Across and along-strike crustal structure variations of the western Afar margin and adjacent plateau: Insights from receiver functions analysis

Abdulhakim Ahmed, Cecile Doubre, Sylvie Leroy, Derek Keir, Carolina Pagli, James O.S. Hammond, Atalay Ayele, Maxime Be de Berc, Marc Grunberg, Jerome Vergne, Romain Pestourie, Daniel Mamo, Birhanu Kibret, Nadaya Cubas, Aude Lavayssière, Marianne Janowski, Olivier Lengliné, Alessandro La Rosa, Emma L. Chambers, Finnigan Illsley-Kemp

PII: S1464-343X(22)00122-4

DOI: https://doi.org/10.1016/j.jafrearsci.2022.104570

Reference: AES 104570

To appear in: Journal of African Earth Sciences

Received Date: 19 April 2021 Revised Date: 19 April 2022 Accepted Date: 21 April 2022

Please cite this article as: Ahmed, A., Doubre, C., Leroy, S., Keir, D., Pagli, C., Hammond, J.O.S., Ayele, A., Be de Berc, M., Grunberg, M., Vergne, J., Pestourie, R., Mamo, D., Kibret, B., Cubas, N., Lavayssière, A., Janowski, M., Lengliné, O., La Rosa, A., Chambers, E.L., Illsley-Kemp, F., Across and along-strike crustal structure variations of the western Afar margin and adjacent plateau: Insights from receiver functions analysis, *Journal of African Earth Sciences* (2022), doi: https://doi.org/10.1016/j.jafrearsci.2022.104570.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

Across and along-strike crustal structure variations of the western Afar margin and adjacent plateau: Insights from receiver functions analysis

Abdulhakim Ahmed^{1,2,*}, Cecile Doubre¹, Sylvie Leroy², Derek Keir^{3,4}, Carolina Pagli⁵,
James O. S. Hammond⁶, Atalay Ayele⁷, Maxime Be de Berc¹, Marc Grunberg⁸, Jerome
Vergne¹, Romain Pestourie¹, Daniel Mamo⁷, Birhanu Kibret⁷, Nadaya Cubas², Aude
Lavayssière^{3,9}, Marianne Janowski², Olivier Lengliné¹, Alessandro La Rosa⁵, Emma L.
Chambers^{3,10}, Finnigan Illsley-Kemp¹¹

- 1 Université de Strasbourg, CNRS, ENGEES, ITES UMR 7063, F-67000 Strasbourg, France.
- 2 Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre de Paris, ISTEP, Paris, France.
- 3 School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom.
- 4 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Florence, Italy.
- 5 Earth Science Department, University of Pisa, Pisa, Italy.
- 6 Department of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX.
- 7 Institute of Geophysics, Space Science and Astronomy, Addis Ababa University, Addis Ababa, Ethiopia.
- 8 Université de Strasbourg, CNRS, EOST UMS 830, F-67000 Strasbourg, France.
- 9 Institut de Physique du Globe de Paris, Université de Paris, CNRS, F-7500 Paris, France.
- 10 Dublin Institute for Advanced studies DIAS, Dublin 2, Ireland.
- 11 School of Geography, Environment and Earth Sciences, University of Wellington, Wellington, New Zealand.

^{*} Corresponding Author: Tel: +33618639873; email: hakim.qubati66@gmail.com

Across and along-strike crustal structure variations of the western Afar margin and adjacent plateau: Insights from receiver functions analysis

4 5

6

7

8

9

1

2

3

Abdulhakim Ahmed^{1,2,*}, Cecile Doubre¹, Sylvie Leroy², Derek Keir^{3,4}, Carolina Pagli⁵, James O. S. Hammond⁶, Atalay Ayele⁷, Maxime Be de Berc¹, Marc Grunberg⁸, Jerome Vergne¹, Romain Pestourie¹, Daniel Mamo⁸, Birhanu Kibret⁸, Nadaya Cubas², Aude Lavayssière^{3,9}, Marianne Janowski², Olivier Lengliné¹, Alessandro La Rosa⁶, Emma L. Chambers^{3,10}, Finnigan Illsley-Kemp¹¹

10

* Corresponding Author: Tel: +33618639873; email: hakim.qubati66@gmail.com

1112

13

Abstract

14

1516

17

18

19

20

21

22

23

24

25

26

27

We used teleseismic receiver function analysis to image the crustal structure beneath 24 broadband seismic stations densely deployed along two profiles traversing different structural units across the western Afar margin. Our high-resolution receiver function results image pronounced spatial variations in the crustal structure along the profiles and provide improved insights to understand how strain is partitioned in the crust during rifting. Beneath the western plateau next to northern Afar, the crust is likely felsic-to-intermediate in composition (average Vp/Vs 1.74), with a step like thinning of the crust from an average of 38 km beneath the western plateau to an average of 22 km beneath the marginal graben. Consistently thicker crust is observed beneath the southern profile (central Afar), showing four distinct regions of uniform crustal thickness: 1) an average crustal thickness of 42 km beneath the western plateau; 2) 34 km beneath the foothills area; 3) 28 km beneath the marginal graben and the wide extensional basin and 4) 21 km beneath the central rift axis. We use crustal thickness results to estimate a stretching

¹ Université de Strasbourg, CNRS, ENGEES, ITES UMR 7063, F-67000 Strasbourg, France.

² Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre de Paris, ISTEP, Paris, France.

 $^{^3}$ School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom.

 $^{^4}$ Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Florence, Italy.

⁵ Earth Science Department, University of Pisa, Pisa, Italy.

 $^{^6}$ Department of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX.

 $^{^{7} \} In stitute \ of \ Geophysics, Space \ Science \ and \ Astronomy, Addis \ Ababa \ University, Addis \ Ababa, Ethiopia.$

⁸ Université de Strasbourg, CNRS, EOST UMS 830, F-67000 Strasbourg, France.

 $^{^{9}}$ Institut de Physique du Globe de Paris, Université de Paris, CNRS, F-7500 Paris, France.

 $^{^{10}}$ Dublin Institute for Advanced studies DIAS, Dublin 2, Ireland.

 $^{^{11}}$ School of Geography, Environment and Earth Sciences, University of Wellington, Wellington, New Zealand.

28 factor β of 2.2 and 2.7 for central Afar and northern Afar respectively. Our estimated 29 values are lower than $\beta > 3.0$ predicted from plate reconstructions, and we interpret that 30 the variations are best explained by 2-5 km magmatic addition into the crust. The crustal 31 composition beneath the southern profile is more complex with elevated Vp/Vs ratios 32 ranging between 1.79 and 1.85 beneath the western plateau and marginal graben. This is 33 consistent with a greater mafic component and best explained by crust altered by 34 intrusions due to significant pre and syn-rift magmatic activity. Abnormally high Vp/Vs 35 ratios of more than 1.90 are observed beneath the axial rift zone of central Afar, which 36 most likely suggests the localization of partial melt within the crust.

37

- 38 Keywords: Africa; Continental margin; Afar margin; Southern Red Sea Rift; Receiver
- 39 Functions; Crustal Structure

40

41

1. Introduction

The Afar Depression lies in northeast Africa where the Red Sea and Gulf of Aden 42 43 oceanic spreading ridges and the intra-continental East-African Rift meet, forming 44 a rift-rift-rift triple junction between the Nubian, Somalian, and Arabian plates 45 (McKenzie et al., 1972; Courtillot, 1982; Tesfaye et al., 2003; Doubre et al., 2017). The Afar Depression is bound by the continental Danakil block to the northeast 46 47 (Fig. 1), and by the western and south-eastern Ethiopian plateaus, to the west and 48 south-east respectively. The Afar Depression is thought to have formed shortly after the impact of the Afar mantle plume and associated eruption of the bimodal 49 50 Ethiopia-Yemen Trap Series of basalts and rhyolitic lavas (Baker et al., 1996; 51 Hofmann et al., 1997; Pik et al., 1998, 1999; Beccaluva et al., 2009; Pik, 2011; 52 Natali et al., 2016; Krans et al., 2018). The extension of the proto-African 53 lithosphere started in the Oligo-Miocene (~29-26 Ma) shortly after the peak in 54 Trap Series volcanism at ~29-31 Ma (Wolfenden et al., 2004, 2005; Stab et al., 55 2016). In the present-day, several \sim 50-60 km long, \sim 15-20 km wide magmatic 56 segments are the locus of extensional deformation with networks of normal faults 57 formed above narrow zones of episodic dike intrusion (Fig. 1b; Wright et al., 2006; Grandin et al., 2009; Smittarello et al., 2016; Barnie et al., 2016; Ebinger et al., 58 59 2017). Therefore, the continental margin of the Afar region is a unique location

where the transition from the stable continental plateaus to incipient seafloor

60

61 spreading within the Afar rift axis is subaerially exposed (Barberi and Varet, 1977; 62 Hayward and Ebinger, 1996; Beyene and Abdelsalam, 2005; Medynski et al., 63 2016). Continental rifting leading to continental breakup and oceanic spreading 64 65 encompasses a complex interplay of extensional faulting, thinning of the crust and lithosphere and intrusive-extrusive magmatism (Buck, 2004; Geoffroy, 2005; 66 Lavier and Manatschal, 2006; Cannat et al., 2009; Leroy et al., 2010; Nonn et al., 67 2019). The estimation of the crustal thickness, Moho depth, crustal composition, 68 69 stretching/thinning factors (β) and the magmatic additions to the crust is important for 70 understanding the pre-seafloor spreading evolution of rifted continental margins. The 71 Afar crust has been imaged along rift with a seismic refraction survey (Berckhemer, 72 1975; Makris and Ginzburg, 1987), revealing that the crustal thickness is about 23-73 26 km at the south and thins to ~14 km in the north. The crustal thickness 74 variations and internal seismic structure of the Afar margin have to date been 75 investigated using receiver function studies from seismic networks with sparse 76 station spacing (~40-km) (Dugda et al., 2005; Dugda and Nyblade, 2006; 77 Hammond et al., 2011; Kibret et al., 2019; Wang et al., 2021). High stretching value 78 of $\beta > 3.0$ predicted from plate reconstructions for the Afar Depression (e.g. Eagles et 79 al., 2002), is higher than $\beta \approx 2.7$ and $\beta \approx 2.0$ estimated for central and southern Afar from 80 cross section balancing (Stab et al., 2016) and gravity data inversions (Tiberi et al., 81 2005), respectively. By using the seismic structure beneath Addis-Ababa and Mile from 82 the Berckhemer (1975) refraction profile, Mohr (1983) suggested décollement style deformation to explain the differential upper/lower crustal layers extension. Similarly, 83 84 using observations from previous receiver function studies and seismic profiles, Stab et 85 al. (2016) favored a flat detachment at mid-crustal level to interpret the difference in the 86 upper/lower crustal layers extension in central Afar. Reed et al. (2014) noticed a diffuse 87 and localized current extensional strain in the lower and upper crustal layers, 88 respectively, beneath southern Afar. They argued for a high degree of decoupling 89 between the brittle upper crust and ductile lower crust. In northern Afar beneath the 90 Danakil depression the crustal extension is accommodated by faulting in the upper

91	crust and coupled ductile extension of the lower crust and mantle lithosphere (Bastow
92	et al., 2018). However, none of the previous studies offer a sufficiently good image
93	of the crustal structure across the margin to unravel the extensional history and
94	any along-margin variations in the role of tectonics and magmatism during the
95	continental breakup.
96	A detailed image of the deformation will help to constrain the structure and
97	evolution of the margin prior and coeval with the continental rifting and answer
98	some of the remaining questions: Does the stretching and the thinning of the
99	continental crust occur over a narrow or broad region? Is the rifting smooth or
100	stepped? Is the existent of the differential extension between the crustal layers
101	from the early stages or only during the late stages of the rift evolution? What are
102	the interactions between mechanical stretching and thinning of the crust, and
103	magma intrusions (e.g. Keir et al., 2013)?
104	In order to resolve the high-resolution crustal structure of the western margin of
105	the Afar Depression for the first time, we analyze data from 24 temporary
106	broadband stations distributed along two densely sampled profiles going from the
107	western plateau to central and northern Afar. We use P-to-S receiver functions
108	(Phinney, 1964; Burdick and Langston, 1977; Langston, 1977; Ammon, 1991) to
109	image the crust-mantle transition and intracrustal discontinuities as well as to
110	infer crustal properties from Vp/Vs values obtained using the H-k stacking method
111	(Zhu and Kanamori, 2000). This allows us to understand the spatial relationships
112	between plate stretching, thinning and magma intrusion during continental
113	breakup.
114	The comparison of the crustal structure along the two profiles allows us to
115	estimate the longitudinal variations of the rifting along the margin and the
116	respective role of tectonics and magmatism. Assuming that the crustal thickness
117	beneath the western plateau at the location of each profile is representative for the
118	crustal thickness just before the onset of the crustal extension (postdate the flood
119	basalts event), we use the crustal thicknesses of our profiles to calculate the stretching
120	factor across the rift margin. We compare our observed crustal thicknesses and
121	stretching factors to those predicted from plate kinematic models to estimate the melt
122	added to the crust.

123

152

124 2. Background

125 2.1 Geological and Tectonic Settings 126 127 Rifting along the Gulf of Aden initiated ~34 Ma ago (Leroy et al., 2012) followed by 128 the emplacement of voluminous Ethiopia-Yemen Trap Series on the Ethiopian and 129 Yemeni plateaus ~31-29 Ma ago (Baker et al., 1996a; Hofmann et al., 1997; 130 Ukstins et al., 2002; Rooney, 2017). On the Ethiopian plateaus, they erupted and 131 covered a thick series of Mesozoic sedimentary rocks (Bosworth et al., 2005; 132 Beyene and Abdelsalam, 2005) currently outcropping on the western plateau, 133 overlying the Neoproterozoic crystalline basement rocks (e.g. Alemu et al., 2018; 134 Le Gall et al., 2018; Fig. 1b). They also likely covered parts of the region that would 135 become the Afar Depression. The rifting within the Afar is thought to have initiated at ~29-26 Ma, postdating 136 137 the main flood basalt event (ca. 31-29 Ma; Rooney, 2017). Geological studies from 138 the central and southern parts of the western margin of Afar propose three main 139 stages of strain migration from the border faults to the current magmatic 140 segments (Wolfenden et al., 2005; Rooney et al., 2013; Stab et al., 2016). In stage 1, 141 starting just after the flood basalt deposits of 29 to 26 Ma, narrow half-grabens initiate the rift, coeval with the emplacement of rhyolites in these basins. Stage 2 142 143 (16-7 Ma) corresponds to the eastward migration of extensional deformation 144 towards the rift axis, accompanied by fissural basaltic volcanism. Finally, Stage 3 145 (<7 Ma) includes a further eastward jump in the locus of extension and increase in 146 localized magma intrusion and voluminous basalts. Stage 3 is responsible for 147 eruption of a ~1.5-km-thick Stratoid Series lava pile of mostly basalts emplaced at 148 4.0-1.1 Ma that now covers 70% of Afar (Varet, 1975; Stab et al., 2016; Fig. 1b). 149 After 1.1 Ma, the deformation and magmatism became localized within discrete 150 seismically and volcanically active magmatic segments characterized by intense 151 diking and volcanism (e.g. Barberi et al., 1972; Abdallah et al., 1979; Hayward and

Ebinger, 1996; Manighetti et al., 1998; Wright et al, 2006; Grandin et al., 2009).

153 Extensional basins in southern and central Afar are filled with Pliocene-Recent 154 lacustrine and fluviatile sedimentary rocks interbedded with basaltic and felsic 155 lava flows (Tesfaye et al., 2003). In northern Afar, the Danakil basin is known to 156 include at least 1 km of Holocene-Recent evaporites (e.g. Bastow et al., 2018; Le 157 Gall et al., 2018). However, the sedimentary basin likely extends to 3-5 km depth 158 with Pliocene-Pleistocene-Recent age evaporites and basalt flows (Bastow and 159 Keir, 2011; Keir et al., 2013). 160 The western Afar margin preserves the rift morphology since the onset of the 161 flood basalt till the initiation of the seafloor spreading (Tesfaye, et al., 2003; 162 Wolfenden, et al., 2005; Keir, et al., 2013; Ebinger, et al., 2017; Rooney, et al., 2018). 163 This margin is characterized by stratigraphic and structural changes from the 164 south toward the north (e.g. Keir et al., 2013). For example, south of latitude 13°N, 165 the transition from the western plateau, covered here by a thick sequence of Trap series, 166 to the extended crust in the Afar Depression corresponds to a zone of antithetic faults 167 forming a wide zone of marginal basins (Wolfenden et al., 2004, 2005; Stab et al., 168 2016). North of latitude 13°N, where the Trap series does not outcrop on the western 169 plateau, the margin is characterized by normal faults forming a narrow zone of 170 marginal grabens (Justin-Visentin and Zanettin, 1974; Kieffer et al., 2004; Wolfenden et 171 al., 2005; Rooney et al., 2018; Le Gall et al., 2018). The seismic activity is more 172 intense in this area with several events of magnitude greater than 5.0 (Ayele et al., 173 2007; Illsley-Kemp et al., 2018). These changes along the Afar margin are spatially 174 associated with a northward thinning of the crust within the rift, and surface area of 175 Holocene volcanism (Barberi and Varet, 1977; Berckhemer et al., 1975; Makris and 176 Ginzburg, 1987; Hammond et al., 2011; Bastow and Keir, 2011; Rooney et al., 2020).

177

178

179

180

181

182

183

2.2 Previous constraints on crustal structure

Previous geophysical studies have contributed significantly to our knowledge of the crustal structure of our study area (Fig. 1a). Estimates of the crustal thickness and crustal composition beneath Afar and surrounding plateaus have been made using controlled source seismic profiling (e.g Makris and Ginzburg, 1987; Mackenzie et al., 2005; Maguire et al., 2006), inversion of gravity data (e.g. Makris

184 et al., 1991; Tiberi et al. 2005) and magnetotelluric imaging (e.g. Desissa et al., 185 2013; Didana, et al., 2014; Johnson et al., 2016). Also using passive seismic 186 techniques, such as P-to-S (e.g. Dugda et al., 2005; Hammond et al., 2011; Reed et al., 2014; Ogden et al., 2019; Wang et al., 2021), S-to-P receiver functions (e.g. 187 188 Lavayssiere et al., 2018), surface wave tomography (e.g. Gallacher et al., 2016) and 189 ambient noise tomography (e.g. Korostelev et al., 2015; Chambers et al., 2019). 190 Makris and Ginzburg (1987) used the data from an along strike seismic refraction 191 profiles (Fig. 1a) to propose a four-layer crustal structure within the Afar 192 Depression underlain by an anomalous upper mantle (P_n velocity of 7.4-7.5 kms⁻¹). 193 This model consists of a 3-5 km sedimentary cover (a P-wave velocity, Vp of 3.35-194 3.95 kms⁻¹), that overlies a basaltic layer (Vp=4.5 kms⁻¹) on a 2-6 km abnormally 195 thin upper crust (Vp of 6.1-6.2 kms⁻¹) and a lower crust (Vp of 6.7-7.0 kms⁻¹). This 196 study shows that the crust thins from 26 km in the south and central Afar to 14 km 197 in the north. Crustal thickness inferred from gravity data (Makris et al., 1991; 198 Tiberi et al. 2005) shows thin crust beneath the Afar rift (14-23 km) and thick 199 (~40 km) continental crust beneath the western plateau that is partly intruded 200 with high-density material. 201 Previous P-to-S receiver function studies (Dugda et al., 2005; Stuart et al., 2006; 202 Hammond et al., 2011; Reed et al., 2014; Kibret et al., 2019; Wang et al., 2021; Fig. 1a) and a joint inversion of Rayleigh wave velocities and receiver functions (Dugda 203 204 et al., 2007) confirm these variations, showing ~20-26 km thick crust beneath the 205 Afar Depression and rapidly thinning to ~16 km beneath the Danakil Depression 206 of northern Afar (e.g. Hammond et al., 2011). The estimated crustal thickness 207 beneath the western and south-eastern plateaus ranges from 36 to 45 km (Dugda 208 et al., 2005; Stuart et al., 2006; Cornwell et al., 2010; Hammond et al., 2011; Kibret 209 et al., 2019; Wang et al., 2021). These studies also show a normal to elevated 210 Vp/Vs ratio for the plateaus and reaching very high values (Vp/Vs > 2.0) near the 211 magmatic segments where the crustal thickness is less than 26 km (e.g. Hammond 212 et al., 2011; Wang et al., 2021). A seismic anisotropy study (Hammond, 2014) 213 shows that the melt beneath the Afar Depression is stored in interconnected 214 stacked sills within the lower crust consistent with high Vp/Vs ratios of more than

215 1.95 obtained by receiver function analysis, an interpretation supported by slow 216 lower crustal S-wave velocities imaged using ambient noise tomography (e.g. 217 Chambers et al., 2019; Korostelev et al., 2015). In addition, S-to-P receiver functions 218 identify a velocity decrease with depth at 65-75 km beneath the western plateau 219 interpreted as the lithosphere-asthenosphere boundary (LAB; Rychert et al., 2012; 220 Lavayssiere et al., 2018). The LAB is not imaged below Afar and interpreted as 221 evidence of melt percolation into the mantle lithosphere (Lavayssiere et al., 2018). 222 However, the seismic stations used in the previous studies (Dugda et al., 2005; 223 Stuart et al., 2006; Hammond et al., 2011; Lavayssière et al., 2018; Chambers et al., 224 2019; Wang et al., 2021) were deployed at a spacing of several tens of kilometers 225 and those used by Reed et al. (2014) were located along a profile across the south-226 eastern part of central Afar. Thus, these studies are limited in providing high-227 resolution images of the crustal structure from the continental stable plateaus to 228 the active rift axes.

229

3. Data and Methodology

231

230

232 3.1 *Data*

From May 2017 to September 2018, a network that included 9 SEIS-UK broadband 233 234 seismic stations (7 Guralp CMG-3ESPD-60s and 2 CMG-40T-30s with Guralp CMG-235 DCM datalogger) and 20 French Sismob-RESIF broadband seismic stations (Guralp 236 CMG-40T-30s with Nanometrics Taurus digitizer) was deployed along two SW-NE 237 oriented profiles, more or less perpendicular to the large fault scarps forming the 238 western Afar margin and the main axis of the Afar rift (Fig. 1). This network has 239 been configured to image the crustal structure across the transition from the 240 western plateau to the currently active rifts of the northern and central parts of 241 Afar (Fig. 1). For northern Afar we used 8 stations (N001 to N008) deployed along 242 an 86 km-long profile spaced by an average distance of 11 km (Keir et al., 2017; 243 Fig. 1). For central Afar we used 15 stations (S001, S003 to S009, S011 to S014, 244 S017, S018 and S020) deployed along a ~225 km-long profile spaced at ~20 km at the ends and ~10 km in the middle of the profile (Doubre et al., 2021; Fig. 1). For 245

246	improved continuity of the southern profile, we added data from FINE station
247	installed from March 2007 to November 2009 (Ebinger, 2007). All stations
248	recorded continuous data with a sampling rate of 100 Hz except FINE, which
249	recorded continuous data at 50 Hz.
250	For the receiver function analysis, the IRIS earthquake catalog was searched for
251	events with magnitude, Mb \geq 5.5, occurring within an epicentral distance range of
252	$30^{\circ}\text{-}95^{\circ}$ from the center of the network. To increase the azimuthal coverage,
253	regional events between 20° and 30° were also included (e.g. Park and Lavin, 2001;
254	Salmon et al. 2011; Fig. 2a), with a specific treatment detailed in section 3.2.1. In
255	total, waveforms from 186 earthquakes including 11 regional events were
256	selected.
257	The data were manually inspected and rated based on the signal-to-noise ratio
258	(S/N; the ratio between the amplitude of the signal at P-arrival time to the maximum
259	amplitude of the 5 s pre-arrival noise window), where only low-noise traces $(S/N > 4)$
260	with a clear P wave arrival recorded at each station, were kept for further analysis.
261	This process resulted in the selection of $\sim\!126$ earthquakes (including 11 regional
262	events) for receiver function construction and processing (Fig. 2a). After removing
263	the mean and the first-order trends from the selected waveforms, the data were
264	filtered using a zero-phase Butterworth bandpass filter with corner frequencies of
265	0.05-1.5 Hz (e.g. Zhu L., 2000; Nair et al., 2006). Waveforms from two stations
266	located at the edge of the plateau and characterized by noisy data are bandpass
267	filtered (0.02–0.8 Hz) to remove the high frequency noise above 1 Hz. Then the
268	traces were windowed 5 s before and 35 s after the theoretical P arrival time and $$
269	the horizontal seismograms were rotated into a great-circle path from the ZNE
270	coordinate system to the ZRT coordinate system.
271	

3.2 Methods

273

272

274 3.2.1 *P-to-S receiver functions*

The receiver function technique is widely used to image seismic discontinuities beneath a seismic station by deconvolving the vertical component from the radial

277	and/or transverse components. This aims to remove the instrument response, the
278	propagation path and the source mechanism effects from a broadband teleseismic
279	record (Langston, 1977; 1979). We used the iterative time domain deconvolution
280	technique of Ligorria and Ammon (1999) to compute the receiver functions with
281	200 iterations. We used a Gaussian width factor of 2.5 in the deconvolution of the
282	vertical trace to predict the radial one (Ligorria and Ammon, 1999), except for two
283	noisy stations located at the edge of the plateau for which we used a Gaussian
284	width factor of 2.0 to excluded high frequency noise above $\sim \! 1$ Hz. The percentage
285	of recovery was evaluated from the rms misfit between the original radial
286	waveform and the radial receiver function convolved with the vertical component.
287	If the final deconvolution reproduces less than 80% of the signal, then the event is
288	discarded from further analysis. From this, together with a visual inspection for
289	coherence and stability, the number of receiver functions included in the final
290	analysis varied between 15 and 72 per station (Table 1), depending on the
291	background noise and the state of health of the station.
292	Extra care is required for using regional events in the receiver function analysis.
293	They are susceptible to complex P-wave arrivals due to upper mantle triplications
294	(e.g., Chu et al., 2012). To check for any artifacts due to triplicated phases, we only
295	kept the events that will not change the H and/or Vp/Vs beyond the error limits
296	determined from the teleseismic events alone. For example, station S005 had a
297	maximum number of 10 regional events, whereas for most of the other stations
298	they are less than six. Fig. S1b and Fig.S1c show the RFs and H-k plots from station
299	S005 with and without the regional events included, respectively. The estimated
300	crustal thickness and Vp/Vs are approximately the same. Similarly, Fig. S1d shows
301	binned and stacked receiver functions in epicentral distance of 10° for three
302	stations that have six or more regional events. It is clear that the results from
303	regional events (20°-30°) are comparable to the results from teleseismic events
304	(30°-95°) for each station.

3.2.2 **H-к Stacking**

To determine the average crustal properties, we analyzed receiver functions for each station using the H-κ domain stacking technique of Zhu and Kanamori

309 (2000). This method enables the determination of Moho depth (H) and the 310 velocity ratio of crustal P and S phases (Vp/Vs, or κ) by considering the crust as a 311 homogeneous, horizontal, isotropic layer over a half-space. The inherited trade-off 312 in the receiver function analysis between the crustal thickness (H) and the average 313 crustal velocity properties can be partially resolved using the H-κ stacking 314 algorithm (Ammon et al., 1990), if a good assumption can be made about the 315 average P-wave velocity from nearby refraction profiles (e.g. Makris and Ginzburg, 316 1987). With this information, we sum amplitudes of the receiver functions at 317 predicted arrival times for the Moho P-to-S conversion phase Pms and its multiple 318 converted phases PpPs and PpSs+PsPs (Fig. 2b), using different weights and a 319 range of H and Vp/Vs values.

320 The stacking amplitude in the H-k domain is given by:

321

2 s (H,
$$\kappa$$
) = $\sum_{m=1}^{n} w_1 r_m(t_{p_s}) + w_2 r_m(t_{p_p p_s}) - w_3 r_m(t_{p_p S_s + p_s P_s})$ (1)

322323

where n is the number of radial receiver functions at each station, Wi is a 324 325 weighting factor that represents the contribution of the direct conversion from the Moho and its multiples according to signal-to-noise ratio ($W_1 + W_2 + W_3 = 1$) and 326 327 r_m(t) is the amplitude of the point on the receiver function at predicted arrival 328 time t (after the first P arrival) of the associated seismic phase corresponding to 329 the crustal thickness H and Vp/Vs. The stacking amplitude reaches its maximum as 330 the three phases stack coherently, and represents the best estimate for both H and 331 Vp/Vs (κ) beneath the station. Globally, we follow the same weighting factor 332 scheme W₁=0.7, W₂=0.2 and W₃=0.1 of Zhu and Kanamori (2000) that balances 333 the contribution of each phase proportional to low signal-to-noise ratio of 334 multiples. We modified the weighting factors in a few cases, by increasing those for 335 multiples when the Moho conversion phase amplitude is low (W₁=0.5, W₂=0.3 and 336 W₃=0.2: N008; Figs. 2c and 3a) or when high-amplitude intra-crustal interface 337 conversion phases obscured the Moho Pms conversion (W₁=0.4, W₂=0.3 and 338 W₃=0.3: N002; Fig. 2c), or by decreasing them when the multiples are less clearly identifiable (W_1 =0.8, W_2 =0.1 and W_3 =0.1: S018: Fig. 2d). 339 340 In this study, we allowed the crustal thickness H and Vp/Vs ratio to vary within 341 reasonable extremes determined with constraints from previous measurements

(e.g. Dugda et al., 2005; Hammond et al., 2011; Reed et al., 2014; Ogden et al., 342 343 2019). For all the stations, the searching range for H is 10-50 km, whilst the Vp/Vs 344 search range for the stations located on the plateau and within the Afar marginal 345 area was restricted to 1.6-1.95. The search range of the Vp/Vs ratio for the stations 346 located within and near the rift axis, was restricted between 1.6-2.20. We used a 347 search step of 0.1 km for H and 0.01 for Vp/Vs. 348 The Vp/Vs ratio derived from the H-κ stacking method is related to the elastic 349 parameter Poisson's ratio (σ) through the simple relationship $\sigma = 0.5(1-\{1/[(V_P + 1)])$ 350 $(V_s)^2 - 1$) (Zandt and Ammon 1995; Ligorria, 2000), and is typically used to 351 provide important constraints regarding the bulk crustal composition (e.g. 352 Christensen, 1996; Chevrot and van der Hilst, 2000). Poisson's ratio variations 353 mainly depend on mineralogical composition of the crust (felsic, mafic) and/or the 354 presence of fluids rather than on pressure or temperature conditions (Christensen, 355 1996; Watanabe, 1993). 356 357 3.2.3 Results stability and Uncertainty Estimates Three important factors control the stability of the H-κ inversion results using the 358 359 receiver function method: 1) the average crustal P-wave velocity used to do the 360 inversion; 2) the back-azimuth coherency of the Moho converted phase Pms and 361 multiples PpPs and PpSs+PsPs and 3) the level of noise in the receiver function 362 waveform data. 363 Average crustal P-wave velocity (Vp) used in previous receiver function studies in 364 Ethiopia shows a large range of values (4.6 kms⁻¹ - 6.5 kms⁻¹). For example, Dugda 365 et al. (2005) tested three different average crustal velocity values Vp=6.3 kms⁻¹, 366 Vp= 6.5 kms⁻¹ and Vp=6.8 kms⁻¹ and chose the one that gave the best results for H 367 and Vp/Vs ratio. Stuart et al. (2006) used three different Vp values constrained 368 from the EAGLE controlled-source profile of 6.1 kms⁻¹, 6.15 kms⁻¹ and 6.25 kms⁻¹ 369 for the southern, central Ethiopian rifts, and adjacent plateaus respectively. 370 Hammond et al. (2011) used values of 6.15 kms⁻¹ and 6.25 kms⁻¹ for the stations in 371 Afar and on the Ethiopian plateaus again based on nearby refraction profiles 372 (Makris and Ginzburg, 1987). Finally, the average crustal velocity used by Reed et

373

374 stacking results obtained using different initial Vp values ranging from 4.5 kms⁻¹ to 375 7.0 kms⁻¹ and theoretical Vp versus κ curve. The variation in P-wave velocities 376 used is evidence of how variable the crustal structure is across Afar and the 377 surrounding areas. We use P-wave velocities from the controlled source profiles 378 closest to our profiles, as do previous studies. Due to this, it is worth noting that 379 the uncertainties of 0.5 km/s from the range of velocities seen across all RF studies 380 would equate to an error in crustal thickness of $\sim \pm 3.0$ km and $\sim \pm 0.05$ in Vp/Vs. 381 In this study, we used $Vp = 6.3 \text{ kms}^{-1}$ for the stations located on the western 382 plateau and 6.0 kms⁻¹ for the stations located within the Afar rift based on the 383 controlled-source experiments (Berckhemer et al., 1975; Makris et al., 1975; 384 Makris and Ginzburg, 1987; Mackenzie et al., 2005; Maguire et al., 2006), and the 385 average crustal velocity constraints from the previous receiver function studies 386 (Dugda et al., 2005; Stuart et al., 2006; Hammond et al., 2011; Reed et al., 2014). 387 To estimate the standard deviation for both crustal thickness H and Vp/Vs, we 388 employ the bootstrap resampling technique (Efron and Tibshirani, 1986). While 389 we present bootstrap errors in this study to show the stability of our solutions and 390 to be consistent with past studies, these errors present more realistic values when 391 considering variations in crustal structure across the array. The bootstrap analysis 392 was done by repeating the stacking procedure 200 times with random data 393 subsets that are resampled versions of the original data set for each station. The 394 2σ for each station is shown by error bars in the depth sections and supporting 395 information. The same technique was applied to estimate the errors introduced to 396 the results from the assumed average crustal P-wave velocity used to determine 397 the bulk crustal parameters (H and Vp/Vs; Tiberi et al., 2007). We recalculate H 398 and Vp/Vs values using different average crustal Vp in the range 5.8-6.8 kms⁻¹ to 399 test the errors introduced by assuming average crustal Vp (Fig. S5). The results are 400 illustrated in Fig. S5a and S5b as standard deviations. We also, extracted the 401 bootstrap results for two stations of the northern profile and three stations of the 402 southern profile. The obtained results are shown in Fig. S5c and S5d. As suggested 403 by several authors (e.g. Mohsen et al., 2005; Nair et al., 2006; Ogden et al., 2019), for a crustal thickness of less than 50 km, a Vp variation of 0.1 kms⁻¹ will affect the Moho depth by a value less than 1 km.

406

407

3.2.4 Receiver Function Depth Migration

408 The common-conversion point (CCP) technique is a robust method to transfer the 409 receiver functions from the time-domain to the space-domain (e.g. Kind et al., 410 2002) and image lateral variations of the subsurface discontinuities along a 411 profile. In this study, we perform a common conversion point (CCP) stacking using 412 the Zhu (2000) technique, which is based on the back projection of the amplitude 413 vector of the receiver functions along the ray paths using a given 1-D velocity 414 model. The 3-D space beneath the profile is binned and the amplitudes of all the 415 radial receiver functions with rays passing through each bin are averaged to get 416 the amplitude for that bin. To create our depth migrated cross-sections along both 417 the northern and southern profiles, we use a 1-D Vp model based on the nearby 418 refraction profiles (Berckhemer et al., 1975; Makris and Ginzburg, 1987; 419 Mackenzie et al., 2005; Maguire et al., 2006) and the IASP91 velocity model 420 (Kennett and Engdahl, 1991). The Vs model at each station location is deduced 421 from the Vp/Vs results of the current study, constrained by the previous RF studies 422 (Stuart et al., 2006; Hammond et al., 2011; Reed et al., 2014) and Vs models of 423 Chambers et al. (2019). Therefore, the velocity model varies along both profiles 424 (supporting information) and is constrained to maintain the average crustal 425 velocity Vp comparable to that used for H and Vp/Vs calculations. To optimize for 426 the resolution, the CCP depth images are obtained with a bin width of 10 km 427 (equivalent to the estimated width of the first Fresnel zone for an interface at 30 428 km depth, assuming a signal frequency of 1.2 Hz and S-wave velocity of 3.4 kms⁻¹; 429 e.g. Salmon et al., 2011). The separation between the centers of the bins is set to 2 430 km to preserve the spatial resolution and the vertical bin width is set to 0.5 km 431 less than the expected vertical resolution equivalent to the half of the minimum 432 wavelength.

433

434

4. Results

Most of the stations show a strong and easily identifiable Pms Moho conversion phase on individual and stacked receiver functions (Figs. 2, 3, S1 and S2). The corresponding multiple PpPs, is also identifiable in most cases, but not as consistently visible as Pms, while the latter arrival multiples PpSs+PsPs are often ambiguous and only clearly observed at a few stations. The Moho conversion phase and/or its multiples may be disturbed by reverberations from near surface, low velocity sediment layers and intracrustal and/or upper mantle interfaces at some stations (Figs. 3 and S1). In this study, we present the results ordered and grouped depending on them being on the northern or southern profiles (Fig. 1) and in light of different geological and tectonic features (e.g. Keir et al., 2013).

444445

446

435

436

437

438

439

440

441

442

443

4.1 Receiver functions observations

447

448

Northern profile

449 For the stations located on the western plateau (N001 to N005), the Pms phase is 450 observed 6 s after the direct P-wave arrival time. Before the Pms phase, i.e. within 451 1.0-4.0 s after the direct P-wave arrival time, we observe a strong and coherent 452 negative intra-crustal phase and two positive intra-crustal phases on the majority 453 of the individual (Figs. 3 and S1) and stacked radial receiver functions (Figs. 2 and 454 S2e). The arrival time and amplitude of the first positive phase depends on the 455 back-azimuth (Figs. 3 and S1), and could be a P-to-S conversion at the bottom of a 456 low velocity shallow layer or could suggest anisotropy or dipping layers. The 457 second strong positive phase is interpreted as a conversion from a mid-crustal 458 interface at ~20 km depth. A clear positive and coherent conversion phase (Phs) 459 arrives behind the Moho P-to-S conversion phase (Pms) at ~9.5 s delay time (Fig. 460 S1e), that Levin and Park (2000) associated with the Hales discontinuity and was 461 reported by previous RFs studies beneath Nubian and Arabian continental shields 462 (Sandvol et al., 1998; Park and Levin, 2001; Ayele et al., 2004). 463 The amplitudes of the transverse components are much smaller than the 464 corresponding radial amplitudes (Fig. 2c and Fig. 2d). The transverse receiver 465 functions show an intracrustal negative and positive energy that is varying over

466 the back-azimuth, which may suggest the presence of anisotropy (Levin and Park, 467 1997a). 468 As shown in Fig. 3b, at station N006 the results show a variation in the amplitude 469 and arrival time of the Pms-converted phase on the radial RFs as well as the 470 polarity reversal of the direct P and Pms-converted phases on the transverse RF as 471 a function of the back-azimuth. This suggests the presence of a dipping Moho. The 472 azimuthal RF variations of the reverberated latter phases show a complex pattern 473 which may indicate the presence of 3-D features such as dipping interfaces and 474 seismic anisotropy within the crust. Such complex pattern and the lack of a 475 homogeneous earthquake distribution with back-azimuth, mean it is not possible 476 to do a detailed crustal anisotropy analysis. 477 The data from the stations located within the marginal graben at the eastern end 478 of the northern profile (N007 and N008) show a positive intra-crustal phase in the 479 radial receiver functions at $\sim 1.3-1.5$ s after the direct P-wave arrival time (Figs. 2, 480 3 and S1). The most prominent positive phase visible in the majority of both 481 individual and stacked radial receiver functions (Figs. 2, 3 and S1) arrives within a 482 delay time of 3.0-5.0 s after the direct P-wave arrival and is interpreted as the P-to-483 S conversion phase (Pms) at the Moho discontinuity. At the easternmost station 484 (N008), we note a clear and strong negative phase arrives following the Pms phase 485 at \sim 4.0 s delay time after the P-wave arrival (Fig. 2c).

486

487

488

489

490

491

492

493

494

495

496

497

Southern profile

The two westernmost stations (S001 and S003) on the western plateau are characterized by a clear Pms Moho conversion phase arriving with a 6.0 s delay time after the first P-wave arrival and multiples within 18-22 s delay time. A clear pre-Moho conversion phase arrives with a 2.9 s delay time after the first P-wave arrival likely originating from an intra-crustal discontinuity between the upper and lower crusts at ~20 km depth. This phase is particularly coherent and stronger in the S003 individual receiver functions and on the stacked receiver functions of the two stations (Figs 2 and 3). The transverse RFs of the stations S001 and S003 show significant energy associated with a group of positive and negative pulses preceding the Pms Moho conversion phase. At the expected arrival

498 time of the Pms conversion phase the transverse RFs display small positive 499 amplitudes for the events approaching the station from easterly back-azimuths, 500 (Fig. S2a). 501 The four stations (S004, S005, S006 and S007) positioned within the basin of the 502 foothill area between the western plateau and the marginal graben are 503 characterized by a clear Moho conversion phase (Figs. 1, 2 and S2b). At station 504 S004, the Pms conversion phase arrives with a delay of 5.0 s after the arrival of the 505 direct P phase with PpPs and PsPs multiples arriving at 16.5 s and 21.0 s, 506 respectively. At stations S005, S006 and S007, the Moho conversion phase Pms and 507 its multiples (PpPs and PsPs) arrive at \sim 4.0-4.5 s, \sim 14.8-15.2 s and \sim 18.5-19.2 s 508 delay time after the first arrival (Figs. 3, S1a and S2b). The transverse RFs show 509 significant energy from intracrustal interfaces and at the expected arrival time of 510 the Pms conversion phase, with the latter characterized by a polarity change for 511 the events approaching the stations from eastern (positive) and western 512 (negative) directions (Fig. S2b). 513 Stations sampling the marginal graben and Awra plain (\$008, \$009, \$011, \$012) 514 and S013) show a clear Pms conversion phase arriving within a time window of 515 3.8 to 4.0 s and its multiples PpPs and PsPs arriving at 12.0-12.5 s and 15-16.0 s 516 after the P-wave arrival time, respectively (Figs. 2, S1a and S2c). The transverse 517 RFs show a significant negative and positive energy between the direct P wave 518 arrival and the Moho converted phase characterized by reversed polarity in 519 comparison with the radial RFs (Fig. S2c). 520 At the five stations (S014, FINE, S017, S018 and S020), which are located near and 521 within the Afar rift axis, the radial receiver functions have two positive phases 522 within 4 s after the P-wave arrival time (Figs. 2, 3 and S1). The first low amplitude 523 phase arrival has a delay time of 1–1.5 s with respect to the direct P-wave, and is 524 more likely a conversion at the bottom of a low velocity shallow layer. We interpret 525 the second strong and coherent phase arrival at a delay time of 3.5-3.8 s after the 526 direct P-wave with corresponding multiples at 10-10.5 s and 13.5-14.5 s, as the 527 conversion from the Moho (e.g. Figs. 2, S1a and S2d). The transverse RFs characterized by a clear negative and positive energy arrive between the onset of 528 529 the P-wave and the Pms Moho conversion phase. In addition, we observe

530	significant positive energy at the expected arrival time of the Pms Moho
531	conversion phase for events approaching from east-southeast directions (Fig.
532	S2d).
533	
534	4.2 Crustal thickness and Vp/Vs ratio
535	The H– $\!\kappa$ stacking results show a well-defined peak on the H-k plots (Figs 4 and
536	S2). The crustal thickness H and Vp/Vs estimated from receiver function analysis
537	are shown on the topographic maps of Afar in Fig. 5a and Fig. 5b, respectively. The
538	estimated crustal thickness (H) and Vp/Vs ratio using the H- κ stacking technique
539	and associated errors from bootstrap method are shown in Fig. 6a, Fig. 6b and
540	Table 1. We mention that the standard deviations in Table 1 are formal errors coming
541	from the classical bootstrap algorithm and do not include the uncertainties from the
542	average velocity and/or vertical resolution. Therefore, the actual errors certainly will be
543	higher recalling that any additional ±0.1 km/s uncertainty in the average crustal P-
544	wave velocity will lead to ${\sim}{\pm}0.01$ and ${\sim}{\pm}0.6$ km uncertainties in the Vp/Vs ratio
545	and crustal thickness, respectively.
546	
547	Northern Profile
548	Our crustal thickness estimates for the western plateau range from 37.2 ± 2.0 to
549	38.8 ± 2.1 km with an average crustal thickness of ~38.0 km. For station N006
550	located at the eastern edge of the western plateau, results show two peaks on the
551	H-κ plot that correspond to discontinuities at ${\sim}28.0~\text{km}$ and 37.0 km, in addition to
552	another peak corresponding to an intra-crustal interface at $\sim\!20.0$ km depth (Fig.
553	S3). Our crustal thickness estimate of $\sim \! 38$ km for the western plateau of the
554	northern profile is in good agreement with the previous receiver function studies
555	(\sim 39.0 km; Hammond et al., 2011; Ogden et al., 2019; Fig. 7), and from gravity
556	inversion (\sim 35.0-38.0 km; Makris et al., 1991 ; Tiberi et al., 2001).
557	By comparing the Pms piercing points of N006 (H $\sim\!\!28.0$ and 37.0 km) with the
558	piercing points of N005 (H ${\sim}38$ km) and N007 (H ${\sim}24$ km) as shown in Fig. S4b, it
559	is clear that a crustal thickness of \sim 37.0 km could be attributed to the plateau side

to the west of this station and ${\sim}28.0~\text{km}$ for the foothill area to the east. We obtain

561 24.2 ± 1.4 km (N007) located at the foothill area and 19.6 ± 1.0 km (N008) at the 562 eastern edge of the marginal graben (Figs. 5a and S5). Our estimated crustal 563 thickness for N008 compare favorably with the values of 20.0±2.0 km obtained by 564 Hammond et al. (2011) for the nearby station HALE (Figs. 7). 565 The Vp/Vs ratio is relatively normal $(1.73\pm0.01-1.79\pm0.02)$ for the stations on the 566 western plateau (N001-N005) and for the station (N007) at the western edge of 567 the marginal graben. Our Vp/Vs estimations are consistent with the results of ~1.71-1.77 for the stations ADYE and SMRE (Hammond et al., 2011; Ogden et al., 568 569 2019; Fig. 8). At the eastern end of the northern profile at the riftward edge of the 570 marginal graben the N008 station shows high Vp/Vs ratio of 1.93 ± 0.04. This 571 value compares favorably with the value of 1.98±0.1 for the nearby station HALE 572 (Hammond et al., 2011; Figs. 8). 573 574 Southern Profile The crustal thickness along the southern profile decreases from the W to E in 575 576 three steps, such that four different zones of uniform crustal thickness and Vp/Vs 577 ratio could be identified along the profile (Figs. 6 and S7). These zones broadly 578 correlate with the pre-rift crust of the western plateau, the foothill area between 579 the western plateau and the marginal graben, the stretched crust of the marginal 580 graben and Awra plain, and finally the thinned crust within and in the vicinity of 581 the Afar Manda-Harraro rift segment (MHRS) (Figs. 1, S7). 582 We estimate an average crustal thickness of 42.0 ± 1.0 km for (S001 and S003; first 583 zone) on the western plateau (Figs. 2, 5a and S7). Our estimated average crustal 584 thickness for the elevated western plateau is in good agreement with the previous 585 P-to-S receiver functions results (38-44 km; Dugda et al., 2005; Stuart et al., 2006; 586 Cornwell et al., 2010; Hammond et al., 2011; Kibret, et al., 2019; Wang et al., 2021). 587 It is also consistent with the crustal thickness results from joint inversion of 588 surface waves and Pms receiver functions (~40 km; Dugda et al., 2007), with the 589 estimates from seismic refraction profiles (40-45 km; Makris and Ginzburg, 1987; 590 Mackenzie et al., 2005; Maguire et al., 2006) and crustal thickness from gravity

inversion (~40 km; Tiberi et al., 2005).

591

592 Except for the S004 station located on/or near the steep border faults with a 593 crustal thickness estimated to 37.2 ± 4.0 km, the crustal thickness for (S005-S007; 594 second zone) within the foothill area is 33.8-34.2 km, with an average crustal 595 thickness of 34.0±1.2 km (Figs. 5a, S7 and Table 1). In the third zone of extended 596 crust beneath the marginal graben and the Awra plain, five stations (S008, S009, 597 S011, S012 and S013) with a spacing of 5-12 km were used to constrain the crustal 598 thickness (Figs. S1, S7). The associated crustal thickness ranges from 27.6 to 28.6 km (Table 1), with an average value of 28.0 km. Our estimates of the crustal 599 600 thickness of ~28.0±1.0 km for the third zone are consistent with the previous P-to-601 S receiver function results (~25.0-29.0±1.3 km; Hammond et al., 2011). 602 The H-κ estimates for the crustal thickness of (S014, FINE, S017, S018 and S020; 603 fourth zone) within and in the vicinity of the rift axis of central Afar range from 604 19.6 km to 23.2 km (Fig. S7, Table 1), with an average value of 21.0 \pm 1.0 km. Our 605 crustal thickness result of ~21.4±0.4 at the station FINE is similar to the result 606 obtained by Hammond et al. (2011) using data from the same station. For the 607 other stations of the easternmost zone within and in the vicinity of the rift axis of 608 central Afar our average crustal thickness value of 21.0±1.0 km is in a good 609 agreement with result obtained by Hammond et al. (2011) and Reed et al. (2014) 610 (Fig. 7). 611 Our Vp/Vs ratios for the southern profile could be grouped into two main groups 612 of the western marginal area and central rift area. Eleven stations located within 613 the western marginal area, seven of them associated with intermediate crustal 614 composition show elevated Vp/Vs ratios in the range from 1.79 to 1.87 and three 615 stations located within the second zone of the foothill area, show low to normal 616 Vp/Vs ratios in the range 1.72±0.01 to 1.76±0.03. Our Vp/Vs results for the 617 stations on the western plateau and within the marginal area of central Afar 618 (southern profile) are similar to the results from the previous receiver function 619 studies (~1.81-1.85±0.05; Hammond et al., 2011; Dugda et al., 2005; Figs. 8, S7). 620 Regarding the stations at the foot of the escarpment (half graben basin), our Vp/Vs 621 values are consistent with the results obtained by Dugda et al. (2005) and 622 Hammond et al. (2011) for the nearby station DIYA.

623	On the eastern end of the southern profile, data from S014, FINE, S017, S018 and
624	S020 stations located to the west and within the MHRS show high Vp/Vs ratio of
625	1.94 ± 0.08 , 1.99 ± 0.02 , 1.95 ± 0.01 , 1.91 ± 0.01 and 2.04 ± 0.02 , respectively (Figs. 5b
626	and S7). Our high Vp/Vs values above 1.9 are comparable to the results for the
627	nearby stations obtained by Hammond et al. (2011) and slightly less than the
628	values estimated by Reed et al. (2014) for the region to southeast of our stations
629	(Fig. 8).
630	
631	4.3 Depth Migrated Profiles
632	The velocity models used for migrated cross section are shown in Fig. S4a. Fig. 6
633	shows the migrated receiver functions along the northern and southern profiles.
634	The Moho depth obtained from the H-k stacking method of Zhu and Kanamori
635	(2000) and corrected for the station elevation is plotted with error bars from the
636	bootstrap technique of Efron and Tibshirani (1986).
637	
638	Northern profile
639	For the northern profile, the Moho interface appears as a strong positive phase
640	(indicated by the red color, Fig. 6a) and can be easily traced. It is almost horizontal
641	beneath the western plateau (N001-N006) at an average depth of ${\sim}36~\text{km}$, and
642	then rises in two gradual changes to a depth of ${\sim}18~\text{km}$ below the eastern end of
643	the profile. The first crustal thinning ($\sim\!14~\text{km}$ vertically over $\sim\!10~\text{km}$ horizontally)
644	occurs at the edge of the plateau between N006 station located on the western $\ensuremath{\text{N}}$
645	plateau and N007 station located at the foot of the escarpment within the marginal $$
646	graben zone. The second crustal thinning occurs within the marginal graben zone
647	between the stations N007 and N008, (\sim 5 km vertically over 15 km horizontally).
648	The crust continues to thin eastward to $<\!15~\mathrm{km}$ towards Dallol within the Danakil
649	Depression (Makris and Ginzburg, 1987; Tiberi et al., 2005; Bastow and Keir, 2011;
650	Hammond et al., 2011).
651	
652	Southern profile
653	The SW-NE-migrated image along the southern profile (Fig. 6b) shows a clear
654	conversion from the Moho at a depth range from \sim 39-40 km at the western end to

\sim 19-20 km beneath the eastern limit of the profile. The first locus of the crustal
thinning occurs at the edge of the escarpment from 42 km beneath the western
plateau to ~ 34 km beneath the foothills zone (8 km vertically over 20 km
laterally). The second locus occurs between S007 and S008 stations located at the
foothills zone and the marginal graben zone, respectively, reaching an average
crustal thickness of 28 km (6 km vertically over 10 km horizontal distance). The
last locus of the crustal thinning is at the western edge of the Sullu-Adu range
located at the eastern half of Awra basin reaching an average crustal thickness of
\sim 21 km beneath the MHRS at the latitude \sim 12°N.

5 Discussion

5.1 Crustal thicknesses and architecture

666

693

694

695

696

5.1.1 Western Plateau 667 668 For the stations located on the western plateau, observations of the high 669 amplitude coherent Moho converted arrivals and consistent estimated crustal 670 thickness beneath the western plateau stations of each profile indicate that the 671 Moho interface is mostly flat beneath the western plateau, while the intra-crustal 672 conversions are laterally variable in amplitude and depth at some stations. A 673 recent study of Ogden et al. (2019) shows that the reliability of the high frequency 674 RFs is very low at the center of the flood-basalt province where the gradational 675 Moho thickness is >13.0 km and such reliability increases toward the outside of 676 the flood-basalt. However, they concluded that H-κ stacking maintains reliability 677 at low frequencies when the gradational Moho thickness is less than 13.0 km. At the southern part of the western plateau, the wide-angle reflection/refraction 678 679 results at the latitude of the Main Ethiopian Rift (MER) show a ~47.0 km thick 680 crust. This study constrained the thickness of the high-velocity layer at the bottom 681 of the lower crust to be \sim 15.0 km with clear reflections from the top and bottom of 682 this layer and an apparent velocity of 7.4 kms⁻¹. Cornwell et al. (2010), show that 683 the high-velocity layer thins northeastward from 18.0 to 6.0 km with clear Pms 684 conversions from the top and the bottom of the layer. 685 Our receiver function (calculated with both a maximum frequency of ~0.6 and 686 ~1.2 Hz; e.g. Cassidy, 1992; Julia et al., 2005) from the station located at the 687 eastern edge of the western plateau along the southern profile does not show 688 double peak Pms phase (Figs. 3a, d and S2a). Instead, it shows a large amplitude 689 intracrustal phase and Pms converted phase with a lag time of 6s, the latter 690 consistent with the Pms phase from the bottom of the high-velocity layer of 691 Cornwell et al. (2010), as well as a strong crustal reverberation (Fig. 3d). Our 692 results are consistent with a recent receiver function study by Wang et al., 2021,

which yielded the highest stacking amplitude values for the western plateau

nearby to our stations. This indicates that the Moho beneath the stations on the

western plateau is flat with a large change in seismic velocity between the crust

and the mantle and does not allow us to constrain the thickness of the intruded

697 high-velocity layer. This could also be due to a thin intruded layer (< 4.0 km) below 698 the vertical resolution owing to the wavelength of the incoming plane waves 699 and/or to a low velocity contrast between this layer and the overlying part of the 700 lower crust. However, if the crust-mantle transition is not a sharp boundary, our 701 estimated crustal thickness depends on the long wavelength of the teleseismic 702 waves we use, and more likely to select the center of the crust-mantle transition 703 gradient (e.g. Ogden et al., 2019). In that case, we estimate the crustal thickness 704 (include the magmatic additions) to be \sim 45.0-46.0 km in comparison with the 705 average crustal thickness of ~38.0 km for the plateau beneath the northern profile 706 (off-flood-basalt stations). In fact, the Jurassic sediments (pre-flood basalts 707 surface) lie at an average altitude of ~2200 m (Gani et al., 2007), and the higher 708 topography (~3700 m) of the western plateau at the latitude of the southern 709 profile is due to the emplacement of ~1500-1800 m-thick flood-basalts deposits at 710 the top of the Jurassic sediments. Hence, if the crust-mantle transition is a sharp 711 boundary, then this has the implication that the western plateau is still under 712 dynamic support process as proposed by Sembroni et al. (2016). On the other 713 hand, if the crust-mantle is a gradational boundary of ~8.0 km thickness, the 714 implications are that the western plateau is locally compensated with magmatic 715 additions at the base of the lower crust as Tiberi et al. (2005) concluded from 716 interpretation of gravity and seismic data. 717 Most of the western plateau stations of the northern and southern profiles show a 718 clear intra-crustal conversion phase with a lag time of ~2.9-3.0 s from a mid-719 crustal discontinuity at ~20.0-21.0 km depth, likely showing the upper crust-720 lower crust boundary beneath the western plateau, similar to the discontinuity 721 mentioned by Hammond et al. (2011). Toward the southern part of the western 722 plateau at the latitude of the Main Ethiopian Rift (MER), a clear intracrustal 723 interface is modeled by the active seismic profile. This interface separates the 724 upper and lower crust with Vp of 6.1-6.4 kms⁻¹ and 6.6-7.1 kms⁻¹, respectively 725 (Makris and Ginzburg, 1987; Mackenzie et al., 2005; Maguire et al., 2006). A 726 similar interface has been reported and interpreted as the Conrad discontinuity in 727 previous receiver function studies of the eastern Red Sea conjugate margin of 728 Yemen and southeastern Gulf of Aden margin (Ahmed et al., 2013, 2014). It was

estimated at the same depth of ~21.0 km beneath the Yemen plateau covered by the Cenozoic continental flood basalts (Ahmed et al., 2013). Previous seismic refraction profiles across the Arabian shield confirm the existence of this interface between the upper crust with an average Vp of 6.3 kms⁻¹ and the lower crust with an average Vp of 7.0 kms⁻¹ (Mooney et al., 1985; Egloff et al. 1991). This discontinuity suggests a mafic composition for the lower crust, likely altered by magmatic intrusions or partial melt as a result of Miocene-Oligocene flood basalt and the ongoing magmatic activity (Hammond et al., 2011; Ahmed et al., 2013). Interestingly, this interface is almost imaged at the same depth of 20-21 km beneath the Arabian shield, beneath Jordan (Mooney et al., 1985; Stern and Johnson, 2010; and references therein), beneath Yemen plateau (Ahmed et al., 2013) and beneath the western plateau in this study. Although the exact physical meaning of this discontinuity is not clear, it most likely separates the slower brittle upper crust from the faster ductile lower crust (Stern and Johnson, 2010).

743 Our Vp/Vs values for the undeformed northern part of the western plateau with 744 1000-2000 m sedimentary cover are below 1.80 with an average value of \sim 1.74. 745 This is lower than the global average of 1.77 and best explained by Precambrian 746 crust of felsic to intermediate compositions (Zandt and Ammon, 1995; 747 Christensen, 1996), which is lacking significant magmatic modification before or 748 during the breakup (Christensen and Mooney, 1995; Thompson et al., 2010; Ogden 749 et al., 2019). The western plateau at the latitude of the southern profile is characterized by 750 751 elevated Vp/Vs values which may indicate that the lower crust composition has 752 been modified due to mafic intrusions associated with the Cenozoic flood basalts 753 (Hofmann et al., 1997; Pik et al., 1999; Mackenzie et al., 2005; Cornwell et al., 754 2010; Hammond et al., 2011), partial melt in the lower crust (Hammond et al. 755 2011; Ahmed et al. 2013), or fluids circulation within the upper crust (Keir et al., 756 2009; Korostelev et al., 2015; Chambers et al., 2019). 757 758 5.1.2 Crustal thinning and composition across western Afar margin 759 Northern Afar Our high-resolution profile of the crustal structure across the northern Afar 760 761 margin into the Danakil Depression offers an opportunity to interpret the rifting 762 evolution leading to the establishment of the current highly active divergent plate 763 boundary. Taking into account the previous constraints on the crustal thickness 764 near Erta'Ale rift zone and the Dallol Depression deduced by Makris and Ginzburg 765 (1987) and Hammond et al. (2011), the variations of the Moho depth estimated in 766 this study can be extended from the margin to the active rift axis. 767 The onset of the crustal extension occurs at the ~1400 m high escarpment 768 between N006 and N007 stations, (i.e. between 39.8°E-39.9°E; Figs. 1, S6) with 769 ~14.0 km vertical thinning over ~10.0 km horizontal distance. The crustal 770 thinning continues eastward in two more gradient changes before the crust

reaches a thickness of ~14.0 km at the rift axis (Berckhemer et al., 1975; Makris

and Ginzburg, 1987). We note that, the lateral change of the crustal thickness

771

772

773

774 variations to that beneath Yemen, which is the eastern Red Sea conjugate margin 775 of Ethiopia. The crustal thickness is ~35.0 km beneath the Yemen plateau, ~22.0 776 km for the Yemen coastal plain and a lowest value of ~14.0 km on the Yemen Red 777 Sea coast (Ahmed et al., 2013; Fig. 7). 778 Our close station spacing allows us to constrain the locus of the crustal extension 779 more precisely than previous studies. Assuming a pre-rift crustal thickness of 38.0 780 km beneath the western plateau, a crustal thickness of ~19.0 km beneath the 781 marginal graben and reaching the final thickness of ~14.0 km at the rift axis. We 782 estimate a stretching factor β of ~2.0 for the marginal graben and β of ~2.7 for the 783 northern Afar area between the western plateau and the rift axis. This factor 784 obtained for northern Afar is slightly higher than the maximum value obtained for 785 the Yemen Red Sea conjugate margin ($\beta \sim 2.5$, Ahmed et al., 2013, Fig. 8). 786 There is a clear eastward change of the Vp/Vs ratio from low-to-intermediate 787 values, below the western plateau and the area at the foot of the escarpment (< 788 1.80) to high values for the area near the eastern border faults of the marginal 789 graben (> 1.90), and reaching very high values (>2.0) at the current rift axis (e.g. 790 Hammond et al., 2011). The high Vp/Vs ratio we found for the station N008 791 indicates an important change in the bulk composition of the crust due to mafic 792 intrusions along the eastern boundary antithetic faults of the marginal graben 793 (Illsley-Kemp et al., 2018; Zwaan et al., 2020b) or could be due to the existence of 794 crustal fluids. The reported eastward increase in the Vp/Vs ratios toward the rift 795 axis (Hammond et al., 2011) suggests more mafic/ultramafic material and/or may 796 indicate a partial melting within the crust increasing with proximity of the rift axis. 797 This is consistent with observations of recent magma intrusion related ground 798 deformation at the axis of the Danakil Depression (e.g. Nobile et al., 2012; Pagli, et 799 al., 2012). 800 The structure of the northern Afar margin has been primarily controlled by a 801 stretching phase in the early stages of continental rifting c.a ~26-20 Ma (Ukstins et 802 al., 2002; Wolfenden et al., 2005), most likely related to the extension induced by 803 the divergence between Arabian and Nubian plates. It should be noted that during 804 this tectonic event the thickness of both the upper crust and lower crust decreases 805 by a factor of two. This is evident from the depth of the mid-crustal discontinuity

dropping from \sim 20.0 km beneath the western plateau to \sim 9.0-10.0 km beneath the eastern edge of the marginal graben (station N008; Figs. 6a, S2e). In the late stages of continental rifting the extension between the marginal grabens and the rift axis is accommodated by thinning of the upper crust by a factor of 2, while the lower crustal thickness remains constant. This is also evident from the mid-crustal discontinuity at \sim 5.0 km beneath the Danakil Depression (Makris and Ginzburg, 1987). This significant thinning of the upper crust over short length scales is consistent with geological constraints suggesting that rifting along the marginal area of northern Afar associated with upper crustal extension and dominant tectonic deformation (Bastow and Keir, 2011; Keir et al., 2013; Bastow et al., 2018). In contrary, an increase in rift magmatism associated with dike intrusions confined to the rift axis has initiated relatively recently (Quaternary) in the evolution of the rifting of northern Afar (e.g. Bastow and Keir, 2011; Nobile et al., 2012; Pagli et al., 2012).

Central Afar

Unlike the northern profile, in central Afar the number of stations along the southern profile allows us to continuously image the Moho depth and to constrain the crustal composition variations from the western plateau to the rift axis. The crustal thickness decreases eastward by ~8.0 km over ~20.0 km horizontal distance between the western plateau and the second zone located at the foot of the \sim 1700 m high escarpment. Then it decreases in two more steps by \sim 6.0 km and \sim 7.0 km over \sim 10.0 km horizontal distance from the second to the third and to the fourth zones, respectively (Fig. S7). The estimated β factors between these zones are 1.24, 1.21 and 1.30 respectively. We estimate an overall β of 2.1 for central Afar assuming an initial crustal thickness of ~42.0 km beneath the western plateau and a final crustal thickness of ~20.0 km (S020) at the eastern end of the profile. Our estimated stretching factor β for central Afar is comparable with the estimate from the previous receiver function studies (Hammond et al., 2011) but remains smaller than the β value of 3.0 and 2.7 predicted from plate reconstructions (Wolfenden et al., 2005) and from cross section balancing (Stab et al., 2016), respectively. The discrepancy between our estimated β and the

838	predicted $\boldsymbol{\beta}$ is best explained by magmatic addition to the crust during extension
839	(e.g. Mackenzie et al., 2005; Thybo and Nielsen, 2009). This implies 4.0 or 5.0 km
840	of magmatic addition depending on the predicted $\boldsymbol{\beta}$ value used.
841	Most of the stations located within the western marginal area of central Afar
842	(southern profile) show elevated Vp/Vs ratios which suggest intermediate to mafic
843	composition except three stations that show low to normal Vp/Vs ratios. The latter
844	with low to normal values are located within the foothill area and reflect that the
845	Precambrian felsic crust has been poorly contaminated or intruded by mafic rocks.
846	These low Vp/Vs values could also result from the emplacement of felsic volcanic
847	strata coincidence with the onset of faulting along the central Afar margin (26-22
848	Ma; Wolfenden et al., 2005; Rooney et al., 2013; Ayalew et al., 2019) and/or that
849	the crust has been intruded by granitic plutons such as along the Yemen conjugate
850	margin (Hughes and Beydoun, 1992; Davison et al., 1994; Geoffroy et al., 1998;
851	Ahmed et al., 2013). The slightly elevated values for the other stations that are
852	distributed in the marginal graben and the Awra plain may indicate that the lower
853	crust composition has been modified due to mafic intrusions associated with the
854	Cenozoic flood basalts and/or late Miocene magmatic activity (Hofmann et al.,
855	1997; Pik et al., 1999; Cornwell et al., 2010; Hammond et al., 2011; Rooney et al.,
856	2020). It could also indicate partial melt in the lower crust (Hammond et al., 2011;
857	Ahmed et al., 2013; Wang et al., 2021), fluids circulation within the upper crust
858	(Keir et al., 2009; Korostelev et al., 2015; Chambers et al., 2019), or thick
859	sedimentary deposits within the basin (Stab et al., 2016).
860	Finally, at the vicinity and within the MHRS, the significant increase in the Vp/Vs
861	ratio is coincident with the thin crust (20.0 km) toward the central axis of the rift.
862	Such high values of Vp/Vs ratio above 1.90 are very rare (except for few minerals
863	like serpentine) and likely indicate a small amount of partial melt and/or fluids in
864	the crust (Watanabe, 1993; Christensen, 1996; Zandt and Ammon, 1995).
865	Hammond et al. (2011) used receiver function forward modeling for three stations
866	located west and northwest of MHRS (to the north of our stations) to show that
867	partial melt in the lower crust may exist beneath regions of thinner crust of central
868	Afar. Reed et al. (2014) used the theoretical velocity-melt relationship developed
869	by Watanabe (1993) for granitic rocks with rhyolitic melt, to estimate 4.2-11.4%

870 melt fraction at the location of their stations located in central Afar to the 871 southeast of our stations. 872 Additional observations supporting the existence of partial melt within the crust 873 at the vicinity and within the MHRS come from imaged slow shear wave velocities 874 within the crust and the uppermost mantle beneath the magmatic segments 875 (Hammond et al., 2011; Stork et al., 2013; Korostelev et al., 2015; Chambers et al., 876 2019). Magnetotelluric results that also point to a wide conductive zones within 877 the crust beneath MHRS interpreted as a large magma volumes that contains 878 ~13% melt fraction (Desissa et al., 2013; Didana, et al., 2014; Johnson et al., 2016) 879 and recent series of dike intrusions at MHRS (Keir et al., 2013). Finally, Hammond 880 (2014) invert H-κ data at three stations within and in the vicinity of MHRS for melt 881 fraction and anisotropy and show that the melt is likely stored in the form of stacked sills within the lower crust with a maximum thickness of 2.8 km and 882 883 connected by some melt inclusions in preferential vertical alignment. Hammond 884 (2014) shows that the anisotropy, and resultant amplitude dominance of the slow 885 shear wave in H-k stacking is a likely cause of the high Vp/Vs ratios for the average 886 crust of the MHRS. 887 The crustal structure variations across the western margin of central Afar are 888 consistent with the distinct geological and structural domains of this region. From 889 the west, the early stretching stage of the continental rifting (c.a ~26-23 Ma; 890 correspond to first step of the Moho interface between S003 and S004; second 891 zone; Fig. S7) occurs below the main escarpment. This stretching phase is 892 characterized by large offset normal faults, distributed over a wide area (Stab et 893 al., 2016) and accompanied with the formation of the half graben basin at the foot 894 of the escarpment and the emplacement of felsic magmatism (Wolfenden et al., 895 2005). The following extension event occurs ~30.0 km eastward below the 896 western bounding faults of the marginal graben, corresponding to the second step 897 of the Moho interface from the second to the third zones (between S007 and S008; 898 Fig. S7). This extension event occurs after the emplacement of many Miocene giant 899 dykes within and in the vicinity of the marginal graben (Chorowicz et al., 1999; 900 Stab et al., 2016; Ayalew et al., 2019; Zwaan et al., 2020b). Zwaan et al. (2020a, b) 901 suggest that this event is related to the rotation of the Danakil block, dated from geological studies as between 16-7 Ma (Wolfenden et al., 2005; Zwaan et al., 2020a, 2020b). During this extension event the stretching was distributed over a wide area, most likely accompanied with the formation of antithetic normal faults and the creation of NE tilted blocks (Stab et al., 2016). A third extension event occurs below the western edge of Sullu-Adu range (between S013 and S014; Figs., 1, S7). During this event, the crust was massively intruded by the emplacement of melts within the lower crust (Hammond et al., 2011; Ayalew et al., 2019), through which the crustal composition was altered as evidenced by our high Vp/Vs ratios (Table 1; Figs., 5b, S7b).

911

902

903

904

905

906

907

908

909

910

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

5.2 Implications for the evolution of the rifting

We use our constraints on spatial variation in crustal thickness and Vp/Vs ratio in the 2 profiles across the Afar margin to interpret the interplay between mechanical extension (faulting and ductile stretching) and magma intrusion during rift evolution, and how these processes vary along the margin. Separated by only ~150.0 km with a major transfer zone (EATZ; Fig. 1), the two sections along the western Afar margin show strong dissimilarities in their deep structure, particularly regarding the geometry of the Moho depth across the margin. The two sections differ primarily by the amount of the stretching and the width of the extended area from the western plateau to the rift axis. The sharp decrease in the crustal thickness between the western plateau and the marginal graben during the early stages of extension ($\beta \sim$ 2.0 and 1.5 for the northern and central Afar, respectively) suggests different rates of the mechanical extension. During the latter stages of extension between the marginal graben and rift axis, the differential thinning between the brittle and ductile crustal layers suggests that the two layers were decoupled and associated with mechanical extension in the brittle crust and ductile flow in the lower crust (e.g. Jolivet et al., 2015). In northern Afar, the extension during these latter stages is accommodated by the thinning of the upper crust only and distributed over a narrow extended area (~40 km). This is consistent with the high Vp/Vs ratio, the thin seismogenic layer (~5 km; Craig et al., 2011; Nobile et al., 2012) and the thin effective elastic thickness (Te ~6 km; Ebinger and Hayward, 1996; Pérez-Gussinyé

et al., 2009; Ebinger et al., 2017). The stretching and thinning across the western margin of central Afar occurs on a wide distance (>100 km), accommodated by thinning of both the upper and lower crust and associated with decrease in crustal thickness by three successive steps from the stable continental western plateau to the active rift axis. Whereas the Vp/Vs ratios do not show any correlation with the crustal thickness and/or age, but well correlate to the mafic intrusions and increased melt within the crust. The crustal composition is changing from felsic at the foothill area to mafic across the marginal graben and Awra plain and ultra-mafic composition near and within the central Afar magmatic segment. These observations are consistent with a rifting history at the latitude of central Afar dominated by a discontinuous riftward migration of the extensional strain over time associated with intense magmatism (Wolfenden et al., 2005; Rooney et al., 2013; Stab et al., 2016).

6. Conclusion

We use the receiver function technique and teleseismic data recorded by a temporary broadband seismic array deployed along two profiles crossing the western margin of Afar to constrain the tectonic processes that are involved in the evolution of the rift. Our results provide constraints on the following characteristics of the crustal thickness and composition:

(1) The crustal thickness beneath the western plateau is 37-43 km, and decreases eastward to its minimum ranges from 14-23 km beneath the central rift axis. The decrease in the crustal thickness is more pronounced beneath the foothills and marginal grabens, but the crust also thins elsewhere in discrete steps. This is consistent with jumps in strain localization during rifting, rather than progressive strain migration. The crustal thinning of northern Afar points towards a β of 2.7, and in central Afar of 2.2. Both values are lower than a β of 3.0 predicted by plate reconstructions, with the discrepancy best explained by 2-5 km of magmatic

- addition to the crust. The amount of crustal thinning is higher in northern Afar, pointing towards increased plate stretching in the north.
- 966 (2) The Vp/Vs ratios suggest that the crustal composition along the western
- 967 margin of Afar could be classified with unmodified crust with felsic to normal
- 968 crustal composition, (western plateau next to northern Afar), altered crust due to
- 969 magmatic intrusion and/or additions (western plateau and marginal area of
- 970 central Afar) and highly modified crustal composition associated with the
- presence of partial melt at the central rift axis.
- 972 (3) There is a significant difference between the western margin characteristics of
- 973 the northern Afar (Danakil Depression) in comparison with the western margin of
- 974 the central Afar. In northern Afar, the crustal extension occurs over a short
- 975 distance associated with significant thinning of the upper crust and dominant
- 976 tectonic deformation. In central Afar, the crustal extension occurs on a wide area
- 977 and characterized by multiple crustal thinning steps associated with riftward
- 978 migration of the extensional deformation and intense magmatic activity.
- 979 (4) The elevated Vp/Vs ratios are generally associated with the crustal thicknesses
- of less than 21 km, in or near the active magmatic segments showing the role of
- the magmatic processes in the final stages of continental rifting.

982

983

Acknowledgments

- Data used in this study were collected by the AFAR17 project in Ethiopia. The
- 985 instruments for the project were provided by the French National Research
- 986 Infrastructure SISMOB-RESIF (http://www.resif.fr) and SEIS-UK. RESIF is supported
- 987 by the French Ministry of Research and Higher Education. The facilities of SEIS-UK
- are supported by the Natural Environment Research Council (NERC) under agreement
- 989 R8/H10/64. Funding for fieldwork (deployments, data collection and maintenance) is
- 990 from Sorbonne Université, ISTEP, Institute des Sciences de la Terre de Paris. AA is
- 991 supported by the Sorbonne Université (ISTeP), the University of Strasbourg (FACE
- program) and the PAUSE program. DK is supported by NERC grant NE/L013932/1,
- 993 and MIUR grant PRIN 2017P9AT72. CP and ALR acknowledge support by the
- 994 University of Pisa grant PRA 2018 19. We wish to thank the Addis-Ababa University
- staff for help in customs clearance and for the technical facilities, the Afar Regional

996	Authorities and local people for their kind cooperation and their help to make the
997	fieldwork successful. We deeply thank, Alex Nercessian, IPGP, the Centre Français
998	d'Etudes Ethiopiennes (CFEE) in Addis-Ababa for the help and support provided by
999	the center during the experiment. We also deeply thank an anonymous reviewer whose
1000	comments greatly improved this manuscript.
1001	This research has made use of the SAC (Seismic Analysis Code), TauP toolkit, GMT
1002	(General Mapping Tool) and the 1D IASP91 velocity model.
1003	
1004	
1005	
1006	
1007	References
1008	Abdallah, A. et al., 1979. Relevance of Afar seismicity and volcanism to the
1009	mechanics of accreting plate boundaries, Nature, 282, 17–23.
1010	Ahmed, A., Tiberi, C., Leroy, S., Stuart, G. W., Keir, D., Sholan, J., Khanbari, K., Al-
1011	Ganad, I. and Basuyau, C. 2013. Crustal structure of the rifted volcanic
1012	margins and uplifted plateau of Western Yemen from receiver function
1013	analysis, Geophys. J. Int., 193(3), 1673–1690, doi:10.1093/gji/ggt072.
1014	Ahmed A., Leroy, S., Keir, D., Korostelev, F., Khanbari, K., Rolandone, F., Stuart,
1015	G., Obrebski, M., 2014. Crustal structure of the Gulf of Aden southern
1016	margin: Evidence from receiver functions on Socotra Island (Yemen),
1017	Tectonophys., 637, 251-267, doi: 10.1016/j.tecto.2014.10.014., 337, 251-
1018	267.
1019	Alemu, T., Abdelsalam, M. G., Dawit, E. L., Atnafu, B., and Mickus, K. L., 2018.
1020	The Paleozoic e Mesozoic Mekele Sedimentary Basin in Ethiopia: An
1021	example of an exhumed IntraCONtinental sag (ICONS) basin. J. Afr. Earth
1022	Sci., 143, 40 –58. https://doi.org/10.1016/j.jafrearsci.2018.03.010
1023	Ammon, C.J., Randall, G. and Zandt, G., 1990. On the nonuniqueness of
1024	receiver function inversions, J. Geophys. Res., 95, 15 303-15 318.
1025	Ammon, C.J., 1991. The isolation of receiver effects from teleseismic P
1026	waveforms, Bull. Seism. Soc. Am., 81, 2504-2510.

1027	Ayalew, D., Pik, R., Bellahsen, N., France, L., and Yirgu, G., 2019. Differential
1028	fractionation of rhyolites during the course of crustal extension, Western
1029	Afar (Ethiopian rift). Geochem. Geophys. Geosyst. 20, 571-593.
1030	https://doi.org/10.1029/2018GC007446
1031	Ayele, A., Stuart, G. and Kendall, J., 2004, Insights into rifting from shear wave
1032	splitting and receiver functions: An example from Ethiopia, Geophys. J.
1033	Int., 157(1), 354–362.
1034	Ayele, A., Stuart, G., Bastow, I., and Keir, D., 2007. The August 2002 earthquake
1035	sequence in north Afar: Insights into the neotectonics of the Danakil
1036	microplate. J. Afr. Earth Sci., 40, 70–79.
1037	Baker, J. A., Snee, L. and Menzies, M., 1996a. A brief Oligocene period of flood
1038	volcanism in Yemen: Implications for the duration and rate of continental
1039	flood volcanism at the Afro-Arabian triple junction, Earth Planet. Sci. Lett.,
1040	138(1), 39–55.
1041	Barberi, F., and Varet, J., 1977. Volcanism in the Afar Depression: small-scale
1042	plate tectonic implications, Bull. Geol. Soc. Amer., 88, 1251-1266.
1043	Barberi, F., Tazieff, H. and Varet, J., 1972. Volcanism in the Afar Depression:
1044	Its tectonic and magmatic significance. Tectonophys., 15, 19-29,
1045	https://doi.org/10.1016/0040-1951(72)90046-7
1046	Barnie, T. D., Keir, D., Hamling, I., Hofmann, B., Belachew, M., Carn, S.,Vye-
1047	Brown, C. (Ed.), 2016. A multidisciplinary study of the final episode of the
1048	Manda Hararo dyke sequence, Ethiopia, and implications for trends in
1049	volcanism during rifting cycle. Geo. Soc. London, Spec. Pub., 420, 149-163.
1050	doi: 10.1144/SP420.6
1051	Bastow, I., and Keir, D., 2011. The protracted development of the continent
1052	ocean transition in Afar. Nat. Geosc., 4(4), 248–250.
1053	https://doi.org/10.1038/ NGEO01095
1054	Bastow, I. D., Booth, A. D., Corti, G., Keir, D., Magee, C., Jackson, C. AL., etal.,
1055	2018. The development of late-stage continental breakup: Seismic
1056	reflection and borehole evidence from the Danakil Depression, Ethiopia.
1057	Tectonics, 37, 2848-2862. https://doi.org/10.1029/2017TC004798

1058	Beccaluva, L., Bianchini, G., Natali, C. and Siena, F. 2009. Continental flood
1059	basalts and mantle plumes: A case study of the northern Ethiopian
1060	plateau. Journal of Petrology, 50(7), 1377–1403.
1061	https://doi.org/10.1093/petrology/egp024
1062	Bellahsen, N., S. Leroy, S., Autin, J., Razin, P., d'Acremont, E., Sloan, H., Pik, R.,
1063	Ahmed A. and Khanbari, K., 2013. Tectonophysics, Tectonophysics, 607(C),
1064	32-50, doi:10.1016/j.tecto.2013.07.036.
1065	Berckhemer, H., Baier, B., Bartlesen, H., Behle, A. Burkhardt, H., Gebrande, H.,
1066	Markris, J., Menzel, H., Miller, H. and Vees, R., 1975. Deep seismic
1067	soundings of the Afar region and on the highland of Ethiopia, in Afar
1068	Depression of Ethiopia: Proceedings of an International Symposium on
1069	the Afar Region and Related Rift Problems, Held in Bad Bergzabern, FR
1070	Germany, April 1–6, 1974, pp. 89–107, Schweizerbart, Stuttgart, Germany.
1071	Beyene, A., and. Abdelsalam M. G, 2005. Tectonics of the Afar Depression: A
1072	review and synthesis, J. Afr. Earth Sci., 41, 41–59.
1073	Black, R., Morton, W.H., Varet, J., 1972. New data on Afar Tectonics. Nat. Phys.
1074	Sci. 240, 170–173. https://doi.org/10.1038/physci240170a0 .
1075	Bosworth, W., Huchon, P., and McClay, K. 2005. The Red Sea and Gulf of Aden
1076	Basins, J. Afr. Earth. Sci., 43, 334–378.
1077	Buck, W.R., 2004. Consequences of asthenospheric variability on continental
1078	rifting. In: Karner, G., Taylor, B., Driscoll, N.W. and Kohlstedt, D.L. (Eds),
1079	Rheology and deformation of the lithosphere at continental margins.
1080	Columbia University Press, New York, 1-30
1081	Burdick, L.J. and Langston, C.A., 1977. Modeling crustal structure through the
1082	use of converted phases in teleseismic body waveforms, Bull. Seism. Soc.
1083	Am., 67, 677–692.
1084	Cannat, M., Manatschal, G., Sauter, D. and Péron-Pinvidic, G., 2009. Assessing
1085	the conditions of continental breakup at magma-poor rifted margins:
1086	What can we learn from slow spreading mid-ocean ridges? C. R. Geosci.
1087	341, 394–405.
1088	Cassidy, J.F., 1992. Numerical experiments in broad-band receiver function
1089	analysis, Bull. seism. Soc. Am., 82, 1453–1474.

1090	Chambers, E. L., Harmon, N., Keir, D., and Rychert, C. A., 2019. Using ambient
1091	noise to image the northern East African Rift. Geochem. Geophys. Geosyst.,
1092	20, 2091–2109. https://doi.org/10.1029/2018GC008129
1093	Chevrot, S., and van der Hilst, R. D., 2000. The Poisson ratio of the Australian
1094	crust: Geological and geophysical implications, Earth Planet. Sci. Lett.,
1095	183, 121 – 132.
1096	Christensen, N. I., 1996. Poisson's ratio and crustal seismology, J. Geophys.
1097	Res., 101, 3139–3156.
1098	Christensen, N.I. and Mooney, W.D., 1995. Seismic velocity structure and
1099	composition of the continental crust: a global view. J. Geophys. Res. 100,
1100	9761–9788.
1101	Chu, R., Schmandt, B. and Helmberger, D.V., 2012. Upper mantle P velocity
1102	structure beneath the Midwestern United States derived from triplicated
1103	waveforms. Geochem. Geophys. Geosyst., 13.
1104	Cornwell, D. G., Magurie, P. K. H., England, R. W. and Stuart, G. W., 2010.
1105	Imaging detailed crustal structure and magmatic intrusion across the
1106	Ethiopian rift using a dense linear broadband array, Geochem. Geophys.
1107	Geosyst., 11, Q0AB03, doi:10.1029/2009GC002637.
1108	Courtillot, V., 1982. Propagating rifts and continental breakup. Tectonics, 1:
1109	239-250.
1110	Crotwell, H. P., Owens, T. J. and Ritsema, J., 1999, The TauP Toolkit: Flexible
1111	seismic travel-time and ray-path utilities, Seismo. Res. Lett., 70, 154–160,
1112	doi:10.1785/gssrl.70.2.154.
1113	Chorowicz, J., Collet, B., Bonavia, F., Korme, T., 1999. Left-lateral strike-slip
1114	tectonics and gravity induced individualisation of wide continental blocks
1115	in the western Afar margin. Eclogae Geol. Helv. 92, 149-158.
1116	https://doi.org/10.5169/seals-168656.
1117	Craig, T. J., Jackson, J. A., Priestley, K. and McKenzie, D., 2011. Earthquake
1118	distribution patterns in Africa: Their relationship to variations in
1119	lithospheric and geological structure, and their rheological implications,
1120	Geophys. J. Int., 185, 403-434, doi:10.1111/j.1365-246X.2011.04950.x.

1121	d'Acremont. E., Leroy. S., Beslier. M.O., Bellahsen. N., Fournier. M., Robin C.,
1122	Maia. M., Gente. P., 2005. Structure and evolution of the eastern Gulf of
1123	Aden conjugate margins from seismic reflection data. Geophys J Int
1124	160:869-890
1125	d'Acremont, E., Leroy, S., Maia, M., Patriat, P., Beslier, M.O., Bellahsen, N.,
1126	Fournier, M., Gente, P., 2006. Structure and evolution of the eastern Gulf of
1127	Aden: insights from magnetic and gravity data (Encens-Sheba/MD117
1128	cruise). Geophys. J. Int. 165:786–803
1129	Daniels, K. A., Bastow, I. D., Keir, D., Sparks, R. S. J. and Menand, T., 2014.
1130	Thermal models of dyke intrusion during development of continent-
1131	ocean transition. Earth planet. Sci. Lett., 385, 145-153. doi:
1132	10.1016/j.epsl.2013.09.018
1133	Davison, I. et al., 1994. Geological evolution of the southeastern Red Sea Rift
1134	margin, Republic of Yemen, Geol. Soc. Am. Bull., 106, 1474–1493.
1135	Desissa, M., Johnson, N. E., Whaler, K. A., Hautot, S., Fisseha, S., and Dawes, G. J.
1136	K., 2013. A mantle magma reservoir beneath an incipient mid-ocean ridge
1137	in Afar, Ethiopia. Nat. Geosc., 6, 861-865.
1138	Didana, Y. L., Thiel, S. and Heinson, G., 2014. Magnetotelluric imaging of upper
1139	crustal partial melt at Tendaho graben in Afar, Ethiopia, Geophys. Res.
1140	Lett., 41, 3089-3095, doi:10.1002/2014GL060000.
1141	Doubre C., A. Déprez, A., Masson, F., Socquet, A., Lewi, E., Grandin, R.,
1142	Nercessian, A., Ulrich, P., De Chabalier, J., Saad, I., Abayazid, A., Peltzer, G.,
1143	Delorme, A., Calais, E. and Wright, T., 2017. Current deformation in
1144	Central Afar and triple junction kinematics deduced from GPS and InSAR
1145	measurements, Geophys. J. Int. 208, 936–953.
1146	Doubre, C., Leroy, S., Keir, D., Pagli, C. and RESIF, 2021. Study of the structure
1147	of the lithosphere from the continental plateau of western Ethiopia to the
1148	active Afar rift (RESIF-SISMOB)[Data set] RESIF. Reseau Sismologique et
1149	Géodésique Francais.
1150	Dugda, M., Nyblade, A., Julià, J., Langston, C., Ammon, C., and Simiyu, S., 2005.
1151	Crustal structure in Ethiopia and Kenya from receiver function analysis. J.
1152	Geophys. Res., 110, B01303. doi.org/10.1029/2004JB003065

1153	Dugda, M. T., and Nyblade, A. A. (2006). New contraints on crustal structure in
1154	eastern Afar from the analysis of receiver functions and surface wave
1155	dispersion in Djibouti. In: The Afar volcanic province within the East
1156	African Rift System. Geol. Soc., London Spec. Pub., 259, 239-251.
1157	Dugda, M. T., Nyblade, A. A., and Julia, J., 2007. Thin lithosphere beneath the
1158	Ethiopian plateau revealed by a joint inversion of Rayleigh wave group
1159	velocities and receiver functions. J. Geophys. Res., 112, B08305.
1160	https://doi.org/10.1029/2006JB004918
1161	Ebinger, C.J., Hayward, N.J., 1996. Soft plates and hot spots: views from Afar. J.
1162	Geophys. Res. Solid Earth 101, 21859–21876.
1163	https://doi.org/10.1029/96JB02118.
1164	Ebinger, C. J., and Sleep N. H., 1998. Cenozoic magmatism throughout east
1165	Africa resulting from impact of a single plume, Nature, 395, 788-791.
1166	Ebinger, C. E., and Casey, M., 2001. Continental breakup in magmatic
1167	provinces: An Ethiopian example. Geology, 29(6), 527–530.
1168	Ebinger, C., 2007. AFAR. International Federation of Digital Seismograph
1169	Networks. https://doi.org/10.7914/SN/ZE_2007
1170	Ebinger, C. J., Keir, D., Bastow, I. D., Whaler, K., Hammond, J. O. S., Ayele, A.,
1171	Hautot, S., 2017. Crustal structure of active deformation zones in Africa:
1172	Implications for global crustal processes. Tectonics, 36,n3298–3332.
1173	https://doi.org/10.1002/2017TC004526
1174	Efron, B. and Tibshirani, R., 1986. The Bootstrap Method for standard errors,
1175	confidence intervals, and other measures of statistical accuracy, Stat. Sci.,
1176	1, 1–35.
1177	Egloff, F., Rihm, R., Makris, J., Izzeldin, Y., Bobsien, M., Meier, K., Junge, P.,
1178	Noman, T. and Warsi, W., 1991. Contrasting structural styles of the eastern
1179	and western marginsof the southern Red Sea: The 1988 SONNE
1180	experiment, Tectonophys., 198, 329-353.
1181	Gallacher, R., Keir, D., Harmon, N., Stuart, G., Leroy, S., Hammond, J., Kendall, J-
1182	M., Ayele, A., Goitom, B., Ogubazghi, G. and Ahmed, A., 2016. The initiation
1183	of segmented buoyancy-driven melting during continental breakup, Nat.
1184	Comms, 7, doi: 10.1038/ncomms13110.

1185	Gani, N. D., Gani, M. R. and Abdelsalam, M. G., 2007. Blue Nile incision on the
1186	Ethiopian Plateau: Pulsed plateau growth, Pliocene uplift, and hominin
1187	evolution. GSAToday17,4
1188	Geoffroy, L., Huchon, P. and Khanbari, K., 1998. Did Yemeni tertiary granites
1189	intrude neck zones of a stretched continental upper crust? Terra Nova, 10,
1190	196–200.
1191	Geoffroy, L., 2005. Volcanic passive margins, C. R. Geoscience, 337, 1395-
1192	1408.
1193	Grandin, R., Socquet, A., Binet, R., Klinger, Y., Jacques, E., de Chabalier, JB. and
1194	Pinzuti, P., 2009. September 2005 Manda Hararo-Dabbahu rifting event,
1195	Afar (Ethiopia): constraints provided by geodetic data, J. geophys. Res.,
1196	114, doi:10.1029/2008JB005843
1197	Grandin, R., Socquet, A., Doin, M. P., Jacques, E., de Chabalier, J. B. and King, G.
1198	C. P., 2010. Transient rift opening in response to multiple dike injections
1199	in the manda hararo rift (Afar, Ethiopia) imaged by time-dependent
1200	elastic inversion of interferometric synthetic aperture radar data, J.
1201	Geophys. Res., 115, B09403, doi:10.1029/2009JB006883.
1202	Grandin, R., A. Socquet, A., Jacques, E., Mazzoni, N., de Chabalier, JB. and King,
1203	G. C. P., 2010. Sequence of rifting in Afar, Manda-Hararo rift, Ethiopia,
1204	2005-2009: Time-space evolution and interactions between dikes from
1205	interferometric synthetic aperture radar and static stress change
1206	modeling, J. Geophys. Res., 115, B10413, doi:10.1029/2009JB000815.
1207	Hagos L, Shomali H, Roberts R. 2006. Re-evaluation of focal depths and source
1208	mechanisms of selected earthquakes in the Afar Depression. Geophys. J.
1209	Int. 167:297–308
1210	Hammond, J. O. S., Kendall, JM., Stuart, G., Keir, D., Ebinger, C., Ayele, A., and
1211	Belachew, M., 2011. The nature of the crust beneath the Afar triple
1212	junction: Evidence from receiver functions. Geochem. Geophys. Geosyst., 12,
1213	Q12004. https://doi.org/10.1029/2011GC003738
1214	Hammond, J. O. S. et al., 2013. Mantle upwelling and initiation of rift
1215	segmentation beneath the Afar Depression, Geology, 41, 635-638,
1216	doi:10.1130/G33925.1.

1217	Hammond, J. O. S., 2014. Constraining melt geometries beneath the Afar
1218	Depression, Ethiopia from teleseismic receiver functions: The anisotropic
1219	H-κ stacking technique. Geochem. Geophys. Geosyst., 15, 1316.1332.
1220	http://doi.org/10.1002/2013GC005186
1221	Hammond, W. C. and Humphreys, E., 2000. Upper mantle seismic wave
1222	velocity: effects of realistic partial melt geometries. J. Geophys. Res. 105,
1223	10975-10986.
1224	Hayward NJ, Ebinger CJ. 1996. Variations in the along-axis segmentation of
1225	the Afar rift system. Tectonics 15:244–57.
1226	Hofmann, C., Courtillot, V., Feraud, G., Rochette, P., Yirgu, G., Ketefo, E. and Pik,
1227	R., 1997. Timing of the Ethiopian flood basalt event and implications for
1228	plume birth and global change, Nature, 389, 838-841.
1229	Hughes, G.W. and Beydoun, Z.R., 1992. The Red Sea-Gulf of Aden:
1230	biostratigraphy, lithostratigraphy and palaeoenvironments,
1231	J.Petrol.Geol.,15, 135–156.
1232	Illsley-Kemp, F., Savage, M. K., Keir, D., Hirschberg, H. P., Bull, J. M., Gernon, T.
1233	M., et al., 2017. Extension and stress during continental breakup: Seismic
1234	anisotropy of the crust in northern afar. Earth and Planetary Science
1235	Letters, 477, 41-51. https://doi.org/10.1016/j.epsl.2017.08.014
1236	Illsley-Kemp, F., Keir, D., Bull, J. M., Gernon, T. M., Ebinger, C., Ayele, A., et al.,
1237	2018. Seismicity during continental breakup in the Red Sea rift of
1238	Northern Afar. J. of Geophys. Res.: Solid Earth, 123, 2345-2362.
1239	https://doi.org/10.1002/2017JB014902
1240	Jolivet, L., Menant, A., Sternai, P., Rabillard, A., Arbaret, L., Augier, R., Laurent,
1241	V., Beaudoin, A., Grasemann, B., Huet, B., Labrousse, L., Le, L., 2015. The
1242	geological signature of a slab tear below the Aegean. Tectonophysics 659,
1243	166-182. doi:10.1016/j.tecto.2015.08.004
1244	Johnson, N.E., Whaler, K.A., Hautot, S., Fisseha, S., Desissa, M. and Dawes, G.J.K.,
1245	2016. Magma imaged magnetotellurically beneath an active and an
1246	inactive magmatic segment in Afar, Ethiopia. Geol. Soc., London, Spec Pub.,
1247	14, 150000. https://doi.org/ 10.1144/SP420.11

1248	Julia, J., Ammon, C.J., and Nyblade, A. A., 2005. Evidence for mafic lower crust
1249	in Tanzania, East Africa, from joint inversion of receiver functions and
1250	Rayleigh wave dispersion velocities. Geophys. J. Int., 162, 555–569.
1251	Justin-Visentin, E. and Zanettin, B., 1974. Dike swarms, volcanism and
1252	tectonics of the Western Afar margin along the Kombolcha-Eloa traverse
1253	(Ethiopia). Bull. Volc., 38: 187-205
1254	Keir, D., I. Bastow, K. Whaler, E. Daly, D. G. Cornwell, D. G. and Hautot, S., 2009.
1255	Lower-crustal earthquakes near the Ethiopian rift induced by magma
1256	injection, Geochem. Geophys. Geosyst., 10, Q0AB02,
1257	doi:10.1029/2009GC002382.
1258	Keir, D., Belachew, M., Ebinger, C., Kendall, JM., Hammond, J.O.S., Stuart G.W.,
1259	Ayele, A., Rowland, J., 2011. Mapping the evolving strain field during
1260	continental breakup from crustal anisotropy in the Afar Depression. Nat.
1261	Commun. 2, 285.
1262	Keir, D., Bastow, I. D., Pagli, C., and Chambers, E. L., 2013. The development of
1263	extension and magmatism in the Red Sea rift of Afar. Tectonophysics, 607,
1264	98–114. https://doi.org/10.1016/j.tecto
1265	Keir, D., 2017. Afar Margin Northern Profile. International Federation of Digital
1266	seismograph Network. Https://doi.org/10.7914/SN/YQ_2017
1267	Kennett, B.L.N. and Engdahl, E.R., 1991. Traveltimes for global earthquake
1268	location and phase identification, Geophys. J. Int., 122, 429–465.
1269	Kibret, B.A., Ayele, A., Keir, D., 2019. Crustal thickness estimates beneath four
1270	seismic stations in Ethiopia inferred from p-wave receiver function
1271	studies. J. Afr. Earth Sci. 150, 264-271.
1272	https://dx.doi.org/10.1016/j.jafrearsci.2018.11.005.
1273	Kieffer, B., Arndt, N., Lapierre, H., Bastien, F., Bosch, D., Pecher, A., et al.
1274	(2004). Flood and shield basalts from Ethiopia: Magmas from the African
1275	superswell. Journal of Petrology, 45, 793–834.
1276	https://doi.org/10.1093/petrology/egg112
1277	Kind, R., Yuan, X., Saul, J., Nelson, D. and S. Sobolev, S., 2002. Seismic images of
1278	crust and upper mantle beneath Tibet: Evidence for Eurasian plate
1279	subduction, Science, 298, 1219–1221.

1280	Korostelev, F. et al., 2015. Magmatism on rift flanks: Insights from ambient
1281	noise phase velocity in Afar region, Geophys. Res. Lett., 42,2179–2188.
1282	Krans, S., Rooney, T., Kappelman, J., Yirgu, G. and Ayalew, D., 2018. from
1283	initiation to termination: a petrostratigraphic tour. contribution to
1284	Mineralogy and Petrology v. 173, P 37.
1285	Lahitte, P., Gillot, P.Y., Kidane, T., Courtillot, V. and Bekele, A., 2003a. New age
1286	constraints on the timing of volcanism in central Afar, in the presence of
1287	propagating rifts, J. Geophys. Res., 108(B2), 2123, doi:10.1029/2001
1288	JB001689.
1289	Langston, C.A., 1977. Corvallis, Oregon, crustal and upper mantle structure
1290	from teleseismic P and S waves, Bull. seism. Soc. Am., 67, 713–724.
1291	Langston, C.A., 1979. Structure under Mount Rainier, Washington, inferred
1292	from teleseismic body waves, J. geophys. Res., 84, 4749-4762.
1293	Laughton, A.S. and Tramontini, C., 1969. Recent studies of the crustal structure
1294	of the Gulf of Aden, Tectonophys., 8, 359-375.
1295	Lavayssiere, A., Rychert, C. A., Harmon, N., Keir, D., Hammond, J. O. S., Kendall,
1296	J. M., et al., 2018. Imaging lithospheric discontinuities beneath the
1297	northern East African Rift using S-to-P receiver functions. Geochem.
1298	Geophys., Geosyst., 19, 4048–4062. https://doi.
1299	org/10.1029/2018GC007463
1300	Lavier, L.L. and Manatschal, G., 2006. A mechanism to thin the continental
1301	lithosphere at magma-poor margins. Nature 440:324-328
1302	Le Gall, B., Leleu., S., Pik., R., Jourdan, F., Chazot, G., Ayalew, D., Yirgu G.,
1303	Cloquet, C. and Chauvet, F., 2018. The Red Beds series in the Erta Ale
1304	segment, North Afar. Evidence for a 6 Ma-old post-rift basin prior to
1305	continental rupturing. Tectonophys. 747-748, 373–389.
1306	Leroy, S. et al,. 2010. Contrasted styles of rifting in the eastern Gulf of Aden: A
1307	combined wide-angle, multichannel seismic, and heat flow survey,
1308	Geochem. Geophys. Geosyst., 11(7):1-14. doi:10.1029/2009GC002963
1309	Leroy S, Razin F, Autin J, Bache F, d'Acremont E, Watremez L, Robinet J,
1310	Baurion C, Denèle Y, Bellahsen N, Lucazeau F, Rolandone F, Rouzo S, Serra
1311	KielJ, Robin C, Guillocheau F, Tiberi C,Basuyau C, Beslier M-O, Ebinger C,

1312	Stuart G, Ahmed A, Khanbari K, AlGanad I, de Clarens P, Unternehr P, Al
1313	Toubi A, Al Lazki A, 2012. From rifting to oceanic spreading in the Gulf of
1314	Aden: a synthesis. Arab J Geosci. http://dx.doi.org/10.1007/s12517-011-
1315	0475-4
1316	Levin, V., and J. Park, 1997a. Crustal anisotropy beneath the Ural mtns
1317	foredeep from teleseismic receiver functions, Geophys. Res. Lett. 24,
1318	1283–1286.
1319	Levin, V., and Park, J., 2000. Shear zones in the Proterozoic lithosphere of the
1320	Arabian Shield and the nature of the Hales discontinuity, Tectonophysics
1321	323, 131–148.
1322	Ligorria, J. and Ammon, G., 1999. Iterative deconvolution and receiver
1323	functions estimation, Bull. seism. Soc. Am., 89, 1395–1400.
1324	Ligorria, J.P., 2000. An investigation of the crust-mantle transition beneath
1325	North America and the bulk composition of the North American crust,
1326	PhD thesis, Saint Louis University, p. 261.
1327	Lister, G.S., Etherdge, M.A., and Symonds, P.A., 1986. Detachment faulting and
1328	the evolution of passive continental margins: Geology, v. 14, p. 246-250.
1329	Mackenzie, G. D., Thybo, H. and Maguire, P. K. H., 2005. Crustal velocity
1330	structure across the Main Ethiopian Rift: Results from two-dimensional
1331	wide-angle seismic modelling, Geophys. J. Int., 162, 994 – 1006.
1332	Maguire, P. K. H., et al., 2006. Crustal structure of the northern Main Ethiopian
1333	Rift from the EAGLE controlled-source survey: A snapshot of incipient
1334	lithospheric break-up, in The Afar Volcanic Province within the East
1335	African Rift System, edited by G. Yirgu, C. J. Ebinger, and P. K. H. Maguire,
1336	Geol. Soc. Spec. Publ., 259, 269–292.
1337	Makris, J., H. Menzel, H., Zimmermann, J. and Gouin, P., 1975. Gravity field and
1338	crustal structure of northern Ethiopia, in Afar Depression of Ethiopia:
1339	Proceedings of an International Symposium on the Afar Region and
1340	Related Rift Problems, Held in Bad Bergzabern, FR Germany, April 1–6,
1341	1974, pp. 135–144, Schweizerbart, Stuttgart, Germany.
1342	Makris, J., and Ginzburg A., 1987. The Afar Depression: Transition between
1343	continental rifting and sea-floor spreading, Tectonophys., 141, 199 Tec

1344	Makris, J., Henke, C.H., Egloff, F. and Akamaluk, T., 1991. The gravity field of
1345	the Red Sea and East Africa, Tectonophysics, 198, 369–382.
1346	Manighetti, I., Tapponnier, P., Gillot, PY., Jacques, E., Courtillot, V., Armijo, R.
1347	and King, G., 1998. Propagation of rifting along the Arabia-Somalia plate
1348	boundary: Into Afar, J. Geophys. Res., 103, 4947–4974.
1349	McKenzie, D. P., Davies, D. and Molnar, P., 1972. Plate tectonics of the Red Sea
1350	and East Africa, Nature, 224, 125–133.
1351	Medynski, S., et al., 2013. Controls on magmatic cycles and development of
1352	rift topography of the Manda Hararo segment (Afar, Ethiopia): Insights
1353	from cosmogenic 3He investigation of landscape evolution, Earth Planet.
1354	Sci. Lett., 367, 133-145, doi:10.1016/j.epsl.2013.02.006.
1355	Medynski, S., et al., 2015. Stability of rift axis magma reservoirs: Spatial and
1356	temporal evolution of magma supply in the dabbahu rift segment (Afar,
1357	Ethiopia) over the past 30 kyr, Earth Planet. Sci. Lett., 409, 278–289.
1358	Medynski, S., Pik, R., Burnard, P., Dumont, S., Grandin, R., Williams, A., et al.,
1359	2016. Magmatic cycles pace tectonic and morphological expression of
1360	rifting (Afar Depression, Ethiopia). Earth and Planetary Science Letters,
1361	446, 77 -88. https://doi.org/10.1016/j. epsl.2016.04.01
1362	Mohr, P., 1983. The Morton-Black hypothesis for the thinning of continental
1363	crust—Revisited in western Afar, Tectonophysics, 94(1), 509–528.
1364	Mohsen, A., Hofstetter, R., Bock, G., Kind, R., Weber, M., Wylegalla, K.,
1365	R"umpker, G. and DESERT Group, 2005. A receiver function study across
1366	the Dead Sea Transform, Geophys. J. Int., 160, 948–960.
1367	Mooney, W.D., Gettings, M.E., Blank, H.R. and Healey, J.H., 1985. Saudi Arabian
1368	seismic refraction profile: a traveltime interpretation of crustal and upper
1369	mantle structure, Tectonophys., 111, 173-246.
1370	McClusky, S., Reilinger, R., Ogubazghi, G., Amleson, A., Healeb, B., Vernant, P., et
1371	al., 2010. Kinematics of the southern Red Sea-Afar Triple Junction and
1372	implications for plate dynamics. Geophys. Res. Lett., 37, L05301.
1373	https://doi.org/10.1029/2009GL041127
1374	Nair, S.K., Gao, S.S., Liu, K.H., Silver, P.G., 2006. Southern African crustal
1375	evolution and composition: constraints from receiver function studies. J.

1376	Geophys. Res. 111 (B2), 1–17. http://dx.doi.org/10.1029/
1377	2005JB003802.
1378	Natali, C., Beccaluva, L., Bianchini, G., Ellam, R. M., Savo, A., Siena, F. and Stuart,
1379	F. M., 2016. High-MgO lavas associated to CFB as indicators of plume-
1380	related thermochemical effects: The case of ultra-titaniferous picrite-
1381	basalt from the Northern Ethiopian-Yemeni Plateau. Gondwana Research,
1382	34, 29 -48. https://doi.org/10.1016/j.gr.2016.02.009
1383	Nobile, A., Pagli, C. Keir, D., Wright, T. J., Ayele, A., Ruch, J. and Acocella, V.,
1384	2012. Dike-fault interaction during the 2004 Dallol intrusion at the
1385	northern edge of the Erta Ale Ridge (Afar, Ethiopia), Geophys. Res. Lett.,
1386	39, L19305, doi:10.1029/2012GL053152.
1387	Nonn, C., Leroy, S., Lescanne, M., Castilla, R., 2019. Central Gulf of Aden
1388	conjugate margins (Yemen-Somalia)_ Tectono-sedimentary and
1389	magmatism evolution in hybrid-type margins. Marine and Petroleum
1390	Geology 105, 100–123. doi:10.1016/j.marpetgeo.2018.11.053.
1391	Ogden, C.S., Bastow, I.D., Gilligan, A. and Rondenay, S., 2019. A reappraisal of
1392	the H - κ stacking technique: implications for global crustal structure,
1393	Geophys. J. Int., 219, 1491–1513, doi: 10.1093/gji/ggz364.
1394	Pagli, C., Wright, T. J., Ebinger, C. J., Yun, S. H., Cann, J. R., Barnie, T. and Ayele,
1395	A., 2012. Shallow axial magma chamber at the slow-spreading Erta Ale
1396	Ridge, Nat. Geosci., 5(4), 284–288.
1397	Park, J. and Levin, V., 2001. Receiver functions from regional P waves,
1398	Geophys. J. Int., 147, 1–11.
1399	Pérez-Gussinyé, M., Metois, M., Fernandez, M., Verges, J. and Lowry, A.R., 2009.
1400	Effective elastic thickness of Africa and its relationship to other prozie for
1401	lithospheric structure and surface tectonics. Earth Planet. Sci. Lett.,
1402	287(1-2), 152-167. https://doi.org/10.1016/j.epsl.2009.08.004
1403	Pik, R., Deniel C., Coulon C., Yirgu G., Hofmann C., and Ayalew D., 1998. The
1404	northwestern Ethiopian Plateau flood basalts: Classification and spatial
1405	distribution of magma types. J. Volc. Geotherm. Res., 81, 91-111.
1406	Pik, R., Deniel, C., Coulon, C., Yirgu, G., and Marty, B., 1999. Isotopic and trace
1407	element signatures of Ethiopian flood basalts; evidence for plume

1408	lithosphere interactions. Geochimica et Cosmochimica Acta, 63(15),						
1409	2263-2279. https://doi.org/10.1016/S0016-7037 (99)00141-6						
1410	Pik, R., 2011. East-Africa on the rise. Nat. Geosciences, 4, 660-661.						
1411	Phinney, R. A., 1964. Structure of Earths crust from spectral behavior of long-						
1412	period body waves, J. Geophys. Res., 69, 2997-3017,						
1413	doi:10.1002/2016JB013599.Reed, C. A., Almadani, S., Gao, S. S., Elsheikh, A.						
1414	A., Cherie, S., Abdelsalam, M. G., Thurmond, A. K. and Liu, K. H., 2014.						
1415	Receiver function constraints on crustal seismic velocities and partial						
1416	melting beneath the Red Sea Rift and adjacent regions, Afar Depression, J.						
1417	Geophys. Res., 119, 2138-2152, doi:10.1002/2013JB010719.						
1418	Rooney, T.O., 2017. The Cenozoic magmatism of East-Africa: Part I-Flood						
1419	basalts and pulsed magmatism. Lithos, 286, pp.264-301.						
1420	Rooney, T. O., Krans, S. R., Mège, D., Arnaud, N., Korme, T., Kappelman, J. and						
1421	Yirgu, G., 2018. Constraining the magmatic plumbing system in a						
1422	zonedcontinental flood basalt province. Geochem., Geophys., Geosyst., 19,						
1423	3917-3944. https://doi.org/10.1029/2018GC007724						
1424	Rooney, T.O., 2020. The Cenozoic Magmatism of East Africa: Part IV – The						
1425	Terminal Stages of Rifting Preserved in the Northern East African Rift						
1426	System: Lithos, p. 108381 doi: 10.1016/j.lithos.2020.105381.						
1427	Salmon, M.L., Stern T.A. and Savage M.K., 2011. A major step in the continental						
1428	Moho and its geodynamic consequences: the Taranaki-Ruapehu line, New						
1429	Zealand, Geophys. J. Int., 186, 32-44, doi: 10.1111/j.1365-						
1430	246X.2011.05035.x						
1431	Sandvol, E., Seber, D., Calvert, A. and Barazangi, M., 1998. Grid search						
1432	modeling of receiver functions: implications for crustal structure in the						
1433	Middle East and North Africa, J. Geophys. Res., 103, 26,899–26,917.						
1434	Sembroni, A., Faccenna, C., Becker, T.W., Molin, P. and Abebe, B., 2016.						
1435	Longterm, deep-mantle support of the Ethiopia-Yemen Plateau, Tectonics,						
1436	35, 469-488, doi:10.1002/2015TC004000.						
1437	Smittarello, D., Grandin, R., De Chabalier, JB., Doubre, C., D'eprez, A., Masson,						
1438	F., Socquet, A. and Saad, A., 2016. Transient deformation in the Asal-						
1439	Ghoubbet Rift (Djibouti) since the 1978 diking event: Is deformation						

1440	controlled by magma supply rates?, J. Geophys. Res., 121,					
1441	doi:10.1002/2016JB013069.					
1442	Stab, M., Bellahsen, N., Pik, R., Quidelleur, X., Ayalew, D., and Leroy, S., 2016.					
1443	Modes of rifting in magma-rich settings: Tectono-magmatic evolution of					
1444	Central Afar., Tectonics, 35, 2–38. https://doi.org/10.1002/					
1445	2015TC003893					
1446	Stern, R.J. and Johnson, P., 2010. Continental lithosphere of the Arabian Plate: a					
1447	geologic, petrologic, and geophysical synthesis. Earth-Science Reviews 101,					
1448	29–67.					
1449	Stork, A., Stuart, G. W., Henderson, C. M. Keir, D. and Hammond, J. O. S., 2013.					
1450	Uppermost mantle (Pn) velocity model for the Afar region, Ethiopia: An					
1451	insight into rifting processes, Geophys. J. Int., 193, 321–328.					
1452	Stuart, G.W., Bastow, I.D. and Ebinger, C.J., 2006. Crustal structure of the					
1453	northern Main Ethiopian Rift from receiver function studies, in The Afar					
1454	Volcanic Province Within the East African Rift System, Vol. 259, pp. 253-					
1455	267, eds Yirgu, G., Ebinger, C.J. and Maguire, P.K.H., Geol. Soc., London,					
1456	Spec Pub					
1457	Tiberi, C., Ebinger, C., Ballu, V., Stuart, G. and Oluma, B., 2005. In-verse models					
1458	of gravity data from the Red Sea-Aden-East African rifts triple junction					
1459	zone, Geophys. J. Int., 163, 775-787, doi:10.1111/j.1365-					
1460	246X.2005.02736.x.					
1461	Tiberi, C., Leroy, S., d'Acremont, E., Bellahsen, N., Ebinger, C., Al-Lazki, A. and					
1462	Pointu, A., 2007. Crustal geometry of the northeastern Gulf of Aden					
1463	passive margin: localization of the deformation inferred from receiver					
1464	function analysis, Geophys. J. Int., 168, 1247–1260.					
1465	Tesfaye, S., Harding, D., and Kusky, T., 2003. Early continental breakup					
1466	boundary and migration of the Afar triple junction, Ethiopia. Geol. Soc. of					
1467	Amer. Bull., 115(9), 1053-1067. https://doi.org/10.1130/B25149.1					
1468	Tesfaye, S., Ghebreab, W., 2013. Simple shear detachment fault system and					
1469	marginal grabens in the southernmost Red Sea rift. Tectonophys. 608,					
1470	1268-1279. https://doi.org/10.1016/j.tecto.2013.06.014.					

1471	Thompson, D.A., Bastow, I.D., Helffrich, G., Kendall, J.M., Wookey, J., Snyder,					
1472	D.B. and Eaton, D.W., 2010. Precambrian Crustal Evolution: Seismic					
1473	constraints from the Canadian Shield, Earth, Planet. Sci. Lett., 297, 655-					
1474	666. doi: 10.1016/j.epsl.2010.07.021					
1475	Thybo, H., and Nielsen, C.A., 2009. Magma-compensated crustal thinning in					
1476	continental rift zones, Nature, 457, 873–876, doi:10.1038/ nature07688.					
1477	Ukstins, I. A., Renne, P. R., Wolfenden, E., Baker, J., Ayalew, D. and Menzies, M.,					
1478	2002. Matching conjugate volcanic rifted margns: 40 Ar/ 39 Ar chrono-					
1479	stratigraphy of pre- and syn-rift bimodal flood volcanism in Ethiopia and					
1480	Yemen, Earth Planet. Sci. Lett., 198, 289–306.					
1481	Varet, J., 1975. Carte géologique de l'Afar central et méridional, CNR- CNRS,					
1482	1/500 000 Géotechni.					
1483	Wang, T., Gao, S.S., Yang, Q. and Kelly H., 2021. Crustal structure beneath the					
1484	Ethiopian Plateau and adjacent areas from receiver functions:					
1485	Implications for partial melting and magmatic underplating.					
1486	Tectonophysics (2021), https://doi.org/10.1016/j.tecto.2021.228857					
1487	Watanabe, T., 1993. Effects of water and melt on seismic velocities and their					
1488	application to characterization of seismic reflectors, Geophys. Res. Lett.,					
1489	20, 2933–2936.					
1490	Wolfenden, E., Ebinger, C., Yirgu, G., Deino, A. and Ayalew, D., 2004. Evolution					
1491	of the northern Main Ethiopian rift: Birth of a triple junction, Earth					
1492	Planet. Sci. Lett., 224, 213–228, doi:10.1016/j.epsl.2004.04.022.					
1493	Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P. R. and Kelly, S. P., 2005.					
1494	Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia, Geol.					
1495	Soc. Am. Bull., 117, 846–864.					
1496	Wright, T. J., Ebinger, C., Biggs, J., Ayele, A., Yirgu, G., Keir, D. and Stork, A.,					
1497	2006. Magma-maintained rift segmentation at continental rupture in the					
1498	2005 Afar dyking episode, Nature, 442, 291–294, doi:10.1038/					
1499	nature04978.					
1500	Zandt, G. and Ammon, C.J., 1995. Continental crust composition constrained					
1501	by measurement of crustal Poisson's ratio, Nature, 374, 152-154.					

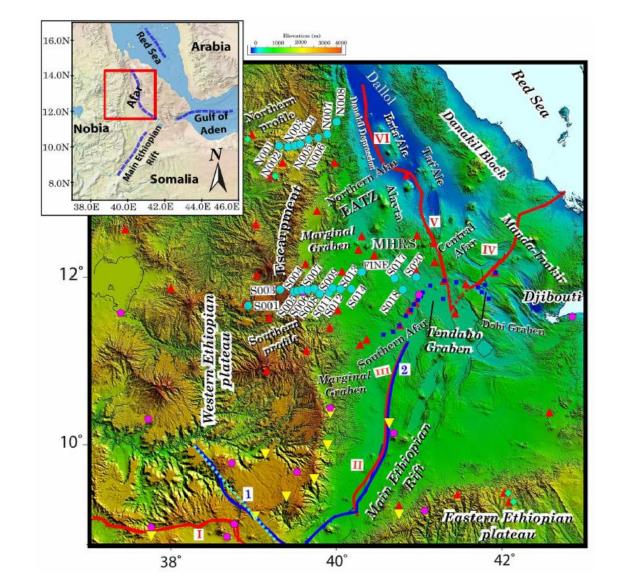
1502	Zhu, L., 2000. Crustal structure across the San Andreas Fault, Southern				
1503	California from teleseismic converted waves, Earth planet. Sci. Lett., 179,				
1504	183–190.				
1505	Zhu, L. and Kanamori, H., 2000. Moho depth variation in Southern California				
1506	from teleseimic receiver function, J. Geophys. Res., 105, 2969–2980.				
1507	Zwaan, F., Corti, G., Keir, D., Sani, F., 2020a. A review of tectonic models for the				
1508	rifted margin of Afar: implications for continental break-up and passive				
1509	margin formation. J. Afr. Earth Sci. 164, 103649.				
1510	https://doi.org/10.1016/j.jafrearsci.2019.103649.				
1511	Zwaan, F., Corti, G., Sani, F., Keir, D., Muluneh, A. A., Illsley-Kemp, F., and Papini,				
1512	M., 2020b. Structural analysis of the Western Afar Margin, East Africa:				
1513	Evidence for multiphase rotational rifting. Tectonics, 39, e2019TC006043.				
1514	https://doi.org/10.1029/2019TC006043				
1515					
1516					
1517					
1518					
1519					
1520					
1521					
1522	Tables and Figures				
1523					
1524	Table1. Crustal thickness (H), Vp/Vs ratio for the seismic stations and associated				
1525	uncertainty estimates deduced from the bootstrap analysis.				
1526					
1527	Figure 1. a) Topographical map of Afar and surrounding areas show the locations				
1528	of the seismic stations used for the current study and the published crustal				
1529	structure and composition works. Light blue circles represent the distribution of				
1530	the broadband stations along two profiles used in this study. Previous receiver				
1531	function studies (red triangles, Hammond et al. 2011; inverted yellow triangles,				
1532	Stuart et al., 2006; magenta pentagon, Dugda et al., 2005; blue squares, Reed et al.,				
1533	2014: green diamonds, Ogden et al., 2019: dotted cyan line, Cronwell et al., 2010).				

Red lines (I-VI) indicate the location of the active seismic profiles of Berckhemer et

1534

1535	al. (1975) and Makris and Ginzburg (1987). Blue lines (1 and 2) show location of
1536	the active seismic profile of Maguire et al. (2006). MHRS: Manda Harraro Rift
1537	Segment. Inset at the upper right left corner is a regional map show the location of
1538	the study area. b) geological map of the Afar Depression and surrounding
1539	highlands modified from Stab et al. (2016) and Le Gall et al. (2018).
1540	
1541	Figure 2. a) Map showing the distribution of the ~126 teleseismic events
1542	selected and used for receiver functions analysis in this study centered at the
1543	network location, b) sketch illustrating the path of the converted phases. Stacked
1544	radial (dark/grey fill colour) and transverse (red/blue fill colour) receiver
1545	functions for the 23 seismic stations along two profiles; c) the northern profile -
1546	Danakil Depression, and d) the southern profile at the latitude of the central Afar.
1547	The black, red and blue arrows represent the onset of the <i>Pms</i> converted
1548	phase and its multiples \emph{PpPs} and $\emph{PpSs-PsPs}$ respectively.
1549	
1550	Figure 3. a) Individual receiver functions for six stations. The receiver functions
1551	are organized by increasing backazimuth (value in red). The light vertical lines
1552	indicate arrival times for conversion phases (Pms and multiples) from the Moho
1552	indicate arrival times for conversion phases (Pms and multiples) from the Moho
1552 1553	indicate arrival times for conversion phases (Pms and multiples) from the Moho for the maximum stacking amplitude; ; b) Ps radial RFs at the N006 seismic station
1552 1553 1554	indicate arrival times for conversion phases (Pms and multiples) from the Moho for the maximum stacking amplitude; ; b) Ps radial RFs at the N006 seismic station for good quality data within an epicentral range 30°-95°, stacked in backazimuth
1552 1553 1554 1555	indicate arrival times for conversion phases (Pms and multiples) from the Moho for the maximum stacking amplitude; ; b) Ps radial RFs at the N006 seismic station for good quality data within an epicentral range 30°-95°, stacked in backazimuth into bins of 15° and with an overlap of 5°. The numbers of RFs in each stack are
1552 1553 1554 1555 1556	indicate arrival times for conversion phases (Pms and multiples) from the Moho for the maximum stacking amplitude; ; b) Ps radial RFs at the N006 seismic station for good quality data within an epicentral range 30°-95°, stacked in backazimuth into bins of 15° and with an overlap of 5°. The numbers of RFs in each stack are indicated above each trace to the left and the backazimuth ranges to the right; c)
1552 1553 1554 1555 1556	indicate arrival times for conversion phases (Pms and multiples) from the Moho for the maximum stacking amplitude; ; b) Ps radial RFs at the N006 seismic station for good quality data within an epicentral range 30°-95°, stacked in backazimuth into bins of 15° and with an overlap of 5°. The numbers of RFs in each stack are indicated above each trace to the left and the backazimuth ranges to the right; c) Ps transverse RFs at the N006 seismic station stacked with the same epicentral
1552 1553 1554 1555 1556 1557	indicate arrival times for conversion phases (Pms and multiples) from the Moho for the maximum stacking amplitude; ; b) Ps radial RFs at the N006 seismic station for good quality data within an epicentral range 30°-95°, stacked in backazimuth into bins of 15° and with an overlap of 5°. The numbers of RFs in each stack are indicated above each trace to the left and the backazimuth ranges to the right; c) Ps transverse RFs at the N006 seismic station stacked with the same epicentral distance, backazimuth ranges and number of RFs in each stack as in b; d) Stacked
1552 1553 1554 1555 1556 1557 1558	indicate arrival times for conversion phases (Pms and multiples) from the Moho for the maximum stacking amplitude; ; b) Ps radial RFs at the N006 seismic station for good quality data within an epicentral range 30°-95°, stacked in backazimuth into bins of 15° and with an overlap of 5°. The numbers of RFs in each stack are indicated above each trace to the left and the backazimuth ranges to the right; c) Ps transverse RFs at the N006 seismic station stacked with the same epicentral distance, backazimuth ranges and number of RFs in each stack as in b; d) Stacked Ps radial RFs with a maximum frequency of 0.6 Hz (red line) and 1.2 Hz (blue line)

1564	Figure 4. Thickness (H) versus Vp/Vs ratio diagrams from the H-k stacking
1565	method for the 6 stations presented in Figure 4. The white point indicates the
1566	maximum stacking corresponds to the value indicated in Table 1. The scale bar is
1567	normalized amplitude of stacking function.
1568	
1569	Figure 5. Maps of crustal thicknesses (H) and Vp/Vs ratios calculated using the H-
1570	k method; a) Topographical map with the crustal thickness variations across
1571	western Afar margin and b) Topographical map with the Vp/Vs ratios across the
1572	western Afar margin. MHRS: Manda Harraro Rift Segment.
1573	
1574	Figure 6. Topography (vertically exaggerated) and migrated cross-sections along
1575	the two profiles. Red colour indicates velocity increase with depth, and blue colour
1576	velocity decrease with depth. Scale bar shows the amplitude of positive (red) and
1577	negative (blue) polarities of arrivals. The Moho depth estimated from H-k stacking
1578	method and corrected for the station altitude is plotted with the small circles and
1579	the vertical bars represent the errors estimated from the bootstrap method. a)
1580	Northern profile – Northern Afar and b) Southern profile – central Afar.
1581	
1582	Figure 7. Regional map showing crustal thickness (H) based on the results of the
1583	current study (white circles) and previous RF studies in Ethiopia (green diamond,
1584	Ogden et al. 2019; blue stars, Reed et al., 2014; red triangles, Hammond et al.
1585	2011; inverted white triangles, Stuart et al., 2006; magenta pentagon, Dugda et al.,
1586	2005), RF in Yemen (white stars, Ahmed et al. 2013). Active seismic profiles (+
1587	sign), in Afar, Ethiopian plateau and Main Ethiopian Rift (Berckhemer et al., 1975;
1588	Makris and Ginzburg, 1987: yellow square with + sign; Maguire et al., 2006: white
1589	square with + sign), in the Red Sea (Egloff et al., 1991), and the Western Gulf of
1590	Aden (Laughton and Tramontini, 1969).
1591	
1592	Figure 8. Regional map showing Vp/Vs ratio based on the results of the current
1593	study (white circles) and previous RF studies in Ethiopia (green diamond, Ogden
1594	et al. 2019; blue stars, Reed et al., 2014; red triangles, Hammond et al. 2011;


inverted white triangles, Stuart et al., 2006; magenta pentagon, Dugda et al., 2005),

1596 RF in Yemen (white stars, Ahmed et al. 2013).

Table1.

Ct ti	T 1'1 1	7 ', 1	El .:	11	г п	77 /77	T.	N 1 CDE
Station	Latitude	Longitude	Elevation	Н	Error H	Vp/Vs		Number of RF
27004		10 == 1=	(m)	(km)	(km)	1 - 0	Vp/Vs	
N001	39.3077	13.5545	2148	37.2	2.0	1.73	0.04	45
N002	39.4162	13.5453	2000	38.8	2.1	1.73	0.01	24
N003	39.5007	13.5580	2080	37.6	0.5	1.79	0.02	47
N004	39.5653	13.5775	2265	37.6	0.3	1.73	0.01	60
N005	39.6677	13.6334	2270	38.6	1.6	1.73	0.04	36
N006	39.7805	13.6509	2383	37.0	7.0	1.70	0.10	50
N007	39.8938	13.6922	970	24.2	1.4	1.79	0.02	29
N008	40.0066	13.8406	692	19.6	1.0	1.93	0.04	35
S001	38.9328	11.6591	2904	42.8	1.7	1.79	0.01	23
S003	39.3211	11.8511	3446	40.8	8.0	1.89	0.01	57
S004	39.4903	11.8274	2372	37.2	4.0	1.83	0.06	15
S005	39.5291	11.8387	1931	34.2	1.9	1.76	0.03	55
S006	39.5874	11.8472	2057	34.0	0.4	1.76	0.02	58
S007	39.6583	11.8478	1601	33.8	1.4	1.72	0.01	56
S008	39.7348	11.8621	1491	28.4	0.3	1.83	0.01	47
S009	39.7995	11.8001	1486	28.6	0.5	1.79	0.01	51
S011	39.9164	11.8203	1075	27.6	1.4	1.79	0.01	58
S012	39.9581	11.8717	1007	28.0	1.1	1.77	0.01	17
S013	40.0506	11.8574	914	27.8	1.4	1.79	0.01	26
S014	40.1831	11.8584	827	20.4	1.3	1.94	0.08	26
FINE	40.3100	12.0600	782	21.4	0.4	1.99	0.02	72
S017	40.7044	11.9856	613	23.2	1.3	1.95	0.01	59
S018	40.8044	11.8521	441	21.2	1.0	1.91	0.01	15
S020	40.9667	12.0019	355	19.6	0.8	2.04	0.02	50

Figure 1a.

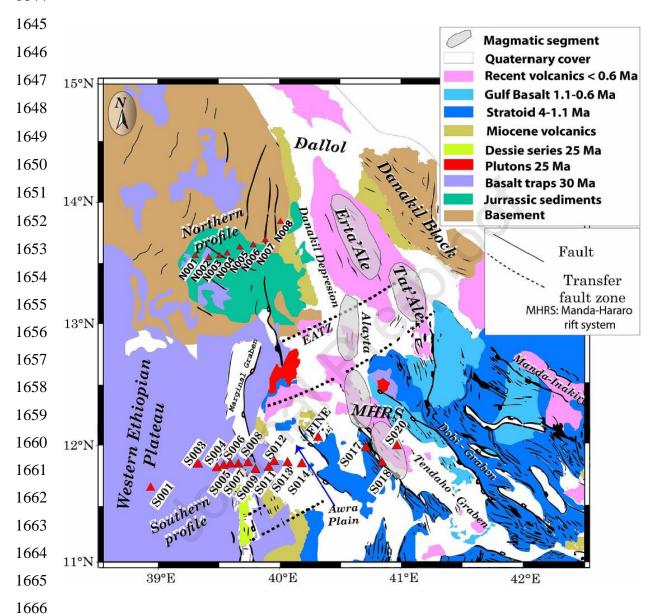
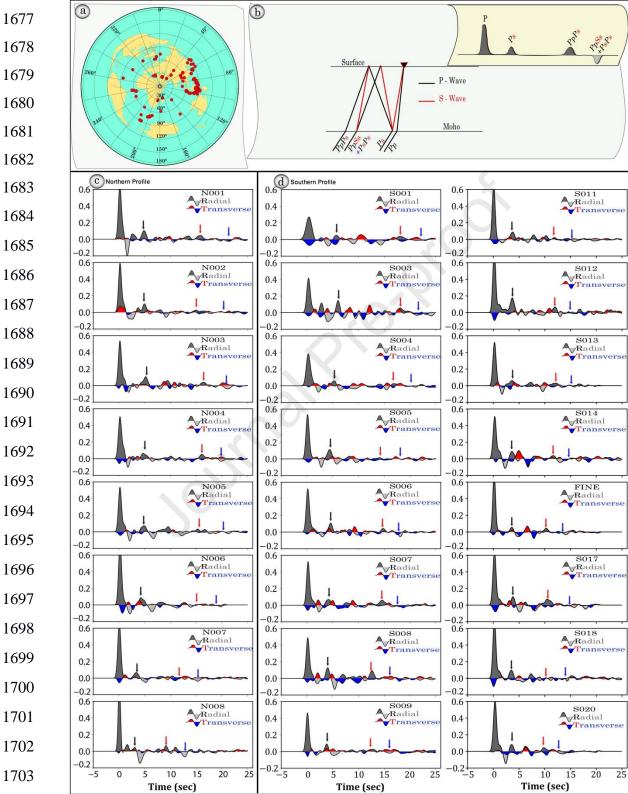
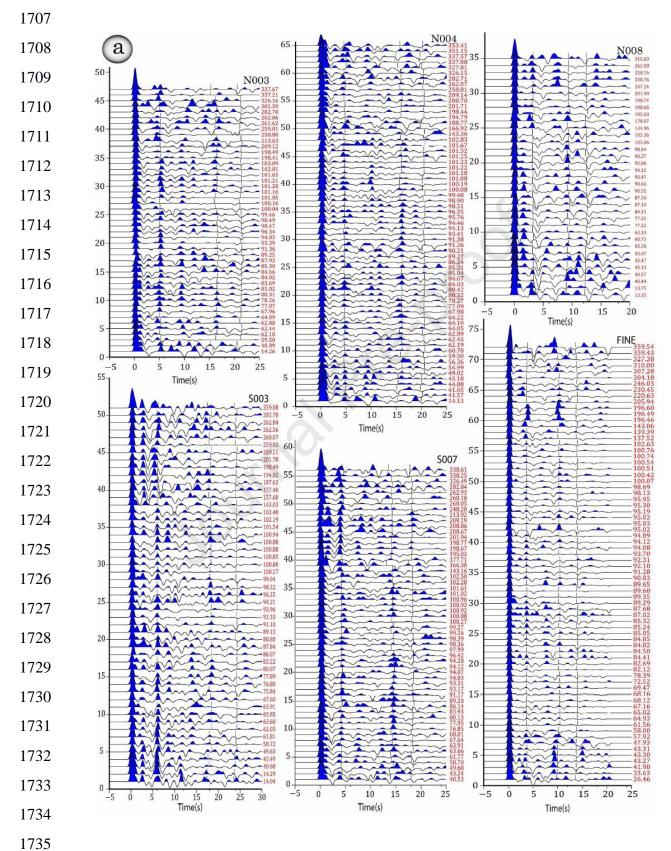
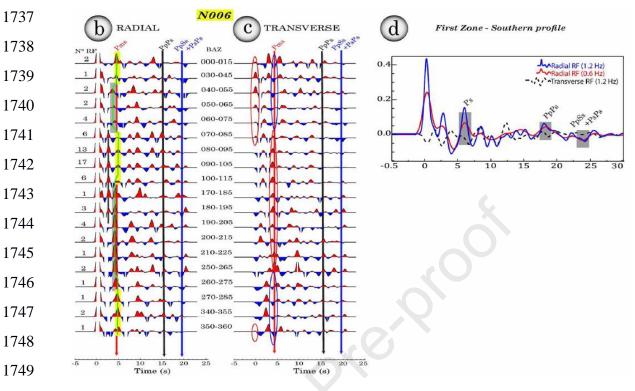
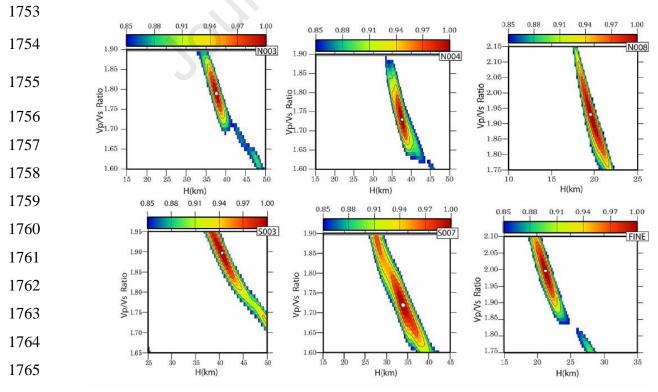
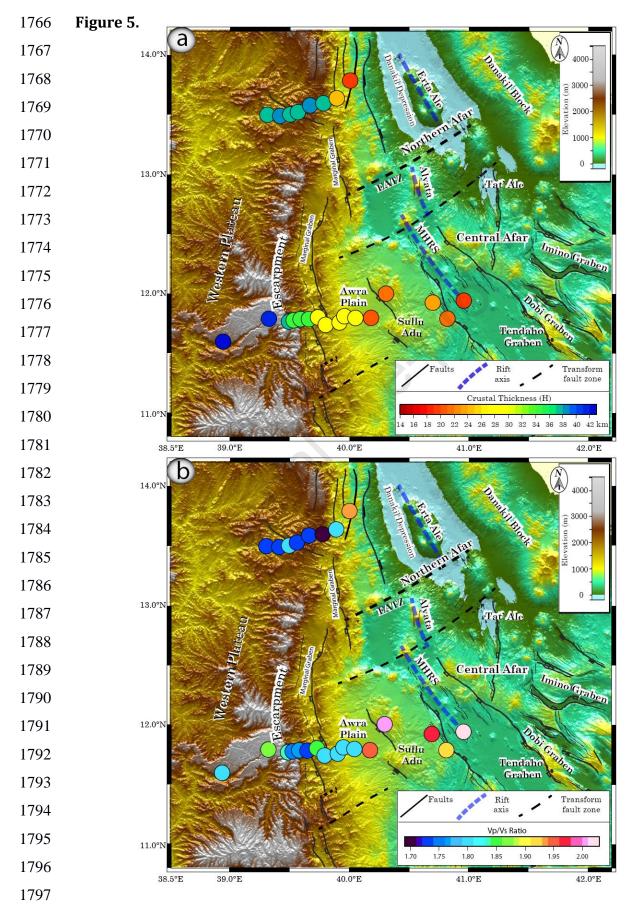
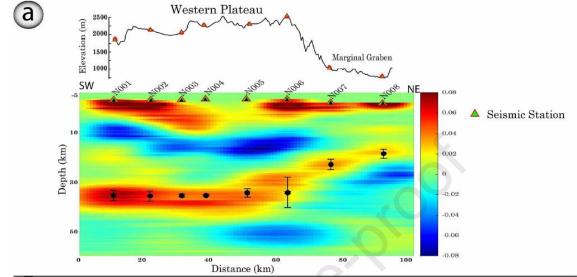




Figure 2.




Figure 3.





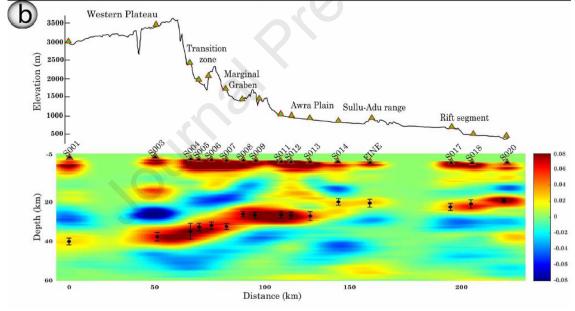

Figure 4.

Figure 6.

Figure 7.

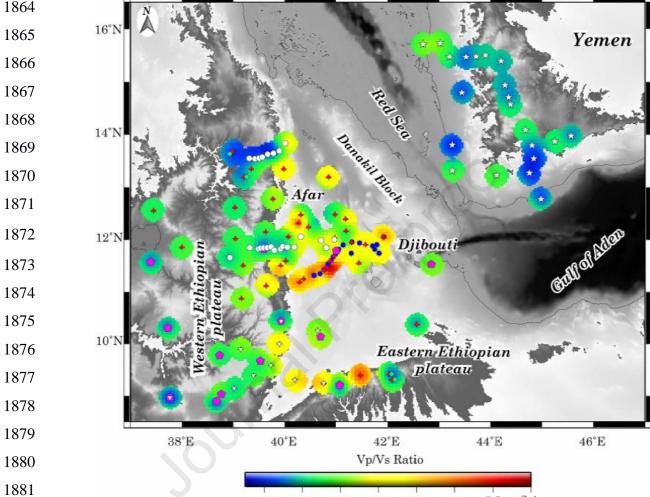

16°N Yemen 14°N Afar 12°N Djibouti 10°N Eastern Ethiopian plateau 38°E $46^{\circ}\mathrm{E}$ $40^{\circ}\mathrm{E}$ $42^{\circ}\mathrm{E}$ $44^{\circ}\mathrm{E}$ Crustal thickness (H) km

Figure 8.

1862

1861

1.7

1.8

1.9

2.0

2.1

2.2

2.3

1882

1883

1884

1885

1886

1887

Manuscript Highlights

Across and along-strike crustal structure variations of the western Afar margin and adjacent plateau: Insights from receiver functions analysis

Abdulhakim Ahmed, Cecile Doubre, Sylvie Leroy, Derek Keir, Carolina Pagli, James O. S. Hammond, Atalay Ayele, Maxime Be de Berc, Marc Grunberg, Jerome Vergne, Romain Pestourie, Daniel Mamo, Birhanu Kibret, Nadaya Cubas, Aude Lavayssière, Marianne Janowski, Olivier Lengliné, Alessandro La Rosa, Emma L. Chambers, Finnigan Illsley-Kemp

Rules: 3-5 keypoints, not more than 85 characters (incl. spaces)

- Dominant tectonic deformation beneath northern Afar, and magma assisted rifting in central Afar.
- Our results show sharp Moho beneath the western plateau of northern and central Afar.
- Felsic and mafic crust beneath the western plateau at the latitude of northern and central Afar, respectively.
- Multi step crustal thinning from the plateau to the rift center associated with felsic to mafic crustal composition change toward the rift axis.

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships hat could have appeared to influence the work reported in this paper.
☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: