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A B S T R A C T   

LiDAR (short for “Light Detection And Ranging” or “Laser Imaging, Detection, And Ranging”) technology can be 
used to provide detailed three-dimensional elevation maps of urban and rural landscapes. The geographically 
granular and open-source nature of this data lends itself to an array of societal, organisational and business 
applications where geo-demographic type data is utilised. However, the complexity involved in processing this 
multi-dimensional data in raw form has thus far restricted its practical adoption. This paper proposes a series of 
convenient task-agnostic tile elevation embeddings to address this challenge, using recent advances from un
supervised Deep Learning. We test the potential of our embeddings by predicting seven English indices of 
deprivation (2019) for small geographies in the Greater London area. These indices cover a range of socio- 
economic outcomes and serve as a proxy for a wide variety of potential downstream tasks to which the em
beddings can be applied. We consider the suitability of this data not just on its own but also as an auxiliary source 
of data in combination with demographic features, thus providing a realistic use case for the embeddings. Having 
trialled various model/embedding configurations, we find that our best performing embeddings lead to Root- 
Mean-Squared-Error (RMSE) improvements of up to 21% over using standard demographic features alone. We 
also demonstrate how our embedding pipeline, using Deep Learning combined with K-means clustering, pro
duces coherent tile segments which allow the latent embedding features to be interpreted.   

1. Introduction 

In recent years, there has been a growing trend in the application of 
remote sensing to predict or explain socio-economic phenomena. The 
appeal of this data source is that it provides a relatively inexpensive 
means of capturing vast amounts of information at a geographically fine- 
grained level and at regular time intervals. Perhaps the most natural fit 
for remote sensing with such applications is in the developing world, 
where remote sensing can support or replace existing data sources 
without reliable structured census data. For example, satellite data has 
been successfully applied to poverty prediction (Block et al., 2017; Jean 
et al., 2016). More recently, satellite imaging and street view imagery 
have also been used in the developed world to improve house price 
estimation (Law et al., 2019), detect abandoned houses (Zou and Wang, 
2021) and predict deprivation indices (Suel et al., 2021). Instead of 
acting as a substitute, socio-economic data and satellite imagery have 

also been used in combination in order to classify urban scenery (Su 
et al., 2021). However, while forms of data such as satellite and street 
imagery are predictive of various outcomes, they also present chal
lenges. Firstly, the data is often proprietary or available under an aca
demic licence only, restricting its practical adoption. There is also an 
ethical question as to the intrusiveness of these types of images when 
being used to make sensitive decisions, for example, to assess a person’s 
creditworthiness. 

LiDAR, short for “Light Detection And Ranging” or “Laser Imaging, 
Detection, And Ranging”, is an alternative form of remote sensing that 
can measure the vertical structures of the land below and provides an 
open-source high-resolution alternative to satellite imagery (see Fig. 1). 
Its capacity to capture rich imagery has led to its adoption for a range of 
purposes in the environmental sciences (Shaker et al., 2019; Pan et al., 
2020; Hamraz et al., 2019; Cao et al., 2019; Zhou et al., 2020; Wang and 
Li, 2020) and archaeology (Boer, 2005; Sittler et al., 2007). Several 
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studies have also used LiDAR to derive handcrafted metrics that capture 
features from the urban environment to predict or explain socio- 
economic phenomena (Lu et al., 2011; Lu et al., 2013; Grove et al., 
2014; Shanahan et al., 2014; Warth et al., 2020). Such metrics may 
reflect environmental aspects including the levels of vegetation or at
tributes of the built environment such as building volume and footprint. 
While these methods are simple to interpret, they reduce this highly 
complex imagery to a single metric or set of metrics, and in the process, 
discard potentially valuable information that may be useful in a pre
dictive setting. Our paper addresses this by applying advanced feature 
extraction methods to capture complex latent features from LiDAR 
imagery. 

Due to LiDAR’s broad environmental uses, it is commonly collected 
by government environmental agencies and subsequently open-sourced. 
For example, in the UK, LiDAR is updated and published annually under 
an Open Government Licence (OGL; Environment Agency, 2021), a 
nonrestrictive licence that allows the data to be exploited both 
commercially and non-commercially. Similarly, LiDAR data is made 
available, to varying degrees of coverage and granularity, by agencies in 
the USA (USGS, 2022), Canada (Natural Resources Canada, 2022), 
Australia (ICSM, 2022), Ireland (Geological Survey Ireland, 2022) and 
the Netherlands (PDOK, 2022), among others. Despite its wide avail
ability, we argue that LiDAR data has been underutilised and could form 
a valuable auxiliary data source for a wide range of predictive tasks. The 
findings from the research by Zuiderwijk et al. (2012) into the impedi
ments of open data give insight as to why LiDAR has not yet been more 
widely adopted. They identify ten core requirements for the adoption of 
open data, including 1) availability and access, 2) findability, 3) us
ability, 4) understandability, 5) quality, 6) linking and combining data, 
7) comparability and compatibility, 8) metadata, 9) interaction with the 
data provider, and 10) opening and uploading. While LiDAR data might 
meet some of these criteria, we argue that more can be done to improve 
its usability and ease by which it can be combined with other data 
sources. 

Part of the issue with the data is that it is published as a series of 3D 
raster tiles that require specialist knowledge and software to be pro
cessed. Even with the capacity to process the files, to use the data for a 
general statistical or analytics task (descriptive, predictive or prescrip
tive) adds a layer of complexity as, in practice, it would require the 
training of sizeable Deep Learning models. Furthermore, even with such 
capacity available, it may not seem a worthwhile exercise for practi
tioners when LiDAR might just form an auxiliary form of data, despite 
the potential predictive performance gains its use might entail. To 
address this, we propose a series of task-agnostic embeddings that cap
ture higher-level features of the urban environment numerically and can 

be easily imported into any analytics tool. In turn, this allows LiDAR 
data to be practically applied to a wide array of potential tasks where 
geo-demographic data is of use. Furthermore, we make this data 
adoptable as census type data, which is both geographically fine-grained 
and convenient to merge with other data sources. Such data is 
commonly used as an auxiliary form of data and provides a vital source 
of data for resource-constrained organisations such as local government, 
charities, and small businesses (ONS, 2021). Furthermore, for these 
organisations, we propose that our embeddings could replace or sup
plement proprietary geo-demographic data products such as ACORN 
(CACI, 2021) and Mosaic (Experian, 2021), which provide convenient 
demographic consumer segments at small geographic units. 

In order to produce the LiDAR tile embeddings, we use a multi-step 
unsupervised pipeline. Firstly, using a Convolutional Neural Network 
model, we extract a set of raw latent features. We subsequently look to 
reduce the size of the embeddings and segment the embedding space 
using a combination of Principal Component Analysis (PCA) and K- 
means clustering. The result is a set of embeddings that are both pre
dictive and interpretable. 

We consider how certain factors influence the predictive perfor
mance of the embeddings. These can broadly be split into two types. 
Firstly, we investigate those modelling choices made in the production 
of the embeddings. Most notably, we review two types of unsupervised 
embedding methodology approaches, including a ‘direct’ transfer 
learning approach, which we extend using SimCLR (Chen et al., 2020a; 
Chen et al., 2020b): a training framework which uses a form of self- 
supervised learning. Secondly, for the resulting embeddings, we 
consider the modelling decisions an analyst end-user might make to 
optimise the predictive performance. These decisions include the choice 
of predictive model (i.e. linear or non-linear), embedding size, and how 
the tile embeddings can be aggregated to larger geographic areas. 

To assess our embeddings, we consider the performance in an 
example supervised/predictive task while also qualitatively assessing 
the coherence of the clusters/segments. Firstly, for the predictive task, 
we assess performance by predicting seven domains of deprivation in the 
Greater London area over small geographical units called Lower Super 
Output Areas (LSOAs). The seven indices include 1) Income, 2) 
Employment, 3) Education, 4) Health, 5) Crime, 6) Barriers to Housing 
& Services and 7) Living Environment. We chose to benchmark perfor
mance using these indices as they are publicly available and cover a 
wide range of socio-demographic outcomes. This variety allows the 
embeddings to be assessed in a broad setting since they are intended to 
be task-agnostic. Importantly, we consider the performance of the em
beddings both alone and combined with standard structured data, to 
assess their potential as an auxiliary source of data. Secondly, we review 

Fig. 1. Example of LiDAR elevation tiles.  
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the clusters/segments produced by our embedding pipeline in terms of 
the imagery, geo-location and deprivation indices. Via this process, 
meaning can be injected into the otherwise latent features. 

Hence, the aims of our research are as follows:  

1. To understand if tile embeddings can be used to predict a range of 
socio-demographic outcomes.  

2. To assess what embedding generation method, parameters and 
modelling choices lead to more predictive embeddings.  

3. To identify factors relevant to the embedding end-use, including 
compatibility with non-linear and linear machine learning models, 
the methods by which the embeddings can be aggregated to larger 
demographic units, and the impact of embedding size.  

4. To demonstrate how the embedding features can be interpreted by 
assessing similarities in their visual appearance, demographics and 
geo-locational attributes. 

The results of our work can be used in a variety of machine learning 
and analytics problems, reducing the time and resources required to 
integrate remote sensing data. 

The rest of this paper is structured as follows. In Section 2, we outline 
related work and the contributions of this work in relation to the existing 
literature. Then, in Section 3, we outline our methods for generating and 
assessing the embeddings, before describing our data (Section 3.3) and 
outlining the experiments (Section 3.4). In Section 4, we review the 
results, starting with a predictive performance comparison (4.1), and 
next demonstrating how the embedding segments can be interpreted 
using a clustering analysis (4.2). We then summarise our findings from 
both a technical and practical perspective in Section 5 and highlight 
limitations of our research and areas of potential further research in 
Section 6. 

2. Related work and contributions 

This section is structured as follows. Firstly, in Section 2.1, we pro
vide an overview of LiDAR sensing and its typical use cases. Then, we 
review how alternative types of remote sensing have started to be used 
in a socio-demographic setting and how this has been made possible, in 
part, with the introduction of Deep Learning (Section 2.2). We subse
quently explore the relevance of unsupervised and self-supervised Deep 
Learning (Section 2.3), specific types of Deep Learning that allows us to 
produce task-agnostic embeddings. Then, in Section 2.4, we outline 
what geo-demographics is, how it is used and why LiDAR might be 
relevant to the field. 

2.1. Applications with LiDAR data 

LiDAR is a method by which distances can be measured. Akin to 
radar, laser light is emitted from a base point with the time delay be
tween the reflected light providing a measure of distance over a given 
object or area. LiDAR technology can produce high-resolution imagery 
and can be used to target a wide array of materials. This capability is 
particularly advantageous in the environmental sciences when using 
satellite and airborne LiDAR imaging for surveying, as ground level and 
above ground features (e.g. buildings, cars, trees) are distinguishable. 
Examples of applications in the environmental domain include tree 
species mapping and classification (Hamraz et al., 2019; Cao et al., 
2019; Mäyrä et al., 2021), mangrove mapping (Li et al., 2021), crop 
monitoring (Lin and Habib, 2021), fire damage assessment (García et al., 
2020), landslide detection (Syzdykbayev et al., 2020) and glacier anal
ysis (Telling et al., 2017). Similarly, the technology has been applied to 
the urban environment, for example, to understand changes in the urban 
environment as a result of development (Zhou et al., 2020) or natural 
disaster (Wang and Li, 2020). Furthermore, airborne LiDAR is also 
prevalent in the archaeological sciences for site detection (Boer, 2005; 
Fernández-Lozano et al., 2015; Albrecht et al., 2019; Balsi et al., 2021). 

While these are all examples of aerial-based LiDAR, the technology is 
flexible and can also be used for land-based applications. For example, 
LiDAR is considered one of the enabling technologies for autonomous 
vehicles (Wang et al., 2017; Zermas et al., 2017; Gao et al., 2018). 

While examples of LiDAR applications are numerous in the envi
ronmental and archaeological domains, examples in the social sciences 
are more limited. Several studies, however, have used metrics and 
classifications derived from LiDAR to predict or explain socio-economic 
phenomena. For example, in the field of urban planning, Grove et al. 
(2014) use LiDAR combined with other data sources to produce an 
Existing Vegetation Cover (EVC) index for private land in New York 
City. They explore statistical relationships with various socio-economic 
measures and classifications to enhance targeted land management 
practices. They demonstrate that vegetation patterns reflect environ
mental buying behaviours and, among others, lifestyle and life-stage 
factors. They also show reasonable correlations between the EVC mea
sure and outcomes including population density, education and income. 
These are relevant to our research as they share some overlap with the 
indices of deprivation we use to assess our embeddings. Similar research 
has demonstrated that LiDAR-based vegetation indices, including tree 
cover and remnant vegetation, vary across the socio-economic spec
trum, with higher tree coverage present in more advantaged areas of 
Brisbane, Australia (Shanahan et al., 2014). Alternative approaches 
have used LiDAR imaging to derive metrics and classifications that 
describe building attributes at either a household or area-based level, 
including volume, footprint, and typologies. Such measures have been 
shown to be predictive of a range of outcomes including house prices 
(Syracuse, USA; Lu et al., 2013), population density (Denver, USA; Lu 
et al., 2011), and socio-demographic indices (Belmopan, Belize; Warth 
et al., 2020). 

While these approaches demonstrate predictive capacity, the major 
drawback is that they reduce highly complex urban scenes into a single 
metric or set of metrics. Of course, the advantage to this is that these are 
simple to interpret, which is particularly important when explicitly 
reviewing a specific aspect of the urban environment. The downside is 
that a substantial amount of information is also discarded in the raw 
data, which might be suitable for a given predictive task. However, in 
many settings that utilise machine learning, sacrificing some interpret
ability to improve the predictive result is often acceptable. Therefore, 
our research seeks to address this gap in the literature by distilling 
complex LiDAR imagery into a set of task-agnostic embeddings using 
unsupervised Deep Learning approaches, which we subsequently assess 
against seven domains of deprivation. 

2.2. Socio-demographic applications with other remote sensing data 

While, for socio-economic analysis, the use of LiDAR combined with 
Deep Learning approaches remains unexplored, a growing field of 
research has looked to exploit these techniques with other forms of 
remote sensing and related imagery. This trend has been primarily 
driven by the capacity for Deep Learning to both downscale and fuse this 
complex data (Yuan et al., 2020). 

Deep Learning approaches can be broadly split into two types: su
pervised and unsupervised learning. In supervised learning, we would 
like to predict a labelled outcome (y) using a known set of features (X), 
facilitated by a statistical algorithm. This is usually motivated by a desire 
to predict an unobserved outcome (y*) given a new observable set of 
input features (x*) (Jordan and Mitchell, 2015). A supervised approach 
is used by Law et al. (2019) in order to predict house prices in London 
using a combination of street-view and satellite imagery grid tiles as 
input. In order to do so, the authors utilise transfer learning, the process 
by which a model trained on a related task can be ‘fine-tuned’ on the 
target domain using labelled data, in this instance, with the well-known 
VGG architecture (Simonyan and Zisserman, 2014). Interestingly, they 
demonstrate that the image inputs can improve predictive accuracy even 
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when combined with standard structured inputs (structural, neigh
bourhood, and locational housing features) — which we also seek to 
demonstrate in our results. Similarly, Suel et al. (2021) combine both 
street-view and satellite imagery to predict socio-demographic out
comes in London, including income, overcrowding and living environ
ment (quality). They show that the combination of the inputs is better 
than using the inputs individually. However, unlike Law et al. (2019), 
they do not review the predictive performance of the models when used 
in combination with standard features. Zou and Wang (2021) also use a 
pre-trained VGG as a base model which they fine-tune to classify 
abandoned houses in the US using street-view imagery alone, achieving 
85% in overall accuracy. Such examples of supervised applications are 
not restricted to satellite and street-view imagery. Zhao et al. (2018) 
assess the use of nighttime light and social media data (tweet activity) as 
a means to predict personal income, electric power consumption, and 
fossil fuel (carbon dioxide) emissions by reviewing their statistical re
lationships. They do this for relatively large geographic units in the USA: 
at a state and county level. The authors find both sources of data to be 
predictive, with the best performing data source being dependent on the 
target variable and geographic unit. 

These studies demonstrate the considerable potential that remote 
sensing data has in a socio-economic context. However, one challenge 
with the supervised end-to-end training approaches is that they require 
granular labelled data to a suitably high resolution. This is not prob
lematic for house price prediction, where both large databases of 
labelled data are available, and the connection between visual aspects 
such as neighbourhood attractiveness and house price make end-to-end 
training viable. There are, however, many applications where this is not 
the case and where pre-trained embeddings may be helpful, particularly 
where there is limited labelled data and the link between visual features 
and the outcome are less obvious. 

Unsupervised Deep Learning approaches present a means to extract 
meaningful feature representations without the presence of labelled 
data. Furthermore, in some instances, unsupervised techniques can be 
extended to make use of limited labelled data in what is referred to as 
semi-supervised learning. For these reasons, recent research in this area 
mainly focuses on the developing world where fine-grained labels are 
not available or incomplete. Like for supervised approaches, transfer 
learning is also commonly adopted in the unsupervised domain. How
ever, for transfer learning, it is desirable that the pre-trained model is 
contextually similar to the target domain. This prerequisite is particu
larly challenging in remote sensing as most pre-trained models, 
regardless of architecture, are trained on the well-known Imagenet 
database (Deng et al., 2009). While Imagenet is extensive, it differs from 
aerial type imaging, tending to contain object collections such as ani
mals, cars and buildings. However, that is not to say that transfer 
learning cannot be utilised even with a significant domain shift, as high- 
level abstractions can still be relevant. This is demonstrated by Block 
et al. (2017), who utilise a direct transfer learning approach to detect 
slums using satellite imagery tiles. Their paper proposes a framework for 
tile segmentation by first extracting features from a ResNet-152 CNN 
(pre-trained on Imagenet) before performing K-means clustering and 
dimensionality reduction to segment the images. While also not 
requiring any labels, the authors show how their approach can lead to 
interpretable image clusters, which, as they demonstrate for the city of 
Mumbai, can be predictive of several socio-economic outcomes. Wurm 
et al. (2019) use an alternative approach to segment satellite imagery in 
order to identify slums. They also apply direct transfer learning, how
ever they do so with a model pre-trained on related imagery. They find 
transfer learning to significantly improve performance, albeit when 
transfer task images are of a lower resolution. This is significant as it 
suggests that models must not just adapt to the domain context, but also 
to the image resolution. 

Similarly to the previous studies, Jean et al. (2016) used satellite 
imagery in order to predict poverty levels for five nations located in 
Africa. However, they extend the direct transfer learning approach by 

fine-tuning a CNN to the satellite imagery domain with a proxy task, 
using what is commonly referred to as semi-supervised learning. With 
limited actual labelled data, the authors first train a model to predict 
nightlight (night imagery). The model is then subsequently fine-tuned to 
predict poverty-related outcomes with the available labelled data. Per
sello and Kuffer (2020) also use a semi-supervised approach to predict a 
single socio-economic index reflecting multiple levels of deprivation for 
neighbourhoods in Bangalore, India. However, rather than using 
nightlight imagery prediction as a pre-text task, they instead train a 
model to predict known slum designations. 

To conclude, supervised learning with remote sensing data has 
shown promise for predicting various socio-demographic related out
comes; however, it requires end-to-end model training and available 
labelled data. In contrast, previous unsupervised and semi-supervised 
learning applications have shown that aerial imaging can still be used 
to infer socio-demographic outcomes even with limited or no labelled 
data. To date, these approaches have either included direct transfer 
learning or the use of proxy labels/images. However, an alternative 
approach to learning without labels has recently produced excellent 
results but is yet to be explored in this context — self-supervised 
learning. 

2.3. Advancements in unsupervised representation learning 

Prior to recent advances in Deep Learning, sophisticated rule-based 
methods were the dominant means to extract representations from im
ages. These approaches allowed features to be derived in a semi- 
automated manner, rather than requiring that features be handcrafted 
entirely. In turn, these representations could be used for a range of 
downstream tasks such as object detection, object classification, edge 
detection and image segmentation. Of the rule-based approaches, 
perhaps the most prevalent method is Scale Invariant Feature Transform 
(SIFT; Lowe, 2004) or other methods derived from it such as PCA-SIFT 
(Ke and Sukthankar, 2004) and GLOH (Mikolajczyk and Schmid, 
2005). The SIFT approach looks to identify key points within an image, 
to which a local set of descriptors is then derived for each of these key 
points. As these descriptors are numerous, and the counts can differ 
between individual images, there are several extensions to the SIFT 
methodology that look to condense this information into a smaller 
number of dimensions, including BOV (Sivic and Zisserman, 2003), 
Fisher Vectors (Perronnin et al., 2010) and VLAD (Jégou et al., 2010). 
While these classical feature extraction approaches are powerful and 
computationally efficient, they are underpinned by a rigid set of as
sumptions and require some degree of modeller involvement with 
regards to parameter selection which may depend on the application 
domain. In contrast, Deep Learning approaches are more flexible and 
capable of learning complex representations directly from the data, 
without specific domain knowledge or modeller involvement. Further
more, Deep Learning approaches have been shown to outperform clas
sical approaches across a range of supervised and unsupervised tasks 
(Luus et al., 2015; Tian et al., 2017; Lin et al., 2018; Rançon et al., 2019). 

Approaches that use Deep Learning for unsupervised representation 
learning can be broadly classified as either generative or discriminative. 
While generative approaches attempt to model the input space or 
generate new instances, discriminative approaches instead learn the 
boundaries between classes. In an unsupervised context, however, 
labelled data is not available, so discriminative approaches look to 
generate pseudo labels, typically using features of the input images. 
Discriminative approaches have arguably proved to be more popular as 
they are more intuitive and less computationally expensive than 
generative approaches, which tend to model the data at a pixel level. 

Earlier discriminative approaches typically involved a pre-defined 
image manipulation with a Deep Learning model tasked to detect a 
given random transformation, for example, image reconstruction 
(Doersch et al., 2015; Noroozi and Favaro, 2016), colourisation (Zhang 
et al., 2016) and rotations (Gidaris et al., 2018). Such an approach has 

M. Stevenson et al.                                                                                                                                                                                                                             



ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 378–392

382

been applied with LiDAR data. Specifically, Wang et al. (2019) recently 
extracted pixel-wise features for land coverage classification, albeit with 
a Random Forest model rather than a Deep Learning model. 

More recently, a type of discriminative learning, called contrastive 
learning, has emerged that encourages similar images to yield similar 
latent representations. At the time of writing, the state of the art in 
contrastive learning is SimCLR (Chen et al., 2020a; Chen et al., 2020b), 
which rather than being a specific type of model architecture, is pro
posed as a framework. The framework operates by creating a series of 
duplicate images and applying various image transformations to them. 
These paired images are then fed into a training process that is designed 
to produce similar representations for them. The framework has yielded 
impressive results, with the latest iteration even outperforming training 
with labels (supervised) under some conditions (Chen et al., 2020b). 

Despite the promise of self-supervised learning approaches, this new 
generation of unsupervised learning is relatively underexplored in 
remote sensing, where it is arguably highly suited given the abundance 
of unlabelled imaging data. We address this gap by applying the SimCLR 
framework as part of a pipeline to derive meaningful embeddings and 
segments. 

2.4. The relevance of geo-demographic data 

Geo-demographics is defined as “the use of detailed categorical and 
continuous data on small areas defined and selected according to cate
gorisations that are set up to discern high/low incomes, levels of edu
cation and deprivation, status indicators such as taste and purchasing 
patterns, and other data” (Elliot et al., 2016). Although typically, this 
type of data is associated with targeting and segmenting customers for 
marketing purposes (Mitchell and McGoldrick, 1994), its potential ap
plications are vast, serving both commercial and public interest. Ex
amples include allocating public policing (Ashby and Longley, 2005), 
public health intelligence (Abbas et al., 2009; Petersen et al., 2011), 
public transport planning (Liu and Cheng, 2020), financial service 
branch management (Birkin and Clarke, 1998) and deciding restaurant 
locations (Muller and Inman, 1994). 

Perhaps one of the most important data sources underpinning geo- 
demographic studies in the UK is the national census survey. As well 
as having national coverage, the data produced by this survey contains a 
wide array of rich socio-demographic information and is open source. 
Due to the complexity of working with this information in raw form, 
however, several commercial offerings simplify the data by generating 
convenient customer segments. Perhaps the most well-known geo-de
mographic products in the UK are ‘ACORN’ and ‘Mosaic’ offered by 
CACI and Experian, respectively. These products utilise national census 
data, enriching it with proprietary and other open data sources and of
fering segmentations at a more fine-grained level (household or postal 
units) than that available from the census publication (output areas). 
Open source segments referred to as Output Area Classifications are also 
available for the 2001 (Vickers and Rees, 2007) and 2011 (Gale et al., 
2016) census, published by the UK Office for National Statistics (ONS). 
However, these purely utilise census data and are published at larger 
geographical units than the commercial offerings. 

Alternatively, LiDAR elevation tiles form a rich source of open data 
(in the UK) and are produced at a high geographic resolution. Further
more, the data is updated and published annually. Despite this, elevation 
tiles have not been explored in either a commercial or open-source 
setting, which we look to address with our tile embeddings and result
ing segments. 

3. Method 

Our research’s primary aims are to generate task-agnostic tile em
beddings and understand whether those are predictive of a range of 
outcomes and remain so when used in conjunction with structured 
variables. Hence, the methods we apply can broadly be split into two 
categories: ‘embedding generation’ and ‘embedding use’. The former is 
concerned with the modelling decisions made to produce the embed
dings, whereas the latter relates to the end-user’s modelling decisions to 
optimise the use of the embeddings. The following two subsections 
outline the approach applied for each of these two elements; 3.1 
(embedding generation) and 3.2 (embedding end use). 

Fig. 2. Pipeline: Raw representations. This part of the pipeline is concerned with extracting a flat 1-dimensional feature representation per tile via the Direct Transfer 
Learning approach or the SimCLR training framework. Note that while the Direct Transfer Learning model has a single output per tile, for SimCLR, we consider four 
hidden layers on the MLP head. 
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3.1. Embedding generation 

The first stage in the generation of the embeddings is to extract 
representations from a Deep Learning model which we refer to as the 
‘base model’. We do so in an unsupervised manner using two approaches 
outlined in this section: 1) direct transfer learning, which we extend 
using 2) the SimCLR training framework (see Fig. 2). 

3.1.1. Direct transfer learning 
Transfer learning is a process by which the weights of a model 

trained on a related task are re-used in a different application. Typically 
the base model undergoes a process of ‘fine-tuning’ to the intended task, 
usually in a supervised context (with labels). This approach has been 
widely adopted both in the image processing and natural language 
processing fields. 

We use an EfficientNet implementation as our base model, reflecting 
the current state of the art in supervised Deep Learning image processing 
(Tan and Le, 2019). The EfficientNet was published with seven varia
tions increasing in size and parameters (B0 to B7). We implement the 
smallest version (B0), pre-trained on same-sized images using the 
Imagenet dataset. A global pooling of the final layers of the base model is 
used to produce a raw feature vector of size 1280 per tile. As the task is 
unsupervised, there is no further fine-tuning of the base model to the 
LiDAR tiles; hence we refer to this as a ‘direct’ transfer learning 
approach. This is broadly aligned with the method of extraction adopted 
by Block et al. (2017). 

3.1.2. SimCLR training framework 
The second approach we take to extract raw representations is to 

undertake additional training of the base model using the LiDAR tiles. 
This additional fine-tuning should, in theory, outperform a direct 
approach as the base model can adapt to the LiDAR image tiles, which 
differ from the types of images the pre-trained model has been exposed 
to. In a supervised context, the base model would be fine-tuned using 
labels for a specific task — estimating the seven domains of deprivation 
in our instance. However, a supervised approach would be counter- 
intuitive for our research goals as we do not intend to focus on a sin
gle downstream task but create embeddings that are task-agnostic and 
can thus be used for a wide range of (other) supervised learning prob
lems. We, therefore, need to train the model using an unsupervised 

learning approach, to which we apply the SimCLR training framework. 
The framework uses self-supervised learning to create dummy labels, 
effectively converting the task to a supervised one. This is done by 
randomly sampling images from the dataset and generating transformed 
image copies using random augmentations (Fig. 3), e.g. cropping, ro
tations, zooming and blurring. Such image augmentations are also 
commonly applied in supervised learning to prevent over-fitting; how
ever, the motivation differs slightly. With SimCLR, the training objective 
is to encourage mapping transformations of the same image closely in 
the embedding space. To do so, the authors use Normalized 
Temperature-scaled Cross Entropy Loss, or NT-Xent. The purpose of the 
loss is to attract transformed duplicates while repelling representations 
of other images within the same training batch. This self-supervised 
process allows the model to learn latent features that distinguish the 
image inputs, producing generic features that can be used for the 
downstream task. The described approach is what the SimCLR authors 
refer to as ‘unsupervised pretraining’; they then further demonstrate 
how this pretraining can be extended using transfer learning and semi- 
supervised learning using limited labelled data. For our analysis, how
ever, we only consider the unsupervised pretraining elements of the 
framework, as it is this part that allows us to produce the task-agnostic 
embeddings for LiDAR data. 

The base model’s architecture remains the same as that of the direct 
approach (EfficientNet B0), to which we append a Multilayer Perceptron 
(MLP) network consisting of four dense layers of size 512 and a pro
jection head. The final dense layer (the projection head) produces the 
representation output for the loss function, while each of the preceding 
dense layers of the MLP will be considered for the embedding output. A 
size of 512 was initially selected as it provides a manageable upper 
bound for the final embedding. We also validate this choice in the pre
dictive results where we assess the impact of embedding size on per
formance. Our configuration is selected based on the findings from the 
second iteration of the SimCLR paper (Chen et al., 2020b). The authors 
found that a deeper MLP head can significantly improve the outcome, 
especially when the base model has fewer parameters — as the Effi
cientNet does. However, the authors also note that the raw representa
tions’ performance can vary according to which layer abstraction is 
used, with earlier layers tending to capture higher-level features that are 
more useful for the downstream task. We, therefore, report the result of 
all four dense layers preceding the projection head of the SimCLR model. 

Fig. 3. Example of augmented LiDAR tiles which form input into the SimCLR model training. The original LiDAR image tiles are on the top row while the layered 
stochastic augmentations are presented in subsequent rows. The random transformations include: (a) zooming and cropping, (b) image flipping, (c) colour distortion 
and blurring. 
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3.1.3. Embedding post-processing 
The raw representations go through three further processing stages 

to arrive at the final embeddings: Scaling, Principal Component Analysis 
(PCA) and K-means (see Fig. 4). These additional steps form a standard 
machine learning approach that allow us to simultaneously explore the 
impact of different embedding sizes while also outputting the repre
sentations in a more interpretable form. 

Firstly, the vector representations (raw embeddings) are stand
ardised, which is a requirement for the later steps. Second, PCA is a 
linear form of Singular-Value-Decomposition that projects the stand
ardised embeddings into a lower-dimensional space to reduce noise and 
redundancy in the embeddings. The n_components (number of compo
nents) parameter is tuned for each embedding so that the minimum 
number of components is obtained whilst explaining at least 99% of the 
variance. PCA could form the final dimensionality-reduction stage in the 
process; however, we opt to use K-means to reach the target embedding 
size. K-means is a popular clustering algorithm that seeks to partition the 
input data (here, PCA transformed tile representations) into K discrete 
groups, where K is a predetermined number of clusters. By setting K to 
the target embedding size, the transformed output for each tile 
embedding is a vector with the distance from each of the K cluster 
centres. Smaller distances from a centroid suggest the tile is more 
representative of the cluster. The benefit of this approach is that the 

output embedding values are interpretable as by identifying typical 
features of each cluster, we can add meaning to the latent embedding. 
Furthermore, the embeddings can be easily discretised by taking the 
embedding index with the minimum distance and allocating the tile to 
the corresponding cluster. We wish to understand the trade-off between 
the size of the embeddings and predictive performance, and therefore 
trial embeddings sized 4, 8, 16, 32, 64, 128, 256 and 512. 

3.2. Embedding end use 

This subsection describes how the derived embeddings can be used to 
predict the indices of deprivation (see Fig. 5). As well as testing the value 
of the task-agnostic embeddings, this also demonstrates how the em
beddings might be used in a typical machine learning pipeline. 

3.2.1. Aggregating embeddings 
It is a requirement for the predictive task that there is a single rep

resentation per LSOA, the geographic area at which the indices of 
deprivation are published. Given that an LSOA contains multiple tiles, 
the embeddings must be allocated to an LSOA and aggregated. 

The tile embeddings are assigned to the LSOAs according to the 
location of the tile centroid, ensuring that the embeddings are allocated 
only once. While this approach is reasonably rigid, it provides a robust 

Fig. 4. Pipeline: Post-processing. The second part of 
the embedding processing pipeline takes the raw 
feature representation produced by the Deep 
Learning models. This additional step maps the raw 
embedding into the target dimension size by setting 
the K parameter of K-Means. While the continuous 
output space (cluster distances) can be used as 
feature embeddings for a machine learning model, 
the space can also be easily discretised by taking the 
index of the minimum distance for feature 
interpretation.   

Fig. 5. Pipeline: End use. The final part of the pipeline moves from embedding generation to embedding use. This figure shows how the two data inputs (Indices and 
Embeddings) feed into the machine learning models to predict the target index. Furthermore, it shows how, for the embeddings, there is an additional processing step 
that looks to aggregate the tile level embeddings to an LSOA level. 
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means to assess the predictive capacity of the embeddings as informa
tion cannot be leaked between training, validation and test sets. In 
practice, an end-user may consider relaxing this constraint and use 
alternative methods such as area-based weighting, or, dictionary-based 
methods which we will describe later. 

While embedding aggregation is a requirement for our purposes, it is 
also practically relevant for other potential use cases when using the 
embeddings to represent larger geographic units. We, therefore, trial 
two types of aggregation, using mean-pooling and max-pooling ap
proaches. Applied to the K-means embedding representations, these 
approaches are intuitively equivalent to taking the mean and maximum 
Euclidean distance from each K cluster centre. Consider a simplified 
example, with just two clusters, one representing blocks of flats while 
the other consists of green open space. Mean-pooling would effectively 
ask, ‘what is the average representation of flat blocks and green space 
over all tiles in a given area?’, while max-pooling would ask ‘for all tiles 
in a given area, what was the maximum representation of green space 
and flat blocks regardless of how many tiles they occur in?’. 

The mean-pooling and max-pooling methods present an accessible 
means to aggregate the embeddings for a wide range of use cases. 
Alternative dictionary based approaches from the classic computer 
vision literature which utilise hard cluster assignment may also be 
applicable in some cases, including BOV, Fisher Vectors and VLAD. One 
issue with these approaches is, however, that they can be sensitive to the 
interplay between the embedding size (i.e. the number of clusters) and 
the number of tiles within a given area. For example, choosing too many 
clusters combined with too few tiles per area could result in a very sparse 
representation and a significant loss of information. Moreover, these 
methods introduce additional implementation complexity in that they 
require a greater degree of expert knowledge. For these reasons, we opt 
to limit the scope to only these pooling methods. 

3.2.2. Machine learning models 
We wish to understand how the embeddings perform in a linear and 

non-linear setting for the predictive task. This is of practical interest as 
the more flexible non-linear models can often provide better perfor
mance; however, this usually comes at the cost of increased training 
time, tuning complexity and lesser transparency when compared to 
linear models. We, therefore, apply two models, a Linear least-squares 
Model (LM) and a non-linear Gradient Boosting Machine (GBM). 
These models reflect two ends of the bias-variance tradeoff and are 
typical examples of machine learning models that an end-user might 
adopt. While there are many non-linear algorithms, we have selected the 
GBM as it has been shown to perform well in many settings. For the 
linear model, we use a Lasso implementation that applies L1 penal
isation and is efficient in our setting where there are a potentially large 
number of features. For the GBM, we use the LightGBM implementation 
of the algorithm (Ke et al., 2017). 

For the LM model, we apply five fold cross-validation on the training 
data to trial 100 variations of the alpha regularisation parameter. While 
the LM model is relatively fast and straightforward to train, the GBM is 
more complex with increased training times and more hyper- 
parameters. Therefore, we use the Optuna framework for this model 
to select an appropriate set of hyperparameters (Akiba et al., 2019). 
Specifically, we implement the Tree-structured Parzen Estimator (TPE) 
algorithm (Bergstra et al., 2011), a Bayesian optimiser that iteratively 
looks at sampling the search space to minimise the validation set root 
mean squared error (RMSE) with a budget of twenty trials. Furthermore, 
to control over-fitting for the GBM model, we also implement early 
stopping which prevents the model growing once performance stops 
improving in the validation set. 

3.3. Data 

3.3.1. Deprivation Indices 
We assess our embeddings using the English Indices of Deprivation 

dataset published by the UK Government (Ministry of Housing, Com
munities and Local Government, 2019). These are particularly relevant 
for our assessment as the seven core domains reflect a wide array of 
social-economic outcomes and will give a good indication as to the 
applicability of the embeddings. A description of the seven domains is 
presented in Table 1. The indices were published at an LSOA level 
consisting of 200 to 400 dwellings or 400 to 600 persons. To demon
strate the approach, we chose to collect data from the Greater London 
area, as this provides a reasonable sized sample with a variety of 
geographical and socio-economic features. In this area of interest, there 
are 4400 LSOAs in total. 

As the seven domains are not within the same numerical ranges, we 
re-scale the indices between 0 and 100 using a min/max procedure to be 
able to cross-compare the RMSE scores for the predictive task across the 
domains. 

3.3.2. LiDAR data 
The LiDAR elevation data are acquired from the EDINA Digimap data 

portal (EDINA, 2017) and are also available from the GOV website under 
an Open Government Licence. The data is available at a 0.25 cm reso
lution; however, we opt for the 1 m resolution as it provides better 
coverage whilst still providing a high enough resolution to identify 
detailed features such as cars, trees, fences and urban furnishings. The 
raw data is available as a Digital Surface Map (DSM), which provides a 
measure of the ground level, and a Digital Terrain Map (DTM), inclusive 
of above-ground features. The DSM raster tiles are subtracted from the 
DTM tiles to get the final elevations and provide a normalised 3D map. 
While the DTM data can be used directly, this additional step ensures 
that geo-locational clues are not explicit within the embeddings; i.e. the 
embeddings should be independent of the absolute ground level. We 
then subset the raster tiles into series of 200x200m discrete non- 
overlapping grids, the same size as applied by Block et al. (2017), pro
ducing a total of 44000 grid tiles for the extended Greater London area. 

3.4. Experiments 

For the predictive task, we wish to understand if the embeddings are 
predictive on their own and if they are predictive when used together 
with structured variables. We therefore consider three subsets of the 
data: 1) the demographic data only (Ddemographic) which is formed of the 
remaining six (of seven) indices, 2) the elevations embeddings only 
(Dembeddings) and 3) the combined data (Dcombined) which uses both 
Ddemographic and Dembeddings as input. In order to assess the predictive per
formance, we use the Root Mean Squared Error (RMSE) metric, with a 
reduction in the RMSE between the Ddemographic and Dcombined results 
indicating an improvement with the introduction of Dembeddings. 

The validation and test data consist of LSOAs made up of two 

Table 1 
Seven domains of deprivation described by the Ministry of Housing, Commu
nities and Local Government (2019).  

Domain Description 

1) Income Measures the proportion of the population experiencing 
deprivation relating to low income 

2) Employment Measures the proportion of the working age population in an 
area involuntarily excluded from the labour market 

3) Education Measures the lack of attainment and skills in the local 
population 

4) Health Measures the risk of premature death and the impairment of 
quality of life through poor physical or mental health 

5) Crime Measures the risk of personal and material victimisation at 
local level 

6) Barriers to 
Housing 

Measures the physical and financial accessibility of housing 
and local services 

7) Living 
Environment 

Measures the quality of both the ‘indoor’ and ‘outdoor’ local 
environment  
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selection strategies similar to that applied by Law et al. (2019), using an 
area-based hold-out and a random hold-out. Firstly, for the area-based 
samples, we set aside an entire Local Authority District (LAD), a larger 
geographic area consisting of multiple LSOAs. Secondly, for the random 
hold-out, we use LSOAs randomly sampled across the Greater London 
area. Conceptually, the area-based hold-out is more challenging as the 
model will not have been exposed to neighbouring and presumably 
similar LSOAs. However, this sample is potentially limited in terms of 
the overall variation of elevation tiles. Conversely, the random hold-out 
subset will have greater coverage; but the model will have the advantage 
of seeing embeddings from closer proximity. By combining the two 
approaches, we can draw on the pros of both. 

To train the machine learning models, we use a 60%/20%/20% 
Train/Validation/Test split of the LSOAs. As explained, the validation 
and test sets consist of a single LAD area, with the remaining proportion 
of the amalgamated set made up of the randomly sampled LSOAs. For 
example, the selected LAD area contains enough LSOAs to make up 46% 
of the required test set (20% of all LSOAs). The remaining 54% then 
consists of the randomly sampled LSOAs. Fig. 6 shows the final distri
bution of the deprivation indices across the Training, Validation and 
Test sets, from which we can conclude they are sufficiently similar to 
validate performance. 

4. Results 

4.1. Predictive task results 

The core performance results for the predictive task are presented in 
Table 2. 

We see that, for all deprivation domains, the best performing models 
were those inclusive of the embedding, with observed improvements of 
up to 21% compared to using the Ddemographic data alone. While both 
embedding types lead to an RMSE improvement in the combined model, 
the SimCLR embeddings notably outperform the direct transfer 
approach in six out of seven domains, the sole exception being the 
employment domain where RMSE performance was the same (4.5). The 
largest improvement of 21% was observed for the living environment 
domain. This is somewhat intuitive given that LiDAR is likely to directly 
capture many relevant features here, such as measures of urban density 
or the availability of open green space. Furthermore, in this domain, we 
see that even the embeddings alone (Dembedding) could produce better 
performance than using the Ddemographic subset as input. A considerable 
increase of 18% is also observed for the education domain using the 
SimCLR embeddings, reflecting that urban environment features are 
highly predictive of local education levels. Interestingly, these results 
are broadly aligned with those of Grove et al. (2014), who found that 
vegetation indices derived from LiDAR data exhibited the strongest 

Fig. 6. Deprivation indices distribution.  

Table 2 
Core RMSE results for the predictive task on the test set. The best performing model for each domain (i.e. with the lowest RMSE) is in bold format. % Improvement 
shows the percentage increase in the performance between a model built using Ddemographic and one using Dcombined, for the corresponding embedding and model type. We 
select our largest embedding size (512) with mean-pooling for these core results, and for the SimCLR embeddings, we use the first layer (L1).  

Data Subset Ddemographic Dembedding Dcombined % Improvement 

Embeddings – Direct Transfer SimCLR Direct Transfer SimCLR Direct Transfer SimCLR 

Domain Model        
barriers GBM 11.9 13.2 13.1 11.4 10.8 4% 9% 

LM 12.6 13.5 12.9 12.3 12.0 2% 4% 
crime GBM 10.1 11.2 10.9 9.7 9.6 4% 5% 

LM 10.1 11.2 10.7 9.6 9.5 4% 6% 
education GBM 10.5 12.2 12.6 9.1 8.9 14% 16% 

LM 11.1 12.3 12.0 9.5 9.1 14% 18% 
employment GBM 4.8 12.4 12.7 4.8 4.7 0% 2% 

LM 4.7 12.2 12.1 4.5 4.5 4% 5% 
health GBM 8.2 11.5 12.6 7.6 7.5 7% 9% 

LM 9.3 11.5 11.6 8.5 8.7 8% 6% 
income GBM 5.0 13.2 13.7 4.6 4.6 8% 8% 

LM 5.1 13.2 12.9 4.6 4.5 10% 10% 
living environment GBM 10.8 9.7 9.8 9.3 9.1 13% 16% 

LM 11.2 9.7 9.5 9.1 8.9 19% 21%  
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correlations with Income and Education in New York City. 
As for the performance differences between the two machine 

learning models, GBM is the best performing method in the barriers, 
education and health domains, whereas the LM model gives superior 
results on the crime, employment income and living environment do
mains. However, in all instances, the differences between the two are 
marginal, meaning the embeddings are already extracting most of the 
knowledge, providing sufficient information for a less sophisticated 
linear model to incorporate in its final prediction. This is a significant 
finding: we can use complex non-linear embeddings to do the “heavy 
lifting” while the simpler linear models can be used for the prediction. 
This was precisely our goal, as the embeddings would facilitate 
deployment by smaller organisations without the technical capacity to 

implement complex models. 
Fig. 7 shows the distribution of the predicted values (b, c, d) against 

the actual levels of deprivation (a) for three of the indices, as well as the 
error improvement (e) when when comparing the model using Dcombined 
against using only Ddemographic. These three indices were selected as they 
show a range in the Dcombined improvements, including two examples 
where the embeddings produce notable performance increases (Living 
Environment and Education) as well an example with lesser improve
ment overall (Employment). This plot is reproduced for all seven indices 
in Appendix A. Interestingly, we see that the Dembedding predictions (b) are 
capable of broadly capturing the geographical distribution of the actuals 
(a); however, they may not fully capture the magnitude of the depri
vation levels until combined with the demographic data (d). 

Fig. 7. LSOA level predictions. This figure shows the actual deprivation levels for three indices (a) against the predicted values, for the three subsets Ddemographic (a), 
Dembedding (b) and Dcombined (c). This results set uses the GBM model, and for the Dembedding and Dcombined results, the SimCLR embeddings are adopted using the largest 
embedding size (512) with mean-pooling. The improvement plots (e) show the geographical distribution of the error improvement in the Dcombined subset compared to 
the Ddemographic subset. 

Fig. 8. RMSE improvement by model configuration.  

Fig. 9. RMSE improvement by model configuration.  
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When reviewing the error decreases (e) for the Living Environment 
and Education domains, we see that the improvements are geographi
cally dispersed and are not concentrated in urban, suburban or rural 
areas. Furthermore, the areas of improvement also vary according to the 
target domain. These two findings are significant as they suggest that the 
embeddings are adaptable across both a range of target outputs and 
terrains. Additionally, for the Employment domain where performance 
improvements were relatively lower in the Dcombined subset (2%-5%), the 
moderate error decreases are also evenly distributed over the area. This 
observation is also promising in a predictive setting, suggesting that 
even when the embeddings are less helpful, the predictions are stable 
and do not inject unwanted noise. 

The next set of results helps us further understand how performance 
varies with changes in the modelling configuration. Fig. 8 shows the 
aggregate RMSE percentage improvement, grouped according to the 

pooling procedure, model choice, embedding type and embedding size. 
When aggregating the tiles to LSOA level, while both mean- and max- 

pooling procedures lead to an RMSE improvement, mean-pooling 
notably outperforms max-pooling for our embeddings (see the leftmost 
plot in Fig. 8). The pooling method is an important consideration for an 
end-user working with areas larger than the tile level — as is the case for 
the domains of deprivation. This difference makes sense as mean- 
pooling represents all tiles through the average, while max-pooling 
only reflects the most extreme case. In other words, as we are looking 
to represent the LSOA, mean-pooling produces a more meaningful rep
resentation of this wider area compared to max-pooling. 

With regards to model selection, improvements are observed for both 
the non-linear GBM and the LM. While GBM often benefits more from 
including the embeddings (showing a higher median improvement), 
there are some configurations where the simpler LM proves the more 
appropriate choice. 

In terms of the choice of embeddings, as also seen in Table 2, the 
additional fine-tuning using SimCLR training provides clear perfor
mance benefits over the Direct Transfer approach. The superior perfor
mance of the SimCLR embeddings is somewhat expected due to the 
significant domain shift from the Imagenet images that the base model 
(EfficientNet) was trained on to the LiDAR images. In such settings, 
SimCLR’s self-supervised learning strategy is designed precisely to adapt 
the base model to the new target domain. 

When reviewing the predictive performance across the embedding 
sizes (i.e. n clusters), surprisingly, even the inclusion of just four features 
— our smallest embedding size — leads to an improvement in all ex
periments. While increasing the embedding size leads to greater im
provements in the RMSE, further increases beyond size 64 produce fast 
diminishing returns (rightmost plot in Fig. 8). 

While Fig. 8 demonstrates the impact on the observed RMSE 
improvement for the individual elements, Fig. 9 further explores the 

Fig. 10. RMSE improvement by SimCLR Layer.  

Fig. 11. Representative tile images for four clusters.  

Fig. 12. Cluster representation of LSOAs in Greater London (red/green colour scale denoting high/low mean cluster representation).  
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interaction between two key components: the embedding choice and 
embedding size. As shown earlier, the SimCLR model produces larger 
improvements overall. However, there is some evidence as well that the 
application of the SimCLR embeddings also reduces the required 
embedding size. This can be observed in Fig. 9 where, for the Direct 
Transfer approach, there is an almost continuous improvement seen 
when increasing the embedding size up to 512, whereas for the SimCLR 
embeddings, there is little further RMSE improvement from size 64 
onward. This might suggest that the additional fine-tuning using the 
SimCLR framework leads to a more efficient representation of the LiDAR 
tiles. This is intuitive as the base model was trained on Imagenet with a 
vast array of different images and would thus need a larger capacity to 
capture this variability. Therefore, it may be that, through a process of 
self-supervision, not only new information is acquired about the target 
domain (LiDAR), but redundant information is also discarded. 

For the SimCLR framework specifically, we also explore which layers 
of the dense head produce more predictive embeddings. We do this as it 
has been demonstrated that representation performance can vary ac
cording to which layer preceding the final dense layer of the model is 
selected, with evidence suggesting that earlier layers capturing higher- 
level abstractions may be more useful for a downstream task (Chen 
et al., 2020b). Our results, however, show that while Layer 1 does result 
in some of the best performance gains (see the extended tail of the 
leftmost box plot in Fig. 10), the difference in performance between the 
layers is small. 

4.2. Clustering task 

In the previous section, we demonstrated that the LiDAR embeddings 
are predictive of the seven domains of deprivation, even with the socio- 
demographic features included. This section shows how our embedding 
pipeline, using a Deep Learning model followed by K-Means clustering, 
adds value over the raw output embeddings. In addition to reducing the 
number of dimensions, therefore numerically simplifying the represen
tation, the K-means process also allows the embedding space to be 
characterised by identifying common features within each cluster and 
injecting interpretable meaning into the otherwise latent embedding. 

While for the predictive task, we considered up to size 512 in the 
embedding dimension, for this exercise, we use four clusters. This value 
was selected as it produced the highest Silhouette Score (0.21), thus 
providing a good trade-off between individual cluster cohesion and 

separation between the clusters. Also, using relatively few clusters (four) 
allows the representations to be conveniently described. Note that we 
only consider the SimCLR embeddings as they produced higher silhou
ette scores and outperformed the direct transfer embeddings on the 
predictive task. To assign meaning to the resulting clusters, we consider 
three sources of data: the tile images themselves, the geographic cluster 
representation and the levels of deprivation. 

First, a random sample of representative images from within each 
cluster is presented in Fig. 11. From these, it becomes evident that there 
are distinguishable features for each cluster. For example, Cluster 1 is 
characterised by having a higher density of high-rise buildings indi
cating higher levels of urbanisation. Conversely, Cluster 3 contains few 
buildings and is predominantly open space with greenery, including 
trees and hedges, indicating a more rural setting. Cluster 2 and Cluster 4 
are similar in some respects as both seem to be capturing a residential 
setting. There are, however, some significant differences between the 
two. While Cluster 2 contains a higher density of detached housing, 
green features and land boundaries (fencing), Cluster 4 includes flats 
and larger buildings that might indicate industrial or office use. 

Secondly, Fig. 12 shows the mean cluster representation for each 
Lower Super Output Area (LSOA) on a map of Greater London. The 
colour red in this plot indicates where the mean euclidean distance from 
the cluster is smaller and the LSOA is, therefore, more representative of 
the corresponding cluster. Intuitively, Cluster 1 (urban) is highly 
concentrated in the city centre, while Cluster 2 (rural) is highly repre
sented in the ‘green’ areas on the city’s outskirts. On the other hand, 
Cluster 2 and Cluster 4 have lower representation in the city centre and 
tend to be concentrated in the middle belt, suggesting that these are 
suburban areas. 

Thirdly, we can also explore why the embeddings are predictive of 
the seven domains of deprivations, by identifying differences between 
the four clusters. Fig. 13 thus shows the variation between the depri
vation statistics for each cluster, higher values indicating increased 
levels of deprivation. Note that these indices have first been transformed 
to z-scores to introduce a more uniform scale for comparison purposes. 

As shown by the upper-left plot, Cluster 1 (urban) has very high 
levels of deprivation in the living environment domain while very low 
levels in the education domain (i.e. those living there tend to be highly 
educated). This may go some way to explaining why the predictive 
performance for our embeddings was highest in these domains, as the 
urban density appears highly reflective of these two outcomes. This is in 

Fig. 13. Normalized average deprivation levels associated with each cluster.  

M. Stevenson et al.                                                                                                                                                                                                                             



ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 378–392

390

part confirmed as Cluster 3 (rural) has an inverse relationship with both. 
Interestingly, despite Cluster 2 and Cluster 4 sharing similarities in terms 
of location (suburban) and visual features (residential housing), the two 
are very different in terms of levels of deprivation. Cluster 2 has below 
average levels of deprivation across the seven domains, while Cluster 4 
has above average levels of deprivation. This is intuitive given that 
Cluster 2 shared features associated with increased wealth, including 
more detached housing and private open space marked with property 
boundaries. 

To summarise, we have demonstrated in this section how cluster 
characterisation can be used as a tool to explore and define the 
embedding features via our clustering pipeline, even with relatively few 
clusters. In practice, this holds the potential to further segment the 
embedding space into increasingly homogeneous groupings for visual 
interpretation. 

5. Reflection and conclusions 

Our research has sought to demonstrate that Deep Learning ap
proaches can be used to derive convenient embeddings from elevation 
tiles, which can later be seamlessly used for prediction purposes. We 
have considered the performance of our embeddings in both a super
vised and unsupervised context. For the supervised task, we used our 
embeddings to predict seven domains of deprivation, reflecting a wide 
array of socio-economic markers. For the unsupervised task, we sought 
to assess if our embeddings could form coherent clusters that can be 
conveniently interpreted. Our approach to developing embeddings can 
be broadly split into two aspects. First, we considered the technical as
pects of designing the elevation embeddings to optimise performance, i. 
e. selection of embedding type and layer choice. Secondly, we reviewed 
practical aspects concerned with how an end-user might seek to 
implement the embeddings by selecting aggregation methods, embed
ding size and machine learning model choice. 

5.1. Technical reflections 

To derive embeddings from the elevation data, we considered two 
methods of representation abstraction, both using Deep Learning ap
proaches. First, using a direct transfer learning approach, we used the 
EfficientNet model, pre-trained on the ImageNet task. We then extended 
this method using the SimCLR training framework, a self-supervised 
approach to fine-tune EfficientNet to the LiDAR elevation tiles. The 
SimCLR model consists of the same EfficientNet base, extended with a 
four-layered non-linear MLP head. Our results demonstrate that while 
both embedding approaches can yield improved RMSE results across all 
the domains, when used in conjunction with the other demographic 
features, the performance is notably improved using the SimCLR 
approach with performance uplifts of up to 21%. Furthermore, a review 
of the geographic dispersion of the error suggests that the embeddings 
are adaptable to both the terrain and target domain. We would therefore 
conclude that our embeddings are suitable to be used for a wide array of 
downstream tasks where socio-demographic type data is useful. We also 
reviewed the impacts of using different layers from the SimCLR model 
and find performance is similar across the layers and domains. 

As well as demonstrating predictive performance, we were able to 
show using four clusters how the embedding space can be interpreted. 
The clusters were homogeneous in terms of visual appearance and ten
ded to be geographically co-located in either urban, suburban or rural 
locations. We also reviewed differences between clusters regarding the 
seven domains of deprivation and found each to have a distinct de
mographic profile. 

5.2. Practical reflections 

Our tile embeddings are produced for 200x200m grid tiles. However, 
these tile embeddings had to be aggregated to an LSOA level to assess the 

predictive performance on the domains of deprivation. While a 
requirement for our given dataset, this reflects how the tile embeddings 
might be used in practice when combined with other data collected for 
larger geographic units. We trialled two aggregation types, mean- 
pooling and max-pooling, and found that, for our embeddings, mean- 
pooling outperforms max-pooling in six of the seven domains. This 
intuitively suggests that how the latent features appear on average in the 
area is more important than the maximum representation of each 
feature. We also sought to explore how end-user choices related to 
embedding size and type of machine learning model influenced the 
predictive performance, and found some interplay between the two. In 
our core results set, which used the largest embedding size (512), we 
found the choice between a linear model and non-linear GBM model 
arbitrary, with similar performance between the two. This is significant 
as it suggests that our embeddings can be used with relatively simple 
models and are therefore suitable for our target users — smaller orga
nisations with limited capacity to utilise complex models. In practice, 
however, if modelling complexity is not problematic, then both non- 
linear and linear models should be trialled as performance is likely to 
depend on the use case and the types of features used in conjunction 
with the elevation embeddings. For the choice of embedding size, we 
find that larger embeddings tend to lead to better RMSE performance, 
stabilising after size 64 for the SimCLR embedding. However, even with 
the smallest embedding size (four), we still observe substantial perfor
mance increases over using the demographic features alone. 

6. Limitations and further research 

Our research has demonstrated how task-agnostic embeddings can 
be derived from elevation data using unsupervised deep learning. Given 
the success of the SimCLR embeddings applied to the elevation tiles, for 
further research, we suggest a greater exploration of the approach, for 
example, by reviewing different types of base models. Chen et al. 
(2020b) found that with ResNet models, having more parameters was 
helpful for self-supervised learning. We have used a relatively small 
EfficientNet implementation, partially mitigated using a large projection 
head; however, larger models may reasonably lead to even better per
formance. More broadly, further research may look to conduct a wider 
ablation study which also considers performance relative to pixel-wise 
deep learning approaches, and, classical image feature extraction ap
proaches such as SIFT with its associated variations. Additionally, other 
design choices could be explored including the impact of varying the tile 
sizes and alternative methods of aggregating tiles to larger geographic 
units. 

As a secondary task, we sought to explore how our embeddings could 
also provide tile clusters/segmentation, similar to Block et al. (2017). 
We did so using K-means, but other clustering approaches may poten
tially produce better clusters. In addition to this, though out of scope for 
our research, further interpretation of the embedding features would be 
of interest for social science research so as to understand why the tiles 
are predictive of socio-demographic outcomes. 
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