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Abstract

The stability of persistent homology is rightly considered to be one of its most
important properties, but persistence is still sensitive to choices of metrics, indexing
sets, and methods of filtering. This thesis will expand upon previous discussions around
stability, considering sources of invariance and symmetry, as well as potential sources of
instability. While homology is a large-scale feature which is invariant under homotopy,
transferring to the persistent setting does not preserve all of these properties. In this
thesis, we show that there exists an excision property for persistent homology. This is
a new result even for one-dimensional persistence, but we’ll show that this result holds
for persistence modules indexed by any partially ordered set.

We will then expand on the theory of generalised persistence modules, building on
work by Lesnick (?) and Bubenik, de Silva and Scott (?). In this thesis we have adapted
slightly the definition of a generalised interleaving as seen in (?) so that the we can
recover the usual definition of an interleaving of one-parameter persistence modules
defined in (?) as a special case. We will give a new proof of the stability of this gener-
alised distance, and describe how geometric symmetries in data result in interleavings
between Vietoris-Rips filtrations. Finally, we will consider reparameterisations of per-
sistence modules, which can be used to rescale persistence. We’ll investigate the effect
that reparameterisations have on the interleaving distance. We show that a reparam-
eterisation by a Lipschitz order isomorphism is also a Lipschitz map, and we present
several stability results for the operation of rescaling persistence.
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Introduction

Persistent homology is an algebraic method of describing a topological process which is
evolving according to some parameters. This field is, within the scope of mathematics, a
very young area of research. The beginnings of persistence can be seen independently in the
doctoral work of Vanessa Robbins (?) and the work of Patrizio Frosini and Massimo Ferri
and collaborators (?) in their work on size functions in the 1990s. Persistence as we know
it now was then born with the publication of the seminal paper by Edelsbrunner, Letscher
and Zomorodian (?) in 2002.

Consider the process in Figure ??. For each value of t, we have a simplicial complex. We
can think of this diagram as showing a simplicial complex which is growing as the parameter
t increases.

X(t = 1) X(t = 2) X(t = 3) X(t = 4) t

Figure 1: A filtration of a simplicial complex by parameter t.

This sequence of nested spaces shown in Figure ?? is an example of a filtered topological
space. As the parameter increases, the topology of the subspaces may change. For example,
in Figure ??, we begin with four connected components, which merge into two, and finally
one component, as t increases. As well as the number of connected components, higher
homology classes also appear – and, sometimes, disappear – as we progress through the
filtration. Any classes which survive over multiple values of the parameter we define to be
persistent. Rather than consider the individual homology groups, Hn(X(t = i)), for any
particular i ∈ {1, . . . , 4}, it is more interesting to look for those features which persist from
t = i to t = j for some j ≥ i.

One of the reasons why persistence has become such a popular area of research is the way
in which it has been utilised in the new field of topological data analysis. Gunnar Carlsson
discusses how persistent homology can allow us to discover the “shape of data” (?). Take
for example the first subspace, X(t = 1), in the filtration in Figure ??. The topology of
four disconnected points is rather uninteresting, but by connecting them in a certain way,
we create a sequence of subspaces whose topology is much more informative.

Vietoris-Rips and Čech filtrations provide methods of constructing sequences of simplicial
complexes from collections of data points, which may be large in both cardinality and
dimension. We may not be able to see any structure in a large cloud of points embedded in
Rd, if d is very large, but by using methods in persistent homology, that shape is there to
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discover, and there to exploit. The successful uses of topological data analysis demonstrate
its power: by comparing topological features of data sets, researchers have been able to
discover hitherto unknown phenomena in fields such as medicine (?), network theory (?),
shape classification (?) and many others. See (?) for a survey of some of the ways
persistent homology has been used in practice. One of the most lauded examples of the
power of persistent homology in detecting unseen shape in data is the discovery of a new
subclass of breast cancers in (?).

The study of persistent homology is not only of interest for its potential applications,
however. The algebraic objects which we construct in persistence are themselves wor-
thy of study. Consider again the filtration in Figure ??. First fix an n ≥ 0 and a
field k. For each t ∈ T = {1, . . . , 4}, we have a homology group Hn(X(t); k), and if
we choose any i, j ∈ T such that i ≤ j, then this relation gives rise first to an inclu-
sion of subspaces, X(t = i) ↪→ X(t = j), and subsequently to an induced linear map
Hn(X(t = i); k) → Hn(X(t = j); k). Overall, the ordered set, 1 ≤ 2 ≤ 3 ≤ 4 gives rise to
the diagram,

Hn(X(t = 1))→ Hn(X(t = 2))→ Hn(X(t = 3))→ Hn(X(t = 4)). (0.1)

This diagram is nothing more than the composition of two functors - the first from the
ordered set T to the category of subcomplexes of X(t = 4), and the second to the category
of k-vector spaces. Such a diagram is an example of what we call a persistence module.

The study of persistence modules is therefore nothing more than the study of functors
with certain properties. Many concepts in persistent homology are examples of concepts
in category theory, but which have only been explored because of their applications to
topological data analysis. For instance, without the motivation of computing distances
between persistence modules, it is unlikely that the concept of an interleaving between
functors would have been defined.

By considering the example in Figure ?? as a special case of a more general picture, we can
widen the scope of persistence. Though originally defined in the one-dimensional case, where
persistence modules are indexed by a single, linear parameter, there is by now considerable
interest in more general cases (?). “Multiparameter” (?) persistence involves the study of
persistence modules indexed by some subset of Rn for n ≥ 2. Consider, for example, the
bifiltration in Figure ??, where our topological space evolves according to two parameters,
γ1 and γ2.

Though the one-parameter case is reasonably well-understood, multiparameter persistence
is much less so (?). Many concepts which are ubiquitous in one-parameter persistence, such
as a barcode, a persistence diagram and the matching distance, cannot be defined when
we introduce additional parameters. It helps, in this case, to treat persistence in a more
general way.

How, then, should we define a persistence module? According to Bubenik, de Silva and
Scott (?), a persistence module is a functor,

M : P → C, (0.2)
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(1, 1)

(1, 2)

(1, 3)

γ2

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

γ1

Figure 2: A filtration indexed by parameters γ1 and γ2.

where P is a partially ordered set, and C is any category. Defining a persistence module
in this way, where we do not specify a target category, means that concepts which crop
up across the persistence literature – filtrations, diagrams of vector spaces such as the one
in (??), and even Reeb graphs (?) – become examples of persistence modules. Allowing
modules to be indexed by any poset means our generalised treatment encompasses one-
paramater, multiparamater, and even zig-zag persistence (?). In this thesis, we’ll follow the
conventions of (?). There are so many varying conventions, with authors often influenced
by their expertise within particular fields of pure mathematics, that it is almost impossible
to describe a standard treatment of persistence. This provides a significant motivation to
study persistence in the most general way possible.
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Outline of Thesis

This thesis consists of a preliminary section which contains the necessary definitions re-
garding categories, posets and metric spaces, followed by three sections, titled ‘Homology
Theories and Persistence’, ‘Interleavings’, and ‘Poset Morphisms and the Interleaving Dis-
tance’.

Section One

In the first section we will define a generalised persistence module, and some well-known
filtrations which are often used in topological data analysis. These include Vietoris-Rips
and Čech filtrations on point cloud data, and sublevel-set filtrations.

In this section, we will investigate the extent to which persistent homology satisfies the
properties of a homology theory. Instinctively, we know that there are many differences be-
tween the homology of a single space and the persistent homology of a filtered space. While
homology is a large-scale feature, persistence depends not only on the space in question,
but also on the filtration. It can be thought of as small-scale homology, with the fineness
of the scale dictated by the indexing poset. Despite the obvious differences, it has been
shown that many properties of a homology theory do extend – at least on some level – to
the persistent setting. The existence of a long exact sequence of a pair, a Mayer-Vietoris
sequence for a triple, and an excision property are all useful tools in calculating unknown
homology groups (?), and so the existence of analogous properties for persistent homology
could also be useful computationally.

In the first section, we’ll summarize the results of Di Fabio and Landi in (?), where it was
shown that there exists a variant of the Mayer-Vietoris sequence in Persistent homology.
Likewise, in (?), a similar method to that of (?) was used to prove the existence of a
long exact sequence of persistence modules. However, in both of these cases, the sequences
obtained are not on-the-nose generalisations of the homological properties - if we attempt
to write a Mayer-Vietoris sequence in persistent homology by simply replacing homology
groups with their persistent counterparts, with the appropriate restrictions of the connecting
maps, then the resulting sequence fails to be exact in general. The same is true if we attempt
to restrict a long exact sequence of a pair in homology to the persistent homology groups.

The prospect of generalising homological properties to the persistent setting is therefore
not as straightforward as we may hope, and the results of (?) and (?) indicate that we
do not have a set of Eilenberg-Steenrod axioms which hold for persistent homology groups.
In contrast to the results of (?) and (?), however, we show in section 1 that there is an
excision property both for persistence modules and for persistent homology groups. This
result holds for modules indexed by any partially ordered set. In particular there exists an
excision property for multiparameter persistence modules.

We can then use this result, together with the long exact sequence for persistence modules of
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(?), to give an alternative proof of the Mayer-Vietoris-style sequence in persistent homology
groups of (?). In doing so, we are able to generalise this result to modules indexed by
arbitrary posets, and for a much wider range of filtrations. In particular, we can show
that there exists a Mayer-Vietoris sequence for multiparameter as well as single-parameter
persistence modules.

Section Two

In the second section, we’ll introduce the definition of an interleaving between persistence
modules, and the pseudometric which can be defined from this concept. The interleaving
distance was originally defined only for one-parameter modules by Chazal et. al in (?), and
was subsequently expanded to multiparameter modules, indexed by Rn, by Lesnick (?). In
(?), the definition was generalised to persistence modules indexed by arbitrary posets. In
this thesis, we’ll adapt the definition of (?). The new definition ensures that we recover the
definition initially given in (?) as a special case of this more general one.

Calculating the proximity between persistence modules is clearly important in the context
of applications in topological data analysis: if we can calculate the distance between the
outcomes of a persistence process, then this gives a proxy for the distance between the data
sets themselves. Stability theorems – first proved in (?) and (?) – give guarantees that
the interleaving distance really does provide a good measure of similarity between input
data, by showing that the interleaving distance between a pair of persistence modules is
bounded above by the proximity between the inputs. We’ll discuss the precise wording and
implications of these stability results in greater detail in section ??.

A downside of the stability results of (?) and (?) is that they apply only to one-parameter
persistence modules. In (?), after introducing their more general interleaving distance,
Bubenik, de Silva and Scott present a stability result for this pseudometric, which is a
generalisation of the result of (?). In section 2, we use a remark of Lesnick’s in (?) to prove
the stability of the generalised interleaving distance defined in this thesis. Namely, Lesnick
suggests that we may consider the distance between Rn-valued functions as an interleaving
distance in its own right. We use this idea, to show that an interleaving of poset-valued
filtering functions gives rise to an identical interleaving of the corresponding persistence
modules. This stability theorem for the generalised interleaving distance is the main result
of Section 2.

In Section 2, we consider some of our first examples of transformations in Persistent Ho-
mology. Vietoris-Rips filtrations are a method of constructing a filtered topological space
from a finite metric space. This method is often used in topological data analysis to con-
struct a filtration from a point cloud. However, with many examples of real world data,
there is no canonical choice of metric to use. Our other main result in Section 2 shows
that the Vietoris-Rips persistence modules of metric spaces which are Lipschitz or Coarsely
equivalent are interleaved.
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Section Three

A persistence module is simply a functor from a poset to a category, a process which can
be described by the diagram in Figure ??.

poset P category C
(0.3)

In (?), the authors discuss the possibility of composing this process in (??) with additional
functors, with a diagram similar to the one below (??).

poset Q poset P category C category D
(0.4)

In (?), they consider the effect of composing with the arrow on the right of the diagram in
(??) on the interleaving distance. In Section 3, we’ll consider the dual question – what is
the effect of precomposing with a morphism of posets, the arrow on the left of the diagram
in (??)?

This operation was discussed in (?) with a view towards discretizing modules, and in (?),
where the motivation is to develop a relative version of the interleaving distance in cases
where calculating interleavings in a given poset is not possible, due to the structure of the
poset.

In Section 3 we show that Lipschitz properties of structure-preserving poset maps descend
to identical properties for the pull-backs. This stability result for the operation of reparam-
eterising persistence modules is our first main result of section 3. Our second main result in
this section shows that the interleaving distance between two pull-back modules is bounded
by the distance between the morphisms.

A further main result serves as a note of caution, however. We show that for Kan extensions
of persistence modules along arbitrary poset maps, the interleaving distance between these
modules can be distorted. This result shows that discretizing persistence modules for the
purpose of simplifying computations should be done with caution, since the process is not
necessarily stable.
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Preliminaries

Categories and Posets

Definition 0.1. A partial order on a set, P is a relation ≤, defined on some subspace of
P × P which is,

• Reflexive: for every a ∈ P , a ≤ a.

• Anti-symmetric: if a ≤ b and b ≤ a then a = b.

• Transitive: if a ≤ b and b ≤ c, then a ≤ c.

A set P together with a partial order ≤ is called a partially ordered set, and is denoted
(P,≤), or simply P if ≤ is clear.

Example 0.2. The real or natural numbers, together with the usual order ≤, is actually a
totally ordered set, as any two elements a, b of R are related by either a ≤ b or b ≤ a.

Example 0.3. Rn, together with the relation, (a1, . . . , an) ≤ (b1, . . . , bn) whenever ai ≤ bi
for every i ∈ {1, . . . , n}.

Throughout this thesis, we will be using the example of Rn with the partial order described
in Example ?? quite often. Any reference to the poset (Rn,≤) will be referring to the partial
order of Example ??, unless stated otherwise. There are of course, multiple possible partial
orders on Rn, not all of which abide by any intuitive idea of ‘ordering’, as the following
example shows.

Example 0.4. Rn together with the relation� is a partially ordered set, where (a1, . . . , an) �
(b1, . . . , bn) whenever bi ≥ ai for every i ∈ {1, . . . , n}, and ≤ denotes the usual order on R.

A poset P can also be defined as a directed graph. This graph describes the ‘shape’ of the
poset, and it is often helpful to keep in mind when discussing posets, or, as we will later,
structures indexed by posets.

Definition 0.5. The directed graph associated to a poset (P,≤) is called the Hasse di-
agram of P , and we will denote it HP . HP has a vertex for each element pi ∈ P , and a
directed edge p1 → p2 whenever p1 ≤ p2, and there is no p ∈ P such that p1 ≤ p ≤ p2.

For example, the Hasse diagram of the poset (N,≤) can be drawn as in Figure ??, where
we only show the ‘generating’ arrows between consecutive integers.

1 2 3 · · ·

Figure 3: The Hasse diagram HN for the poset of natural numbers.

10



We note that it is common to see Hasse diagrams drawn vertically – that is, if pi ≥ pj then
pi is drawn vertically above pj . While this is sometimes informative, it is not necessary or,
indeed, always practical.

Definition 0.6. A category C is a collection of objects, Ob(C), and morphisms Mor(C),
between the objects of C, such that,

1. for each A ∈ Ob(C), there exists an identity morphism, idA : A→ A,

2. the composition of morphisms is associative. That is, given f : A → B, g : B → C,
h : C → D, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

A functor between categories C and D is a map F : C → D, such that for any A ∈ Ob(C),
F (idA) = idF (A), and for any morphisms f : A→ B, g : B → C in Mor(C),

F (g ◦ f) = F (g) ◦ F (f).

Examples of categories include the category V ectk of vector spaces over a field, k, where
the morphisms are given by k-linear maps, or the category Top of topological spaces and
continuous maps.

Remark 0.7. A poset (P,≤) is also an example of a category, which has an object for
each element of the set P , and a unique morphism p1 → p2 whenever p1 ≤ p2 in the partial
order. We note that as the map p1 → p2 is unique, a poset is therefore an example of a thin
category. The upshot of this, as (?) points out, is that if we have a diagram,

p1 p2

p3 p4

(0.5)

then this diagram must necessarily commute, since there is a unique map p1 → p4. We will
make use of this fact later.

Homology

One significant example of a functor is homology. Homology is a functor from the category
of topological spaces and continuous maps, to the category of vector spaces and linear maps.
We will give an overview of simplicial homology, which is more suited to use in applications
than, say, singular homology, as it can be computed using matrix methods. See (?) for a
description, accessible to non-mathematicians, of how simplicial homology can be computed
using such methods.
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Definition 0.8. An n-simplex is a generalisation of a tetrahedron in n dimensions.

Some low-dimensional simplices are shown in Figure ?? below. A 0-simplex is a single vertex,
a 1-simplex is a line segment, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. We
denote a simplex on vertices x0, . . . , xn by [x0, . . . , xn].

Figure 4: Left to right: A 0-simplex, a 1-simplex and a 2-simplex.

Definition 0.9. A simplex σ1 = [x0, . . . , xn] is a face of σ2 = [y0, . . . , ym] if {x0, . . . , xn} ⊆
{y0, . . . , ym}.

A simplicial complex is a union of simplices, closed under taking faces, such that the sim-
plices are attached in a coherent way, meaning that the intersection of any two simplices σ1
and σ2 in the complex is another simplex, σ3, which is a face of both σ1 and σ2.

Definition 0.10. A simplicial n-chain is a linear combination of n-simplices,

k∑
i=1

aiσi, (0.6)

for some ai in a commutative ring, R. Denote the set of all simplicial n-chains in a particular
simplicial complex, X, with coefficients in R, by Cn(X;R).

This set Cn(X;R) is the free abelian group on the set of oriented n-simplices, where the
operation is given by addition of chains:

k∑
i=1

aiσi +
k∑
i=1

biσi =
k∑
i=1

(ai + bi)σi. (0.7)

Definition 0.11. The boundary map, ∂n : Cn(X;R)→ Cn−1(X;R) is given by,

∂n([x0, . . . , xn]) =

n∑
i=0

(−1)i[x0, . . . , x̂i, . . . , xn], (0.8)

for an oriented n-simplex, [x0, . . . , xn], where x̂i denotes that vertex xi is omitted from that
term in the sum. The boundary map extends to an arbitrary n-chain via:

∂n

( k∑
i=1

aiσi

)
=

k∑
i=1

ai∂n(σi). (0.9)
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x0 x2

x1

Figure 5: An oriented 2-simplex on vertices x0, x1 and x2.

If a chain, c, is in the kernel of the nth boundary map – that is, ∂n(c) = 0 – then c is a cycle
of n-simplices. For example, the chain,

c = [x0, x1] + [x1, x2] + [x2, x0],

in Figure ?? is in the kernel of ∂1 as

∂1(c) = ∂1([x0, x1]) + ∂1([x1, x2]) + ∂1([x2, x0]) = x1 − x0 + x2 − x1 + x0 − x2 = 0.

If a chain is in the image of ∂n+1 then it is the boundary of some other chain of (n + 1)-
simplices. For example, c is also in the image of ∂2, as it is the boundary of the 2-simplex,
[x0, x1, x2]:

∂2([x0, x1, x2]) = [x1, x2]− [x0, x2] + [x0, x1] = [x1, x2] + [x2, x0] + [x0, x1] = c.

It is no coincidence that c is both in the image of ∂2 and the kernel of ∂1. In fact we have
that im(∂n+1) ⊆ ker(∂n) for every n. That is, the boundary of every (n + 1)-chain is an
n-cycle (?).

The sequence of chain groups and boundary maps,

· · · → Cn(X;R)
∂n−→ Cn−1(X;R)

∂n−1−−−→ · · · ∂1−→ C0(X;R)
∂0−→ 0, (0.10)

is hence an example of a chain complex – a sequence of abelian groups and connecting
group homomorphisms such that the image of each map is contained in the kernel of its
successor. That is, for each n ∈ N, im(∂n+1) ⊆ ker(∂n). If this inclusion is in fact an
equality, then the sequence of groups and group homomorphisms is called exact.

The aim is then to find those cycles which do not bound any part of the simplicial complex,
and so, must bound a hole of the complex, as the following definition clarifies.

Definition 0.12. The nth simplicial homology group of a simplicial complex, X,
Hn(X;R), is given by the quotient,

Hn(X;R) =
ker(∂n) : Cn(X;R)→ Cn−1(X;R)

im(∂n+1) : Cn+1(X;R)→ Cn(X;R)
. (0.11)

The group Hn(X;R) is generated by those chains which are cycles which do not form
boundaries of any part of the complex, and so instead must bound an n-dimensional ’hole’.
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If the chain complex (??) is an exact sequence, then im(∂n+1) = ker(∂n), and so the
homology groups, Hn, are all zero. In general, the homology groups are a measure of the
extent to which the chain complex (??) fails to be an exact sequence (?).

Definition 0.13. The nth Betti number of a simplicial complex X is given by βn(X) =
rank(Hn(X)).

Often, we may be interested in the homology of only part of the simplicial complex, X,
effectively ignoring the chains which lie outside of a particular subcomplex, A, of X. This
concept is called relative homology.

Definition 0.14. Let A be a subcomplex of X. Define the group of simplicial n-chains
of X relative to A as the quotient,

Cn(X,A) =
Cn(X)

Cn(A)
. (0.12)

We can then form the relative chain complex,

· · · → Cn(X,A)
∂n−→ Cn−1(X,A)

∂n−1−−−→ · · · ∂1−→ C0(X,A)
∂0−→ 0, (0.13)

where the maps ∂i are just the usual boundary maps, since the boundary of a relative chain
must lie wholly in X.

Definition 0.15. The nth relative homology group of the pair (X,A) is the nth homol-
ogy group of the chain complex,

Hn(X,A) =
ker(∂n) : Cn(X,A)→ Cn−1(X,A)

im(∂n+1) : Cn(X,A)→ Cn−1(X,A)
. (0.14)

Example 0.16. Let X be a wedge of two circles, as shown in Figure ??. Let A ⊂ X be
the right-hand circle in Figure ??. Then the relative homology group H1(X,A) is given by,

H1(X,A; k) ∼= k,

since this group is generated by the 1-cycle of C1(X)
C1(A)

.

A

X

Figure 6: The pair of topological spaces (X,A).

14



Metric Spaces

Definition 0.17. A metric on a set M is a function d : M ×M → R≥0 such that for all
a, b, c ∈M ,

1. d(a, b) = 0 if and only if a = b,

2. d is symmeric, so d(a, b) = d(b, a),

3. d satisfies the triangle inequality, so d(a, c) ≤ d(a, b) + d(b, c).

A set M together with a metric d is called a metric space, denoted (M,d).

Definition 0.18. A map f : (M,d1)→ (N, d2) between metric spaces (M,d1) and (N, d2)
is called Lipschitz if there exists a constant C ≥ 0 such that for all m1,m2 ∈M ,

d2(f(m1), f(m2)) ≤ Cd1(m1,m2).

Such a map f is called bi-Lipschitz if there exists a constant C ≥ 1 such that for all
m1,m2 ∈M ,

1

C
d1(m1,m2) ≤ d2(f(m1), f(m2)) ≤ Cd1(m1,m2).

The constant C is called the Lipschitz constant for f .

Definition 0.19. A Lawvere metric space is a set X together with a function d :
X ×X → [0,∞], called a Lawvere metric, such that,

1. d(x, x) = 0 for all x ∈ X,

2. for all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

A Lawvere metric is therefore a function which has two properties of a metric, but which
does not require symmetry (that d(x, y) = d(y, x) for all x, y ∈ X), and does not require
that d(x, y) is non-zero for all distinct pairs x, y. Points in a Lawvere metric space can also
be infinitely far from one another.

As well as a Lawvere metric, here we introduce a further variant of a metric, which will
crop up several times in our discussion of ‘distances’ in persistent homology.

Definition 0.20. An extended pseudometric space is a set X together with a function
d : X ×X → [0,∞], called an extended pseudometric, such that,

1. d(x, x) = 0 for all x ∈ X,

2. d(x, y) = d(y, x) for all x, y ∈ X.
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3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We end this preliminary section with some ways to describe the relationships between two
metric spaces. First we have the concept of two metric spaces being coarsely equivalent.

Definition 0.21. A map f : (M,d1) → (N, d2) of metric spaces is called coarse if for
every bounded subset B of N , the set f−1(B) is bounded in M , and for every εi > 0, there
exists a real number δi > 0 such that for every m1,m2 ∈ M with d(m1,m2) ≤ εi, we have
d(f(m1), f(m2)) ≤ δi.

Definition 0.22. Metric spaces (M,d1) and (N, d2) are said to be coarsely equivalent
if there exists a pair of coarse maps f : (M,d1) → (N, d2) and g : (N, d2) → (M,d1) such
that f ◦ g and g ◦ f are close to the identity maps on N and M , respectively. That is, there
exist real numbers c1, c2 ≥ 0 such that for all m ∈M ,

d1(m, g ◦ f(m)) ≤ c1, (0.15)

and for all n ∈ N ,
d2(n, f ◦ g(n)) ≤ c2. (0.16)

For more information about coarse maps and coarsely equivalent metric spaces, see (?).
Finally, if we wish to consider the distance between two metric spaces, one way is to use
the Gromov-Hausdorff distance.

Definition 0.23. The Gromov-Hausdorff distance between metric spaces (X, dX) and
(Y, dY ) is given by,

dGH(X,Y ) = inf
Z,f,g

dH(f(X), g(Y )), (0.17)

where f : X → Z and g : Y → Z are isometric embeddings of X and Y into a third metric
space, (Z, d), and dH denotes the Hausdorff distance,

dH(f(X), g(Y )) = max

{
sup
x∈X

inf
y∈Y

d(f(x), g(y)), sup
y∈Y

inf
x∈X

d(f(x), g(y))

}
. (0.18)
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1 Homology Theories and Persistence

This section is dedicated to persistence modules, which are the main algebraic objects of
study in persistence. There is, by now, a vast literature devoted to persistent homology,
with many works motivated by applications to topological data analysis. Different authors
may have varying applications in mind, which lead to different conventions, and, often,
different definitions of phrases including ‘persistence’, ‘persistence modules’ and ‘persistent
homology’. Often, persistence will be defined as a process indexed by a subset of the real
or natural numbers. This case, sometimes referred to as “one-parameter persistence” is
very important - many of the most important examples of how persistent homology can be
applied in data analysis make use of the one-parameter version and this is certainly the most
well-understood case. See, for example, (?) for a survey of the use of persistent homology in
topological data analysis. In Section 2, we will discuss the presentations of one-parameter
persistence modules. The unique structure of these objects allow us to define complete,
discrete invariants which prove extremely useful, especially if we wish to use persistence
in practice. It is much easier to perform computations with these discrete invariants than
with algebraic objects such as persistence modules. The same invariants cannot be defined
for anything other than the one-parameter case. It is partly for these reasons that one-
parameter persistence is the most studied, as well as the most used in applications.

There is, however, a growing interest in many more general cases. Persistence which is in-
dexed by a subset of Rn, for n > 1, is sometimes referred to as “multiparameter’ persistence”
(?). As the name suggests, a multiparameter persistence module can be used to describe
the homology of a space filtered by multiple parameters. This case is a generalisation of
the one described above, and a complete understanding of the multiparameter case would
be of huge significance - rarely can any real-world process be completely described by the
influence of just one parameter. Zig-zag persistence (?) provides an even more interesting
example, in which persistence modules may be indexed by diagrams of the form,

a c · · ·

b d

(1.1)

Going even further, Bubenik, de Silva and Scott (?) redefine a persistence module in the
most general way possible, as a functor from any partially ordered set to any category. In
Section 2, we’ll go on to build upon the work of (?) on generalised interleavings, so will
follow their definitions in this section.

In a 2008 paper (?), Robert Ghrist describes persistent homology as “a homology theory for
point cloud data”. The phrasing may have been intended innocuously enough, but it raises
the question - to what extent is persistent homology a ‘homology theory’, in the strict sense
of the term? In other words, which well-known properties of a homology theory continue to
hold when we consider filtered spaces, and are working with persistent homology groups?
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Firstly, homology with field coefficients is a functor from the category of topological spaces
and continuous maps, to the category of vector spaces over that field, and linear maps. Per-
sistent homology, again with coefficients in a field k, is a functor from a filtered topological
space to the category of k-vector spaces and k-linear maps. But it is not a given that a con-
tinuous map of topological spaces induces a morphism in the persistent homology of those
spaces. A recent paper (?) tackles the question “what is persistent homology a functor of?”.
Specifically, given two finite sets X and Y , and two sets of functions, Φ = {φ : X → R},
and Ψ = {ψ : Y → R}, it is shown in (?) that a map α : Φ → Ψ only induces morphisms
in persistent homology, PH(Φ) → PH(Ψ), when there exists a map f : X → Y such that
for every φ ∈ Φ, the following diagram commutes,

X

R

Y

f

φ

α(φ)

(1.2)

As well as the property of being functorial, the Eilenberg-Steenrod axioms for a homology
theory can provide many ways in which unknown homology groups can be calculated from
known ones. A long exact sequence in homology for a pair (X,A) connects the relative
homology Hn(X,A) to the homology of the individual spaces, Hn(X) and Hn(A). The
excision property says that Hn(X,A) is preserved after removing a subspace from both X
and A. Subsequently, using these axioms, we can also prove the existence of an additional
exact sequence in homology. The Mayer-Vietoris sequence connects the homology of a space
to that of a pair of subspaces, and can be thought of as an analogue of the Van Kampen
theorem for homology.

Among the first to consider how homological properties transfer to the persistent setting
was a 2011 paper by Di Fabio and Landi (?), which proved the existence of a form of a
Mayer-Vietoris sequence for a triple, (X,A,B), in the specific case that X,A and B are all
filtered by sublevel set filtrations with respect to the same function. However, the authors
note that their Mayer-Vietoris sequence,

· · · → H i,j
n+1(X,A)

∂i,jn−−→ H i,j
n (A)

ιi,jn−−→ H i,j
n (X)

κi,jn−−→ H i,j
n (X,A)→ · · · (1.3)

written with persistent homology groups, is not, in general, an exact sequence, but is a
chain complex. Despite this, they demonstrate that this property is sufficient to guarantee
that parts of the persistence diagrams of the subspaces A and B appear as ‘signatures’
in the persistence diagram for X, suggesting that we may be able to infer the persistent
homology of a space – at least to some degree – from that of a pair of subspaces.

Following this work, (?) showed that though the Mayer-Vietoris-style sequence in persistent
homology groups fails to be exact in general, there does in fact exist an exact Mayer-Vietoris
sequence of persistence modules. In a similar vein, they show that an attempt to construct
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a long exact sequence for a pair in persistent homology groups results in a sequence,

· · · H i,j
n (X) H i,j

n (X,A) H i,j
n−1(A) H i,j

n−1(X) · · ·κX ∂X ιA (1.4)

which, like (??), is not exact in general, but is a chain complex. However, just as for the
Mayer-Vietoris sequence, they show that there does in fact exist a long exact sequence of
persistence modules for the pair (X,A).

We will describe these sequences for persistent homology groups in greater detail, including
the maps in the diagrams, in section ??.

The question of the existence of an excision theorem for persistent homology is an inter-
esting one. Persistent homology can be thought of as a small scale version of homology.
While homology is a large-scale feature, persistence describes a sequence of small changes.
Removing a subspace may result in a very different filtration. It is certainly not a given
that removing a subspace from a pair of spaces should preserve the persistent homology.
It is important to note that a version of the property has been used implicitly in defining
extended persistence (?) and in Bendich’s (?) work defining a persistent version of local
homology, though an excision theorem for persistent homology had not been formally stated
or proved until the work of this thesis. This result also appeared in my earlier work (?).

In this section we prove that the excision property possessed by any homology theory
descends to an identical property in persistent homology. We show that such a property
holds both for persistence modules and for persistent homology groups. This is markedly
different to the property of Mayer-Vietoris sequences, and long exact sequences for a pair,
which only fully hold for persistence modules as opposed to persistent homology groups.
Although the result for persistence modules has been used implicitly without proof in (?)
and (?), the result for persistent homology groups is completely new.

We then use this excision result, together with the result of (?) which shows that when we
restrict the long sequence for a pair to persistent homology groups, the resulting sequence is
a chain complex, to give an alternative proof of the existence of a Mayer-Vietoris sequence
in persistent homology groups, the result first seen in (?). In doing so, we are able to extend
the result of (?) to a much wider class of filtered triples than the original result. In fact,
given any filtered space X, and a pair of subspaces, A and B, we demonstrate a way to
extend the filtration of X to one of the subspaces, in such a way that the conditions needed
for the excision theorem, and the Mayer-Vietoris sequence, are guaranteed to hold.

1.1 Persistence Modules

Definition 1.1. Let P be a partially ordered set. A P -persistence module, or persistence
module indexed by P , is a functor M : P → C, where C is any category. That is, to
each p ∈ P , we associate an object M(p), and whenever p1 ≤ p2, we have a morphism
M(p1) → M(p2), which we denote by ψM(p1, p2). We call this set of morphisms Ψ =
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{ψM(pi, pj)|pi ≤ pj} the transition maps of M. The definition of a functor between
categories tells us that the transition maps must satisfy the following properties:

1. for every p ∈ P , the map ψM(p, p) :M(p)→M(p) is the identity map on M(p),

2. for every p1 ≤ p2 ≤ p3, the composite,

ψM(p2, p3) ◦ ψM(p1, p2) :M(p1)→M(p2)→M(p3),

is equal to the map ψM(p1, p3) :M(p1)→M(p3).

Example 1.2. Let (P,≤) be the set of real numbers together with the usual partial order.
Let I = [a, b] be an interval, and let k be a field. The interval module k[I] : R → V ectk
is the P -persistence module defined by,

k[I](p) =

{
k a ≤ p ≤ b
0 otherwise,

and ψk[I](p, q) =

{
idk a ≤ p ≤ q ≤ b
0 otherwise.

(1.5)

An interval module k[I] therefore assigns a copy of the field k to each p ∈ R contained in the
interval I, and a copy of the zero vector space to each real number outside of the interval
I. The transition maps, ψk[I](p, q) between these vector spaces are then the identity maps
in k whenever p and q belong to the interval I, and are the zero maps otherwise.

Example 1.3. Let P be the 6-element poset {a, b, c, d, e, f} with partial order as determined
by the Hasse diagram shown in Figure ??.

a

b c

d e

f

Figure 7: A Hasse diagram for the poset P = {a, b, c, d, e, f}.

The functor M : P → V ectk which assigns to each element of P a copy of the field k, and
assigns the identity map on k to each relation is a persistence module. This persistence
module is shown in Figure ??.

20



k

k k

k k

k

id id

id id

id

Figure 8: The persistence module M : P → V ectk.

Further examples of persistence modules indexed by P are shown in Figure ??.

0

0 0

0 0

0

0 0

0 0

0

0

k 0

k k

k

0

0

0

0

id

Figure 9: The zero module indexed by P (left) and another P -persistence module.

Definition 1.4. A morphism, f : M → N of P -persistence modules, M and N , is a
family of morphisms, {fp : M(p) → N (p)|p ∈ P}, such that for each p1 ≤ p2 in P , the
diagram,

M(p1) M(p2)

N (p1) N (p2)

fp

ψM

fq

ψN

(1.6)

commutes.

That is, a morphism f :M→N is a natural transformation of the functors M and N .

Definition 1.5. A morphism f : M → N is an isomorphism of P -persistence modules
M and N if fp is an isomorphism for each p ∈ P . Equivalently, f is an isomorphism if
there exists a morphism g : N → M such that for every p ∈ P , gp ◦ fp = idM(p) and
fp ◦ gp = idN (p).
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1.2 Persistent Homology

1.2.1 Filtrations

Definition 1.6. Let (P,≤) be a poset and let X be a topological space. A filtration of
X is a persistence module F : (P,≤) → Subsets(X), where Subsets(X) is the category of
subsets of X, with morphisms given by inclusions of subsets.

That is, for each p ∈ P , we have a subset F(p) of X, and for p1 ≤ p2, the transition map
ψF (p1, p2) : F(p1)→ F(p2) is the inclusion of F(p1) into F(p2).

A topological space X together with a filtration F is called a filtered space, which we
denote (X,F).

Example 1.7. Let P be the three-element poset {1, 2, 3} with partial order inherited from
N. Let X be the simplicial complex on five vertices as shown in Figure ??.

Figure 10: The simplicial complex, X.

Let F : P → Subsets(X) be the filtration as shown in Figure ??.

X(1) X(2) X(3)

Figure 11: A filtration of the simplicial complex X by P .

In Figure ??, we see that the relations 1 ≤ 2 and 2 ≤ 3 correspond to inclusions X(1) ↪→
X(2) and X(2) ↪→ X(3), and these inclusions are transitive.

The following are three of the most common examples of filtrations used in persistent
homology which can be constructed from topological spaces.
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Example 1.8. Let X be a topological space and f : X → Rn a function. The sublevel
set filtration of X by f is the functor S : (Rn,≤)→ Subsets(X) given by,

S(a) = {x ∈ X|f(x) ≤ a}, (1.7)

where the transition maps ψS(a, b) : S(a)→ S(b) are the inclusions of sublevel sets,

{x ∈ X|f(x) ≤ a} → {x ∈ X|f(x) ≤ b}.

Example 1.9. The diagram in Figure ?? shows a 2-sphere, X, filtered by a height filtration.
To describe this height filtration, we take let f : X → R to be a function where for x ∈ X,
f(x) is the distance from x to a fixed horizontal plane beneath X. The subspace X(hi)
is then given by the sublevel set X(hi) = {x ∈ X|f(x) ≤ hi}, or, in other words, X(hi)
consists of all points of X whose vertical height above the chosen plane is no more than hi.

X(h1) X(h2) X(h3) X(h4) h

Figure 12: A 2-sphere filtered by a height parameter, h.

For the following examples, let (X, d) be a finite metric space, and let X̂ denote the maximal
simplicial complex on X. That is, the 0-simplicies of X̂ correspond to the points of X, and
X̂ contains an n-simplex [x0, . . . , xn] for each n-tuple of points {x0, . . . , xn} of X.

Example 1.10. A Vietoris-Rips filtration on (X, d) is a persistence module V R : R≥0 →
Subsets(X̂), where for a ∈ R≥0, V R(a) is the simplicial complex with a simplex [x0, . . . , xn]
whenever d(xi, xj) ≤ 2a for each pair of points xi, xj ∈ {x0, . . . , xn}. When a ≤ b, the set
of n-tuples which are pairwise at distance at most a includes into the set of n-tuples which
are pairwise at distance at most b, and so the transition maps ψV R(a, b) : V R(a)→ V R(b)
are the inclusions of simplicial complexes.

For any a ∈ R, the simplicial complex V R(a) is called a Vietoris-Rips complex.

V R(a1) V R(a2) V R(a3)

Figure 13: An example of a Vietoris-Rips filtration on a set of points in R2.

A related filtration is the Čech filtration.
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x0 x1

x2

x0 x1

x2

Figure 15: A Vietoris-Rips complex, V R(a) (left), and a Čech complex, C(a) (right), con-
structed on X the set of vertices of an equilateral triangle, where a is half the length of a
side of the triangle.

Example 1.11. A Čech filtration on (X, d) is a persistence module C : R≥0 → Subsets(X̂),
where for a ∈ R≥0, C(a) is the simplicial complex with a simplex [x0, . . . , xn] whenever⋂n
i=1Ba(xi) 6= ∅, where Ba(x) denotes the closed ball of radius a centred at x ∈ X. As for

the Vietoris-Rips filtration, if a ≤ b, the set of n-tuples which are mutually at distance at
most a includes into the set of n-tuples which are mutually at distance at most b, and so
the transition maps ψC(a, b) : C(a)→ C(b) are the inclusions of simplicial complexes.

For any a ∈ R, the simplicial complex C(a) is called a Čech complex.

The diagram in Figure ?? shows a Čech filtration on the same finite metric space (X, d) as
in Figure ??. Notice that a 2-simplex on vertices xi, xj , xk only appears in the subcomplex
C(a) when the balls Ba(xi), Ba(xj) and Ba(xk) mutually intersect, whereas the 2-simplex
[xi, xj , xk] would appear in V R(a) when Ba(xi), Ba(xj) and Ba(xk) pairwise intersect.

C(a1) C(a2) C(a3)

Figure 14: An example of a Čech filtration on a set of points in R2.

There is a clear relationship between the Čech and Vietoris-Rips filtration on a given finite
metric space. However, they are not equal. For a given a ∈ R, the Čech complex C(a)
includes into V R(a), as for a for an n-tuple of points, x1, . . . , xn ∈ X, if

⋂n
i=1Ba(xi) 6= ∅,

then we also have d(xi, xj) ≤ 2a for all pairs i, j ∈ {1, . . . , n}.

The example in Figure ??, however, shows that the converse is not true in general.

On the other hand, for a given a ∈ R, we have an inclusion V Ra(X) ⊆ C√2a(X). A proof of
this result may be found in (?).
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1.2.2 Persistent Homology Groups

Definition 1.12. Let X be a topological space and F : P → Subsets(X) a filtration of X.
The nth persistent homology of X with respect to F is the functor PH : P → V ectk
given by,

PH(p) = Hn(F(p); k), (1.8)

where the transition maps ψPH(p1, p2) : PH(p1)→ PH(p2) are given by the linear maps in
homology induced by the inclusions of subsets F(p1) ↪→ F(p2).

If X is triangulable, and F is consistent with the triangulation, then we may take Hi to be
the simplicial homology functor.

Definition 1.13. Let γ be a generator of Hn(F(pi)).

1. If γ is such that f(γ) /∈ im{f : Hn(F(p))→ Hn(F(pi))} for any p < pi, then γ is said
to be born at pi.

2. For pj ≥ pi, γ is said to persist from pi to pj if f(γ) ∈ im{f : Hn(F(pi)) →
Hn(F(pj))}.

3. Finally, γ is said to die at pk if γ ∈ im{Hn(F(pi))→ Hn(F(p))} for every pi ≤ p < pk,
but γ /∈ im{Hn(F(pi))→ Hn(F(pk))}.

Definition 1.14. Let F : P → Top be a filtration of a topological space X. The persistent
homology groups of X with respect to F are given by,

H i,j
n (X) = im{PH(pi)→ PH(pj)} = im{Hn(F(pi))→ Hn(F(pj))}. (1.9)

That is, the persistent homology groups, H i,j
n (X) of X are given by the images of the maps

in homology which are induced by the inclusions of subspaces, F(pi) ↪→ F(pj).

The persistent homology group, H i,j
n (X), is generated by non-bounding n-cycles in X which

persist from F(pi) to F(pj).

Definition 1.15. The persistent Betti numbers of X with respect to a filtration F are
the ranks of the persistent homology groups as k-vector spaces. That is,

βi,jn (X) = rank{H i,j
n (X)} = rank(im{Hn(F(pi))→ Hn(F(pj))}). (1.10)

Example 1.16. Consider the following filtration in Figure ?? indexed by the set {1, 2, 3, 4, 5}.
At stage 1, there are three 0-dimensional cycles, or connected components. One of these
dies at stage 2, when it merges with another component. Another dies at stage 3, when it
merges with the other component. Hence β1,40 (X) = 1.
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Figure 16: A filtration of a 2-simplex, X.

For each n ≥ 0, we can form the persistence module PHn(X) by composing the filtration
in Figure ?? with a simplicial homology functor. For n = 0, the persistence module is of
the form,

k ⊕ k ⊕ k −→ k ⊕ k −→ k −→ k −→ k, (1.11)

where the inclusions of subcomplexes in Figure ?? induce the transition maps in (??).
Similarly, the persistence module PH1(X) is of the form,

0 −→ 0 −→ 0 −→ k −→ 0. (1.12)

1.3 Persistent Homology as a Homology Theory

1.3.1 Homology Theories

Simplicial homology is one example of a homology theory – it is a specific method of
calculating homology groups of a certain kind of topological space. There are numerous
other homology theories, such as singular, or Čech homology, which use a slightly different
definition to assign a sequence of homology groups, to a topological space. There are certain
properties, though, which are common to all homology theories. One which we have already
discussed is that homology is functorial. That is, for any n ∈ Z, given two topological spaces
X and Y , and a continuous map, f : X → Y , there is an induced map f∗ : Hn(X)→ Hn(Y ).

The other properties which define an ordinary homology theory are as follows. For any
n ∈ Z,

1. If f, g : X → Y are homotopic, then the induced maps,

f∗, g∗ : Hn(X)→ Hn(Y ),

are isomorphic.

2. For each X and each A ⊂ X, there is a homomorphism, ∂ : Hn(X,A)→ Hn(A) such
that the sequence of homology groups,

· · · → Hp(A)
i∗−→ Hp(X)

j∗−→ Hp(X,A)
∂−→ Hp−1(A)→ · · · (1.13)

is an exact sequence, where i : A→ X is the inclusion of the subspace A into X, and
j : X → (X,A) is the inclusion of the pair (X,∅) into the pair (X,A). This sequence
is called the long exact sequence associated to the pair (X,A).
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3. For each X, and each pair of subspaces A,B such that the interiors of A and B cover
X, the inclusion of pairs, (B,A∩B)→ (X,A), induces an isomorphism in homology,

Hn(X,A) ∼= Hn(B,A ∩B).

4. If X is a one-point space, then

Hn(X) =

{
k n = 0

0 otherwise,
(1.14)

where k is the field of coefficients of the homology theory.

Persistent homology assigns a sequence of persistent homology groups to a topological space.
As we see, to be correctly referred to as a homology theory, there are several properties
which persistence would be required to satisfy. Various works (?) (?) (?) have explored the
extent to which persistence can be said to exhibit some of these properties, including the
functoriality property. What emerges is that persistent homology satisfies many of these
properties to a certain extent, but not always in the same way that a homology theory
such as simplicial homology does. For example, in (?), it was shown that we have a long
exact sequence of relative persistence modules PH(X,A) for a pair, but not of persistent
homology groups, H i,j

n (X,A). A similar statement is true for a Mayer-Vietoris sequence in
persistent homology. We will discuss these results in more detail in section ??.

In section ??, we show that an excision property holds for persistent homology, both for
persistence modules and, in contrast to the properties of a long exact sequence (?) and a
Mayer-Vietoris sequence (?), also for persistent homology groups. Excision can be used to
calculate unknown relative homology groups by relating a pair to one for which the group
is known. With this result, we can do the same for persistent homology. Given the use of
persistent homology in topological data analysis, it is a very useful tool.

1.3.2 Excision

Definition 1.17. Let A be a subspace of a topological space X. A filtration of the pair
(X,A) is a functor from a poset, P , the category of pairs of subspaces, (Xi, Ai) ⊆ (X,A).

pair of filtrations, FA : P −→ Subsets(A), FX : P −→ Subsets(X) such that for all p ∈ P ,
FA(p) ⊆ FX(p).

Example 1.18. Let X be a sphere and let A ⊂ X be the lower hemisphere as shown in
Figure ??.

Let F : R → Subsets(X) be a sublevel set filtration of X by some function f : X → R.
Define a filtration FA of A by setting,

FA(i) = F(i) ∩A.
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Figure 17: A sphere, X, and a subspace, A, of X.

Then (F ,FA) is a filtration of the pair (X,A).

The relative persistent homology of a pair (X,A) with respect to filtrations FX and FA is
the persistence module PH(X,A), where for p ∈ P ,

PH(X,A)(p) = Hn(FX(p),FA(p)). (1.15)

Given PH(X,A), and pi ≤ pj the relative persistent homology groups of (X,A) with respect
to the filtrations FX and FA are given by,

H i,j
n (X,A) = im{ψPH : PH(X,A)(pi)→ PH(X,A)(pj)}

= im{ψPH : Hn(FX(pi),FA(pi))→ Hn(FX(pj),FA(pj))}. (1.16)

Definition 1.19. Let A be a subspace of X, and let FX : P −→ Subsets(X) be a filtration
of X. A filtration FA : P −→ Subsets(A) of A is induced by FX if for all p ∈ P ,

FA(p) = FX(p) ∩A. (1.17)

Example 1.20. Let X be a topological space with subspace A ⊂ X. Given a function
fX : X −→ R, let S : R → Subsets(X) be the sublevel set filtration of X by fX . Let fA
denote the restriction of f to A, and let SA : R −→ Subsets(A) be the sublevel set filtration
of A by fA. That is, for p ∈ R,

SA(p) = {a ∈ A|fA(a) ≤ p} = {a ∈ X|fX(a) ≤ p} ∩A = S(p) ∩A. (1.18)

Hence the restriction of a sublevel set filtration to a subspace is an example of an induced
filtration.

Definition 1.21. Let X be a topological space and A a subset of X. The interior of A
inside X, denoted A◦X , is the largest subset of A which is open in the topology on X.
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Lemma 1.22. Suppose that A and B are subspaces of X such that A◦ ∪ B◦ = X. Let
FX : P −→ Subsets(X) be a filtration of X, and let FA : P −→ Subsets(A) and FB :
P −→ Subsets(B) be filtrations on A and B respectively which are induced by FX . Then
for all p ∈ P ,

FX(p) = (FA(p))◦ ∪ (FB(p))◦. (1.19)

We will prove a slightly more general statement, that if U is a subspace of a topological
space X, which is covered by the interiors of two subspaces A and B, then restricting A
and B to U provides a cover of U . That is, if X = A◦X ∪B◦X , then

U ⊆ (U ∩A)◦U ∪ (U ∩B)◦U . (1.20)

Proof. By assumption, X = A◦X ∪B◦X .

Trivially, U = U ∩X, as U ⊂ X, so

U = U ∩X = U ∩ (A◦X ∪B◦X) = (U ∩A◦X) ∪ (U ∩B◦X). (1.21)

Considering (U ∩A◦X), this set is open in the subspace topology for U , as by definition it is
the intersection of U with an open set in X. As it is open in U , it equals its own interior,
when the interior is taken inside U , so

(U ∩A◦X) = (U ∩A◦X)◦U ⊆ (U ∩A)◦U , (1.22)

similarly for B, we have:

(U ∩B◦X) = (U ∩B◦X)◦U ⊆ (U ∩B)◦U . (1.23)

Hence U = (U ∩A◦X) ∪ (U ∩B◦X) ⊆ (U ∩A)◦U ∪ (U ∩B)◦U .

Example 1.23. Let A and B be subsets of a topological space X such that A ∩B 6= ∅.

Let f : X → R be a function which measures the height of a point x ∈ X above some fixed
horizontal plane, P , and let F : R→ Subsets(X) be the filtration where for all a ∈ R,

F(a) = {x ∈ X|f(x) ≤ a}. (1.24)

For a ≤ b, the transition maps ψF (a, b) : F(a) → F(b) are then the inclusions of subsets.
For any a ∈ R, F(a) consists of all points of X which are of height at most a from P , and
so, for any a ∈ R, FA(a) = F|A(a) = F(a)∩A, and similarly for FB = F|B(a). By Lemma
??, a ∈ R,

F(a) = FA(a)◦ ∪ FB(a)◦.

This example, with X a 2-sphere, is illustrated in Figure ??.
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Figure 18: A 2-sphere, X, covered by subspaces A and B.

We now introduce our excision theorem for persistent homology.

Theorem 1.24. Let A and B be subspaces of the topological space X such that X = A◦∪B◦.
Let FX : P −→ Subsets(X) be a filtration of X and let FA : P −→ Subsets(A) and
FB : P −→ Subsets(B) be filtrations on A and B respectively such that for all p ∈ P ,

FX(p) = (FA(p))◦ ∪ (FB(p))◦. (1.25)

Let PHn(X,A) be the relative persistent homology of (X,A) in degree n with respect to
the filtrations FX and FA, and let PHn(B,A ∩ B) be the relative persistent homology of
(B,A ∩B) in degree n relative to the filtrations FB and FA∩B, where for p ∈ P ,

FA∩B(p) = FA(p) ∩ FB(p). (1.26)

Then for every n ≥ 0, there is an isomorphism of persistence modules,

PHn(X,A) ∼= PHn(B,A ∩B), (1.27)

and for every pi ≤ pj, there is an isomorphism of persistent homology groups,

H i,j
n (X,A) ∼= H i,j

n (B,A ∩B). (1.28)

Proof. For any pi ≤ pj in P , consider the diagram of inclusions,

(FB(pi),FA∩B(pi)) (FB(pj),FA∩B(pj))

(FX(pi),FA(pi)) (FX(pj),FA(pj))

(1.29)

30



This diagram commutes, and so the diagram of induced maps,

PH(B,A ∩B)(pi) PH(B,A ∩B)(pj)

PH(X,A)(pi) PH(X,A)(pj)

(1.30)

Additionally, the condition (??) means that each vertical map in (??) is an isomorphism,
by the excision property for Hn. Since these vertical isomorphisms commute with the
horizontal maps, we have an isomorphism of persistence modules,

PH(B,A ∩B)→ PH(X,A). (1.31)

Note that for any pi ≤ pj in P , im{PH(X,A)(pi)→ PH(X,A)(pj)} is the relative persistent

homology group H i,j
n (X,A), and similarly,

H i,j
n (B,A ∩B) = im{PH(B,A ∩B)(pi)→ PH(B,A ∩B)(pj)}. (1.32)

We now show that the vertical isomorphisms in (??) restrict to isomorphisms on the images
of the horizontal maps. For this we will consider the general picture, where we have a
commutative diagram of vector spaces C,D,E and F ,

C D

E F

f

i j

g

(1.33)

Let i and j be isomorphisms. Then we can show that j restricts to an isomorphism j̄ :
Im(f)→ Im(g).

The proof involves a simple diagram chase. Let y ∈ Im(f). Then there is some c ∈ C such
that y = f(c). Define a map j̄ : Im(f)→ Im(g) by j̄(y) = g(i(c)).

First suppose y ∈ Im(f) is such that y = f(c) and y = f(d) for c, d ∈ C. Then as (??)
commutes, g(i(c)) = j(f(c)) = j(y), and g(i(d)) = j(f(d)) = j(y), and so g(i(c)) = g(i(d)),
and j̄ is well-defined.

We now show that j̄ is both injective and surjective.

1. Injectivity: Suppose j̄(y) = j̄(y′) for y, y′ ∈ Im(f). Let y = f(c) and y′ = f(c′).
Then by definition of j̄,

g(i(c)) = g(i(c′)).

The square (??) commutes, so

j(f(c)) = j(f(c′)).

But j is an isomorphism, and so y = f(c) = f(c′) = y′.
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2. Surjectivity: Let x ∈ Im(g). We want to find a y ∈ Im(f) such that j̄(y) = x.

First, we have that as x ∈ Im(g), there is some z ∈ E such that g(z) = x. We also
have that i is an isomorphism, so there is an c ∈ C such that i−1(z) = c. Let y = f(c).
Then s(y) = x. Hence we have an isomorphism Im(f)→ Im(g).

Replacing the vector spaces C,D,E and F with PH(B,A∩B)(pi), PH(B,A∩B)(pj),
PH(X,A)(pi) and PH(X,A)(pj), respectively, we see that the isomorphism,

PH(B,A ∩B)(pj)→ PH(X,A)(pj),

descends to an isomorphism on the images of the maps

PH(B,A ∩B)(pi)→ PH(B,A ∩B)(pj), (1.34)

PH(X,A)(pi)→ PH(X,A)(pj). (1.35)

In this case, these images are the persistent homology groups, and so we have an
isomorphism,

H i,j
n (X,A) ∼= H i,j

n (B,A ∩B), (1.36)

for any pi ≤ pj and for any n ≥ 0.

We note that Lemma ?? demonstrates that the conditions of Theorem ?? hold for the
triple of filtered spaces (X,A,B), whenever A and B are endowed with filtrations which are
induced by that of X. This does not impose any restrictions on the filtration on X. Hence,
Lemma ?? demonstrates a way in which any filtration on X can be extended to a pair of
subspaces in such a way that the persistent excision theorem is guaranteed to hold on that
triple.

1.3.3 Mayer-Vietoris Sequences in Persistent Homology

Another extremely useful property possessed by a homology theory is the existence of a
long exact sequence known as the Mayer-Vietoris sequence. The existence of this sequence
can be derived from the axioms of a homology theory (?) – namely, from the axiom stating
the existence of long exact sequence for a pair, and the excision axiom.

Definition 1.25. Let X be a space with subspaces A and B such that X = A◦X ∪B◦X . The
Mayer-Vietoris sequence associated to the triple (X,A,B) is the long exact sequence,

· · · → Hn+1(X)
∂n−→ Hn(A ∩B)

(αn,βn)−−−−−→ Hn(A)⊕Hn(B)
γn−→ Hn(X)→ · · · (1.37)

where the maps αn and βn are induced by the respective inclusions,

(A ∩B) ↪→ A, and (A ∩B) ↪→ B, (1.38)
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so that,
(αn, βn)([z]) = ([z], [z]), (1.39)

and γn([z], [z′]) = [z − z′] is induced by the inclusions,

A ↪→ X and B ↪→ X. (1.40)

The map ∂n is the usual boundary map – asX = A◦X∪B◦X , every chain inX can be expressed
as the sum of a chain in A and a chain in B, whose boundary lies in the intersection, A∩B.

In (?), the authors derive a form of a Mayer-Vietoris sequence in persistent homology, in
the special case that the persistence modules are the composition of a sublevel set filtration
functor and a Čech homology functor. We will see that, unlike the sequence in (??), this
Mayer-Vietoris-style sequence in persistent homology groups fails to be exact. Despite this,
the authors show that the sequence obtained can be very useful when persistent homology
is used in applications.

In this section, we derive the Mayer-Vietoris-style sequence of (?) in a new way, using the
persistent excision theorem and the work of (?). In this paper (?), the authors construct a
sequence for a pair in the style of a long exact sequence in homology. We note that, just like
the Mayer-Vietoris-style sequence in persistent homology of (?), this sequence is not a long
exact sequence of persistent homology groups, but is a chain complex. Our new derivation
of the sequence of (?) shows that a Mayer-Vietoris sequence in persistent homology exists
not only for sublevel set filtrations, as was initially proved, but for any triple of spaces which
satisfies the conditions of Theorem ??.

The following Theorem shows the result of attempting to restrict a long exact sequence in
homology to persistent homology groups.

Theorem 1.26. Let (FX ,FA) be a filtration of the pair (X,A). For any n ≥ 0, the sequence
of persistent homology groups,

· · · → H i,j
n+1(X,A)

∂i,jn−−→ H i,j
n (A)

ιi,jn−−→ H i,j
n (X)

κi,jn−−→ H i,j
n (X,A)→ · · · (1.41)

is a chain complex (?). We detail the maps in the course of the proof.

We give a brief overview of the proof, which can be seen in greater detail in (?). We note
that it follows a similar structure to the proof of the existence of a Mayer-Vietoris-style
sequence in persistent homology which appears in (?).

Proof. In the course of this proof and the next, we will use the shorthand Xi := FX(pi)
and Ai := FA(pi).

For each pi ∈ P , we have a pair of subspaces (Xi, Ai), and for each such pair we have a long
exact sequence in homology,

· · · Hn+1(Xi, Ai) Hn(Ai) Hn(Xi) Hn(Xi, Ai) · · ·∂in ιin κin (1.42)
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Let pi ≤ pj . Then we have an identical sequence for the pair (Xj , A), and we can form the
commutative diagram,

· · · Hn+1(Xi, Ai) Hn(Ai) Hn(Xi) Hn(Xi, Ai) · · ·

· · · Hn+1(Xj , Aj) Hn(Aj) Hn(Xj) Hn(Xj , Aj) · · ·

∂in

hn+1

ιin

fn

κin

gn hn

∂jn ιjn κjn

(1.43)

where the horizontal sequences are the long exact sequences of the pairs as in (??), and the
vertical maps are induced by the inclusions Xi ↪→ Xj and Ai ↪→ Aj .

In general, given a sequence A∗ of abelian groups, and a chain complex, B∗, and a map of
sequences f∗ : A∗ → B∗ such that each square,

Ai Aj

Bi Bj

fi fj (1.44)

commutes, then the sequence of images, im(f∗) is also a chain complex. The proof of this
statement is omitted here, but can be shown via a simple diagram chase. In our case, we
consider the restriction of the lower sequence of (??) to the images of the vertical maps.
That is, we let

∂i,jn = ∂jn|im(hn+1), ιi,jn = ιjn|im(fn), κi,jn = κjn|im(gn).

The inclusions im(∂jn) ⊆ ker(ιjn), im(ιjn) ⊆ ker(κjn) and im(κjn) ⊆ ker(∂jn−1) descend to
inclusions,

im
(
∂i,jn
)
⊆ ker(ιi,jn )

)
, im

(
ιi,jn
)
⊆ ker

(
κi,jn
)

and im
(
κi,jn
)
⊆ ker

(
∂i,jn
)
,

and so the sequence of persistent homology groups,

· · · H i,j
n+1(X,A) H i,j

n (A) H i,j
n (X) H i,j

n (X,A) · · ·∂i,jn ιi,jn κi,jn

(1.45)
is a chain complex.

The following result appeared in a less general form in (?), with a proof following a similar
structure to that of Theorem ??. The result below is a generalisation of that of (?), and
the proof follows a very different structure.

Theorem 1.27. Let (X,A,B) be a triple with respective filtrations FX : P → Subsets(X),
FA : P → Subsets(A) and FB : P → Subsets(B), such that for each p ∈ P ,

FX(p) = (FA(p))◦ ∪ (FB(p))◦. (1.46)

34



Then for any pi ≤ pj, the sequence of persistent homology groups,

· · · → H i,j
n+1(X)

∂i,jn−−→ H i,j
n (A ∩B)

(αi,j
n ,βi,j

n )−−−−−−→ H i,j
n (A)⊕H i,j

n (B)
γi,jn−−→ H i,j

n (X)→ · · · (1.47)

is a chain complex. We detail the maps in the course of the proof.

Proof. In the course of the proof, we will use the shorthand Xi = FX(pi), Ai = FA(pi),
Bi = FB(pi) and (A ∩B)i = FA(pi) ∩ FB(pi) = FA∩B(pi).

For pi ∈ P , consider the diagram,

· · · Hn(Bi) Hn(Bi, (A ∩B)i) Hn−1((A ∩B)i) Hn−1(Bi) · · ·

· · · Hn(Xi) Hn(Xi, Ai) Hn−1(Ai) Hn−1(Xi) · · ·

∂

∂

fi gi

(1.48)

Each horizontal row in this diagram is a long exact sequence, for the pairs (Bi, (A ∩ B)i),
and (Xi, Ai). Hence each map, other than the boundary maps indicated, is induced by an
inclusion. Moreover, each square in this diagram commutes, either because all four maps
in the square are induced by an inclusion, or because the boundary map commutes with
inclusions.

Let pi ≤ pj , and consider the diagram,

· · · Hn(Bi) Hn(Bi, (A ∩B)i) Hn−1((A ∩B)i) Hn−1(Bi) · · ·

· · · Hn(Bj) Hn(Bj , (A ∩B)j) Hn−1((A ∩B)j) Hn−1(Bj) · · ·

· · · Hn(Xi) Hn(Xi, Ai) Hn−1(Ai) Hn−1(Xi) · · ·

· · · Hn(Xj) Hn(Xj , Aj) Hn−1(Aj) Hn−1(Xj) · · ·

∂

∂
α1

fj

α2

gj

fi gi

∂

∂

α3 α4

(1.49)

The diagram is really the union of two diagrams of the form (??), the rear diagram for
pi, and the front diagram for pj , with red connecting maps induced by the inclusions of
subspaces,

Ai ↪→ Aj , Bi ↪→ Bj , and Xi ↪→ Xj .

If we restrict the front diagram to the images of the red maps, then we obtain the following
diagram in persistent homology groups.
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· · · H i,j
n (B) H i,j

n (B,A ∩B) H i,j
n−1(A ∩B) H i,j

n−1(B) · · ·

· · · H i,j
n (X) H i,j

n (X,A) H i,j
n−1(A) H i,j

n−1(X) · · ·

κB ∂B

f

ιB

g h

κX ∂X ιA

(1.50)
where the bottom row is the sequence in persistent homology for the pair (X,A) as defined
in Theorem ??, the top row is the analogous sequence for the pair (B,A ∩ B), and the
vertical maps are induced by the inclusions, B ↪→ X, A ∩ B ↪→ A, and the inclusion of
the pair, (B,A ∩ B) ↪→ (X,A), which by Theorem ?? is an isomorphism. The left-hand
and right-hand squares commute since they commute at the level of spaces — every map is
induced from an inclusion and the inclusion maps themselves commute.

For the commutativity of the middle square of (??), we return to the diagram in (??). We
will show that for any γ1 ∈ Im(α1), we have that,

∂fj(γ1) = gj∂(γ1) ∈ Im(α4).

We will first show that both ∂fj(γ1) and gj∂(γ1) belong to Im(α4), and then that the square
commutes.

We first have that fj(γ1) ∈ Im(α3) since fj(γ1) = fj(α1(x)) for some x ∈ Hn(Bi, (A∩B)i).

Since fj(γ1) ∈ Im(α3), we have that fj(γ1) = α3(z) for some z ∈ Hn(Xi, Ai). Hence,

∂fj(γ1) = ∂α3(z) = α4∂(z),

and so ∂fj(γ1) ∈ Im(α4).

Next, ∂(γ1) = ∂α1(x) = α2∂(x) and so ∂(γ1) ∈ Im(α2).

As ∂(γ1) ∈ Im(α2), we have that ∂(γ1) = α2(y) for some y ∈ Hn−1((A ∩B)i), and so,

gj∂(γ1) = gjα2(y) = α4gi(y),

and so gj∂(γ1) ∈ Im(α4).

Since the square,

Hn(Bj , (A ∩B)j) Hn−1((A ∩B)j)

Hn(Xj , Aj) Hn−1(Aj)

∂

fj gj

∂

(1.51)

commutes, and given that both ∂fj(Im(α1)) ⊆ Im(α4) and gj∂(Im(α1)) ⊆ Im(α4), we
also have that the restriction of the square (??) to the persistent homology groups also
commutes.
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We’ll now show that the condition that the upper and lower sequences in diagram (??) are
chain complexes descends to a chain complex condition on the subsequence,

· · · → H i,j
n (X)

∂∗−→ H i,j
n−1(A ∩B)

(g,ιB)−−−−→ H i,j
n−1(A)⊕H i,j

n−1(B)
γ−→ H i,j

n−1(X)→ · · · (1.52)

where γ([z]) = h− ιA. This proof is a standard way of proving the existence of the Mayer-
Vietoris sequence for a homology theory from the excision and long exact sequences axioms
for a homology theory in the non-persistent case, which can be found as an exercise without
proof in (?).

• im(∂∗) ⊆ ker(g, ιB):

Firstly, as ∂∗ is the composition of maps,

∂∗ = ∂B ◦ f−1 ◦ κX , (1.53)

then any element of im(∂∗) is clearly also an element of im(∂B). As im(∂B) ⊆ ker(ιB),
we also have im(∂∗) ⊆ ker(ιB). We also show that im(∂∗) ⊆ ker(g).

Hence, using the fact that the composition of κX with ∂X is zero, and that, given the
claim, ∂X is equal to the composition,

∂X = g ◦ ∂B ◦ f−1, (1.54)

then we must also have that the composition g ◦ (∂B ◦ f−1 ◦ κX) is zero — that is,
im(∂∗) ⊆ ker(g).

• im(g, ιB) ⊆ ker(h− ιA) :

Let ([Y ], [Z]) ∈ im(g, ιB), so that there exists some [X] ∈ H i,j
n−1(A ∩ B) such that

g([X]) = [Y ] and ιB([X]) = [Z]. We have that the right-hand square in (??) com-
mutes, so h ◦ ιB([X]) − ιA ◦ g([X]) = 0, and so ([Y ], [Z]) = (g([X]), ιB([X])) ∈
ker(h− ιA).

• im(h− ιA) ⊆ ker(∂∗) :

Let [X] ∈ im(h − ιA). Then there exists [X1] ∈ H i,j
n−1(B), and [X2] ∈ H i,j

n−1(A)
such that h(X1) − ιA(X2) = X. Then we have that ∂∗(X) = ∂∗(h(X1) − ιA(X2)) =
∂∗(h(X1))− ∂∗(ιA(X2)). Given that ∂∗ = ∂B ◦ f−1 ◦ κX , and the composition κX ◦ ιA
is zero, then we must have that ∂∗(ιA(X2)) = 0. We also have that f−1 ◦κX ◦h = κB.
Hence the composition,

∂∗ ◦ h = ∂B ◦ f−1 ◦ κX ◦ h = ∂B ◦ κB. (1.55)

We now use the fact that the top and bottom sequences in (??) are chain complexes,
to conclude that ∂∗ ◦ β(X1) = ∂B ◦ κB(X1) = 0.

37



We have hence demonstrated that the Mayer-Vietoris sequence of (?) exists for any filtered
triple satisfying the condition of (??). In particular, this sequence exists for multiparameter
filtrations satisfying this condition. The existence of this sequence - despite the fact that
it is not exact - was used in (?) to show that for such a filtered triple, the points of the
persistence diagrams of the subspaces A and B appear as signatures in the persistence
diagram of either X or that of the intersection, A ∩B.

We could ask when the sequence of persistent homology groups in (??) and (??) are exact, as
opposed to merely chain complexes. We thank Ran Levi and Jan Spakula for the following
observation, which could be used as a source of further work to investigate this question.
As well as considering the images of the vertical maps in (??), we can consider the sequence
of kernels, K∗, which is given by,

· · · → ker(hn+1)→ ker(fn)→ ker(gn)→ ker(hn)→ · · · (1.56)

with hi, fi and gi as in (??). There is a left exact sequence of chain complexes,

0→ K∗ → A∗ → B∗, (1.57)

where A∗ is the upper sequence in the diagram in (??) and B∗ is the lower sequence in
the diagram in (??). Then the quotient sequence, A∗/K∗ is isomorphic to the sequence of
images in (??). Hence (??) is exact precisely when the quotient sequence, A∗/K∗ is exact.
Given that (??) is used in the construction of the Mayer-Vietoris sequence in persistent
homology (??), this would also be of use in determining when (??) is an exact sequence.

We have also shown that an excision theorem exists for persistent homology, both on the
level of persistence modules and persistent homology groups. Lemma ?? also gives us con-
ditions under which a filtered triple will satisfy the conditions of Theorem ?? and Theorem
??. In particular, given any filtered space X, we can define a way to restrict the filtration to
a pair of subsets in such a way that the conditions of Theorems ?? and ?? are guaranteed
to hold.
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2 Interleavings

In the first section, we defined a persistence module and looked at some of the properties
of persistent homology. In the remainder of this thesis, we look at relationships between
persistence modules.

If we want to compare persistence modules, then we currently have the notions of morphisms
or isomorphisms. But what does each tell us about the relationship between modules? On
the one hand, an isomorphism is a very strict relationship, and is certainly too much to
hope for in general. On the other hand, the existence of a morphism between two modules
is a rather weak relationship – as an extreme example, there exists a morphism from any
module to the zero module, but the existence of such a morphism doesn’t tell us anything
about the non-zero module. In this section we will define the concept of an interleaving
between persistence modules, and show how we can use this relationship to define a form
of distance between modules.

An interleaving was first defined in (?). Prior to this definition in (?), the standard way
of comparing persistence processes was to compare the discrete invariants called barcodes.
A barcode is a discrete invariant, which can be defined for persistence modules indexed
by R, but – crucially – not all modules (?). In (?) it was first suggested that we can
define relationships between the algebraic objects – the persistence modules – as opposed
to looking for similarities between barcodes, which was one of the important first steps to
generalise persistence to more than the initial special cases for which it was first defined.

If we want to define a relationship between P -persistence modules, where P is an arbitrary
poset, then the definition due to (?) is no longer sufficient. Interleavings of R-modules were
originally defined with respect to maps R→ R of the form a 7→ a+ ε. For a general poset,
a map of the form a 7→ a + ε may not be defined. Even when the above definition can
be defined for our given poset, the relationship is rather rigid, and may not describe the
relationship between the persistence modules in the most useful way. Consider for example
the relationship between the Čech and Vietoris-Rips filtrations on a given finite metric
space, X. As we discussed in section ??, for a given a ∈ R, the Čech complex, CX(a),
includes into the Vietoris-Rips complex, V RX(

√
2a). Hence, in this case, it could be more

useful to describe the relationship between the persistence modules CX and V RX via a map
f : R→ R given by,

f(a) =
√

2a.

In this section, we will define an interleaving, and the associated metric on the space of
P -persistence modules, in the most general way possible. The concept of an interleaving
has been generalised to a greater range of poset morphisms before, in (?) and (?). There is
one important distinction, however, between the definition of an interleaving distance we’ll
see in section ?? and the one in (?): to recover the original definition of the interleaving
distance as a special case of the generalised one, we specify an allowable set of translations
over which we wish to minimize. The original interleaving distance we saw above allows
translations of the form a 7→ a+ ε for some positive ε, and no others.
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One source of examples of these more general types of interleavings between R-persistence
modules is to consider maps between metric spaces. For example, suppose we’d like to
carry out a Vietoris-Rips filtration on a finite set, M , of n × n matrices. There are many
examples of metrics which we could define on M , as we’ll discuss in section ??, but there is
no canonical choice. In section ??, we’ll show that coarse and Lipschitz maps between metric
spaces give rise to interleavings between Vietoris-Rips filtrations, and demonstrate that the
interleavings defined in (?) provide a much more natural way of describing the relationship
between such modules than the rather rigid original definition of an ε-interleaving.

One of the most fundamental properties of persistent homology is the fact that the common
methods of filtering spaces - namely by Vietoris-Rips or sublevel-set filtrations - are stable.
This property essentially means that if we have similar inputs to a persistence process, then
the outputs — that is, the persistence modules — should also be similar. In particular, if
a persistence module is the composition of a sublevel set filtration and a homology functor,
then the distance between any two such modules is bounded by the distance between the
filtering functions. Stability is such a fundamental property that any generalisation of
the totally ordered case, to arbitrary posets, should also satisfy some form of stability
properties. When the so-called “generalised” interleaving distance was defined in (?), a
version of a stability theorem for sublevel set filtrations was proved. However, this proof
involved a rather technical assumption about the poset.

In this section, we offer a new perspective on the stability properties of this generalised
form of the interleaving distance. In (?), Lesnick observes that the supremum distance, d∞,
on the space of Rn-valued functions can itself be described as an interleaving distance. We
use this observation, and the generalisation of the concept of an interleaving seen in (?), to
show that if a pair of P -persistence modules are obtained from the sublevel set filtrations
of a pair of P -valued functions, then an interleaving between the filtering functions implies
the existence of an identical interleaving between the persistence modules.

2.1 Translations

In this section, we will explore how we can shift a persistence module by a translation. A
translation is simply an increasing, order-preserving self-map of a poset.

Definition 2.1. A translation of a poset (P,≤) is a map s : P → P such that for all
p1, p2 ∈ P , p1 ≤ p2 implies that s(p1) ≤ s(p2), and s(p) ≥ p for all p ∈ P .

If s, t ∈ Trans(P,≤) then clearly s◦ t is also increasing. Trans(P,≤) is thus a monoid with
respect to the operation of composition, where the identity in Trans(P,≤) is the identity
translation, idP (p) = p.

We note that Trans(P,≤) is also a partially ordered set itself, with the partial order,

s ≤ t if s(p) ≤ t(p) for all p ∈ P. (2.1)

40



Example 2.2. Consider the poset Rn, with the partial order given by,

a ≤ b if and only if ai ≤ bi for all 1 ≤ i ≤ n.

Given the partial order on the poset Rn, a map s : Rn → Rn is a translation of Rn is a
translation of each coordinate. Hence,

Trans(Rn) ∼= Trans(R× · · · × Trans(R).

Let ε ≥ 0, and let s : Rn → Rn be given by s(a) = a+ ε, where ε = (ε, . . . , ε). Then s is a
translation of the poset Rn.

This first example is a very important one. When an interleaving was first defined, it
was only with respect to R-persistence modules, and only in relation to translations of the
form a 7→ a + ε. The definitions in this section, which coincide with those of (?), are
generalisations of this special case.

Example 2.3. Let δ ≥ 1, and let s : Rn → Rn be given by s(a) = δ · a. Then, again, s is a
translation of the poset Rn.

Definition 2.4. Given a translation s ∈ Trans(P,≤), and a P -persistence module M :
P → C, define the s-shift of M to be the persistence module M(s) : P → C where for
p ∈ P ,

M(s)(p) =M(s(p)),

and whose transition maps are given by,

ψM(s)(p1, p2) = ψM(s(p1), s(p2)).

· · · M(a) M(b) M(c) · · ·

· · · M(s)(a) M(s)(b) M(s)(c) · · ·

f(a) f(b) f(c)

Figure 19: The shift of a persistence module, M by a translation, s.

We note that for any s ∈ Trans(P,≤), and any P -persistence module M, we have a
morphism f : M → M(s), called the shift map, where for each p ∈ P , f(p) : M(p) →
M(s)(p) is the transition map ψM(p, s(p)). This map is shown in Figure ??.

Additionally, we note that if we have a morphism f : M → N of P -persistence modules,
then for any s ∈ Trans(P,≤) we have a morphism f(s) :M→N (s) given by,

f(s)(p) = ψN (p, s(p)) ◦ f(p). (2.2)
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2.2 Interleavings

Definition 2.5. For s, t ∈ Trans(P,≤), two P -persistence modules M : P → C and
N : P → C are said to be (s, t)-interleaved if for all p ∈ P , there exist morphisms,

f(p) :M(p)→ N (s)(p),

g(p) : N (p)→M(t)(p),

such that for every p1 ≤ p2 in P, the diagrams,

M(p1) M(p2)

N (s)(p1) N (s)(p2)

ψM(p1,p2)

f(p1) f(p2)

ψN (s(p1),s(p2))

and

M(t)(p1) M(t)(p2)

N (p1) N (p2)

ψM(t(p1,t(p2))

ψN (p1,p2)

g(p1) g(p2) (2.3)

commute, and for every p ∈ P ,

g(s)(p) ◦ f(p) = ψM(a, ts(p)),

f(t)(p) ◦ g(p) = ψN (a, st(p)).

Or, equivalently, for every p ∈ P , the diagrams,

M(p) M(ts)(p)

N (s)(p)
f(p)

ψM(p,ts(p))

g(s)(p)
and

M(t)(p)

N (p) N (st)(p)

f(t)(p)g(p)

ψN (p,st(p))

commute.

Notice how if both s and t are the identity translation on P , then two P -persistence modules
are (s, t)-interleaved if and only if they are isomorphic. For this reason, an interleaving
between persistence modules can be thought of as a generalisation of an isomorphism, or
an isomorphism up to s and t.

The following example appears as Lemma 3.5(a) in (?) without proof. The example shows
how interval modules, introduced in section ??, are interleaved.

Example 2.6. For an interval I ⊂ R, and ε > 0 define Exε(I) to be the set,

Exε(I) = {a ∈ R| ∃b ∈ I such that |a− b| ≤ ε}. (2.4)

Suppose that I and J are intervals such that I ⊆ Exε(J) and J ⊆ Exε(I). Let s, t ∈
Trans(R,≤) be given by s(a) = t(a) = a+ ε.
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Let k[I] and k[J ] be the interval modules of Example ?? Define morphisms f : k[I]→ k[J ](s)
and g : k[J ]→ k[I](t) by,

f(a) =

{
idk a ∈ I, a+ ε ∈ J
0 otherwise,

and g(a) =

{
idk a ∈ J, a+ ε ∈ I
0 otherwise.

(2.5)

That is, f(a) : k[I](a)→ k[J ](s)(a) is the identity map whenever both k[I](a) and k[J ](s)(a)
are a copy of k, and is the zero map otherwise. Similarly, g(a) : k[J ](a) → k[I](t)(a) is
the identity map whenever both k[J ](a) and k[I](t)(a) are a copy of k, and is the zero map
otherwise.

We leave it for the interested reader to check that these morphisms are well-defined. This
amounts to checking that the diagrams,

k[I](a) k[I](b)

k[J ](s)(a) k[J ](s)(b)

ψk[I](a,b)

f(a) f(b)

ψk[J](s(a),s(b))

and

k[I](t)(a) k[I](t)(b)

k[J ](a) k[J ](b)

ψk[I](t(a),t(b))

ψk[J](a,b)

g(a) g(b) (2.6)

commute for all a, b ∈ R. There are 16 cases to check for each diagram. For instance, for
the first diagram, we much check all cases depending on whether a, b are elements of I, or
not, and whether a+ ε, b+ ε are elements of J , or not. We will not include this proof here.

Once we are suitably convinced that f and g are well defined persistence module morphisms,
we can now consider how they compose. Our aim is to show that for all a ∈ R,

f(a+ ε) ◦ g(a) = ψk[J ](a, a+ 2ε), and g(a+ ε) ◦ f(a) = ψk[I](a, a+ 2ε) (2.7)

All maps in (??) are either the identity map on k, or the zero map, depending on whether
a, a+ ε, a+ 2ε belong to I and J . We now need to show that the maps compose to coincide
for all values of a. We note that f(a + ε) ◦ g(a) is the identity map when both g(a) and
f(a+ ε) are the identity map. That is,

f(a+ ε) ◦ g(a) =

{
idk a ∈ J, a+ ε ∈ I and a+ 2ε ∈ J
0 otherwise

Meanwhile, the transition map ψk[J ](a, a+ 2ε) is the identity map when [a, a+ 2ε] ⊆ J , or
since J is an interval, when a, a+ 2ε ∈ J .

We note that for any a ∈ R, if a ∈ J and a+ 2ε ∈ J then a+ ε ∈ I. We see why this must
be true by supposing otherwise — that there is some a ∈ R such that a ∈ J, a+ 2ε ∈ J , but
that a+ ε /∈ I.

As J ⊂ Exε(I), then for every j ∈ J , there exists an i ∈ I such that |i − j| ≤ ε. So, in
particular, there exists i1 ∈ I such that,

|a− i1| ≤ ε. (2.8)
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If a+ε /∈ I, then this i1 must be strictly less than a+ε, as any i1 greater than a+ε violates
(??). Hence, there is some i1 < a + ε such that i1 ∈ I. Similarly, there exists i2 ∈ I such
that,

|(a+ 2ε)− i2| ≤ ε. (2.9)

Again, given that a + ε /∈ I, then this i2 must be strictly greater than a + ε, since any i2
less than a+ ε violates (??). Hence there is some i2 > a+ ε such that i2 ∈ I.

As I is an interval, it must be that a+ ε ∈ I.

Hence,

f(a + ε) ◦ g(a) =

{
idk a ∈ J, a+ 2ε ∈ J
0 otherwise

= ψk[J ](a, a + 2ε). (2.10)

A similar argument shows that g(a+ ε) ◦ f(a) = ψk[I](a, a+ 2ε) for all a ∈ R.

Hence k[I] and k[J ] are (s, t)-interleaved.

Remark 2.7. If persistence modulesM : P → C and N : P → C are (s, t)-interleaved, and
s′ and t′ are such that s′ ≥ s, t′ ≥ t, then M and N are also (s′, t′)-interleaved.

Conversely, ifM and N are not (s′, t′)-interleaved, then they are also not (s, t)-interleaved.

2.3 Metric Spaces and the Interleaving Distance

In section ??, we presented the definition of an interleaving in its most general form. But,
as we have discussed, this is not the definition we will see in most places in the literature.
The original definition — see, for example, (?) or (?) — allows only translations of the
poset (R,≤) of the form,

a 7→ a+ ε.

Clearly Definition ?? seems appropriate if we are to define interleavings for arbitrary poset
modules, but is there an advantage to using this more general definition even for R-modules?
In this section, we explore some of the relationships between data sets which the generalised
definition of an interleaving can be used to describe.

The following examples arise as the result of a simple question - how does the choice of
metric affect a Vietoris Rips filtration of a metric space? It may be the case that our data
lives in a space on which we can define more than one metric. For example, suppose that
we have a set of points, X = {X1, . . . , Xm} such that each Xi is an n×n matrix with entries
in R. Then each Xi can be thought of as a point of the metric space (Rn2

, d1), where we
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think of a matrix X ∈Mn×n(R) with elements,

X =


X1,1 X1,2 · · · X1,n

X2,1 X2,2 · · · X2,n
....

. . .

Xn,1 Xn,n

 (2.11)

as the vector (X1,1, X1,2, . . . , X1,n, X2,1, . . . , Xn,n) in Rn2
, and d1(Xi, Xj) is simply the Eu-

clidean distance between Xi and Xj as vectors in Rn2
. On the other hand, we could also

consider the metric space (Mn×n(R), d2), where for X,Y ∈Mn×n(R),

d2(X,Y ) = rank(Y −X). (2.12)

In this section, we will investigate how the choice of metric, d, on a space, M , affects a
Vietoris-Rips filtration on (M,d).

Proposition 2.8. Let (M,d1) and (N, d2) be finite metric spaces. Suppose there exists a
bi-Lipschitz map f : (M,d1)→ (N, d2) with Lipschitz constant C ≥ 1. LetM and N denote
the Vietoris-Rips filtrations on (M,d1) and (f(M), d2) respectively. Then M and N are
(s, s)-interleaved, where s : R→ R is given by s(a) = C · a.

Proof. If f : (M,d1) → (N, d2) is a bi-Lipschitz map with constant C ≥ 1, then for any
mi,mj ∈M ,

1

C
d1(mi,mj) ≤ d2(f(mi), f(mj)) ≤ Cd1(mi,mj). (2.13)

The Vietoris-Rips filtrations on (M,d1) and (f(M), d2) are completely determined by dis-
tances between pairs of points. That is, for a given a ∈ R, the complexM(a) is determined
by pairs mi,mj such that d1(mi,mj) ≤ a. We know that for every such pair, given (??),
the images of mi and mj in (f(M), d2) satisfy,

a

C
≤ d2(f(mi), f(mj)) ≤ Ca.

Hence, for every a ∈ R, there is an inclusion of Vietoris-Rips complexes,

M(a) ↪→ N (Ca). (2.14)

For any ni = f(mi), nj = f(mj),

d1(f
−1(ni), f

−1(nj)) ≤ Cd2(ff−1(ni), ff−1(nj)) = Cd2(ni, nj).

Hence f−1 is also Lipschitz with constant C, and there is an inclusion of Vietoris-Rips
complexes,

N (a)→M(Ca). (2.15)

Together (??) and (??) give rise to an (s, s)-interleaving of M and N .
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≤ c1

mi

g ◦ f(mi)

f(mi)

(M,d1) (N, d2)

f

g

Figure 20: Coarse maps f and g between metric spaces (M,d1) and (N, d2).

We note that this result would also hold if we took M and N to be the homology of the
Vietoris-Rips complexes, that is, if we took M to be the persistence module where for
a ∈ R,

M(a) = Hn(V R(M,a); k),

for some n ∈ Z and some field k.

Proposition 2.9. Suppose that (M,d1) and (N, d2) are coarsely equivalent metric spaces,
where f : (M,d1)→ (N, d2) and g : (N, d2)→ (M,d1) denote the coarse maps, as in Figure
??. Let M = {m1, . . . ,ml} be a finite set of points sampled from M . Let M and N denote
the Vietoris-Rips filtrations on (M, d1) and (f(M), d2) respectively. Then there exists an
interleaving of M and N .

Proof. The condition that for every εi > 0, there exists a real number δi > 0 such that for
every mi,mj ∈ M with d1(mi,mj) ≤ εi, we have d2(f(mi), f(mj)) ≤ δi, means that for
every εi ∈ R, we have an inclusion of Vietoris-Rips complexes,

M(εi) ↪→ N (δi). (2.16)

For an opposite inclusion, we first note that as g is a coarse map, then for any εi ∈ R, there
exists a γi ≥ 0 such that for any ni, nj ∈ f(M), whenever d2(ni, nj) = d2(f(mi), f(mj)) ≤ εi,
then d1(g ◦f(mi), g ◦f(mj)) ≤ γi. However, the points g ◦f(mi) and g ◦f(mj) in M do not
necessarily belong to the set M. Therefore the inequality above does not necessarily give
an inclusion,

N (εi) ↪→M(γi), (2.17)

but instead an inclusion,
N (εi) ↪→ M̃(γi), (2.18)

where M̃ denotes a Vietoris-Rips filtration on M̃ = {g ◦ f(m1), . . . , g ◦ f(mn)} = g ◦ f(M).
However, we use the fact that since f and g are coarse maps, there exists c1, c2 such that
for all m ∈M ,

d1(m, g ◦ f(m)) ≤ c1.
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and for all n ∈ N ,
d2(n, f ◦ g(n)) ≤ c2.

Together with the triangle inequality for d1, we have that whenever d1(g◦f(mi), g◦f(mj)) ≤
γi,

d1(mi,mj) ≤ d1(mi, g◦f(mi))+d1(g◦f(mi), g◦f(mj))+d1(g◦f(mj),mj) = γi+2c1, (2.19)

hence we have an inclusion of Vietoris-Rips complexes,

N (εi) ↪→M(γi + 2c1). (2.20)

Let s : R→ R be the map given by,

s(εi) = min{εi, inf{δi|d1(mi,mj) ≤ εi ⇒ d2(f(mi), f(mj)) ≤ δi}}, (2.21)

and let t : R→ R be the map given by,

t(εi) = min{εi, inf{γi|d2(ni, nj) ≤ εi ⇒ d1(g(ni), g(nj)) ≤ γi}+ 2c1}. (2.22)

Then s and t are translations such that M and N are (s, t)-interleaved.

2.4 The Interleaving Distance

The relationship of an interleaving can be to define a distance on the space of P -persistence
modules (?). First, we need a measure of the quality of the relationship which an interleav-
ing describes. Clearly, an (idP , idP )-interleaving describes the closest possible relationship
between P -modules. In order to describe the proximity between a pair of (s, t)-interleaved
modules, we require that P has certain extra structure, as we now detail.

Definition 2.10. A weight function on a poset (P,≤) is a function w : P × P → [0,∞]
satisfying,

• w(pi, pi) = 0 for all pi ∈ P ,

• for any pi, pj , pk such that pi ≤ pj ≤ pk, w(pi, pk) ≤ w(pi, pj) + w(pj , pk).

A poset (P,≤) together with a weight function, w, is called a weighted poset.

This condition states that P is what is known in (?) as a weighted category, also referred
to as a normed category in (?) or an additive category in (?).

Example 2.11. Let HP denote the Hasse diagram of the poset (P,≤). For any pi, pj ∈ P ,
let w(pi, pj) be the length of the shortest directed path in HP from pi to pj , where the
length of a path between vertices in Hp is the number of edges in the path. Note that
w(pi, pj) =∞ if there is no directed path between pi and pj - that is, if pi � pj .
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Example 2.12. Let P be the 5-element poset {a, b, c, d, e} with partial order as shown in
the Hasse diagram, HP , in Figure ??. For any pi, pj ∈ P , let w(pi, pj) be the length of the
shortest directed path in HP .

Then, for example, w(a, c) = 2, but w(c, a) = ∞ as there is no directed path from c to a.
Similarly, w(c, e) =∞.

b c

a

d e

Figure 21: A Hasse diagram, HP for a 5-element poset.

Definition 2.13. Given a poset P and a weight function, w, set,

dP (p1, p2) =

{
w(pi, pj) pi ≤ pj
∞ otherwise.

Then (P, dP ) is an example of a Lawvere metric space. Hence any weighted poset defines a
Lawvere metric space (?).

Definition 2.14. Let ω : Trans(P,≤)→ R≤0 be given by,

ω(s) = sup
p∈P
{dP (p, s(p))}. (2.23)

A translation s ∈ Trans(P,≤) is an ε-translation if ω(s) ≤ ε.

Definition 2.15. Let T be a submonoid of Trans(P,≤), and let ε ≥ 0. Two P -persistence
modules M,N : P → C are (ε, T )-interleaved if there exists a pair of ε-translations
s, t ∈ T such that M and N are (s, t)-interleaved.

Definition 2.16. Let P be a weighted poset and let T be a submonoid of Trans(P,≤).
The generalised interleaving distance between P -persistence modules with respect to
T is,

dTI (M,N ) = inf{ε|M and N are (ε, T )-interleaved}. (2.24)

Lemma 2.17. The generalised interleaving distance is an extended pseudometric.

Proof. We need to check that the three conditions of Definition ?? are satisfied for dTI .
Firstly, as T is a submonoid of Trans(P,≤), the identity translation idP must belong to T .
For any P -persistence moduleM : P → C, there exists an (idP , idP )-interleaving ofM and
M. Hence for any M : P → C, dTI (M,M) = 0 since M and M are (0, T )-interleaved.
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Secondly, we have that for anyM,N : P → C, ifM and N are (s, t)-interleaved for s, t ∈ T ,
then N andM are (t, s)-interleaved. Hence dTI (M,N ) = dTI (N ,M) for anyM,N : P → C
and for any T < Trans(P,≤).

To show that the triangle inequality holds for dTI , we will use a result of (?), where it is
proved that for any M,N ,L : P → C, if M and N are (s1, t1)-interleaved, and N and L
are (s2, t2)-interleaved, then M and L are (s1s2, t1t2)-interleaved. Since T is a submonoid
of Trans(P,≤), it is closed under the monoid operation of composition. Hence if s1, t1 ∈ T
and s2, t2 ∈ T , then s1s2, t1t2 ∈ T .

Finally, if s1, t1 are ε1-translations, and s2, t2 are ε2-translations, then,

sup
p∈P

dP (p, s1s2(p)) ≤ sup
p∈P

dP (p, s2(p)) + sup
p∈P

dP (s2(p), s1s2(p)) ≤ ε2 + ε1,

and similarly for t1t2.

Hence if M and N are (ε1, T )-interleaved, and N and L are (ε2, T )-interleaved, then M
and L are (ε1 + ε2, T )-interleaved.

Here we see why it is necessary to take T to be a submonoid of Trans(P,≤) as opposed
to just a subset. It is the property of being closed under composition of translations that
allows us to demonstrate that a triangle inequality holds for the interleaving distance, dTI .

Example 2.18. Consider the poset (Rn,≤) where ≤ is the usual partial order on Rn. Let
TE be the submonoid of Trans(Rn) given by,

TE = {t ∈ Trans(Rn,≤)|t(a) = a+ ε}, (2.25)

where ε = (ε . . . , ε), for some ε ≥ 0. Then for any t ∈ TE , ω(t) = ε.

This is the usual interleaving distance first defined in (?) for single parameter R-modules.

Example 2.19. For any poset (P,≤), setting T = Trans(P ) gives the interleaving distance
seen in (?).

Remark 2.20. If a pair of P -persistence modules are (ε, T1)-interleaved, for some T1 <
Trans(P,≤), then they are also (ε, T2)-interleaved for any T1 < T2 < Trans(P,≤). Hence
for any T1 < T2 < Trans(P,≤), we have that dT2I ≤ d

T1
I .

The following Remark, noted in (?), will be particularly useful when we want to deter-
mine whether a pair of Rn-persistence modules are (s, t)-interleaved for a given pair of
ε-translations s and t.

Remark 2.21. If s, t ∈ Trans(Rn,≤) are ε-translations for some ε ≥ 0, then

ω(s), ω(t) ≤ ε = ω(sε),
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where sε ∈ Trans(Rn,≤) is given by,

sε(a) = a+ ε.

Given Remark ??, we have that if a pair of Rn-persistence modules are not (sε, sε)-
interleaved, then they are not (s, t)-interleaved for any ε-translations s, t ∈ Trans(P,≤).

The interleaving distance provides a way to measure the proximity between persistence
modules, but is not particularly easy to compute. As Lesnick (?) observes, the problem
of determining whether a pair of persistence modules M,N : Rn → V ectk are (ε, TE)
interleaved for some ε ≥ 0 is NP-complete. For n = 1, we can define a discrete invariant
which completely describes the persistence module, known as a barcode or persistence
diagram. The interleaving distance between R-modules is then equivalent to a combinatorial
matching distance between the modules’ barcodes (?). One of the greatest challenges in
multiparameter, or generalised persistent homology is the fact that these invariants can no
longer be defined. As (?) and (?) have shown, the challenge is not in defining some sensible
invariant which mimics the barcode for more general modules, but in defining an invariant
which is complete – that is, contains all of the information in a persistence module – and
which is as useful as the barcode.

2.5 The Stability of Persistent Homology

If persistence is to be of any use in applications, and especially if it is to be used as a
means of distinguishing spaces and data sets, we need some guarantee that it is suitably
well-behaved, in the sense that filtrations of similar spaces – or datasets – are similar as
persistence modules. We would also like the guarantee that comparing persistence modules
is at least as useful as other standard methods we have of comparing the filtered spaces.
These properties are collectively referred to as ‘stability’ properties.

Here we detail two of the ways in which persistent homology can be said to be stable.

Firstly, suppose X and Y are two finite metric spaces. In section 1, we described the
Vietoris-Rips filtrations of finite metric spaces. Let V R(X) : R≥0 → Subsets(X) and
V R(Y ) : R≥0 → Subsets(Y ) be Vietoris-Rips filtrations of X and Y , respectively, and
let M,N : R≥0 → V ectk be the compositions of V R(X) and V R(Y ) with a simplicial
homology functor, respectively.

The first stability theorem is due to (?).

Theorem 2.22. Let TE < Trans(R,≤) be the submonoid given by,

TE = {s ∈ Trans(R,≤)|s(a) = a+ ε for some ε ≥ 0}.

Then,
dTEI (M,N ) ≤ dGH(X,Y ), (2.26)
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where dGH denotes the Gromov-Hausdorff distance between X and Y .

We can think of Theorem ?? as a guarantee that if we move the points of a finite metric
space a small amount, then the resulting persistence module will change by a similarly small
amount. That is, we will not create a significant persistent homology class which was not
present in the original module, or destroy one which was. This is clearly a desirable and
important quality for persistent homology to possess – it tells us that similar point clouds
really do have similar Vietoris-Rips filtrations, making persistent homology a good measure
of similarity between such objects. Proofs of similar statements involving Čech and witness
complexes can also be found in (?).

The second stability theorem we acknowledge in this section generalises those seen in (?) and
(?). The precise wording is due to (?). This second result concerns sublevel set filtrations
as opposed to Vietoris-Rips ones.

Let n-Fun be the category whose objects are functions of the form γX : X → Rn for some
topological space X. A morphism in this category, or an element of hom(γX , γY ) for some
γX : X → Rn, γY : Y → Rn, is a continuous function f : X → Y such that for all x ∈ X,

γX(x) ≥ γY (f(x)). (2.27)

For such a γX ∈ n-Fun, let M : Rn → Vect be the persistence module defined by,

M(a) = Hi({x ∈ X|γX(x) ≤ a}), (2.28)

with linear maps ψM(a, b) :M(a)→M(b) induced by the inclusions of sub-level sets

{x ∈ X|γX(x) ≤ a} ↪→ {x ∈ X|γX(x) ≤ b},

whenever a ≤ b. Similarly, for γY ∈ n-Fun, let N : Rn → Vect be the persistence module
defined by,

N (a) = Hi({y ∈ Y |γY (y) ≤ a}), (2.29)

with linear maps ψN (a, b) : N (a)→ N (b) induced by the inclusions of sub-level sets,

{y ∈ Y |γY (y) ≤ a} ↪→ {y ∈ Y |γY (y) ≤ b},

whenever a ≤ b.

Then the interleaving distance, dTEI (M,N ), provides one means of measuring the proximity
between γX and γY . Another way is to use the pseudometric,

d∞(γX , γY ) = inf
h∈Homeo(X,Y )

||γX − γY ◦ h||∞, (2.30)

where for a ∈ Rn,
||a||∞ = max{|ai| | i = 1, . . . , n}. (2.31)

Theorem 2.23. Let X be a topological space. For any γX , γY : X → Rn,

dTEI (M,N ) ≤ d∞(γX , γY ). (2.32)
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This second stability result tells us that if two persistence modules are constructed from
sublevel set filtrations of Rn-valued functions, then similar functions give rise to similar
persistence modules. Again, this stability property tells us that the interleaving distance
between persistence modules is a good measure of similarity between filtering functions. A
proof for this second result can be found in (?).

2.6 Stability of the Generalised Interleaving Distance

The previous section covers the stability of the interleaving distance dTEI . But what about
the stability of the generalised interleaving distance dTI for other choices of T? In this
section we define a measure of similarity between P -valued functions, which provides an
upper bound for the generalised interleaving distance between sublevel set filtrations of such
functions. We note that a dual problem was considered by Frosini in (?). Given a pair of
R-valued functions f : X → R and g : Y → R, for some topological spaces X and Y , the
stability theorem for persistent homology tells us that if we construct a pair of persistence
modules from sublevel set filtrations by f and g, then the interleaving distance between the
modules provides a lower bound for the supremum distance d∞(f, g), where the supremum
distance is defined by,

d∞(f, g) = inf
h∈Homeo(X,Y )

||f − g ◦ h||∞. (2.33)

Frosini’s work finds a lower bound for a variant dG∞ of the supremum distance, which for G
a proper subgroup of Homeo(X,Y ), is defined as,

dG∞(f, g) = inf
h∈G<Homeo(X,Y )

||f − g ◦ h||∞, (2.34)

The appropriate lower bound for dG∞ can be thought of as a variant of the interleaving
distance. The dual problem we consider in this section considers the opposite: by adapting
the interleaving distance, to specify a particular monoid of poset translations, we find an
appropriate variant of d∞ which is an upper bound for this interleaving distance.

The question of the stability of dTI where T = Trans(P,≤) for some poset (P,≤) was
considered in (?). This result is given for a partially ordered set P ⊆ Subsets(L), where
Subsets(L) is the set of subsets of a Lawvere metric space (L, dL), and the partial order
on P is given by the inclusion of subsets. Take two functions, γ1, γ2 : X → L, for some
topological space, X, and let the persistence modules M and N be given by,

M(A) = γ−11 (A), and N (A) = γ−12 (A), (2.35)

for A ∈ P . That is, M and N are persistence modules M,N : P → Top, with transition
maps ψM(A,B) and ψN (A,B) given by the inclusion of subspaces,

γ−11 (A) ↪→ γ−11 (B) and γ−12 (A) ↪→ γ−12 (B), (2.36)

respectively, for any A ⊆ B.

52



Definition 2.24. A poset P ⊆ Subsets(L) has enough translations if for every 0 ≤ ε ≤ η
there exists s = sε,η ∈ Trans(P ) with ω(s) ≤ η, such that for every A ∈ P we have an
inclusion,

Aε = {l ∈ L| there exists a ∈ A such that dL(a, l) ≤ ε} ⊆ s(A). (2.37)

Theorem 2.25. If P has enough translations, then the generalised interleaving distance
between M and N satisfies,

dI(M,N ) ≤ d(γ1, γ2), (2.38)

where
d(γ1, γ2) = max{d̂(γ1, γ2), d̂(γ2, γ1)}, (2.39)

and
d̂(γ1, γ2) = sup

x∈X
{dL(γ1(x), γ2(x))}. (2.40)

In this section, we provide an alternative statement of the stability properties of the gen-
eralised interleaving distance, which avoids the technical assumption that P has enough
translations. We will do this by reformulating the pseudometric d∞ as an interleaving
distance in the category of P -valued functions, P-Fun, following an intriguing remark by
Lesnick in (?).

2.6.1 d∞ as an Interleaving Distance

Earlier in section ?? we saw the category n-Fun, whose objects are functions γX : X → Rn,
and whose set of morphisms hom(γX , γY ) consists of continuous functions f : X → Y such
that for all x ∈ X, γX(x) ≥ γY (f(x)). In this section we will explain how Lesnick’s Remark
5.1 in (?) can be used to define an interleaving distance in the category n-Fun. For now,
we’ll consider the monoid TE < Trans(Rn,≤).

Definition 2.26. Given γX , γY ∈ Ob(n-Fun), f ∈ hom(γX , γY ) and s ∈ TE , we define
the shift of γX by s, γX(s) ∈ Ob(n-Fun), the shift map, f(s) ∈ hom(γX , γY (s)), and the
transition map, ψγX (γX , γX(s)).

1. Suppose s ∈ TE is given by s(a) = a+ ε for some ε = (ε, . . . , ε), where ε ≥ 0. Given
γX ∈ Ob(n-Fun), we set γX(s) to be,

γX(s)(x) := γX(x)− ε. (2.41)

2. Note that an element of hom(γX , γY (s)) is a continuous map f(s) : X → Y such that
for all x ∈ X,

γX(x) ≥ γY (s)(f(s)(x)), (2.42)

or equivalently, γX(x) ≥ γY (f(s)(x))− ε.
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If we are given f ∈ hom(γX , γY ), then we have that for all x ∈ X,

γX(x) ≥ γY (f(x)),

and so γX(x) ≥ γY (f(x)) ≥ γY (f(x)) − ε. Hence, given f ∈ hom(γX , γY ), we let
f(s) ∈ hom(γX , γY (s)) be given by f(s) = f .

3. To define transition maps ψγX (γX , γX(s)) for a translation s ∈ TE , we note that an
element of hom(γX , γX(s)) is a continuous map ψγX : X → X such that for all x ∈ X,

γX(x) ≥ γX(s)(ψγX (x)) = γX(ψγX (x))− ε.

If we let ψγX = idX , then this is true for any ε ≥ 0.

Definition 2.27. For γX , γY ∈ n-Fun, we say that γX : X → Rn and γY : Y → Rn are
(ε, TE)-interleaved if there exist s, t ∈ TE , f ∈ hom(γX , γY (s)), and g ∈ hom(γY , γX(t))
such that

f(t) ◦ g = ψγX (γX , γX(ts)) and g(s) ◦ f = ψγY (γY , γY (st)). (2.43)

The interleaving distance, dTEI (γX , γY ) is then given by,

dTEI (γX , γY ) = inf{ε|γX and γY are (ε, TE)-interleaved}. (2.44)

The following statement was given without proof in (?). We give a proof here for complete-
ness, but also to illuminate the generalisation which will follow in section ??.

Proposition 2.28. Let TE = {s ∈ Trans(Rn,≤)|s(a) = a + ε}, where ε = (ε, . . . , ε) for
some ε ≥ 0. Then,

dTEI (γX , γY ) = d∞(γX , γY ). (2.45)

Proof. Given Definitions ?? and ??, we have that γX and γY are (ε, TE)-interleaved if,
for s ∈ TE given by s(a) = a + ε, there exist morphisms f ∈ hom(γX , γY (s)) and g ∈
hom(γY , γX(s)) such that f(s) ◦ g = ψγX and g(s) ◦ f = ψγY . Or, in other words, γX and
γY are (ε, TE)-interleaved if there exist continuous maps,

f̃ : X → Y and g̃ : Y → X,

such that for all x ∈ X,
γX(x) ≥ γY (f̃(x))− ε,

and for all y ∈ Y ,
γY (y) ≥ γX(g̃(y))− ε,

and g̃ ◦ f̃ = idX , f̃ ◦ g̃ = idY .

That is, γX and γY are (ε, TE)-interleaved if and only if there exists a homeomorphism
f̃ : X → Y such that ||γX − γY ◦ f̃ ||∞ ≤ ε.
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2.6.2 Generalising d∞

Now that we have identified d∞ with an interleaving distance between objects of n-Fun,
in this section we generalise this concept to an interleaving distance between objects of
P-Fun, where P-Fun is the category with objects given by functions γX : X → P for some
poset P and some topological space X. The set of morphisms in this category, that is, the
set hom(γX , γY ) for two objects γX and γY , consists of continuous maps f : X → Y such
that for all x ∈ X,

γX(x) ≥ γY (f(x)). (2.46)

We generalise the interleaving distance for P-Fun as follows.

Definition 2.29. Let X and Y be two topological spaces, let γX : X → P, γY : Y → P be
elements of P-Fun, and let T < Trans(P ).

The maps γX and γY are (ε, T )-interleaved if there exist ε-translations s, t ∈ T and a
homeomorphism f : X → Y such that for all x ∈ X, y ∈ Y ,

s(γX(x)) ≥ γY (f(x)), and t(γY (y)) ≥ γX(f−1(y)). (2.47)

As in section ??, for ε ≥ 0, s ∈ Trans(P,≤) is an ε-translation if supp∈P dP (p, s(p)) ≤ ε.

Definition 2.30. Let X and Y be two topological spaces, and let γX : X → P, γY : Y →
P ∈ P-Fun. Define the distance dT∞ between γX and γY with respect to T < Trans(P,≤)
to be given by,

dT∞(γX , γY ) = inf{ε|γX and γY are (ε, T )-interleaved}. (2.48)

Proposition 2.31. Definition ?? is an interleaving in the category P-Fun.

Proof. We first need to define the concepts of the shifts, γX(s) and f(s), of maps γX and
f , respectively, and the transition maps ψγX (γX , γX(s)).

For an object, γX , of n-Fun, and a translation s ∈ TE of the form s(a) = a+ ε, we defined
the shift, γX(s), of γX by s to be given by γX(s)(x) = γX(x)− ε.

That is, we defined γX(s)(x) = s−1(γX(x)). Note that the inverse, s−1, is not a member of
TE , as it is not increasing, and therefore not a translation.

In a similar vein, given γX ∈ Ob(P-Fun), t ∈ Trans(P,≤), we set γX(t) to be,

γX(t)(x) := t−1(γX(x)). (2.49)

As with an element s ∈ TE , this inverse t−1 will not be an element of Trans(P,≤). However,
as we see in Definition ??, we will not require this construction, or t to be invertible, in the
definition of the interleaving. This construction is merely to illustrate the parallels between
Definition ?? and Definition ??.
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An element f ∈ hom(γX , γY ) is a continuous function f : X → Y such that for all x ∈ X,

γX(x) ≥ γY (f(x)), (2.50)

For s ∈ Trans(P,≤), an element of hom(γX , γY (s)) is a continuous map f(s) : X → Y
such that for all x ∈ X,

γX(x) ≥ γY (s)(f(s)(x)), (2.51)

or equivalently, given (??), s(γX(x)) ≥ γY (f(s)(x)). Let f(s) = f . Then,

s(γX(x)) ≥ γX(x) ≥ γY (f(x)),

as required, since s is a translation.

Finally, we define transition maps ψγX : γX → γX(s) for a translation s ∈ Trans(P,≤). An
element of hom(γX , γX(s)) is a continuous map ψγX : X → X such that for all x ∈ X,

s(γX(x)) ≥ γX(ψγX (x)). (2.52)

Setting ψγX = idX for all γX gives (??) as required, since s is an increasing map .

Hence, with these definitions of shifts of γX , γY and f , and of transition maps ψ, we have
that γX : X → P and γY : Y → P are (s, t)-interleaved for some s, t ∈ Trans(P ) if there
exist f ∈ hom(γX , γY (s)), g ∈ hom(γY , γX(t)) such that,

f(t) ◦ g = ψγY (γY , γY (ts)) and g(s) ◦ f = ψγX (γX , γX(st)) = idX . (2.53)

Since f(t) = f, g(t) = g for any s, t ∈ Trans(P ), and since ψγX = idX , ψγY = idY for
any γX , γY ∈ Ob(P-Fun), the condition (??) is equivalent to saying that γX , γY are (s, t)-
interleaved if there exist continuous maps f : X → Y , g : Y → X such that,

f ◦ g = idY and g ◦ f = idX ,

such that for all x ∈ X, y ∈ Y ,

s(γX(x)) ≥ γY (f(x)), and t(γY (y)) ≥ γX(f−1(y)), (2.54)

and so the interleaving distance obtained from these definitions of shifts and transition maps
is equivalent to Definition ??.

We now generalise the stability result in (??) to arbitrary posets P , and arbitrary choices
of T < Trans(P,≤).

Theorem 2.32. Let γX , γY ∈ P-Fun, and let M,N : P → V ectk be given by,

M(p) = Hn({x ∈ X|γX(x) ≤ p}; k) and N (p) = Hn({y ∈ Y |γY (y) ≤ p}; k), (2.55)

respectively, with linear maps ψM and ψM induced by the inclusions of sublevel sets. Then
for any T < Trans(P,≤), the generalised interleaving distance between M and N satisfies,

dTI (M,N ) ≤ dT∞(γX , γY ). (2.56)
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Proof. Suppose dT∞(γX , γY ) = ε for some ε < ∞, or else the result is trivially true. Then
there exists a homeomorphism f̄ : X → Y and some ε-translations s, t ∈ T such that for all
x ∈ X,

s(γX(x)) ≥ γY (f̄(x)), (2.57)

and for all y ∈ Y ,
t(γY (y)) ≥ γX(f̄−1(y)). (2.58)

If x ∈ X is such that γX(x) ≤ a, then y = f̄(x) is such that,

γY (y) ≤ s(γX(x)) ≤ s(a).

Hence there is an inclusion of sublevel sets,

{x ∈ X|γX(x) ≤ a} ↪→ {x ∈ X|γY (f̄(x)) ≤ s(a)}. (2.59)

which gives rise to a linear map,

M(a)→ N (s(a)), (2.60)

for every a ∈ P .

Similarly, if y ∈ Y is such that γY (y) ≤ b, then x = f̄−1(y) is such that,

γX(f̄−1(y)) ≤ t(γY (y)) ≤ t(b).

Hence there is an inclusion of sublevel sets,

{y ∈ Y |γY (y) ≤ b} ↪→ {y ∈ Y |γX(f̄−1(y)) ≤ t(b)}, (2.61)

which gives rise to a linear map,

N (b)→M(t(b)), (2.62)

for every b ∈ P .

The composition,
M(a)→ N (s(a))→M(ts(a)), (2.63)

is equal to the transition map ψM (a, ts(a)) for each a ∈ P , since all maps are induced by
the inclusions of sub-level sets. Similarly, the composition,

N (a)→M(t(a))→ N (st(a)), (2.64)

is equal to the transition map ψN (a, st(a)) for any a ∈ P . Hence, we have that if γX and
γY are (s, t)-interleaved, then M and N are (s, t)-interleaved.

We have therefore shown that we have a stability result for sublevel-set persistence modules
indexed by arbitrary posets P , which demonstrates precisely how a relationship between
P -valued functions extends to a relationship between their persistence modules, with no
assumptions about the poset.
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2.6.3 Universality of the Interleaving Distance

In section ??, we stated a number of stability results which hold for the interleaving distance.
In particular, let us recall Theorem ??, proved by Lesnick in (?). This result stated that
for γX , γY ∈ n-Fun, ifM and N are the persistence modules corresponding to sublevel-set
filtrations by γX and γY , respectively, then dTEI satisfies,

dTEI (M,N ) ≤ d∞(γX , γY ), (2.65)

where d∞(γX , γY ) = infh∈Homeo(X,Y ) ||f − g ◦ h||∞.

As well as this stability result, Lesnick also proves (?) that dTEI is the universal distance
for Rn-persistence modules with respect to d∞.

Theorem 2.33. Let γX , γY ,M and N be as above. If d is another pseudometric on the
space of Rn-persistence modules, which satisfies,

d(M,N ) ≤ d∞(γX , γY ),

then d ≤ dTEI .

This means that for all distances on the space of Rn-persistence modules which are stable
with respect to d∞, then dTEI is the most discerning distance. In the same paper (?), Lesnick
acknowledges the generalised interleaving distance of (?), and wonders whether a similar
universality result holds for the generalised dI . It is clear that if the generalised interleaving
distance satisfies a universality condition, then it is with respect to some distance other than
d∞. We conjecture that the appropriate analogue of d∞ for the generalised interleaving
distance is precisely our dT∞ of Definition ??.

Conjecture 2.34. Let γX , γY ∈ P-Fun. Let M,N be the P -persistence modules corre-
sponding to the sublevel-set filtrations by γX and γY , respectively. If d is another distance
on the space of P -persistence modules which satisfies,

d(M,N ) ≤ dT∞(γX , γY ),

then d ≤ dTI .

Universality of dTEI for Rn-persistence modules was proved by Lesnick (?) by showing that
for any Rn-persistence modules M and N which are ε-interleaved, there exists a pair of
topological spaces X and Y , and a pair of continuous functions f : X → Rn, g : Y → Rn
such that the persistent homology of the sublevel set filtrations by f and g are isomorphic
to M and N . It is our conjecture that a similar method could be used to prove conjecture
??. This is a source of further work.
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3 Poset Morphisms and the Interleaving Distance

We have seen that persistent homology can be described as a functor from a partially
ordered set, P , to a category, C, where C is commonly the category of vector spaces and
linear maps, or of topological spaces and continuous maps. In (?), the authors showed that
composing this process with an additional functor, F : C → D, is 1-Lipschitz with respect
to the interleaving distance. That is, for any M,N : P → C,

dI(F ◦M, F ◦ N ) ≤ dI(M,N ). (3.1)

This suggests that the interleaving distance does not depend on the choice of target category.
We have seen this inequality implicitly in action in the previous section – if a pair of
filtrations f : P → Subsets(X), and g : P → Subsets(Y ) are (s, t)-interleaved for some pair
of translations s, t ∈ Trans(P,≤), then the persistence modules H ◦ f and H ◦ g, where H
is a homology functor, are also (s, t)-interleaved.

Bubenik, de Silva and Scott (?) use the following diagram to describe the persistence
process.

posetQ posetP categoryC categoryDϕ M F (3.2)

Their result (?), outlined in (??), describes the effect of composing with the functor F . In
this section, it is the arrow on the left of their diagram, the poset morphism ϕ : Q → P ,
which will concern us. Specifically, we will consider the effect of precomposing with a
morphism ϕ : Q → P of partially ordered sets on the interleaving distance. We saw in
the previous section that interleavings are defined with respect to the structure of the
poset, since they depend on the set of translations, Trans(P,≤), and the weights of these
translations. We will consider how we can bound the interleaving distance between pull-back
modules with respect to the distance between the original modules.

There are many reasons for which we may be interested in considering the pull-backs and
push-forwards along poset morphisms, and order isomorphisms. We can use a pullback along
an inclusion ϕ : Zn → Rn in order to discretise a continuous persistence module. If we are
to perform any calculations with persistence modules, then discrete structures are easier to
store. See (?) for an in-depth discussion about the merits of discretising persistence modules
for applications, which also links discretisations to the concept of tameness. Discretising in
this way, however, should be done with caution. Given that interleavings depend on the
poset structure, pulling back along a poset morphism may distort distances. Hence the
distance between two discretised modules may not be the same as the distance between the
original ones. In section ??, we show that, outside of some special cases, reparameterising
does not preserve distances between modules, and in fact this action can be unstable.

Another reason for considering pull-backs and push-forwards along poset morphisms is the
possibility that we may have a persistence module indexed by a poset P , in which it is
impossible to calculate the interleaving distance. We have seen that interleavings, and
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calculating the interleaving distance, require the existence of non-trivial translations in P .
The work of (?) discusses a way to proceed in the case that Trans(P,≤) is the trivial
monoid. One example, seen in (?), of such a poset is a ‘zig-zag’ poset - one with a Hasse
diagram resembling that of Figure ??.

· · · · · ·

Figure 22: A ‘zig-zag’ poset which has no non-trivial translations.

This is the motivation for the relative interleaving distance introduced in (?). If we have
a morphism ϕ : P → Q, where Q is a poset with non-trivial Trans(Q,≤), then even if we
cannot calculate the interleaving distance in P , we can push forward a pair of P modules
along ϕ, and consider interleavings in Q. The relative interleaving distance is then a measure
of the distance between the P -persistence modules relative to the morphism ϕ : P → Q.

There is one more motivation for considering the reparameterisations of persistence modules
by poset morphisms, and that is the idea of rescaling modules. Scale is such a central part of
persistent homology, and yet the way it is treated is rather rigid. An ε-interleaving described
modules whose features arise at scales which differ by no more than ε, and sets their distance
to be ε accordingly. However, this is not ideal if we wish to look for relationships between
data sets which are identical – or suitably close – up to some change of scale.

By considering pull-backs and push-forwards of persistence modules along order isomor-
phisms, we can describe rescalings of persistence modules. We will then describe how
bounding the interleaving distance between pull-back modules allows us to describe inter-
leavings of rescaled modules.

In this section, we explore the question of when the operation of pushing forward or pulling
back a pair of persistence modules along a poset morphism is an isometry with respect
to the interleaving distance, and how we can use properties of the morphism to bound
the distance between a pair of push-forward or pull-back modules. This section could
therefore be said to be an investigation into the stability of the interleaving distance with
respect to morphisms of posets. In particular, we show that Lipschitz properties of an order
isomorphism ϕ : P → Q descend to identical properties with respect to the interleaving
distance between the push-forwards and pull-backs of modules along ϕ.

In (?), it is stated that pushing forward along any poset morphism is always an isometry
with respect to the interleaving distance. This work is done in the context of situations
in which it is impossible to calculate the interleaving distance in a particular poset P , but
it is possible in another poset Q for which there exists a morphism ϕ : P → Q. In this
section, we’ll show that the statement that “the push-forward operation ... is an isometry
onto its image” (?) should be taken with care. In situations where it is possible to calculate
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interleavings in either P or in Q, we show that the two concepts – and the distances obtained
from both – are not equal in general. We will also show that if ϕ is not an order isomorphism,
any Lipschitz properties of ϕ are in general not preserved by a Kan extension along ϕ. This
shows that reparameterising persistence modules, or discretising modules, can be a source
of instability with respect to the interleaving distance.

3.1 Poset Morphisms

Recall that a poset (P,≤) can be viewed as a category, with an object for each element of the
set and a morphism between a pair of objects p1, p2 whenever p1 ≤ p2. Thinking of posets
in this way, a morphism between two posets is really just a functor between categories.

Definition 3.1. Let (P,≤P ) and (Q,≤Q) be partially ordered sets. A poset morphism
ϕ : (P,≤P ) → (Q,≤Q) is a map ϕ : P → Q such that for all p1, p2 ∈ P , if p1 ≤P p2 then
ϕ(p1) ≤Q ϕ(p2).

Such maps are sometimes called order-preserving or monotone.

Example 3.2. The map ϕ : R → Rn given by ϕ(a) = a, where a is the constant vector
a = (a, . . . , a), is a morphism of posets (R,≤)→ (Rn,≤), where the partial order on Rn is
given by

(a1, . . . , an) ≤ (b1, . . . bn) if and only if ai ≤ bi for all 1 ≤ i ≤ n. (3.3)

Example 3.3. Let ϕ : Z→ R be any monotone function. Then ϕ is order-preserving.

Example 3.4. Let ϕc : R → Z be given by ϕc(a) = dae where dae denotes the ceiling of
a,

dae = min{z ∈ Z|z ≥ a}. (3.4)

Then ϕc is an order-preserving map, as is the map ϕf : R→ Z given by ϕf (a) = bac, where
bac denotes the floor of a,

bac = max{z ∈ Z|z ≤ a}. (3.5)

Definition 3.5. An order isomorphism ϕ : P → Q is a surjective order-embedding.
That is, an order isomorphism is a surjective function such that for all p1, p2 ∈ P , ϕ(p1) ≤
ϕ(p2) if and only if p1 ≤ p2. We write P ∼= Q if there exists an order isomorphism of posets
f : P → Q.

We do not have to check that ϕ is injective in order to conclude that ϕ is an isomorphism
since if ϕ : P → Q is a surjective order-embedding, then ϕ(p1) = ϕ(p2) if and only if both
ϕ(p1) ≥ ϕ(p2) and ϕ(p1) ≤ ϕ(p2), which, as ϕ is an order-embedding, means that p1 ≥ p2
and p1 ≤ p2. That is, ϕ(p1) = ϕ(p2) if and only if p1 = p2.

Example 3.6. Let P and Q be subsets of the poset (R,≤) given by P = [0, n], Q = [0,m ·n]
for some m > 0. Then the map ϕ : P → Q,

ϕ(a) = m · a, (3.6)

is a surjective order-embedding, so is an order isomorphism between P and Q.
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Example 3.7. As in Example ??, let P be the subset of (R,≤) given by P = [0, n], and
let Q be the subset of (R,≤) given by Q = [m,n+m]. Then the map

ϕ(a) = m+ a, (3.7)

is a surjective order-embedding, so is an order isomorphism between P and Q.

3.2 Pull-back Modules

Given any categories A,B and C, with functors ϕ : A → B and F : B → C, there is a
functor, ϕ∗F : A → C given by ϕ∗F (a) = F (ϕ(a)). When A and B are posets, and F is a
persistence module, this gives us a way of pulling back the domain of F to A.

Definition 3.8. Given any poset morphism ϕ : P → Q, and any Q-persistence module
M : Q → C, the pull-back of M along ϕ is the P -persistence module, ϕ∗M : P → C
with,

ϕ∗M(p) =M(ϕ(p)), (3.8)

for any p ∈ P , and with linear maps ψϕ∗M(p1, p2) : ϕ∗M(p1)→ ϕ∗M(p2) given by,

ψϕ∗M(p1, p2) = ψM(ϕ(p1), ϕ(p2)) :M(ϕ(p1))→M(ϕ(p2)), (3.9)

for every p1 ≤ p2.

We note that the map ψϕ∗M(p1, p2) exists whenever the map ψM(p1, p2) exists, since
ϕ(p1) ≤ ϕ(p2) whenever p1 ≤ p2.

We name ϕ∗M a pull-back module to show that we pull back the domain of ϕ : Q→ C to
P along ϕ, yet this should not be confused with the commonly used term of a pull-back in
category theory.

Example 3.9. Consider the map ϕ : Z → R in Example ??, given by ϕ(a) = a. If M is
any R-module, then the pull-back ϕ∗M is a Z-module, which is the discretisation of M.

Example 3.10. Let δ > 0, and let ϕ : R→ R be the order automorphism given by

ϕ(a) = δ · a. (3.10)

Then the pull-back, ϕ∗M, of an R-persistence module M : R → C along ϕ is rescaling of
M by a factor of δ.

For example, let M be the interval module, M = k[0, n], for some n > 0. Then

M(a) =

{
k a ∈ [0, n]

0 otherwise,
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with transition maps ψM given by,

ψM(a, b) =

{
idk (a, b) ⊆ [0, n]

0 otherwise.

Then ϕ∗M(a) =M(ϕ(a)), and so,

ϕ∗M(a) =

{
k a ∈ [0, nδ ]

0 otherwise,

with transition maps ψM given by,

ψM(a, b) = ψM(ϕ(a), ϕ(b)) =

{
idk (a, b) ⊆ [0, nδ ]

0 otherwise.

Hence ϕ∗M is the interval module k[0, nδ ]. We can think of ϕ∗M as a shrinking ofM by a
factor of δ.

In a similar vein, as well as rescaling modules we can also translate modules, as the following
example shows.

Example 3.11. Let M : R → V ectk be the same interval module as in Example ??,
M = k[0, n], and let δ ∈ R. This time, let ϕ be the order automorphism of R given by,

ϕ(a) = a+ δ. (3.11)

Then ϕ∗M is a translation of the module M by δ.

We have,

ϕ∗M(a) =M(ϕ(a)) =

{
k a ∈ [−δ, n− δ]
0 otherwise,

with ψϕ∗M(a, b) =

{
idk (a, b) ⊆ [−δ, n− δ]
0 otherwise.

Hence the pull-back module ϕ∗M is given by ϕ∗M = k[−δ, n− δ].

Let’s look at some specific examples of how pull-backs can be used to describe rescalings in
practice.

Example 3.12. Consider the following point clouds, which we can think of as two separate
finite metric spaces, which are both subsets of R2. The left hand set, X, is a rescaling of the
right-hand set, Y , which can also be stated as saying that we have a bijection f : X → Y ,
and some m ≥ 0 such that for any xi, xj ∈ X, we have

d(f(xi), f(xj)) = md(xi, xj). (3.12)
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Figure 23: Two point clouds X (left) and Y (right), which are topologically identical up to
a change of scale.

Let M : R→ V ectk be the persistence module given by,

M(a) = Hn(V RX(a); k). (3.13)

That is, M is the persistence module where each vector space, M(a) is given by the ho-
mology in degree n ≥ 0 of the Vietoris-Rips complex on X at scale a. The transition
maps, ψM(a, b), are the linear maps in homology induced by the inclusions of Vietoris-Rips
complexes V RX(a) ↪→ V RX(b). Similarly, let N : R → V ectk be the persistence module
with,

N (a) = Hn(V RY (a); k), (3.14)

and with transition maps ψN induced by inclusions of Vietoris-Rips complexes. Consider
the poset morphism ϕ : R→ R given by ϕ(a) = ma. Then (??) tells us that

M∼= ϕ∗N , (3.15)

since for every a ∈ R, we have an isomorphism, M(a) ∼= ϕ∗N (a) = N (ma).

Example 3.13. Let X be a torus. Let P1 be the plane with equation z = z1. Let f : X → R
measure the height of a point x ∈ X from the horizontal plane P1 as shown in Figure ??.

The sublevel set,
F(a) = {x ∈ X|f(x) ≤ a},

consists of all points in the torus which are at height at most a above P1. We have marked
the points a1, a2, a3 and a4 as it is at these points that the topology of the sublevel sets
changes. For a ≤ a1, the sublevel set F(a) is empty. For a1 < a < a2, the sublevel set F(a)
is a disk. For a2 < a < a3, it is homotopic to a cylinder. For a3 < a < a4 it is homotopic
to a punctured torus, and for any a > a4, the sublevel set F(a) is the whole torus. We can
see this filtration by different values of a in Figure ??.

Let P2 be another horizontal plane below P1, with equation z = z2. Let ϕ : R→ R be given
by ϕ(a) = a+ (z1 − z2).
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a1

a2

a3

a4

P1

Figure 24: The function f measures the height of a point of the torus above the plane P1.

a1 a1

a2 a2

a1 a1

a2

a3

a4

Figure 25: A height filtration, F , of a torus.

Then the pull-back of F along ϕ corresponds to a height filtration of the torus, X, by
f2 : X → R, where f2 measures the height of a point x ∈ X above the plane P2. If Pi is
any other plane below P1 with equation z = zi, then the height filtration corresponding to
the plane Pi is related to F via a pull-back along the order isomorphism ϕi : R→ R given
by ϕi(a) = a+ (z1 − zi).
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a1

a2

a3

a4

P1

P2

P3

Figure 26: Various choices of plane Pi lead to different – but related – filtrations.

Remark 3.14. For any different choice of plane Pi below P1, we can obtain the height
filtration relative to Pi as a pull-back of F . However, a plane which lies above the torus, or
between any ai and ai, gives a filtration which cannot be obtained as a pull-back of F . This
simple observation leads to the possibility of considering equivalence classes of filtrations
under the relation,

F1 ∼ϕ F2, (3.16)

if F1 can be obtained from F2 via a pull-back along the order isomorphism ϕ. This is a
source of potential further work.

We can consider other posets and other order-automorphisms.

Example 3.15. Consider the action of the permutation group Sn on Rn. That is, for
σ ∈ Sn, let ϕσ : Rn → Rn be given by,

ϕσ(a1, . . . , an) = (aσ(1), . . . , aσ(n)).

For instance, consider the two-parameter filtration, F , seen in Figure ??.
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(1, 1)
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(1, 3)

γ2

(2, 1)

(2, 2)

(2, 3)

(3, 1) γ1

(3, 2)

(3, 3)

Figure 27: A symmetric bifiltration, F .

Let ϕ : R2 → R2 be the order automorphism given by,

ϕ(a1, a2) = (a2, a1). (3.17)

The pull-back of F along ϕ amounts to a reflection in the line γ1 = γ2. We may see that in
this case, the reflection ϕ∗F is identical to the original filtration F . This reflects the fact
that births of simplicies occur along the diagonal, γ1 = γ2.

3.3 Pull-backs and the Interleaving Distance

In this section we will consider the question of when the pull-back operation along a poset
morphism ϕ : P → Q is an isometry with respect to the interleaving distance. Let M :
Q → C and N : Q → C be a pair of Q-persistence modules. We will consider the cases
dI(M,N ) = 0 and dI(M,N ) > 0 separately. Within this section, dI will be used to denote

the interleaving distance, d
Trans(P )
I .

Lemma 3.16. If ϕ : P → Q is order-preserving, then the map ϕ−1 : Q→ P is also order-
preserving. That is, for any p1, p2 ∈ P , if ϕ(p1) ≤ ϕ(p2) whenever p1 ≤ p2, then for any
q1, q2 ∈ Q, ϕ−1(q1) ≤ ϕ−1(q2) whenever q1 ≤ q2.
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Proof. Since ϕ is an order isomorphism, it is also an order embedding. Hence for any
p1, p2 ∈ P , if ϕ(p1) ≤ ϕ(p2) then p1 ≤ p2, if and only if ϕ−1ϕ(p1) ≤ ϕ−1ϕ(p2). Since ϕ
is surjective, then every q1, q2 ∈ Q is given by q1 = ϕ(p1), q2 = ϕ(p2) for some p1, p2 ∈ P .
Hence if q1 ≤ q2 then ϕ−1(q1) ≤ ϕ−1(q2).

Lemma 3.17. The pull-back of Q-persistence modules along an order isomorphism ϕ : P →
Q preserves isomorphism classes of persistence modules.

Proof. Suppose M ∼= N . Then for every q ∈ Q, we have morphisms f(q) :M(q) → N (q),
g(q) : N (q)→M(q) such that g(q) ◦ f(q) = idM(q) and f(q) ◦ g(q) = idN (q). From now on,
we will simply refer to these morphisms f(q) : M(q) → N (q) and g(q) : N (q) →M(q) as
f and g, regardless of q ∈ Q.

In particular, for every p ∈ P , there exist maps,

f :M(ϕ(p))→ N (ϕ(p)), g : N (ϕ(p))→M(ϕ(p)),

or, in other terms, maps,

f : ϕ∗M(p)→ ϕ∗N (p), g : ϕ∗N (p)→ ϕ∗M(p),

such that f ◦g = idϕ∗N (a), and g◦f = idϕ∗M(a). Hence ϕ∗M∼= ϕ∗N . Hence if dI(M,N ) =
0, then the pull-back along any poset morphism induces an isometry with respect to the
interleaving distance.

Conversely, as ϕ is surjective, then every q ∈ Q is equal to ϕ(p) for some p ∈ P . Hence
if there exists an isomorphism M(ϕ(p)) → N (ϕ(p)) for each p ∈ P , then there exists an
isomorphismM(q)→ N (q) for every q ∈ Q. Hence if ϕ is surjective, then dI(M,N ) = 0 if
and only if dI(ϕ

∗M, ϕ∗N ) = 0.

We will now consider when dI(M,N ) = dI(ϕ
∗M, ϕ∗N ), supposing that dI(M,N ) > 0.

Lemma 3.18. For any order isomorphism ϕ : P → Q, and any T < Trans(P ), the set T ′

given by,
T ′ = {ϕtϕ−1|t ∈ T},

is a submonoid of Trans(Q).

Proof. Clearly, ϕtϕ−1 is order-preserving, since it is the composition of three order-preserving
morphisms, and by Lemma ??, the composition of order-preserving morphisms is order-
preserving.

Secondly, for any q ∈ Q, we have that tϕ−1(q) ≥ ϕ−1(q) as t ∈ Trans(P ). As ϕ is order-
preserving, we then have that ϕtϕ−1(q) ≥ ϕϕ−1(q) = q. Hence T ′ is a subset of Trans(Q).

T ′ is closed under composition, since for any s, t ∈ T ,

(ϕsϕ−1)(ϕtϕ−1) = ϕstϕ−1,
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which is an element of T ′ since T is a monoid and hence is closed under composition.

Finally, the identity translation idP is an element of T since T is a monoid, and so
ϕidPϕ

−1 = idQ is an element of T ′.

Proposition 3.19. For any order isomorphism ϕ : P → Q, any two Q-persistence modules
M and N are (s, t)-interleaved if and only if the P -persistence modules ϕ∗M and ϕ∗N are
(s′, t′)-interleaved, where,

s′ = ϕ−1sϕ and t′ = ϕ−1tϕ. (3.18)

Proof. If M and N are (s, t)-interleaved for some s, t ∈ Trans(Q), then there exist mor-
phisms of persistence modules f : M → N (s) and g : N → M(t). Therefore, for each
q1 ≤ q2 ∈ Q, there exists a pair of commutative diagrams,

M(q1) M(q2)

N (s(q1)) N (s(q2))

ψM

ψN

and

M(t(q1)) M(t(q2))

N (q1) N (q2)

ψM

ψN

(3.19)

and we have that for every q ∈ Q, g(s(q)) ◦ f(q) = ψM(q, ts(q)) and f(t(q)) ◦ g(q) =
ψN (q, st(q)). Hence for every q ∈ Q, there exists a pair of commutative diagrams,

M(q) M(ts(q))

N (s(q))

ψM M(t(q))

N (q) N (st(q))
ψN

(3.20)

In particular, for each p1 ≤ p2 in P , we have a pair of commutative diagrams,

M(ϕ(p1)) M(ϕ(p2))

N (sϕ(p1) N (sϕ(p2))

ψM

ψN

and

M(tϕ(p1)) M(tϕ(p2))

N (ϕ(p1)) N (ϕ(p2))

ψM

ψN

(3.21)

and for each pi ∈ P , there exists a pair of commutative diagrams,

M(ϕ(pi)) M(tsϕ(pi))

N (sϕ(pi))

ψM M(tϕ(pi))

N (ϕ(pi)) N (stϕ(pi))
ψN

(3.22)
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Since M(ϕ(pi)) = ϕ∗M(pi), we can rewrite the diagrams in (??) as,

ϕ∗M(p1) ϕ∗M(p2)

ϕ∗N (ϕ−1sϕ(p1)) ϕ∗N (ϕ−1sϕ(p2))

ψϕ∗M

ψϕ∗N

and

ϕ∗M(ϕ−1tϕ(p1)) ϕ∗M(ϕ−1tϕ(p2))

ϕ∗N (p1) ϕ∗N (p2)

ψϕ∗M

ψϕ∗N

(3.23)

and we can rewrite the diagrams in ?? as,

ϕ∗M(p) ϕ∗M(ϕ−1tsϕ(p))

ϕ∗N (ϕ−1sϕ(p))

ψϕ∗M
ϕ∗M(ϕ−1tϕ(p))

ϕ∗N (p) ϕ∗N (ϕ−1stϕ(p))
ψϕ∗N

(3.24)

We note that ϕ−1stϕ = (ϕ−1sϕ)(ϕ−1tϕ) = s′t′, and so the existence of the above diagrams
means that, by definition, ϕ∗M and ϕ∗N are (s′, t′)-interleaved. The converse statement
follows from the surjectivity of ϕ.

Remark 3.20. We could consider this proof in a more categorical way. Namely, if we
consider the functor categories Func(P, C) and Func(Q, C), whose objects are respectively
P- and Q-persistence modules, and whose morphisms are natural transformations between
functors, then an isomorphism ϕ : P → Q gives rise to an induced isomorphism of Func-
tor categories. Hence, for every pair of P -persistence modules M,N ∈ Func(P, C), we
have a corresponding pair of persistence modules ϕ∗M, ϕ∗N ∈ Func(Q, C). Likewise,
for s ∈ Trans(P ), for every morphism M → N (s), we have a corresponding morphism
ϕ∗M → ϕ∗N (ϕ−1sϕ), and for t ∈ Trans(P ), for every morphism N → M(t), we have a
corresponding morphism ϕ∗N → ϕ∗M(ϕ−1tϕ), which must commute as needed. Hence for
any (s, t)-interleaving in Func(P, C), we have a (ϕ−1sϕ, ϕ−1tϕ)-interleaving between the
corresponding objects of Func(Q, C).

We may also interpret this result in a categorical way - we have discussed that an isomor-
phism of categories P → Q gives rise to an induced isomorphism between the Functor cat-
egories, which preserves natural transformations between objects of the functor categories.
Interleavings have often been described as “approximate isomorphisms” (?). In Proposition
??, we see that the isomorphism P → Q gives rise to a one-to-one correspondence between
these approximate isomorphisms of objects of the functor categories.

In the statement of the following theorem dP and dQ are the pseudometrics defined in Section
2.4, which are defined with respect to chosen weight functions, wP : P × P → [0,∞] and
wQ : Q×Q→ [0,∞], respectively. The interleaving distances between P - and Q-persistence

modules, meanwhile, are d
Trans(P )
I and d

Trans(Q)
I , respectively.

Theorem 3.21. If ϕ : P → Q is an order isomorphism such that ϕ−1 is Lipschitz with
constant C ≥ 0, then the pull-back of Q-persistence modules along ϕ is also a Lipschitz map
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with constant C. That is, if ϕ is such that for any q1, q2 ∈ Q, there exists a constant C > 0
such that,

dP (ϕ−1(q1), ϕ
−1(q2)) ≤ CdQ(q1, q2), (3.25)

then for any Q-persistence modules M and N , T < Trans(Q),

dT
′

I (ϕ∗M, ϕ∗N ) ≤ CdTI (M,N ), (3.26)

where T ′ = ϕ−1Tϕ.

Proof. Suppose dI(M,N ) < ∞, or else the result is trivially true. Then there exists a
pair of translations s, t ∈ Trans(Q,≤) such that M and N are (s, t)-interleaved, where
ω(s), ω(t) ≤ ε for some ε <∞. That is,

sup
q∈Q
{dQ(q, s(q))} ≤ ε and sup

q∈Q
{dQ(q, t(q))} ≤ ε. (3.27)

Using Proposition ??, ϕ∗M and ϕ∗N are (s′, t′)-interleaved, where s′ = ϕ−1sϕ, and t′ =
ϕ−1tϕ.

For any p ∈ P , the condition (??) tells us that,

dP (p, ϕ−1sϕ(p)) = dP (ϕ−1ϕ(p), ϕ−1sϕ(p)) ≤ C · dQ(ϕ(p), sϕ(p)) ≤ C · ε. (3.28)

Hence ω(s′) = ω(ϕ−1sϕ) = supq∈Q{dQ(q, ϕ−1sϕ(q))} ≤ C · ε.

Similarly, ω(t′) ≤ C · ε, and so dI(ϕ
∗M, ϕ∗N ) ≤ CdI(M,N ).

Definition 3.22. Poset morphisms ϕ, γ : P → Q are comparable if either ϕ(p) ≥ γ(p)
for all p ∈ P , or or ϕ(p) < γ(p) for all p ∈ P .

In particular, if Q is a totally ordered set, then any two morphisms ϕ, γ : P → Q are
comparable.

Lemma 3.23. For any order isomorphisms ϕ, γ : P → Q, ϕ and γ are comparable if and
only if ϕ−1 and γ−1 are comparable.

Proof. Suppose ϕ, γ are comparable. Then for every p ∈ P we have either ϕ(p) ≥ γ(p)
or ϕ(p) < γ(p). We have that ϕ(p) ≥ γ(p) if and only if γ−1ϕ(p) ≥ p, since γ−1 is
order-preserving, if and only if γ−1(q) ≤ ϕ−1(q), where q = ϕ(p).

Similarly, ϕ(p) ≤ γ(p) if and only if γ−1ϕ(p) ≤ p, if and only if γ−1(q) ≤ ϕ−1(q), where
q = ϕ(p). We note that as every q ∈ Q is equal to ϕ(p) for some p ∈ P , then for every
q ∈ Q we have that either ϕ−1(q) ≤ γ−1(q) or ϕ−1(q) ≥ γ−1(q).
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We note that the distances dP and dQ are not necessarily symmetric, since the weight
functions wP and wQ are not. Recall that if pi ≤ pj , then wP (pi, pj) is the weight of the
relation pi ≤ pj , and wP (pi, pj) = ∞ if pi � pj . Hence wP (pi, pj) = wP (pj , pi) if and
only if either pi = pj or there is no relation between pi and pj . We can, however, define a
symmetric version of both dP and dQ, which allows us to define a generalisation of d∞.

Definition 3.24. Given ϕ, γ : P → Q, let d̂Q(ϕ,γ) be given by,

d̂Q(ϕ, γ) = min

{
sup
p∈P
{dQ(ϕ(p), γ(p))}, sup

p∈P
{dQ(γ(p), ϕ(p))}.

}
(3.29)

Theorem 3.25. Let ϕ, γ : P → Q be comparable order isomorphisms. If ϕ and γ are
such that ϕ−1 and γ−1 are Lipschitz maps with constants Cϕ, Cγ, respectively, then for any
Q-module M,

dI(ϕ
∗M, γ∗M) ≤ Cd̂Q(ϕ, γ), (3.30)

where C = max{Cϕ, Cγ}.

Proof. First suppose that d̂(ϕ, γ) <∞, or else the result is trivially true. Let d̂(ϕ, γ) = ε.

Let s : P → P be given by,

s(p) =

{
γ−1ϕ(p) γ−1ϕ(p) ≥ p
p otherwise,

(3.31)

and let t : P → P be given by,

t(p) =

{
ϕ−1γ(p) ϕ−1γ(p) ≥ p
p otherwise

. (3.32)

We will show that ϕ∗M and γ∗M are (s, t)-interleaved.

We first check that s, t ∈ Trans(P,≤). Note that the condition that ϕ and γ are comparable
means that for all p ∈ P , either ϕ(p) ≥ γ(p), in which case γ−1ϕ(p) ≥ p and ϕ−1γ(p) < p,
or ϕ(p) < γ(p), in which case γ−1ϕ(p) < p, and ϕ−1γ(p) > p. In either case, we have that
s and t satisfy,

s(p) ≥ p and t(p) ≥ p for all p ∈ P. (3.33)

We note that since ϕ, γ and their inverses are order-preserving, then so are their composi-
tions. Hence for all p1, p2 ∈ P , if p1 ≤ p2 then s(p1) ≤ s(p2) and t(p1) ≤ t(p2)

We now show that ϕ∗M and γ∗M are (s, t)-interleaved.

If we look back to how s and t were defined, we see that for all p ∈ P , we have that
s(p) ≥ γ−1ϕ(p), and so, since γ is order-preserving, γs(p) ≥ ϕ(p) for all p ∈ P . Hence for
every p ∈ P there exist transition maps in the module M,

ψM(ϕ(p), γs(p)) :M(ϕ(p))→M(γs(p)), (3.34)
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or in other words, for every p ∈ P , there exists a map ϕ∗M(p) → γ∗M(s(p)). Similarly,
ϕt(p) ≥ γ(p) for all p ∈ P , and so there exist transition maps in the module M,

ψM(γ(p), ϕt(p)) :M(γ(p))→M(ϕt(p)), (3.35)

or in other words, for every p ∈ P , there exists a map γ∗M(p)→ ϕ∗M(t(p)). Let p1, p2 ∈ P
be such that p1 ≤ p2. We can assemble the transition maps in (??) and (??) into diagrams,

ϕ∗M(p1) ϕ∗M(p2)

γ∗M(s(p1)) γ∗M(s(p2))

ϕ∗M(t(p1)) ϕ∗M(t(p2))

γ∗M(p1) γ∗M(p2)

(3.36)

and for any p ∈ P , we can assemble these transition maps into a pair of diagrams,

ϕ∗M(p) ϕ∗M(ts(p))

γ∗M(s(p))

ϕ∗M(t(p))

γ∗M(p) γ∗M(st(p))

(3.37)

Since all maps in these diagrams are given by transition maps inM, they must necessarily
commute. Which, by definition, means that the pull-back modules ϕ∗M and γ∗M are
(s, t)-interleaved. Finally, we have that,

ω(s) = sup
p∈P
{dP (p, s(p))} = sup

p≤γ−1ϕ(p)

{dP (p, γ−1ϕ(p))}. (3.38)

Given the assumption that γ−1 is Lipschitz with constant Cγ , we have that for any p ∈ P ,

dP (p, γ−1ϕ(p)) = dP (γ−1γ(p), γ−1ϕ(p)) ≤ CγdQ(γ(p), ϕ(p)) ≤ Cγε ≤ Cε,

where C = max{Cγ , Cϕ}.

Similarly,
ω(t) = sup

p∈P
{dP (p, t(p))} = sup

p≤ϕ−1γ(p)

{dP (p, ϕ−1γ(p))}, (3.39)

and assuming ϕ−1 is Lipschitz with constant Cϕ, then for any p ∈ P ,

dP (p, ϕ−1γ(p)) = dP (ϕ−1ϕ(p), ϕ−1γ(p)) ≤ CϕdQ(ϕ(p), γ(p)) ≤ Cϕε ≤ Cε,

where C = max{Cγ , Cϕ}.

Hence ϕ∗M and γ∗M are Cε-interleaved.

We will now consider a special case of Theorem ??, in which we assume ϕ and γ are
automorphisms of a poset, P , and in which γ is the identity map on P . We will see that in
this case, we do not need a Lipschitz condition in order to bound dI(ϕ

∗M,M).
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Proposition 3.26. Let P be any partially ordered set, and let ϕ : P → P be a poset
automorphism such that ϕ is comparable to the identity map on P . Then for any P -
persistence module M,

dI(ϕ
∗M,M) ≤ sup

p∈P
{dP (p, ϕ(p))}. (3.40)

Proof. Let

s(p) =

{
ϕ(p) ϕ(p) ≥ p
p otherwise,

and t(p) =

{
ϕ−1(p) ϕ−1(p) ≥ p
p otherwise.

(3.41)

Then s and t are both translations of P . The condition that ϕ is comparable with the
identity map means that for every p ∈ P , we have either ϕ(p) ≥ p or ϕ(p) < p. Hence in
all cases we have that s(p) ≥ ϕ(p), and t(p) ≥ ϕ−1(p) for all p ∈ P . Hence for every p ∈ P ,
we have a transition map in the module M,

ψM(ϕ(p), s(p)) :M(ϕ(p))→M(s(p)). (3.42)

Since for every p ∈ P ,M(ϕ(p)) = ϕ∗M(p), this is the same as saying that for every p ∈ P ,
we have a map,

fp := ψM(ϕ(p), s(p)) : ϕ∗M(p)→M(s(p)). (3.43)

Similarly, as t(p) ≥ ϕ−1(p) for all p ∈ P , then in particular, ϕt(p) ≥ p for all p ∈ P , and so
we have a map,

gp := ψM(p, ϕt(p)) :M(p)→ ϕ∗M(t(p)), (3.44)

and moreover the composition of these maps must satisfy,

ft(p) ◦ gp = ψM(p, ts(p)) and gs(p) ◦ fp = ψϕ∗M(p, st(p)) = ψM(ϕ(p), ϕst(p)), (3.45)

since both f and g are themselves transition maps, which commute as we require by defi-
nition. Hence ϕ∗M and M are (s, t)-interleaved.

Finally, we note that

ω(s) = sup
p∈P
{dP (p, s(p))} = sup

p≤ϕ(p)
{dP (p, ϕ(p))} ≤ sup

p∈P
{dP (p, ϕ(p))}, (3.46)

and

ω(t) = sup
p∈P
{dP (p, t(p))} = sup

p≤ϕ−1(p)

{dP (p, ϕ−1(p))} ≤ sup
p∈P
{dP (p, ϕ(p))}. (3.47)

where the final inequality in (??) follows as ϕ is surjective.
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3.4 Kan Extensions of Persistence Modules

So far in this section, we have considered the pull-back of a Q-persistence module along
a morphism of posets ϕ : P → Q. We now consider the dual concept of a push-forward
of a persistence module. That is, given a P -persistence module M : P → C, and a poset
morphism ϕ : P → Q, we consider how to extend the domain ofM to Q. We have seen that
a persistence module is nothing more than a functor between categories, where the source
category is a partially ordered set. Thinking of persistence modules in this way means that
we can make use of concepts in category theory to solve problems in persistence. Since M
is simply a functor from P to C, and a morphism of posets is really just a functor of thin
categories, then we may recognise that the problem of extending the domain of M to Q
amounts to finding the Kan extension of M along ϕ.

In this section, we’ll give an overview of the definition of a left Kan extension of a persistence
module M : P → C along a morphism ϕ : P → Q, of posets P and Q, as seen in (?). We
will then show explicit examples of how the Left Kan extension is constructed for given
persistence modules and poset morphisms. Beyond this, we will give a detailed description
of the structure of a left Kan extension along an order isomorphism. This will lead us to
dual results to those of section ?? for the push-forward of a module along a morphism of
posets.

A Kan extension can, however, be defined for arbitrary maps, and was described in (?) as
a way to discretise continuous persistence modules. Our final main result in this section
shows that we should be cautious when using Kan extensions to discretise a persistence
process. We show that discretising in this way is, in general, not a stable process.

We note that there is a dual concept of a right Kan extension of a persistence module along
a morphism of posets, which can be seen in (?). Since this section is intended to illustrate
the potential instability of the construction, we only detail a left Kan extension here, rather
than describe two very similar constructions.

A reader unfamiliar with Kan extensions who wishes to see the general definition may
consult (?).

Definition 3.27. The left Kan extension of M : P → C along ϕ : P → Q is a persistence
module LanϕM : Q→ C,

Q

P C

LanϕM

M

ϕ (3.48)

which can be thought of as the best approximation of M with a change of domain from
P → Q, in the sense that there is a morphism of persistence modules, η :M→ LanϕM◦ϕ
such that if X : Q→ C is any other persistence module for which there exists a morphism,
α :M→ X ◦ ϕ, there is a unique morphism of persistence modules σ : LanϕM→ X such
that σ ◦ η = α.
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In certain circumstances, we can define the left Kan extension on a module in a simpler
way.

Definition 3.28. Given a functor F : A → B, a co-cone of F is an object b ∈ Ob(B),
together with morphisms,

αi : F (ai)→ b,

for each ai ∈ Ob(A), such that whenever we have a morphism f : ai → aj between a pair of
objects of A, the diagram,

F (ai)

b

F (aj)

F (f)

αi

αj

(3.49)

commutes.

A co-cone (b, α) is a colimit of F if for any other co-cone (b′, α′), there exists a unique
morphism b→ b′ such that the following diagram commutes.

F (ai)

b b′

F (aj)

f

αi

α′i

αj

α′j

(3.50)

That is, the colimit of F is the universal co-cone of F .

Definition 3.29. A category C is cocomplete if the colimit of all functors A→ C exists,
for all small categories, A.

If C is cocomplete then, firstly, we have that the left Kan extension LanϕM exists, and
secondly, it can be defined object-wise as the colimit of a particular functor (?). Cocomplete
categories are not rare – the category Top of topological spaces, the category R-mod of
modules over a commutative ring R, and the category V ectk of vector spaces over a field k
are all cocomplete. From now on we will assume that our persistence modules take values
in a cocomplete category, C.

Definition 3.30. Given a poset morphism ϕ : P → Q, and q ∈ Q, define the comma
category, (ϕ ↓ q) to be the category with objects given by the morphisms of Q of the
form ϕ(p) ≤ q, where p ∈ P . For p1 ≤ p2, then the morphisms in the comma category,

ϕ(p1) ≤ q → ϕ(p2) ≤ q,

are simply given by the morphisms p1 ≤ p2 in P .
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There is a forgetful functor, π : (ϕ ↓ q)→ P , which sends an object ϕ(p) ≤ q of the comma
category to p ∈ P .

Definition 3.31. The left Kan extension, LanϕM, of M : P → C along ϕ : P → Q is
the colimit of the composite functor,

(ϕ ↓ q) π−→ P
M−→ C. (3.51)

For qi ≤ qj , a co-cone of (ϕ ↓ qj)
π−→ P

M−→ C is also a co-cone of (ϕ ↓ qi)
π−→ P

M−→ C. Hence

the colimit, LanϕM(qj), of (ϕ ↓ qj)
π−→ P

M−→ C is a co-cone of (ϕ ↓ qi)
π−→ P

M−→ C, and so
there is a unique map ψ(i, j) : LanϕM(qi) → LanϕM(qj), by definition of a colimit. We
define the transition maps ψLanϕM to be given by,

ψLanϕM(qi, qj) := ψ(i, j). (3.52)

When the poset morphism ϕ : P → Q is an order isomorphism, then the left Kan extension
of a persistence module M : P → C along ϕ : P → Q has a much simpler description.

Proposition 3.32. If ϕ : P → Q is an order isomorphism, then the left Kan extension of
a P -persistence module M : P → C along ϕ is given by,

LanϕM(q) =M(ϕ−1(q)). (3.53)

and the transition maps in LanϕM are equal to corresponding transition maps in M,

ψLanϕM(q1, q2) = ψM(ϕ−1(q1), ϕ
−1(q2)). (3.54)

Proof. We first note that (M(ϕ−1(q)), ψM) is a co-cone of the composite functor,

(ϕ ↓ q) π−→ P
M−→ C, (3.55)

since for all ϕ(pi) ≤ q, there exists a transition map ψM : M(pi) → M(ϕ−1(q)), and for
any ϕ(pi) ≤ ϕ(pj) ≤ q, the diagram of transition maps,

M(pi)

M(ϕ−1(q))

M(pj)

ψM(pi,pj)

ψM(pi,ϕ
−1(q))

ψM(pj ,ϕ
−1(q))

(3.56)

must necessarily commute, since all transition maps in M commute.

If (N, f) is another co-cone of (ϕ ↓ qi) → P → C, then since ϕ(ϕ−1(q)) ≤ q, there exists a
morphism, fq :M(ϕ−1(q))→ N . Hence M(ϕ−1(q)) satisfies the universal property and is
hence the Left Kan Extension of M : P → C along ϕ.

77



Hence, in the case that ϕ : P → Q is an order isomorphism, the left Kan extension of a P -
persistence moduleM : P → C along ϕ is the same as the pull-back ofM along the inverse
map ϕ−1 : Q → P . We will refer to this module as the push-forward of M : P → C
along ϕ, and denote it by ϕ∗M.

We can use a similar method to find the left Kan extension of a P -persistence module along
a general morphism of posets.

Example 3.33. Let P and Q be the posets with Hasse diagrams as shown in Figure ??,
and let ϕ : P → Q be given by,

ϕ(a) = e, ϕ(b) = f and ϕ(c) = g. (3.57)

a

b

c

d

e

f

g h

Figure 28: Hasse diagrams for posets P (left) and Q (right).

Let M : P → V ectk be the P -persistence module given by,

k

k

k

idk

idk

(3.58)

Just as in the proof of Proposition ??, if q ∈ Q is such that ϕ(p) = q, then,

LanϕM(q) =M(p).

Hence,
LanϕM(e) =M(a) = k,

LanϕM(f) =M(b) = k,

LanϕM(g) =M(c) = k,

and the transition maps between these vector spaces are precisely those inherited from the
persistence module M. Explicitly, ψLanϕM(e, f) = ψLanϕM(f, g) = idk.
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We still have to consider LanϕM(d) and LanϕM(h).

Firstly, (M(a), ψM(−, a)) is a co-cone of the diagram (ϕ ↓ d) → P → V ectk since for
every p ∈ P with ϕ(p) ≤ d, we have a morphism ψM : M(p) → M(a), and this is the
universal co-cone by an identical argument to the one in the proof of Proposition ?? – if
(N, f) is any other co-cone of (ϕ ↓ d) → P → V ectk, then there exists a unique morphism
fa :M(a)→ N , since ϕ(a) ≤ d. Hence LanϕM(d) =M(a) = k.

Finally, LanϕM(h) is the colimit of (ϕ ↓ h) → P → V ectk, but in this case, the comma
category (ϕ ↓ h) is empty, and so LanϕM(h) is the colimit of the empty diagram, that is,
the zero vector space (?). The Q-persistence module LanϕM is then shown in Figure ??.

k

k

k

k 0

idk

idk

idk 0

Figure 29: The persistence module LanϕM.

3.5 Push-forwards along Order Isomorphisms

Given Proposition ??, the push-forward of a P -persistence module M along an order iso-
morphism ϕ : P → Q is the same as the pull-back of M along the inverse, ϕ−1 : Q → P .
Hence all of the results from section ?? have a dual statement, for push-forwards. All of
the following results hold due to Proposition ??, and the corresponding results in section
??.

Lemma 3.34. The push-forward of P -persistence modules along an order isomorphism
ϕ : P → Q preserves isomorphism classes of persistence modules.

Lemma 3.35. For any poset morphism ϕ : P → Q, and any s ∈ Trans(Q,≤), ϕ−1sϕ ∈
Trans(P,≤).

Proposition 3.36. For any order isomorphism ϕ : P → Q, any P -persistence modules M
and N are (s, t)-interleaved if and only if the Q-persistence modules ϕ∗M and ϕ∗N are
(s̃, t̃)-interleaved, where,

s̃ = ϕsϕ−1 and t̃ = ϕtϕ−1. (3.59)
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Theorem 3.37. If ϕ : P → Q is an order isomorphism such that ϕ is Lipschitz with
constant C ≥ 0, then the push-forward of P -persistence modules along ϕ is also a Lipschitz
map with constant C. That is, if ϕ is such that for any p1, p2 ∈ P ,

dQ(ϕ(p1), ϕ(p2)) ≤ CdP (p1, p2), (3.60)

then for any P -persistence modules M and N , and any T < Trans(P ),

dT
′

I (ϕ∗M, ϕ∗N ) ≤ CdTI (M,N ), (3.61)

where T ′ = ϕTϕ−1.

We can combine this result with that of Theorem ?? to get the following result.

Corollary 3.38. If ϕ : P → Q is an order isomorphism which is bi-Lipschitz with constant
C ≥ 0, then the push-forward of P -persistence modules along ϕ, and the pull-back of Q-
persistence modules along ϕ, are also bi-Lipschitz maps with constant C. That is, if ϕ is
such that for any p1, p2 ∈ P , T < Trans(P ),

1

C
dP (p1, p2) ≤ dQ(ϕ(p1), ϕ(p2)) ≤ CdP (p1, p2), (3.62)

then for any P -persistence modules M and N ,

1

C
dTI (M,N ) ≤ dT ′I (ϕ∗M, ϕ∗N ) ≤ CdTI (M,N ), (3.63)

and for any Q-persistence modules M′ and N ′,

1

C
dT
′

I (M′,N ′) ≤ dTI (ϕ∗M′, ϕ∗N ′) ≤ CdT ′I (M′,N ′), (3.64)

where T ′ = ϕTϕ−1.

Example 3.39. Let ϕ : R → R be given by ϕ(a) = ma + c, for some m ≥ 0. Then ϕ is
bi-Lipschitz with respect to the Euclidean metric on R, with constant m. LetM and N be
the interval modules,

M = k[0, 1], N = k[0, 2].

Then by Example ?? M and N are 1-interleaved. Using Corollary ??, the interleaving
distance between the push-forward modules along ϕ satisfies,

1

m
≤ dI(ϕ∗M, ϕ∗N ) ≤ m.

Combining the results of Theorem ?? and Theorem ??, we also obtain the following corol-
lary.
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Corollary 3.40. If ϕ : P → Q is an order isomorphism such that there exists a C ≥ 0,
such that for every p1, p2 ∈ P ,

dQ(ϕ(p1), ϕ(p2)) = CdP (p1, p2), (3.65)

then for any P -persistence modules M and N , and any T < Trans(P ),

dT
′

I (ϕ∗M, ϕ∗N ) = CdTI (M,N ). (3.66)

and for any Q-persistence modules M′ and N ′,

dTI (ϕ∗M′, ϕ∗N ′) =
1

C
dT
′

I (M′,N ′), (3.67)

where T ′ = ϕTϕ−1.

Example 3.41. Let P be a subset of the real line consisting of a set of 100 equally-spaced
real numbers, P = {pi|i = 1, . . . , 100}, with common difference |pi − pi+1| = g. Let the
partial order on P be that inherited from R, and let the metric dP be the Euclidean metric,
again inherited from R. Let Q be the subset of the integers given by Q = {1, . . . , 100}, with
the usual partial order inherited from R, and with metric dQ given by dQ(qi, qj) = |qj − qi|.

Let ϕ : P → Q be given by ϕ(pi) = i. Then ϕ is an order isomorphism between posets P
and Q, and satisfies,

dQ(ϕ(pi), ϕ(pj)) = gdP (pi, pj).

Then Corollary ?? states that for any P -persistence modules M,N : P → C,

dI(ϕ
∗M, ϕ∗N ) = gdI(M,N ),

and for any Q-persistence modules M′ and N ′,

dI(ϕ∗M′, ϕ∗N ′) =
1

g
dI(M′,N ′). (3.68)

In particular, Corollary ?? tells us that if C = 1, we have the following result.

Corollary 3.42. If ϕ : P → Q is an isometry with respect to the chosen metrics on P and
Q, then both pulling back a pair of Q-persistence modules, and pushing forward a pair of
P -persistence modules along ϕ induce an isometry with respect to the interleaving distance.

The following Theorem is dual to Theorem ??. The proof follows a near-identical structure,
so is not included here.

Theorem 3.43. Let ϕ, γ : P → Q be comparable order isomorphisms. If ϕ and γ are
Lipschitz maps with constants Cϕ, Cγ, respectively, then for any P -modules M and N ,

dI(ϕ∗M, γ∗M) ≤ Cd̂(ϕ−1, γ−1), (3.69)

where C = max{Cϕ, Cγ}.
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3.6 The Instability of Kan Extensions of Persistence Modules

We have shown that if the map ϕ : P → Q preserves the poset structure — that is, if ϕ is
an order isomorphism — then pushing forward and pulling back along ϕ causes Lipschitz
properties of ϕ to descend to identical properties in the interleaving distance between the
pull-back and push-forward modules. But a pull-back module can be defined even in the
case that ϕ is not an order isomorphism, as can the left Kan extension of a module. In this
section, we demonstrate that for general ϕ : P → Q, and modulesM,N : P → C, when we

can calculate either d
Trans(P )
I (M,N ) or d

Trans(Q)
I (ϕ∗M, ϕ∗N ), the two are, in general, not

equal.

We will also show that a Kan extension along a non-isomorphism ϕ : P → Q does not
preserve the interleaving distance even in the case that ϕ is an isometry of posets. This
demonstrates how important the structure of the poset, dictated by the order, is in deter-
mining interleaving distances between modules. It also provides a strong note of caution
when it comes to reparameterising, or discretizing persistence modules. If the morphism is
not an order isomorphism, then reparameterising along such a morphism may distort the
distance between persistence modules. This section continues to build upon the work of (?)
in considering Kan extensions of persistence modules and the interleaving distance between
push-forward modules.

The following example demonstrates this.

Example 3.44. Let P and Q be the posets with Hasse diagrams HP and HQ as shown in
Figure ??, and define Lawvere metrics on P and Q to be given by the directed path length
metrics. That is, for p1, p2 ∈ P , dP (p1, p2) is the number of edges in the shortest directed
path in HP between p1 and p2, and similarly for dQ.

a

b

c

d

e

f

g

h

Figure 30: Hasse diagrams for posets P (left) and Q (right).

Let ϕ : P → Q be given by,

ϕ(a) = f, ϕ(b) = g and ϕ(c) = h. (3.70)
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Notice that ϕ is an isometry with respect to dP and dQ – for any pi, pj ∈ P , dQ(ϕ(pi), ϕ(pj)) =
dP (pi, pj). In particular, this means that ϕ is Lipschitz with constant 1.

Consider the following pair of P -persistence modules, M,N : P → V ectk.

k

k

k

idk

idk

0

k

k

0

idk

Figure 31: The P -persistence modules M (left) and N (right).

Then M and N are (s, t)-interleaved, where s, t ∈ Trans(P,≤) are given by s = idP , and
t is defined by,

t(a) = a, t(b) = a, t(c) = b.

Since ω(s) = supp∈P {dP (p, s(p))} ≤ 1 and ω(t) = supp∈P {dP (p, t(p))} ≤ 1, we have that
M and N are 1-interleaved.

Now consider the left Kan extensions ofM and N along ϕ : P → Q. Using a method similar
to that in Example ??, we have that LanϕM and LanϕN are given by the Q-persistence
modules,

k

k

k

k

k

idk

idk

idk

idk

and

0

0

0

k

k

0

0

0

idk

(3.71)

respectively.

To see that left Kan extensions do not preserve Lipschitz properties of ϕ, it is enough to
see that LanϕM and LanϕN are not 1-interleaved. This can be seen by noting that there
is no pair of maps LanϕM(g)→ LanϕN (f) and LanϕN (f)→ LanϕM(e) which compose
to the transition map ψLanϕM(g, e) = idk.

The results of this section show that when the morphism of posets preserves the structure
given by the order, then Lipschitz properties of the map pass to identical properties of
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the pull-back and push-forward operations. However, if the morphism of posets does not
preserve the order, then these Lipschitz properties are not necessarily preserved. This shows
us that when we rescale modules via an order-preserving map, then the distance between
modules scales accordingly. The operation of pushing a persistence module forward along
a non-isomorphism, however, is not stable with respect to the interleaving distance, and so
reparameterising persistence modules should be done with care.
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Further Work

There is a rich selection of further work which could follow from the results of this thesis.
We have considered generalised interleavings of arbitrary poset modules, but exploring
generalised interleavings of the more familiar R-modules is also of interest. We have focused
on the interleaving distance, but for R-modules, we could also look at their barcodes or
persistence diagrams. As Lesnick notes (?), the relationship between the barcodes of (s, t)-
interleaved R-modules for general s, t ∈ Trans(R) is still not fully understood in the way
that it is for s, t ∈ TE .

There are also numerous opportunities to investigate in more detail the effect of changing
the choice of submodule T < Trans(P ) on the interleaving distance, dTI , or indeed, the
effect of changing the choice of pseudometric, dP on the poset, P .

Within this thesis we have commented on various other sources of further work inspired by
our results. One of which is the possibility of considering the universality of the interleaving
distance dTI , in light of our generalisation of the supremum distance, d∞.

One other source of further work which we have commented on in section 3 was the possi-
bility of considering equivalence classes of persistence modules, under the relation of being
isomorphic under a pull-back along a morphism of posets. This idea came about from the
simple observation that many persistence modules which we know to be related can be
described as being identical up to a pull-back along some poset morphism.

One final, related idea would be to investigate whether we can use relationships between
pull-back modules to determine whether one persistence module is obtained as a rescaling
of another. That is, if we know that the pull-backs of modules display certain symmetries,
it would be interesting to see whether we can infer that there is some symmetry in the
original process.
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