the gradient limiters, as is documented in Appendix B.

It is concluded that in the present numerical setup, upwind biased schemes appear to

be associated with a reduced large scale anisotropy, and an increased small scale aniso-

tropy relative to the more accurate central schemes. The former leads to a considerable

deviation in terms of the turbulent stress anisotropy, with the axial stress decreased in

magnitude and the transverse stress increased in the magnitude. The latter has the im-

plication that one of the core premises of the LES, i.e. the isotropy of the small scales, is

met less accurately. While the von Kármán-Howarth relation is met close to the origin

of the autocorrelation function, the fact that it deviates almost immediately from A22

indicates that this is more an artefact from the subgrid model forcing isotropy, rather

than the simulation being able to accurately replicate the trend of the smaller scales to

evolve towards isotropy. As such, the behaviour of the smallest resolved scales is consid-

erably affected by the subgrid modelling. However, as the smallest scales constitute a

very small part of the total kinetic energy contained in the turbulent flow, the resulting

error is considered acceptable.

An additional conclusion from Figure 3.8 (a) is that simulations with upwind biased
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schemes benefit from a faster convergence, as the time between decorrelated samples is

reduced.

3.3 Impact of boundary conditions

The turbulence development case investigated so far, exclusively consisting of a rectan-

gular cuboid domain with the boundary conditions of inlet grid, outlet and the periodic

conditions, represents a very simple problem. When the inlet grid turbulence creation

method is applied to the more complex turbulence interaction problem, boundary condi-

tions in the transverse direction must be adapted. This section is dedicated to evaluating

the effects of this change, in order to ensure comparability between the cases.

Comparison is conducted between cases of comparable numerical settings, i.e. of com-

pressible LES and using the upwind biased scheme for the convection term, as the more

accurate central scheme was found to be unstable on more complex meshes. Following

the conclusions of Section 3.2.4, this is expected to lead to a decrease in the observed

anisotropy of the turbulence.

The introduction of an aerofoil, and the requirement to use the setup for aeroacoustic

investigations, necessitates a change of the boundary conditions normal to the span-

chord plane, as well as for the downstream direction. From geometry considerations

it follows that a periodic or symmetric setup is no longer appropriate, and that the

domain is significantly enlarged in order to capture the physics of an isolated aerofoil.

Additionally, the requirement that the boundary conditions do not reflect waves arises.

The meshing setup, as well as the boundary conditions chosen for the infinite aerofoil

interaction cases is discussed in Section 5.1.1.

3.3.1 Flow inhomogeneities

The effect of the change in boundary condition is expected to be most visible in the

homogeneity of the turbulent flow. Ertunc et al. [56] introduced the inhomogeneity

parameter Iφ for the quantification of a temporally averaged flow scalar 〈φ〉, defined as

Iφ = 100 · 〈φ(x, y)〉 − 〈φ〉
〈φ〉

, (3.23)

where the overline indicates the additional averaging of 〈φ〉 in space. In order to establish

a baseline of the achievable homogeneity when using the inlet grid turbulence creation

method proposed by Blackmore [13], Figures 3.9 (a) - (c) show, for the “offset” plane in

the turbulence development setup as defined in Figure 3.1 (a), the inhomogeneities of

the axial mean velocity 〈U1〉, the axial RST component u11 as defined in Eqn. (2.20) as

well as of the anisotropy parameter γ12 =
√
u11/
√
u22.
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(c) Inhomogeneity of anisotropy parameter γ12.

Figure 3.9: Flow inhomogeneity in the “offset” plane of the turbulence devel-
opment case.

As can be seen in Figure 3.9, significant inhomogeneities of the mean velocities persist

in the flow up to a distance of 10Gp. Further downstream, however, the flow is quite

homogeneous. The inhomogeneities of the higher moments, such as the axial turbulent

stresses and of the anisotropy γ12, persist far longer in the flow, and can be stated

to never completely disappear. This result is in agreement with the measurements and

simulations of Ertunc et al. [56] and demonstrates the necessity of transverse averaging to

achieve quantitative results. Further assessment of the flow homogeneity, supporting the

results shown above, was conducted for three planes normal to the streamwise direction

and is documented in Appendix E.1.

In order to assess the homogeneity of the flow in the turbulence interaction setup, the

homogeneity parameter is computed in a slightly altered way. While the analysis is

conducted for a xy plane offset to the grid bar by half a grid period, the transverse

average 〈φ〉 is taken for the xz plane at y = 0, which corresponds to the symmetry plane

of the case. This allows the transverse deviation of the flow quantities from the plane of

the prospective aerofoil position to be quantified. Figures 3.10 (a) - (c) show the contour
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plots for the inhomogeneity parameters I〈U1〉, Iu11 and Iγ12 . Dotted lines illustrate the

position of the prospective aerofoil, which was placed 16Gp downstream of the inlet

grid. This position was established in prior parameter studies to be associated with a

suitable turbulent intensity as well as integral length scale to facilitate comparison of

the aeroacoustic predictions with the experimental results of Paterson and Amiet [97],

which is conducted in Chapter 5.
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(b) Inhomogeneity of axial Reynolds stress.
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(c) Inhomogeneity of anisotropy parameter γ12.

Figure 3.10: Flow inhomogeneity in the spanwise normal plane of the turbulence
interaction case. Dotted lines indicate the position of the aerofoil.

As shown by Figures 3.10 (a) - (c), the homogeneity of the three quantities 〈U1〉, u11 and

γ12 is qualitatively equivalent to that exhibited by the simple turbulence development

setup to within one grid period of the symmetry plane for all downstream distances. The

aerofoil is well separated from a region of larger mean velocity and turbulence intensity

which exists towards the edge of the turbulent flow. This shear layer is caused by two

effects, the mixing of the turbulent eddies with the laminar flow of the far-field, and a

mismatch of 〈U1〉 of the turbulent domain relative to the far-field steady domain, which

proved very difficult and time intensive to minimize.
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Additional analysis of the flow homogeneity of the turbulence interaction case setup, sup-

porting the results shown above, was conducted for three planes normal to the streamwise

direction and is documented in Appendix E.1.

A potential matter of concern is the presence of the derefinement zone between turbu-

lence domain and buffer domain, shown in Figure 5.1, which may lead to non-physical

turbulent fluctuations, if eddies repeatedly pass through the transverse interface. How-

ever, as Figures 3.10 (a) - (c) show, the turbulent shear layer is wholly contained in the

finely resolved domain, making potential interactions between the derefinement zone

and the shear layer unlikely up to the point where the turbulent jet passes through the

downstream interface. Further investigation of the shear layer and its potential interac-

tion with the derefinement zones was conducted and is documented in Appendix D.1,

showing that effects of the presence of the transverse derefinement zones are negligible.

Furthermore, it was found that no reflection of acoustic waves from the derefinement

layer takes place, allowing to use the presented domain setup for aeroacoustic purposes.

3.3.2 Development of turbulent stresses and anisotropy with stream-

wise distance

Typically, for the purpose of investigating noise created by the interaction of turbu-

lence with an aerofoil leading edge, the characteristics of the turbulence determining the

acoustic emissions are extracted in the plane of the aerofoil at the position of the leading

edge, i.e. x, y, z = 0. Consequently, in order to investigate the capability of the simpler

turbulence development, used in Chapter 4, to be used to establish suitable grid para-

meters to create turbulence of desired characteristics for the subsequent investigation

of turbulence interaction noise, as conducted in Chapters 5 and 6, the comparison is

restricted to the plane of the aerofoil, i.e the xz plane. In order to eliminate the effect of

remaining flow inhomogeneity, the quantities are additionally averaged in the transverse

direction.

Figures 3.11 (a) and (b) show the development of u11 as well as of the anisotropy para-

meter γij , respectively, for the turbulence development (TD) case in red, and for the

turbulence interaction (TI) case with the aerofoil omitted in blue. Both simulations

were conducted solving the full compressible Navier-Stokes equations and using upwind-

biased schemes for the convective term.

It is apparent from Figure 3.11 (a) that in comparison to the turbulence development

case, the turbulence interaction case is characterized by lower initial axial turbulent

stress, and a slightly decreased decay at larger distances to the grid. However, at dis-

tances x/Gp > 8, the deviations become minor, both in terms of axial stress and an-

isotropy in both transverse direction, as illustrated by Figure 3.11 (b). This indicates

that for the purpose of establishing the desired flow conditions by parameter studies, the

simpler and less computationally expensive turbulence development setup can be used

in parameter studies.
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Figure 3.11: Development of Reynolds stress based quantities (dashed) with
distance to grid for Turbulence Development (TD) and Turbulence Interaction
(TI) cases. U0 from turbulence interaction case.

While the development of the Reynolds stresses at large distances to the grid indicates

that the turbulence is not significantly influenced by the change of boundary conditions

for one of the transverse directions, the effect of the changed boundary conditions on the

large scales is further analysed by comparing the autocorrelation of the unsteady velocity

at the point of the prospective aerofoil, i.e. x/Gp = 16. Figures 3.12 (a) - (c) show the

autocorrelation for the axial, the transverse and the spanwise component, respectively,

for the turbulence development case and the turbulence interaction case.
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Figure 3.12: Comparison of correlation functions of the Turbulence Develop-
ment (TI) case with the Turbulence Development (TD) case at the point of
prospective aerofoil at x/Gp = 16.

From Figures 3.12 (a) - (c), it is apparent that the autocorrelations of the turbulence

development case and the turbulence interaction case are virtually identical. It follows

that the Taylor length scale, as well as the integral length scale, will display only very

minor differences. Thus, the largest scales are shown not to be influenced by changing

boundary conditions at distances reasonably close to the grid, and it is possible to use the

simpler turbulence interaction case for parameter studies to establish the link between

grid parameters and turbulence quantities.
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In terms of application, Figure 3.11 (a) demonstrates how the user may exploit the

evolving nature of the turbulent flow created by the inlet grid method of Blackmore

et al. [13] to achieve the desired flow conditions for the simulation of a body with a

turbulent flow by placing the geometry of interest at suitable distances from the grid.

This approach was used to attain a flow condition suitable for the validation of the

aeroacoustic results presented in Chapter 5.

3.4 Summary

This Chapter has given a brief overview of the method of LES for the investigation of

turbulence development and aeroacoustic research. A particular focus was dedicated to

the issue of the near wall region treatment, which is often a major complication when

conducting LES. It was concluded that the simulation methodology of DES, as proposed

by Spalart et al. [155] which uses an adapted Spalart-Allmaras turbulence model both

for a RANS simulation close the walls to reduce computational cost, and for the subgrid

scales in the areas far from the wall, is the most appropriate tool for this study.

Subsequently, investigations have been presented in this Chapter to establish the link

between the relatively simple turbulence development case, as discussed in Chapter 4,

and the more complex turbulence interaction case as used in Chapters 5 and 6. While

the former, due to its simple geometry and lack of compressible phenomena, allows the

use of non-dissipative central schemes for the convective term and of a solver of the in-

compressible Navier-Stokes equations, the latter require the use of less oscillatory, albeit

more dissipative upwind-biased schemes, and, as the investigation of non-compactness

effects is required, the use of a solver of the compressible Navier-Stokes equations. As

the turbulence development case is less computationally expensive than the turbulence

interaction case, and is therefore ideal for parameter studies to establish grid parameters

appropriate for turbulence of target intensities and length scales, it is essential that the

results of the turbulence development case can be related to the more complex turbu-

lence interaction cases.

The main conclusions of these parameter studies, presented in this Chapter, are:

� Using a compressible LES as opposed to an incompressible LES for turbulent flows

of the Mach number ranges investigated results in minor differences in terms of

energy spectra for the transverse component and beyond the cut-off wavenumber.

However, it is found that the effect on the total energy at low wavenumbers is not

affected by the choice of the type of LES, and thus the development total turbulent

kinetic energy is unaffected. It is noted that when the compressible Navier-Stokes

equations are being solved, a considerable increase in terms of computational ex-

pense is observed, and consequently the convergence of statistics of higher order is

impacted as less physical time can be simulated with the available computational

resources.
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� The use of stable, albeit dissipative upwind biased schemes for the convective term

instead of the less dissipative central scheme resulted in the decrease of both the

energies at low wavenumber, as well as a lower mesh cut-off frequency. While the

latter is consistent with results in literature [205; 208], the reason of the former is

hypothesized to be the increased dissipation of the numerical scheme, which lead

to a more rapid decay of the largest scales. The anisotropy of the flow is affected

in particular, as the largest scales exhibit the largest anisotropy. These findings

were further supported by the analysis of the linear wave propagation properties

of the central and upwind biased schemes, documented in Appendix B, where it

was shown that the upwind biased schemes are associated with a higher dissipative

error, although they are superior in terms of their dispersive error compared to

central schemes.

� The effect of changing boundary conditions was assessed. As expected, large dif-

ferences in the homogeneity of the flow were found when the grid turbulence flow

is restricted to only parts of a numerical domain, but a core region of homogen-

eous turbulent flow was shown to exist were the assumption of homogeneity is

reasonably fulfilled. In this core region, investigation of complex turbulence inter-

action problems with homogeneous turbulence is possible. Further assessment of

the transverse homogeneity was conducted and is documented in Appendix E.1. It

was observed that while the absolute values of the turbulent stresses differ to a lim-

ited degree in particular close to the grid when boundary conditions are changed,

mean flow quantities as well as the correlation lengths at distances representat-

ive of a fully developed flow were unaffected, indicating that the simple geometry

used in Chapter 4 can be used for parameter studies to achieve desired values of

turbulent intensities and length scales in an applied case. Additional analysis of

the potential effect of the derefinement zones is conducted in Appendix D.1.

This Chapter has established essential, and novel, links between a setup of the inlet-

grid turbulence creation method amenable to parameter studies and more complex cases

where this turbulence creation method is used to study turbulence interaction problems.



Chapter 4

The inlet grid turbulence creation

method for LES

The effect of various changes to numerical schemes, solvers and boundary conditions

on the turbulence generated by the inlet grid turbulence creation method proposed by

Blackmore [13] were discussed in Chapter 3. While Blackmore conducted an extensive

parameter study on the effects of changing domain size, discretization and flow speeds,

an in-depth investigation on the anisotropy produced by the method as well as the decay

processes was not conducted. In order to assess the capability of the LES method to

accurately model the production and decay processes of grid turbulence, the turbulence

development setup is revisited and a closer examination of the turbulent flow in the

vicinity of the grid is conducted in the present Chapter, with a focus on the anisotropy

of the energy carrying scales. By doing so, the inlet-grid turbulence creation method

is established as an appropriate tool for the reproduction of turbulent flows often used

in experiment, and as a method to investigate near-grid turbulence development, in

particular the origin of the anisotropy of the turbulence, with low computational cost

compared to DNS.

The main aims of this Chapter are:

� To demonstrate the applicability of the inlet-grid turbulence creation method,

coupled with the simulation method of LES for the investigation of anisotropic

flows produced by grid turbulence.

� To improve the understanding of the creation processes of the anisotropy of the

energy carrying scales.

� To assess the impact of Reynolds number on the anisotropy of the energy carrying

scales.

� To study the turbulent decay and return to isotropy in the case of an isotropic

dissipation tensor, as enforced by the LES subgrid-scale model.

65
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The Chapter is structured as follows. Relevance of this approach to actual grid turbu-

lence is shown in Section 4.1 by discussion of the most commonly used quantities for the

characterization of turbulence. A qualitative investigation of the relationship between

eddy shedding processes in the grid bar wakes and the resulting anisotropy is conducted

in Section 4.2. In order to quantify these processes, energy spectra and spectral invariant

maps are computed for probes along two representative lines of the flow and presented

in Section 4.3. Additionally, a procedure to quantify the anisotropy of the energy car-

rying scales by linking the Reynolds-stress tensor invariant approach with the energy

spectra is proposed. The investigation of Reynolds effects, with a focus on the ability

of LES to capture constrained turbulence decay, is presented in Section 4.4. Finally, the

conclusions of the Chapter are given in Section 4.5.

4.1 Relevance to the grid turbulence problem

Typically, grid turbulence is most commonly produced by the introduction of a passive

obstacle into the flow, which consists of a grid of cylindrical and square bars. However,

many variants are documented in the literature, such as active grids [58; 211] and most

recently, fractal grids [52; 50; 51]. Thus, grid turbulence is generally understood to

describe any type of turbulence generated by an upstream obstacle which may or may

not be active, and which can be described downstream a certain distance to the grid by

the root mean square of the turbulent fluctuations and their decay rates, the integral

scales of the flow and its anisotropy.

Due to the large variety of grid turbulence generators, the reported values for these

quantities show a considerable variation. In order to establish the relevance of the inlet

grid turbulence generation method to the problem of grid generated turbulence, the

development of the turbulence as quantified by the turbulent stresses, the correlations

as well as the energy spectra, is discussed in this section. While an extensive investigation

of these parameters was also presented by Blackmore et al. [13], the results for these

quantities are shown here to for the purpose of reproduction, and to expand on the

report of Blackmore et al.

4.1.1 Numerical setup of the turbulence development case

Figure 4.1 illustrates the setup chosen for the analysis of the development of the tur-

bulence, which is the same setup as used in Section 3.2.1 to study the effect of using

different schemes for the convective term as well the effect of using a compressible or an

incompressible LES to compute turbulent flows at low Mach number.
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Figure 4.1: Boundary conditions and probe positions. Illustration not to scale.

Velocity data for computation of correlations and energy spectra was sampled on one

plane, designated “Offset” in Figure 4.1, as it is offset to the symmetry plane by Gp/2.

On this plane, two lines are illustrated by the dotted lines, the “Grid bar line” and the

“Jet centre line”, which are reference lines for the analysis conducted in Section 4.3. The

centreline is illustrated with a dotted line. The sampling frequency was greater than 5

kHz. Turbulent stresses were computed at all cell centres over the runtime, allowing to

conduct analysis of turbulent stress based quantities at all positions of the domain.

As shown in Figure 4.1, the inlet was divided into wall and mass flow inlet patches

according to the methodology described by Blackmore et al. [13]. Boundary conditions

for the setup are given in Table 4.1.

Patch Variable Type Definition

Wall U Dirichlet U = (0, 0, 0)

p Neumann dp/ dx = 0

Inlet U Dirichlet U1 = ṁ/(Apρ0), U2 = U3 = 0

p Neumann dp/ dx = 0

Outlet1 U Mixed Eqn. (3.17)

p Neumann dp/ dx = 0

Sides U, p Periodic 1:1 field mapping to opposite boundary

Table 4.1: Boundary conditions of turbulence development setup.

The outlet was set to a zero gradient condition, i.e. dp/dx = 0, also known as Neu-

mann boundary condition, as a constant value pressure boundary conditions would not

be appropriate considering the expected convection of eddies through the outlet. The

pressure is thus fixed in the domain by specifying a density in the mass flow inlet bound-

ary condition. A mixed boundary condition, which would set Neumann or a Dirichlet

1In case of the incompressible simulations, a simpler Neumann boundary condition was used for the
velocity, as the primary investigation was focussed on the near-grid region.
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boundary condition for flux out or into the domain, respectively, was applied for the

velocity at the outlet, and is given by Eqn. (3.17). On each face of the inlet boundary

patches, the velocity is set through the mass inlet boundary conditions as a function

of mass flow ṁ, patch area Ap, and the fixed density ρ0. Periodic boundary conditions

were chosen for all boundaries normal to the transverse directions. The solver pisoFoam,

implemented in OpenFOAM v3.0, was used, which conducts pressure-velocity coupling

using the PISO algorithm proposed by Issa [201]. The case discussed here had a grid

Reynolds number of ReGp = 23 · 103, which, at a position of x/Gp = 30, corresponded

to Reynolds numbers based on the Taylor length scale of Reλ = 10.

4.1.2 Turbulence decay

The most well-investigated property of grid turbulence is its decay at distances where

no mean velocity gradients, and therefore no production, exist. Figures 4.2 (a) and (b)

illustrate the development of the turbulent stresses, as well as the development of the

isotropy of the flow as determined using the anisotropy parameter γ12 =
√
u11/
√
u22,

respectively. The values are computed with data along the centreline of the domain, as

illustrated by Figure 3.1 (a).
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Figure 4.2: Decay of turbulence and development of isotropy according to ratio
of turbulent components.

As Figure 4.2 (a) shows, the Reynolds-stresses are obtained at x/Gp ≈ 1, with the axial

component exhibiting a maximum slightly upstream of the transverse components. This

is in good agreement with the development of the turbulent kinetic energy obtained by

Ertunc et al. [56] in their DNS on the line coinciding with a grid bar and wake, which

is to be expected as the centreline coincides with it most upstream position with an

intersection of two grid bars.

Both u22 and u33 collapse over the entire length of the simulated domain, which is

expected considering the symmetry of the case. The values of the axial mean squared
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velocity u11 are larger than u22 and u33 over a significant part of the domain. A proper

collapse of the three components, constituting isotropy, can only be observed for values of

x/Gp > 30. Past x/Gp = 15, it is possible to fit the power law developed by Comte-Bellot

and Corrsin [26], given in Eqn. (2.28) to the values from the LES. In their investigation,

Comte-Bellot and Corrsin found values of 1.15 ≤ n < 1.34 and 7.1 ≤ A < 35 depending

on mean flow velocity, grid period size, type of grid and location of a contraction which

was used to enhance isotropy of the flow. Using a least-squares nonlinear fit method

implemented in Matlab, equivalent to method IV of Valente and Vassilicos [51], a best

fit to the data obtained from the current LES is achieved with values of n = 1.56

and A = 15.33, shown in Figure 4.2 (b). This value of the decay coefficient is high

compared to the values commonly found in experiment and simulation, which range

from 1.15 ≤ n < 1.45. However, since the decay coefficient has been found to be

influenced by a large number of factors [48], a more in-depth investigation is required to

find the potential causes for this high decay coefficient, which is conducted in Section

4.4.

In terms of flow anisotropy, the values of γ12 from the LES shown in Figure 4.2 (b) show

that a significant level of anisotropy persists for almost all of the domain, confirming

the earlier conclusions drawn in Figure 4.2 (a). However, when put into context with

values of this ratio given for reasonably isotropic turbulence, e.g. by Comte-Bellot and

Corrsin [26], who measured, for a range of downstream distances, mean flow speeds and

grid geometries, values of 0.95 ≤ γ12 < 1.05, it can be stated that approximate isotropy

is exhibited by the flow by a distance of 25 Gp to the grid.

Furthermore, from Figure 4.2 (b) it is observed that the levels of anisotropy are closer

to the values obtained by Comte-Bellot and Corrsin [26] for a grid with disk rods, rather

than square rods. While it is noted that the inlet-grid turbulence creation method, due

to its lack of upstream domain, is not designed to replicate the exact turbulence creation

mechanisms of either type of grid, it is apparent that the turbulence development is more

representative of turbulence created by a round-rod grid, which predominantly sheds

its vortex streets in in-phase mode [59]. Further discussion of the turbulence creation

mechanisms is conducted in Section 4.2.

4.1.3 Two point correlations and energy spectra

In grid turbulence, but also in many other applications, the correlation lengths exhibited

by a turbulent flow play an important role. In Figures 4.3 (a) and (b), the longitudinal

and lateral autocorrelations, as defined in Eqn. (2.8), as computed from the resolved

fluctuations of the simulation are compared to the von Kármán-Howarth relation at

two points in the flow, at a distances x/Gp = 30 and x/Gp = 58, which is generally

considered sufficient for grid turbulence to have obtained a well-developed state.
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Figure 4.3: Development of the longitudinal and transverse autocorrelations.

As shown by Figures 4.3 (a) and (b), the transverse autocorrelation g begins to deviate

from the von Kármán-Howarth relation fairly quickly, so much so that by r/Gp ≈ 0.15

at x/Gp = 30 and by r/Gp ≈ 0.25 at x/Gp = 58 the two curves no longer collapse. This

is indicative of a significant amount of large-scale anisotropy in the flow, similar to the

conclusions drawn from Figures 4.2 (a) and (b). The almost perfect collapse for small

values of r/Gp, on the other hand, indicates isotropy in the small scales, following the

arguments of Valente and Vassilicos [51] and Discetti et al. [60], which is an important

requirement for the applicability of the LES method.

In order to assess the distribution of the anisotropy across the energy carrying scales in

more detail, the energy spectra obtained from the LES are compared to the isotropic

model spectra of von Kármán, given by Eqn. (2.16) and Eqn. (2.18), in Figures 4.4 (a)

and (b), for the positions x/Gp = 30 and x/Gp = 58 respectively, for E11 and E22. I11

and u11 used for the computation of the model spectra are extracted directly from the

LES. In order to provide context on the influence of numerical dissipation and dispersion

error on the results, the cut-off wavenumber κc is indicated by the vertical black dash

dotted line. A criterion of 25 points per wavelength is used, leading to κc = 134.04 m−1,

as established in Appendix B.

As shown by Figure 4.4 (a), good agreement is obtained between the axial energy spec-

tra and the corresponding model spectra, with some minor deviation from the model

spectrum in the mid-frequency range. However, the deviation of the transverse spectra

is significant, especially at low- to mid-wavenumbers. Clearly, a significant amount of

anisotropy is present at the large scales, which is an expected result as the energy spec-

tra and the two-point correlations represent a Fourier-transform pair.

The match between model spectra and the turbulence spectra does improve with dis-

tance to the grid, as shown by Figure 4.4 (b), indicating a return to isotropy of the large

scales. Still, a certain degree of anisotropy remains, which is a result often encountered

in untreated grid turbulence [26].



Chapter 4 The inlet grid turbulence creation method for LES 71

100 101 102 103
10−6

10−5

10−4

10−3

κ1 [m−1]

E
ii

[m
3
/
s2

]

E11

Eqn. (2.16)

E22

Eqn. (2.18)

(a) x/Gp = 30.

100 101 102 103
10−6

10−5

10−4

10−3

κ1 [m−1]

E
ii

[m
3
/
s2

]

E11

Eqn. (2.16)

E22

Eqn. (2.18)

(b) x/Gp = 58.

Figure 4.4: Comparison of energy spectra from LES (solid) against model Eqn.
(2.16) (dashed) and Eqn. (2.18) (dotted). κc indicated by vertical dash dotted
line.

Considering the potential influence of numerical dissipative and dispersive error, it is

observed that the wavenumber range associated with the majority of the anisotropy is

smaller by almost a decade than κc. Thus, the influences of the dissipative and dispersive

error on the large-scale anisotropy are considered negligible.

4.1.4 The development of the invariants averaged across flow normal

planes

The method chosen for the investigation of turbulence anisotropy is the computation of

the invariants of the anisotropic Reynolds-stress tensor (aRST), and their visualization

in the so-called Lumley triangle. The development of the transverse averages of the

two invariants II and III, as defined by Eqn. (2.24) and Eqn. (2.25), respectively,

computed on planes normal to the flow is shown in Figures 4.5 (a) and (b). Due to

a relative dearth of data in the literature regarding the development of the invariants

of turbulence downstream a grid, validation of the results is difficult. A qualitative

comparison is conducted with the results obtained by Djenidi and Tardu [42], who used

floating square elements as turbulence generators in their DNS. As this is, essentially,

an inverted grid, results can be compared, but some differences can be expected. Since

the computation method used to compute the invariants involves first a time-averaging

step to obtain the Reynolds-stress tensors, before spatial averaging is used to account

for effects of local inhomogeneity, temporally averaged values from the DNS are used

as comparison. Since these were not spatially averaged by Djenidi and Tardu, some

differences must be anticipated.
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Figure 4.5: Temporally averaged second (a) and third (b) invariants of the
turbulent stress tensor over x/Gp. Transversally and temporally averaged in-
variants obtained from the LES (solid red), temporally averaged invariants from
LES (dotted blue).

It is readily apparent from Figures 4.5 (a) and (b) that the two invariants of the an-

isotropy tensor evolve very similarly in the axial direction. A region with very steep

gradients exists very close to the grid, which is associated with the eddy shedding im-

mediately behind the bars. It is followed by a gradual increase of the anisotropy, which

peaks just before x/Gp = 10. After this, both invariants first rapidly decay towards

zero, but the return to isotropy slows with decreasing values of the invariants. It is

noted that the development of the local values from the LES, shown by the dotted blue

line in Figures 4.5 (a) and (b) for which only averaging in time was conducted, are

associated with an apparently irregular development. This is caused by the remaining

levels of inhomogeneity in the streamwise direction, which have been shown by Ertunc

et al. [56] to be a feature of grid-generated turbulence in general. These can also be

observed in the development of the values of II and III from the DNS of Djenidi and

Tardu [42], which have equally been computed by averaging only in time, thus retaining

the influence of inhomogeneity.

As shown by Figures 4.5 (a) and (b), the general trend of the invariants as obtained

from DNS is replicated, but the LES values are consistently above the DNS values. The

return to isotropy in particular appears to be happening at a faster rate, however this

might be due to the position of the probe points chosen by Djenidi and Tardu [42] used

for time averaging, relative to the grid elements. An analysis of the effect of the effect

of different probe positions on the values of the invariants is conducted in Section 4.3.

While the DNS of Djenidi and Tardu [42] can be expected to contain significantly lower

levels of both dissipative and dispersive error than the present simulation, it is ob-

served from Figures 4.4 (a) and (b) that the anisotropy is predominantly contained in

wavenumbers significantly smaller than the mesh cut-off frequency, which indicates that
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the contribution of excessive dissipation and dispersion to the observed differences is

small. As such, it is concluded that the mesh is sufficiently refined to resolve the energy

carrying range relevant for the development of the invariants.

It is furthermore noted that due to the definitions of II and III, given by Eqn. (2.24)

and Eqn. (2.25), respectively, there are different levels of uncertainty associated with the

the invariants. Based on the uncertainty established by the analysis of the convergence

of the RST components uij , discussed in Section 3.2.2, an uncertainty of 0.4% and 0.6%

is estimated for II and III, respectively, as II is a squared and III a cubed function of

the RST. As these uncertainties are very small, error bars have been omitted from plots

showing the invariants.

The transversally averaged shapes of the aRST as a function of distance to the grid

are shown in Figure 4.6. In order to simplify the analysis, points closer than two grid

periods to the grid were omitted. This is due to planes closer to the grid than x/Gp = 2

are expected to include points where no turbulence exists yet, i.e. in the centre of the

grid jets, and where turbulence is recirculating, i.e. directly behind grid bars. When

these points are omitted, the resulting states of the anisotropy stress tensor lie in an

area close to the isotropic corner. Thus, only the area of the isotropic corner is plotted.
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From Figure 4.6 it is immediately apparent that when plotted in the Lumley triangle,

the global averages of the invariants, II and III, of the Reynolds-stress ellipsoid are

on the axisymmetric limits. Taking the shapes of the RST on the limits of the Lumley

triangle into account, as discussed in Section 2.1.3, it follows that beside some points

very closely to the grid, which are characterized by a pancake-shaped Reynolds-stress

ellipsoid, all remaining states are found on the limit for cigar-shaped Reynolds-stress

ellipsoids. It appears that both the growing values of anisotropy close to the grid as well

as the return to isotropy are, on average, associated with a cigar shaped Reynolds-stress
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ellipsoid, as the states of the return to isotropy completely cover those of the growing

anisotropy. A similar result was also found by Djenidi and Tardu [42], however in their

case the flow area with growing values of the invariants was more restricted to very close

grid distances (x/Gp ≤ 3), which is likely due to geometry differences in the turbulence

generator, and corresponding changes in the mixing behaviour.

4.2 Wake mixing and turbulence production

The near-grid flow region is, due to the inhomogeneity and anisotropy of the produced

turbulence, highly complex. An analysis of spatially averaged flow quantities will invari-

ably mask the local phenomena responsible for the flow development. At the same time,

localized analysis will only capture parts of the flow. This section provides a first qual-

itative insight into the near-grid flow phenomena of the grid-like turbulence generator

used in this investigation, in order to investigate the origins of the complex development

of the anisotropy of the spatially averaged flow.

Figure 4.7: Turbulence development in the near-grid vicinity. Q-criterion isosur-
faces coloured by III. Isolines of k given by black lines on plane with y/Gp = 3.
Left upper detail: Streamlines of the time averaged flow, superimposed on grid
bar and intersecting plane, coloured in III.

Figure 4.7 shows the development of the isosurface for a singular value of the Q-criterion

for the entire volume of the simulation. The distribution of the anisotropy in the flow
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is illustrated by using III as the variable for the colour on the isosurfaces of Q. III

was chosen as it develops in a manner very similar to II, as shown in Figure 4.5 (a)

and is additionally more indicative of the shape of the aRST, as it can take positive

and negative values. In order to provide additional context, the values of the turbulent

kinetic energy k were computed and are shown as isolines on the plane with y/M = 3.

A detail in the upper left shows the streamlines of the time averaged flow superimposed

to the instantaneous quantities in the immediate vicinity of a grid bar.

As shown by Figure 4.7, although the individual wakes of the grid bars become indis-

tinguishable from each other within a very short distance, the values of the invariants

display significant inhomogeneities for a much longer distance from the grid. The im-

mediate vicinity of the grid, x/Gp < 1, is dominated by large flow features, as shown

by the Q-criterion isosurfaces. The mean streamlines in the upper detail show that they

are caused by recirculation zones. By x/Gp > 1, however, the mean streamlines are

essentially parallel. This region of the flow is dominated by very large values of III,

indicating highly anisotropic turbulence, which is expected considering the large mean

flow gradients.

Close examination of Figure 4.7 shows that the majority of the turbulence production

appears to be associated with the detachment of large eddies from the grid bar wake

at distances x/Gp < 2, rather than by the interaction of the wakes, as shown by the

isocontours of k. In order to investigate the turbulence production in more detail, the

“offset” plane, as defined in Figure 4.1, is investigated using both instantaneous and

time-averaged quantities in Figure 4.8. Illustrated are the vorticity component ωz in the

upper half and the aRST invariant III as a measure of anisotropy in its lower half, with

the isolines of k superimposed. Black bars indicate the position of the grid bars.

Figure 4.8: Turbulence development in the near-grid vicinity. Upper half: Vor-
ticity component ωz, lower half: aRST invariant III. Superimposed isolines of
k.

Considering the maxima in the distribution of the vorticity component ωz in Figure 4.8,

it is apparent that the wakes directly behind the grid bars do not fluctuate, before os-

cillation and shedding sets in further downstream. It is noted that the near field wake
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is highly dependent on the upstream conditions, and the present conditions of constant

velocity at the inlet grid patches and zero velocity at the bar patches cannot be con-

sidered to be representative of any experimental conditions. However, qualitatively the

appearance of the wake can still be likened to wakes behind rectangular cylinders at

low Reynolds numbers [212]. While the flow Reynolds number of this simulation would

lead to a significantly differing mode for the eddy shedding of an isolated rectangular

cylinder, Lavoie [59] found in experimental investigations that the three dimensionality

of a grid appears to have a strong effect on the vortex shedding mechanism of square

bars, potentially leading to reattachment of the flow to the side faces of the cylinder and

thus leading to a initially more steady wake.

An additional factor leading to the observed low Reynolds number-like behavior are the

effects of grid resolution, which may lead to an excessive damping of the larger scales

by the dissipation and dispersion errors if the resolution is too low. Additionally, a

too dissipative subgrid-scale model may lead to a reduction of the effective Reynolds

number in LES simulations, as shown by Bogey and Bailly [213], who advise against

using eddy-viscosity based models for the study of flow phenomena where the Reynolds

number is a major factor, which is not the case for the investigation of the anisotropy in

grid turbulence [26; 214; 215]. Since the exact replication of the mechanisms responsible

for the turbulence generation is not the main object of the inlet-grid turbulence creation

method, and a strongly periodic component is still present, the findings of this work are

still considered relevant to other turbulence generators which exhibit the production of

periodic eddies.

As the isolines of k in Figure 4.8 show now conclusively, the points of largest turbulent

kinetic energy in the flow, at x/Gp = 1 and y/Gp = 0.5, 1.5 and 2.5, are associated with

the point of shedding, i.e. where eddies detach from the fluctuating recirculation zones.

More downstream, k is continuously decreasing, indicating that production has ceased

to be a large factor. This finding compares well with the DNS results of Ertunc et al.

[56], who found peak production at positions of less than x/Gp = 2.

As the wake spreads, indicated by the scattering of the zones of high ωz and the de-

creasing levels of k past x/Gp = 2, anisotropy as measured by III is reduced, i.e. the

RST attains a more isotropic shape. Interestingly, this is true across the entire grid

period, even in regions where wake mixing begins to take place. This is in apparent

contradiction to the common assumption that the vortex stretching taking place during

the interaction of the wakes is the primary cause for the anisotropy [59]. From x/Gp = 3

onwards, however, the values of III increase, i.e. one or two components of the RST

become dominant. At this point, the wake interaction process appears to have overcome

the processes responsible for the equalization of the Reynolds-stresses. A more detailed

investigation of these processes is conducted in Section 4.3.

In order to support this statement, the mean flow gradients were computed, and the

components of the mean rate of strain tensor Sij were derived, averaged over planes
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normal to the axial direction, in a manner similar to the computation of the invari-

ants of the turbulent stress tensor. In addition, the production |P| was estimated by

computing their upper bound |P| ≤ 2kSλ [16], with Sλ being the largest eigenvalue of

Sij .
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Figure 4.9: Transverse averages of mean rate of strain tensor components and
their effect on production.

From Figure 4.9 (a) it is apparent that the components of the mean rate of strain tensor

Sij attain a maximum upstream of x/Gp = 2, and are essentially zero for x/Gp > 4,

confirming the qualitative analysis of Figure 4.7. The remaining strain S11 can be as-

sociated with the wake mixing processes, but as Figure 4.9 (b) shows, production has

ceased past x/Gp = 4. These results are in qualitative agreement with the findings of

Ertunc et al. [56], whose DNS simulations of grid turbulence showed peak production

being reached within two grid periods of the mesh, followed by a rapid reduction of

turbulence production.

While the analysis of flow anisotropy by means of the invariant analysis delivers valuable

insight, it cannot strictly be used to make statements about the shape of the eddies, as

Simonsen and Krogstadt point out [216]. A method more suitable for this purpose is the

ratio of the longitudinal integral length scales of the axial and transverse components,

which should be 2I22/I11 = 1 for isotropic turbulence [16]. It is noted here that while

the ratio of the longitudinal integral length scale of the axial component to the trans-

verse integral length scale of the corresponding transverse component is 1 for isotropic

turbulence, the ratio of the longitudinal integral length scales is investigated here as it

is easier accessible since it allows the invocation of Taylor’s hypothesis.

The distribution of the temporal integral length scale I11, as well as of 2I22/I11 is

shown in Figures 4.10 (a) and (b), respectively, on the “offset” plane illustrated in

Figure 3.1 (a). When conducting analysis of this quantity, two important caveats need

to be respected: Firstly, in the immediate grid vicinity, periodic eddy shedding will

cause the autocorrelation to develop a large negative loop, which will lead to the integ-

ral length scale losing its usual meaning as spatial extent of largest correlation [61]. This
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is related to the formulation of the autocorrelation, which will return a sinusoid when

the input signal is a sinusoid, and then becomes representative of very long correlation

scales, which in turn leads to a very slow convergence of the autocorrelation integral or

prohibits the convergence altogether. Secondly, as the parameter study of Blackmore

et al. [13], which also investigated whether the inlet grid method allows for realistic

development of the largest eddies, was restricted up to x/Gp = 20, constriction of the

growth of the integral length scales at very large distances to the grid x/Gp > 40 cannot

be completely ruled out. Therefore, analysis of the integral length scales is restricted to

1.5 < x/Gp < 20.
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Figure 4.10: Distribution of values of the integral length scale, and large-scale
anisotropy.

As Figure 4.10 (a) shows, large inhomogeneities of I11 persist for an extended time in

the flow. Interestingly, the integral length scale does not show monotonically increasing

behaviour throughout the flow. In particular downstream the grid bars at y/Gp = 1.5,

2.5, i.e. in the oscillating wake region, I11 appears to decrease between 4 < x/Gp ≤ 20.

A potential explanation for this observation is that the wake mixing process decreases

correlation due to large-scale eddies downstream of the grid bars as smaller scale eddies

from neighbouring bars are convected into them with the spreading wakes. Conversely,

axial correlation lengths along the jet centre lines, i.e. y/Gp = 2, 3 remain small until

wake mixing is largely completed, and typical increase of correlation due to the decay of

turbulence sets in. The experimental investigation of integral length scales in the wakes

of regular and fractal grids by Valente and Vassilicos [61] found similar results, however

these results showcase the spatial distribution of the integral length scale more clearly. It

is found that the integral length scale retains the inhomogeneity caused by the upstream

geometry for a considerable distance to the grid. The mixing process appears to not

complete entirely within the examined domain, and larger simulations may be necessary

to establish whether homogeneity is eventually established. However, considering the

relationship [16]:

Lii =
πEii(κi = 0)

2uii
, (4.1)
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and the finding of Ertunc et al. [56] relating to the persistence of inhomogeneity of the

turbulent stresses, it may be hypothesized that the inhomogeneity of the integral length

scale is caused by the same root cause which lead to the inhomogeneity of the turbulent

stresses, i.e. the lack of dissipation and viscous diffusion processes as a means for homo-

genization [56]. As the turbulent stresses retain a certain level of inhomogeneity due to

lack of homogenizing processes, and the energy spectra at the largest scales κi will be

effected by the boundary conditions, a long term inhomogeneity of the integral length

scales may remain in the flow even for very large domains.

Comparing the conclusions drawn from the isotropy parameter 2I22/I11 and the invari-

ants of the aRST, it appears that for the majority of this type of flow, the latter are

a good proxy for the relative extent of correlation of the flow the spatial directions.

However, in the region x/Gp < 4, conflicting results are obtained. Regions in the early

wake development, where the shape of the aRST indicates an almost isotropic state,

are shown in Figure 4.10 to exhibit a strongly axisymmetric state with 2I22 < I11. As

it is, as discussed above, not entirely clear where the integral length scale becomes a

reliable indicator of the extent of correlation in the flow, and furthermore the assessment

using integral lengthscales does not allow to exclude potential effects of grid resolution

or the numerical transition to turbulence, a more detailed investigation is conducted in

Section 4.3.

4.3 Local anisotropy development

As discussed in Section 4.2, the shape of the aRST as well as the ratio of integral

length scales have both shortcomings in terms of providing a physical explanation for the

observed anisotropy. Therefore, further analysis is now conducted by computing the 1D

energy spectra at 4 points along the two lines defined in Figure 4.1: One centred behind

a vertical bar, and one centred in the middle of a jet. The four positions were chosen

to coincide with the following points: x/Gp = 1.46 is equal to a distance representative

of the highly turbulent region directly behind the grid. x/Gp = 3.44 is equal to the

distance of highest turbulent kinetic energy along the line coinciding with the centre of

the jet. x/Gp = 7.07 is equal to the distance of highest anisotropy according to the

peaks of II and III in Figures 4.5 (a) and (b), while x/Gp = 24.76 represents a point

sufficiently removed from the grid so that transverse gradients of k are small.

4.3.1 Energy spectra and local shapes of the anisotropic Reynolds-

stress tensor

Figures 4.11 (a) - (d) shows the energy spectra E11, E22 and E33 at the four positions

x/Gp = 1.46, 3.44, 7.07 and 24.76 along the line downstream the grid bar, and within

a jet centre, shown in Figure 4.1. The algorithm according to Welch, was chosen to
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compute the auto spectral densities. In order to reduce noise, the signal was divided into

32 windows, using the windowing according to Hanning. The mesh cut-off frequency fcv,

beyond which dissipative and dispersive error of the grid resolution affect the numerical

solution to an increasing degree, is indicated by the vertical dash-dotted line. For the

present case, using a criterion of 25 points per wavelength as established in Appendix

B, the cut-off frequency for vortical waves is determined to be fcv = 128 Hz.
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Figure 4.11: Comparison of energy spectra behind grid bar (solid lines) and
in jet centre (dashed lines). Mesh cut-off frequency fcv indicated by vertical
dash-dotted black line.

The analysis of the energy spectra at the point x/Gp = 1.46 is in terms of assuming

the equivalency of temporal and spatial scales according to Taylor [44] the most prob-

lematic. In order to assess the applicability of the frozen turbulence assumption, the

criteria given by Lumley [20] were computed, with particular attention to the criterion of

Lin [21], which provides a lower bound for the applicability of Taylor’s hypothesis. The

criteria were computed following the procedure given by Lumley [20], i.e. by replacing a

set of � with a factor of three on the larger side, and evaluating the equation using an

equality sign. Eqn. (2.6) is shown in Figure 4.11 (a) by the dashed line. Evaluation of
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Eqn. (2.6) yields a lower limit of κ = 7.3 m-1, which is shown by a dashed vertical line.

Since the turbulence intensity at the points x/Gp > 1.46 is greatly reduced, it can be

safely assumed that conditions Eqn. (2.5) and Eqn. (2.6) are satisfied for all positions

further downstream, thus, the corresponding lines are omitted. Analysis is conducted

for the parts of the spectra only which are within the valid zone, i.e. below Eqn. (2.5)

and above Eqn. (2.6). In this area, it is possible to relate the spatial structure of the

turbulence to the temporal structure with an uncertainty of less than 30% [20].

As shown in Figure 4.11 (a), for all components, the spectra of the jet flow are sig-

nificantly below the spectra obtained behind the grid bar, with the exception of the

frequency associated with the oscillation of the wake, fw = 130 Hz, shown in Figure 4.8,

which initiate the numerical transition to turbulence. It is concluded that at the position

x/Gp > 1.46, the point in the jet centre line is primarily influenced by the potential core

of the jet. However, the presence of a pronounced peak at fw indicates that the periodic

fluctuations of the wake have an effect already at a position where no significant wake

mixing has taken place.

Interestingly, E22 and E33 tend to the same value at low frequencies for both the jet

centre and the grid bar positions. This is related to the periodicity of the grid, which

will, at the large scales, introduce a limit to the correlation in the transverse directions,

and thus to the size and energy of the eddies. Conversely, streamwise correlation of the

axial component is affected only by the streamwise inhomogeneity, i.e. the spreading of

the grid bar wakes and the related mean flow gradients. Thus, much larger scales and

energies may be exhibited by the turbulent fluctuations in the axial direction.

With fw = 130 Hz and a grid bar width of d = 0.011, a Strouhal number of 0.24 is

obtained, which is considerably higher than the value of 0.17 measured by Lavoie et

al. [59] for their rectangular bar grid. Considering the findings of Mukhopadhyay and

Sundarajan [217] regarding the effects of flow constrainment on the Strouhal numbers

of rectangular cylinders, this may be related to the artificial uniform flow imposed by

the inlet boundary condition, which acts as if the flow as constrained upstream. Thus,

a larger Strouhal number may be obtained.

As shown in Figure 4.11 (b), the spectra downstream of the grid bar and the jet centre

equalize rapidly at high frequencies. However, notable exception are the low frequencies

of E11, as well as remaining peaks at fw. The strong reduction in the energy of the peri-

odic eddies indicates that they mix out rapidly, and their kinetic energy is transferred

to eddies of other length scales.

Towards the higher frequencies, a certain trend can be observed where the jet-centre

spectra exceed those of the position downstream the grid bar. This is related to the

prevalence of wake interaction events at this position, which would produce a surplus of

small-scale eddies relative to the grid bar position.

By the point of maximum anisotropy, at x/Gp = 7.07, no peak attributable to periodic

eddies can be detected any more, as shown by Figure 4.11 (c). Except for E11 at low

frequencies, the spectra have, to a large degree, collapsed, indicating that the mixing
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process is largely completed.

Finally, at the most downstream point investigated here, x/Gp = 24.76, shown in

Figure 4.11 (d), the spectra of the grid bar and the jet centre positions essentially col-

lapse over most of the frequency range except below f < 3 Hz, indicating homogeneity

at all but the largest scales.

It is noted that the frequency associated with the oscillation of the grid bar wakes, fw,

coincides with the mesh cut-off frequency almost perfectly. While the criterion of 25

grid points is likely conservative in terms of the dissipative error for the central schemes

used in the simulations of this Chapter, as discussed in Appendix B, the dispersive error

is likely to contribute to the rapid decay of the energy contained in the main peak at fw

and in particular to its harmonics, which can be observed in Figure 4.11 (a) only. Since

these peaks contain only a small percentage of the total turbulent kinetic energy, the

effect of this error is considered negligible for the present investigation. Further mesh

refinement studies are recommended to establish the influence of the dispersive error on

the decay of the energy peak at fw.

For the purpose of quantifying the anisotropy, the development of the shape of the aRST

is shown in Figure 4.12. The trajectory of the Reynolds-stress tensor in the AIM along

the centre jet line is shown dotted, while the trajectory along the line downstream the

grid bar is shown dashed. The values of the invariants at the positions investigated in

Figures 4.11 (a) - (d) are highlighted with triangles for the development behind the bar,

whereas circles illustrate the states along the centre of the grid jet.
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Figure 4.12: Shape of the aRST at the four positions x/Gp = 1.46, 3.44, 7.07
and 24.76. Triangles and dashed line indicate shapes downstream the grid bar,
circles and dotted line indicate shapes within grid jet.

As Figure 4.12 (a) shows, an axisymmetric shape tending towards the one-dimensional

limit is computed directly downstream the grid bar at x/M = 1.46. For the equivalent

position in the jet centre, shown in Figure 4.12 (b), a shape on the pancake-shaped

axisymmetric limit, albeit very close to isotropy is obtained. By relating this to the en-

ergy spectra shown in Figure 4.11 (a), it is found that the one-component shape behind
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the grid bar is caused by the dominating energy content in E22 at fw. The cause of

the shape within the jet centre is found to be a slight surplus of energy contained in

E22 and E33 relative to E11, as the two former exhibit sufficient energy below f < 80Hz

to surpass the contribution to E11 at fw. It appears that this “isotropic” shape of the

aRST in the jet centre is the consequence of a temporary equality of energies only, and

consequently limited to a very short development length of the flow.

At x/M = 3.44, a state close to or on the axisymmetric limit for a pancake-shaped

aRST is obtained for the position downstream the grid bar and the position within the

jet centre in Figures 4.12 (a) and (b), respectively. As Figure 4.11 (b) shows, in case

of the position downstream of the grid bar, this is caused by an approximate equality

between the energy contained in the low frequencies of E11, and the energy contained at

fw in E22. In the case of the position within the jet, the spectra indicate a state closer

to isotropy in general, however the transverse spectra display a higher energy content at

low frequencies than their isotropic value of E11/2. Thus, the temporary trend towards a

pancake-shaped aRST is caused by the strong periodic content in the transverse spectra

in case of the grid bar positions, and by the transverse periodicity of the grid in case of

the jet centre positions.

Further downstream at x/M = 7.07, a state on the axisymmetric limit for cigar-shaped

aRSTs is obtained for both positions, as shown by Figures 4.12 (a) and (b). Considering

the corresponding spectra, shown in Figure 4.11 (c), this can clearly be related to the

large energy content in the low frequencies of E11 both within the jet and behind the

grid bar.

Finally, at x/M = 24.76, the shapes obtained for the aRST almost collapse if Figures 4.12

(a) and (b) were to be superimposed. This is expected, as the energy spectra at this

position, presented in Figure 4.11 (d), collapse almost perfectly, with the exception of

the very largest scales. As the Reynolds stresses are obtained by taking the integral of

the respective energy spectra, such a collapse would lead to almost identical values of

the aRST. Clearly, a well-developed flow is retained at these distances to the turbulence

generator, and inhomogeneities become minimal.

It is concluded from this analysis that the local areas of apparent isotropic or pancake-

shaped aRSTs exhibited by grid-like turbulence generators is primarily caused by a shift

in the dominance of the aRST from one or two transverse components towards the axial

components. It is found that while the axial energy spectra exhibit a large energy con-

tent in the low frequencies even quite close to the grid, the oscillating wake contributes

sufficient energy to the transverse components in the mid to high frequencies to result

in an apparently isotropic aRST. However, as these eddies are short-lived and mix out

quickly, as shown by Figures 4.11 (a) - (c), the energy content of the axial compon-

ent in the low frequencies eventually dominates and produces the state of cigar-shaped

axisymmetric anisotropy well known in grid turbulence.
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4.3.2 Scale-to-scale anisotropy in the energy carrying range

In order to support the qualitative analysis conducted in Section 4.3.1, the anisotropy is

assessed by combining the spectral analysis with the invariant analysis. For this purpose,

a spectral Reynolds-stress tensor is defined as:

uij(fb) =

∫ fu

fl

Eij(f) df. (4.2)

with fu, fl being the upper and lower bounds of the frequency band with the central

frequency fb, respectively. To obtain the deviatoric anisotropic part of this spectral

RST, an expression for the isotropic spectral RST has to be defined, since the respect-

ive contribution of the spectral normal stresses to the kinetic energy contained in one

frequency band is a function of the frequency. For this purpose, the isotropic model

spectra of von Kármán is used for the normal stresses, while the shear stress spectra

are zero, since the shear stresses of the isotropic RST are also zero [16]. A normalized

turbulent kinetic energy is defined as:

kiso = 0.5

(
u11

u11,vK
+

u22

u22,vK
+

u33

u33,vK

)
, (4.3)

with uii,vK being the spectral normal stress components as obtained from the model

of von Kármán. In order to obtain a traceless anisotropic spectral stress tensor, the

components are computed as:

bij(fb) =

{
uij(fb)

uij,vK(fb)2kiso(fb)
− 1/3 if i = j,
uij(fb)
2k(fb)

if i 6= j.
(4.4)

with uij,vK(fb) being the isotropic spectral tensor based on the model spectra of von

Kármán, and k(fb) and kvK(fb) are the kinetic energies as a function of frequency

for the spectral aRST and the isotropic spectral tensor, respectively. Normalization is

conducted separately for the measured and the model spectral RST in order to reduce

the impact of the model spectra to an information on the stress ratios only.

An important caveat of this method is that the model spectra of von Kármán relies on

the axial integral length scale as an input. As such, it cannot be used for flows where a

strong periodic content is present in the axial component, since the integral length scale

then loses its typical meaning as a measure for the spatial correlation of the flow [61].

Consequently, points very close to the grid, such as the earlier investigated x/Gp = 1.46,

are omitted from the following analysis, due to the dominating periodic content in the

spectra of E11 in the jet centre positions.

Figures 4.13 (a) - (f) show the distribution of the invariants on the AIM for the three

positions x/Gp = 3.44, x/Gp = 7.07 and x/Gp = 24.76. Spectral bandwidth was

fu−fl = 16 Hz, yielding 13 distinct frequency bands up to the low-pass cut-off frequency

of 200 Hz. While in (a), (c) and (e), the colours of the shapes indicate the central
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frequency of a band, in (b), (d) and (f) the shapes are coloured by their energy content

as a fraction of the total turbulent kinetic energy. Triangles indicate the shape of the

spectral aRST exhibited by the turbulence downstream a grid bar, while circles indicate

the shapes of the spectral aRST in the centre of a grid jet.
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Figure 4.13: Spectral Reynolds-stress tensor shapes as a function of frequency
band and energy content, shown for positions behind grid bar (triangles) and
in jet centre (circles).

For the grid bar position at x/Gp = 3.44, shown by Figure 4.13 (a), a result is obtained

which is, at first sight, at odds with the total shape of the aRST, shown in Figure 4.12.

Rather than being on the pancake-shaped limit, the spectral aRST shapes are on the
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cigar-shaped limit. However, as shown in Figure 4.11 (b), depending on fb, either the

axial or the transverse velocity component dominates in terms of energy component.

Thus, a cigar shape is obtained for each frequency band, albeit one which is oriented

in either the axial or the transverse direction. While the energy contained in the low

frequencies f < 50, which is dominated by E11, represents a large fraction of the total

k, the dominance of E22 at frequencies f > 80 Hz results in the energies contained in

E11 and E22 to be roughly equal, as shown by Figure 4.13 (b). Combined with the large

anisotropy of eddies of these smaller scales, the resulting total aRST shape shown in

Figure 4.12 is obtained.

The spectral shapes of the aRST in the grid jet are all on the pancake shaped limit,

which fits the qualitative analysis conducted in Section 4.3.1. A strong trend towards

isotropy and lower energy content with growing frequency is obtained, which is a well-

known behaviour of turbulent flows.

As shown in Figure 4.13 (c), further downstream at x/Gp = 7.07, the anisotropy has

decreased for all spectral shapes of the aRST. At this point, the lowest frequency bands

dominate both in terms of their energy content and their anisotropy, resulting in the

shape of the total aRST coinciding with the axisymmetric limit for a cigar shaped aRST.

Finally at the largest downstream distance investigated here at x/Gp = 24.76, shown in

Figures 4.13 (e) and (f), the spectral shapes are all quite close to the isotropic corner,

with the spectral aRST downstream the grid bar and within the jet centre only deviating

from the isotropic shape at the lowest frequencies. It is concluded that the flow has

obtained a homogeneous state for much of the energy carrying range, with the return

to isotropy well under way. Significant anisotropy and inhomogeneity is only present at

the largest scales, which is in agreement with findings of Chasnov [218] and Ertunc et

al. [56], respectively.

It is of note that the shape of the aRST at the lowest frequency bands returns for

all investigated positions a state of the anisotropy with one component dominating,

qualitatively equivalent to the conclusions which can be drawn from the ratio of the

integral length scales, shown in Figure 4.10 (b). However, the ratio of integral length

scales in isolation would not provide information on the transition of energy dominance

occurring in flows with a strong transverse energy component at scales other than the

integral length scale. It is concluded with the analysis of Figures 4.13 (a) - (f) that the

invariants of the spectral aRST are a more comprehensive approach to investigate the

anisotropy of the energy carrying scales than either the invariants of the total aRST, or

the ratio of integral length scales.
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4.4 Investigation of Reynolds number effects

While the investigation of the flow phenomena at low Reynolds numbers facilitates com-

parison between simulation and experiment, in many applications, the Reynolds number

is substantially higher. In this section, the effect of increasing the Reynolds number on

the flow behind the inlet-grid turbulence generator is investigated. This is in support

of and supplementary to the findings of Blackmore et al. [13], who reported than an

increase in Reynolds number led to a higher growth rate for the integral length scale,

and a corresponding increase in the energy contained in the lower frequency velocity

fluctuations. Additionally, they found that the turbulence intensity decay rate is inde-

pendent of the Reynolds number.

The dependence on Reynolds number is investigated by comparing various flow quant-

ities of the case at the lowest Reynolds number Reλ = 10, which was investigated in

detail in the previous Section, to the results for two cases at Reλ = 112 and Reλ = 303,

respectively. All results were computed using a compressible LES, and the second order

accurate central scheme as given by Eqn. (3.20) was used for the convective term.

4.4.1 Dependency of the anisotropy on the Reynolds number

The development of the transversally averaged turbulent stresses and the corresponding

anisotropy parameter γ12 for simulations with a Reynolds number of Reλ = 10, 112 and

303 is shown in Figures 4.14 (a) and (b).
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Figure 4.14: Development of turbulent stresses and anisotropy parameter γ12

with Reynolds number.

As can be seen in Figure 4.14 (a), the normal Reynolds-stress components collapse

almost completely. This collapse is reflected in the anisotropy parameter γ12, where no

clear trend of the anisotropy with changing Reynolds number is detected. Considering
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Figures 4.4 (a) and (b), where it was observed that the anisotropy in the turbulence

produced by the inlet-grid turbulence creation method is predominantly contained at

wavenumbers much smaller than the mesh cut-off wavenumber, effects of the LES mesh

refinement are considered to be negligible. As experiments have shown a trend towards

lower anisotropy with higher Reynolds number [26; 215], it is hypothesized that the size

of the numerical domain is insufficient to contain the largest eddies carrying the majority

of the anisotropy, in particular at large distances to the grid. The potential influence

of domain size will be further investigated in Section 4.4.2. Figures 4.15 (a) and (b)

show the development of the transverse averaged invariants II and III with increasing

Reynolds number.
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Figure 4.15: Development of the invariants of the aRST as a function of the
Reynolds number.

Besides a very minor effect on the maximum anisotropy, the development of the Reynolds-

stress invariants is almost identical for all investigated Reynolds numbers. By x/Gp > 15,

the differences between the values of the invariants are negligible. Due to the qualitat-

ively very similar development of the transversally averaged Reynolds-stress invariants,

it is concluded that the mechanisms leading to the complex return to isotropy of the low

Reynolds number case are similarly prevalent at higher Reynolds numbers. Therefore,

a discussion of the development of the aRST close to the grid is omitted.

In order to obtain a better insight into the distribution of anisotropy over the energy

carrying scales at large distances to the grid, the spectral aRST, defined by Eqn. (4.4), is

computed for the three Reynolds number cases at x/Gp = 30, which is sufficiently distant

from the grid to allow transverse averaging. Figures 4.16 (a) and (b) show the invariants

of the spectral aRST computed for bands of wavenumbers, with the central wavenumber

κb. The cut-off wavenumber κc is indicated by the black vertical dash-dotted line.
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Figure 4.16: Transversally averaged invariants of the spectral aRST as a function
of Reynolds number at x/Gp = 30. Vertical dash dotted line indicates mesh
cut-off wavenumber.

It is immediately apparent that the anisotropy of the very lowest wavenumber bands is

decreased as the Reynolds number increases. However, the invariants of the wavenum-

ber bands converge rapidly with increasing wavenumber, with only minimal differences

beyond κb = 10 m−1. Thus, the increased isotropy is restricted to the largest scales only

and has only a limited impact on the overall anisotropy of the flow. Furthermore, it is

noted that the vast majority of the anisotropy as quantified by the spectral invariants

is contained in motions of scales significantly larger than κc.

The present results are in agreement with the experimental investigations of Comte-

Bellot and Corrsin [26], Schedvin, Stegen and Gibson [214], as well as Kurian and

Fransson [215], who reported a trend of increasing isotropy in the flow as the Reyn-

olds number is increased. However, in all of the experimental studies, the trend was

found to be small, which is consistent with the present results.

4.4.2 The turbulent decay in a restricted domain

Due to the presence of both anisotropic and inhomogeneous as well as isotropic and

homogeneous turbulence in the presented turbulence development case, it is possible

to investigate when and where isotropic relations often used when analysing turbulent

flow hold, and how they are influenced by Reynolds number. A quantity which is often

difficult to compute is the dissipation, and the related Taylor length scale λ [61; 214].

Assuming homogeneity and isotropy, the dissipation ε can be computed for decaying

grid turbulence, i.e. with no production, as [16]:

dk

dt
= −ε, (4.5)
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which in turn is related with the Taylor length scale by,

ε = 15νu2/λ2. (4.6)

Since Eqn. (4.6) relies on both large- and small scale isotropy [50], it is not expected

to obtain a good fit in regions where the anisotropy is high. It is thus necessary to

validate whether the values for λ are correct. To this end, the methodology proposed

by George [49] is used. He argued that the two-point statistics collapse when plotted

in Taylor variables. This has been shown to be an appropriate scaling for data from

many different investigations, such as the experiments of Comte-Bellot and Corrsin [219],

Warhaft and Lumley [220], and most recently Antonia et al. [221], Kang et al. [181], as

well as Seoud and Vassilicos [50]. It is therefore investigated whether this scaling holds

true in this case as well, and if so at which point the flow obtains the so-called equilibrium

similarity state.

An interesting observation was made by Seoud and Vassilicos [50], who pointed out

that small-scale isotropy may be sufficient for ε ≈ C0ν〈u〉/λ2, with the constant C0 not

necessarily equal to 15. As C0 is unknown for the current flow, however, no correction

for the anisotropy could be made, and the analysis is restricted to regions of the flow

where the turbulence anisotropy is limited.

One of the most common scalings for the axial energy spectra is Kolmogorov’s universal

scaling. Figure 4.17 shows the energy spectra for the axial component for the three

simulations at Reynolds numbers of Reλ = 10, Reλ = 112, Reλ = 303, scaled with the

Kolmogorov length ηK for a distance of x/Gp = 40 from the grid.
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Figure 4.17: Axial energy spectra as a function of Reynolds number at x/Gp =
40 in Kolmogorov scaling. Vertical dash-dotted lines indicate κcηk for the vari-
ous Reynolds numbers.
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In order to provide some qualitative comparison to experiment, the values for the spectra

at various values of Reλ from experiments of Comte-Bellot and Corrsin [219] and Kistler

and Vrebalovich [222] are included as well. A dashed line indicates the slope of the power

law decay proportional to κ−5/3, which is associated with the universal equilibrium range.

Vertical dash-dotted lines indicate κcηk for the various Reynolds numbers, with colours

corresponding to colour of the energy spectrum of the respective Reynolds number.

From Figure 4.17 it is apparent that the large differences are present between the energy

spectra obtained for an experiment of one value of Reλ, and the energy spectra from a

LES with a comparable Reλ. While the spectra from the LES at Reλ = 10 should, in

Kolmogorov scaling, be below the experimental spectra obtained by Comte-Bellot and

Corrsin for at a Reλ = 37, it exceeds the experimental values by up to one order of

magnitude. This is caused by the significantly higher dissipation present in the current

simulations. Following Eqn. (2.14), this leads to a decreasing Kolmogorov scale, which

due to the relationship [16]:

λ =
√

10η
2/3
K L1/3, (4.7)

with L = k3/2/ε equivalent to a length scale representing the large scales, results in

decreasing value of the Taylor length scale, and therefore too low a value for Reλ.

Considering the context of the mesh cut-off wavenumbers κc as well as the κ−5/3 decay

law of the energy cascade, it is observed that the spectra at all simulated Reynolds

numbers exhibit a slope equivalent to the κ−5/3 decay law at wavenumbers κ1ηK ≈ κc.

However, the spectra drop off quickly thereafter, indicating excessive dissipation errors.

It is concluded that while the beginning of the universal equilibrium range is captured, as

is best practice when conducting LES, for applications where the accurate representation

of the universal equilibrium range is of larger importance than the present case, more

accurate numerical schemes and higher grid resolutions are recommended.

According to George [223], an appropriate scale for the collapse of the energy spectra

is the Taylor length scale λ. Since the accurate determination of λ according to either

Eqn. (4.6) or Eqn. (4.7) requires the isotropy of the flow, collapse of the spectra is a

good test of the isotropy of the flow. Figures 4.18 (a) and (b) show the axial energy

spectra for the mid and the low Reynolds cases, respectively, for distances x/Gp ≥ 16.

The mesh cut-off wavenumber κc, indicated by the vertical dashed line, is scaled using

the value of λ at x/Gp = 14, which represents the conservative case as λ increases with

x/Gp.

With the exception of the lowest wavenumbers, it is found that the collapse of the spectra

is acceptable for both Reynolds numbers at distances x/Gp ≥ 25. The observation

that the largest scales seem to reduce in energy content at large distances serve as

further indication that the integral length scales are not sufficiently well resolved [223].

However, in the intermediate region 25 ≤ x/Gp < 50, George’s [49] equilibrium similarity

hypothesis is well satisfied, showing that this state is relatively quickly obtained by the

flow, and that the computation of ε and λ using isotropic assumptions is possible.
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Figure 4.18: One dimensional axial energy spectrum in Taylor coordinates.
Dash dotted line indicates κc

As discussed in Section 2.2, the convergence of the turbulence decay towards a constant

value of the decay exponent n is a common property of decaying turbulence. It is closely

related to the condition that λ2 is linearly dependent on time and inversely on n [224].

To investigate when this condition is met in the present simulations, λ2 is plotted in

Figure 4.19 (a) for the three Reynolds numbers simulated. From this, n is computed

following the unambiguous method suggested by George et al. [225]:

1

ν

dλ2

dt
= −10

n
. (4.8)

Figure 4.19 (b) shows the resulting development of the decay coefficient. For reference,

a range of ±5% around n = −1.4 is indicated by dotted lines. Since the high anisotropy

in the close-grid distances invalidates the use of Eqn. (4.6) for the computation of the

Taylor length scale, they are omitted.
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Figure 4.19: Development of Taylor length scale λ and the turbulence decay
exponent n.
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In Figure 4.19 (a), the throughflow time Tl = l/U0, where l is the extent of the computa-

tional domain, is used to normalize the curves to facilitate comparison. In this scaling,

the values of λ collapse for all Reynolds numbers. An approximate linear relationship is

present in all cases, although some variation is present especially at large times.

The conclusions made about the development of λ directly translate to n, shown in Fig-

ure 4.19 (b). Although there is some scatter in the results, the values are within ±5% of

−n = 1.4 between 15 < x/Gp < 45. The agreement in terms of n between the different

Reynolds number cases is considerable, in particular for Reλ = 10 and Reλ = 112, and

qualitative trends are similar up to x/Gp = 45. These results are expected, consid-

ering the well-known dissipation anomaly, which is central to all turbulence theories,

phenomenology and modelling [50]. The dissipation anomaly states that although the

kinetic energy dissipation is caused by viscous forces, the kinetic energy dissipation rate

has consistently been observed to remain constant with increasing Reynolds number

[50], which is generally understood to represent the ratio of inertial to viscous forces.

While the dissipation anomaly would be partially enforced in this simulation by the sub-

grid model used, which acts as a Smagorinsky-like model for freely decaying turbulence

[155], the resolved dissipation is under no such constraints, allowing the present case

to be used for the investigation of the dissipation anomaly for the special case of flows

where isotropy of the small scales is enforced, but large scale isotropy is not.

Qualitatively, in Figure 4.19 (b) an area of relatively constant values of n is observed

between 20 < x/Gp ≤ 35, not unlike the one found in the experiments of Lavoie, Djenidi

and Antonia [24], but larger in magnitude. Considering the choice of the sub-grid scale

model, as well as the isotropic mesh of the presented cases, it is concluded that the

variation in dissipation is a result of a change in the resolved dissipation εr alone. As

such, it is hypothesized that the increased values of n at x/Gp < 25 are caused by the

significant anisotropy present near the grid, which has been shown to impact dissipation

significantly by Lavoie, Djenidi and Antonia [24]. The marked decrease of the decay

coefficient x/Gp > 45 is argued to be due to the growing influence of the limited size

of the numerical domain, since the spectrum progressively shifts to lower frequencies

and larger scales, while the size of the domain remains constant. While, as discussed in

Appendix B, the grid resolution as well as the numerical schemes with their associated

dissipative and dispersive errors can be expected to have a considerable influence on

the development of the turbulence, their influence is considered to be uniform across

the whole domain, since a homogeneous mesh was used. As such, a rapid change in

the qualitative development of n is considered not be related to the refinement of the

domain. Conversely, a number of authors [24; 25; 49; 226; 227] have shown that the

energy content at low wavenumbers has a significant influence on the value of n, and

thus, it is concluded that the decay coefficients computed downstream of x/Gp > 45

do not represent freely decaying homogeneous and isotropic turbulence any more. This

argument is supported by the plot of the non-dimensional rate of return to isotropy,
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defined as:

ρ∗ =
k/( dk/ dt)

II/( dII/dt)
, (4.9)

which is shown in Figure 4.20.
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Figure 4.20: Dimensionless return to isotropy as a function of Reynolds number.

While prior investigations such as the DNS conducted by Zusi and Perot [43] has shown

an asymptotic development of the ρ∗, the simulations show a clearly diverging behaviour,

which is especially pronounced past x/Gp > 35. It is hypothesized that the largest scales

in the axial direction, which would, in the case of a free-stream, continue to grow, are at

this point restricted by the domain, while the transverse scales are still growing. Thus,

the rate of return accelerates.

4.5 Summary

This Chapter has used the turbulence creation method proposed by Blackmore [13] to

investigate the processes responsible for the creation of anisotropy encountered in typical

flows behind a grid-like obstacle. This was accomplished by conducting LES at three

different Reynolds numbers, assuming an incompressible flow, and by keeping the case

setup constant. The case with the lowest Reynolds number, being comparable with

Reynolds numbers often achieved in experiment, was used to demonstrate the applicab-

ility of the inlet-grid turbulence creation method for the reproduction of turbulent flows

produced by grids. By doing so, it was aimed to establish that the turbulent flow in the

interaction problems discussed in Chapters 5 and 6 is close to those typically used in

experiments.

Additionally, in order to improve the understanding of the creation and development

processes of the anisotropy, an investigation of the near-grid region was performed. For

the purpose of quantifying the anisotropy of the energy carrying scales, the method of

computing a spectral anisotropic Reynolds-stress tensor was introduced.

By comparing the spectra and invariants of the three cases, indications of the effect of
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the Reynolds number on the energy carrying scales were obtained. Finally, the simu-

lations allowed the investigation of the effect of domain restriction on the decay and

return to isotropy of the turbulent flow. The main conclusions drawn from this Chapter

are:

� The inlet-grid turbulence creation method, combined with the simulation method

of LES, can produce turbulence which is in terms of the required parameters of en-

ergy spectra, Reynolds-stresses and invariants representative of that produced by

many grid-like turbulence generators. The anisotropy common to grid turbulence

[26] was found to be predominantly exhibited by the large scales, and as such is

associated with wavenumbers significantly below the grid cut-off wavenumber es-

tablished in Appendix B. Thus, dissipation and dispersion errors can be considered

negligible for the scales of interest. Near-grid development of the energy carrying

scales exhibit behaviours found in the literature. Therefore, the method can be

used for the investigation of the anisotropy of the energy carrying scales, and for

the production of turbulence for more complex turbulence interaction problems,

such as discussed in Chapters 5 and 6.

� By relating the 1D-energy spectra for axial and transverse components to the

states of the invariants in the AIM, it is qualitatively shown that the complex

development of the anisotropy of the energy carrying scales close the grid is caused

fundamentally by a change in dominance of energy from scales associated with the

wake oscillation to scales of the order of the integral length scale. It is noted

that in the present results, the wake oscillation frequency coincides with the mesh

cut-off frequency, and the dispersive error of the employed numerical schemes

may contribute to the rapid diffusion of the energy at this peak. Further mesh

refinement studies are recommended to assess the influence of the dispersive error.

� The method of computing a spectral anisotropic Reynolds-stress tensor and its

invariants can be used to quantitatively assess the anisotropy of the energy carrying

scales to a high resolution and provides more information on the development of

the flow than the often used ratio of the axial to transverse normal Reynolds-stress,

or the ratio of the axial and transverse integral length scales.

� A comparison of the anisotropy obtained from two simulations conducted at higher

Reynolds number to the low Reynolds number case was presented and showed that

while a small trend towards reduced anisotropy with increased Reynolds number

exists, the underlying flow phenomena are qualitatively very similar. Thus, the

findings concerning the complex return to isotropy of the energy carrying scales

are also applicable to flows at higher Reynolds number.

� An investigation of the energy spectra as well as the Taylor length scales and

related decay coefficients has been presented. Indications have been found that
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scalings commonly used for the description of turbulence are applicable to the flow,

but that the simulation domain is too small to support the growth of the largest

scales up to the outlet. Further investigation suggests that this has implications

on both the return to isotropy as well as the rate of decay. However, further

simulations at additional Reynolds numbers and with larger numerical domains

are recommended to support these conclusions.

Thus, this Chapter has established the inlet-grid turbulence creation method as a valu-

able tool for the study of turbulent flows. A deeper insight into the complex development

of the anisotropy close to the grid has been gained, allowing to relate the energy spectra

to the invariants of the AIM. A novel methodology to quantify the anisotropy of the

energy carrying scales has been presented.



Chapter 5

The interaction of infinite

aerofoils with simulated grid

turbulence

In previous chapters, the methodology chosen to investigate the interaction of turbulence

with the leading edges of aerofoils has been presented. The link between the simpler

turbulence development problem, used in Chapter 4 to study the generation and devel-

opment of turbulence by the inlet-grid turbulence creation method, to more complex

problems such as the case of turbulence interacting with an aerofoil, discussed in this

Chapter, was established in Chapter 3.

For the purpose of demonstrating the capability of a LES solving the full, compressible

Navier-Stokes equations on an unstructured mesh to be used for the investigation of

turbulence interaction with the leading edge, and the associated noise production, the

inlet-grid turbulence creation method is applied produce a turbulent flow in which an in-

finite aerofoil is immersed. The case of an infinite aerofoil interacting with turbulence is

a well-known problem in the field of aeroacoustics, and a large database of experimental,

numerical and analytical results exists. Thus, it is ideally suited for the evaluation of

the capability of LES of reproducing the acoustic emissions of an aerofoil in a turbulent

flow. The main aims of this chapter are:

� To demonstrate the application of the inlet-grid turbulence creation method to the

benchmark problem of an unloaded, thick, infinite aerofoil, using a compressible

LES on an unstructured mesh.

� To investigate the interaction of evolving turbulence with a leading edge, which is

crucial to noise production.

97
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� To evaluate the capability of this method to reproduce experimental values ob-

tained in the well-documented measurement campaign of Paterson and Amiet [97]

for validation purposes.

� To assess the fidelity of this method of predicting known effects such as the decrease

of noise levels due to thickness, the non-compactness effects present at higher

frequencies as well as the effects or lack thereof of applying an angle of attack to

the aerofoil.

� To establish a baseline for the investigation of the finite aerofoil.

The Chapter is structured as follows. Section 5.1 provides a discussion of the effects of

the unstructured meshing approach on the numerical results, supported by the analysis

on the linear wave advection properties of the used numerical schemes conducted in

Appendix B. In Section 5.2, comparison with the experimental data of Paterson and

Amiet [97] for a comparable case is conducted to establish the current setup as being

representative of the problem of an isolated aerofoil interacting with a turbulent flow.

The development of the turbulence near the leading edge, as well as the aerofoil surface

pressures, are discussed in Section 5.3. The noise emission predictions for the case of a

thick, unloaded aerofoil computed with and without the assumption of compressibility,

as well as for an aerofoil at a small angle of attack, are compared in Section 5.4. Finally,

the findings of the Chapter are summarized in Section 5.5.

5.1 LES on unstructured meshes

The application of the LES method to unstructured meshes is problematic, as the un-

derlying mesh generation algorithms of many grid generators make control of the mesh

quality difficult. While this is by design, since the main strength of unstructured meshing

is the reduction of mesh generation times and complexity, the very strict requirements

of LES for meshes lead to unstructured meshes often being unsuitable. The main reason

for this is that in the formulation of LES the integral and the derivative operators are

commuted, and the terms depending on the filter size are neglected when the conser-

vation equations are filtered. Thus, a non-uniform mesh introduces an error when used

for LES. While it was found by van der Bos and Geurts [228] that the error becomes

small if the change in the filter is slow and its skew is limited, LES are still vulnerable

to mesh anomalies which lead to considerable numerical problems, such as un-physical

oscillations of the flow quantities. This section introduces the domain setup for the tur-

bulence interaction case of an infinite aerofoil, and discusses simulation results for the

more problematic areas of the domain, i.e. leading and trailing edge of the aerofoil, as

well as the associated derefinement zones.
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5.1.1 Numerical setup of the turbulence interaction case

Since placing the inlet grid turbulence creator at distances commonly used distant from

the aerofoil would lead to a prohibitive cell count, and even more problematic to a very

small turbulence intensity, the alternative approach of the U-shaped domain shown in

Figure 5.1 was adapted. The distance of the inlet to the aerofoil, equivalent to 16Gp,

was then chosen based on a prior parameter study, which returned the appropriate

distance and inlet flow velocities in order to facilitate qualitative comparisons with the

experimental results of Paterson and Amiet [97].
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Figure 5.1: Domain setup of background case (without aerofoil) and interaction
case (with aerofoil). Thick dashes illustrate position and approximate size of
grid “bars”. The origin of the coordinate system coincides with the aerofoil
leading edge. The illustration is not to scale.

In order to minimize, if not eliminate, reflections of acoustics waves from the bound-

aries, two measures were taken. By significantly coarsening the mesh outside the tur-

bulent domain, cell count could be minimized and outgoing and returning waves would

dampened by numerical dissipation. Additionally, the non-reflective boundary condition

waveTransmissive, provided in the OpenFOAM package, was set for the pressure. This

boundary condition represents a simplified implementation of the non-reflective scheme

based on eigenvalue analysis developed by Poinsot and Lele [229], and is discussed in

more detail in Appendix C.2. Table 5.1 summarizes the boundary conditions chosen.
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Patch Variable Type Definition

Wall U Dirichlet U = (0, 0, 0)

p Neumann dp/dx = 0

Inlet U Dirichlet U1 = ṁ/(Apρ0), U2 = U3 = 0

p Neumann dp/dx = 0

Far-field inlet U Dirichlet U1 = ṁ/(Apρ0), U2 = U3 = 0

p Neumann dp/dx = 0

Slip-wall U Dirichlet U = (U1, U2, 0)

p Neumann dp/dx = 0

Outlet U Mixed Eqn. (3.17)

p Mixed Dp/Dt ≈ 0, See Appendix C.2, [229]

Top, Bottom U Neumann dU/ dx = 0

p Mixed Dp/Dt ≈ 0, See Appendix C.2, [229]

Front, back U, p Periodic 1:1 field mapping to opposite boundary

Table 5.1: Boundary conditions for the simulation of the turbulence interaction
with an infinite aerofoil.

Grid resolution in the turbulent domain is the same as in the simple turbulence develop-

ment case. This grid resolution was maintained up to a distance of 3c downstream of the

aerofoil. The extent of the finely resolved volume in the y direction is one chord length

relative to each side of the aerofoil, which corresponds to the height of the grid inlet with

an additional small buffer to accommodate a likely turbulent shear layer. In the remain-

ing domain, the cell sizes were chosen to be much larger with ∆c = Gp = 0.06 m. Grid

transition between this coarse domain and the finely resolved region of the turbulent

flow behind the grid was handled by 4 refinement steps of 10 cell layers each. Except for

the grid inlet, the other far-field boundaries are set at 20c from the prospective aerofoil

position on all sides. The aerofoil span was set to 3Gp. The total cell count for this case

was 22.3× 106, consisting of 97% hexahedral cells, and 1.4% prisms, 0.6% pyramids and

0.03% tetrahedral cells. A more detailed description of the mesh generation procedure

and chosen refinement parameters is given in Appendix C.1.

The solver rhoPimpleFoam, implemented in OpenFOAM v3.0, was used, which conducts

pressure-velocity coupling using the merged PISO [201] and SIMPLE [202] algorithms.
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5.1.2 Analysis of leading edge and trailing edge flow

Figures 5.2 (a) - (d) illustrate the distribution of the CFL number, as well as of the DES

switch parameter, which controls the use of the RANS or LES model, at leading and

trailing edge of the aerofoil.

(a) CFL at leading edge. (b) CFL at trailing edge.

(c) DES mode at leading edge. (d) DES mode at trailing edge.

Figure 5.2: CFL number distributions and DES modes, with red being LES
volumes and blue being DES volumes in the aerofoil vicinity.

As mentioned previously in Section 3.2.1, a CFL number of below 0.5 was used, based on

the investigation of the wave propagation properties documented in Section B, in order

to keep temporal numerical dissipation low and to increase stability of the simulations.

It is apparent from Figures 5.2 (a) and (b), that the maximum values of the CFL number

are concentrated in tetrahedral cells in the layers that are refined, or where curvature

needs to be resolved. During this research, numerous situations occurred where numer-

ical oscillations would be produced by these cells, which also exhibit the largest values

of skewness and non-orthogonality, the latter being defined as the angular deviation of

the line connecting two cell centres from the normal vector of the face. It is therefore

of utmost importance that conditions should be chosen for meshes incorporating these

cells which increase the numerical stability in these critical areas, whilst maintaining an

acceptable accuracy, such as a low time step, combined with an appropriate number of
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non-orthogonality corrector steps.

The maximum values of the CFL number were obtained in the highly refined areas in

the vicinity of the trailing edge, as shown in Figure 5.2 (b). The high level of refinement

was chosen to be able to capture a blunt trailing edge. While capturing the trailing

edge noise is not the focus of the current research, and a sharp trailing edge could have

been chosen to alleviate computational cost, the intention of investigating a finite aero-

foil with a round tip necessitated the choice of a meshing approach capable of resolving

small radii. Due to this consideration, and to facilitate a more direct comparison of

the LES results for an infinite aerofoil and a finite aerofoil, a blunt trailing edge was

used in the present simulations. Due to the refinement necessary to capture the trailing

edge radius, very small cells are created, reducing the typical non-dimensional time step

achieved to ∆tU0/ta = 6.7× 10−3.

In the boundary layer, y+ < 0.5 was not exceeded, while the non-dimensional viscous

lengths in the streamwise and spanwise directions were below x+ = z+ < 40. Figures

5.2 (c) and (d) illustrate that prism cells in the immediate vicinity of the grid are being

handled by the RANS mode of the DES, while the vast majority of the domain is being

handled by the LES mode of the DES. This is desirable, as it reduces the impact of the

turbulence modelling inherent of the RANS mode to a minimum.

It is important to note that the realistic growth of the boundary layer, and in particular

its laminar or turbulent nature, are issues which are neither expected to be accurately

modelled by this approach, nor considered to be of large importance to the core object

of the research, which is the prediction of leading edge turbulent interaction noise. As

shown by Gill et al. [121], the influence of the boundary layer on the leading edge inter-

action noise is negligible. While aerofoils at low Reynolds number have been observed

to exhibit noise generation at the trailing edge, due to the interaction of boundary layer

instability waves with the trailing edge singularity and a subsequent feedback loop due

to the produced acoustic waves [230], the present case is investigated at a chord-based

Reynolds number of Rec = 1.03×106, well above the regime where such noise generation

is typically observed for unloaded aerofoils [231]. Consequently, as discussed previously

in Section 2.4, the leading edge is the dominant noise source, and contributions of the

boundary layer fluctuations become only significant at relatively high frequencies, as

shown by Chaitanya et al. [94]. Thus, analysis of the boundary layer is omitted.

As shown by Figures 5.2 (a) - (d), while the mesh is, for the most part, of high quality

in terms of skewness, orthogonality and aspect ratio of most cells, the transition from

one refinement zone to another is associated with a very strong growth ratio of 2. This

is significantly above commonly used meshing practices for LES, and its effect on the

turbulent quantities must therefore be investigated. Figures 5.3 (a) - (d) show the con-

tours of the axial Reynolds stress u11 as defined by Eqn. (2.20), as well as the root mean

square values of the unsteady pressure, pRMS , for the vicinity of leading and trailing edge.
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(a) Axial stresses at leading edge. (b) Axial stresses at trailing edge.

(c) Turbulent structures visualized by Q-criterion at trailing edge.

(d) pRMS at leading edge. (e) pRMS at trailing edge.

Figure 5.3: Turbulent quantities in the aerofoil vicinity.

From Figure 5.3 (a), no obvious influence of mesh density or cell growth rate on the con-

tours of the values of u11 is observed. The results appear qualitatively very similar to
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those obtained by Gea-Aguilera [103], who used structured meshes capable of support-

ing very small growth ratios. Equivalent to the present results, Gea-Aguilera reported

a rapid decrease of u11 in the immediate vicinity of the leading edge, which was related

to the reduction of mean flow axial velocity due to flow stagnation, and the resulting

restriction of the velocity fluctuations in this direction. On the top and bottom of the

aerofoil, a widening area of increasing values of u11 indicate a growing boundary layer.

At larger distances from the symmetry plane, steadily decreasing values of u11 in the

direction of the flow are observed. This is caused by two effects. Firstly, the turbulent

decay due to dissipation reduces the magnitude of u11. Secondly, the potential effect

of the aerofoil imposes a mean strain on the flow, which acts in a manner similar to

a contraction in a wind tunnel, and leads to a decrease of u11, as observed in several

experiments [26; 232].

At the trailing edge, shown in Figure 5.3 (b), the effects of mesh inhomogeneity are sig-

nificantly more pronounced. The axial turbulent stresses grow rapidly, before dropping

off significantly as the refinement is reduced. These increased stresses are caused by the

increased wavenumber range of the resolved fluctuations in the finer mesh, as illustrated

in Figure 5.3 (c) by the presence of very small turbulent structures in the vicinity of the

trailing edge, which are smaller than the cell size of the outer turbulent domain. As the

grid is derefined, these fluctuations are no longer resolved, and are dissipated quickly.

In order to investigate the impact of this forced dissipation of small-scale eddies due to

grid derefinement at the trailing edge, the root mean square of the fluctuating pressure

is shown in Figures 5.3 (d) and (e). As shown in Figure 5.3 (a), the increase of pRMS

close to the leading aerofoil is significant, as is expected. Similarly to the development

of the axial stresses upstream the leading edge, no clear influence of the mesh refinement

is observed.

Figure 5.3 (d), showing the distribution of pRMS in the vicinity of the leading edge,

illustrates how the rapid derefinement of the mesh leads to a significant rise in local

unsteady pressure fluctuations. It is apparent that the forced dissipation of the small

eddies within the boundary layer, resolved by the fine mesh at the trailing edge, shown

in Figure 5.3 (c), will constitute an un-physical noise source. However, the pRMS at

the trailing edge is observed to be more than 6 times less than the value at the leading

edge. Thus, it is expected that the influence of this noise source on the leading edge

noise, which is the primary interest of this investigation, is negligible. This is further

investigated in Section 5.3.2.

A source of error which cannot completely be excluded with the current methodology

are spurious reflections of acoustic waves at the mesh derefinement interfaces such as

present at the trailing edge of the aerofoil as shown in Figure 5.3 (e). As these would

likely lead to similar effects as the non-compactness effects discussed in Section 2.4.2.1,

mesh parameter studies are recommended using a structured mesh to assess whether

they are dominant component in the present setup. However, considering the assess-

ment of the presence of spurious reflections caused by the derefinement zones on top and
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bottom of the aerofoil outside the turbulent jet, documented in Appendix D.1, which

showed no obvious reflection of acoustic waves, it is not considered likely that significant

reflections at the mesh derefinement interfaces take place.

5.2 Homogeneity and spectra of the turbulent background

flow

In order to ensure realistic flow conditions for the case of an isolated aerofoil, appro-

priate boundary conditions must be chosen accordingly. In Section 3.3, the streamwise

homogeneity of the flow was investigated with the setup as shown in Figure 5.1, and it

was established that the turbulent domain exhibits a homogeneous core region extending

up to one grid period from the plane of symmetry, as shown Figures 3.10 (a) and (b).

In this section, the analysis is extended to include the spanwise homogeneity, as well as

the energy spectra at this point, which are compared against those of the investigation

of Paterson and Amiet [97]. All results discussed in the following are obtained from the

background simulation, i.e. the simulation of the turbulence interaction setup, but with

the aerofoil removed.

While the inlet grid turbulence creation proposed by Blackmore [13] is flexible and easy

to implement, the method is limited in its capability to produce turbulence of exact a

priori parameters. While a preliminary parameter study was conducted to determine

the grid geometry and aerofoil placement settings most likely to reproduce the conditions

in experiment, some deviations could not be avoided. The turbulence of the validation

case varies from the flow as measured by Paterson and Amiet as shown by Table 5.2.

Flow quantity Infinite aerofoil Experiment [97]

U0 67.2 m/s 60 m/s

√
u11/U0 3.91% 4.36%

√
u22/U0 3.85% 3.92%

I11 3.64 cm 3.01 cm

I22 1.11 cm 2.48 cm

Table 5.2: Flow parameters of infinite aerofoil simulation versus experiment of
Paterson and Amiet [97].

With the exception of the integral length scales I11 and I22, as defined by Eqn. (2.10),

the deviations are relatively small, making a qualitative comparison to experiment pos-

sible. It should be noted that due to the considerable computational expense asso-

ciated with performing the turbulence interaction simulation, there is an uncertainty
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of up to 20% associated with the values of I11 and I22 following the discussion docu-

mented in Section 3.2.2, since the simulation could only be performed for a physical

time sufficient for the convergence of the aeroacoustic quantities which were of primary

interest. In order to account for the difference in mean flow velocity U0, a dipole cor-

rection of 60 log10(ULES/UExp.) is applied to acoustical results, following the arguments

of Hersh [96].

5.2.1 Turbulence and mean flow homogeneity

The homogeneity of the turbulent flow in the yz plane, i.e. normal to the streamwise

direction, is investigated for the position x/Gp = 0 in Figures 5.4 (a) - (e).
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(b) Mean transverse velocity.
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(c) Mean spanwise velocity.
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Figure 5.4: Flow inhomogeneity in the yz plane as quantified by Iφ. Dashed
lines indicate thickness of aerofoil in subsequent interaction case.

In order to provide context in terms of the aerofoil dimensions in the interaction case,

dashed lines indicate the maximum thickness of the NACA 0012 aerofoil used. The

inhomogeneity parameter Iφ proposed by Ertunc et al. [56], as defined in Eqn. (3.23),

is computed relative to the spanwise mean φ at y/Gp = 0, and is in the case of the

transverse mean velocities computed relative to the axial mean velocity.

As illustrated by Figure 5.4 (a), the mean axial velocity in the yz plane exhibits its

largest inhomogeneity relative to the velocity in the centre in the shear layer, which

extends between 1.5 < y/Gp ≤ 2.8. This is also the case of the transverse and the
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spanwise mean velocities, however the inhomogeneities are less systematic and an order

of magnitude smaller. In the centre of the turbulent flow, the inhomogeneity parameter

is very low for all mean flow components. Since the peak values of all Iφ in the core

region, i.e. for y/Gp < 1, appear random, they are considered not to be caused by the

grid, and are likely to disappear when more data is used for averaging.

Figure 5.4 (d) shows in terms of the turbulence intensity Ir =
√

(2k/3)/U0, a reasonably

homogeneous state is obtained below y/Gp = 1, with turbulence intensity values within

0.5% of 4%.

Figure 5.4 (e) shows the spanwise variation of the axial and the transverse turbulence

intensity components Iu11 and Iu22 , respectively, which are computed by substituting

u11 or u22 for k. In order to provide context, the level of homogeneity reported in

the experiment by Paterson and Amiet [97] is superimposed in Figure 5.4 (e). While

the comparison can only be qualitative, due to the difference in mean flow velocity

of 10% as well as differences in the setup and geometry, e.g. no end-plates in the

simulation, Figure 5.4 (e) shows that the homogeneity in terms of Iu11 and Iu22 of the

LES is consistent with the experimental values. Furthermore, as no end plate is present

in the LES, the increasing turbulence intensity levels with increasing z/(2d) observed in

the experiment is absent from the simulation.

An additional observation from Figure 5.4 (e) is the relatively high degree of isotropy

exhibited in the simulation, when compared to the values measured by Paterson and

Amiet. While the spanwise average of the experimental data yields a value of the

anisotropy parameter of γ12 = 1.1, a value of γ12 = 1.02 is obtained for the LES.

While the inlet-grid generation method has been shown in Section 4.1.2 to exhibit a

considerable anisotropy for positions of x/Gp < 20 downstream of the grid, the use of

blended upwind-biased schemes required for stability leads to a considerable reduction

of the anisotropy, as shown in Section 3.2.4. An assessment of the effect of this mismatch

in terms of anisotropy is conducted in Sections 5.2.2 and 5.4.

5.2.2 Validation of turbulence statistics

As documented in Section 3.3.2, the normal components of the RST as well as the

correlations functions Aii of the turbulence development case, discussed in Chapter 4 and

the turbulence interaction case, discussed in the present Chapter, collapse in the centre

of the turbulent flow for distances x/Gp > 10. Consequently, parameter studies based

on the turbulence development setup can be used to establish suitable grid parameters

to produce turbulence of similar statistics as those of prior experiments for validation

purposes. In the present section, quantitative comparison of the simulated turbulent flow

in the domain illustrated by Figure 5.1 with the experiments of Paterson and Amiet

is conducted by comparing the correlations for the axial and transverse components,

A11 and A22, in Figures 5.5 (a) and (b). In order to account for the difference in

integral length scale, the axial distance was normalized by κe as defined in Eqn. (2.17).
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The value used for the integral length scale is given by Table 5.2. Additionally, the

correlation model by Liepmann as given by Paterson and Amiet [97] was included to

provide information as to how accurately the experiment and the simulation meet the

criterion of isotropic turbulence, which is assumed in many analytical models. For the

axial component, Liepmanns correlation was computed as,

A11(r) = e−κer/0.75, (5.1)

while for the transverse component,

A22(r) =
(

1− κer

1.5

)
· e−κer/0.75, (5.2)

was used. In the experiments of Paterson and Amiet [97], the correlations were computed

with the aerofoil removed, at a position equal to the centre of the aerofoil chord and span.

However, they note that prior experiments had shown little dependency of the turbulent

quantities on the streamwise position for distances shorter than the aerofoil chord. Due

to this insensitivity, the correlations and spectra presented here are computed with data

extracted at the intended position of the leading edge in the subsequent turbulence

interaction simulations.
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Figure 5.5: Comparison of correlation functions from LES (solid) with Experi-
ment [97] (symbols) and Liepmann model Eqn. (5.1) and Eqn. (5.2) (dashed).

For the axial autocorrelation function A11, shown in Figure 5.5, a reasonably good fit is

obtained for r/κe < 0.4 and r/κe > 2 . However, the correlation decays faster than either

the model or the values obtained in the experiment. In case of the transverse correlation

A22, shown in Figure 5.5 (b), it is apparent that the correlations based on the simulation

data do not agree with both the correlations obtained from the experiment as well as the

analytical model. The values of correlation obtained from the LES decay too rapidly,

whereas the values measured in experiment show higher flow correlation for r/κe ≥ 0.5.

In order to investigate the effects of this under-prediction on the 1D energy spectra,

Figures 5.6 (a) and (b) compare E11 and E22 at the position of the leading edge, against
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the results of Paterson and Amiet [97]. To facilitate comparison, the spectra were

normalized by the value of the von Kármán 1D model spectrum, as defined in Eqn.

(2.16), at κx = 0, and the wavenumber has been normalized by the factor of 3/(8πκe).

The cut-off wavenumber κc, using a criterion of 25 PPW as established in Appendix B

, is indicated by the vertical dash dotted line.
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Figure 5.6: Comparison of normalized spectrum from LES (solid) against
model Eqn. (2.16) (dashed) and experimental data of Paterson and Amiet [97].
κc indicated by dash dotted line.

It is observed that the cut-off wavenumber, normalized by κe, appears to coincide with

the first intersection of the model spectra of von Kármán and the spectra as obtained

from LES. However, considering the uncertainty associated with the I11, as discussed

earlier in this Section in reference to Section 3.2.2, this is not considered meaningful, as

the earlier investigation of the effect of using a central versus an upwind biased scheme

for the convective term, documented in Section 3.2.4 illustrated that κc is more closely

associated with the second intersection of the model spectra with the LES spectra, as

shown in Figures 3.6 (a) and (b). Therefore, the scaling using κe is considered to be

misleading for quantitative purposes, but may still be used for qualitative comparison

of the experimental spectra to the spectra from LES. Considering the rapid loss of cor-

relation observed in Figure 5.5 (a), as well as the energy deficit mid-wavenumber range

0.02 < 3κx/(8πκe) ≤ 0.03, it is concluded that the intermediate length scales are under-

predicted in terms of correlation and energy content. However, as the predictions of

leading edge noise is primarily dependent on the transverse energy spectrum, a further

investigation of these discrepancies is omitted here.

In case of the transverse energy spectrum, shown in Figure 5.6 (b), deviations from

the analytical spectrum are observed both in regards of the experimental spectrum, as

well as the spectrum obtained from the LES. While Paterson and Amiet [97] provide

no explanation for the deviation from the analytical spectrum, it is reasonable to relate

the difference to the level of anisotropy present in the experimental flow. The transverse
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spectrum from the LES is observed to deviate from both the experimental and the ana-

lytical. While the energy at wavenumbers 3κx/(8πκe) ≤ 0.2 is reduced, for wavenumbers

3κx/(8πκe) ≥ 0.2 a larger energy content is exhibited relative to both the analytical and

the experimental spectrum.

As such, the shape of the axial and the transverse energy spectra explains the mismatch

between the anisotropy parameter γ12, which indicates an almost isotropic flow, and the

ratio of the integral length scales I11/I22, which according to the values given in Table

5.2 indicates a strongly anisotropic flow. When integrating over the energy spectra,

the lack of energy in the mid-wavenumber range of E11, combined with the excess of

energy in the high wavenumber range of E22 will lead to a value of γ12 close to iso-

tropy. However, since the integral length scales of the axial and transverse components

are primarily determined by the energy content of the lowest wavenumbers, a state of

strong anisotropy will be observed such as presented in Table 5.2.

Since the transverse energy spectrum is primarily responsible for the acoustic emissions,

a more in-depth investigation of the consequences of the observed deviation from the

isotropic spectrum is conducted in Section 5.4.

5.3 Leading edge interaction physics and aerofoil on-surface

pressures

The qualitative investigation on the effect of conducting LES on unstructured meshes,

documented in Section 5.1, has given a first insight into the flow phenomena in the

vicinity of the leading edge. To analyse the noise production processes, the region

immediately upstream of the leading edge is investigated in this section more in detail.

As pointed out by Roger and Moreau [12], broadband leading edge noise is fundamentally

produced by the rapid modification of turbulent structures by the interaction with a solid

surface. This section will investigate the turbulence distortion in the leading edge region.

Additionally, the resulting on-surface pressure spectra are presented and compared to

experiment.

5.3.1 Turbulence interaction with leading edge

Figures 5.7 (a) and (b) illustrate the distribution of the root mean square values of

the unsteady pressure in the immediate vicinity of the leading edge, as well as of the

distribution of the unsteady pressure at one arbitrary moment in time, respectively. In

order to provide context on the aerodynamic environment of the aerofoil, Figure 5.7 (b)

provides a larger view of the simulated domain, including the transition shear layer of

the turbulent flow to the steady far-field.

The analysis of pRMS at the leading edge in Figure 5.7 shows that the contour lines

centre around the stagnation point of the leading edge. They are found to be almost
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circular, whereas the simulations of Gill [7] and Gea-Aguilera [103] predict contours of

pRMS to attain a dipole-like distribution, with maxima on each side of the stagnation

point. Amiet’s theory, however, assumes the maximum pRMS at the leading edge of

the flat plate [15]. It should be noted that the studies of Gill and Gea-Aguilera were

conducted using an LEE methodology, where the linearisation of the equations allows to

decouple vortical, acoustic and entropy waves and therefore allows to introduce turbulent

flows which consist solely of vortical perturbations transported in a frozen manner by

the mean flow. Consequently, such turbulent flows would not exhibit density or pressure

fluctuations in the linearised Euler equations.

(a) pRMS/ρ0c0 at the leading edge. (b) p′/ρ0c
2
0 in the vicinity of the aerofoil.

Figure 5.7: Unsteady pressure mean and instantaneous distributions.

The turbulent flow simulated here is not divergence free and does contain, as shown in

Figure 5.7 (b), considerable hydrodynamic pressure fluctuations. These will contribute

to the pRMS at every point in the flow, leading to pRMS no longer being representative of

the acoustic fluctuations only. As such, the instantaneous pressure distribution, shown in

Figure 5.7 (b), does not permit to identify acoustic fluctuations unambiguously. At best,

the influence of an acoustic wave can be observed in an area where the hydrodynamic

pressure fluctuations are decreased or lowered relative to the remainder of the turbulent

flow, as shown in Figure 5.7 (b) by the light blue area and the yellow area on top and

bottom of the aerofoil, respectively.

An investigation of the influence of domain setup and mesh refinement on the results of

Figures 5.7 (a) and (b) was conducted and is documented in Appendices D.1 and D.2,

respectively.

In order to assess the effect of the presence of the aerofoil on the mean flow velocity and

the turbulent stresses, the development of 〈U1〉 as well as of u11, u22 and u33 upstream

the leading edge is shown in Figure 5.8. The distance to leading edge is given in terms

of the coordinate r/rLE , where rLE is the leading edge radius, defined for NACA 4-digit

aerofoils as rLE/c = 1.1019(ta/c)
2, with ta being the aerofoil thickness.

As Figure 5.8 (a) shows, the development of the mean axial velocity collapses well with
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the experimental values. This is an expected result, as this development is due to the

potential effect of the aerofoil, which is determined by the mean flow, and therefore

deviations arise due to differences in boundary conditions only. The present results

indicate that the numerical domain setup as illustrated by Figure 5.1 is appropriate to

investigate the problem of an isolated, infinite aerofoil. The only observable deviation

occurs in the region closest to the leading edge, where Santana et al. [101] report 〈U1〉
to align more closely to the values of the potential solution of a cylinder than for an

aerofoil, in agreement with theoretical arguments of Mish and Devenport [233].
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Figure 5.8: Development of the velocity quantities towards the leading edge.

In terms of the development of the normal RST components, shown in Figure 5.8 (b),

a considerable difference is observed in the development of the streamwise turbulent

stress compared to the transverse components. While the former monotonically decays

towards the leading edge, the two latter components exhibit a considerable increase

in the immediate vicinity of the leading edge. This is in disagreement with the PIV

measurements of Santana et al. [101], who reported an increase of all three stresses.

However, the CAA studies of Gill et al. [121], Hainaut et al. [102] and Gea-Aguilera

[103], reported a development of the turbulent stresses equivalent to the present results.

It is noted that theoretical considerations of Hunt [115], based on the rapid distortion

theory, predict an increase of u11 with decreasing distance to the leading edge. While

no increase of u11 can be observed in the present simulation, for −15 ≤ r/rLE = −3

the axial stress is observed to remain approximately constant. It is conceivable that the

theoretical increase of u11 according to Hunt is just sufficient in this case to cancel the

decrease of axial turbulent stress due to dissipation. Furthermore, as Hunt computed

closed form solutions only for asymptotic cases, i.e. for eddies much smaller and much

larger than the body size, it is considered likely that the present simulations, which

would not be able to capture the largest and smallest scales, are not able to completely

reproduce these effects. However, since the axial energy spectrum is for the leading edge

noise production of reduced importance [15], this is considered acceptable.

An investigation of the effects of mesh dependency on the results illustrated by Figures

5.8 (a) and (b) was conducted and is documented in Appendix D.2.
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The development of the one-dimensional energy spectra is shown in Figures 5.9 (a), (c)

and (e) in absolute terms, and in (b), (d) and (f) relative to their value at x/rLE = −21.
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x/rLE = −21.
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(e) Absolute spanwise energy spectra.
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Figure 5.9: Development of the one-dimensional energy spectrum towards the
leading edge. Dashed line indicates applicability of frozen turbulence hypothesis.
Dash dotted lines indicates mesh cut-off frequency for vortical waves. Dotted red
line in (d) illustrates results of Gea-Aguilera [103] for x/rLE = 1.26 upstream a
NACA0012 at a mean flow velocity of M0 = 0.3.
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It is noted that at this point the mean axial velocity is still slightly nonuniform, as

potential effects decay proportionally to 1/
√
r. However, experimental results [101] as

well as numerical parameter studies [103] indicate in agreement with the analysis shown

in Figure 5.8 (b) that the RST and the energy spectra at x/rLE = −21 can be con-

sidered representative of the undisturbed turbulent flow, and that the distortion of the

turbulence due to the presence of the leading edge happens at distances of the order of

the leading edge radius.

Due to mean velocity gradients, the assumption of frozen turbulence is not applicable

to the whole spectrum. Consequently, the criterion for frozen turbulence developed by

Lumley [20], defined by Eqn. (2.6) is indicated by the vertical dashed line. It is eval-

uated for the gradient closest to the leading edge, which returns the most conservative

estimate for the applicability of the frozen turbulence assumption. In addition, the mesh

cut-off frequency for vortical waves of fcv = 1429 Hz, using the criterion of 25 points

per wavelength as established in Appendix B , is indicated by the dash dotted line.

As the axial energy spectra at x/rLE = −1 is considerably reduced, it has been omitted

in Figures 5.9 (a) and (b). The analysis for positions x/rLE = −4 and x/rLE = −2

confirms the earlier observation that a small increase of the axial energy spectrum is

present, although the effect is very limited. Further investigations with more accur-

ate numerical schemes are recommended to confirm this observation. It is noted that

although at x/rLE = −2, E11 is consistently below the energy spectrum of the refer-

ence position x/rLE = −21, the decrease is not uniform, and the spectra shows little

decreased energy for frequencies towards fc/U0 ≈ 5. It is conceivable that idealized

frozen turbulence, which does not evolve and dissipate energy, would show a positive

energy content for those frequencies in alignment with the theoretical considerations of

Hunt [115]. However, the results of CAA simulations using frozen turbulence as con-

ducted by Gea-Aguilera [103] agree qualitatively with the essentially energy decrease

across all frequencies, as in Figures 5.9 (a) and (b). As in the present results, the fre-

quencies for which the energy decrease is minimal are at or above the cut-off frequency

determined for the current mesh, a more refined domain is recommended establish the

development of the axial energy spectra towards the leading edge at higher frequencies.

However, since the effects of the axial energy spectra on the turbulence interaction noise

are small, such investigation was not conducted in the course of this research.

The development of the energy spectra of the transverse component is investigated in

Figures 5.9 (b) and (c). From an aeroacoustic perspective, the development of E22 has

been related to the thickness effects exhibited by aerofoils of finite thickness [98; 101],

which lead to the reduction of leading edge noise emissions at high frequency. Chaitanya

et al. showed experimentally [94] that this will result in the trailing edge noise of the

aerofoil becoming dominant at lower frequencies than in the case of thin aerofoils. In

their investigations, they found the limiting frequency for the dominance of trailing edge

noise to be at fta/U0 ≈ 1, which is for the present case fTE = 2.4 kHz, and as such

is beyond the mesh cut-off frequency for vortical waves and consequently omitted from
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the analysis above.

It is apparent from Figure 5.9 (c) that the development of E22 is complex, and dependent

on frequency as predicted by Hunt [115], and subsequently shown by Hainaut et al. [102]

and Gea-Aguilera [103]. When comparing the present results with the results of the lat-

ter of the two authors, illustrated by the red dotted line in Figure 5.9 (d) an acceptable

qualitative agreement is found, as E22 increases for low frequencies and decreases for

high frequencies. While there are significant quantitative differences, they are primarily

related to differences in analysis positions. A further discussion of the thickness effects

is documented in Section 5.4. Since the spanwise velocity fluctuations do not have any

impact on the noise emissions of an aerofoil [15], little investigation has been conducted

into their behavior at the leading edge. However, as this research investigates a finite

aerofoil which does exhibit a singularity in the spanwise direction, the energy spectra

are discussed here to establish a baseline for the comparisons with the finite aerofoil

case, presented in Chapter 6. As shown in Figure 5.9 (e), the transverse fluctuations in-

crease almost across the entire frequency range as the leading edge is approached. Since

the leading edge represents a constant geometry for the entire length of the spanwise

correlation length, and therefore impacts all scales equally, this is expected. Only for

the position closest to the leading edge does the energy content at the high frequencies

become significantly less than at the free stream reference point, which may be caused

by the impact of viscosity. Still, as shown in Figure 5.9 (f), significantly more energy is

contained in the spanwise energy spectra than in the transverse or axial energy spectra.

5.3.2 Aerofoil surface pressures

For the purpose of validation of the boundary conditions as well as the consequences

of the inhomogeneity of the mean flow, the time averaged pressure coefficient 〈cp〉 =

(〈p〉 − p0)/(0.5ρ0U
2
0 ) is compared to a validation case provided by the NASA Langley

Research Center in Figure 5.10 (a). The experimental data was presented by Gregory

and O’Reilly [234] at a Reynolds number of Re = 2.88 × 106. Considering the smaller

chord-based Reynolds number of the aerofoil interaction case of Re = 1.04× 106, some

minor differences are to be expected, but are expected to be small enough for the purpose

of the validation of the steady aerodynamics.

As expected, some minor differences in the magnitude of the time averaged pressure

coefficient can be observed in Figure 5.10 (a), but the shape of the 〈cp〉 distribution is

well predicted. It is concluded that the potential effects of the aerofoil are captured,

which are a product of the steady aerodynamics, and are thus independent from the

turbulent fluctuations resolved by the LES. As such, the good reproduction of the 〈cp〉
distribution indicates that the complex boundary conditions illustrated by Figure 5.1

are appropriate for the investigation of an isolated aerofoil in a turbulent flow.
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Figure 5.10: Validation of mean and unsteady surface pressure distributions.

The experimental values for the root mean square of the fluctuating pressure as meas-

ured by Paterson and Amiet [97] are compared with those obtained from the present

LES in Figure 5.10 (b). While values for pRMS relative to x/c = 0.15 are available only

for four other measurement positions, the good agreement between the experimental

values of and the values obtained from LES indicates that the important trend of in-

creasing pressure fluctuation magnitudes towards the leading edge is captured by the

LES. A second smaller increase of prms is observed towards the trailing edge, which may

be associated with the boundary layer interactions with the trailing edge. However, due

to lack of experimental data, no validation is possible at this point. Future investiga-

tions, potentially utilizing the aerofoil test rig designed and manufactured in the course

of this research and documented in Appendix A, are suggested to determine whether

this secondary peak is physical. However, as the peak is significantly below the peak

associated with the leading edge noise, its contribution to the total noise emissions is

considered negligible.

In order to further validate the unsteady pressure on the aerofoil surface, surface pres-

sure Sound Power Level (SPL) spectra have been computed at three points and are

compared to the corresponding experimental data of Paterson and Amiet [97] in Figure

5.11. The SPL is computed according to

SPL(f) = 10 log10

(
Spp(f)

p2
ref · 1Hz

)
(5.3)

with Spp(f) as the power spectral density on the aerofoil and pref = 2× 10−5 Pa as the

acoustic reference pressure. The results from the LES were corrected for the variations

in span and velocity between the LES and experiment by applying a scaling factor of

20 log10(sLES/sExp.) for the span differences and 60 log10(ULES/UExp.).
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Figure 5.11: Surface pressure spectra computed for LES (solid) compared to
experimental results of Paterson and Amiet [97] (dashed) at three chordwise
positions. LES spectra were corrected for span and velocity differences. Mesh
cut-off frequency for vortical waves indicated by dash dotted line.

When comparing the spectra of the unsteady surface pressure, larger discrepancies are

identified. The best agreement in terms of overall spectral shape occurs at the position

closest to the leading edge, x/c = 0.15, in a frequency range of 400 ≤ f < 2000 Hz, as

shown by the red lines in Figure 5.11. The mismatch at high frequencies is expected, as

the cut-off frequency of the mesh, as shown by Figures 4.4 (a) and (b) is at 2500 Hz.

However, for positions further downstream, at x/c = 0.38 and x/c = 0.70, little agree-

ment is observed. Except for a frequency range of 250 ≤ f < 500 Hz, both amplitudes

as well as trends show large deviations. A potential cause for these discrepancies are the

hydrodynamic fluctuations associated with the eddies contained in the boundary layer,

which was also recognized by Paterson and Amiet [97], as they state that it is difficult

to separate pressure fluctuations associated with lift and those associated with the tur-

bulent boundary layer on the surface of the aerofoil. Since the pressure fluctuations due

to the turbulent boundary layer are not explicitly resolved by the current methodology,

which uses a RANS for the near wall regions, a discrepancy between the surface pressure

spectra and the experimental results cannot be avoided. However, as the influence of the

boundary layer was shown to be negligible for the purpose of the investigation of leading

edge noise by Gill et al. [121], this discrepancy from experimental results is considered

acceptable, as the investigation of leading edge noise is the primary object of this study.

In order to assess the influence of the pressure fluctuations at the trailing edge, caused

by the rapid diffusion of the small boundary layer eddies by the derefinement of the

trailing edge mesh, the surface pressure spectra along chord are shown in Figure 5.12.
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Figure 5.12: Surface pressure spectra along chord at mid span.

From Figure 5.12 it is apparent that the pressure fluctuations are largest at the leading

edge over the entire frequency range investigated. While the hydrodynamic pressure

of the turbulent eddies is contained in these fluctuations, this is considered a strong

indication that the leading edge is the dominant source of noise, and that the un-physical

pressure fluctuations at the trailing edge can be considered a negligible factor in terms

of the total aerofoil noise emissions.

5.4 Noise prediction results

Having compared the properties of the simulated turbulent flow to that of the exper-

iments of Paterson and Amiet [97], the effect of the observed deviations is assessed in

terms of the leading edge noise emissions from the aerofoil. Noise emissions to the far-

field are computed using the methodology described in Section 3.1.3. A free-field Green’s

function is used, under the assumption of a uniform mean flow equal to the axial mean

flow velocity in the turbulent domain.

5.4.1 Results of the thick and unloaded aerofoil

For the purpose of comparing the results from LES to the analytical method developed

by Amiet [15], the formulation for an observer in polar coordinates as given by Eqn.

(2.33) was used. The values used for U0, I11 and
√
u11/U0 to evaluate Eqn. (2.33) were

extracted from the background flow, i.e. without the aerofoil, and correspond to the

values given in Table 5.2. The implementation of the analytical solution of Amiet [15]

includes both the low and high frequency aerofoil response functions as given by Eqn.

(2.35) and Eqn. (2.36), thereby including the effects of non-compactness. At the fre-

quency where the switch occurs, i.e. 400 Hz, a small discontinuity is observed. However,

this is considered minor for the purposes of this comparison.

Figures 5.13 (a) and (b) show the SPL spectra at two downstream observer angles,
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i.e. θ = 30◦ and θ = 60◦, while (c) shows the SPL spectra at the overhead position

θ = 90◦. In order to allow comparison to the experimental measurements of Pater-

son and Amiet [97], scaling factors of 20 log10(sLES/sExp.) for the span differences and

60 log10(ULES/UExp.) for the mean flow differences are applied to the experimental val-

ues, as the leading edge noise source is considered a dipole following the arguments of

Hersh and Meecham [96]. For additional context, vertical lines have been added where

the thin dash-dotted lines illustrate the highpass cut-off frequency due to the finite sig-

nal length fcT , which is chosen conservatively as 40 Hz to eliminate potential aliasing.

Furthermore, thin dash-dotted lines indicates the mesh cut-off frequency for vortical

waves fcv, the thin dotted lines illustrate the frequency fTE where experiments have

found trailing edge noise to be dominant, and a thick dashed blue line indicates the

frequency of the dip in the spectra associated with non-compactness effects, fc,0, as

defined by Eqn. (2.46). It is noted that while the mesh cut-off frequency is relevant in

this analysis in so far that the vortical waves, which act as the underlying cause of the

noise generation, are rapidly diminishing in energy content past fcv, the acoustic waves

which are produced by them are not subject to the same cut-off frequency, due to the

significantly higher propagation speed and consequently increased number of points per

wavelength compared to vortical waves, as discussed in Appendix B.
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Figure 5.13: Far-field noise at downstream and overhead observer angles with
LES (red, solid), analytical Eqn.(2.33) (black, dashed), experimental values of
Paterson and Amiet [97] (black, symbols).

For the downstream observer angles at θ = 30◦ and θ = 60◦, it is observed from Figures

5.13 (a) and (b) that the agreement with the analytical spectrum of Amiet is within 2

dB over most of the frequency range investigated, with the exception of frequencies in

excess of 2000 Hz for the observer position at θ = 30◦. At the overhead position, shown

in Figure 5.13 (c), indications of a dip in the spectra associated with non-compactness

at fc,0 are observed, although it is not as pronounced as in the analytical solution.



120 Chapter 5 The interaction of infinite aerofoils with simulated grid turbulence

Furthermore, there are indications that the LES tends to under-predict the peak SPL

at f ≈ 400 Hz more significantly as the observer angle is increased.

The noise emission results for the upstream observer angles are shown in Figures 5.14

(a) and (b) for θ = 120◦ and θ = 150◦, respectively.
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(a) θ = 120◦.
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Figure 5.14: Far-field noise at upstream observer angles with LES (solid), ana-
lytical Eqn. (2.33) (dashed).

Qualitatively, it is apparent from Figure 5.14 (a) and (b) that the dips in the spectra

of both the LES as well as the analytical model of Amiet [15] align well with the fre-

quencies given by Eqn. (2.46). Quantitatively, it is also observed that the trend of the

first SPL peak to be underestimated is continued at the upstream observer angles, with

a discrepancy of approximately 4 and 5 dB at f = 250 Hz.

Considering the highpass cut-off frequency fcT , the mesh cut-off frequency fcv and the

frequency fTE typically associated in experiment [94] with dominant trailing edge noise

contributions, it is concluded from the results shown in Figures 5.13 and 5.14 that the

frequency range fcT ≥ f < fcv is meaningful for physical interpretation and comparison

to literature. While, as discussed in Appendix B, the mesh is suitably refined for the

propagation of acoustic waves at frequencies considerably larger than fcv, as the underly-

ing source mechanism cannot be considered physical, since the energy spectrum dropoff

is too steep, the corresponding acoustic emissions are also not considered for discussion.

Furthermore, while the trailing edge noise has been found not to be dominant up to

frequencies of the order of fta/U0 ≈ 1 [94], the trailing edge noise can be expected to

contribute increasingly to the total noise emissions even before fTE is attained.

When restricting the analysis to the frequency range below 1500 Hz, two conclusions are

drawn from Figures 5.13 and 5.14.

Firstly, it is observed that while the frequency fc,0 of the first dip associated with the

non-compactness effect is for downstream and overhead observer angles at frequencies

beyond the validity of the present LES, fc,0 is well within the resolved frequencies for

upstream observer positions. As such, the current results emphasise the necessity of

including non-compactness effects to compute the SPL spectra for upstream observers.
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However, as SPL spectra were reported only by Paterson and Amiet [97] only for the

overhead position, comparison is limited to a qualitative assessment of the directivity

patterns in Figures 5.16 (a) - (c). Further validation of the present results is recommen-

ded, potentially using the experimental setup developed and constructed in the course

of this research project and documented in Appendix A.

Secondly, it is apparent from Figure 5.13 (c) that the noise emissions obtained from the

LES are much closer to those expected from a flat plate, rather than those measured by

Paterson and Amiet [97]. While the agreement is acceptable at frequencies below 1000

Hz, the simulation predicts noise levels up to 10 dB higher than measured in experiment

for the higher frequencies. The overall good agreement with the analytical solution at

other observer angles is considered further indication that the noise results from the LES

for the thick aerofoil are close to those of an ideal flat plate in isotropic turbulence. This

is despite the fact that the aerofoil simulated is considerably thicker than a flat plate,

and that the earlier investigation of the energy spectra, documented by Figures 5.6 (a)

and (b), has shown significant deviations from the isotropic model.

For the investigation of this mismatch, an approach is required to more accurately rep-

resent the anisotropic energy spectra exhibited by the simulated turbulence. One such

model was proposed by Kerschen and Gliebe [128], and subsequently used in studies

by Posson et al. [130] and Karve et al. [235]. While it has been shown to be effective

for these purposes, attempts to use it to model the spectra exhibited by the simulated

turbulent flow here failed, in particular when computation of the noise emissions is at-

tempted. This is due to the formulation of the model, which results in the transverse

velocity spectra φ22(κ1, κ3 = 0) becoming independent of u22 [103; 236]. Parameter

studies indicate that the model appears to require the ratios of u22/u11 and I22/I11 to

be quite similar, although this is not explicitly stated by Kerschen and Gliebe [128].

When the model was used in combination with the analytical method of Amiet, con-

siderable under-predictions occurred, which could be traced to a significantly reduced

transverse energy content. It is hypothesized that this is related to the derivation of the

Kerschen and Gliebe spectrum from the modified Liepmann spectrum [35; 235], which

is, like the von Kármán spectrum, fairly rigid in its modelling of the energy containing

range. As such, it is unable to yield a good fit to the energy spectra of the current case,

where the anisotropy is primarily contained in the largest scales. While this observation

deserves further investigation, additional analysis is outside the scope of this work.

Instead of using the axisymmetric spectrum of Kerschen and Gliebe, an alternative ap-

proach was chosen. According to Amiet [15], the velocity spectrum primarily responsible

for the noise emissions of the infinite aerofoil is the transverse velocity spectrum. Con-

sequently, the anisotropic transverse velocity spectrum obtained from the simulation is

represented in the analytical solution by a fit of the von Kármán spectrum to the result

of this quantity from the LES. While this will lead to a considerable under-representation

of the axial energy spectrum, for the purpose of computing the noise emissions of a flat
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plate immersed in such an anisotropic flow, this approach is valid for a first-order estim-

ation of the effects of the anisotropy as observed in the simulation.

A least-squares fit of the von Kármán isotropic spectra to the transverse energy spectra

as obtained from the LES returned values of 1.8 cm and 2.73 m/s for the input para-

meters I11 and
√
u11, respectively. The resulting transverse energy spectra are shown in

Figure 5.15 (a).
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Figure 5.15: Impact of turbulence anisotropy on noise emissions for an observer
at the overhead position θ = 90◦.

When the fitted model spectrum is used in conjunction with the Amiet’s analytical noise

prediction method [15], a result is obtained as shown by the dashed blue line in Figure

5.15 (b). The prediction as obtained from the LES collapses well over the entire range

where also a collapse between the experimental measurements and the corresponding

analytical result is observed. At frequencies f > 1250 Hz, the results obtained from the

LES start to consistently predict lower SPL than the analytical solution, similarly to the

experimental values which also show lower SPL than the analytical model at frequencies

in excess of 1250 Hz. This result increases the confidence that the thickness effect, i.e.

the reduction of noise emissions at high frequencies, is present in the LES, and that the

deviation from experiment is primarily associated with the difference of the transverse

energy spectrum of the turbulent flow present in the simulation and in the experiment.

The effect of redistribution of energy by the change of the ratio of the axial to transverse

integral length scale I11/I22 is retained, as also shown by Gea-Aguilera [103].

In order to investigate the noise emissions for the remaining observer angles, the spectra

were integrated over 1/3rd octave narrowbands and normalized by the bandwidth. The

resulting directivities are shown in Figures 5.16 (a) to (d) for bands centred at 400, 800,
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1200 and 1600 Hz. Solid lines represent results obtained from the LES, with the line

width chosen to reflect a 95% confidence interval, based on the variance ± + 0.25 dB

observed in the convergence study documented in Section 3.2.2. Dashed lines illustrate

the analytical predictions with the isotropic model spectrum of von Kármán using I11

and
√
u22 as input parameters, and dotted lines illustrate the effect of using the von

Kármán model spectra, fitted to the transverse spectrum of the simulated flow, for the

analytical solution. For the purpose of comparison against experiment, the measured

directivity results of Paterson and Amiet [97] are illustrated by black symbols. As the

measured data is not 1/3rd octave narrowband integrated and normalized, an arbitrary

scaling factor has been applied to facilitate qualitative comparison.
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Figure 5.16: Directivity plots with LES (solid, line width representative of 95%
confidence interval due to finite signal length), analytical Eqn. (2.33): isotropic
(dashed), anisotropic approximation (dotted). Experimental values of Paterson
and Amiet [97] (symbols), scaled with arbitrary constant factor.

As Figure 5.16 (a) shows, the results obtained from the LES for 400 Hz match the

analytical solution with the anisotropic approximation as input, while the analytical

solution for isotropic flow is approximately 5 dB higher for all observer angles. This is

interpreted to be caused by the transverse energy spectra of the LES exhibiting consid-

erably less energy at these frequencies than the isotropic case. Consequently, the noise

is reduced, a conclusion which is supported by the fact that the analytical solution with

the von Kármán model fitted to the E22 matches much better. It is observed from the

qualitative comparison to the measured values from the experiment of Paterson and

Amiet [97] that the directivity pattern is reasonably well reproduced.
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At larger frequencies, shown in Figures 5.16 (b) - (d), the differences increase, although

the noise in the spectra and the only approximate fit of the anisotropic transverse spec-

trum make conclusions on the cause for the differences difficult. Nevertheless, the de-

viations from the directivities as computed by the model are within 5 dB, and the

directivity patterns are reasonably well matched, although the match is slightly better

on the upstream than on the downstream side. This is likely attributable to the effect

of thickness, as Gea-Aguilera [103] reported a more pronounced reduction of noise emis-

sions for downstream observer angles.

Considering the directivity pattern as indicated from the experimental measurements

of Paterson and Amiet [97], it is observed from Figure 5.16 (b) that the upstream dir-

ectivity lobe is present more prominently at a frequency of 800 Hz than either the data

from LES or the analytical model would indicate. By 1200 Hz, shown in Figure 5.16 (c),

the downstream lobe has almost completely vanished, which is in line with observations

of Gea-Aguilera [103] regarding the stronger thickness effect for downstream observer

angles. Taking into account the arbitrary constant scaling factor, it is concluded that

there is a qualitative agreement between LES, experiment and analytic model of Amiet

[15] regarding the shapes of the upstream lobe at both 800 and 1200 Hz, which is con-

sidered as indication that the non-compactness effect, which contributes to the shape

of the lobe, is captured by the LES. It is further concluded that the noise reduction

by the aerofoil thickness is not captured sufficiently, which predominantly affects higher

frequency and downstream noise emissions.

In order to quantify the noise emission reductions attributable to the aerofoil thickness

in more detail, the sound power level was computed following the definition given by

Blandeau and Joseph [237]:

PWL(f) = 10 log10

(
4Π(ω)δω

Pref

)
, (5.4)

with a reference power of Pref = 1× 10−12 W, δω being the bandwidth, and

Π(ω) =
2πr2

0

ρ0c0

∫ π

0
Spp(r0, θ, ω) sin(θ) dθ, (5.5)

which assumes that the effects of mean flow convection on noise emissions are negligible.

A more direct comparison to the results of Chaitanya et al. [94], who conducted an

extensive parameter study on the effects of aerofoil geometry on the interaction noise, is

facilitated by plotting the PWL over the dimensionless frequency fta/U0. The compar-

ison is conducted in Figure 5.17 using the analytical results with the model spectrum

of von Kármán fitted to the transverse energy spectrum, as this has been shown to be

more representative of the noise emissions produced by the simulated flow. In addition,

the reduction in interaction noise due to aerofoil thickness as postulated by the theory

of Gershfeld [114],

∆PWL(f) = 10 log10

(
e
π fta
U0

)
, (5.6)
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is computed by subtracting ∆PWL(f) from the analytical result. The reduction meas-

ured by Chaitanya et al. [94], for a NACA 0012, at a mean flow velocity of U0 = 60

m/s and a turbulence intensity of 2.5%, is also shown by subtraction from the analytical

result.
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Figure 5.17: Evaluation of power level spectra. Dotted line indicates values for
which the self-noise has been shown to be dominant [94].

When compared to the experimental results of Chaitanya et al. [94] for the noise reduc-

tions, it is apparent that while the noise reductions attributable to thickness do exist,

they are not as large as those observed in experiment. While Chaitanya et al. obtain

reductions in excess of 5 dB for fta/U0 > 0.4 close to those computed using Gersh-

feld’s correction, the LES results do show reductions of 5 dB only for fta/U0 > 0.75.

Additional studies are recommended to identify whether this result is due to the LES

method, or whether it is caused by the particular shape of the energy spectrum discussed

in Section 5.2.2. Qualitatively, however, the reduction is reasonably close in shape to

Amiet’s spectrum with Gershfeld’s correction. It can be concluded that the self-noise of

the simulated aerofoil is negligible compared to that of the experimental case, which is

expected considering the chosen meshing and simulation method.

5.4.2 Comparison with incompressible case

In order to support the earlier identification of compressible effects, such as the non-

compactness effects, the problem of the infinite aerofoil interacting with turbulence was

investigated using an incompressible solver. All numerical parameters were kept the

same, and data was acquired for the same amount of time, 0.5s of physical time. The

distribution of pressure coefficient and mean square unsteady pressure values along the

chord are shown in Figure 5.18 (a) and (b).



126 Chapter 5 The interaction of infinite aerofoils with simulated grid turbulence

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x/c

〈c
p
〉

Incompressible

Compressible

(a) Time averaged cp.

0 0.2 0.4 0.6 0.8 1
110

120

130

140

x/c

10
lo
g
1
0
((
p
′ )
2
/4
e
−
1
0)

[P
a]

Incompressible

Compressible

(b) Mean squared unsteady pressure on aero-
foil surface.

Figure 5.18: Mean and unsteady surface pressure distributions.

As expected due to the low Mach number of the investigated case, the values of the

time-averaged pressure coefficient 〈cp〉 for the incompressible and the compressible sim-

ulation essentially collapse in Figure 5.18. Only small differences exist regarding the

distribution of the mean square unsteady pressure values, which are exhibited primarily

on chordwise values of 0.4 < x/c ≤ 0.8. However, as these discrepancies are very small

relative to the pressure fluctuations at the leading edge, any impact on the radiated

noise is expected to be negligible.

An increase of the mean squared pressure on the aerofoil surface is observed for chord

positions at x/c > 0.9. This increase is related to the refinement of the mesh close to the

trailing edge, and the small scale eddies resolved in this region. While this represents a

source of error, the pressure fluctuations are 20 dB below the fluctuations at the leading

edge, and can therefore be considered negligible.

Close examination of the distribution of p2 yields a pattern of regular, albeit small

discontinuities for values of 0.4 < x/c < 0.9. The cause of these discontinuities is invest-

igated in Figure 5.19.

It is apparent that the discontinuities are associated with the presence of tetrahedral

cells in the unstructured mesh, which are required by the mesh to adapt to the aero-

foil curvature, which at this point is slightly diverging from the prevalent direction of

the grid lines. Considering this behaviour, the boundary layer at this point must be

considered un-physical, and thus the current methodology is not suitable for the invest-

igation of trailing edge noise, which is primarily caused by the interaction of boundary

layer turbulence with the singularity of the trailing edge. However, since the focus of

this research is the investigation of leading edge noise, this un-physical behaviour is con-

sidered negligible, as the resulting fluctuations are more than two orders of magnitude

smaller than the pressure fluctuations on the leading edge.
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Figure 5.19: Dimensionless unsteady pressure RMS values on the late suction
side of the unloaded, thick aerofoil.

As discussed in Section 5.3.2, the turbulence produced by the inlet-grid turbulence

creation method is not divergence free, and thus contains hydrodynamic pressure fluc-

tuations. A method to identify the dominant type of pressure fluctuations, as used

extensively by Mish [238], are the cross-correlations of the fluctuating pressure on the

aerofoil surface. The pressure cross-correlation is defined as

Rpp(x0, x1, τ) =
〈p′(x0, t)p

′(x1, t+ τ)〉
〈p′(x0, t)p′(x1, t)〉

(5.7)

where x0,x1 are two points on the aerofoil surface. For a statistically stationary flow,

Rpp becomes independent of t, and is therefore a function of the delay time τ only for

any two values of x0 and x1. The pressure cross-correlations were computed for the

compressible and the incompressible LES and are shown in Figures 5.20 (a) and (b),

respectively, for a value of x0/c = 0.01. This value was chosen to allow qualitative

comparison with the experimental results of Mish [238]. In order to facilitate the inter-

pretation of the correlation lobes, a dashed line indicates time delays representative of

the convective transport of an eddy from x0 to x1, i.e. (x0 − x1)/U0, whereas a solid

line illustrates the time delay associated with the inviscid response of the aerofoil, i.e.

the time (x0 − x1)/c0.

It is apparent that the inviscid response of the aerofoil dominates the cross-correlations

in both simulations. In addition, while the main lobe of Rpp in the case of the compress-

ible simulation is aligned with the line of the time delay associated with the speed of

sound, the main lobe of the incompressible case is not. Instead, the lobe of the incom-

pressible simulation indicates an infinite speed of sound, which is to be expected from

an incompressible simulation. As such, the response of the aerofoil becomes un-physical

at high frequency.
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Figure 5.20: Unsteady pressure cross-correlation for x0 = 0.01x/c. Dashed line
indicates correlations due to eddy convection with mean flow, solid line indicates
correlation due to inviscid aerofoil response.

The effect of this un-physical aerofoil response on the far-field noise radiation is invest-

igated in Figures 5.21 (a) and (b) for the downstream as well as the overhead observer

positions at θ = 60◦ and θ = 90◦. For additional context, vertical lines have been added

where the thin dash-dotted lines illustrate the highpass cut-off frequency due to the

finite signal length fcT as well as the mesh cut-off frequency for vortical waves fcv, and

thin dotted lines illustrate the frequency fTE where experiments have found trailing

edge noise to be dominant [94].
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Figure 5.21: Far-field noise results at downstream and overhead observer angles
with incompressible LES (Inc., blue), compressible LES (Comp., red), Amiet’s
model Eqn. (2.33) with low frequency response function Eqn. (2.35) (Low Freq.,
dotted, black) and high frequency response function Eqn. (2.36) (High Freq.,
dashed, black.)
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From Figure 5.21 (a) it is observed that the noise predictions from the four different

solutions collapse to within 2.5 dB below a frequency of 1000 Hz, but diverge increas-

ingly for higher frequencies. Conversely, from Figure 5.21 (b) it is observed more clearly

that the prediction from the incompressible LES tends to coincide with the prediction

of Amiet’s model Eqn. (2.33) using the low frequency response function Eqn. (2.35),

whereas the prediction from the compressible LES tends to coincide with the results of

the analytical model using the high frequency response function (2.36).

For the overhead observer position, this is found to be the case even for frequencies which

are beyond the mesh cut-off frequency for vortical waves, fcv, which is expected as the

dissipative and dispersive errors for acoustic waves at this frequency are much lower than

for vortical waves, as discussed in Appendix B. Consequently, non-compactness effects

can be expected to be exhibited by the compressible LES, as acoustic waves are propag-

ated on the numerical mesh in the vicinity of the aerofoil virtually unchanged. However,

for the purpose of assessing the capability of a compressible LES on an unstructured

grid to replicate non-compactness effects, only the frequency range fmin < f ≤ fcv is

considered, ruling out effects due to un-physical source mechanisms.

Figures 5.22 (a) and (b) show the SPL for the upstream observer positions θ = 120◦

and θ = 150◦ where the frequencies associated with the non-compactness dips as defined

by Eqn. (2.46) are within the trust region of the simulation results, as established in

Section 5.4.1.
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Figure 5.22: Far-field noise results at upstream observer angles with incom-
pressible LES (Inc.), compressible LES (Comp.), Amiet Eqn. (2.33) with low
frequency response function Eqn. (2.35) (Low Freq., dotted) and high frequency
response function Eqn. (2.36) (High Freq., dashed).

From Figures 5.22 (a) and (b) it is apparent that the non-compactness effect dips as

exhibited by the Amiet’ model Eqn. (2.33) with the high frequency response function

as defined by Eqn. (2.36) are well replicated in the LES noise results of a compress-

ible flow. Conversely, the noise results as obtained from the LES of an incompressible

flow do not exhibit the dips associated with non-compactness, which is expected as the
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physical mechanism responsible for them is absent in the incompressible simulation.

Qualitatively, the SPL spectrum as obtained from the LES of an incompressible flow is

similar to the spectra of the analytical model using the low frequency response function

as defined by Eqn. (2.35), although the spectra diverge with increasing frequency and

observer angle. As both the assumption of incompressibility as well as the use of the

low frequency response function in Amiet’s analytical model [15] is not appropriate in

the high frequency regime, discussion of this discrepancy is omitted.

Considering the qualitative agreement of the shape of the upstream lobe with experi-

ment, as shown in Figures 5.16 (a) - (c), the quantitative agreement of the local minima

in the SPL spectra in terms of frequency with those present in the analytical solution

using high frequency response function Eqn. (2.36), the disappearance of these minima

in the SPL spectra upon introduction of the assumption of incompressibility and the

resulting un-physical response of the aerofoil as shown in Figure 5.20 (b), as well as the

absence of potential numerical reflections of acoustic waves from the derefinement zones

as discussed in Appendix D.1, it is concluded that the compressible LES of an infinite

aerofoil on an unstructured mesh is capable of capturing the non-compactness effects of

an aerofoil.

5.4.3 The noise emissions of a thick, loaded aerofoil

As it is intended to incorporate the aerodynamic and aeroacoustic effects of a tip vor-

tex in the investigation of the finite aerofoil in a turbulent flow, the finite aerofoil has

to be loaded, as a symmetrical, unloaded aerofoil will not develop a tip vortex. For

the purpose of establishing a baseline for comparisons, a compressible simulation of the

turbulence leading edge interaction problem for a thick, loading aerofoil was conducted,

and is presented here. As the chosen angle of attack is still relatively small, the devi-

ation towards models assuming unloaded aerofoils such as Amiet’s analytical method

is expected to be minor, in particular in the light of recent investigations showing that

the effect is weak in a majority of cases [12]. However, other investigations have shown

significant effects of the angle of attack when the turbulence is anisotropic [100; 113].

For the investigation of angle of attack effects, an infinite NACA 0012 aerofoil was

immersed in a turbulent flow at an angle of attack of α = 3◦. Since time averaged

pressure coefficients and mean square unsteady pressures, as well as the correlations do

not deviate significantly from the changes which can be expected to be associated with a

change in angle of attack, only the end result of noise emissions is shown here, as the noise

emission spectra and directivities are the quantities most of interest in this investigation.

Figure 5.23 (a) - (c) show the noise emission spectra for an observer at the downstream

and overhead positions θ = 30, 60, 90◦ as computed using a compressible LES.

As expected for an aerofoil with a relatively small angle of attack of α = 3◦ [100],

the noise emission spectra do not significantly deviate from those obtained for α = 0◦,
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Figure 5.23: LES far-field noise results at downstream and overhead observer
angles for aerofoil at an angle of attack of 0◦, 3◦.

with the differences largely within the noise of the spectra. The downstream observer

positions θ = 120◦ and 150◦ are shown in Figures 5.24 (a) and (b).

0 500 1,000 1,500 2,000 2,500

30

40

50

60

fcT fc,0 fcv fc,1 fTE

f [Hz]

S
P
L
[d
B
/H

z]

0◦

3◦

(a) θ = 120◦.

0 500 1,000 1,500 2,000 2,500

30

40

50

60

fcT fc,0 fc,1 fc,2

f [Hz]

S
P
L
[d
B
/H

z]

0◦

3◦

(b) θ = 150◦.

Figure 5.24: LES far-field noise results at upstream observer angles for aerofoil
at an angle of attack of 0◦, 3◦.

Again the effects of the angle of attack on the far-field noise results are small, and almost

entirely within the noise of the spectra. However, there are indications of meaningful

differences for the upstream observer angles at the frequency of the first non-compactness

dip fc,0.

A more meaningful insight into the effect of the angle of attack on noise emission of an

aerofoil can be gained when the directivities are examined. Here, a notable asymmetry

can be expected from the aerofoil at 3 degrees of attack, while the aerofoil at zero angles

of attack should exhibited a perfectly symmetrical directivity pattern. The noise spectra

were computed for 360 degrees at one degree intervals and are shown in Figure 5.25 (a)

- (d) for 1/3rd octave bands centred at 400, 800, 1200 and 1600 Hz, with the line widths
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chosen to reflect a conservatively estimated LES uncertainty ±0.5 dB, based on the

convergence study documented in Section 3.2.2.

The differences in terms of the directivity patterns are, as expected, small, and do exceed

the 95% confidence interval of ±0.5 dB only for some observer angles above 400 Hz.

Qualitatively, they are in agreement with the findings of Gea-Aguilera [103], who found

that small angles of attack result in a shift of the directivity pattern, with an increase of

the noise levels below the aerofoil, and a decrease of the noise level above the aerofoil.

Therefore, the methodology presented here can be expected to deliver reliable noise

predictions of thick, loaded aerofoils in turbulent flows.
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Figure 5.25: Directivity plots of the infinite aerofoil at α = 0◦ (dotted) and at
α = 3◦ (solid). Line widths representative of 95% confidence interval due to
finite signal length.
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5.5 Summary

This chapter presented the application of the turbulence creation method proposed by

Blackmore [13] for the case of a leading edge interaction problem. For this purpose, a

simulation setup suitable for both reproducing the aerodynamics of an isolated aerofoil

as well as the investigation of its aeroacoustic properties was developed. Geometric

and flow parameters were chosen in such a way that comparison to the experiments

of Paterson and Amiet [97] was facilitated. Aerodynamic properties of the flow were

assessed against those of the experiments. Leading edge turbulence interaction was

analysed and compared against literature. Noise emissions were computed by extracting

the surface pressure signals on the aerofoil, and using an Ffowcs-Williams and Hawkings

[118] solver to compute the far-field noise levels. A comparison was conducted against

both the experimental values, as well as to the analytical solution for the noise results

of an unloaded, infinite flat plate given by Amiet [15]. Thickness effects were assessed

using the correction factors proposed by Gershfeld, as well as the experimental results

of Chaitanya et al. [94]. Additional simulations of an incompressible comparison case,

as well as of an aerofoil at a small angle of attack were presented. The main conclusions

from this chapter are:

� When applied to an aeroacoustic investigation, the inlet grid turbulence creation

method is found to create turbulence which is qualitatively comparable to the

turbulence created by grids in experiment while also not introducing spurious

noise sources, as shown in Appendix D.1. However, similar to the use of grids in

experimental campaigns, the exact replication of flow conditions using the inlet-

grid turbulence creation method proves difficult. While initial parameter studies

allowed matching to the experimental values of Paterson and Amiet [97] to some

degree, significant deviations remain, in particular in terms of the energy spectra

of the transverse component E22, which primarily determines noise emissions.

� The LES on an unstructured mesh is capable of capturing the turbulence inter-

action with the leading edge qualitatively correctly, allowing to investigate such

phenomena to a high level of detail.

� The anisotropic energy spectra produced by the inlet-grid turbulence creation

method lead to significant differences of the resulting noise emissions from the

analytical predictions using Amiet’s flat plate theory [15], which assume an iso-

tropic flow. When an energy spectrum fitted to the transverse spectrum from the

simulation is used as an input for Amiet’s theory, the fit with the noise emissions

from the simulation is considerably improved, allowing a better determination of

the thickness effects. It is concluded that using a model spectrum for the represent-

ation of the energy spectrum in the non-universal energy-carrying range may lead
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to considerable under or over prediction of noise emissions if analytical methods

are used.

� Comparison of the incompressible case to the compressible simulation shows that

pressure fluctuations associated with the inviscid response of the aerofoil dominate

over the hydrodynamic pressure fluctuations associated with the turbulent flow. It

is concluded that the unstructured, compressible LES is applicable for the invest-

igation of non-compactness effects on acoustic emissions of complex geometries.

� Directivity patterns obtained for the unloaded aerofoil are in reasonable qualitative

agreement with analytical results, and the direction of the poles is well predicted.

Results for the loaded aerofoil show the expected shift in the directivities. As

such, a baseline for the investigation of a finite, thick aerofoil in Chapter 6 was

established.

Thus, this Chapter has established the inlet-grid turbulence creation method as a tool

suitable for the generation of turbulent flows to study turbulence interaction noise. Fur-

thermore, the use of a compressible LES on an unstructured mesh for the investigation

of leading edge turbulence interaction noise has been assessed and partially validated

for the first time, allowing geometries that are more complex than the infinite aerofoil

to be studied in the future.



Chapter 6

Finite aerofoils in simulated grid

turbulence

The inlet-grid turbulence creation method, proposed by Blackmore [13], has been shown

in Chapter 4 to be capable of producing turbulence of realistic spectra and development.

This method was then applied in Chapter 5 to the classical turbulence leading edge in-

teraction problem of an aerofoil, immersed in a turbulent flow. It was shown that the

turbulence distortion at the leading edge, and the resulting noise emissions including

thickness and non-compactness effects, can be predicted using a compressible LES on

an unstructured mesh.

In the present chapter, the inlet-grid turbulence creation method is applied to the prob-

lem of the noise emissions of a finite, thick, loaded aerofoil. The main aims of this

chapter are:

� To demonstrate the application of the inlet-grid turbulence creation method to a

problem of considerable complexity, which is difficult to investigate with or outside

the capabilities of commonly used analytical or numerical tools.

� To conduct an aerodynamic analysis to verify that all the phenomena of import-

ance, such as leading edge turbulence interaction, as well as tip vortex formation

and interaction with surrounding turbulence, are reproduced.

� To investigate the effects of the presence of the leading edge tip singularity, as well

as of the tip vortex on far-field noise levels and directivities.

The chapter is structured as follows. In Section 6.1, the setup of the numerical simulation

is presented, and the changes which had to be made when adapting the infinite aerofoil

problem setup to that of a finite aerofoil are discussed. As the aerodynamics of a

finite, loaded aerofoil immersed in a turbulent flow are of a considerable complexity, an

135
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investigation with a focus on the distortion of the turbulence at the leading edge, as well

as the interaction of the tip vortex with the turbulent flow, is conducted in Section 6.2.

Subsequently, in Section 6.3, the aeroacoustic results of the finite aerofoil simulation are

given. Finally, the chapter is summarized in Section 6.4.

6.1 Simulation setup of the finite aerofoil problem

In order to minimise the differences of the finite aerofoil setup with that of the infinite

aerofoil to facilitate comparison, the case setup was chosen to be as similar as possible

and is illustrated in 6.1.
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Figure 6.1: Domain setup of finite aerofoil interaction simulation. Thick dashes
illustrate position and approximate size of grid bars. The origin of the coordin-
ate system coincides with aerofoil leading edge at the tip. Illustration is not to
scale.

In the xy plane, i.e. normal to the aerofoil span, domain geometry and boundary condi-

tions are exactly the same as those illustrated in Figure 5.1 for the infinite aerofoil case.

The aerofoil was placed at the same distance to the inlet grid, equivalent to 16Gp, as for

the infinite aerofoil interaction studies discussed in Chapter 5, to facilitate comparison.

The mesh was created following the same unstructured meshing approach as in the case

of the infinite aerofoil. More information on this approach is given in Appendix C.1.
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However, due to the presence of the aerofoil tip, the boundary conditions in the span-

wise direction had to be adapted. In case of the free-field direction of the span, i.e.

outboard with z < 0, the domain was extended by adding a sufficiently large turbulent

flow domain to obtain a homogeneous turbulent flow region for the expected extent of

the tip vortex. Beyond the turbulent domain, the domain was extended for 20 chord

lengths. An assessment of potential non-uniform grid reflections has been conducted

and is documented in Appendix D.1, finding that grid reflections can be expected to be

negligible. The same far-field boundary conditions were applied as for the “Top” and

“Bottom” patches of the infinite aerofoil interaction simulation, given in Table 5.1. The

boundary conditions chosen for the finite aerofoil case are given in Table 6.1.

Patch Variable Type Definition

Wall U Dirichlet U(x0) = (0, 0, 0)

p Neumann dp/dx = 0

Inlet U Dirichlet U1 = ṁ/(Apρ0), U2 = U3 = 0

p Neumann dp/dx = 0

Far-field inlet U Dirichlet U1 = ṁ/(Apρ0), U2 = U3 = 0

p Neumann dp/dx = 0

Slip wall U Dirichlet U = (U1, U2, 0)

p Neumann dp/dx = 0

Outlet U Mixed Eqn. (3.17)

p Mixed Dp/Dt ≈ 0, See Appendix C.2, [229]

Outboard U Neumann dU/ dx = 0

p Mixed Dp/Dt ≈ 0, See Appendix C.2, [229]

Inboard U Dirichlet U = (U1, U2, 0)

p Mixed Dp/Dt ≈ 0, See Appendix C.2, [229]

Front, back U Neumann dU/ dx = 0

p Mixed Dp/Dt ≈ 0, See Appendix C.2, [229]

Table 6.1: Boundary conditions of finite aerofoil interaction simulation.

For the inboard plane of the finite aerofoil, i.e. z > 0, several options were considered.

The most computationally inexpensive option would be to keep the boundary coinciding

with the edge of the inlet grid turbulence generator patch. However, such a boundary

would be required to be able to accommodate the turbulent fluctuations in a physical

manner. As there is no corresponding boundary on the other side of the domain any
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more, the periodic boundary condition used in the previous infinite aerofoil simulations,

presented in Chapter 5, cannot be applied. A symmetry boundary condition on this

patch, while able to support the turbulent fluctuations, would impose an non-physical

symmetry on the turbulence at this boundary, and furthermore act as a mirror for the

acoustical emissions of the aerofoil. Finally, applying a slip wall boundary condition

for the velocity, coupled with the non-reflective waveTransmissive boundary condition

was not considered applicable for a boundary immersed in the turbulent flow as the

interaction of turbulent fluctuations with suppressed spanwise velocity component at

the intersection of the aerofoil with the boundary would constitute an unknown source

of error. The most physically realistic, yet numerically expensive approach would be to

use a wall boundary condition, which is what would be present in experimental condi-

tions. Due to the high numerical cost, but also because of the unknown effect of wall

reflections, this approach was not considered.

With these considerations, it was decided to extend the aerofoil out of the turbulent

domain and apply a slip wall boundary condition for the velocity, and the waveTrans-

missive boundary condition of Poinsot and Lele [229] for the pressure on the inboard

boundary. The aerofoil was extruded for a length of 4.5c, to allow incorporation of a

large derefined volume between the turbulent domain containing the aerofoil tip, and the

inboard plane boundary condition. This supports the reduction of acoustic reflections

from the inboard plane boundary condition by dissipating the acoustic waves. Addition-

ally, the considerable span of the aerofoil supports the physical applicability of the slip

wall velocity boundary condition, as the aerodynamics of the aerofoil can be considered

to be two-dimensional at such distances to the tip [135], and therefore the velocity com-

ponent normal to the inboard plane is minimized.

In order to produce a tip vortex, the aerofoil is set at an angle of attack of α = 3◦. As

mentioned above, care was taken to isolate the tip from both the effects of the shear

layer between the potential far-field flow, and the interaction effects of this shear layer

with the aerofoil itself. As the analysis conducted in Section 5.2.1 has shown that the

turbulent flow is, at least in terms of the mean flow velocities, reasonably homogeneous

up to distances of one grid period from the centre of the jet, the tip of the aerofoil at

x, y, z = 0 is separated to the edges of the turbulent flow by at least three grid periods

in the transverse directions and the outboard direction, and by more than 5Gp in the

inboard direction. Since it was expected that the shear layer would cause strong interac-

tions with the aerofoil, the edge of the shear layer is at this point 3 grid periods distant

from the tip of the aerofoil in the spanwise direction.

In order to minimize the effect of the other end of the aerofoil, which does not end in a

tip, the aerofoil was extended by 4.5c before it meets the far-field boundary, where a slip

boundary condition for the velocity combined with a wave transmissive condition for the

pressure is applied. As the flow over the distance of 4c starting from the inboard bound-

ary conditions is steady, no significant leading edge noise is produced. Refinement over

the section of the aerofoil outside the turbulent domain is kept at a minimum to reduce
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computational expense. The mesh is only refined enough to allow sufficient geometry

resolution, as well as adequate aerodynamic behaviour. Assessment of the aerodynamics

of the aerofoil sections in the steady domain as well as their influence on the sections

within the turbulent jet, which are the main focus of this Chapter, is documented in

Appendices E.2 and E.3.

Since keeping refinement levels in the vicinity of the aerofoil the same as in the case of

the infinite aerofoil was found to lead to an excessive number of cells, the mesh around

the aerofoil had to be slightly derefined when compared to the infinite aerofoil cases.

Figures 6.2 (a) and (b) highlights the major mesh differences, the effects of which are

investigated in Sections 6.2 and 6.3.1.

(a) Infinite aerofoil. (b) Finite aerofoil.

Figure 6.2: Mesh normal to span. Details in upper left show trailing edge mesh.

In terms of the meshing parameters discussed in Appendix C.1, the change in refinement

in the aerofoil vicinity consistent in reducing the number of the diffusion level during

mesh generation from 4 to 2. This resulted in the number of cell layers around the

aerofoil, which are of the refinement level on the aerofoil surface, to drop from 10 to 5.

Besides this decrease in the extent of the more finely resolved mesh around the aerofoil,

the mesh is equivalent to that used for the turbulence interaction cases discussed in

Chapter 5, with y+ < 0.5 not exceeded within the boundary layer mesh, while the

non-dimensional viscous lengths in the streamwise and spanwise directions were below

x+ = z+ < 40. A mesh sensitivity study with all refinement levels reduced by one was

conducted, and is documented in Appendix D.2. Considering that the interaction of the

turbulence with the leading edge of the aerofoil was still reproduced reasonably well,

it is expected that the reduction in refined layers around the aerofoil has a negligible

impact.

Figure 6.3 illustrates the mesh at the trailing edge of the tip of the aerofoil, where

the round tip narrows to the trailing edge radius, motivating the choice of a meshing

methodology capable of capturing blunt trailing edges.
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Figure 6.3: Trailing edge discretisation at the tip of the finite aerofoil.

It is observed that the mesh generation algorithm led to a small deformation of the

trailing edge geometry at the tip, as the trailing edge radius is on the order of ∆c ≈ 1 for

the finite aerofoil. While a higher mesh refinement may be able to better resolve the small

radii at this position, it was found to be impractical to refine the mesh sufficiently while

maintaining acceptable computational cost. The final mesh consisted of 79 × 106 cells,

consisting of 96.8% hexahedral, 2.3% prism, 0.1% pyramidal and 0.001% tetrahedral

cells.

The solver rhoPimpleFoam, implemented in OpenFOAM v3.0, was used, which conducts

pressure-velocity coupling using the merged PISO [201] and SIMPLE [202] algorithms.

A slight reduction in the time step was necessary compared to the time step used for

the simulation of the infinite aerofoil discussed in Chapter 5 since the finite aerofoil

was found to be setup is associated with a higher mean flow velocity. Thus, the time

step achieved was ∆tU0/c = 3.1 · 10−4. On the computer cluster IRIDIS 5, using 520

processors, an average of 10 s of computational time was required for one time step. This

resulted in a computational time of approximately 11.5 days per tU0/c = 31 simulated

physical non-dimensional time, not accounting for queuing time.

6.2 Aerodynamic analysis of a finite aerofoil in a turbulent

flow

While there have been simulations investigating formation and development of the tip

vortex of a finite aerofoil in steady flow conditions [131; 132; 133; 239], as discussed in

Section 2.5, no numerical study of the problem of a finite aerofoil immersed in a tur-

bulent flow has been conducted to date. As such, no numerical data for comparison

exists both in terms of the aerodynamics and the aeroacoustics. While it is generally

assumed in analytical and numerical models of leading edge noise that the interaction

of turbulent eddies with the leading edge is independent of spanwise geometry, if the

geometry of the leading edge is constant within the spanwise correlation length [165],
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few investigations have been conducted to validate this assumption, in particular for

thick, loaded aerofoils. Some authors investigated the influence of spanwise variation of

turbulent inflow conditions [124; 240], but due to the considerable meshing complexity

of an aerofoil tip, no numerical investigations have investigated the turbulence inter-

action with the tip of an aerofoil. This section presents an investigation of the leading

edge interaction of turbulence with a finite aerofoil, and the comparison to a comparable

infinite aerofoil problem, i.e. an infinite aerofoil at the same angle of attack.

A second topic of interest from both an aerodynamic as well as an aeroacoustic perspect-

ive is the tip vortex, in particular its formation and its impact on the aeroacoustics. As

discussed in Section 2.5, several experimental investigations [137; 138; 139; 140] have

focussed on the behaviour of a tip vortex in a turbulent flow. This section will present

results from the first LES to investigate the formation of a tip vortex in a homogeneous

turbulent flow and compare the findings to experimental measurements.

6.2.1 Homogeneity of the turbulent flow

As discussed in Section 6.1, the domain had to be adapted considerably to accommodate

the finite aerofoil problem. This resulted in a deviation of the mean flow parameters

of the turbulent flow from the turbulent flow in the infinite aerofoil problem. The

parameters are compared in Table 6.2, for a position x/c = −1.

Flow quantity Infinite aerofoil Finite aerofoil

U0 67.2 m/s 71.2 m/s

Rec 1.03× 106 1.09× 106

√
u11/U0 3.91% 4.98%

√
u22/U0 3.85% 4.80%

I11 3.64 cm 3.01 cm

I22 1.11 cm 0.46 cm

Table 6.2: Flow parameters of infinite aerofoil simulation versus finite aerofoil
simulation.

As discussed in Section 5.2, while a parameter study with the simple turbulence devel-

opment setup shown in Figure 3.1 can be used to establish suitable grid parameters for

a turbulent flow of the desired flow quantity values to some degree, a more complex

domain setup will lead to unavoidable discrepancies from the targeted flow values. With

the current setup for the finite aerofoil, a turbulent flow is retained which exhibits a

slightly increased mean flow velocity, and slightly decreased turbulent stresses. This is

considered to be due to the addition of two shear layers in the spanwise direction, and
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the related change in the mean flow development in the domain. The quantity most

effected by the change in boundary conditions is the integral length scale. Considering

the parameter studies of Honnery et al. [241], this is reasonable, as the largest scales are

inherently more strongly affected by the boundary conditions than any other scale.

Prior to the investigation of leading edge turbulence interaction or of the turbulent tip

vortex, the homogeneity of the turbulent flow is assessed. In order to evaluate the ho-

mogeneity of the turbulence, the mean velocities and Reynolds stress components were

computed for a plane one chord length upstream of the leading edge. At this point, the

potential effects of the aerofoil are expected to be minimal, considering the discussion of

Section 5.3.1. The extents of the plane in y and z direction were chosen to include parts

of the shear layer, in order to provide information of the size of the area of homogeneous

flow.

Figures 6.4 (a) - (c) show the homogeneity of the mean velocities 〈Ui〉. The inhomogen-

eity parameter Iφ, defined in Eqn. (3.23), is computed for all components relative to the

value of the mean axial velocity at y = 0, z = 0. Dashed lines indicate the outlines of

the aerofoil.
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Figure 6.4: Homogeneities of the mean velocities one chord length upstream the
leading edge.

It is found that the setup as used for the simulation results in a fairly homogeneous flow

in terms of the mean velocities in a large area in the centre of the grid. The transverse

mean velocities in particular are highly homogeneous, with deviations in the centre of

the grid largely within 1% of 〈U1〉. Except for the shear layer areas in the distribution

of 〈U1〉, no patterns attributable to either aerofoil or grid are visible in the distribution

of the mean velocity inhomogeneities in the vicinity of the aerofoil. It is noted that the

extent of the domain shown in Figures 6.4 (a) - (c) is wholly contained within the finely

refined turbulent flow domain, which also contains the shear layer areas in a manner

analogous to the turbulence interaction case investigated in Chapter 5. As such, the

investigation of the potential influence of the mesh derefinement zones in Appendix D.1

is applicable, where it was shown that the shear layer is solely due to the mean flow
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gradient between the turbulent jet flow and the steady far-field, and that no numerical

grid reflections can be identified.

Figures 6.5 (a) - (c) show the distribution of the normal RST components in the same

plane. The quantities were normalized relative to their value at y = 0, z = 0.
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Figure 6.5: Homogeneities of RST components one chord length upstream the
leading edge.

It is apparent that the inhomogeneities of the turbulent stresses are, for the most part,

within 10% of the value at y = 0, z = 0. It is concluded that the aerofoil is immersed in

largely homogeneous turbulence up to a position of z/Gp = 2.5. Thus, for the purpose

of simulating the tip of an aerofoil in a homogeneous turbulent flow, the setup used in

this simulation is appropriate.

6.2.2 Leading edge turbulence interaction

Having established the homogeneity of the turbulent flow, the interaction of the turbu-

lence with the leading edge is investigated. As discussed previously for the case of an

infinite aerofoil in Section 5.3.1, before the turbulence directly interacts with the leading

edge, it passes through a region of rapidly changing mean flow conditions, which are

caused by the potential effect of the aerofoil.

In order to investigate the effect of the finiteness of the aerofoil geometry on the mean

flow velocities, Figure 6.6 (a) - (c) show the development of the mean flow components

〈Ui〉 in the y = 0 plane upstream the leading edge. Since the angle of attack of the

aerofoil is small, the stagnation point does not shift significantly from the y = 0 plane.

In order to facilitate analysis of the rapidly changing mean flow conditions, a logar-

ithmic scale is chosen for the streamwise direction. Dashed lines indicate the position

x/rLE = 1.
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Figure 6.6: Mean velocity components in the y = 0 plane upstream the leading
edge. Dashed lines indicate the position x/rLE = 1.

It is immediately apparent that the finiteness of the aerofoil varies in its effect on the

mean flow velocities. As shown by Figure 6.6 (a), the axial velocity 〈U1〉 decreases

towards the leading edge in a manner independent of the spanwise coordinate, decreasing

close to zero at the last point just off the aerofoil surface. 〈U2〉, shown in Figure 6.6

(b) displays a strong dependence on the spanwise coordinate, which is caused by the

aerofoil loading, which approaches that of an infinite aerofoil as the distance to the tip is

increased. Finally, 〈U3〉, shown in Figure 6.6 (c), is close to 0 at almost all points, with

the exception of the tip, where the potential effects of the flow around the tip result in

a non-zero value. Both 〈U2〉 and 〈U3〉 exhibit decreasing values at the positions closest

to the leading edge, indicating that the last coordinate shown in Figures 6.6 (a) - (c)

is contained within the boundary layer. It is concluded that in terms of mean velocity

gradients, the effect of the tip extends at least up to z/Gp = 1 for this geometry at this

angle of attack.
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Figure 6.7: Normal stress components in the y = 0 plane upstream the leading
edge. Dashed lines indicate the position x/rLE = 1.

In order to investigate the effects of the mean velocity gradients on the turbulent stresses,

the normal Reynolds stresses on the plane y = 0 are shown in Figures 6.7 (a) - (c). As

discussed in Section 5.3.1, the majority of the deformation of the turbulent structures

happens at distances of the order of the leading edge radius. Thus, a dashed line indicates
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the position x/rLE = 1 in all plots. Due to the discretization of the aerofoil curvature,

the cells closest to the leading edge were found to have a positive x-coordinate, their

x-coordinates were set to an arbitrarily small negative value to allow inclusion in the

figures below.

Although significant inhomogeneities persist in all normal turbulent stresses, it is ap-

parent that the influence of the tip is much more restricted than in case of the mean

flow velocities. Visible variations are only observed for 0 < z/Gp ≤ 0.5. The effect

appears to be more pronounced in the axial and transverse component, whereas only

a very limited effect can be detected in the spanwise component. The distribution

of the turbulent stresses is qualitatively similar to that of the mean axial velocity, as

shown in Figure 6.6 (a). As the strongest gradients in the plane y = 0 are exhibited

by 〈U1〉, it is hypothesized that the development of the Reynolds stresses is largely

determined by d〈U1〉/ dx.
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Figure 6.8: Development of the velocity quantities towards the leading edge.
Infinite Aerofoil (IA): dashed, Finite Aerofoil (FA): solid.
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In order to investigate quantitatively at which point the mean flow quantities upstream

of the finite aerofoil are developing in a manner equivalent to the infinite aerofoil, the

axial mean velocity as well as the turbulent stresses are compared in Figures 6.8 (a) -

(d). Dashed lines illustrate the development of the respective quantities for the infinite

aerofoil, while solid lines indicate the development of the quantities for the finite aerofoil.

From Figure 6.8 (a) it is apparent that there is a considerable quantitative deviation of

the mean axial velocity 〈U1〉 from the values obtained in the case of the infinite aerofoil

at all investigated spanwise locations. As all these locations are quite close to the tip,

it is expected that the aerodynamics are still significantly affected by three-dimensional

effects due to the tip vortex, as shown in Figures 6.6 (a) to (c). However, it is difficult to

assess how large these effects are, as there is a lack of experimental data on mean flow

gradients upstream of finite aerofoils. In order to provide some context on the validity

of the presented results, a comparison of the surface pressure coefficient along several

sections on the wing to the measurements of McAlister and Takahashi [135] is provided

in Appendix E. The comparison indicates that the lift is quantitatively under-predicted

in the current setup, which will influence the mean flow gradients upstream of the aero-

foil.

The effect of the reduced mean flow gradient upstream of the aerofoil on the develop-

ment of the turbulent stresses is illustrated in Figures 6.8 (b) to (d). The diminished

velocity gradients are shown to lead to a more gradual distortion of the turbulent eddies

prior to the region of strongest turbulence distortion, which is, in agreement with the

experimental findings of Santana [101], restricted to a region of the order of the leading

edge radius.

In order to investigate the distortion of the energy spectra in this region, Figures 6.9 (a)

- (i) illustrate the development of the one-dimensional energy spectra Eii, relative to the

respective values of the energy spectra at the position x/rLE = −21, at three positions

z/Gp = 0, 0.5 and 1. Since, unlike in the case of the infinite aerofoil, no spanwise

averaging could be conducted in the case of the finite aerofoil, more noise is present in

the spectra. As such, any fluctuations below 0.5 dB/Hz are not considered meaningful.

Dash dotted lines indicate the mesh cut-off frequency for vortical waves fcv.

Considering the relative energy spectra of the axial component, shown in Figures 6.9 (a)

- (c), it is observed that there is little difference between the tip position at z/Gp = 0 and

the two positions further inboard. This is expected, as the geometry can be considered

to be constant in terms of its effect on correlation length scales in the axial direction, as

all axial scales are equally affected by the presence of a upstream body in the flow. Minor

differences are hypothesised to be caused by inhomogeneities in the flow, which are not

eliminated in this case due to the lack of spanwise averaging, as well as due to minor

differences in terms of the mean flow gradient distribution as shown in Figure 6.7 (a).
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(b) Relative E11 at z/Gp = 0.5.
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(c) Relative E11 at z/Gp = 1.
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(e) Relative E22 at z/Gp = 0.5.
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Figure 6.9: Development of the one-dimensional energy spectra, normalised by
their values at x/rLE = −21, towards the leading edge at x/Gp = 0 at three
positions along the span. Dash dotted line indicates mesh cut-off frequency for
vortical waves.
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The development of the relative energy spectra of the transverse component, shown in

Figures 6.9 (d) - (f), exhibits the largest change in the spanwise direction. This change

is particularly prominent at low frequencies, i.e. fc/U0 < 2 which are representative of

the largest fluctuating motions. It is hypothesised that at these scales, the change in

aerofoil geometry with span is having an effect on the turbulence distortion, although

this appears to be limited to the tip-most sections. However, due to the significant

noise present in the spectra related to the limited sampling time, further studies are

recommended to ascertain this observation.

Finally, the development of the relative energy spectra of the spanwise component,

shown in Figures 6.9 (g) - (i) is observed to show indications of larger distortion of the

turbulent eddies as the distance to the tip is increased. However, the fluctuations likely

associated with noise as well as flow inhomogeneities are also observed to be relatively

large. Further investigations, potentially placing the aerofoil at larger distances to the

turbulent grid, or using longer sampling times to improve convergence of the spectra, is

recommended to facilitate more detailed and conclusive analysis.

6.2.3 Tip vortex analysis

A loaded finite aerofoil produces a tip vortex, which is due to pressure gradient of suction

and pressure side. As the present simulation setup not only incorporates a finite, loaded

aerofoil, but also a free-stream turbulent flow, it is suited to the investigation of the

tip vortex formation processes in a turbulent flow, and its initial development. An

experimental investigation very close to the current setup was conducted by Bailey

[140]. His experimental setup consisted in a NACA 0012 finite aerofoil, immersed in

grid turbulence at a maximum flow speed of 30 m/s. The produced turbulence was,

with a ratio of γ12 = 1.2, similarly anisotropic to the turbulence obtained in the current

simulations.

In Figure 6.10, the tip vortex and its surrounding turbulence is visualized by means of the

Q-criterion at two values. In order to aid the reader, Figures 6.10 (a) and (b) illustrate

the location of the detail plots in Figures 6.10 (c) and (d), respectively. As visualizing

all of the surrounding turbulence would lead to the tip vortex becoming completely

concealed, the turbulent flow is visualized for a small volume containing the tip vortex

only and its immediate vicinity. Additionally, the iso-surfaces indicating the lower of

the two Q-criterion values are set to be semi-transparent to facilitate identification of

the tip vortex.

It is apparent from Figure 6.10 (a) that in the immediate vicinity of the wing up to

a distance of a few chord lengths, the tip vortex tube is clearly separated from the

surrounding turbulence, as there is a considerable gap between the tip vortex tube and

its surrounding turbulence. As such, using the Q-criterion, no visible merging of the

external eddy structures with the tip vortex tubes is observed in the vicinity of the

aerofoil.
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(a) Viewpoint orientation Figure (c). (b) Viewpoint orientation Figure (d).

(c) Tip vortex production. (d) Free-stream vortex wrapping process.

Figure 6.10: Tip vortex - free-stream turbulence interaction. Iso-surfaces of
Q-criterion at two values, orange being the higher level, green the lower.

As shown by Figure 6.10 (b), the warping effect which isolated vortex tubes have been

reported to have [157; 163] is developing rapidly, considering the mean streamwise flow

velocity of U0 = 70 m/s and the fact that examples of eddies deformed in this manner

can be found at positions not far downstream of the aerofoil.

The vortex tube, far from having smooth curvature, is in the presence of free-stream

turbulence characterized by several kinks, i.e. abrupt changes in trajectory. Figure 6.11

illustrates one example of such a kink. In order to enhance the clarity of the plot, the

iso-surfaces corresponding to the tip vortex have been highlighted by thick black lines.

Additionally, an eddy structure apparently connected to this kink has been highlighted

with an orange dotted line.

Figure 6.11 illustrates the strong curvature which is associated with the kinks of the

vortex tube. It is reasonable to assume that these kinks are highly unsteady and are

strongly associated with the phenomenon of vortex wandering. The presence of an eddy

structure fitting exactly into this kink strongly suggests a coupling of the free-stream

turbulence and the generation of kinks in the tip vortex tube.
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Figure 6.11: Tip vortex kink generation, illustrated by Q-criterion iso-surfaces.
Vortex tube highlighted with black lines. Free-stream eddy lying within kink
highlighted by orange dotted line. Mesh cell length scale illustrated for reference.

In their experimental investigation of the interaction of tip vortices with surrounding

turbulence, Bailey and Tavoularis [242] observed an increase of the vortex wandering

amplitude as a the turbulence intensity is increased, and suggested that the wandering

is due to transport of the vortex by the free-stream eddies. The present results support

this conclusion, and illustrate that the transport may be highly localized depending on

the size of the free-stream eddy.

As pointed out by Devenport et al. [136], the wandering of the vortex can have consid-

erable effects on the mean flow quantities. Given sufficient wandering, the velocity field

will attain a Gaussian form, resulting in a misleading representation of the vortex as a

q-vortex, or Batchelor vortex [148]. Considering the strongly turbulent flow present in

the current simulations, it is expected that the vortex wandering is significant.
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Figure 6.12: Instantaneous axial vorticity for two arbitrary instants in time.
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For the purpose of illustrating the tip vortex in its turbulent environment, the axial vor-

ticity ω1 at two arbitrary instances in time, t1 and t2, is shown in a plane at x/c = 1.5,

normal to the streamwise direction, in Figures 6.12 (a) and (b).

It is immediately apparent from Figures 6.12 (a) and (b) that the tip vortex is charac-

terised by very large negative values of ω1 relative to the surrounding turbulence. This

observation was used to develop a simple algorithm to compute mean flow quantities in

the frame of reference of the moving vortex. By determining the maximum value of ω1

in the y− z-plane at each time step, a time history of the vortex positions was obtained.

It was then assumed that the surrounding turbulence in the vicinity of the vortex, which

is in the process of wrapping around the central vortex tube, is moving with the vortex

core. As the sampled plane consisted of a discrete grid of points, the spatial shift of the

vortex core from one time step to the next was equal to an integer number of points

in the two lateral directions. By applying this shift to the grid points, a time history

of the velocity signal in the frame of reference of the moving vortex was reconstructed.

Thus, the effects of the vortex wandering on the computation of the mean flow quantities

is taken into account by a deterministic algorithm. While this algorithm becomes less

applicable with increasing distance from the vortex core, where the flow will not follow

the vortex wandering, it is expected to provide reasonable results of the vortex structure

and its interaction with the nearest eddies.

For the three sampled planes at x/c = 1.5, 2 and 2.5, Figures 6.13 (a), (c) and (e) show

the histogram of the vortex positions obtained for 0.5 s simulated physical time, where

the discrete points of the sampled grid are used as bins, and the number of points np in

the most populated bin, np,max, is used to normalize the distribution. The distribution

of the mean circumferential velocity 〈Uθ〉, as computed with the algorithm described

above in the frame of reference of the moving vortex, normalized by the far-field velocity

U0, for the three planes is shown in Figures 6.13 (b), (d) and (f). Since the application

of spatial shifts necessary for the computation of the averaged quantities is associated

with a reduction of the area for which information is available, the plots of 〈Uθ〉 are

slightly shifted relative to the plots of instantaneous quantities.

It is apparent from Figures 6.13 (a), (c) and (e) that the distribution of vortex core

positions quickly spreads with downstream distance, which is in agreement with the

results of Devenport et al. [136]. In all cases the distribution is approximately Gaussian

in shape, in agreement with the experimental results of Heyes, Jones and Smith [243].

However, with increasing axial distance, the distribution becomes contaminated by the

numerical error. This is related to the limited physical time simulated, which appears

to be insufficiently long to produce a completely converged histogram at all vortex pos-

itions, including those of low probability. A slight movement of the distributions in the

positive z direction is observed, which is a well-known behaviour of wing-tip vortices

after formation [140].
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(a) Histogram of vortex positions at x/c = 1.5.
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(b) 〈Uθ〉 at x/c = 1.5.
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(c) Histogram of vortex positions at x/c = 2.
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(e) Histogram of vortex positions at x/c = 2.5.
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(f) 〈Uθ〉 at x/c = 2.5.

Figure 6.13: Spatial histograms of vortex core positions and tangential velocity
distributions at three positions downstream the trailing edge.

As shown by the contour plots of the absolute perpendicular velocity 〈Uθ〉 in Figures

6.13 (b), (d) and (f), the averaging method chosen is capable of neutralising the effects

of vortex wandering to a large extent, and allows the structure of the vortex to be in-

vestigated in detail. The viscous core of the vortex, characterized by decreasing values

of 〈Uθ〉, similar to solid body rotation, can be identified in all investigated planes. As

such, the vortex structure resembles the well-known model of Lamb-Oseen, as shown in

Figure 2.6. The contour plots of 〈Uθ〉 indicate that the vortex does not become axisym-

metric within the distance investigated, although a trend towards axisymmetry can be
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observed. The apparent “C”-shape present at all planes is in agreement with the results

of the experimental study of Bailey [140], who found a similar appearance of the iso-lines

of the circumferential velocity in the vicinity of the wing. He related this phenomenon to

the effect of the spanwise velocity induced over the pressure and suction side of the wing.

A quantitative way to investigate the vortex wandering was proposed by Bailey et al. [244].

Taking yv and zv as the time-dependent deviations of the vortex centre from its mean

position in a plane, the wandering frequencies and wavelengths can be examined by

means of power spectral densities. Figure 6.14 (a) and (b) illustrate the vortex wander-

ing power spectral densities at two positions downstream the trailing edge, at x/c = 1.5

and x/c = 2.5. Non-dimensionalisation is done following Bailey et al. with the vortex

radius r∗, i.e. the distance from vortex centre and the point of maximum Uθ, and the

far-field velocity U0.
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Figure 6.14: Power spectral densities of the vortex wandering components yv
and zv on two positions downstream the aerofoil.

The spectra at both positions are qualitatively similar to each other, and resemble the

spectra obtained by Bailey et al. [244] for the experimental setup with a small grid,

which produced a flow of low turbulence intensity compared to a comparable setup with

a larger grid. The frequency plateau until a certain value of fr∗/U0, after which a

monotonic decay sets in. Quantitatively, the spectra obtained are considerably lower

than those obtained by Bailey et al. by approximately an order of magnitude. This may

be related to the position of the probe planes being closer to the trailing edge. Comparing

Figures 6.14 (a) and (b) it is apparent that the spectra at the more downstream is higher

by approximately a factor of 2. Considering that the first spectra of Bailey et al. was

measured at x/c = 3.75, it is not inconceivable that approximately the same magnitude

of vortex wandering would be obtained.

Unlike the results of Bailey et al. [244], the vortex wandering is found to be slightly

asymmetric, with fluctuations in the y direction having a slightly larger magnitude than

in z direction. However, as shown by Figure 6.14 (b), the two frequency spectra exhibit

a converging behaviour, indicating that this is a phenomenon restricted to the early
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formation of the vortex. It should furthermore be noted that considerable differences are

present between the experiment by Bailey et al. and the present simulations, which were

primarily aimed at the investigation of leading edge interaction noise. As such, neither

turbulence intensity, nor mean flow velocity or integral length scale of the turbulence are

equal to those of the experiment of Bailey et al. [244], in addition to the present use of a

round tip in contrast to the use of a blunt tip by Bailey et al. Furthermore, as Holzäpfel

pointed out [157], LES methods have their shortcomings when modelling vortex core

evolution, since the development of turbulence in this region of very high vorticity flows

is often not appropriately modelled by the subgrid model. As such, this setup represents

a suitable test case to validate the modelling of the vortex core evolution by the sub-

grid scale model. However, such an investigation is beyond the scope of the current

work. The good match of spectral shape demonstrates that the developed method of

accounting for the effects of vortex wandering is appropriate.

Having established the validity of the developed averaging method, the mean absolute

axial velocity U1, as well as the axial turbulent stress u11, is investigated in Figure 6.15

(a) - (f).

It is immediately apparent from Figures 6.15 (a), (c) and (e) that the tip vortex core

is associated with a significant mean axial velocity deficit. While vortex cores with a

jet-like axial velocity profile have been reported [154], the experiments of Anderson and

Lawton [149] showed that for small angles of attack, which are associated with relative

low circulation strength, an axial velocity deficit across the vortex develops. The results

presented here agree with this finding, as the chosen angle of attack of 3 degrees is lower

than the lowest investigated in their study.

While the axial velocity exhibits a large degree of symmetry, the contour plots of the

axial turbulent stress, shown in Figures 6.15, illustrate a considerable asymmetry, which,

however, diminishes with downstream distance. The “C” shaped region of elevated

values of u11 is hypothesized to be produced by external turbulence structures which

are in the process of wrapping themselves around the vortex. In prior studies of the

interactions between vortex tubes and homogeneous turbulence, such a behaviour has

not been reported [150; 163]. This is likely because all of these studies investigated the

problem of a vortex tube immersed in homogeneous turbulence, and no simulation of a

body in the flow producing the vortex was attempted. Such a body would introduce an

asymmetry to the problem, which is hypothesized to be the cause by the preferential

wrapping of the turbulent structures. A DNS of a vortex pair in a constantly sheared and

turbulent environment was conducted by Holzäpfel et al. [157], however no quantification

of the axial turbulent stresses was reported. Although there have been numerous LES

investigating the formation and development of the tip vortex, the majority have been

conducted in steady flows [131; 132; 133; 239], and where profiles for the u11 have been

reported, they did not exhibit the present “C” shaped region. A LES with evidence

of vortex wandering was recently presented by Boudet et al. [245] for the case of a fan

tip-clearance flow, however, no contours of u11 were reported.
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(a) Axial velocity at x/c = 1.5.
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(b) Axial RST component at x/c = 1.5.
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(c) Axial velocity at x/c = 2.
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(d) Axial RST component at x/c = 2.
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(e) Axial velocity at x/c = 2.5.
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(f) Axial RST component at x/c = 2.5.

Figure 6.15: First and second moments of the axial velocity averaged in the
frame of reference of the vortex core.

It is noted that in the experimental measurements of Chow et al. [246] of a NACA

0012 aerofoil at an angle of attack of 10◦ under steady inflow conditions, a “C” shaped

region was reported to be present very close to the point of vortex formation, but

disappeared relatively quickly with downstream distance, which may be related to the

larger angle of attack compared to the present case, as well as the fact that the turbulence

originated in the shear layer where the vortex forms from the aerofoil surface. In the

present case, while some turbulence is associated with the shear layers from the aerofoil

wake as evidenced by the light blue areas in Figure 6.15 (b), the contribution to the
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axial turbulent stress from eddies in the process of wrapping around the tip vortex is

considered to dominate, creating a “C” shaped region very similar to the experiment, but

different in origin, and considerably longer persistent. This suggests that the presence of

free-stream turbulence leads to an altered formation process of tip vortices as in the case

of laminar inflow conditions. Further experimental studies, e.g. using the experiment

rig presented in Appendix A are recommended to validate the present findings.

In order to further support the hypothesis that the dominating contribution to u11 is

from eddies in the process of wrapping around the tip vortex, the movement of the

turbulent eddies around the vortex tube is investigated by computing two-point spatial

cross correlations of the axial unsteady velocity components in the frame of reference of

the wandering vortex. Figure 6.16 (a) to (c) show the contour plots of the maxima of

the correlation coefficient R11(x0, x1, τ) for all positions x1 = (y, z) on the plane x/c = 2

when x0 is fixed on the plane x/c = 1.5. The positions of x0 are highlighted with a black

x marker.
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(a) x0 = (−0.25, 0.25).
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(b) x0 = (0.25, 0.25).
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(c) x0 = (−0.25,−0.25).
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(d) x0 = (0.25,−0.25).

Figure 6.16: Velocity cross correlations from fixed points x0 in the plane x/c =
1.5 to any point x1 in the plane x/c = 2.

It is immediately apparent that the vortex dominates the region of the flow investigated

in Figures 6.16 (a) - (d), leading to considerable correlation even for points which are,

when considering the distribution of the tangential velocities shown in Figures 6.13

(b), (d) and (f) well outside the area of strongest tangential velocities. The largest
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displacement of the area of highest correlation is obtained for x0 = (−0.25,−0.25). This

is caused by its position in the plane of the trailing edge, where the vortex roll-up occurs.

In an analogue manner, the cross correlation of the velocity is computed for the planes

x/c = 1.5 and x/c = 2.5 and shown in Figures 6.17 (a) - (d).
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(a) x0 = (−0.25, 0.25).
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(b) x0 = (0.25, 0.25).
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(c) x0 = (−0.25,−0.25).
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(d) x0 = (0.25,−0.25).

Figure 6.17: Velocity cross correlations from fixed points x0 in the plane x/c =
1.5 to any point x1 in the plane x/c = 2.5.

As expected considering the more downstream position of the second plane, Figures 6.17

(a) - (d) show significantly reduced maxima of correlation, and a general spreading of

the correlated areas.

In order to obtain a qualitative view of the development of the correlation maxima for

all possible positions x0, the procedure applied for Figures 6.16 and 6.17 is now applied

for all positions x0 on the plane x/c = 1.5. For each point x0, the cross-correlation

distributions to any point in the plane x/c = 2.5, as shown in Figures 6.16 and 6.17 is

computed. Then, the maximum value contained in the two-dimensional cross-correlation

distribution is determined and assigned to the grid point representing x0. The result of

this algorithm is shown in Figure 6.18.

The maximum values of the cross-correlation in the vortex-relative frame of reference,

shown in Figure 6.18 support the earlier hypothesis that for the early tip vortex formation

downstream an aerofoil, the eddy wrapping process is asymmetric. Furthermore, a

relatively sharp distinction can be made between eddies which have finished the wrapping
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process, located in a region outlined by the dotted line, and those which are only in the

process of wrapping, located in a region outlined by the dashed line. While the former

retain a considerable amount of correlation, the warping of the turbulent structures of the

latter region during the process of wrapping leads to a significant decrease in correlation.

The area of very low correlation values at 0 < y/Gp ≤ 0.4 and z/Gp > 0.4 is caused by

the turbulent structures which are convected outside the area of measurement.

−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

z/Gp

y
/G

p

0.2

0.4

0.6

m
ax

(R
1
1
(x

0
,x

1
,τ
))

Figure 6.18: Maximum cross correlation value of each point x0 in plane x/c = 1.5
to any point x1 contained in plane x/c = 2.5c.

Finally, the vectors between two points of maximum correlation on the planes x/c = 1.5

and x/c = 2 are investigated in Figures 6.19 (a) and (b). While in Figure 6.19 (a),

the grid points are associated with the magnitude rcc of the vector between x0 and its

corresponding maximum correlation on the downstream plane, Figure 6.19 (b) illustrates

the direction of this vector by means of the angle Θcc between the vector and the positive

spanwise direction z. In order to facilitate comparison with the areas of high and low

flow velocity cross-correlation identified in Figure 6.18, dashed and dotted lines indicate

their respective extents.
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Figure 6.19: Measures of turbulence movement from planes x/c = 1.5 to x/c = 2
in the vortex-core relative coordinate system.
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It is apparent from Figure 6.19 (a) that the cross-correlation vector magnitude, rcc in

particular exhibits a considerable amount of noise. Additionally, some local peaks in

vector magnitude exist, such as at y/Gp ≈ 0.1, z/Gp ≈ 0.4, which are due to the turbu-

lent structures being convected outside the sample plane, and thus the algorithm is no

longer able to determine the correct point of maximum correlation on the downstream

plane.

Nevertheless, it is observed that the area of lowest rcc at y/Gp ≈ −0.2, z/Gp ≈ 0.2 is

associated with an area of low flow correlation. It is noted that while the magnitude of

the vector is not large at this point, the streamline curvature may be considerable, which

will act to impede radial motions and increase turbulence decay, leading to relaminariz-

ation [136; 151; 152]. The vortex core represents the most challenging region for LES, as

noted by Holzäpfel [157], which is why a complete reproduction of experimental results

is not expected. In particular the complete relaminarization would not be reproduced

by the present methodology.

Considering the areas of high correlation, it is observed that a lower rcc is associated

with a higher correlation value, indicating that the strongest deformation takes place

during the early wrapping process. Furthermore, it is apparent from Figure 6.19 (a)

that turbulent structures entering the x/c = 1.5 plane in the lower half of the lower

right quadrant, i.e. at z/Gp > 0.2, y/Gp < −0.2, are susceptible to the largest rotation

around the vortex. Figure 6.19 (b) confirms that this movement is directed clockwise

around the vortex core, which is as expected in the direction of vortex rotation. The

sharp gradients in Figure 6.19 (b) are caused by the singularity in the atan2 function

used for post processing.

From the qualitative analysis of the interaction of the tip vortex with the surrounding

turbulence, it is concluded that the main phenomena, such as the wandering of the vor-

tex as well as the wrapping of eddies around the vortex, appear to be captured, although

further quantitative comparison with experimental or numerical studies is recommended

in order to validate the findings. This may be accomplished using the experimental rig

documented in Appendix A. However, for the purposes of this study, which was focused

on the noise emissions of finite aerofoils immersed in turbulent flow, the validation of the

long-term development of the tip vortex and surrounding turbulence is out of scope, as

the leading edge noise is expected to be dominant [12]. The influence of the tip vortex

on the noise emissions is further investigated in Section 6.3.

As such, this investigation serves to illustrate the potential of the current methodology

to be used to assess interaction effects between tip vortex and the external turbulence

and highlights a promising application case for the future development and validation

of advanced sub-grid scale models capable of reproducing initial vortex formation and

wrapping processes of the surrounding turbulence.
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6.3 Aeroacoustic analysis

Having discussed the aerodynamic phenomena associated with the interaction of a finite

aerofoil with a turbulent flow, the aeroacoustics of this case are analysed. As this is the

first time the case of a finite aerofoil interacting with turbulence is investigated with a

focus on the aeroacoustics, experimental validation of the results is difficult due to the

lack of comparable cases in the literature.

First, surface pressure spectra are discussed and compared with those of an infinite aero-

foil at an angle of attack. Surface pressure cross-correlations are computed to identify

the inviscid response of the aerofoil. Subsequently, the far-field noise radiation is com-

puted, using the same hybrid approach as applied in Chapter 5, discussed in Section

3.1.3. In order to eliminate potential contributions of the sections of the aerofoil exposed

to steady flow and to facilitate identifying the contributions of the tip-most sections to

the far-field nose, a blanking step was used in which the fluctuating pressure signals

of selected sections would be set to zero. In doing so it was assumed that correlation

of the fluctuating pressure on the blanked sections and those where the pressure sig-

nal is retained is negligible. This assumption was further investigated as documented

in Appendix E.2, where it was found that the pressure fluctuations, present in case of

the steady sections of the aerofoil only on the late suction side, are not correlated to a

significant degree to the pressure fluctuations of the sections of the aerofoil which are

exposed to the turbulent flow, which are the prime interest of this study.

Finally, the noise directivities in case of the finite aerofoil are presented both in the

span-normal as well as in the streamwise-normal plane, as this case allows to investigate

the noise emissions for out-of-plane observers.

6.3.1 Surface pressure spectra

Following the approach taken in Section 6.2.2, the development of mean pressure quant-

ities is investigated in the plane normal to the transverse direction. Figure 6.20 (a)

shows the distribution of the dimensionless pressure coefficient 〈cp〉 upstream the aero-

foil, while Figure 6.20 (b) illustrates the development of the RMS of the pressure fluc-

tuations, pRMS , divided by the mean density ρ0 and the speed of sound c0 squared.

In order to emphasize the development towards the leading edge, a logarithmic scale is

used for the streamwise coordinate x.

It is apparent from Figure 6.20 (a) that 〈cp〉 exhibits a dependency from the spanwise

coordinate only very close to the aerofoil tip. Considering the earlier analysis of the

development of the mean velocities, shown in Figures 6.6 (a) - (c), this is expected, as

the streamline curvature, which is proportional to the pressure gradient, is largely de-

termined by the gradient of the axial velocity, as it exhibits the largest gradients. Since

the axial velocity is developing independent of the spanwise coordinate up to a distance

very close to the tip, it follows that the mean pressure exhibits the same behaviour.
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Figure 6.20: Pressure contour plots upstream of finite aerofoil leading edge.
Dashed lines indicate the position x/rLE = 1.

Similarly, pRMS mirrors the contour of the axial turbulent stress u11, shown in Figure

6.7 (a). The only material difference between the contours of 〈cp〉 and pRMS is the

slightly larger zone of increased values of pRMS beyond the aerofoil tip, which is due to

the circulation around the tip inducing a slight acceleration of the flow in the transverse

direction, which lowers the mean pressure.

On surface pressure contour plots for 〈cp〉 and pRMS on the suction side of the aerofoil

are shown in Figures 6.21 (a) and (b), respectively, for values of the spanwise coordinate

between 0 ≤ z/Gp < 2, i.e. excluding the rounded tip.
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Figure 6.21: Pressure contour plots on the suction side of the finite aerofoil.

Figure 6.21 (a) exhibits the well-known distribution of the mean pressure coefficient 〈cp〉
for finite aerofoils, with the pressure distribution converging towards the two-dimensional

distribution as the distance to the tip grows.

Although the distribution of the non-dimensional root mean square of fluctuating pres-

sure shows the expected peak at the leading edge, an unexpected increase of pRMS on the

early suction side needs to be investigated. In order to assess this phenomenon in more
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detail, Figure 6.22 shows the values of the non-dimensionalised pRMS on a slice normal

to the spanwise direction at position z/Gp = 0.5, as well as on the aerofoil surface.

Figure 6.22: Area of high fluctuating unsteady pressure on early suction side.
Slice at position z/Gp = 0.5.

It is apparent that the increased regions of pRMS are associated with small inhomogen-

eities in the mesh, in particular the tetrahedral cells close to the surface. This is similar

to the small peaks in pRMS observed in case of the infinite aerofoil, shown in Figures

5.18 (b) and 5.19. However, in the case of the finite aerofoil, the magnitude of these

fluctuations is far greater than in case of the infinite aerofoil, but crucially is a much

smaller contribution to the far-field noise emissions compared to the leading edge noise,

as Figure 6.21 (b) indicates. At this point, it is not entirely clear what is the cause of

this. Two possible causes are the slightly higher mean flow velocity of the finite aerofoil

simulation, as well as the smaller extent of the refined region in the near-field of the

aerofoil. Further investigation of the effects of this phenomenon on the inviscid response

of the aerofoil, which is the primary object of this research project, is conducted in

Section 6.3.2. For the purpose of assessing the effect of these non-physical fluctuations

on the surface pressure spectra, Figure 6.23 (a) and (b) show the surface pressure spec-

tra for the infinite aerofoil at an angle of attack of 3 degrees, as well as for the finite

aerofoil, respectively. A spanwise position of z/Gp = 0.5 is chosen, as this was observed

in Figure 6.21 (b) to be the point where the peaks of pRMS on the early suction side

had the largest magnitude. A dash-dotted line indicates the mesh cut-off frequency for

the propagation of vortical waves, fcv.
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(b) Finite aerofoil at α = 3◦.

Figure 6.23: Surface pressure spectra along chord, z/Gp = 0.5.

Figure 6.23 (a), illustrating the infinite aerofoil case, shows the expected result of the

highest SPL at the leading edge over the entire width of the spectrum investigated,

and is in reasonable agreement with results obtained for thick aerofoils such as by Gea-

Aguilera [103]. While the spectra of the finite aerofoil, shown in Figure 6.23 (b), show

similarly SPL at the leading edge, the surface spectra deviate from the infinite case in two

aspects. The regions of elevated pRMC at chordwise positions between 0.3 < x/c ≤ 0.5

appear associated with a broadband hump at frequencies larger than 1000 Hz. It is

hypothesised that the broadband hump is associated with the areas of high fluctuating

unsteady pressure shown in Figure 6.22, where tetrahedronal cells appear to lead to a

numerical tripping of the flow. However, the SPL at the leading edge for these frequencies

are considerably higher than between 0.3 < x/c ≤ 0.5.

Secondly, a considerably higher SPL is also observed for the finite aerofoil at the trailing

edge over the entire frequency range. Since, at frequencies up to 1500 Hz, surface SPL are

in excess of 10 dB higher at the leading edge than at the trailing edge, it is expected that

leading edge noise will still dominate at low frequency, and thus the present results can

be used to study leading edge interaction noise. However, for frequencies f > 1500 Hz,

the increased noise emissions from the trailing edge are expected to become a dominating

factor.

The analysis of the surface pressure spectra of the finite aerofoil would be incomplete

without an investigation of the spanwise variation of these statistics. This not only

provides indication of the extent of the tip vortex effects on the unsteady aerodynamics,

but also allows conclusions about the spanwise uniformity of the flow to be drawn.

Figures 6.24 (a) and (b) shows the power spectral density of the surface pressure at the

positions x/c = 0.01 and x/c = 0.7. It is emphasized that the scaling of the two graphs

is not identical, which is due to the larger variation of spectral levels over frequency

of positions closer to the leading edge compared to those closer to the trailing edge.

It is furthermore noted the spanwise extent shown is well within the finely resolved

turbulent domain, and the mesh coarsening in the spanwise direction is initiated only
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at z/Gp = 5.34, as discussed in Section 6.1. For reference, a dash-dotted line indicates

the mesh cut-off frequency for the propagation of vortical waves, fcv.
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Figure 6.24: Surface pressure spectra along span.

As Figure 6.24 (a) shows for positions close to the leading edge, the spectra of the

unsteady surface pressure are approximately uniform over the spanwise coordinate z.

Only at positions z/Gp > 3 are small increases of the spectral levels observable, which

are related to the shear layer between turbulent grid jet flow and the laminar far-field.

Further investigation of the unsteady surface pressure is documented in Appendix E.2,

where analysis of the span-wise cross-correlation of the unsteady pressure indicates that

the shear layer is associated with a minor increase in correlation extent.

It is concluded that the part of the aerofoil immersed in the turbulent flow is subjected

to homogeneous turbulence up to z/Gp = 3. It is also noted that the SPL is consistently

in excess of 100 dB for frequencies f > 1500 Hz, further indicating that the leading edge

noise contributes dominantly to the far-field noise relative to the trailing edge pressure

fluctuations observed in Figure 6.23 (b).

For a position closer to the trailing edge, shown in Figure 6.24 (b), the tip vortex is

shown to have the effect of significantly decreasing the SPL for frequencies f > 1000

Hz. A possible explanation for this phenomenon is that the vortex formation process

has the effect of stretching the turbulent structures in the spanwise direction, which

increases the wavelengths, and therefore leads to a shift of the energy spectrum towards

lower frequencies. Additionally, the tip vortex may spatially transport the turbulent

structures along the span. This may lead to regions on the aerofoil surface which are

subject to to additional pressure fluctuations. An indication of this effect is observed

in Figure 6.24 (b) for the spanwise positions 0.5 < z/Gp ≤ 1, where, for frequencies

f < 2000 Hz, SPL levels are increased relative to other sections. This effect has not

been reported previously, as experiments of finite aerofoils have so far been restricted

to the investigation of the tip vortex, and no numerical or analytical investigations of

the effects of tip vortices in turbulent flows on the aerofoil surface pressure spectra

have been reported. Taking into account the mesh dependency study documented in
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Appendix D.2 the present simulation is considered suitably refined for the frequencies

where this effect is observable. However, as the mesh dependency study was focused on

the interaction of the turbulence with the leading edge, which is the main focus of the

present research, and the tip vortex introduces considerable rotation to the flow at the

point assessed in Figure 6.24 (b), further studies are recommended to investigate this

finding, and establish mesh and methodology independence of this phenomenon. An

experimental test setup suitable for the investigation of this phenomenon was designed

and constructed during the course of this research, and is documented in Appendix A.

6.3.2 Investigation of the inviscid response of the finite aerofoil

A possible interpretation of the regions of elevated pRMS is that at these positions, a

numerically induced tripping of the flow takes place. From an aeroacoustic perspective,

this additionally produced turbulence may then lead to a loss correlation of the acoustic

waves. While the analysis of the surface pressure spectra is beneficial as it allows a

frequency-resolved insight into unsteady surface pressure, the lack of phase information

prohibits distinction between hydrodynamic pressure fluctuations and fluctuations asso-

ciated with acoustic waves.

In order to investigate the effects of the regions of increased pRMS on the early suc-

tion side on the far-field noise emissions, the cross-correlations of the unsteady surface

pressure were computed in a manner analogue to the analysis conducted in Section

5.4.2. Comparison is conducted in Figures 6.25 (a) - (d) with the surface pressure cross-

correlations of the infinite aerofoil case at α = 3◦, setting x0/c = 0.01 for both cases.

As the comparison of the cross-correlations of the infinite to the finite aerofoil shows,

significant differences are present. The Rpp of the infinite aerofoil relative to x0/c = 0,

displayed in Figure 6.25 (a), shows a correlation pattern with two dominant lobes aligned

with the two characteristic correlation delays for the eddy transport and the inviscid

aerofoil response, as expected considering the results for the infinite aerofoil at zero

angle of attack, shown in Figure 5.20 (a). However, the cross-correlation values for the

finite aerofoil, shown in Figure 6.25 (b), exhibit considerably decreased Rpp values for

values x1/c > 0.3. It is apparent that the pressure fluctuations, first observed in the in-

creased pRMS values of Figure 6.21 (b), lead to a loss of correlation. However, it is noted

that some correlation to the leading edge fluctuations remains in the pressure signal, even

at positions x1/c > 0.3, and can be observed to persist for the same distance as the Rpp

of the infinite aerofoil case. Thus, it is expected that while non-compactness effects are

diminished, they will be still reproduced to some degree in the present simulation.
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(a) Infinite aerofoil, x0 = 0.01c.
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(b) Finite aerofoil, x0 = 0.01c.
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(c) Infinite aerofoil, x0 = 0.3c.
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(d) Finite aerofoil, x0 = 0.3c.

Figure 6.25: Comparison of the surface pressure cross correlations of the loaded
infinite aerofoil at mid span to the loaded finite aerofoil at the spanwise coordin-
ate z/Gp = 1.5. Propagation speed equivalent to convection velocity (dashed
line), propagation speed equivalent to speed of sound (solid line).

When the cross-correlations relative to the position x0 = 0.3c, shown in Figures 6.25 (c)

and (d), is conducted, it is observed that downstream this position, in case of the Finite

aerofoil, correlations are dominated by small scale periodic eddies, which are convected

at a speed lower than U0. It is apparent that these small eddies are wholly immersed

in the boundary layer, where convection speeds may be significantly reduced compared

to U0. Correlation of pressure values due to larger eddies convected at U0, as well as

due to the inviscid response of the aerofoil is still present to a small amount, but both

lobes do not dominate, with the inviscid response being the slightly smaller of the two

effects. This is in stark contrast to the cross-correlation of the infinite aerofoil at this

point, which shows overall very high values of correlation due to the presence of eddies

of all sizes being convected at a range of speeds by the boundary layer. However, the two

main lobes of the inviscid response of the aerofoil and the convection speed U0 clearly

dominate.

For the purpose of investigating a possible spanwise dependency of Rpp in the case of a

finite aerofoil, Rpp is computed by setting x0/c = 0.01 and x1/c = 0.7 and extracting the



Chapter 6 Finite aerofoils in simulated grid turbulence 167

pressure signal at various positions along the aerofoil span. The result is shown in Figure

6.26. Time shifts corresponding to the transport of hydrodynamic pressure fluctuations,

as well as to the propagation time of acoustic waves from x0 to x1 are shown by the

dashed and solid lines, respectively.
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Figure 6.26: Surface pressure cross-correlations for x0 = 0.01c, x1 = 0.7c along
span.

As expected from the discussion of the pressure cross-correlations at one spanwise po-

sition, shown in Figure 6.25 (b), correlation attributable to transport of hydrodynamic

pressure fluctuations has essentially vanished at this point. However, there is still some

correlation at time-shifts equal to the time necessary for acoustic waves to cover this

distance. The cross-correlation attributable to acoustic pressure fluctuations is smallest

at spanwise positions z/Gp < 0.5. Considering the surface SPL shown in Figures 6.24 (a)

and (b), this observation is related to the influence of the tip vortex. discussed in Section

5.4.2, the non-compactness effects are associated with the pressure cross-correlation for

time shifts equal to the time period of acoustic propagation between two points. There-

fore, the present results are considered to indicate that one of the main effects of the

finite aerofoil on the far-field noise emissions may be the reduction of non-compactness

effects due to the decorrelating effect of the tip vortex at positions closest to the tip. It

should be noted that the present setup features an angle of attack of only α = 3◦, and

thus a relatively weak tip vortex. It is conceivable that a larger angle of attack, which

is associated with a stronger tip vortex, would result to a larger decorrelated region at

the trailing edge, and thus to stronger effects on the far-field noise.

At positions further inboard, i.e. 0.5 ≥ z/Gp < 2.5, larger levels of Rpp are observed,

which remain constant within the level of convergence of this quantity in this region.

It is concluded that non-compactness effects are present for these sections to the same

degree as for the infinite aerofoil case, provided that effects such as the earlier discussed

pressure fluctuations on the early suction side are negligible.

Finally, at positions z/Gp ≥ 2.5, Rpp is observed to increase significantly. As these

positions are affected by the shear layer of the turbulent domain, this is considered to

be a product of the current setup rather than an inherent property of the finite aerofoil



168 Chapter 6 Finite aerofoils in simulated grid turbulence

turbulence interaction problem. Since that the mesh coarsening in the spanwise direc-

tion is initiated only at z/Gp = 5.34, and the investigation of conceivable non-uniform

grid reflections, documented in Appendix D.1 did not find such reflections taking place,

influences of mesh inhomogeneity in the spanwise direction are considered negligible.

Nevertheless, in order to facilitate assessment of the noise emissions of the finite aero-

foil, this region of inhomogeneous turbulence will be omitted in the subsequent far-field

noise investigation.

6.3.3 Far-field radiation

From the analysis in Sections 6.3.1 and 6.3.2 it is apparent that compared to the in-

finite aerofoil, the finite aerofoil simulation exhibits two phenomena, namely pressure

fluctuations on the early suction side as well as increased SPL levels at the trailing edge,

which prevent accurate results at high frequency. However, the lower frequencies, where

the leading edge noise has been shown to be dominant [94; 97] are less affected by these

phenomena.

Due to the considerable computational expense of the finite aerofoil case, it was found

necessary to reduce the sampling of the surface pressure data for a physical time of

tU0/c = 77.4 only. The effect of this reduced sampling time is investigated in Section

3.2.2 for the infinite aerofoil case, and it is found that the OASPL does not deviate more

than 0.25 dB from its final result for a given observer angle once data has been sampled

for more than tU0/c = 46.4 of physical time.

In order to investigate the noise emissions of the finite aerofoil in detail, use is made of

the method of value blanking on the aerofoil surface. Blanking is achieved by setting

pressure fluctuations on all faces of the surface of the aerofoil with a spanwise coordinate

higher than a threshold zb to zero. This not only allows spurious noise sources, which are

only present in the simulation because of modelling necessity, to be eliminated, but also

to quantify the effect of various source zones on the aerofoil. All spectra are scaled with

a correction factor of 20 log10(s1/s2), where s1, s2 are the active spans, i.e. the spanwise

extents for which surface pressure fluctuations are sampled for the computation of the

far-field noise, to account for the changes in effective span due to value blanking.

Far-field radiation spectra were computed using the methodology outlined in Section

3.1.3. In order to eliminate the noise production caused by the interaction of the tur-

bulent shear layer with the aerofoil, zb is set to 3Gp. A constant correction factor of

60 log10(UIA/UFA) was applied to take the slightly increased mean axial velocity of the

finite aerofoil case, relative to the infinite aerofoil simulations, into account. Using the

values for the mean streamwise velocities given in Table 6.2, this correction amounts

to -1.7 dB.
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Figures 6.27 (a) and (b) show the far-field noise prediction results from the finite aerofoil

immersed in a turbulent flow in the context of an infinite aerofoil at the same angle of

attack, i.e. 3◦ for the downstream observer position at θ = 60◦ as well as for the overhead

position at θ = 90◦. Dash-dotted black lines indicate the highpass cutoff frequency due

to the finite signal fcT and the mesh cutoff frequency for vortical waves fcv. Considering

the analysis of the surface pressure fluctuations in Section 6.3.1, only a frequency range

between fcT = 80 Hz and fTE = 1500 Hz is assessed for the finite aerofoil, as beyond fTE

the excessive levels of pressure fluctuations close to the trailing edge, i.e. at x/c > 0.8,

are expected to be dominant. In order to illustrate the frequencies associated with the

dips attributable to the non-compactness effect, thick dashed blue lines indicate the

frequencies fc,i as defined by Eqn. (2.46).
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Figure 6.27: Far-field noise results at downstream and overhead observer angles
of loaded Infinite Aerofoil (IA), loaded Finite Aerofoil (FA).

From Figures 6.27 (a) and (b) it is apparent that the far-field spectra obtained for

the finite aerofoil simulation for the downstream and overhead observer angles deviate

significantly from those of the infinite aerofoil. While the maximum SPL level of the

infinite aerofoil is not obtained for the observer angles investigated, the agreement of

the slope of the spectra is better for an observer at θ = 60◦ than at θ = 90◦. A potential

explanation for this observation is the effect of the tip vortex on the non-compactness

effects, which are more prominent for overhead and upstream observer angles than for

downstream observer angles, as illustrated in Section 5.4.2.

In order to assess the presence of the non-compactness effects in more detail, Figures

6.28 (a) and (b) show the far-field noise prediction results for the finite aerofoil relative

to those of the infinite aerofoil at the upstream observer angles θ = 120◦ and θ = 150◦.
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Figure 6.28: Far-field noise results at upstream observer angles of loaded Infinite
Aerofoil (IA), loaded Finite Aerofoil (FA).

Considering the upstream observer position at θ = 120◦, shown in Figure 6.28 (a), a

relatively pronounced non-compactness dip is observed at fc,0, which indicates that at

observer angles where the dip frequencies are shifted towards lower values, the non-

compactness effects in the form of the typical dips manifest for the finite aerofoil as well.

However, the dip is less well established in case of the finite aerofoil than for the infinite

aerofoil. This may be due to the pressure fluctuations at the trailing edge creating a

higher noise floor than in the case of the infinite aerofoil simulations, but may also be

due to the effects of the tip vortex, which was observed to affect the surface pressure

fluctuations towards the trailing edge as shown in Figure 6.24 (b).

For the upstream observer position at θ = 150◦, shown in Figure 6.28 (b), it is ob-

served that the dip associated with non-compactness effects does not coincide with the

frequency fc,0 at this angle. While this may also be due to an unknown effect of the tip

vortex, the exact cause for this is not known, as there is no available reference data from

comparable numerical or experimental investigations of finite aerofoils interacting with

turbulent flows. A potential influence of the change in meshing methodology, i.e. the re-

duction of boundary layer mesh thickness, on the non-compactness effects is considered

small, as the discretisation of the acoustic waves in the chordwise direction is unchanged

between the infinite and finite aerofoil interaction cases. As the wave propagation study,

documented in Appendix B has shown negligible dissipative and dispersive errors of

acoustic waves for the frequencies investigated in Figures 6.27 and 6.28, the influence

of these numerical errors on the present results is considered negligible. Nevertheless,

further numerical and experimental studies are recommended to establish mesh inde-

pendence of the present results, in particular at higher frequencies, and determine the

influence of the non-physical pressure fluctuations near the trailing edge on the non-

compactness effects.

Finally, at all observer angles shown in Figures 6.27 and 6.28, it is observed that at

low frequency, noise emission results from the LES for the finite aerofoil are 2-5 dB less
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than the results for an equivalent span of the infinite aerofoil, depending on observer

position. Due to the dominance of the pressure fluctuations at the leading edge at low

frequencies, i.e. up to 1000 Hz, the SPL levels at these frequencies are considered to

be more meaningful than the results for frequencies f > 1400. Considering the analysis

conducted in Section 6.2.2, a possible cause for this decrease is the reduced distortion of

the turbulence prior to interaction with the leading edge. However, further investigation

is required to confirm this hypothesis.

Other possible causes include a reduced response of the aerofoil to turbulent gusts due to

the presence of the tip, and additional spanwise coherence of the noise emissions present

in the infinite aerofoil due to the spanwise periodical boundary conditions. Regarding

the former, when taking the earlier analysis of the leading edge pressure spectra, shown

in Figure 6.24 (a), into account, it is considered unlikely that a decreasing response of

the aerofoil to turbulent gusts with decreasing distance to the tip is taking place, with

the associated noise reductions.

To investigate the latter hypothesis, the cross-correlation of the unsteady pressure at

the leading edge is shown in Figure 6.29 at mid span for the infinite aerofoil simulation,

and for several positions along the leading edge of the finite aerofoil.
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Figure 6.29: Cross-correlation of pressure fluctuations on the leading edge in the
spanwise direction for the Infinite Aerofoil (IA) and the Finite Aerofoil (FA).

As shown in Figure 6.29, the cross-correlation of the pressure fluctuations is virtually

identical for infinite and finite aerofoil. It is concluded that any differences between the

finite and the infinite aerofoil in terms of the spanwise coherence of the gusts are within

the statistical averaging uncertainty, and are considered negligible.

In order to investigate the effects of the tip vortex on the far-field noise emissions, Figure

6.30 compares the noise predictions for an observer angle of θ = 120◦ at a spanwise

observer position of z/Gp = 1.5, with various amounts of value blanking. It is assumed

in this analysis that the spanwise correlation of pressure fluctuations between areas which

are blanked and those which are not is small. While this has been shown in Appendix E.2

to be a justified assumption for the correlation of the pressure fluctuations on sections

within and outside of the turbulent flow, it is anticipated considering Figure 6.29 that

some amount of spanwise Rpp is present between adjacent sections where the distance

of the respective section centre is z/Gp ≤ 0.4. Therefore, for a first-order estimation of



172 Chapter 6 Finite aerofoils in simulated grid turbulence

the contribution of different sections of the aerofoil in the turbulent flow to the far-field

noise emissions, it is assumed that although such correlation may be present, the far-field

noise emissions are predominantly due to flow interaction local to the section. Further

investigation using numerical or experimental studies is recommended to validate this

assumption.

In Figure 6.30, the observer angle was chosen to facilitate identification of non-compact-

ness effects. As the observer position does not correspond to the mid plane for all

investigated sections, an investigation on the effect of an out-of-plane is conducted in

Section 6.3.4.
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Figure 6.30: Far-field noise at θ = 120◦ with zb/Gp ≥ 3, impact of tip blanking.
Span correction factor only applied for dashed curve.

For zb/Gp ≥ 3, a baseline prediction is obtained, which includes the noise produced by

the aerofoil immersed in the homogeneous region of the turbulent flow, but excludes the

effects of the shear layer, as well as potential trailing edge noise of the part of the aerofoil

outside of the turbulent domain. Conversely, for zb/Gp ≥ 0.5, far-field noise emissions

for the tip most sections only are retained, which are defined as those sections with

a considerable influence from the tip vortex considering Figure 6.26. Finally, if value

blanking for regions zb/Gp ≤ 0.5 and zb/Gp ≥ 3, is applied, noise emission results are

obtained for the sections of the finite aerofoil interacting with homogeneous turbulence

only, and the tip as well as shear layer effects on noise are omitted. In order to illustrate

the relative magnitude of the contribution of the various sections to the overall noise

emissions, the span correction factor of 20 log10(s1/s2) is not applied to the prediction

results.

As discussed in Section 6.3.1, at frequencies f > 1500 Hz, the trailing edge becomes a

dominating source of noise in the present simulation. Since the investigation of trailing

edge noise is not the focus of this thesis, discussion of these frequencies is omitted.

It is apparent from Figure 6.30 that the spectra of the finite aerofoil with and without
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additional tip blanking almost collapse, even if no correction is applied. This is related

to the very low SPL level of the tip section alone, indicated by the blue line, which are

less than 42 dB across the entire frequency range investigated. As such, it is found that

for the current the tip-most sections contribute very little to the SPL in the far-field.

This is expected, as the tip-most sections have a very limited spanwise extent.

Furthermore, it is observed that the spectral shape of the tip section noise emissions do

not exhibit any clear non-compactness effects. Taking into account the lack of chordwise

pressure cross-correlation for these sections, as shown by Figure 6.26, this is considered

an indication that the presence of the tip vortex in this section leads to a reduction of non-

compactness effects. This effect has not been reported to date. While the influence of

dissipative and dispersive error on the acoustic waves investigated here can be considered

negligible, as discussed in Appendix B, further numerical and experimental studies are

recommended to demonstrate mesh independence and validate this finding.

6.3.4 Directivity analysis

In order to assess the impacts of the presence of a tip on the aerofoil on the directivities,

Figures 6.31 (a) - (d) show the SPL for observers in the xy plane, i.e. normal to the

spanwise direction. Line widths are chosen to reflect a conservatively estimated LES

uncertainty ±0.5 dB, based on the convergence study documented in Section 3.2.2.

Considering the lowest frequency f = 400 Hz, Figure 6.31 (a) shows quantitatively

that the reduced SPL first observed in Figures 6.27 and 6.28 are more pronounced for

observer angles approaching 90 and 270 degrees. Qualitatively, the good agreement in

terms of directivity shapes indicates that finite aerofoils emit noise at these frequencies

in a manner equivalent to infinite aerofoils.

A larger mismatch in terms of directivity shape is observed at 800 Hz, as shown by

Figure 6.31 (b). Considering the investigation of the effects of tip blanking, shown in

Figure 6.30, it is concluded that the reduction of non-compactness effects due to the tip

vortex leads to a more dipole-like directivity pattern, even for higher frequencies where

the lobes caused by non-compactness effects are typically present for infinite aerofoils.

While the excessive levels of pressure fluctuations near the trailing edge, discussed in

Section 6.3.1, are considered to only dominate for f > 1500 Hz, it is anticipated that

directivity results at frequencies f > 1000 Hz are also contaminated to some degree,

e.g. by a higher noise floor reducing the magnitude of the dips associated with the

non-compactness effects. Conversely, as discussed in Section 6.3.3, the dissipative and

dispersive errors for acoustic waves are considered negligible, as the discretisation in the

chordwise direction remains unchanged for the finite aerofoil interaction case compared

to the infinite aerofoil interaction case, for which the dissipative and the dispersive error

were shown small for acoustic waves in Appendix B.
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Figure 6.31: Directivity plots with finite aerofoil (dotted), infinite aerofoil
(solid). Line widths representative of LES uncertainty.

However, the influence of the numerical error manifesting in excessive levels of surface

pressure fluctuations at x/c > 0.8 on the directivity results cannot be considered small

and as such, the results for frequencies higher than 1000 Hz, shown in Figures 6.31 (c)

and (d) for f = 1200 Hz and f = 1600 Hz respectively, must be considered comprom-

ised, and are shown here for the purpose of completeness. Indications of a multi-lobed

pattern attributable with non-compactness effects are observed. However, due to the

presence of numerical error, further investigations are recommended to determine the

directivity patterns of finite aerofoils at frequencies in excess of 1000 Hz.

Finally, the case of a finite aerofoil allows the directivity pattern in the yz plane, i.e. nor-

mal to the streamwise direction, to be investigated. For this purpose, observer positions

are defined as shown in Figure 6.32.
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Figure 6.32: Illustration of observer positions (circles) in yz plane. Aerofoil
outlines indicated by black lines. Not all observer positions shown.

In total, there are 41 observers, of which not all are shown in Figure 6.32. The yz plane

investigated is aligned with the coordinate system origin, i.e. the leading edge of the

round tip. For the purpose of symmetry, observer position 0 coincides with the xz plane.

Figures 6.33 (a) and (b) illustrate the SPL per frequency and observer position, for the

case of value blanking past zb/Gp = 3 and for zb/Gp ≤ 0, zb/Gp ≥ 3 in (a) and (b),

respectively.

−20 −10 0 10 20
0

1,000

2,000

i

f
[H

z]

20

30

40

50

60

S
P
L

(a) zb/Gp ≥ 3.

−20 −10 0 10 20
0

1,000

2,000

i

f
[H

z]

20

30

40

50

60

S
P
L

(b) zb/Gp ≤ 0, zb/Gp ≥ 3.

Figure 6.33: SPL levels in the yz plane.
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As shown by Figures 6.33 (a) and (b), a two-lobed directivity pattern exists in the yz

plane. SPL level remain constant across all frequencies until an observer index of i = ±5,

which corresponds to an angle of ±50 degrees relative to the xz plane. For even smaller

observer angles, the noise radiation from the tip itself becomes dominant, as is apparent

when comparing Figure 6.33 (a) to (b). It is expected that these noise emissions would

be highly dependent on the tip shape, with the round tip representing a relatively low

noise configuration, due to the lack of sharp angles and the associated eddy shedding.

6.4 Summary

This chapter presented the application of the turbulence creation method proposed by

Blackmore [13] to the problem of thick, loaded, finite aerofoil. For this purpose, the

infinite aerofoil setup was suitably altered for the simulation of a finite aerofoil. This

involved an expansion of the turbulent domain, to ensure that a sufficiently wide span

of the aerofoil is immersed in homogeneous turbulence. Thus, simulation runtime is

increased considerably. Due to change in boundary conditions, it was observed that

mean flow statistics, such as axial flow velocity and turbulence intensities deviated from

those of the infinite aerofoil simulations. However, these mismatches are not considered

to impact the main conclusions.

As the two main phenomena of interest are the interaction of turbulence with the leading

edge of a finite aerofoil, as well as the formation and behaviour of the tip vortex in

simulated turbulence, and its contribution to noise emissions, a main focus was put

on conducting qualitative comparison to similar experimental and numerical studies.

While the turbulence interaction at the leading edge was compared with the results of

the infinite aerofoil simulation, documented in Chapter 5, the tip vortex aerodynamics

were compared qualitatively against literature.

Aeroacoustic results were computed in a manner analogous to the one used in Chapter 5,

i.e. by extracting the surface pressure signals on the aerofoil and using an Ffowcs-

Williams and Hawkings [118] solver to compute the far-field noise levels. The main

conclusions from this chapter are:

� In this initial study, the interaction of turbulence with the leading edge is found

to exhibit a constant behaviour up to distances very close to the tip position,

i.e. of the order of one tenth of the aerofoil chord. As such, the development

of the turbulent stresses is largely representative of the axial velocity gradient,

which is the largest of the mean velocity gradients and is primarily caused by flow

stagnation.

� The tip vortex is found to exhibit a considerable amount of wandering, which is in

line with experiments investigating tip vortices interacting with turbulence. Using

a correction algorithm to obtain averaged flow quantities in the frame of reference
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of the wandering vortex, the vortex core is shown to be considerably asymmetric,

with a development towards symmetry at larger downstream distances. Indications

are observed that the wrapping of the vortex structures is asymmetric close to the

wing and may contribute to the asymmetry of the vortex core.

� Closer investigation of the surface pressure fluctuations reveals two regions, where

the aerodynamics of the finite aerofoil unexpectedly deviate from those of an in-

finite aerofoil. Firstly, a process creating turbulence on the early suction side is

observed, which is traced to tetrahedral cells in the prism layers of the aerofoil

wall mesh. Secondly, pressure fluctuations associated with the mesh refinement

near the trailing edge, which were found to be minor in case of the infinite aerofoil

setup, are found to be significantly increased in case of the finite aerofoil. The

effects of these, likely un-physical, phenomena are assessed, and it is found for the

present case study, for frequencies below 1500 Hz, the leading edge dominates as

a noise source, illustrating the potential of the current methodology to be used as

a tool to investigate the leading edge noise production of complex geometries.

� Aerodynamic and aeroacoustic investigation indicate that for the frequency range

where the dissipative and dispersive errors for acoustic waves are small, and where

the influence of the un-physical surface pressure fluctuations are limited, the main

effect of the finiteness of the aerofoil is the reduction of the non-compactness effects

of the aerofoil sections in the region of influence of the tip vortex. In the present

simulation, the tip vortex is found to significantly suppress pressure fluctuations

on the suction side, in particular in the vicinity of the trailing edge for x/c > 0.7,

which is related to a loss of correlation between acoustic waves emitted from the

leading edge and scattered from the trailing edge at this position. While the effect

is found to be relatively minor for the current case of a finite aerofoil at a low angle

of attack, larger angle of attacks are hypothesised to lead to a more pronounced

effect of the tip vortex on the far-field noise emissions. Further investigations

are recommended to better quantify these observations. An experimental setup

suitable for the validation of the present results was designed and constructed

during this research project, and is documented in Appendix A.

� Investigation of the noise directivity in the stream-normal plane indicates that

noise levels are constant up to an angle more than ±50◦ relative to the streamwise-

spanwise plane. A local minimum is observed for observers in the streamwise-

spanwise plane. Due to lack of suitable data in the literature for the purpose

of comparison, the use of the experimental setup documented in Appendix A is

recommended to further validate this finding.

Thus, this Chapter has presented the use of a LES methodology for the investigation

of the aerodynamics and aeroacoustics of a finite aerofoil immersed in a turbulent flow.

As the application of LES to the case of a finite aerofoil with upstream homogeneous
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turbulence is novel, comparison is limited to qualitative assessment of the results against

literature, but the presented findings indicate promising avenues for future research.



Chapter 7

Conclusions and future work

In this chapter, the conclusions of this thesis are given. Additionally, recommendations

for future work are presented.

7.1 Thesis summary

The turbulence interaction with leading edges is an important source of noise in many

applications, for example for outlet guide vanes of bypass ducts, for fan blades interact-

ing with ingested boundary layers, and for the downstream row of a counter rotating

open rotor. As shown in the literature review in Chapter 2, the noise produced by a

translating, infinite aerofoil in a turbulent flow is well understood, and numerical as well

as analytical tools exist for its prediction. However, the leading edge noise production

of complex geometries, such as finite aerofoils, have so far not been extensively investig-

ated. For analytical models, the aerodynamics of the aerofoil tip represents a formidable

challenge, due to the difficulty of modelling the effect of the tip vortex. For numerical

prediction methods, such as CAA, the difficulty in generating meshes of sufficiently high

quality for the utilized high-order schemes has been found to be prohibitive up to this

point. While hybrid methods, which use a CFD solver to compute the near-field un-

steady aerodynamics, and an acoustic analogy in a post-processing step to compute the

far-field noise radiation have shown promise [124; 125], to date, none have been applied

to the problem of a finite aerofoil interacting with turbulence.

As discussed in Section 2.5, LES has been recognised as a suitable tool for the invest-

igation of finite aerofoils due to its superior ability to reproduce the formation and

development of the tip vortex when compared to RANS, while still maintaining accept-

able computational cost. Since the focus of the studies to date has been to reproduce tip

vortex formation as measured in experiment, and not the investigation of finite aerofoil

aeroacoustics, published results are available only for finite aerofoils in steady conditions

[131; 132; 133; 239]. Conversely, a number of experimental studies have assessed finite

179
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aerofoils in turbulent flows, but have not reported acoustic results.

This thesis investigated the ability of LES, coupled with a suitable turbulence generation

tool, to be used for the aerodynamic and aeroacoustic study of turbulent flows, and in

particular their interaction with complex geometries. An assessment of the state of the

art of common turbulence generation approaches led to the selection of the inlet grid

turbulence generation method proposed by Blackmore et al. [13].

The inlet grid turbulence generation method is investigated in Chapter 4 to assess its

capability to reproduce the turbulent flows produced by grid turbulence generators qual-

itatively, and to study the development of turbulence anisotropy close to the grid. The

inlet-grid turbulence generation method is then applied in Chapter 5 to the problem

of the turbulence interaction of an infinite aerofoil, in order to conduct quantitative

comparisons against the analytic model of Amiet [15], as well as qualitative comparison

against experiment, thereby evaluating the use of a compressible LES on unstructured

meshes for the study of the interaction of evolving turbulence with leading edges, and

the prediction of leading edge noise. Finally, in Chapter 6, the developed methodology

is used in an initial case study of the aerodynamics and aeracoustics of the complex

geometry of a finite aerofoil. The conclusions of these chapters are summarized in the

sections below.

7.1.1 The inlet grid turbulence creation method for LES

In Chapter 4, the method of creating grid turbulence for LES first proposed by Black-

more [13] is investigated. While commonly used synthetic turbulence generators are

superior in terms of allowing to precisely control the operational conditions, the inlet

grid turbulence creation method was chosen as it produces homogeneous turbulence

from transitioning steady flow conditions, which is considered to be a suitable approach

to avoid the introduction of spurious noise for the benefit of conducting aeroacoustic

investigations [66]. Furthermore, it does not require any modification to the underlying

code. Although it does not allow to set turbulence parameters a priori, as the user

only chooses the dimensions of the grid as well as inlet mass flow, it produces energy

spectra very close to those encountered in experiment. Finally, the method can be used

to investigate the physics of evolving turbulence.

Expanding on the work of Blackmore [13], the anisotropy of the turbulence is investig-

ated in more detail, with a focus on the processes responsible for the development of

the anisotropy of the energy carrying scales. For this purpose, the method of computing

invariants of the Reynolds stress tensor to quantify the anisotropy was combined with

spectral analysis, thereby allowing the distribution of the anisotropy over the energy

carrying scales to be investigated. Additionally, in order to investigate the effect of the

Reynolds number on the anisotropy of the energy carrying scales, two simulations at

higher Reynolds numbers were conducted. The main conclusions of this chapter are:
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� When comparing the axial and transverse one-dimensional energy spectra against

the von Kármán model for isotropic turbulence, a good fit is obtained up to the

mesh cutoff frequency for E11, which appears to include the begin of the inertial

subrange, although a more refined mesh is found to be required to unequivocally

capture the typical −5
3 power law of this range. A considerable amount of aniso-

tropy is observed in case of E22, with the majority of the anisotropy present in

the largest scales, in agreement with experiments. As the wavenumbers contain-

ing the anisotropic motions are considerably above the mesh cutoff wavenumber

determined in Appendix B, the influence of dissipative and dispersive error on the

present results is considered negligible.

� An investigation of the turbulence anisotropy in the vicinity of the grid shows

similar behaviour to comparable simulations in the literature. Using the one-

dimensional energy spectra for axial and transverse components, it is shown qual-

itatively that an apparent early isotropic state close to the grid is caused by a

change in the dominance from the energy contained in transverse, periodic mo-

tions, which are related to the grid bar wake oscillations, to energy contained in

large scale, axial motions of the order of the integral length scales. It is noted

that while the dissipative error of the employed numerical schemes is very small,

the dispersive error may contribute to the rapid reduction of coherent motions

associated with the grid bar wake oscillation frequency close to the grid. However,

the interaction between adjacent wakes is expected to produce a similar effect.

� For energy spectra deviating significantly from model spectra, as is the case in

this application, it is shown that the method of computing a spectral anisotropic

Reynolds stress tensor can provide quantitative information on the anisotropy of

the various energy carrying scales. This measure is more appropriate than the

often used ratio of the axial to transverse normal Reynolds stresses, or the ratio

of the axial and transverse integral length scales.

� The comparison of two simulations at higher Reynolds number to the baseline

reveals little effect of the Reynolds number on the anisotropy of the flow. It

is concluded that the findings concerning the non-monotonic development of the

anisotropy in the flow are also applicable to flows at higher Reynolds number,

provided the influence of the dispersive error on the observed mechanisms is small.

� Long term development of the flow shows that scalings commonly used for the

description of turbulence are applicable. However, it is found that the simulation

domain is too small to support the growth of the largest scales up to the outlet.

Indications are observed that the turbulent decay as well as the return to isotropy

is affected by the restriction of the largest scales. As the investigation of the tur-

bulence interaction noise is conducted at a position considerably upstream of this

point, the effect of the restriction of the growth of the largest scales is considered

to be negligible.
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7.1.2 The interaction of infinite aerofoils with simulated grid turbu-

lence

Having assessed the inlet grid turbulence generation method in a simple setup aimed at

the investigation of the produced grid turbulence, a comparative study for the use of

this method for the more complex problem of turbulence interaction noise is conducted

in Chapter 5. For this purpose, a thick, symmetrical, unloaded aerofoil is immersed

in the turbulent flow, which represents a well-known benchmark problem in the field of

leading edge interaction noise. In order to allow qualitative comparison of the simulation

results against experimental data, flow parameters were chosen to be representative of

the experiment of Paterson and Amiet [97]. After assessing mean flow quantities as well

as the development of the turbulence upstream the leading edge, results for the acoustic

emissions are computed using a hybrid approach. The surface pressure on the aerofoil

is sampled, and the far-field noise radiation is calculated by means of a Ffowcs-Williams

and Hawkings [118] solver. The main conclusions of this chapter are:

� Since the inlet-grid turbulence generation method does not allow to specify the

exact turbulence parameters a priori, the exact flow parameters of the experiment

of Paterson and Amiet [97] could not be reproduced. While the axial energy spec-

trum of the turbulence has been found to collapse well with the experimentally

measured values, the transverse energy spectrum was found to show considerable

deviations, a finding similar to the conclusions of Chapter 4. As the transverse

energy spectra is predominantly responsible for the noise emissions, it was con-

cluded that the noise predictions obtained from the LES will deviate from the

experimental values.

� As expected, the mismatch of the transverse energy spectrum of the simulated

flow in regards to the experimental flow conditions is found to lead to a deviation

from the acoustic results of the experiment. However, a good fit is obtained to the

analytical solution of Amiet [15], which can be adjusted for any given turbulence

spectrum. The fit is improved considerably when the turbulence model spectrum

used in the analytical model is adjusted to reproduce the exact transverse energy

spectrum in the simulation, i.e. when the anisotropy of the simulated turbulence

is taken into account.

� It is thus shown that a compressible large eddy simulation can be used to investig-

ate the noise emissions of an infinite aerofoil interacting with evolving turbulence,

and is able to reproduce non-compactness effects as defined in Section 2.4.2.1 and

the resulting directivity patterns. Furthermore, a parameter study with an aerofoil

at an angle of attack of 3 degrees is presented, which exhibits the expected shift

in directivity pattern.
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7.1.3 Finite aerofoils in simulated grid turbulence

Having established the capability of the methodology to be used for the investigation

of turbulence leading edge interaction problems, the first use of a large eddy simula-

tion for the study of a loaded, finite aerofoil immersed in a turbulent flow is presented

in Chapter 6. The simulation of the finite aerofoil necessitates a modification of the

previously used numerical domain, which is associated with a considerable increase in

computational cost. After the homogeneity of the turbulent flow is established, the de-

velopment of flow statistics upstream of the leading edge, and in particular close to the

aerofoil tip, is investigated. As the tip vortex is a phenomenon of considerable import-

ance, its development in the turbulent flow is assessed by making use of an algorithmic

approach to compute flow quantities in the frame of reference of the wandering vortex.

Finally, the noise emissions of the finite aerofoil are computed using the same hybrid

approach as for the infinite aerofoil, and the results are compared to the infinite aerofoil

baseline. The main conclusions of this chapter are:

� The present results indicate that for finite aerofoils at low angles of attack, tip

effects on the turbulence interaction are limited to the immediate vicinity of the

tip, and the interaction of the turbulence with the leading edge is largely constant

in the spanwise dimension.

� In the present case study, the tip vortex is subject to a considerable amount of

wandering. When this is taken into account by the use of a correction algorithm,

it is found that the vortex exhibits a strong asymmetry, in particular close to the

trailing edge. The wrapping of free-stream eddies around the tip vortex is found

to be similarly asymmetric and may contribute to the asymmetry of the vortex

core.

� An investigation of the surface pressure fluctuations on the simulated geometry

revealed areas of increased mean square unsteady pressure, which must be con-

sidered non-physical as they align with mesh features. While such areas have been

found to exist to a very limited extend in the infinite aerofoil cases discussed in

Chapter 5, the finite aerofoil simulation exhibits considerably stronger fluctuations

on the suction side, in particular in the vicinity of the trailing edge, for x/c > 0.9.

When these non-physical noise sources were taken into account, it was found that

for frequencies up to 1500 Hz, for which the dissipative and dispersive errors of vor-

tical and acoustic waves can be considered small, the leading edge still dominates

as a source of noise in the present simulation.

� The present results indicate that on the aerofoil sections closest to the tip, the

tip vortex has the effect of suppressing pressure fluctuations within the resolved

frequency range for vortical waves considerably. A possible hypothesis is that the

turbulent fluctuations are stretched by the tip vortex, and the energy is shifted
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towards lower wavenumbers. Analysis of the surface pressure cross correlations

in the present case study showed that for time shifts associated with the inviscid

response of the aerofoil, the sections influenced by the tip vortex exhibit a consid-

erable decrease in correlation. Subsequent aeroacoustic post processing indicated

a reduced influence of the non-compactness of the aerofoil on the far-field noise

results within the resolved frequency range where the leading edge noise domin-

ates. As such, the current results suggest that the tip vortex increases far-field

SPL for the tip most sections due to its decorrelating effect. While this effect of

the tip vortex is found to be small in the present results, as it is limited to the

immediate vicinity of the tip, it is hypothesised that finite aerofoils at a larger

angles of attack, which are associated with a stronger tip vortex, would exhibit a

stronger influence of the tip vortex on the far-field noise emissions.

7.2 Suggested future work

This thesis has demonstrated the capability of the large eddy simulation technique to

be used for investigations of turbulence, illustrated its applicability for the analysis of

turbulence interaction noise of infinite aerofoils, and presented its first use for the ana-

lysis of the case of a finite aerofoil immersed in a turbulent flow. The method may

be beneficial for the future design of low-noise applications. However, experiments are

still required to validate the simulations, in particular the results regarding the effect

of the tip vortex. An experimental setup designed for such investigations has already

been designed but could unfortunately not used in time to support the findings of this

thesis. The test rig and its design methodology are described in Appendix A, and future

work will consist of using it to corroborate the findings of this thesis. In addition, mesh

refinement studies are recommended to assess mesh dependency of the present results.

As shown in Chapter 4, the inlet grid turbulence creation method allows the develop-

ment of turbulent flows to be investigated to a considerable level of detail. A topic of

potential future research interest is the investigation of the return to isotropy of the

largest scales, and the associated development of the resolved dissipation. First results

regarding this problem have been presented in Section 4.4.2, illustrating the capability of

this approach to investigate these fundamental problems. While DNS is commonly used

to investigate these phenomena due to its capability to resolve fluctuations up to the

Kolmogorov scales, the present methodology allows flows at a higher Reynolds numbers

to be studied, due to the reduced computational cost of LES, and under the assumption

of a partially isotropic dissipation tensor.

A shortcoming of the simulations are the un-physical pressure fluctuations identified in

Chapters 5 and, to a larger extent, in Chapter 6. It is strongly recommended for future

simulations to utilize mesh generators capable of producing higher quality prism layers

close to surfaces. By doing so, the valid frequency range of this hybrid approach can
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be extended to higher frequencies and may be able to capture the contribution of the

trailing edge to the far-field noise into consideration as well.

An investigation out of scope for this research project, but potentially of large interest to

the scientific community, is the comparison of the present methodology which features

evolving turbulence, with CAA methods, which feature mainly frozen turbulence. For

an isolated aerofoil, the time scales are too small for the evolution of the turbulence to

have a large effect. This is evidenced by the excellent agreement between CAA methods

for infinite aerofoils and experiments. However, for multi-stage interaction problems,

the effect of evolving turbulence may be relevant.

Due to its suitability for aeroacoustic investigations, the simulation technique presented

in this thesis may be used for research into novel design strategies for the geometry of

the wing tip. Recent studies have shown the beneficial effect of serrated leading edges

to reduce leading edge noise emissions, and it is conceivable that an optimised wing-tip

shape would also be capable of reducing noise emissions, while retaining aerodynamic

performance. Although the method is too expensive to be used in an optimisation loop,

upon further validation of the results presented in Chapter 6, it can serve as a validation

tool for fast semi-empirical or wholly analytical prediction tools suitable for optimisation

algorithms in the future.

An application of considerable interest may be the investigation of the physics of tip

vortex formation in a turbulent flow. While numerous experimental studies exist for

comparable setups, most numerical investigations have so far focussed on direct nu-

merical simulations of isolated or twin vortices in homogeneous turbulent flows. The

presented methodology can be used to gain insights into more applied problems, and

support in improving turbulence modelling of strongly rotational flows.





Appendix A

The design and manufacturing of

a finite aerofoil test rig

A.1 Experiment strategy

After having established suitable locations for the instrumentations, it is necessary to

ensure that data recorded by the pressure tappings can be unambiguously related to

specific flow phenomena. Even though the static aerofoil is a relatively simple case,

there are still a number of complexities involved which need to be investigated before

the full case is realized. Thus, an experimental strategy was developed to solve the

problem in a stepwise fashion, which allows to gain information about each feature of

the experiment as it is added. The steps are, in detail:

1. Infinite wing design: Being one of the most common test rig configuration for

aerofoils, this setup will serve as baseline for future tests. Furthermore, it will be

used a platform to validate unsteady simulations for the prediction of aeroacoustics

conducted in parallel to the experimental work. These simulations will be based on

both the turbulence creation approach explored in chapter 4. Self noise levels can

be measured, and leading edge noise emissions can be evaluated when additional

turbulence grids are installed.

2. Infinite wing design, wall reflection setup: By adding a plate parallel to the aerofoil,

flush to the nozzle lip, it will not only be possible to investigate reflection effects,

which are important for an analytical code developed at the ANTC [247], but also

to evaluate the effect of constraining the sides of the jet on the mean flow at the

aerofoil location. It will also give valuable information about the characteristics

of the corner flow at the locations where two perpendicular plates meet, as well

as allow to investigate the need for boundary layer separation devices at the sides

of a future enclosed test section. Another interesting variant of this setup is to

187



188 Appendix A The design and manufacturing of a finite aerofoil test rig

allow for variation of distance of the lower plate to the aerofoil, thereby testing a

possible boundary layer separation mechanism, and measuring the noise radiation

from the leading edge of the plate.

3. Infinite wing design, fully enclosed setup: By adding a Kevlar panel on top, flush

to the nozzle lip, to the previous setup, the aerofoil can be fully enclosed in a

semi-open test section, where any shear layers at the streamwise position of the

aerofoil are eliminated. This allows for a test of the Kevlar panel as an acoustically

transparent wall, and to measure the deflection of the Kevlar cloth due to the flow.

4. Closed wind tunnel setup: The installation of additional panels to fully enclose

the flow between nozzle and collector will render the open jet wind tunnel facility

closed. Such a system will require an additional set of calibrations and measure-

ments before it can be used for experimental purposes.

5. Closed wind tunnel setup, boundary layer creation: The creation of a turbulent

boundary in experiment presents a challenging problem on its own. Thus, ex-

periments need to be conducted to establish the most suitable method to create

boundary layers of the required thickness.

6. Closed wind tunnel setup, infinite wing setup: Using the infinite wing setup in a

closed wind tunnel will allow to investigate the flow when a device of considerable

blocking factor is introduced to the tunnel. Additionally, acoustical data can be

generated for comparison with the later case of a finite aerofoil, which features a

tip.

7. Closed wind tunnel setup, finite wing setup: Finally, the finite wing setup is in-

vestigated with full information about all side effects. Thus, the effect of the finite

span can be unambiguously investigated. By using different grids and boundary

layer depths, the effect of isotropic and anisotropic turbulence on noise generation

can be experimentally clearly identified.

A.2 Infinite wing design

The infinite wing design presents the basis for the experimentation strategy outlined

above. It has to be designed with the final setup in mind to enhance re-usability, and yet

still be simple in geometry and manufacturing to decrease costs. The complete design,

with the context of the wind tunnel nozzle, is shown in figure A.1. Visible components are

numbered. The design presented in figure A.1 is near finalized, and has been developed

in close collaboration with advisers from the R.J. Mitchells Wind tunnel, University of

Southampton, as well as Scale Engineering, the selected manufacturing company.
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Figure A.1: Design overview for 2D infinite wing design.

The components shown are:

1. Test aerofoil: The test aerofoil is a NACA 0012 aerofoil of a span of 0.6m and

a chord of 0.5m, with pressure tappings at three spanwise locations. It will be

discussed in more detail in section A.2.1.

2. Dummy aerofoil: The second aerofoil section, here shown in black, is also of a

NACA 0012 profile, but lacks instrumentation. It will only be used to serve as

connecting element between instrumented aerofoil and opposing wall.

3. Wall disk: The aerofoil is connected to either side to two wall disks, which allow

angle of attack variation.

4. End plate: The end plates are rectangular aluminium plates of a height of 0.75m

and a length of 1m. These dimensions were chosen to allow mounting both at the

sides of the nozzle as well as along the bottom or top. They are flush mounted to

the lip of the nozzle, keeping flow disturbance at minimum.

5. Degree strip: A gap less connection between wall disk and end plate is provided

by using circular aluminium disks. Angle of attack variation is possible by using

one of 6 mounting holes, which allows the aerofoil to be mounted at angles ranging

from 0 to 18 degrees, with 3 degree increments.
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6. Stiffening rod: To provide additional safety against spanwise failure, a stiffening

rod with threads on both ends will be used to tighten two square aluminium plates

against the ribs.

7. Struts: Additional spanwise stiffness will be provided by addition of two off-the-

shelf struts in test and dummy aerofoil, each.

8. Bottom rib: The bottom rib is designed to be mounted by means of stitch

soldering to the wall disk, providing ample stiffness against bending moments,

while avoiding warping of the wall disks through excessive heat. Additionally, it

provides spanwise stiffness to the wing by protruding 75mm into the aerofoil.

9. L-profile fixture: Two off-the-shelf cast iron L-profiles on either side will provide

ample support for the end plates. They are discussed in more detail in section

A.2.3.

All screws on the flow side of the plates are designed to be countersunk, so as to minimize

flow disturbance.

Not shown in figure A.1 are devices for turbulence generation, such as a grid at the

nozzle outlet. This is due to the fact that it is at this point not wholly clear how the

turbulence should be created, as it will also depend on ambient turbulence levels, noise

production by the grid, and required streamwise development lengths. It is expected,

however, that the mounting of a turbulence grid should be relatively straightforward.

A.2.1 Aerofoil design

The aerofoil is the most critical of all the rig components, and has to be designed with

care. Not only does it have to withstand the considerable forces of the wind tunnel,

it also has to be manufactured to a great accuracy in order to accurately represent

the geometry used in simulations. Furthermore, it has to provide sufficient space for

instrumentation, and allow easy access for installation and maintenance of sensors.

Figure A.2 shows the test aerofoil design with attached wall disk. The suction side

surface is displayed in a transparent blue colour, to allow insight into the inner structure

of the wing. Yellow dashed lines show the location of the pressure tappings on the

suction side, which are continued on the pressure side.
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Figure A.2: Design overview for test aerofoil.

The components numbered are:

1. Suction side surface: The suction side surface is to be made of carbon composite,

and permanently glued to the bottom and top rib, shown here as components three

and four, respectively.

2. Pressure side surface: Also to be made from carbon composite, the pressure

side surface is designed to be detachable to allow easy access for installation and

maintenance of the pressure taps. In order to create a smooth surface, the pressure

side surface will be slid into the suction side surface, with the latter overlapping

the former by 20mm.

3. Bottom rib: The bottom rib is stitch welded on the outside of the wall disk,

which is not shown here, and provides a large bonding surface to the suction side

surface, preventing detachment due to the forces at large angles of attack. It is to

be water jet cut, with pockets for struts and cables, as well as holes for the fixtures

for attachment of the pressure side.

4. Top rib: The top rib is recessed by 20mm from the end of the wing to provide

space for the pressure taps. Beside the pockets for struts and cables, as well as

the holes for the pressure side fixtures, it contains two holes providing attachment

points for the dummy aerofoil, or for future tips.

5. M6 countersunk screwed connections: Four such connections on each rib

provide stable connection of the pressure side surface component to the ribs. Ad-

ditional safety against the nuts becoming loose through vibration is obtained by

using spring washers.
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Following previously conducted steady simulations,, the pressure tap locations are chosen

at 0.3 m, 0.5 m and 0.59 m respectively, as measured from the wall disk. When the wing

is operated in the finite wing configuration, this would translate to the one at 0.3 m

being subjected to the mean flow, the one at 0.5 m measuring the outer boundary layer

while the row of pressure taps at 0.59 m would be able to record the effects of the tip

vortex on surface pressure. Each of the locations contains 16 taps. Their chordwise

locations were chosen based on the result of an optimization algorithm, documented in

Section A.2.2.

The dummy aerofoil is essentially identical in design to the test wing, with the differences

of having no pressure tappings and no detachable pressure surface.

(a) Dummy aerofoil.
(b) Grub screws.

Figure A.3: Dummy aerofoil and aerofoil connection details.

Figure A.3 a) shows the design overview of the dummy aerofoil. The design for the

bottom rib is reused to reduce production costs. Again, two struts provide additional

spanwise stiffness. As there is no need to access instrumentation in the leading edge of

the aerofoil, the front strut is relocated towards the leading edge. At the top rib, two

thick bolts are fixed, which are essential to mounting dummy aerofoil to test aerofoil.

Figure A.3 b) illustrates how the connection is made. The test aerofoil suction side

surface, as well as the top rib, has been made transparent, and the struts are omitted

for greater image clarity. The bolts are slid into their corresponding holes in the top

rib of the test aerofoil, and fixated by means of two grub screws, which are shown in a

light blue colour. The screws are designed to be sunk completely in their threaded holes.

Any remaining surface imperfection is to be smoothed over by means of tape. This is

essential, as these holes are close to the tip of the aerofoil when the rig is operated in

the finite aerofoil setup. Since one of the main research interests is the flow phenomena

of tip vortices, the surface must be kept as smooth as possible.

A.2.2 Tapping location optimization procedure

Since the number of pressure tappings has to be limited to a manageable amount of

channels, information of the surface pressure acquired from the experiment is limited to
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a number of positions on the aerofoil. In order to compute the pressure distributions,

it is ideal when these positions are chosen in such a way that they measure the pres-

sure finely spaced where large gradients exist, and coarsely spaced where the pressure

is largely constant. Prior experiments [99; 135] have often chosen to cluster the sensors

close to the leading edge, where stagnation point and suction peak are expected, and

spread sensor placement further apart towards the trailing edge. Furthermore, these

experiments often also worked with a larger number of sensors. However, as detailed

surface pressure data from a number of numerical simulations run for the experiment

design is available in this case, it is possible to determine these positions with high ac-

curacy prior to experiment.

The method developed for the optimization of the tapping locations follows the con-

sideration that the error when computing the lift coefficient cl should be minimal. A

straightforward algorithm for computing cl from a set of discrete data points is using

the trapezoidal rule for numerical integration:

∫ xb

xa

p(x) dx ≈ (xb − xa)
[
p(xa) + p(xb)

2

]
, (A.1)

where xa and xb are positions on the aerofoil surface, and p(x) is the surface pressure

as a function of position. As the lift of a given section of the aerofoil can be calculated

with high accuracy using the information from the simulations, a cost function is now

defined:

F =

ntaps∑

n=1

√
(clnum(n)− cldisc(n))2, (A.2)

where clnum(n) is the accurate lift for a segment n of the surface between two posi-

tions p(xa), p(xb), computed from the pressure information extracted from the numerical

simulation, and cldisc(n) is the lift for this segment computed using only the pressure

information from the two points to either side of the segment, thereby mimicking the

condition in experiment. The pressure data was extracted from a simulation of a finite

aerofoil an emulated boundary layer at 6◦ angle of attack.

Using this cost function, the optimization loop shown in figure A.4 can be set up.

Pressure
data

Initial
positions Px

clnum

cldisc

F (clnum , cldisc)

εs = εs

εs = εs/2

Ni < L

Px = Pxnew(εs)cldisc

Final
positions Px

F ≥ Fold

F < Fold

Ni = Ni + 1

Ni = 1

t
f

F = Fold

Figure A.4: Simplified optimization loop diagram.
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In order to reduce the complexity of the diagram, the loop over all segments n of the

aerofoil surface is omitted. Blue boxes symbolize input and output, while grey ellipses

represent computational steps. The optimization takes as input the pressure data of an

aerofoil section, as well as an initial vector Px of probe positions. These may be equally

spaced, or already pre-arranged by the user. The algorithm then computes the initial lift

coefficients clnum and cldisc for each segment. The results are subsequently fed into the

optimization loop, which evaluates the error for each element and sums them to obtain

the absolute value of the cost function. The value of the cost function is then compared

against an initial value for the cost function, which can be set to a high value for the

first iteration. In subsequent iterations, if the cost function value is higher than the

value of the previous iteration, the step size εs, which determines how far the positions

of the pressure taps can be moved by the improvement algorithm, is kept constant. In

this case, the iteration counter Ni is increased. If the cost function value is lower, εs is

halved, and Ni reset. The next step consists in comparing the iteration counter against

a limit L, which is set by the user. If Ni < L is false, the loop is exited and the final

positions are obtained. If Ni < L is true, the vector of the probe locations Px is updated

with the improvement algorithm. It narrows the distance between pressure taps, thereby

decreasing the error of the segment. During this procedure, priority is given to segments

with the largest errors, and the position of each tap can only be moved once in each

iteration. The value of the cost function for the old Px is stored to Fold, and the new

value cldisc is computed with the updated Px. The cost function is then recalculated,

and the cycle begins from anew.

There are a number of constraints put on the placement of the pressure taps. As the

suction side is the more aerodynamically important side of the aerofoil, it was decided to

place 10 pressure taps there, and only 6 on the pressure side. An additional, fixed, probe

location is the leading edge, where it is intended to install a pressure transducer capable

of recording high frequency pressure changes for aeroacoustic analysis. Furthermore, a

hard-coded limit was put on the probe locations in terms of their minimal proximity to

the trailing edge, since the thickness of the aerofoil does not permit for instrumentation

beyond a certain chordwise position.

The optimized probe locations are shown in figure A.5. Previously conducted experi-

ments showed that the shapes of the pressure distribution of sections z = 0.3 m and

z = 0.5 m are largely the same. Thus, only the optimization results for sections z = 0.3

m and z = 0.595 m are discussed here.
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(b) z = 0.595.

Figure A.5: Optimized probe locations at two positions along the span.

When comparing figure A.5 a) with b), it is apparent that the optimization procedure

led to a higher clustering of the pressure taps close to the leading edge in case of the

free-stream section z = 0.3 m compared to the tip section z = 0.595 m. Considering the

high pressure gradients which can be expected in free-stream conditions at this position,

this is a desired outcome. The more spread out positions of the pressure taps in the tip

section will also allow to measure tip vortex behaviour in greater detail.

The optimization of the positions of the pressure taps on the pressure side did not

work as expected. Qualitatively, a trend can be observed where the probe locations are

shifted downstream, as opposed to being clustered towards the leading edge. It is not

entirely clear why this is the case. However, due to the low aerodynamic importance of

the pressure side, it was decided to accept this optimization outcome and to arbitrarily

place one of the probe locations half way between the optimized, first location on the

pressure side, and the leading edge itself, in order to obtain a better information on the

pressure gradient there.

A.2.3 Fixture apparatus

The Boldrewood anechoic wind tunnel facility is designed to provide a high quality

anechoic environment. All walls are covered in foam cones, while the floor is covered by

a steel wire mesh above a soft and sound absorbing surface. Thus, only limited fixture

points are provided, which are designated for use by the traverse system as well as the
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data acquisition systems. It is therefore necessary to mount the test rig solely to the

nozzle. Until such time that the completely closed test section is assembled, all forces

need to be managed by the connection to the nozzle alone, necessitating very sturdy

connections.

(a) Degree strip detail. (b) L-profile detail.

Figure A.6: Fixture details.

The fixtures are shown in more detail in figures A.6 a) and b). The degree strip, shown

in figure A.6 a), provides four mounting points to the wall disk via four M10 bolts and

is itself mounted to the side plate by means of eight M8 bolts. By sealing the gap

between wall disk and side plate, any leakage of flow is eliminated and possible whistling

effects are kept at a minimum. Although altering the angle of attack requires first the

removal and then reassembly of 8 screws, this is considered a acceptable trade-off for

the increased sturdiness.

Figure A.6 b) shows the L-profile and its connection to the nozzle frame. To keep

expenses low, the profile is chosen from the catalogue of cast-iron fixtures supplied by

NORELEM. The only additional machining required is the drilling of the mounting

holes. The element will be fixed by two M16 bolts to the nozzle frame, and will be

providing mounting to the side plate by means of 4 M10 countersunk screws. This

connection should be able to provide sufficient support to wall plate and aerofoil, even

when a high angle of attack is chosen. On-site machining will be required to drill the

mounting holes in the nozzle frame.
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A.3 Application during validation of the Boldrewood an-

echoic wind tunnel

Most recently, the author was informed that the finite aerofoil test rig has been used

to validate the Boldrewood anechoic wind tunnel facility. Figures A.7 (a) and (b) show

the finite aerofoil aerofoil test rig in its configuration as infinite aerofoil mounted to the

nozzle of the wind tunnel, within the anechoic chamber.

(a) Overhead view. (b) Upstream view.

Figure A.7: Mounted finite aerofoil test rig.

The author was informed that the finite aerofoil test rig performed very well for the

purposes of wind tunnel validation, and funding is being pursued to allow to use the

test rig for its intended purpose to further investigate the aeroacoustics of finite aerofoils

interacting with turbulent flow.
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Linear wave propagation analysis

While finite volume methods on unstructured grids are applicable to a wide of problems,

they are often limited to a relatively low order of accuracy [248]. As such, this may lead

to the introduction of an excessively large numerical error, which may lead to the results

being invalid. This error may be associated with two main features of the unstructured

meshing approach:

1. The use of relatively low order numerical schemes, which are able to handle the re-

latively poor mesh quality of unstructured meshes compared to structured meshes;

2. The use of mesh zones featuring rapid refinement and derefinement.

In regards to the first feature, as discussed in Section 3.2.4, due to the differences in

terms of the requirements for the meshing methodology of the turbulence development

problem compared to the turbulence interaction problem, and the associated mesh qual-

ity changes, it was not feasible to use the same numerical schemes for all simulations

presented in this thesis. In order to support the analysis of the main body of this work,

the effect on the dissipative and dispersive error associated with using either the second

order upwind biased scheme, given by Eqn. (3.21), or the central scheme, given by Eqn.

(3.20), for the convective term of Eqn. (3.2) are investigated in this section. By doing

so, the cut-off wavenumbers of the utilised numerical schemes is established.

In regards to the second feature, the introduction of the aerofoil into the flow for the

turbulence interaction cases was associated with the need for an additional refinement

step to be able to properly resolve the aerofoil curvature, as discussed in Section 5.1.1

and documented further in Appendix C.1. While an assessment of the potential occur-

rence of spurious wave reflections at the interface of derefinement is discussed further in

Appendix D.1, this section deals with the dissipation and dispersion errors associated

with the propagation of a vortical wave through a refinement or derefinement interface.
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B.1 Analysis methodology

In order to facilitate the analysis of dissipation and dispersion errors of the chosen

numerical schemes on inhomogeneous meshes, a variant of the commonly used linear

wave propagation analysis has been developed. The test domain, as well as its boundary

conditions, is shown in Figure B.1.

l

U =




U1

U2 sin(ωt)
0


 ,

p = 0

dU
dy = 0, dp

dy = 0

dU
dy = 0, dp

dy = 0

dU

dy
=0,

dp

dy
=0

x

Figure B.1: Linear wave propagation analysis test case setup. Colours illus-
trate instantaneous vorticity wave contours. Dotted line indicates position of
refinement or derefinement interface, if used.

For the inlet boundary condition, U2 is chosen as an arbitrarily small constant fraction

of U1. In order to replicate the numerical setup used in the main body of the work as

much as possible, the linear wave propagation tests were performed using the pisoFoam

and the rhoPimpleFoam solvers for tests involving vortical waves and acoustic waves,

respectively. The viscosity in the domain was set to zero to eliminate viscous diffusion.

A cell size of ∆x = 10−3 m was chosen. The transverse velocity is sampled at 7 positions

along the centre line. All simulations were conducted using the second order implicit

backward time scheme, as given by Eqn. (3.22).

A given numerical scheme may introduce two types of error to the result. These are dis-

sipative and the dispersive errors. Following Anderson [248], who defines the dissipative

error εDiss as the difference between the ratio of the magnitudes of a periodic signal at

two successive time steps and unity, εDiss is defined for the present study over space in

an analogous way as:

εDiss =
|U(xi+1)|
|U(xi)|

− 1, (B.1)

thereby quantifying the change of the wave magnitude as the wave is propagated through

the domain. Similar definitions have been used by Hu et al. [249], Bogey and Bailey [250]

as well as Najafi-Yazdi and Mongeau [251]. The dispersion error, which quantifies the

property of the numerical solver to transport waves of different wavelengths at different

velocities, is defined as:

εDisp =
ω/κ1

vp(xi)
− 1, (B.2)
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with

vp(xi) = λl ·
(
ω

2π
+

2πϕi
xi/U1

)
, (B.3)

where λl = U1/f is the wavelength and ϕi is the phase shift of the sinusoid at position

xi relative to the inlet boundary condition. The cut-off wavenumber κc is defined as:

κc =
2π

PPW ·∆c
, (B.4)

with ∆c being the cell size, and PPW is the number of Points Per Wavelength, which

has to be chosen such that εDiss and εDisp are within acceptable bounds. While for

the assessment of low-dispersive and dissipative schemes for CAA purposes arbitrarily

chosen accuracy limits ranging from 1× 10−2 [251] to 5× 10−5 [250] have been used for

εDiss and εDisp, for the present, relatively low order, numerical schemes, a level of 0.05

for both types of numerical error can be considered sufficiently small1.

The PPW criterion is related to the advection velocity and frequency of the transported

wave by:

PPW =
U1

f∆x
, (B.5)

allowing to study the PPW criterion on a fixed grid by varying either frequency or velo-

city. For the studies of the linear propagation of vortical waves, U1 is kept at constant

60 m/s, corresponding approximately to the mean flow velocity U0 used in Chapter 5

and Chapter 6.

The value of PPW required for the accurate propagation of waves in the domain de-

pends on the numerical scheme employed. While high order schemes used for CAA are

able to resolve waves with a minimum of 4 to 9 PPW [249; 250], more generally it is

recommended to use 15 to 40 for acoustic purposes [252].

B.2 Spatial scheme errors

Figures B.2 (a) and (b) illustrate the spatially averaged error εDiss and εDisp for the

streamwise wavenumbers κ1 = 104.72, 157.08, 209.44, 261.78, 314.16 m−1, which cor-

responds to 60, 40, 30, 24 and 20 points per vortical wavelength, respectively. To allow

spatial averaging, a homogeneous mesh was used. The value of the time step is set to a

CFL number of 0.2, which is assumed to be sufficiently low to minimize temporal integ-

ration errors, and furthermore corresponds to the typical CFL number in the vicinity of

the aerofoil, as shown in Figures 5.2 (a) and (b).

It is apparent from Figure B.2 (a) that the dissipative error increases with increasing

wavenumber if the upwind biased scheme is used for the convective term. Conversely,

while the dissipative error is very small for all wavenumbers when the central scheme

1Internal Communication
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Figure B.2: Spatial dissipative and dispersive error as a function of wavenumber
of the central scheme (blue circle), upwind biased scheme (black square), upwind
biased scheme using a gradient limiter (red ’x’) on a homogeneous mesh at a
CFL number of 0.2. Dashed lines indicate the accuracy limit.

is used, the dispersive error increases rapidly with increasing wavenumber, as shown by

Figure B.2 (b). This result is expected, as central space discretization schemes may

exhibit severe spurious oscillations for advection dominated problems due to a lack of

numerical dissipation [248], as indicated by εDiss of the central scheme being positive at

some of the wavenumbers investigated in Figure B.2 (a). These spurious oscillations are

particularly problematic in terms of the dispersive error introduced. It is concluded that

in terms of the dispersive error, upwind biased schemes are superior, with the dispersive

error not exceeding 0.2 for the wavenumbers investigated in this study.

Based on the results shown in Figure B.2 (a) and (b), it is concluded that at a CFL

number of 0.2, a cut-off wavenumber of κc = 251.33 m−1 is associated with an acceptable

level of εDiss and εDisp as the numerical errors are below the previously defined accuracy

limit of 0.05. Consequently, it is concluded that a PPW value of 25 is adequate for the

propagation of a vortical wave using the upwind biased scheme.

Finally, the use of a gradient limiter in the spatial discretisation schemes is not found

to have a significant effect on either dissipative or dispersive error at the wavenumbers

investigated and CFL number. It is concluded that the gradients in the present propaga-

tion tests are not exceeding the values set in the limiter function, and thus the results

of the scheme with the gradient limiter function are identical to when no such function

is used.

B.3 Temporal scheme errors

For the purpose of investigating the effect of the CFL number on the numerical accuracy,

Figures B.3 (a) and (b) illustrate the results of a parameter study where the CFL

number was varied between 0.1 and 1.0, and the inlet signal wavenumber was kept at

κ = 209.44 m−1, which corresponds to a PPW value of 30. In order to keep the points
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per vortical wavelength constant, the CFL number was altered by changing the time

step ∆t.
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Figure B.3: Temporal dissipative and dispersive error as a function of ∆t of
the central scheme (blue circle), upwind biased scheme (black square), upwind
biased scheme using a gradient limiter (red “x”) at κ = 209.44 m−1. Dashed
lines indicate the accuracy limit.

Considering the dissipative error, shown in Figure B.3 (a), it is found that for a sinusoid

of κ = 209.44 m−1, i.e. with 30 points per wavelength, the dissipation error does not

exceed -0.05 at CFL numbers of less than 1. Similarly to the results of the previous

section it is found that, as expected, the central scheme is less dissipative than the

upwind biased scheme.

Considering the dispersive error, shown in Figure B.3 (b), it is found that the upwind

biased scheme exhibits lower dispersive error up to U1κ∆t = 0.1, which corresponds to

CFL = 0.5, after which it performs worse than the central scheme. However, since εDisp

is in excess of 0.5 even before this point, it is concluded that an excessive dispersive

error must be anticipated if either of these spatial schemes is used in conjunction with

the backward time scheme at CFL > 0.5.

In regards to the results discussed in Chapter 5, it is concluded from Figures B.3 (a) and

(b) that for the CFL numbers encountered in the region of interest, i.e. in the vicinity

of the aerofoil, εDiss and εDisp are relatively small when the upwind biased scheme is

used to compute cell face fluxes.

Finally, the use of a gradient limiter in the spatial discretisation schemes is not found

to have a significant effect on either dissipative or dispersive error at the CFL numbers

investigated. It is concluded that the gradients in the present propagation tests are not

exceeding the values set in the limiter function, and thus the results of the scheme with

the gradient limiter function are identical to when no such function is used.



204 Appendix B Linear wave propagation analysis

B.4 Refinement analysis

For a study of the effect of the refinement and derefinement interfaces on the dissipative

and dispersive error, the cell size in streamwise direction is halved, i.e. from ∆c to ∆c/2,

or doubled, i.e. from ∆c/2 to ∆c, respectively, in the middle of the domain as illustrated

by the dotted line in Figure B.1. Figures B.4 (a) and (b) illustrate the mesh for a

refinement and a derefinement interface, respectively.

∆c
∆c
2

(a) Mesh refinement interface.

∆c
2 ∆c

(b) Mesh derefinement interface.

Figure B.4: Illustration of mesh refinement and derefinement interfaces.

As mesh refinement and derefinement interfaces were used only in conjunction with the

upwind biased spatial scheme as defined by Eqn. (3.21), this scheme is also used to in-

vestigate the dissipation and dispersion error associated with these interfaces. In order

to minimise εDiss and εDisp inherent to the upwind biased scheme, a conservative value

of 40 PPW is used, which corresponds to a wavenumber of κc = 157.08 m−1. The value

of the time step is set to a CFL number of 0.2, based on ∆c, in order to minimize tem-

poral integration errors. The results for the dissipation and dispersion error across the

interfaces illustrated in Figure B.4 are presented in Figures B.5 (a) and (b), respectively.

It is noted that in regards to εDiss and εDisp, a refinement or derefinement step affects

both the errors arising from the spatial as well as from the temporal schemes. While the

time step is the same in the two cases, the local CFL number changes as it is dependent

on the cell size.

Considering the dissipative error, shown in Figure B.5 (a) that upstream of the refine-

ment step, the values of εDiss are in good agreement with those of εDiss for the upwind

biased scheme on a homogeneous mesh. Further downstream, the effect of a sudden

refinement step on εDiss is then observed to consist of a temporary positive value. This

is due to the better downstream discretisation of the wave, which is better able to cap-

ture the extrema of the wave and hence the magnitude of the wave increases. However,

at points further downstream, values of εDiss are obtained which are representative of

homogeneous meshes of cell size ∆c/2. The opposite behaviour is observed for the case

of a derefinement step. As such, the behaviour in both cases is as expected, as εDiss

has been observed for the Upwind biased scheme in Sections B.2 and B.3 to be more

dependent on the cell size than on the CFL number at the present low CFL numbers of
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0.2 and 0.4 in the fine and coarse domain, respectively.

It is noted that the dissipative error, for this CFL number and PPW, does not exceed

-0.01 for both refinement and derefinement steps, and is therefore considerably below the

accuracy limit of -0.05. It is concluded that in terms of the dissipative error, the effect

of the refinement and derefinement interfaces is limited to the immediate downstream

vicinity of the interface.
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Figure B.5: Dissipative and dispersive error for a vortical wave across a refine-
ment and derefinement interface using the upwind biased scheme Eqn. (3.21)
at a CFL number of 0.2 and 40 PPW. Dashed lines indicate the accuracy limit,
dotted lines indicate the position of the interface.

For the dispersive error, shown in Figure B.5 (b), it is observed that for both cases where

the cell size is changed, εDisp is higher than for the homogeneous mesh case. In particular

for the refined domains, this is attributed to the effect of the CFL number, as the spatial

scheme used in conjunction with the backward temporal scheme was observed in Figure

B.3 (b) to exhibit a significantly increasing εDisp with increasing CFL number, while

εDisp was observed in Figure B.2 (b) to be not as strongly affected by the refinement

level.

Downstream of the refinement or derefinement interface, εDisp is observed to follow

an increasing and decreasing trend, respectively. It is conceivable that given sufficient

development length, the value of εDisp would obtain a value representative of that of a

homogeneous mesh. It is concluded that the effects of the refinement or derefinement

step on the dispersive error are not limited to the vicinity of the interface, although the

effects appear more prominent downstream than upstream. However, with the exception

of the point immediately downstream of the derefinement interface, all dispersion errors

are well below the accuracy limit of 0.05 for this wavenumber and CFL number.
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B.5 Assessment of dissipative and dispersive error for acous-

tic waves

It is emphasised that the discussion above is applicable to the advection of vorticity

waves, i.e. the turbulent eddies of the flow, which are being investigated predominantly

in Chapter 4. Conversely, for the primary focus of this thesis, the generation and

propagation of leading edge noise, the accurate advection of the acoustic waves is more

relevant than the advection of the turbulent eddies, which are of secondary interest once

the interaction with the leading edge has taken place, as the trailing edge noise generation

has been found not to be affected by external turbulence [95]. Since acoustic waves

propagate at Uc = c0 + U1, they are typically discretised in the numerical domain by a

number of points per wavelengths of almost an order of magnitude higher than vorticity

waves. Consequently, dissipative and dispersive errors are considerably reduced. For

completeness, a study was conducted to investigate εDiss and εDisp for acoustic waves.

This necessitated the use performing a compressible LES. Since the discussion of acoustic

results are conducted predominantly in terms of frequency, specification of the pressure

fluctuation is conducted via frequency.

Results for the dissipative error and the dispersive error of a propagating sinusoidal

pressure fluctuation of 2000 Hz are shown in Figures B.6 (a) and (b), respectively. As

the simulations in Chapters 5 and Chapter 6, where a potential numerical error in terms

of the propagation of acoustic waves would affect the presented results, were conducted

using the upwind biased scheme given by Eqn. (3.21) for the convective term, only results

of the linear advection tests with the upwind biased schemes are shown.
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Figure B.6: Dissipative and dispersive error for an acoustic wave across a refine-
ment and derefinement interface using the upwind biased scheme Eqn. (3.21)
at a CFL number of 0.2 and 40 PPW. Dotted lines indicate the position of the
interface.

It is apparent from Figure B.6 (a) that the high number of points per wavelength for

an acoustic wave, in this case 203 points, contributes to very low dissipative errors,

which are significantly below the threshold of 0.05. No consistent influence of the mesh
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refinement step is observed within this case study for acoustic waves, as the variation of

εDiss for the case with the refinement and derefinement steps is within the variation of

εDiss of the case with a homogeneous mesh. As εDiss is, at all points, very small, further

investigation is omitted.

As shown in Figure B.6 (b), the dispersive error is observed to develop similarly for the

propagation of acoustic waves as for vortical waves in response to changes of the mesh,

with the inhomogeneous meshes exhibiting higher absolute dispersive errors than the

homogeneous mesh both upstream as well as downstream of the interface. However,

in the case of acoustic waves, it is observed that the value of εDisp is affected globally,

with no obvious difference between the upstream and downstream domains. As the

differences in terms of εDisp for the homogeneous and inhomogeneous meshes are one

order of magnitude below that of the accuracy limit of 0.05, it is concluded that impacts

of the refinement and derefinement interfaces on the propagation of acoustic waves are

negligible. It is concluded that using the upwind-biased spatial discretisation scheme

for the convective term is adequate for the purpose of replicating the propagation of

acoustic waves over distances not much larger than the aerofoil chord.

It is furthermore emphasised that in this work the acoustic waves were not propagated

to the far-field. Instead, as discussed in Section 3.1.3, the acoustic analogy of Ffowcs-

Williams and Hawkings [118] was used to determine the far-field acoustics from the

on-surface pressure fluctuations induced by the impingements of the vortical disturb-

ances on the leading edge. One area where the propagation of acoustic waves remains

relevant are the non-compactness effects as discussed in Sections 2.4.2.1 and Section

5.4.2. Considering the very low magnitude of εDiss and εDisp for the frequencies of in-

terest when an upwind biased scheme is used, it is concluded that the numerical errors

are negligible in case of the aeroacoustic analysis conducted in Chapter 5 and Chapter 6.





Appendix C

Details of numerical methodology

C.1 Mesh generation methodology

In order to allow meshing of geometries more complex than the turbulence interaction

case discussed in Chapters 3 and 4, an unstructured mesh generation approach was

selected. To facilitate reproduction of the meshes used in Chapters 5 and 6, the process

is described in the following.

The mesh generator used is part of the commercial package HEXPRESSTM/Hybrid and

generates unstructured, geometry fitted meshes based on a fractal approach. In a first

step, the domain is discretized by hexahedral cells of size ∆b. Subsequently, volumes and

patches requested by the user to be of a higher refinement level are refined by subdividing

the cells by a factor of two in all directions. The resulting cell size is computed as

∆nr = ∆b0.5
nr , (C.1)

where nr is the refinement level. The user may also specify a number of buffer lay-

ers between the refinement volume or patch and the surrounding domain, where the

refinement level is kept constant. Once all patches and volumes have been refined,

the generator moves points of cells which cross a patch onto the patch, and deletes

cells outside the domain, i.e. those contained within an immersed geometry. Thus, a

geometry-fitted mesh is obtained. Finally, the algorithm introduces prism layers onto

immersed geometries to improve boundary layer refinement.

The general approach to generate the meshes used in Chapters 5 and 6 is the same,

and is illustrated in Figures C.1 (a) and (b) for the far-field and the near-field domain,

respectively.

209
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nr = 5

nr = 0

(a) Far-field domain.

nr = 6

nr = 7

nr = 5

(b) Trailing edge near-field domain.

Figure C.1: Setup of refinement zones.

The base grid cell size chosen for the domains used in Chapters 5 and 6 is ∆b = Gp, and

is used in the buffer domain where the refinement level is nr = 0, as illustrated in Fig-

ure C.1 (a). By setting nr = 5 within the turbulence domain, which is indicated by the

dashed lines in Figure C.1 (a), a discretization of 32 cells per grid period is achieved, sat-

isfying the recommendations by Blackmore et al. [13] for the suitable resolution for the

inlet grid turbulence creation method , and resulting in acceptable levels of dissipative

and dispersive errors for the vortical waves in the energy carrying range as established

in Section 4.1.3 and Appendix B.

In order to minimize interactions of the sides of the turbulent flow with the derefinement

zones between turbulence domain and buffer domain, the derefinement zone outside the

turbulence domain was extended by inserting 5 layers of cells for each refinement level

before a derefinement step of a factor of 2 is performed. By doing so, a clear separation

between derefinement zones and the sides of the turbulent jet was achieved, as shown in

the investigation of the potential remaining interaction effects between the derefinement

zone and the edges of the turbulent flow, documented in Appendix D.1.

In the near-field of the aerofoil, illustrated by Figure C.1 (b), an additional refinement

step to a level of nr = 6 is performed to achieve acceptable discretization of the curvature

at the leading edge, which is of particular interest from an aeroacoustic perspective

[94; 101]. This is also beneficial in terms of minimising dissipative and dispersive error

of acoustic waves propagating from leading edge to trailing edge and vice-versa, which

for the reproduction of the non-compactness effects. Between the aerofoil surface and

near-field, a minimum of 10 cell layers were prescribed to achieve an acceptable thick-

ness of this refined layer, while keeping computational expense acceptable. The number

of these cell layers is, within the software HEXPRESSTM/Hybrid governed by the so

called diffusion level parameter, which determines to how many consecutive neighbours

of a cell flagged for refinement the refinement level should be propagated. As noted in

Chapter 6, this number had to be decreased from 4 to 2 in case of the finite aerofoil due

to the added computational expense of a fully 3D geometry.
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While the chosen meshing approach is versatile and has a rapid turnaround time com-

pared to classical structured meshing approaches, it was found that the prism layer

generation utilities on the surface of immersed geometries are lacking. While this is

not a critical shortcoming for the present case, due to the negligible influence of the

boundary layer on leading edge noise generation, it is suggested that a more advanced

unstructured meshing methodology is used if a problem which is more dependent on the

accurate capturing of the boundary layer is investigated. In the present investigation,

the prism layer consisted of 10 cells inserted within a height of one cell at nr = 6 and 7

for the main body of the aerofoil and the trailing edge, respectively.

Finally, a refinement level of nr = 7 was selected for the trailing edge, in order to be

able to discretize a blunt trailing edge.

C.2 Implementation of the non-reflective boundary condi-

tion waveTransmissive in OpenFOAM

In order to minimize reflections of waves from the boundaries of a numerical domain,

non-reflective boundary conditions are required. A comprehensive investigation of this

problem was conducted by Poinsot and Lele [229], who proposed an approach to compute

characteristic boundary conditions for the numerical solution of the Navier-Stokes equa-

tions. The waveTransmissive boundary condition in OpenFOAM v3.0 is a simplified

implementation of their approach, and aims to reducing reflections by solving:

Dφ

Dt
≈ ∂φ

∂t
+ wp∇φ = 0, (C.2)

where D/Dt is the material derivative and wp is the wave advection velocity, which

is assumed to be normal to the boundary face. The wave advection velocity is then

computed as:

wp =
φp
|Sf |

+

√
γ

ψp
, (C.3)

where φp is the patch face flux, Sf is the patch face area vector, γ is the ratio of specific

heats, and ψp is the patch compressibility. Since waves may be incoming as well as

outgoing, the advection velocity for waves coming into the domain is set to zero in a

corrective step.

As pointed out by Poinsot and Lele [229], perfectly reflective boundary conditions may

lead to an ill-posed problem, as the mean pressure is not imposed by any boundary.

Consequently, they suggested to make use of partially non-reflective boundary condi-

tions, where the static pressure is defined for a point far outside the domain, and is

imposed to the simulated domain by an acceptably low level of reflection from the far-

field boundaries.

In OpenFOAM v3.0, this behaviour is implemented by the use of a field relaxation
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coefficient, defined as:

krel =
wp∆t

l∞
, (C.4)

with l∞ as the relaxation length scale. High values of l∞ will lead to a less reflective

boundary, and hence to a higher possible deviation of the boundary from the value of φ

in the far-field, while low values of l∞ will lead to more reflective boundary.

With this definition, the last unknown term in Eqn. (C.2) , the approximated partial

derivative of the quantity φ in time on the boundary can then be computed using the

second order accurate backward scheme Eqn. (3.22) as:

∂φ

∂t
=

2φn−1 − 0.5φn−2 + krelφ∞
1.5 + krel

, (C.5)

with φ∞ being the value of the quantity φ in the far-field.



Appendix D

Mesh parameter studies

This appendix provides documentation of an assessment of the influence of the derefine-

ment areas from the turbulence domain towards the buffer domain, as well as a limited

mesh refinement study.

D.1 Elimination of the buffer domain for the turbulence

interaction case

A potential concern of the domain setup used for the turbulence interaction case is the

rapid derefinement from the turbulence domain towards the far-field buffer domain. It

is conceivable that the derefinement zone may interfere with the turbulent shear layer

between the steady far-field flow and the turbulent jet.
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Figure D.1: Case setup of interaction case without buffer zones. Thick dashes
illustrate position and approximate size of grid “bars”. The origin of the co-
ordinate system coincides with the aerofoil leading edge. Illustration is not to
scale.

In order to address this concern, a dedicated turbulence interaction case was investig-

ated, where the far-field buffer domain is eliminated in favour of a uniform mesh for

the entire domain. This necessitated a significant reduction of the domain size, since the

213
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computational cost of a finely resolved far-field domain would have been prohibitive.

The resulting mesh is shown in Figure D.1.

To facilitate comparison, the boundary conditions for this case are analogous to those

of the case with buffer zones and are given in Table 5.1. In order to investigate the

potential influence of the grid derefinement on the turbulent jet, the resolved turbulent

intensity Ir is shown for the interaction case with and without buffer domain in Figures

D.2 (a) and (b), respectively. For reference, the zones of refinement are given by the

black lines in Figure D.2 (a), with the highest refinement corresponding to the turbulent

jet and the discretisation of the aerofoil geometry and boundary layer.

(a) Interaction case with buffer domain, i.e. mesh as shown in Figure 5.1.
Lines indicate zones of refinement, with highest within the turbulent jet and
close to the aerofoil.

(b) Interaction case without buffer domain, and homogeneous mesh with the
exception of the aerofoil near-field, i.e. mesh as shown in Figure D.1.

Figure D.2: Comparison of turbulence intensity of turbulence interaction case
on domain with and without buffer domain.

By qualitative comparison of Ir, it is apparent that the presence of the derefinement

zones does not have a significant effect on the development of the turbulent jet. This

is related to the observation from Figure D.2 (a) that the turbulent jet does not pass

through either of the derefinement zones in the transverse direction.

A qualitative comparison of the distribution of the root mean square of the fluctuating
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pressure, pRMS of the interaction cases with and without a buffer domain is shown in

Figures D.3 (a) and (b).

(a) Interaction case with buffer domain, i.e.
mesh as shown in Figure 5.1.

(b) Interaction case without buffer domain,
i.e. mesh as shown in Figure D.1.

Figure D.3: Comparison of pRMS of turbulence interaction case on domain with
and without buffer domain.

The two cases are both found to exhibit areas of strong pressure fluctuations in the shear

layer of the turbulent jet, which is expected considering the analysis of the turbulent

intensity shown in Figures D.2 (a) and (b). There are indications that the pressure fluc-

tuations are slightly stronger in the case without a buffer domain, which is related to

the slightly elevated turbulent intensity of the interaction case without a buffer domain,

as shown by the contours of Ir shown in Figure D.2 (b).

Furthermore, it is observed that only small areas of elevated pressure fluctuations are

present in the case of the interaction case with a buffer domain outside the turbulent

jet, which are constrained to the vicinity of the aerofoil. Conversely, in the case of the

simulation without a buffer domain, the areas of elevated pressure fluctuations spread

all the way to the boundary. This difference is attributed to the reduced dissipativeness

of the finer mesh of the case without a buffer domain outside the the turbulent domain.

Additionally, as discussed in Appendix C.2, the waveTransmissive boundary condition

is not perfectly non-reflective, and as such, reflection of acoustic waves may contribute

to the areas of elevated pressure fluctuations.

Finally, it is noted that the instantaneous pressure distribution on the surface of the

aerofoil, as well as towards the trailing edge, exhibits significant fluctuations in the case

of the domain without a buffer domain, as shown in Figure D.3 (b). As the near-wall

discretisation of the two cases is identical, the cause of this phenomenon is unclear at

this time. It is hypothesized that tetrahegonal cells near the wall introduce a significant

sensitivity to the boundary conditions of the LES. Further investigation using different

meshing strategies is advised to establish the cause of this phenomenon.
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In order to investigate whether the derefinement zones have a detrimental effect on the

propagation of the acoustic waves, in particular regarding potential reflection effects, the

propagation of pressure waves in the near-field of the aerofoil is assessed. For this pur-

pose, the pressure was recorded along the lines l1 = (−c ≤ x > 0, y = 0, z = 1.5Gp) and

l2 = (x = 0, 0 < y < c, z = 1.5Gp). These lines are considered to be representative of the

acoustic wave propagation in the xz and yz planes, i.e. in the upstream and transverse

directions, respectively.

To facilitate the distinction between hydrodynamic and acoustic pressure fluctuations,

the cross-correlation Rpp of the fluctuating pressure at two points x0, x1, as defined in

Eqn. (5.7), is computed. Figures D.4 (a) and (b) show Rpp for x0 = 0, i.e. coinciding

with the aerofoil leading edge, and −c ≤ x1 > 0, i.e. along line l1. A dashed line indicates

correlation associated with hydrodynamic pressure fluctuations transported downstream

at the mean flow velocity U0, whereas a solid line illustrates correlation associated with

acoustic waves propagating upstream with c0 − U0.
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(a) Simulation with buffer domain.
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(b) Simulation without buffer domain.

Figure D.4: Unsteady pressure cross-correlation for the near-field of the aerofoil.
Dashed line indicates correlations due to eddy convection with mean flow, solid
line indicates correlation due to inviscid aerofoil response.

In both simulations using domains with and without a buffer zone, a dominant lobe

is associated with hydrodynamic pressure fluctuations, as expected. It is furthermore

observed that the lobe associated with the propagation of acoustic waves upstream is

relatively weak, which is related to the minimum of noise directivity in this direction, as

discussed in Section 5.4. Since both simulations produce qualitatively similar results, it

is concluded that the domain setup does not have a significant influence on the acoustic

prediction in this direction.

A notable observation is that there is no lobe associated with a downstream propagation

speed larger than U0. It is concluded that if acoustic waves are produced by the inlet-grid

turbulence generation method, then they have dissipated almost completely up to the

position of the aerofoil. Consequently, errors associated with spurious noise created by

the inlet-grid turbulence generation methods are considered negligible.
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The cross-correlation of the fluctuating pressure in the transverse direction is shown in

Figures D.5 (a) and (b). Since the focus is on potential un-physical reflections of acous-

tic waves from the derefinement interface between the turbulent domain and the coarser

buffer domain, the point of reference for the Rpp is set as y0 = c, and cross-correlations

are computed for all points on l2, i.e. 0 < y < c. As the convection velocity of the turbu-

lent flow, U0, is normal to the line of investigation, the time delay is non-dimensionalised

by the ratio of the speed of sound and the chord, c0/c. Solid lines indicate correlation

due to incoming and outgoing acoustic waves.
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(a) Simulation with buffer domain.
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(b) Simulation without buffer domain.

Figure D.5: Unsteady pressure cross-correlation for the near-field of the aerofoil.
Solid line indicates correlation due to inviscid aerofoil response.

Unlike Rpp computed in the streamwise direction, shown in Figures D.4 (a) and (b), Rpp

for the transverse direction exhibits a significant qualitative difference. The result for the

simulation with a buffer domain, shown in Figure D.5 (a) exhibits one lobe associated

with incoming acoustic waves, i.e. with negative time shifts, with a significant amount

of correlation all along the line l2, while correlation associated with outgoing waves, i.e.

with positive time shifts is reduced relatively quickly. This indicates that the majority

of acoustic waves is incoming, and reflections are minimal.

Conversely, the result for the domain without a buffer domain, shown in Figures D.5

(b) does not allow to make such a clear distinction, with the two lobes blending into

each other. This indicates that there is a significant amount of reflection. It is concluded

that the waveTransmissive, chosen to minimize reflections, is only partially able to do

so, which is expected considering the discussion of the boundary condition documented

in Appendix C.2. Consequently, for the accurate investigation of aeroacoustic phenom-

ena, the combined use of buffer zones and the waveTransmissive boundary condition is

recommended, and is therefore adapted for the investigations of Chapters 5 and 6.
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D.2 Mesh refinement study

In order to investigate a potential dependency of the results presented in the main body

of the thesis on the grid refinement, a limited mesh refinement study was conducted and

is documented in this Section. While the refinement chosen in Chapters 5 and 6 is based

on the best practices suggested by Blackmore et al. [13], and furthermore is computa-

tionally affordable, a further refinement would lead to computational costs exceeding

one year of runtime for a single case. However, as pointed out by Georgiadis et al. [174],

a derefined simulation may be instructive in determining whether the main fluid phe-

nomena are captured appropriately in the baseline simulation, as a derefined case study

which is incapable of even providing indications of an under-resolved simulation can be

considered evidence that the baseline solution is not sufficiently resolved as well.

The derefined case study was conducted by following the meshing procedure as docu-

mented in Section C.1, with the sole difference that the refinement levels of the turbu-

lence domain, the aerofoil as well as the trailing edge refinement zones were reduced

by one level. The derefined case study will in the following be referred to as the dere-

fined case, whereas the resolution used in the turbulence interaction cases investigated

in Chapters 5 and 6 will be referred to as baseline case. Figures D.6 (a) and (b) illustrate

the differences in terms of the generated mesh, as well as in terms of the contours of the

root mean square of the fluctuating pressure prms.

(a) Baseline case. (b) Derefined case.

Figure D.6: Comparison of mesh and contours of non-dimensional root mean
square of the fluctuating pressure at the leading edge for two mesh refinement
cases.

It is apparent from the comparison of Figures D.6 (a) and (b) that while there are some

differences, as expected considering the significantly higher refinement of the baseline

case, the distributions of prms is qualitatively very similar between the two cases.

A qualitative comparison of the distribution of the non-dimensional instantaneous pres-

sure p′/ρ0c
2
0 of the baseline and the derefined cases is shown in Figure D.7 (a) and (b).
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(a) Baseline case. (b) Derefined case.

Figure D.7: Comparison of non-dimensional instantaneous pressure of the
baseline and derefined case.

It is immediately apparent from Figure D.7 (a) and (b) that the instantaneous pressure

contours associated with the turbulent eddies are much coarser in the derefined case than

in the baseline, which is expected. Areas of elevated or depressed instantaneous pressure,

which are attributable with acoustic waves, are clearly observable in both cases, indic-

ating that the noise production mechanism of turbulence interaction noise is exhibited

by both cases. However, similar to the interaction case without a buffer domain, the

generation of strong pressure fluctuations on the aerofoil surface is observable towards

the trailing edge in the derefined case, indicating that this un-physical phenomenon may

be triggered by a change in boundary conditions as well as by a change in refinement.

The development of the temporally and spatially averaged axial velocity, 〈U1〉 as well as

of the RST quantities, u11, u22, u33 is further investigated quantitatively in Figures D.8

(a) and (b), respectively. Spanwise averaging was used to improve convergence, and to

compensate for any remaining flow inhomogeneity effects.
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Figure D.8: Development of the transversally averaged velocity quantities to-
wards the leading edge for the baseline case (solid) and derefined case (dashed).
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From Figure D.8 (a) it is apparent that the development of 〈U1〉 is not affected to a

significant degree by the mesh refinement. This is expected, as the development of 〈U1〉
is determined by the potential effect of the aerofoil, and as such is influenced by the

aerofoil geometry as well as potentially the boundary conditions. As the aerofoil geo-

metry is unchanged, minor differences are related to small deviations in terms of the

mean flow quantities, which are caused by differences in the turbulent mixing upstream

of the aerofoil at the inlet grid boundary condition, as well as at the interface of the

turbulent jet to the steady far-field.

Larger differences between the baseline and the derefined case are observed in Figure D.8

(b) in case of the RST components u11, u22, u33. As the derefinement of the mesh leads

to a considerable reduction in terms of the resolved turbulent scales, deviations in the

RST are to be expected. However, it is apparent that the qualitative development of the

three normal RST components is similar between the two cases. It is concluded that since

even the derefined case exhibits a development of RST components as expected for the

interaction of a turbulent flow with a leading edge, the more highly refined baseline case

is sufficiently refined to be used for the investigation of this noise production mechanism.



Appendix E

Supporting investigations

This appendix documents investigations of LES results supporting the main text.

E.1 Assessment of flow homogeneity in the transverse dir-

ections

In order to support the assessment of the flow homogeneity conducted in Section 3.3, the

inhomogeneity as defined by Eqn. (3.23) was computed for 〈U1〉 and u11 on three planes

normal to the streamwise direction at the distances x/Gp = 5, 10 and 15 downstream

of the inlet grid. Figures E.1 (a) - (c) show the results for the turbulence development

case discussed in Chapters 3 and 4.
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Figure E.1: Homogeneities of the streamwise velocity downstream of the inlet
grid in transverse planes extracted from the turbulence development case.
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From Figures E.1 (a) - (c) it is apparent that while the inhomogeneity parameter I〈U1〉
is at distances of up to x/Gp = 10 still showing traces of the initial grid geometry,

at distances of x/Gp ≥ 15 the inhomogeneities in the flow have attained a random

distribution, and are at values less than 0.5, which is considered a homogeneous flow in

terms of 〈U1〉.
Figures E.2 (a) - (c) illustrate the behaviour of I〈U1〉 for the turbulence interaction case

discussed in Chapter 5. The results shown are extracted from the background simulation,

i.e. using the domain illustrated by Figure 5.1, but with the aerofoil removed. Dotted

lines indicate the outlines of the removed aerofoil for the purpose of context.
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Figure E.2: Homogeneities of the streamwise velocity downstream of the inlet
grid in transverse planes extracted from the turbulence interaction case.

In Figures E.2 (a) - (c), the behaviour of I〈U1〉 is observed to be qualitatively very similar

for the turbulence interaction case as for the turbulence development case. The main

differences consist in a changed pattern of I〈U1〉 close to the inlet at x/Gp = 5, where

the shear layer of the turbulent jet influences the distribution of 〈U1〉, as well as slightly

elevated values of random inhomogeneity further downstream at x/Gp = 15, as observed

in Figure E.2 (c). However, as I〈U1〉 does not exceed 1 and as any elevated values are well

separated from the aerofoil, the effects associated to these inhomogeneities are considered

negligible.

The homogeneity of the RST component u11 is illustrated for the turbulence development

case in Figures E.3 (a) - (c).



Appendix E Supporting investigations 223

0 1 2 3
0

1

2

3

y/Gp

z
/G

p
−10 −5 0 5 10

Iu11

(a) x/Gp = 5.

0 1 2 3
0

1

2

3

y/Gp
z
/G

p

−10 −5 0 5 10

Iu11

(b) x/Gp = 10.

0 1 2 3
0

1

2

3

y/Gp

z
/G

p

−10 −5 0 5 10

Iu11

(c) x/Gp = 15.

Figure E.3: Homogeneities of the RST component u11 downstream of the inlet
grid in transverse planes extracted from the turbulence development case.

From Figures E.3 (a) - (c) it is observed that the inhomogeneity of the streamwise RST

component u11 is retained to a larger degree as for the mean streamwise velocity U1,

with Iu11 approaching 10 even for distances of x/G ≥ 15. However, even close to the

grid an identification of the imprint of the grid geometry is difficult. These results are

in qualitative agreement with the experimental studies of Ertunc et al. [56] as well as

the DNS results of Laizet and Vassilicos [57].

The inhomogeneity parameter Iu11 is shown for the turbulence interaction case in Figures

E.4 (a) - (c), as extracted from the background simulation.
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Figure E.4: Homogeneities of the RST component u11 downstream of the inlet
grid in transverse planes extracted from the turbulence interaction case.

When comparing the development of Iu11 with streamwise distance in the turbulence

development case, shown in Figures E.3 (a) - (c) and the turbulence interaction case,

shown in Figures E.4 (a) - (c), very limited differences are observed, which are con-

strained to the transverse plane closest to the flow at x/Gp = 5. It is concluded that in
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terms of Iu11 , there is no significant difference between the two simulation cases.

E.2 Assessment of the fluctuating pressure in the steady

domain

As discussed in Section 6.1, in order to minimise the influence of boundary conditions

on the turbulence interaction noise produced by the finite aerofoil, while simultaneously

maintaining acceptable computational cost, a setup was selected where the turbulent

flow is limited to the tip-most sections of the finite aerofoil, and the majority of the

aerofoil is exposed to a steady flow. However, as the flow in the entire domain is com-

puted using LES, it was observed that developing boundary layers on the late suction

side of the aerofoil would lead to resolved unsteady pressure fluctuations on sections of

the aerofoil immersed in steady flow. While flow transition under steady conditions is

a well-known phenomenon, in this case, the developing turbulent boundary layers are

not considered to be physical, considering the low quality of the near-wall mesh as well

as the limited capabilities of the DES modelling approach [192]. It is emphasised that

the accurate modelling of the boundary layers was not the primary focus of this study,

considering the dominating contribution of the leading edge interaction noise to the total

noise emissions in the frequencies of interest [12; 94].

In order to reduce the computed far-field noise spectra to contributions from the sections

of the finite aerofoil which are interacting with turbulent flow only, a blanking step was

conducted during post-processing, as discussed in Section 6.3. This consisted of setting

the pressure signals of the sections of the aerofoil immersed in steady flow to zero during

export to the aeroacoustic post-processor provided by the commercial software FLU-

ENT. While this procedure eliminates directly radiated noise from the steady parts to

the far-field observer position, it is conceivable that potential effects as well as scattered

acoustic waves from the steady sections introduce an error to the results even post the

blanking step.
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Figure E.5: Mean squared pressure on aerofoil surface for different crosssections.
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In order to assess this potential source of error, the mean squared fluctuating pressure

along three sections at different positions along the span is shown in Figure E.5. The

positions z0/Gp = 2, 4 and 6 were chosen as they represent a position within the ho-

mogeneous turbulent flow, within the turbulent shear layer towards the steady domain,

and within the steady domain, respectively.

From Figure E.5 it is apparent that the pressure fluctuations at the leading edge are

significantly higher for the positions z0/Gp = 2 and 4 than for z0/Gp = 6, which is

expected. However, (p′)2 increases strongly towards the trailing edge for the section at

z0/Gp = 2, which is hypothesised to be caused by the steady flow being numerically

tripped. The strongly oscillating pattern is interpreted to be the result of resolved fluc-

tuations being amplified by tetrahedral cells as they are propagated downstream, since

the tetrahedral cells have been noted as sensitive to fluctuations also in the turbulent

domain, as shown in Figure 6.22 . As there is no random fluctuation in the flow condi-

tions in the steady domain compared to the turbulent domain, harmonic excitation may

occur, increasing fluctuation amplitude considerably.

In order to investigate whether these un-physical fluctuations have a detrimental effect

on the fluctuating pressure within the steady domain, the pressure cross-correlation Rpp

was computed for several points z0/Gp = 2, 3, 4, 5, 6 along a line at x0/c = 0.956, which

corresponds to the largest peak of (p′)2 in the z0/Gp = 6 section shown in Figure E.5.

For reference, the approximate position of the shear layer zs and the position of the

edge of the refined turbulent domain zf are indicated by the dotted and dashed lines,

respectively.
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Figure E.6: Spanwise pressure cross-correlation relative to different origins z0

for a chordwise position of x0/c = 0.95.

From Figure E.6 it is apparent that the extent of the pressure cross-correlation varies

significantly along span. Whereas for the sections z0/Gp = 2, 3 and 4 within the

turbulent domain, the spatial extent of correlation is relatively small, and does not

exceed 0.5Gp, the sections in the steady domain z0/Gp = 5 and 6 show significantly

increased spanwise correlation extends, particularly towards sections further away from

the tip i.e. z1/Gp > 5. This is expected, as the steady conditions should produce very
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high levels of cross-correlation. However, the levels of Rpp relative to z0/Gp = 5 and 6

decline rapidly with decreasing z1, and by z1/Gp ≤ 4.5 the cross-correlation relative to

these points has reduced to the level considered to be background noise. It is concluded

that the pressure fluctuations within the turbulent domain are not correlated to any

significant degree with the pressure fluctuations on the late suction side of the steady

domain.

Considering that the fluctuations on the late suction side, i.e. x0/c = 0.95, are observed

to exhibit the largest magnitude, and are simultaneously not observed to be correlated to

the pressure fluctuations in the turbulent domain, it is concluded that all other pressure

fluctuations observable in the steady domain of lesser magnitude are also not correlated

to the pressure fluctuations in the turbulent domain. As such, blanking the pressure

fluctuations of the aerofoil in the steady domain is considered an effective methodology to

minimize error introduced by the numerical phenomena exhibited by the steady domain.

E.3 Comparison of finite aerofoil surface pressure to ex-

periment

In order to provide further context to the observation of reduced mean flow gradients

upstream of the leading edge of the aerofoil, comparison of the surface pressure coef-

ficient cp at a number of sections along the span is conducted with the experimental

measurements of McAlister and Takahashi [135]. The wing in their experiments had a

constant profile a NACA 0015 and could be fitted with square and round tips, allowing

qualitative comparisons.

As the experimental data is only provided for angles of attack equal to and in excess of 4

degrees, an estimation of the surface pressure coefficient distributions was computed for

a NACA 0012 at 3 degrees and a NACA 0015 at 4 degrees using the panel method imple-

mented in XFOIL [253], and is shown in Figure E.7, allowing to estimate the differences

caused by change in profile and angle of attack.
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ite aerofoil to approximate solution using a panel method as implemented in
XFOIL[253].
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From Figure E.7, it is observed that the agreement between the results of the panel

method based XFOIL and the LES results for the loaded infinite aerofoil discussed in

Section 5.4.3 with the same angle of attack and of equal profile is slightly better for

the suction side than for the pressure side. It is hypothesised that the domain setup

illustrated in Figure 5.1, featuring a turbulent flow of a slightly higher mean flow velocity

than in the surrounding steady domain, may lead to a slight deviation from the free

stream conditions assumed in XFOIL if an aerofoil with an angle of attack is introduced,

which implies a deflection of the turbulent flow [100]. However, the deviations between

the panel method and the LES results are considered to be relatively small.

Considering the difference of the panel method predictions when a NACA 0015 at a

slightly higher angle of attack is computed, it is qualitatively observed that the cp

distribution of the thicker aerofoil at 4◦ angle of attack envelops the cp distribution of

the thinner NACA 0012 aerofoil at 3◦. Quantitatively, the largest difference is observed

to be at the suction peak, where cp for the NACA 0015 is found to be higher by a value

of approximately 0.25.

With the context of the effect of the changes in terms of aerofoil thickness and angle

of attack, the cp distributions as obtained from the finite aerofoil are compared to the

experimental values of McAlister and Takahashi [135] for a finite aerofoil with a round

tip at an angle of attack of 4◦ in steady flow conditions in Figures E.8 (a) - (d) at four

sections along the span.

From Figures E.8 (a) - (d) it is apparent that the experimental values are consistently

above those obtained from LES. Taking into account the differences associated with

aerofoil thickness as well as angle of attack, as illustrated by Figure E.7, it is observed

that the deviation is of the order of 0.15 at the suction peak, with the deviation increasing

for sections further inboard.

It is noted that their experiments took place in a closed wind tunnel, which is known to

increase lift measured on aerofoils. However, as the most inboard measurement roughly

aligns with the solution obtained from XFOIL as shown in Figure E.8 (d), this effect

is considered minor. As such, the present analysis indicates that the finite aerofoil

discussed in Chapter 6 exhibits a slightly decreased lift for an isolated aerofoil. It is

hypothesised that this is partially due to the coarse mesh of the buffer domain being

relatively close to the aerofoil geometry in the steady sections, as shown in Figure 6.1.

Further assessment, using mesh refinement studies as well as experimental investigation

using the test rig documented in Appendix A, is recommended to better quantify the

under-prediction and its consequences. For the purpose of the far-field noise emissions

discussed in this thesis however, this discrepancy is considered to be of minor effect, as

the interaction noise is primarily determined by the turbulent quantities as well as the

leading edge geometry [93; 94; 98].
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