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Black hole (BH) spectroscopy has emerged as a powerful approach to extracting spacetime information from
gravitational wave (GW) observed signals. Yet, quasinormal mode (QNM) spectral instability under small scale
perturbations has been recently shown to be a common classical general relativistic phenomenon [1]. This
requires assessing its impact on the BH QNM spectrum, in particular on BH QNM overtone frequencies. We
conclude: i) perturbed BH QNM overtones are indeed potentially observable in the GW waveform, providing
information on small-scale environment BH physics, and ii) their detection poses a challenging data analysis
problem of singular interest for LISA astrophysics. We adopt a two-fold approach, combining theoretical results
from scattering theory with a fine-tuned data analysis on a highly accurate numerical GW ringdown signal. The
former introduces a set of effective parameters (partially relying on a BH Weyl law) to characterise QNM
instability physics. The latter provides a proof of principle demonstrating that the QNM spectral instability
is indeed accessible in the time-domain GW waveform, though certainly requiring large signal-to-noise ratios.
Particular attention is devoted to discussing the patterns of isospectrality loss under QNM instability, since the
disentanglement between axial and polar GW parities may already occur within the near-future detection range.

Introduction: Are all black-hole vibrational modes observ-
able in gravitational-wave astronomy? What astrophysi-
cal/fundamental physics information do they actually convey?

Gravitational waves (GW) from binary systems are system-
atically observed by current GW antennae [2]. The late-time
radiation of newly formed black holes (BHs) is characterised
by an exponentially damped, oscillating signal. The quasi-
normal modes (QNMs) ω = ωR + iωI encode the decaying
scales 1/ωI and oscillating frequencies |ωR|. An essential tool
in astrophysics, fundamental gravitational physics, and math-
ematical relativity [3–7], QNMs provide structural informa-
tion about the BH’s background. The future generation of
ground- and space-based detectors shall provide data suffi-
ciently accurate to measure several QNMs [8–17], allowing
the addressing of fundamental questions in physics [18, 19].

Small environmental perturbations are not expected to rad-
ically disrupt the underlying BH spacetime, given the confi-
dence in BH dynamical stability. Yet, instabilities seem in-
trinsic to the theory at the spectral level [1, 20–25]. High-
wavenumber fluctuations may alter significantly the QNM
spectrum [1], with stronger effects in the high overtones [26].
Since recent GW events have opened a rich discussion on the
detectability of overtones and higher harmonic modes [12–
14, 27–30], addressing our opening questions is paramount
for correctly interpreting current and future GW observations.

BH perturbation theory is described via a nonconservative
system with energy leaking into the BH and propagating out
to the wave zone. Evolution is generated by non-self-adjoint
operators, in a common framework across classical and quan-
tum systems [31]. The notion of pseudospectrum, recently in-
troduced into gravity [1], allows the identification of spectral
instabilities in nonconservative systems [31–34]. As a topo-

graphical map, the pseudospectrum contour level with value ε
delimits the complex plane region where QNMs can migrate
when the system undergoes perturbations of order ε. Such ε-
contour line lies up to a distance ∼κε of the spectrum, with
κ a ‘conditioning number’. Spectral stability is characterised
by κ ∼ 1, whereas instabilities occur for κ � 1. In the latter
case, contour lines extend into large complex plane regions.
Remarkably, this arises for BHs [1, 24, 25, 35] (see fig. 1).

QNM instability: To trigger the instabilities, ref. [1] in-
troduced an ad hoc modification ε δVk (ε � 1) into the po-
tential governing the dynamics of GWs on a spherically sym-
metric BH spacetime. When having a sinusoidal profile in
the radial direction, ε δVk mimics a Fourier mode from a re-
alistic potential and it captures the contribution of small and
large scale perturbations via a wavenumber k. In particular,
the QNM instability discussed here is a large wavenumber
effect [1], starting already at moderate values of k, as illus-
trated in fig. 1 showing the overtone instability for k = 10.
We stress the appearance of: (i) branches opening similarly
to the pseudospectra lines (white circles), dubbed “Nollert-
Price” (NP) branches [22, 23] in ref. [1]; (ii) modes (white
crosses) with |ωR| < |ωR

branch|, for ωI ∼ ωI
branch, i.e inside

the region bounded by the NP branches, named here “internal
modes”.

Specific values for the perturbed QNMs depend on the par-
ticular model for the environmental effects or modifications in
the gravity theory. Yet, as discussed in ref. [1], the opening
pattern observed in fig. 1 is rather generic, which raises the
need for a research program aiming at understanding the GW
observational implications of such QNM instabilities and their
universality properties. The challenge lies on several fronts.

On the theoretical side, in the effort to model the specifics
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FIG. 1. Schwarzschild spectrum (red circles) and pseudospectrum (log10(ε) gray scale) for the gravitational ` = 2 modes. The latter captures
the norm (a positive number) of the resolvent (the Green function) of the operator determining the evolution dynamics [1]. The ε-pseudospectra
contour lines (white) delimit the regions where eigenvalues may move under order-ε perturbations of the non-self-adjoint evolution generator.
In BH spacetimes, they spread open (ε growing downwards), signalling spectral instabilities. Under perturbations ε δVk characterised by small
amplitude ε � 1 and moderate-to-large wavenumber k, the QNM overtones differ significantly from their original values. Generically, one
observes that perturbed branches share the pseudospectra’s tendency [1] (white circles). Moreover, internal modes appear (white crosses), with
ωI
internal ∼ ωI

branch but |ωR
internal| < |ωR

branch|. The displayed crosses and circles in white arise from a perturbation with parameters ε = 10−3

and k = 10. The inset shows the first few QNMs with ordering labels obeying ωI
n < ωI

n+1.

of the local environmental astrophysics, or extending grav-
ity beyond General Relativity (e.g. [36, 37]), GW astronomy
shall profit from existing results in the theory of scattering
resonances [38–48]. Specifically, theorems permitting us to
extract perturbed QNM patterns reflecting features agnostic
to the particular model under consideration. On the data anal-
ysis side, one may need enhanced detection pipelines so that
the features displayed in fig. 1 are not overlooked, if present.

In the following three sections, we explore three aspects
allowing us to evaluate and characterize QNM instabilities:
effective parameters, Weyl law and isospectrality loss.

Effective parameters: Consistent with theorems for scat-
tering resonances [38–48], our numerical analysis demon-
strates the logarithmic asymptotics of pseudospectra contour
lines, ωI ∼ C1 + C2 ln(|ωR| + C3) for |ωR| � 1, with C1,
C2 and C3 constants. Asymptotics offer a guideline to identi-
fing the relevant patterns of physical phenomena [49]. In our
QNM instability setting, perturbed NP branches open up in the
complex plane and approach from above [50] the pseudospec-
tral lines, that define the (upper) boundaries of QNM-free re-
gions. As the size and wavenumber of C∞-perturbations in-
crease, QNMs get closer to the pseudospectra lines, so the
latter become good proxies of QNM branches. Our results
demonstrate that their logarithmic behaviour starts actually
very close to the unperturbed spectrum (see Supplemental
Material and [35]), enhancing the observable implications.

If the dynamics of the physical scenario is dictated by po-
tentials with discontinuities at some pth-derivative (i.e., of
class Cp), then the spectra asymptotics reach exactly the loga-
rithmic boundaries of the pseudospectra [38, 50]. The real ωR

n

and imaginary ωI
n parts have the asymptotic behavior (n� 1)

ωR
n ∼ ±

π

LR
(n+ γ̃) , ωI

n ∼
1

LR

[
γ ln

(∣∣ωR
n

∣∣+ γ′
)
− lnS

]
,(1)

which defines the so-called “Regge QNM branches” [38, 50].
Reverberations within chambers with a length scale LR is
the mechanism behind the opening of the spectra into such
log-branches [50–52]. These are modulated by ‘regularity’
γ, γ̃, γ′ and ‘strength’ S parameters. In particular, eq. (1)
was heuristically observed in low regularity BH-like poten-
tials [22, 23, 53, 54], and neutron stars w-modes [52, 55, 56].

Detecting QNMs obeying eq. (1) would be a strong indi-
cation of an underlying low regularity (Cp-) potential. Mo-
tivated by such n � 1 pattern, we introduce here a set of
effective parameters, formally evaluated in the limit n→∞:

LR := π/|∆ωRn |, (reverberation length scale), (2)
γ := LR∆ωI

n/∆ lnωR
n , (‘small-scale’ structure), (3)

lnS := γ ln(ωR
n )− LRωI

n, (perturbation strength). (4)

The strict applicability of eqs. (2)-(4) is constrained to sce-
narios with non-smooth (i.e. Cp<∞) potentials [50–52].
For instance, these definitions directly recover the parame-
ters from the spiked truncated dipole potential [23], namely
LR ∼ xδ − x0 (length of ‘cavity’) and S ∼ Vδ (potential
amplitude). Furthermore, polytropic neutron stars [55] have
LR ∼ r∗ (star’s radius), γ ∼ N (polytropic index) and S ∼
“discontinuity jump of the potential”. Further illustration is
found in [50], where the ‘small-scale’ γ is related to regularity
loss. In the case of smooth C∞-potentials, available rigorous
results for the spectra distribution within the ε-pseudospectra
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FIG. 2. Left Panel: Effective measures accounting for QNMs’ distribution. Perturbed potential amplitudes ε = 10−17, 10−10, 10−3. Branch
opening is assessed by G = limn→∞ ω

R
n /|ωn| (top). Schwarzschild QNMs have G = 0, whereas eq. (1) yields G = 1. The behavior G → 1

as k → ∞ indicates QNMs migrating towards ε-pseudospectra log-lines in the large wavenumber limit. The Weyl law length LW (bottom)
follows from counting the number of QNMs within a delimited region in the complex plane. The transition LW/LW

Sch = 1 to O(3) follows
from QNMs internal to the branches becoming densely populated. Right Panel: Isospectrality loss between axial (red) and polar (blue) parities
for gravitational ` = 2 modes in Schwarzschild under sinusoidal perturbations ε δVk with wavenumber k = 10, ε = 10−18, 10−15, 10−3. The
insets shows the three different regimes with focus on ε = 10−18, 10−15. In the stable regime, lower QNMs are not affected by instability,
thus axial and polar QNMs differs with order ε. The “w-mode” regime strongly distinguishes axial and polar QNMs into an an alternating
pattern. In the “Nollert-Price” regime axial and polar QNMs differs again just within order ε, despite the wider branch opening. Transition
between the regimes occurs close to internal modes. For high ε or k the ”Nollert-Price” overtakes the stable and “w-mode” regimes, as for
instance, in the case ε = 10−3.

region are less sharp, but QNMs must always lie above the
logarithmic curves [50]. We conjecture that the QNMs reach
the log-curves in the large k wavenumber ultraviolet limit.

Supporting this statement, we introduce Gn = ωR
n /|ωn| to

measure the branch opening. This is a different representation
of the so-called quality factor Qn [57, 58]. Schwarzschild
QNMs’ asymptotics [59] gives G := limn→∞ Gn = 0,
whereas eq. (1) yields G = 1. Realistic BH environments
may have an intermediate behavior. Indeed, fig. 2’s upper-left
panel shows the monotonic increase of G ∈ [0, 1] (for several
ε’s) with k. The behavior G → 1 as k →∞ strongly indicates
that pseudospectra’s log-boundaries are attained for k � 1.

Weyl law: The Weyl law is a spectral concept common
across physical theories [60–62], but scantly explored in GW
physics [63]. A simple count of modes within a circle in the
complex plane provides a typical length scale for the physical
problem. More precisely, let N(ω) be the number of QNMs
in the radius |ωn| < ω (ω ∈ R). Then, for one-dimensional
potentials, the Weyl law states N(ω) = 2(LW/π)ω, with
LW a length scale of the potential. In higher dimensions, the
law provides a measure for the dimensionality d via N(ω) ∼
ωd [64]. The actual proof from the theory of scattering reso-
nances [50, 64–66] relies on scenarios modelled by potentials
with compact support or of class Cp. Typical potentials in BH
perturbation theory do not satisfy the theorems’ hypotheses.

Here, we show that BH QNMs indeed follow a Weyl law.
The Schwarzschild’s QNM asymptotics [59] for an angular
mode ` yields N`(ω) = 8Mω, i.e. a scale LW

Sch = 4πM .
This scale connects with the exploration of BH horizon area

quantisation and BH thermodynamics based on QNM asymp-
totics [63, 67–70], with a link to Hawking temperature via
2LW

Sch = (THawking)−1. Besides, summingN`(ω) over (`,m)
yields N(ω) ∼ ω3, providing a probe to measure deviations
to the effective spacetime dimension by counting QNMs.

Weyl Law’s remains valid for perturbed BH potentials and
LW is always robustly defined (fig. 2’s lower-left panel). The
changes in LW are not related to the branch opening. Indeed,
we observe |∆ωn| constant along them. Rather, the apparent
‘phase transition’ with ’order parameter’ LW/LW

Sch shifting
from 1 to O(3) results from an increase of internal QNMs.

Isospectrality loss: Another outcome of the QNM over-
tone instability is the distinction between axial and polar
GW parities. While both QNM spectra coincide for the
Schwarzschild BH, parity disentanglement is a natural conse-
quence when the system is slightly perturbed [1]. We observe
the existence of three regimes of the isospectrality loss (fig. 2):

(i) Stable region: Relatively low wavenumber k and small
amplitude ε perturbations do not trigger the instability in the
first few QNM overtones. The perturbed QNMs with po-
lar/axial parities stay at a distance ε from their original values.
As a result, isospectrality loss is then of the same order ε as
the perturbation, i.e. |ωaxial

n −ωpolar
n | ∼ Cn(k)ε (the function

Cn(k) is model dependent; see Supplemental Material). As
ε or k increase, the stable behavior is observed by fewer and
fewer overtones, eventually reducing only to the fundamental
mode. Near-future GW observations shall measure both par-
ities in the fundamental QNM, which may discriminate the
mechanisms for the isospectrality loss (e.g. [16, 71]).
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(ii) Alternating axial/polar “w-modes”: Moving to higher
overtones, parities drastically separate when QNM instabil-
ity first occurs. QNMs of different parity place themselves
in an alternating pattern along the branch, as neutron star
“w-modes” do [4, 55]. Isospectrality loss is most accessi-
ble here, with BHs as compact star mimickers. We observe
ωR
n ∼ ln(ωI

n), ωI
n ∼ n (cf. the contrast with eq. (1)). As ε or

k increases, this regime descends in Im(C) towards the first
overtones, eventually overcoming the previous stable region.

(iii) Nollert-Price regime: In this third regime, the QNMs
migrate further away from unperturbed ones. We observe the
branches obeying ωI

n ∼ ωR
n ∼ n, the QNM instability (as-

sessed by the opening of the branch) is stronger than for al-
ternating “w-modes”. Yet, by studying instances in the range
ε ∈ [10−18, 10−1], we observe the isospectrality loss to be
again linear in ε, as in the stable regime (i). The mechanism
behind this result is unclear. This regime dominates over (i)
and (ii) for sufficiently large ε or k (e.g. ε = 10−3 in fig. 2).

Interestingly, the transition between the three sectors seems
to occur precisely upon appearance of an internal mode. New
regimes in far asymptotic regions are not excluded, but their
numerical study is challenging. We find internal QNMs to
be very parity-sensitive. In particular, one may observe in-
ternal modes among the first overtones already for moderate
wavenumber. For instance, the first internal mode in fig. 1 cor-
responds to n = 2 — QNM order label follows ωI

n < ωI
n+1.

Since QNM instabilities are not restricted to the asymptotic
behavior of QNMs overtones, novel features might be in the
near-future detection range. The next section initiates the dis-
cussion from a simple data analysis perspective by measuring
the perturbed QNMs within a numerical GW time signal. In
the section, unbarred and barred quantities denote dynamics
under the unperturbed or perturbed potential, respectively.

Data analysis: Our first goal is to assess whether the time
evolution φevol(t) of the corresponding wave equation does
contain the perturbed QNMs found in the frequency domain
analysis. BH spectroscopy relies on the approximation

φevol(t) ≈ φNspec(t), φNspec(t) =

N∑
n=0

Ane−iωnt . (5)

This expansion is indeed justified for sufficiently late times —
but prior to the power-law tails [72]— by Lax-Phillips scatter-
ing resonance theory, where expression (5) is understood as an
asymptotic resonant expansion [39–41] (see also [46, 47, 73–
76]). However, the unexpected nature of the spectral instabil-
ity results in ref. [1] prompts us to perform an independent
assessment to rule out possible pathological ‘artefacts’ in the
frequency domain calculation. The time-domain scheme un-
derlying eq. (5) provides precisely such an independent test.

The second goal in this section is to bring the attention to
the need for enhanced algorithms specifically targeting the
QNM instabilities within the waveform. Such data analysis
strategies should extend the current detection pipelines pro-
cessing data from the GW events [8–17], in particular a priori
QNM spectra distributions employed in Bayesian approaches.

To address these issues from a proof-of-principle perspec-
tive, we simulate here an ideal ringdown signal. We solve the

usual unperturbed Regge-Wheeler wave equation [51] as well
as its perturbed version [1] with ε = 10−3 and k = 10. The
solutions have numerical noise at machine roundoff error [77].
We use the initial data (ID) referred to as ‘polynomial’ in [74]
as they provide a benchmark for the results on the QNM spec-
tral decomposition eq. (5) according to refs. [74, 75].

Prony’s method [78], an instance of ‘harmonic inversion’
method, is used to read complex frequencies and amplitudes
from a signal modelled by eq. (5) [79]. Table I compares the
‘spectral’ (frequency domain) QNM values against those from
the Prony’s fitting of the time-domain signal [80]. We extract
three modes in both unperturbed and perturbed cases, but sig-
nificant digits are lost on the overtones. In the perturbed case,
the third inferred mode is assigned to ω3 due to its remark-
able proximity to the respective ‘theoretically calculated’ fre-
quency. Despite the loss in significant digits, the accuracy suf-
fices to distinguish unperturbed from perturbed spectra. The
method seems however insensitive to the internal mode ω2.

Hence, the perturbed modes on the NP branches are not fre-
quency domain artefacts: they are indeed in the time domain
signal and should be measurable in GWs if realistic scenar-
ios trigger the instabilities. However, the presence of internal
modes in the time signal has not yet been confirmed. It re-
mains to be assessed whether the internal modes are an arte-
fact or, rather, the particular ID is not efficient to excite them.

To address this issue, we use a semi-analytical tool [74, 75,
81] to measure excitation factors An. They reveal that the
internal mode ω2 is very mildly, but unmistakably, excited
(see Supplemental Material): with the employed ID we get
A2 ∼ 10−3, whereas A0 ∼A1 ∼A3 ∼ 10−1. Thus, all per-
turbed QNMs are indeed present in the perturbed GW signal.
The fainter signal explains why Prony’s method bypasses this
internal mode, while its background noise spoils ω1’s and ω3’s
accuracy. An important open question is whether more realis-
tic ID would excite the internal modes more effectively.

Discussion: Building on the general framework described
in ref. [1], we have focused on the implications of high-
wavenumber QNM overtone instability for GW astrophysics.
Specifically, in this work we have: i) introduced a set of
effective parameters (LR, γ, S,G) to characterize perturbed
(open) NP BH QNM branches and probe small-scale BH en-
vironment physics, ii) identified different regimes of QNM
isospectrality loss and proposed |ωaxial

n − ωpolar
n | as an ob-

servational marker of the perturbation size ε, iii) found a new
class of perturbed “internal QNMs”, signalling the transi-
tion between isospectrality loss regimes, iv) established the
logarithmic asymptotics of QNM-free regions (pseudospec-
trum contour lines) and formulated a conjecture for the high-
wavenumber limit of Nollert-Price QNMs branches to loga-
rithmic Regge QNM branches on QNM-free boundaries, v)
introduced a BH Weyl law (and Weyl scale LW) probing
small scale BH physics and spacetime dimension by counting
QNMs, vi) demonstrated the theoretical capability to disen-
tangle perturbed from unperturbed QNMs from the respective
(perturbed and unperturbed) time-domain ringdown signals,
in spite of the tiny difference between the waveforms, and (as
a challenging counterpart to the latter point) vii) advocated
for the need of developing enhanced data analysis schemes



5

TABLE I. QNMs for unperturbed and perturbed Schwarzschild potentials via Prony’s method. Crosses are QNMs not identified.
Unperturbed Potential (ε = 0, k = 0)

QNMs Mω0 Mω1 Mω2 Mω3

‘Spectral’ ±0.37367168− 0.08896231 i ±0.3467110− 0.2739149 i ±0.3010534− 0.4782770 i ±0.2515049− 0.7051482 i
Prony’s Fit ±0.37367169− 0.08896232 i ±0.34670− 0.27392 i ±0.302− 0.48 i ×××

Perturbed Potential (ε = 10−3, k = 10)
QNMs Mω0 Mω1 Mω2 Mω3

‘Spectral’ ±0.37364032− 0.08898850 i ±0.3401722− 0.2648723 i ±0.1367705− 0.2761794 i ±0.3735536− 0.3723973 i
Prony’s Fit ±0.37364030− 0.08898850 i ±0.342− 0.266 i ××× ±0.37− 0.4 i

capable to effectively disentangle observational (in contradis-
tinction to theoretical) perturbed/unperturbed GW ringdown
signals and to cope with the effective degeneracy of perturbed
QNMs, namely a consequence of the universality [1] of per-
turbed NP QNM patterns.

Under the assumption that realistic astrophysical scenar-
ios can trigger the described QNM instabilities, the previous
points directly impact the future of BH spectroscopy. Assess-
ing whether such assumption is actually realized is a pressing
issue for the correct interpretation of GW observations.

We have focused on high-wavenumber QNM overtone in-
stabilities. Other QNM instability mechanisms have been pro-
posed [82]. Distinct mechanisms will inform us on different
aspects of BH astrophysics. In particular, in the present over-
tone setting, the measure of G and the Weyl length scale LW

are complementary, as they assess the two novel aspects in
this type of high-wavenumber QNM instability: G accounts
for the NP branch opening in the complex plane, whereas LW

measures the appearance of internal modes. Beyond BH envi-
ronment physics, such kind of asymptotic overtone diagnos-
tics could offer a bridge to fundamental gravity physics [83].

We finally stress the timely necessity for liaising the theo-
retical results on the fundamental aspects of BH perturbation
theory with the current efforts to set goals and strategies for
the GW missions. Detecting QNM overtones in a noisy signal
already imposes a challenging data analysis task when a deter-
ministic underlying spectrum is a priori available [12–14, 27–
29]. The theoretical prediction of BH QNM instability adds

another layer of obstacles, since the perturbed QNM overtone
specific values will generically incorporate a stochastic com-
ponent from (random) small-scale perturbations and only gen-
eral patterns shall be available. This strongly indicates that
only detections with very high signal-to-noise ratios will offer
eligible candidates for disentagling BH overtone instabilities.
In particular, this defines a challenging but tantalizing case for
LISA science, requiring the development of specific data anal-
ysis tools to cope with a more intricate parameter degeneracy.
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