
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder/s. The content of the thesis and accompanying research data (where applicable)
must not be changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the
University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering & Physical Sciences
School of Engineering

Engineering Applications and Architectures
for Cybersecurity of Command-and-Control

Messaging in the Internet of Things.

by

Andrew John Poulter
CEng. MSc. BSc. (Hons)

ORCiD: 0000-0002-3438-3981

A thesis for the degree of
Doctor of Philosophy

February 2022

http://www.southampton.ac.uk
http://orcid.org/0000-0002-3438-3981

University of Southampton

Abstract

Faculty of Engineering & Physical Sciences
School of Engineering

Doctor of Philosophy

Engineering Applications and Architectures for Cybersecurity of
Command-and-Control Messaging in the Internet of Things.

by Andrew John Poulter

This thesis explores ideas connected with the cybersecurity of, and secure
communications for, Internet of Things (IoT) devices; and introduces a number of original
elements of research — including the Secure Remote Update Protocol (SRUP), a protocol
developed to provide a mechanism for secure Command and Control messages.

The work introduces cybersecurity concepts and background, IoT networking protocols
and Command and Control messaging, before moving on to describe the original research.

The design and concept of SRUP is described in detail, along with a scheme to support the
use of dynamic identity in the context of the IoT. Techniques to establish device identity are
then described, followed by an examination of the security features of SRUP.

An open-source implementation of SRUP is then introduced, alongside a discussion on the
way this has been optimized for ease of use by non-specialist developers. A concept to
enable the controlled sharing of information and requests between Command and Control
networks using SRUP is then described, along with a discussion on how this approach
could be adopted to help to address the problem of short-term provision of access to IoT
systems by guest users.

Finally an experimental assessment of the protocol in simulated real-world conditions is
described and measurements of the performance overhead associated with using SRUP,
with inexpensive low-power hardware, are discussed and analysed. These results show
that the use of the SRUP protocol, in comparison to an insecure implementation, added an
additional processing delay of between 42.92ms and 51.60ms to the end-to-end message
propagation — depending on the specific hardware in use.

The thesis concludes with a summary of the research, and some recommendations for
follow-on work.

http://www.southampton.ac.uk

v

Contents

List of Figures xiii

List of Tables xv

Listings xvii

Declaration of Authorship xix

Acknowledgements xxi

I Background 1

1 Introduction 3
1.1 Outline, research questions, and thesis structure 3

1.1.1 Research questions . 3
1.1.2 Structure of this thesis . 4
1.1.3 Research methodology . 5
1.1.4 The effects of the COVID-19 pandemic on this work 5

1.2 Background and concepts . 5
1.2.1 Commodity components . 6
1.2.2 Connected digital devices . 7
1.2.3 The Internet of Things . 7
1.2.4 Military applications of the Internet of Things 9
1.2.5 Cyber Physical Systems . 10
1.2.6 The defence and national security challenges of the IoT and Cyber

Physical Systems . 10
1.2.7 Critical National Infrastructure . 11

1.3 Summary . 11

2 Cybersecurity and The Internet of Things 13
2.1 Cybersecurity . 13

2.1.1 Cybersecurity as an element of national security 13
2.2 Malware . 14

2.2.1 Viruses . 14
2.2.2 Worms . 15
2.2.3 Trojans . 15

2.3 Attack types . 16
2.3.1 Cryptoransomware . 16
2.3.2 Botnets . 16
2.3.3 Remote access and data exfiltration 17

vi CONTENTS

2.3.4 Denial of Service attack . 17
2.3.5 Physical attacks against network infrastructure 17

2.4 Software vulnerabilities . 18
2.4.1 Buffer overflow . 18
2.4.2 Code injection . 18

2.5 Software Libraries . 19
2.6 Threats to IoT security . 20

2.6.1 Compromise of data or services . 21
2.6.2 Attacks against the device . 21

2.6.2.1 Denial of use of the device 21
2.6.2.2 IoT device ransomware . 21
2.6.2.3 IoT botnets and Distributed Denial of Service attacks 22
2.6.2.4 Replay attack . 22

2.6.3 Attacks against connected physical systems 23
2.6.4 Supply chain attacks . 23

2.7 Cyber threat actors . 24
2.8 Encryption . 24

2.8.1 Historical ciphers . 25
2.8.1.1 Substitution ciphers . 25
2.8.1.2 One-time pads . 26

2.8.2 Asymmetric encryption . 27
2.8.3 Diffie-Hellman key exchange . 28
2.8.4 Quantum computing . 28

2.9 Summary . 28

3 Commonly used Internet of Things Protocols 31
3.1 Internet communications . 31

3.1.1 Link and inter-networking layer protocols 32
3.1.2 Transport layer protocols . 32
3.1.3 Application layer protocols . 32

3.2 Cryptographic protocols . 33
3.2.1 Modern symmetric encryption and message digest algorithms 33
3.2.2 IPSec . 33
3.2.3 Transport Layer Security . 34
3.2.4 X.509: certificates and identity . 34
3.2.5 Quick UDP Internet Connections . 35
3.2.6 Datagram Transport Layer Security . 35
3.2.7 Secure shell . 36

3.3 Constrained protocols . 37
3.3.1 CoAP . 38

3.3.1.1 CoAP Publish and Subscribe 38
3.3.1.2 CoAP Quality of Service . 38
3.3.1.3 Network access . 39

3.3.2 MQTT . 39
3.3.3 MQTT Messages . 39

3.3.3.1 MQTT Topics . 40
3.3.3.2 MQTT Quality of Service . 40

3.3.4 MQTT Security . 40
3.4 Summary . 41

CONTENTS vii

4 Command and Control Architecture and the Internet of Things 43
4.1 Command and Control . 43

4.1.1 Hierarchical versus peer-to-peer architectures 44
4.1.2 C2 and the IoT . 45
4.1.3 C2 for military applications of IoT . 46

4.2 Security requirements for C2 messaging . 46
4.3 IoT Command and Control message types . 48

4.3.1 Messages concerned with the operation of the devices 48
4.3.1.1 Software update . 48

4.3.2 Messages concerned with the operation of the C2 network 49
4.3.3 Messages concerned with the operation of the functional system . . 49

4.4 Summary . 50

II The Secure Remote Update Protocol 51

5 The Secure Remote Update Protocol 53
5.1 Design concept . 53
5.2 MQTT payload . 54
5.3 SRUP message elements . 55
5.4 MQTT topics and message addressing . 56

5.4.1 Message source . 56
5.4.2 Destination addressing . 57

5.4.2.1 Positive device identification 58
5.4.2.2 Multiple C2 servers . 58

5.5 Message encryption and access control . 59
5.5.1 Encrypted messages and topic access control 59

5.6 Message types . 60
5.6.1 Update messages . 61

5.6.1.1 Update initiate message . 63
5.6.1.2 Update activate message . 63

5.6.2 Response messages . 64
5.6.3 Action messages . 64

5.6.3.1 Identification request message 64
5.6.4 Data messages . 65
5.6.5 Join and remove messages . 65

5.6.5.1 Join messages . 66
5.6.5.2 Remove messages . 66
5.6.5.3 Deregistration . 66

5.6.6 Syndication messages . 67
5.7 SRUP in action . 67
5.8 Alternative transports for the SRUP protocol 69

5.8.1 The need for alternative transport mechanisms for SRUP 69
5.8.2 HTTP transport for SRUP . 70

5.9 Summary . 72

6 Identity and Key Distribution 73
6.1 Identity and the Internet of Things . 73

6.1.1 Static device identity . 74
6.1.2 Dynamic device identity . 74
6.1.3 Registering a dynamic identity . 75

viii CONTENTS

6.1.4 Using dynamic identity in a C2 system 75
6.2 Cryptographic key distribution and SRUP . 76

6.2.1 SRUP key exchange via an HTTPS secure web service 76
6.2.2 SRUP registration and key exchange workflow 77

6.2.2.1 Initial registration . 78
6.2.2.2 Additional steps for systems using TLS protected MQTT . . 80

6.2.3 Communicating the registration URL 81
6.3 Key revocation . 82
6.4 Server configuration and identity . 83
6.5 Summary . 84

7 Command and Control Network Management 85
7.1 Proof of identity . 85

7.1.1 Simple join . 85
7.2 Validating physical identity using third-party observation 86
7.3 Human moderated joins . 88

7.3.1 Hexadecimal notation . 90
7.3.2 Pictographic representation . 91
7.3.3 Word-list representation . 92
7.3.4 Other comparison techniques . 95

7.4 Machine moderated joins . 95
7.4.1 Visual observation technologies . 97
7.4.2 Radio Frequency Identification . 100

7.5 Other machine moderated device identity validation techniques 101
7.6 Implementing observation-based identity confirmation 102

7.6.1 Hardware . 103
7.6.2 Operation . 104

7.7 Considerations for real-world use of observed join 104
7.7.1 Human versus machine observation 104
7.7.2 Benefits of machine observation . 105
7.7.3 Issues . 106

7.8 Summary . 106

8 Internet of Things Network Security 107
8.1 Replay attack . 107

8.1.1 Common mitigation to replay attack . 108
8.1.1.1 Nonce tokens . 108
8.1.1.2 Timestamps . 108
8.1.1.3 Logging . 108

8.1.2 A sequence ID based approach . 109
8.2 Message spoofing . 110
8.3 Attacks against MQTT and C2 systems . 111

8.3.1 MQTT broker attack . 111
8.3.2 C2 server attack . 112
8.3.3 Attack of observer nodes . 112
8.3.4 Crypto-agility . 113
8.3.5 Physical attack . 113

8.4 Software update . 114
8.5 SRUP and the DCMS Code of Practice for IoT security 115
8.6 Summary . 116

CONTENTS ix

III Implementation & Experimentation 117

9 Implementing the Secure Remote Update Protocol 119
9.1 SRUP library architecture . 119
9.2 C++ library . 121
9.3 Binary Python library . 123

9.3.1 Why Python? . 123
9.3.2 Calling C++ from Python . 124

9.4 Python wrapper class . 124
9.4.1 Ease of use comparison . 125

9.5 Web-based C2 system . 128
9.6 Backend services . 129

9.6.1 Key exchange server . 129
9.6.2 Containerization . 130

9.7 Bootstrapping SRUP and the Key Generation Tool 131
9.8 Hardware . 133

9.8.1 Timing device . 133
9.8.2 Syndication experiment device . 136
9.8.3 Other hardware . 139

9.9 Summary . 139

10 Syndication 141
10.1 Sharing data and control without a fully trusted-relationship 141
10.2 Syndication concept . 144
10.3 Syndication messages . 145

10.3.1 Syndication initialization . 147
10.3.2 Syndication request . 147
10.3.3 Syndicated device count and syndicated device list 147
10.3.4 Syndicated ID request . 148
10.3.5 Syndicated data . 148
10.3.6 Syndicated action . 148
10.3.7 Syndicated C2 request . 149
10.3.8 Syndication termination and syndication end 149

10.4 Syndication example . 150
10.5 Experimental implementation . 151
10.6 Guest user . 152
10.7 Summary . 155

11 Experimental Assessment of the Performance of SRUP 157
11.1 Execution time analysis . 157
11.2 SRUP and MQTT performance comparison 158

11.2.1 Hardware . 158
11.2.2 Software . 160
11.2.3 Time synchronization . 160

11.3 Network conditions . 161
11.3.1 Network condition simulation . 161
11.3.2 Operation in austere network conditions 162
11.3.3 Experimental conditions . 163

11.4 Experimental hypothesis and measurements 164
11.5 Analysis . 165
11.6 Results . 166

x CONTENTS

11.6.1 SRUP vs. MQTT performance comparison 166
11.6.2 Raspberry Pi 3B+ vs. Raspberry Pi 4 169
11.6.3 SRUP vs. MQTT power consumption 169
11.6.4 SRUP vs. MQTT message size . 171

11.7 Evaluation of results . 171
11.8 Summary . 173

12 Conclusions 175
12.1 Answering the Research Questions . 175

12.1.1 Research Question 1 . 175
12.1.2 Research Question 2 . 176
12.1.3 Research Question 3 . 176
12.1.4 Research Question 4 . 177
12.1.5 Research Question 5 . 177
12.1.6 Research Question 6 . 177
12.1.7 Research Question 7 . 178

12.2 Contributions to knowledge . 178
12.2.1 The Secure Remote Update Protocol 178
12.2.2 Dynamic identity and key management 178
12.2.3 Device identity validation . 179
12.2.4 Software library implementation and containerized backend systems 179
12.2.5 Syndication . 179

12.3 Recommendations for future work . 179
12.3.1 SRUP for microcontrollers . 179
12.3.2 Alternative transports for the SRUP protocol 180
12.3.3 SRUP Syndication for guest access . 180
12.3.4 Real-world evaluation of machine-based observation 180
12.3.5 Human comparison of security identifiers 181
12.3.6 Publication of binary version of SRUP library 181
12.3.7 Application of SRUP in related domains 181

12.4 Potential future impact of the research . 182
12.5 Summary . 182

Appendix A The operation of MQTT in detail 183
Appendix A.1 Connection . 183
Appendix A.2 Keep alive . 183
Appendix A.3 Ping request & response . 184
Appendix A.4 Last will & testament . 184
Appendix A.5 Publishing a message . 185
Appendix A.6 MQTT Quality of Service . 185

Appendix A.6.1 QoS0 . 185
Appendix A.6.2 QoS1 . 186
Appendix A.6.3 QoS2 . 186

Appendix A.7 MQTT subscription . 186

Appendix B The Secure Remote Update Protocol Specification v3.0 189
Appendix B.1 MQTT topics . 189
Appendix B.2 Update messages . 190

Appendix B.2.1 Update initiate message . 190
Appendix B.2.2 Update activate message . 190

Appendix B.3 Response message . 191

CONTENTS xi

Appendix B.4 Action message . 192
Appendix B.5 Data message . 193
Appendix B.6 Identification request message . 194
Appendix B.7 Group messages . 194
Appendix B.8 Join messages . 195

Appendix B.8.1 Simple join messages . 195
Appendix B.8.1.1 Join request . 195
Appendix B.8.1.2 Join command . 195

Appendix B.8.2 Human-mediated join messages 196
Appendix B.8.2.1 Human-mediated join request message 196
Appendix B.8.2.2 Human-mediated join response message 197

Appendix B.8.3 Machine-mediated join messages 197
Appendix B.8.3.1 Observed join request message 198
Appendix B.8.3.2 Observed join response message 199
Appendix B.8.3.3 Observation request message 199

Appendix B.9 Resignation and termination messages 200
Appendix B.9.1 Resign request . 200
Appendix B.9.2 Termination command . 200

Appendix B.10 Deregistration messages . 201
Appendix B.10.1 Deregister request . 201
Appendix B.10.2 Deregister command . 202

Appendix B.11 Registration . 202
Appendix B.11.1 Registration requirements 203
Appendix B.11.2 Example reference registration scheme 203

Appendix B.12 Syndication messages . 203
Appendix B.12.1 Syndication initialization . 204
Appendix B.12.2 Syndication request . 204
Appendix B.12.3 Syndicated device count . 205
Appendix B.12.4 Syndicated device list . 205
Appendix B.12.5 Syndicated data . 206

Appendix B.13 Syndicated action . 206
Appendix B.14 Syndicated ID request . 207

Appendix B.14.1 Syndicated C2 request . 208
Appendix B.14.2 Syndicated end request and syndicated termination 208

Appendix C Timing Experiment 211

Appendix D Performance Comparison Experiment — device code 215
Appendix D.1 SRUP device code . 215
Appendix D.2 MQTT device code . 218

Appendix E Network Conditioning Simulation Setup 221

Appendix F Security Analysis of the Secure Remote Update Protocol 223
Appendix F.1 Secure by Design . 223

Appendix F.1.1 Adversarial Design . 223
Appendix F.1.2 Use of extant and trusted libraries 224
Appendix F.1.3 Library code used within SRUP 224

Appendix F.2 MQTT Security Assessment . 225
Appendix F.3 Static and Dynamic Analysis . 225

Appendix F.3.1 Static Analysis . 225

xii CONTENTS

Appendix F.3.2 Dynamic Analysis . 226
Appendix F.3.3 Analysis of Python Code . 226

Appendix F.4 Unit Testing . 226
Appendix F.4.1 C++ . 228
Appendix F.4.2 Python . 229

Appendix F.5 Incremental development and testing 229
Appendix F.6 Future Work . 230

Appendix F.6.1 Adversarial testing . 230
Appendix F.6.1.1 Fuzzing . 230
Appendix F.6.1.2 Software Reverse Engineering 231

Appendix F.6.2 Formal Risk Analysis . 231
Appendix F.6.3 Formal Verification . 232

Acronyms 235

References 241

xiii

List of Figures

2.1 Encryption of a message using a Caesar cipher 25
2.2 Encryption of a message using a one-time pad 26
2.3 Message decryption with an incorrect one-time pad 27

3.1 The process for generating an X.509 certificate chain 36

4.1 Message flow in a strictly hierarchical C2 network 44
4.2 Generic C2 Architecture for the IoT . 45
4.3 Security in the Internet of Things . 47

5.1 MQTT Topic Access Control within SRUP . 60
5.2 A sequence diagram showing a SRUP software update 67

6.1 Key exchange and registration . 79
6.2 Additional registration steps when using encrypted MQTT 81

7.1 Sequence diagram showing a simple (unmoderated) join 86
7.2 A flowchart illustrating the observed join process 88
7.3 Sequence diagram showing a human moderated join 89
7.4 A 128-bit value in UUID hexadecimal notation 90
7.5 A 128-bit UUID value shown on an OLED screen 90
7.6 A 128-bit value depicted as a black and white pictogram 91
7.7 A 128-bit value depicted as a four-colour pictogram 92
7.8 A colour pictogram shown in use on experimental hardware 93
7.9 A colour pictogram shown in use on a web-based C2 system 94
7.10 A 128-bit value expressed as a word-list . 94
7.11 An example device using the word-list comparison 95
7.12 Sequence diagram for machine-moderated join operations 96
7.13 A 32-character hexadecimal value rendered as bar codes 98
7.14 A 32-character hexadecimal value rendered as two-dimensional bar codes . 98
7.15 Raspberry Pi QR code generator and reader 99
7.16 An NFC observer device . 101
7.17 A sequence diagram showing the machine-moderated join process 103

9.1 Architecture diagram showing the combined C++ / Python implementation . 120
9.2 SRUP C++ library class diagram . 122
9.3 A simple device used for the pySRUP ease of use experiment 126
9.4 Architecture of the containerized SRUP backend 132
9.5 A diagram depicting the SRUP key generation tool in operation 134
9.6 The circuit schematic for a device used for SRUP performance evaluation . 135
9.7 A photograph of the simple IoT device used for performance evaluation . . . 135
9.8 The circuit schematic for the syndication experiment device 137

xiv LIST OF FIGURES

9.9 The PCB layout for the syndication experiment device 138
9.10 A rendering of the PCB layout for the syndication experiment device 138

10.1 An example of three IoT C2 systems which may be required to share data . 142
10.2 An example of C2 systems merging to share data. 143
10.3 A sequence diagram depicting the data flow during syndication operations . 146
10.4 An example of syndication in action . 150
10.5 A screenshot from the example implementation of syndication 151
10.6 An example device used to evaluate syndication 152
10.7 An architecture diagram showing the setup for syndication operations 153
10.8 Using syndication to provide guest access to an IoT system 154

11.1 Information flow for SRUP processing . 159
11.2 Timing experiment hardware . 160
11.3 A flowchart showing the execution of the C2 server during the experiment . 161
11.4 Measurement of cellular network performance in a rural area 163
11.5 A graph of the message delay, with no network conditioning 165
11.6 A graph of the message delay, with a simulated poor 3G signal 166
11.7 Mean message processing delay for all experiments 167
11.8 Comparison of processing delay between SRUP & MQTT messages 167
11.9 Mean differences between SRUP & MQTT message processing times . . . 168
11.10 Box-plot of differences in mean processing times 169
11.11 Message delay distribution in simulated poor network conditions 169
11.12 A graph of power consumption of the experimental hardware 170
11.13 Message capture in Wireshark comparing SRUP & MQTT messages 172

Appendix F.1 A screenshot showing the C++ unit test runner in CLion. 229

xv

List of Tables

5.1 A table showing the main SRUP message types, and their intended uses . . 62
5.2 The elements of an example SRUP update initiate message 68
5.3 An expansion of the raw bytes of a SRUP update initiate message 68

9.1 The REST API end-points implemented by the SRUP key-exchange service 130
9.2 The micro-services implementing the SRUP backend 131
9.3 The Bill of Material for the Syndication Experiment Device 139

11.1 Specification of the Raspberry Pi 3B+ and Raspberry Pi 4 159
11.2 A summary of network conditioning settings 164

Appendix B.1 The SRUP UPDATE INITIATE Message 191
Appendix B.2 The SRUP UPDATE ACTIVATE Message 191
Appendix B.3 The SRUP RESPONSE Message 192
Appendix B.4 The SRUP ACTION Message . 193
Appendix B.5 The SRUP DATA Message . 194
Appendix B.6 The SRUP IDENTIFY REQUEST Message 194
Appendix B.7 The SRUP JOIN REQUEST Message 196
Appendix B.8 The SRUP JOIN COMMAND Message 196
Appendix B.9 The SRUP HUMAN-MEDIATED JOIN REQUEST Message 197
Appendix B.10 The SRUP HUMAN-MEDIATED JOIN RESPONSE Message . . . 198
Appendix B.11 The SRUP OBSERVED JOIN REQUEST Message 198
Appendix B.12 The SRUP OBSERVED JOIN RESPONSE Message 199
Appendix B.13 The SRUP OBSERVATION REQUEST Message 200
Appendix B.14 The RESIGN REQUEST Message 201
Appendix B.15 The TERMINATION COMMAND Message 201
Appendix B.16 The DEREGISTER REQUEST Message 202
Appendix B.17 The DEREGISTER COMMAND Message 202
Appendix B.18 The SRUP SYNDICATED INIT Message 204
Appendix B.19 The SRUP SYNDICATION REQUEST Message 205
Appendix B.20 The SRUP SYNDICATED DEVICE COUNT Message 205
Appendix B.21 The SRUP SYNDICATED DEVICE LIST Message 206
Appendix B.22 The SRUP SYNDICATED DATA Message 206
Appendix B.23 The SRUP SYNDICATED ACTION Message 207
Appendix B.24 The SRUP SYNDICATED ID REQUEST Message 207
Appendix B.25 The SRUP SYNDICATED C2 REQUEST Message 208
Appendix B.26 The SRUP SYNDICATION TERMINATION Message 209
Appendix B.27 The SRUP SYNDICATION END REQUEST Message 209

Appendix C.1 Measurements of the execution time of SRUP 214

xvi LIST OF TABLES

Appendix E.1 Network conditioning settings for experiments 222

Appendix F.1 The extant libraries used by different components of the SRUP
system. 225

xvii

Listings

Appendix C.1 SRUP Performance Testing in C++ 211
Appendix D.1 SRUP Device Code . 215
Appendix D.2 MQTT Device Code . 218
Appendix F.1 Example of a const property getter function 226
Appendix F.2 The SRUP base-class constructor function 227
Appendix F.3 The SRUP base-class token property setter function 227
Appendix F.4 The SRUP base-class destructor function 228

xix

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated by
me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at
this University;

2. Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attributed;

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

• A. J. Poulter, S. J. Johnston, and S. J. Cox, “Using the MEAN Stack to
Implement a RESTful Service for an Internet of Things Application,” in 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT), Jan. 2015, pp. 280–285.
DOI: 10.1109/WF-IoT.2015.7389066

• A. J. Poulter, S. J. Johnston, and S. J. Cox, “SRUP: The Secure Remote Update
Protocol,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), IEEE,
Jan. 2016, pp. 42–47. DOI: 10.1109/WF-IoT.2016.7845397

• A. J. Poulter, S. J. Johnston, and S. J. Cox, “Extensions and Enhancements to
The Secure Remote Update Protocol,” Future Internet, vol. 9, no. 4, p. 59, Sep.
2017. DOI: 10.3390/fi9040059

• A. J. Poulter, S. J. Johnston, and S. J. Cox, “pySRUP – Simplifying Secure
Communications for Command Control in the Internet of Things,” in 2019 IEEE
5th World Forum on Internet of Things (WF-IoT), Apr. 2019, pp. 273–277. DOI:
10.1109/WF-IoT.2019.8767205

https://doi.org/10.1109/WF-IoT.2015.7389066
https://doi.org/10.1109/WF-IoT.2016.7845397
https://doi.org/10.3390/fi9040059
https://doi.org/10.1109/WF-IoT.2019.8767205

• A. J. Poulter, S. Johnston, and S. Cox, “Secure Messaging, Key Management &
Device identity for the IoT,” in Presentation to IoT Security Foundation
Conference 2019, IoT Security Foundation, Nov. 2019. [Online]. Available:
https://youtu.be/vdjY617WvHo

• A. J. Poulter, S. J. Ossont, and S. J. Cox, “Enabling the Secure Use of Dynamic
Identity for the Internet of Things—Using the Secure Remote Update Protocol
(SRUP),” Future Internet, vol. 12, no. 8, p. 138, Aug. 2020. DOI:
10.3390/fi12080138

• A. J. Poulter and S. J. Cox, “Enabling secure guest access for
Command-and-Control of Internet of Things devices,” IoT, vol. 2, no. 2,
pp. 236–248, 2021. DOI: 10.3390/iot2020013

• A. J. Poulter and S. J. Cox, “An assessment of the performance of the secure
remote update protocol in simulated real-world conditions,” IoT, vol. 2, no. 4,
pp. 549–563, 2021. DOI: 10.3390/iot2040028

Signed:.. Date:..................

https://youtu.be/vdjY617WvHo
https://doi.org/10.3390/fi12080138
https://doi.org/10.3390/iot2020013
https://doi.org/10.3390/iot2040028
AJ Poulter
9th February 2022

xxi

Acknowledgements

This work has been funded by the Defence Science and Technology Laboratory (Dstl). Dstl
is a part of the United Kingdom Ministry of Defence.

The author is employed by Dstl as a Principal Engineer.

xxiii

To my wife. . .

1

Part I

Background

3

Chapter 1

Introduction

This introductory Chapter outlines the research questions that this work is seeking to
address, the background requirements and context for this work, and describes the
research methodology that has been adopted.

1.1 Outline, research questions, and thesis structure

Since 2010 the total number of Internet of Things (IoT) and other connected devices has
grown by more than 10% per year, from around 800 million device connections in 2010 to
over 10 billion in 2020 [9]. IoT devices are becoming increasingly ubiquitous in the modern
world, and as such the need for a solution to provide secure mechanisms to enable the
Command and Control (C2) of the ensuing complex systems is ever growing.

This research proposes methods to facilitate secure C2 operations for the IoT through the
design, implementation, and demonstration of an open-source protocol and supporting
architectures to enable secure messaging.

1.1.1 Research questions

Specifically, the research questions that this work seeks to answer are:

RQ1 How can a secure protocol for Command and Control messaging for the Internet of
Things be developed from extant, tried and tested, commodity software and network
communications components?

RQ2 How can such a protocol be used to enable automated secure key distribution and
identity management?

4 Chapter 1. Introduction

RQ3 How can such a protocol (and associated architectures) be used to provide
assurance around the identity of a physical device?

RQ4 Can the protocol be made robust to attempted attacks against it, and its supporting
infrastructure?

RQ5 How can the protocol be made sufficiently easy to use, that it becomes simpler for a
prospective user to adopt the secure protocol, than to implement an insecure
system?

RQ6 Can such a protocol be extended to provide a mechanism to securely share
controlled subsets of data between Command and Control systems, whilst enabling
system owners to retain overall control?

RQ7 What is the performance overhead of such a protocol when compared to insecure
methods, and how well does it cope with poor network conditions?

1.1.2 Structure of this thesis

The remainder of this chapter outlines the background to the research questions and
introduces the concepts of connected digital devices, the Internet of Things, and discusses
their context and background providing justification as to the requirement for this work.

Subsequent chapters of this thesis:

• Introduce the topic of cybersecurity, describe a number of commonly exploited
vulnerabilities and types of malware, and explore the need for specific protections for
the IoT (Chapter 2)

• Describe in detail the communications protocols and architectures that are
commonly used for Internet and IoT applications today (Chapter 3)

• Describe the concept of C2, and the requirements for C2 messaging for the IoT
(Chapter 4)

• Propose a novel application-layer protocol for secure and authenticated IoT
communications (Chapter 5) [RQ1]

• Explore the specific issues with regards to the key distribution and identity
management within a C2 network (Chapter 6) [RQ2]

• Describe C2 network operations, and the use of a moderated network joining
process to provide assurance of device identity (Chapter 7) [RQ3]

• Examine the security design of the protocol introduced in Chapter 5, and discuss
how the associated threats can be mitigated (Chapter 8) [RQ4]

1.2. Background and concepts 5

• Describe in detail the approach taken to design and build a software implementation
of the protocol and the necessary supporting infrastructure, in order to facilitate
ease-of-use (Chapter 9) [RQ5]

• Explore how the protocol can be extended to include features to enable sharing of
data and control (Chapter 10) [RQ6]

• Assess the performance of the protocol in simulated real-world conditions, and
perform comparisons to other methods of IoT device connectivity (Chapter 11) [RQ7]

Finally, Chapter 12 draws conclusions about this work and makes recommendations for
follow-on research work.

1.1.3 Research methodology

This research has adopted an iterative, experimental approach to solving the research
questions. Having developed a theoretical protocol, and hypothesized to address the
requirements, the approach taken has been to then evaluate the concepts experimentally.
A number of iterations of the software have been developed, culminating in the
feature-complete version described in this thesis.

Experimental work has been conducted to subject increasingly feature-complete versions
of the software implementation of the protocol, to increasingly formalized evaluation, in
increasingly realistic use-case scenarios; the conceptual model of the protocol being
modified subject to the outcome of the experimental assessment.

1.1.4 The effects of the COVID-19 pandemic on this work

Although the ongoing global COVID-19 (SARS-CoV-2) pandemic has caused only limited
disruption to the originally proposed schedule of work, it has curtailed the degree to which
it was possible to implement a fully field-deployed final experiment. As such, performance
assessments of the protocol were conducted in a laboratory setting, as was the capstone
demonstration of all aspects of the protocol in action — which ultimately consisted of a
bench-top deployment of the software and associated custom hardware, in a laboratory
setting.

1.2 Background and concepts

In order to understand the requirements for a solution to address the research questions,
there are two main areas of background:

6 Chapter 1. Introduction

• The concept of commodity components and their use within the Internet of Things

• A conceptual understanding of connected digital devices

1.2.1 Commodity components

The term commodity components refers to mass-market and widely available and used
hardware or software, and this is often considered in the context of High Performance
Computing (HPC). Since the inception of the Beowulf cluster in 1995 [10], and early work
on Windows HPC [11], the use of commodity hardware to build large-scale HPC clusters
has become dominant [12].

The use of commodity hardware has also been recently seen at the other end of the
compute spectrum, with the development of the Raspberry Pi single board computer [13],
originally developed to produce an affordable computer that young people could use to
learn computer programming [14]. Due to its low-cost and small size, the Raspberry Pi has
become near-ubiquitous as a single-board computer within experimental and home-made
IoT devices in fields as diverse as home-automation, environmental monitoring, and
robotics [15]–[17]. Work has even shown that viable (demonstration) HPC clusters can be
built using Raspberry Pi hardware [18].

Even traditionally conservative disciplines such as aerospace have recently started to
adopt the use of commodity hardware and software. In June 2020, engineers from SpaceX
answered questions on the online discussion forum Reddit, 1 describing how they make
use of Open Source Software (OSS) in the form of the Linux Operating System, and run
applications developed in C++, Python, and even JavaScript for different aspects of the
systems, automation and user-interface on their Crew Dragon spacecraft [19]. Such
approaches are not unique to disruptive non-traditional vendors. Even the United States’
National Aeronautics and Space Administration (NASA) made use of a commodity Central
Processing Unit (CPU), commodity sensor hardware, and Linux as a part of their
experimental Ingenuity Mars rover helicopter [20].

The same approach can be considered when looking at communications protocols such as
Hyper-Text Transfer Protocol (HTTP) [21], OpenSSL [22], Transport Layer Security (TLS)
[23] and Message Queuing Telemetry Transport (MQTT) [24], which are widely exploited
within the IoT [25], [26].

This research seeks to utilize extant and commonly-used software, libraries, and protocols
such as these as the basis for a novel set of methods to enable secure communications to
and from IoT devices.

1https://www.reddit.com/r/spacex/comments/gxb7j1/we_are_the_spacex_software_team_ask_us_anything/

https://www.reddit.com/r/spacex/comments/gxb7j1/we_are_the_spacex_software_team_ask_us_anything/

1.2. Background and concepts 7

1.2.2 Connected digital devices

The decreasing size and cost, and increasing power of microprocessors over the last
fifteen-years has led to the very widespread adoption of microelectronic systems,
approaching or attaining the ubiquitous computing concept proposed by Weiser [27] and
further developed at the Xerox Palo Alto Research Center (PARC) [28]. Co-incident with
the fall in the cost of microprocessors, this time period has also seen the increased ubiquity
of Internet Protocol (IP) network connections.

Although other communications standards and systems are available, the use of IP
networks is so ubiquitous that even systems using other networking protocols almost
invariably make use of a gateway, to link back to an IP network to permit greater
interoperability and interaction with the myriad of other Internet connected digital devices.
As such, although some architectures for connected digital devices use other networking
standards to link to and from the physical device, they nearly all adopt an IP network for
onward connection. IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)
[29] is perhaps the best known example of this with nodes addressable via Internet
Protocol Version 6 (IPv6) [30], but exploiting meshed low-power, low-rate, Personal Area
Networks using the IEEE 802.15.4 standard [31] on the devices themselves.

The fusion of the availability of networking and the power of low-cost microprocessors has
created a world of special-purpose connected digital devices. The idea of connecting
something other than a general purpose computing device to the Internet is not
fundamentally new. For example, computer network connected vending machines pre-date
both the world wide web, and even much of the Internet itself, being first seen
experimentally in the 1970s [32]; but in recent years the low-cost of microelectronics, and
the widespread adoption of wireless networking such as WiFi [33], has led to these devices
becoming widespread and genuinely useful.

1.2.3 The Internet of Things

As with many technical phrases which become adopted by the popular media, there is no
clear single technical definition of the Internet of Things. In its earliest widespread usage
[34], [35] it referred specifically to machine identification of objects by use of
Radio-Frequency Identification (RFID) tags, whereas today it typically refers to a much
broader set of network connected devices [36]. The use of Machine-to-Machine (M2M)
communications, using standardized commodity communications technologies has been
growing since the early part of this millennium [37].

The IoT also has ancestry in the concept of ubiquitous computing first proposed by Weiser
in the early 1990s [27], although the IoT is different to the original vision of ubiquitous

8 Chapter 1. Introduction

computing — there is much similarity in the prevalence and invisibility of connected
devices.

The phrase IoT as it is used today, can be taken to describe both consumer electronics
devices, typically within a domestic or commercial setting; as well as networked industrial
control systems — also known as the Industrial Internet of Things (IIoT) [38].

Perhaps one of the most effective definitions of the IoT in the form we see it today is from
security researcher Bruce Schneier, who described the IoT as “...the network of physical
objects that contain embedded technology to communicate and sense or interact with their
internal states or the external environment”, in his 2018 book ‘Click Here to Kill Everyone’
[39].

There are a range of estimates of the number of deployed IoT devices in operation today,
and many predictions as to the future scale of the IoT. One of the most widely cited
numbers is from 2016, when technology research firm Juniper Research, predicted over 46
Billion connected devices by 2021 [40], and in 2020 they concluded that there were already
35.7 billion devices in 2019, and predicted 83 billion by 2024 [41].

The availability of IP networks is today more prevalent than ever. The widespread
deployment of Third-Generation (3G) and Fourth-Generation (4G) broadband cellular data
services, and the growing deployment of Fifth-Generation (5G) systems today, make it
possible to establish high bit rate IP connections from increasingly many locations around
the world. There has also been a widespread proliferation of the provision of public WiFi
technology in urban areas in recent years [42]. These, combined with the advent of
low-cost satellite-based Internet provision such as SpaceX’s Starlink [43], mean that there
will soon be very few locations on Earth where it is not possible to obtain a connection to
the Internet for a relatively low-cost. Directly connected IoT devices may be deployed
without requiring any additional infrastructure, and global satellite-based Internet coverage
will facilitate IoT connectivity anywhere on the globe [44] [45].

Consequentially today it is no longer unusual for sensors and devices (even in remote
locations) to have access to the Internet [46]. The advent of IPv6 means that these devices
can be directly addressable, rather than relying on Network Address Translation (NAT) [47].

Despite the growth in high-bandwidth connectivity, one of the primary requirements for any
IoT device (especially a device that is designed to be operated in a remote location) is that
it makes efficient use of the potentially constrained network bandwidth, and is robust to
periods of poor connection or network outages [48].

For the purposes of this thesis, the term IoT communications shall be defined as pertaining
specifically to Machine-to-Machine communications between both traditional, and
non-traditional computing devices, taking place over IP networks.

1.2. Background and concepts 9

Perhaps the archetypal example of an IoT appliance today is a smart lightbulb [49]. Such
devices are commonplace and inexpensive. They typically enable a third-party,
general-purpose computing device (often a smartphone, tablet, or smart watch) to provide
the Human-Computer Interface (HCI) to the device: so that a human operator may use a
more convenient HCI than may be provided directly by the device itself, or the infrastructure
within which it is operating. However, this is in reality a poor example of the true benefits of
the IoT, since it does not fully demonstrate the integration and the added-value of M2M
communications beyond that offered by simply providing a remote interface to the device.

A much better example of an IoT device is an Internet-connected smart thermostat. Many
of these devices combine both an external HCI, as well as true M2M communication. For
example, a smart thermostat can change its behaviour based on the combination of its own
sensors, additional external (potentially 3rd-party) sensors, the information it receives from
a human operator, and data from a weather forecast service. Whilst this type of rich M2M
communication is not essentially new, the difference is that today information is crossing
the boundary of a single device and being supplied to ad hoc systems formed from
third-party devices never originally designed to work together; via openly accessible
services and interfaces, built using open communications standards.

1.2.4 Military applications of the Internet of Things

The United States Army Research Laboratory (US ARL) have described the concept of the
Internet of Battle Things (IoBT) [50]. In this concept they propose that future
network-centric warfare operations [51] will consist of large-scale augmentation of a future
battlefield environment by IoBT devices, including: “. . . sensors, munitions, weapons,
vehicles, robots, and human-wearable devices” [50]. IoBT will be deployed to directly
create military effect; as well as to provide logistical support information to both human
war-fighters, and other devices. It is likely that physical IoBT devices will be deployed
across all three traditional war-fighting domains (maritime, land & air) [52], as well as the
newly considered space domain [53], and that logical components of the IoBT will also be
deployed within the cyberspace domain [54].

Not all military applications of IoT fall into this category of IoBT however. There is
considerable military interest in the use of IoT technology in non war-fighting areas such as
training, logistics and facilities management [55]. It is likely that many of these non
war-fighting applications will exploit extant civilian IoT systems, rather than bespoke
military systems. More conventional IoT devices may also be used in a military context in
lower-intensity scenarios such as stability or peace keeping operations, or for specialist
applications such as wide-area sensing. In some scenarios military and civilian IoT
systems may be used alongside each other — for example in Military Aid to the Civil
Authorities (MACA) operations such as disaster-relief [56].

10 Chapter 1. Introduction

A key difference between military applications of IoT technology, and those of the civilian
world is that military IoBT devices in a war-fighting application will be subject to the hostile
actions of an adversary, who can be assumed to be prepared to engage in any type of
action to achieve effect. These include overt physical and kinetic effects to disrupt an IoBT
network in addition to the more covert types of cyber operations expected when
considering the security of other military, or civilian IoT devices.

1.2.5 Cyber Physical Systems

The term Cyber Physical Systems was first used around 2009 [57], and is defined by
Wang, Ye, Xu, et al. as consisting of “. . . two major components, a physical process and a
cyber system. Typically, the physical process is monitored or controlled by the cyber
system, which is a networked system of several tiny devices with sensing, computing and
communication (often wireless) capabilities. The physical process involved may be a
natural phenomenon (e.g. a dormant volcano), a man-made physical system (e.g. a
surgical room) or a more complex combination of the two.” [58]

Although contemporarily the Cyber Physical Systems (CPS) themselves are very often
networked to wider information systems, CPS are not necessarily required to be connected
to external systems.

CPS is a broad category covering both industrial and domestic applications, the term CPS
is most typically associated with devices used in industrial control applications, or devices
used to control other physical infrastructure [59].

1.2.6 The defence and national security challenges of the IoT and Cyber
Physical Systems

In December 2014, HM Government’s Chief Scientific Advisor, Sir Mark Walport wrote:
“The Internet of Things has the potential to have a greater impact on society than the first
digital revolution. There are more connected objects than people on the planet. The
networks and data that flow from them will support an extraordinary range of applications
and economic opportunities. However, as with any new technology, there is the potential
for significant challenges too. In the case of the Internet of Things, breaches of security
and privacy have the greatest potential for causing harm. It is crucial that the scientists,
programmers and entrepreneurs who are leading the research, development and creation
of the new businesses implement the technology responsibly. Equally, policy makers can
support responsible innovation and decide whether and how to legislate or regulate as
necessary. Everyone involved in the Internet of Things should be constantly scanning the
horizon to anticipate and prevent, rather than deal with unforeseen consequences in
retrospect.” [60].

1.3. Summary 11

The report goes on to make clear that one of the major challenges of the IoT is security —
and that this must be designed into any IoT systems from the outset: “. . . data governance
and security considerations are not optional extras but should be considered at the
beginning, and throughout the lifecycle of Internet of Things applications . . . ” [60].

There is a particular concern when using any IoT device in the context of a military or
security application. Clearly any IoBT or other IoT device being used operationally would
need extremely high standards of security and encryption to protect what would be very
highly sensitive information, but even in a non-operational context the use of IoT devices
and systems need to be very carefully protected against any form of compromise by
malicious individuals, politically motivated organizations, or hostile nation-states.

1.2.7 Critical National Infrastructure

Within the United Kingdom, HM Government defines Critical National Infrastructure (CNI)
as: “Those critical elements of national infrastructure (facilities, systems, sites, property,
information, people, networks and processes), the loss or compromise of which would
result in major detrimental impact on the availability, delivery or integrity of essential
services, leading to severe economic or social consequences or to loss of life.” [61]

In the modern connected world, even devices which form part of CNI may expect, or be
desired, to be connected to the Internet. Thus, in the context of national security, the CPS
and IoT elements of CNI require a very high degree of protection. Although there are no
specific additional requirements for the security for CNI applications, the criticality of the
systems involved do require that an extremely high standard of security is applied.

There can, however, be nationally significant infrastructure run by private companies, and
attacks against these may have societal implications far beyond those to the operating
company or its direct customers. An example of this was the May 2021 cyber attack on the
Colonial Pipeline Company, which disrupted both commercial aviation and consumer petrol
supplies across the south-eastern United States for six-days, and to remedy which the
company reportedly paid a ransom of $4.4M [62].

1.3 Summary

This section has described the research questions this work is seeking to address, and
described the research methodology. It has also introduced a number of concepts relating
to the Internet of Things and Cyber Physical Systems. These concepts establish the
context for this work. The next Chapter will explore the topic of cybersecurity in general,
and some specific issues pertaining to cybersecurity within the IoT.

13

Chapter 2

Cybersecurity and The Internet of
Things

This Chapter will discuss cybersecurity, examining a short history of cybersecurity threats
and malicious software. It will also explore some specific ways that these cybersecurity
threats and concepts can apply to the IoT; as well as discussing encryption as it pertains to
modern IoT devices. This Chapter establishes the context for the research, and frames the
requirement for secure IoT communications.

2.1 Cybersecurity

Although seldom formally defined cybersecurity [63] or Information Security pertain to the
threats to the integrity of computer systems, the information they contain, and their
hardware and other equipment connected to them. Although often used interchangeably
some, such as von Solms and van Niekerk, argue that the two terms are different to each
other [64]. More generally the phrase refers to resilience to types of attack against
computer systems — either by malicious software (known as malware) or by direct attack
from a malicious individual or group.

2.1.1 Cybersecurity as an element of national security

In a Government, military, and national security context, the concept of computers requiring
protection from espionage or other hostile action dates back to the mid 1960s, but the more
modern Defence and Security context to Cybersecurity has its roots in a 1997 United
States’ Department of Defense (DoD) wargame, Exercise ELIGIBLE RECEIVER [65].

Addressing the United States Senate Governmental Affairs Committee ‘Hearing on
Vulnerabilities of the National Information Infrastructure’ in June 1998, Lieutenant General

14 Chapter 2. Cybersecurity and The Internet of Things

Kenneth A. Minihan, the then Director of the United States National Security Agency (NSA)
said that: “As Exercise ELIGIBLE RECEIVER 97 graphically demonstrated, a moderately
sophisticated adversary can cause considerable damage with fewer than thirty people and
a nominal amount of money if the systems they are attacking are not adequately protected
and defended.” [66].

A real-world penetration of United States Air Force (USAF) and DoD computer systems
took place in the following year. Code-named SOLAR SUNRISE by the DoD, the attack (by
a group of teenagers) highlighted the reality of the threat shown by ELIGIBLE RECEIVER
[67]. ELIGIBLE RECEIVER, and SOLAR SUNRISE did much to raise public awareness of
cybersecurity, especially in the United States [68].

2.2 Malware

The word malware is a simple portmanteau of the words malicious software, and refers to
any software that is written with malicious intent [69]. Although malware itself is an ever
growing phenomena, the specific threat types (especially the threat from the early types of
malware such as viruses) have changed over time, with today’s malware having
“. . . become the primary medium to launch large-scale attacks. . . ” [70].

2.2.1 Viruses

Although popularly used interchangeably with malware, the term computer viruses
specifically refers to a special case of malware that is self-replicating. The first examples of
Personal Computer (PC) malware were viruses [69], designed to replicate via the boot
sector of floppy disks. The Brain.A virus was the first PC virus, and was released in 1986.
It targeted Microsoft Disk Operating System (DOS) PCs, although it was more of a
proof-of-concept since it had no malicious payload associated with it. By 1998 the United
States Department of Energy (DoE) had identified and described more than 700 distinct
viruses for DOS, and had started to document viruses targeting Microsoft’s new Operating
System (OS), Windows 95 [71]. One of the most physically destructive viruses seen in the
wild was the CIH virus (also known as Chernobyl), first detected in June 1998 [72]. This
virus replicated within Windows 95 executable files, and possessed a payload which would
overwrite the hard-disk’s boot sector, as well as corrupting the computer’s Basic
Input/Output System (BIOS) Read Only Memory (ROM) (when executing on susceptible
machines) on a trigger date of April 26th (the anniversary of the 1986 accident at the
Chernobyl nuclear power plant, in the Soviet Union).

Macro viruses (first observed around 1996) [73] exploited the macro scripting language
embedded within popular office applications such as Microsoft Word; and by 1999 had

2.2. Malware 15

been exploited in the wild, with examples such as Melissa spreading via email attachments
[74]. (Although generally regarded as viruses, this use of networking to propagate blurs the
lines between viruses and worms. See Section 2.2.2).

With the prevalence of anti-virus software on Windows systems, as well as changes to the
OS itself (and the growth of alternative, better secured, OS such as Linux and MacOS)
viruses have substantially diminished as a real-world threat in modern times.

2.2.2 Worms

Worms are self-replicating programs which spread to other computer systems via network
connections. The first worm, known as Creeper was written as an experiment in 1971 [75],
and ran on PDP-10 mainframe computers connected to the Advanced Research Project
Agency Network (ARPANET). The Morris Worm, the first worm to cause significant
disruption, was released in 1988 and was the trigger for the instigation of security on
Internet connected systems, which had not been previously widespread [76]. It triggered
what can be viewed as the first Denial of Service (DoS) attack on the Internet, although
sources disagree as to the intent of the worm [77] [78].

A more destructive worm, was 2001’s Code Red [79]. Whereas the Morris worm had
spread to largely unsecured systems, using sendmail, Code Red spread via HTTP,
exploiting a vulnerability in Microsoft’s Internet Information Services (IIS). Code Red was
estimated to have caused more than $2.6 billion worth of damage. [80].

Worm-like malware spreading via networked computers remains a major security problem
today. The Petya and NotPetya malware [81] which caused more than $10 billion in total
damage in 2017 [82], spread in part by exploiting a vulnerability in Microsoft Windows [83],
known as EternalBlue [84].

2.2.3 Trojans

Named by analogy with the Trojan Horse of classical literature (“Timeo Danaos et dona
ferentes”), a software trojan is a piece of software designed to trick users into installing it
onto their systems, by virtue of masquerading as some other (legitimate) software. Pretty
much all modern malware is encompassed in the form of a trojan, since modern OS
configuration models generally restrict the access of software which is not running with root
or administrator permissions, and simply asking the user to provide such execution
permissions (by tricking them into thinking they’re running some other legitimate piece of
software) obviates the requirement to find and exploit privilege escalation vulnerabilities.
Trojans are generally not self-replicating, but rely on users being duped into downloading
and installing them via social engineering techniques (often disguising the file as a driver or

16 Chapter 2. Cybersecurity and The Internet of Things

system tool, such as Flash player [85]), or via malvertising (where the malware is
embedded in code contained within advertising on a legitimate web page [86]). Since 2004
trojan malware has been shown to be a threat to mobile devices [87], in addition to more
traditional computing platforms.

2.3 Attack types

Although most modern malware is of a hybrid type (often combining elements of trojans
and worms), its development and distribution is commonly regarded as akin to a business
by its developers [88]. There are four main types of end-effect: ransomware, botnets,
remote access & exfiltration, and denial of service attacks.

2.3.1 Cryptoransomware

One of the most serious forms of modern malware is cryptoransomware.
Cryptoransomware is a class of malware which encrypts the contents of a target computer
— denying the user access to, and use of, the machine and the data files stored on it
unless they make a payment. Although originally targeting more technologically naïve
individuals, the primary targets of cryptoransomware today are large organizations with
out-dated, unpatched machines, or poor cyber-defences; with criminal gangs often
obtaining large payouts from the target’s cybersecurity insurance policies [89].

The phenomena of encrypting a user’s files and extorting payment to restore them can be
traced back to 1989 and the ‘AIDS Information Trojan’ [90], although perhaps the best
known example is the WannaCry worm which caused significant disruption to the UK
National Health Service (NHS) in May 2017 [91]. WannaCry exploited the same
EternalBlue vulnerability as NotPetya to propagate [84]; despite a patch for this
vulnerability having existed for some months by the time of the WannaCry attack [92].

Although generally thought of as attacking traditional computing devices, by 2016,
concerns were already being expressed about the potential to attack mobile, and other
non-traditional, devices [93].

2.3.2 Botnets

Botnets consist of large-scale distributed computing resources, formed from
malware-compromised machines and devices, connected together over the Internet [94].
Botnets have been used as relays to send unwanted spam emails (including those used in
phishing attacks — where users are tricked into opening email that either contains trojan
malware, or which attempt to elicit and steal personal information or credentials); and as a

2.3. Attack types 17

means of triggering a Distributed Denial of Service (DDoS) attack [95]. More recently there
has been a trend to use botnets as distributed computational engines, for tasks such as
mining crypto-currencies [96] or password cracking [97].

2.3.3 Remote access and data exfiltration

Another commonly targeted effect of malware is to establish remote access to, and/or a
data exfiltration path from, an attacked machine [98]. Such attacks can be used for both
cyber espionage [99], as well as more common theft of personal or commercially sensitive
data [100]. One of the first widely publicized Remote Access Trojans (RATs) was Back
Orifice developed by Josh Buchbinder (also known as Sir Dystic) in 1998 [101], which
exploited flaws in early Internet-connected versions of Microsoft Windows. The threat from
RATs persists with modern examples such as njRAT and DarkComet. Tools such as these
have been used to obtain private information [102], including being used against political
dissidents and Non-Governmental Organizations (NGOs) [103].

2.3.4 Denial of Service attack

Denial of Service (DoS) attacks are a type of attack designed to disrupt the service
provided by a system or server. Most commonly DoS attacks are staged by sending
multiple requests to a node in an attempt to overwhelm its ability to respond [104]. The first
DDoS attack was seen in 1999, and utilized a group of computers (what would today be
called a botnet) consisting of 227 nodes [105]. By 2016, botnets spread by the Mirai
malware exceeded 400,000 nodes in size, and were offered by their creators on
commercial-like terms for rent [106].

2.3.5 Physical attacks against network infrastructure

Physical or electronic attacks may be adopted against network infrastructure or devices.
These could take the form of denying use of Radio Frequency (RF) communications
through the use of jamming or other types of electronic RF attack against the transceivers,
or by physically attacking cable or fibre-optic network links. This type of attack may also be
directed against end-point devices, in order to try to damage or destroy them.

These types of attacks could take a number of different forms, depending on the
sophistication of the attacker and the degree to which they were prepared to be overt in
mounting such attacks. At their simplest, these types of attack may involve an attempt to
sever a network or power cable, using techniques ranging from manually cutting it through
to the use of explosive ordinance. More advanced techniques such as jamming [107] or
electronic attack (using specifically generated RF waveforms to disrupt or damage the

18 Chapter 2. Cybersecurity and The Internet of Things

sending or receiving equipment) [108] — including the use of directed energy weapons —
require increasingly sophisticated equipment. As such, outside of the battlefield
environment, this type of attack is most likely to be confined to highly-targeted attacks,
directed against very specific high-value targets.

Mitigation against these threats requires physical security guarantees for the operating
environment, and RF spectrum being used. As such, they are beyond the scope of a
networking or software centric solution, and are therefore not considered further in this
thesis.

2.4 Software vulnerabilities

Most malware will exploit vulnerabilities inadvertently included within OS, systems, or
application software (or occasionally in hardware [109]) on a device or computer system.
Various taxonomies of vulnerabilities exist [110], [111]; but amongst the most commonly
exploited vulnerabilities [112]–[114] are Buffer Overflow and Code Injection vulnerabilities.

2.4.1 Buffer overflow

A buffer overflow is a situation whereby an input buffer, a local variable within a program
stored on the computer’s stack memory, is provided with data larger the the allocated
space, and overwrites other data stored on the stack. By carefully crafting the data written
to the buffer, it is possible to overwrite stored register values (such as the return address for
a function call), causing the flow of program execution to be altered: for example spawning
a shell to permit the execution of any other arbitrary code. The potential threat from buffer
overflow was identified as early as 1972, in a report commissioned for the USAF [115]. The
1988 Morris worm (see 2.2.2) exploited a buffer overflow vulnerability in an implementation
of the finger protocol [116]; but the technique was not widely exploited until 1996, when the
iconic paper “Smashing The Stack For Fun And Profit” was published [117].

2.4.2 Code injection

Code injection vulnerabilities are caused when programs do not sufficiently sanitize input
data, permitting carefully malformed input data to be parsed as program code [118], most
commonly seen in the form of injecting Structured Query Language (SQL) code into online
database applications. First described in 1998 [119], these attacks were widespread by
2006 [120], and SQL injection attacks represented around 25% of all attacks on websites
in 2015 [121].

2.5. Software Libraries 19

2.5 Software Libraries

As described in Section 1.2.1, much software today is built from smaller components, such
as software libraries. In principle widely-used libraries should be free from vulnerabilities,
since by having been exposed to many users and developers it is likely that any bugs or
other errors present will have been identified and addressed. However this is not always
the case.

A good example of a serious vulnerability being found in a widely-used open source
software library is the 2014 Heartbleed [122] vulnerability (or more formally,
CVE-2014-0160), found in OpenSSL. By exploiting Hartbleed an attacker could extract
protected data (including material relating to cryptographic keys) from the memory of
affected servers. The vulnerability itself was a buffer over-read ; in which (similarly to the
buffer overflow described in Section 2.4.1) the amount of data that the function in question
operates on is mismatched compared to the size of the data buffer. In the case of an
over-read, it becomes possible to read more data than the buffer contains — thus
accessing the contents of memory which would otherwise not be available outside to an
external process.

Heartbleed is an excellent example of the assumption of trustworthiness which can result
from widespread use, where users implicitly trust in the validity of the software because of
the assumption that scrutiny of the source code has already taken place. In the case of
Heartbleed, the coding error had first been made in a release of OpenSSL several years
prior to the bug being discovered, and it had been widely deployed to protect web-servers
and other applications in that time despite the presence of the then-unknown vulnerability.

This example shows that there can still be serious vulnerabilities in widely adopted open
source software, which can remain undetected for extended periods of time. Widespread
use in itself should not, therefore, be taken as a guarantee of correctness.

However, in-part because the software’s source code was readily available, developers
were able to release (in just seven days) a fixed version for effected systems to install, thus
ensuring that the fix was promulgated as rapidly as possible, and demonstrating the open
source software ecosystem working effectively to address vulnerabilities.

This situation has been seen again very recently. In December 2021, a critical vulnerability
— known as Log4Shell [123] (CVE-2021-44832) — was identified within an extremely
widely-used logging library for Java applications. The exploitation of this vulnerability has
the potential to lead to arbitrary remote code execution and DOS attacks. Again, patched
versions were released very rapidly to address the vulnerability; although (as described in
Section 2.3.1) just because a security fix has been made available, it does not mean that
all users will have applied it. Vulnerabilities such as these may still be found in unpatched
deployed systems.

20 Chapter 2. Cybersecurity and The Internet of Things

2.6 Threats to IoT security

The proliferation of IoT devices on the market with little or no meaningful security
associated with them [124] has shown the extent to which security is not regarded as a
high-priority for IoT device designers.

In the UK, in 2018, HM Government’s Department of Digital, Culture, Media & Sport
(DCMS) published a “Code of Practice for Consumer IoT Security ” [125] in conjunction
with the UK National Cyber Security Centre (NCSC). This guide contained thirteen
recommendations on how to design, build, and administer secure IoT systems (with the
first three being key recommendations). This list in full consists of:

1. No default passwords

2. Implement a vulnerability disclosure policy

3. Keep software updated

4. Securely store credentials and security-sensitive data

5. Communicate securely

6. Minimize exposed attack surfaces

7. Ensure software integrity

8. Ensure that personal data is protected

9. Make systems resilient to outages

10. Monitor system telemetry data

11. Make it easy for consumers to delete personal data

12. Make installation and maintenance of devices easy

13. Validate input data

The need for such guidelines are clear, given the numerous examples of poor security
practice within the commercial IoT, and the often significant real-world consequences [126]
these have had. Even high-profile products, including connected cars from large
multinational companies, have been shown to have been implemented without careful
consideration of security — or in some cases without any security whatsoever [127].
Dragoni, Giaretta, and Mazzara identified the need for a culture of security within the IoT
[124]; both from the perspective of the users of IoT devices, and device manufacturers.

IoT devices form a somewhat different target for malware and other attacks, than more
general-purpose computing devices. Attacks against IoT devices can be categorized as

2.6. Threats to IoT security 21

having consequences on one of three areas of the operation of the wider system into which
the IoT device is connected:

• Compromise of data or services from the devices
Including DoS attacks against the service or the device

• Attacks against the device itself
Either to cause damage to the device, or co-opt it as a node within a botnet, for
attacking other targets — such as using it to participate in DDoS attacks

• Attacks against connected physical systems controlled by the device

2.6.1 Compromise of data or services

For classes of IoT device which record, or otherwise have access to, personal or sensitive
data the most significant threat is that of compromise of that data. This type of attack may
be against unsecured (or insufficiently secured) data connections to and from the device or
wider system, or may be as a result of a compromise of the device itself via malware to
exfiltrate sensitive data over the device’s existing network connections [128].

2.6.2 Attacks against the device

Malware targeting the device, may seek to damage or disrupt the service from the device
itself, or exploit the IoT device as a part of a botnet to use it for unauthorized purposes,
such as mounting a DDoS attack.

2.6.2.1 Denial of use of the device

In this class of attack the intended target is the device itself, and the attack seeks to
disrupt, destroy, or otherwise prevent the use of the device: either temporarily or
permanently. Malware such as BrickerBot [129] is designed to inflict a permanent denial of
use of a device, by corrupting the device’s firmware or file-system leaving it in an
inoperable (or bricked) state. Proof-of-concept attacks have also been described [130]
which could permanently brick smart lightbulbs — jumping between networks by abusing
point-to-point radio links.

2.6.2.2 IoT device ransomware

The types of cryptoransomware attack described in 2.3.1 are often not directly applicable
to the IoT, since few IoT devices store significant quantities of critical data locally, and they

22 Chapter 2. Cybersecurity and The Internet of Things

do not typically have low-level access to the back-end cloud services. Ransomware attacks
versus IoT devices are, however, a plausible threat. It is highly likely that a similar type of
attack, designed to place the target device in a permanently unusable state unless a
payment is made, will be seen against an IoT device in the foreseeable future. This
concept was described by Wüest, in a presentation on the threat of Ransomware in the IoT,
at CRESTcon 2016 [131], and has been the subject of some concern recently [132], [133].

2.6.2.3 IoT botnets and Distributed Denial of Service attacks

With the proliferation of IoT devices seen over the last few years, these devices have been
the targets of malware authors, particularly those wishing to create botnets with which to
stage DDoS attacks (the generally low-powered nature of IoT devices makes them poor
candidates for use as distributed grid computer nodes). These attacks typically exploit
serious security vulnerabilities in the design of many IoT devices, such as hard-coded
passwords, lack of security updates to the device software, and insecure network
configuration (such as providing unsecured remote network terminal interfaces) [97].

Although (as described in Section 2.3.4) DDoS attacks can originate from conventional
computing devices, perhaps the best known example of a highly disruptive large-scale
DDoS attack in recent history was the result of the Mirai malware, which targeted IoT
devices to exploit their network connectivity. Devices infected with Mirai formed botnets
which were used in October 2016 to target Domain Name System (DNS) servers run by
Dyn — and which resulted in considerable disruption to the Internet during the attack: at
one point exceeding 1.2 Tbit/s of network traffic, and consisting of an estimated 100,000
nodes [134].

Mirai operates by targeting unsecured IoT devices, especially those with hardcoded user
authentication credentials [126], seeking to gain administrative permissions. Once infected
the devices will respond to C2 instructions to join DDoS attacks [135].

2.6.2.4 Replay attack

A replay attack [136] is a type of attack where a valid message from one device within a
system to another (such as a command to operate a connected system, or the value of a
sensor reading) is captured by a malicious party, and is then replayed at a future time. For
example if a message to trigger a device to reboot could be successfully captured and
replayed, then an attacker could easily stage a denial of service attack against that device
by constantly replaying the message. Similarly if a message consisting of a sensor reading
could be replayed, then an attacker could cause damage or disruption to the system by
replaying that (e.g. reporting that a temperature reading is normal, when in fact
overheating is occurring).

2.6. Threats to IoT security 23

2.6.3 Attacks against connected physical systems

In the context of connected CPS and IIoT devices, a third target for malware is the physical
system or equipment being controlled by the device. This type of attack seeks to cause
disruption or damage to a CPS connected to a networked device. Although famously an
attack against a disconnected system, Stuxnet [137] is a an excellent example of how
malware may cause physical damage to a CPS by changing the control parameters of the
connected device or system. In the case of Stuxnet, the target was believed to be Iranian
nuclear centrifuges in the Natanz plant [138], with the malware seeking to induce
excessive forces in the centrifuges by overriding the control of the rotor speed and
disabling safety systems [139].

Another attack type, known as Manipulation of Demand via Internet of Things (MaDIoT)
has been recently identified [140]. In a MaDIoT attack, the power-grid itself is targeted by
using IoT-controlled high-load devices (such as water heaters or air conditioning units) to
rapidly switch in coordinated pulses, causing power grid frequency instability and power
blackouts [141].

2.6.4 Supply chain attacks

One class of attack that may be seen versus military IoT or other Critical National
Infrastructure targets, is compromise of the supply-chain through the use of counterfeit or
malicious hardware [142]. Due to the complexity, timescales and cost of mounting such an
attack, and the difficulty in targeting or controlling the attack, it is unlikely that this type of
attack would be mounted against civil devices. However, the small production volumes,
and specialist operating environments of military systems potentially leaves them open to
this type of attack from hostile nation-states. Attacks such as this can be very difficult to
detect, requiring specialist anomaly detection techniques [143].

Software supply-chain attacks [144] are a type of attack where malicious code is injected
into a system during its development, by exploiting the widespread use of package
management systems by software developers. This type of attack can be staged, either
attacking the distribution channels for software packages, or by typosquatting and
uploading malicious code packages with similar names to popular packages (such as
misspellings or other typos) [145] for popular languages (such as JavaScript or Python). If
successful, this type of attack can cause the widespread compromise of both IoT devices
and more general-purpose computing devices, easily embedding arbitrary code within the
targets.

24 Chapter 2. Cybersecurity and The Internet of Things

2.7 Cyber threat actors

The National Cyber Security Centre of the Netherlands publish an annual cyber security
assessment [146]. In 2017, they identified the following threat actors:

• Professional Criminals

• State Actors

– Agents or operatives of nation-states involved in espionage and / or disruption
activities.

• Terrorists

• Cyber Vandals and Script Kiddies

– Cyber vandals are defined as individuals who “. . . carry out cyber attacks as
pranks, as a challenge, or to demonstrate their own capabilities.” [146]; whilst
script kiddies (also known as skiddies) are “. . . less-experienced intruders who
depend on more knowledgeable crackers to automate attacks . . . ” [147].

• Hacktivists

– Individuals or groups who “. . . carry out digital attacks for ideological or activism
reasons.” [146]

• Internal Actors

– Also known as insider threats these are individuals operating from within an
organization for personal motivations (such as revenge); as well as the
unintended effects of the actions of careless users. In the context of domestic
IoT applications, internal actors can include intimate partners for those in
controlling or abusive relationships [148].

• Private Organizations

Whilst the IoT is at risk from any of these actors, incidents utilizing malware such as Mirai
show that perhaps the most direct threat is from professional criminals, hacktivists, and
script kiddies. As CPS increasingly become Internet-connected, the potential threat to
industrial plant and CNI from terrorists and state actors will only increase.

2.8 Encryption

Encryption refers to the reversible transformation of data or messages such that they may
only be read (decrypted) by the use of a suitable decryption key, thus preventing their
interception by unauthorized parties.

2.8. Encryption 25

2.8.1 Historical ciphers

Although a complete discussion on the history of techniques for the encipherment of text is
beyond the scope of this work, there are two historical techniques that bear brief
description here: substitution ciphers and one-time pads.

2.8.1.1 Substitution ciphers

Most encipherment conducted before the 20th Century employed a variation on a
substitution cipher. [149] The simplest such cipher system, known as the Caesar cipher,
dates back to Ancient Rome, and relies on a simple transposition where each letter in the
original message (known as the plain text) is moved n positions forward in the alphabet
(wrapping around after z), and thus the key k is simply the value of n. An example is shown
in Figure 2.1.

k = 3
plain = abcdefghijklmnopqrstuvwxyz

CIPHER = DEFGHIJKLMNOPQRSTUVWXYZABC
p = hello world

c = KHOOR ZRUOG

FIGURE 2.1: An example of encrypting a short message by using a simple transposition
cipher

However, such transpositional ciphers offer almost no security whatsoever, due to the trivial
number of potential keys.

Substitution ciphers may also use non-sequential substitution alphabets, and so
dramatically increase the number of potentially valid keys to 26! = 4.033×1026. This is still
however trivially small in terms of the processing power of modern computers — and the
search-space can be dramatically reduced by using techniques such as frequency analysis
[149]. Additionally, when using this technique, the key becomes much more complex and
requires separate distribution to all parties to the messages.

This challenge of secure key distribution was one of the major factors behind the use of
pseudo-randomizing mechanical encryption devices such as Enigma, Lorenz, and TypeX,
in the 1930s and through the Second World War [150]. Many of these machines were of
course, as history now tells us, flawed in design and in operations — leading to the
widespread decipherment of German military signals traffic by the Government Code and
Cipher School (GC&CS): the historical predecessor to the modern-day Government
Communications Headquarters (GCHQ), at the now famous Bletchly Park. [151]

26 Chapter 2. Cybersecurity and The Internet of Things

2.8.1.2 One-time pads

An alternative approach for secure messaging is to use a one-time pad. When correctly
using such a technique a message may be, from a mathematical perspective, perfectly
protected from an eavesdropper [149]. Such a pad is a set of truly random data, of the
same length as the message, held in common between the sender and the receiver, and
(critically to the technique’s security) each pad may be used one-time only.

In using a one-time pad, each bit in the message is transformed by applying an Exclusive
OR (XOR) function (a Boolean function which returns a 1 if the two input bits are different,
and a 0 if they are the same). The resulting cyphertext of the plain text message contains
the same amount of entropy as the one-time pad, and therefore if the data in the pad are
truly uniformly distributed, for a message m of length L — the corresponding cyphertext
M is valid for all possible messages of length L: with an equal probability.

For example if m is “HELLO”: then we can encode this using American Standard Code for
Information Interchange (ASCII) as:
m = 72,69,76,76,79 in decimal, or
m = 01001000,01000101,01001100,01001100,01001111 in binary.

If the corresponding section of the one-time pad, p is:
p = 1001011010111110110001111010011010011000

Then the cyphertext M would be: M =m⊕ p, as shown in Figure 2.2.

m = 0100100001000101010011000100110001001111
p = 1001011010111110110001111010011010011000

M = 1101111111111011100010111110101111010111

FIGURE 2.2: An example of encrypting a simple text message by using an exclusive-OR
function, and a randomly generated one-time pad

However, for a truly random pad, p — all possible values for p are equally likely: so without
knowing p; it would be equally valid to assume
p = pguess = 0001110000001100000010110000100100011101

And hence that mguess = ‘TIGER’; as shown in Figure 2.3.

Although such a system is unbreakable — it is highly impractical for real-world use, since in
essence it transforms the problem of securely delivering messages to a recipient, to one of
securely delivering shared secret one-time pads of equal length to the message.

2.8. Encryption 27

M = 0100100001000101010011000100110001001111
pguess = 0001110000001100000010110000100100011101
mguess = 0101010001001001010001110100010101010010

FIGURE 2.3: An example showing that an incorrect guess as to the value of the one-time
pad will result in the erroneous decryption of the message

2.8.2 Asymmetric encryption

Asymmetric or public-key cryptography was first proposed by James H. Ellis and
Clifford C. Cocks in 1970 and 1973 [152], [153] in what were at the time SECRET (and
were subsequently declassified) reports; and independently re-invented as
Rivest-Shamir-Adleman (RSA) encryption [154] in 1978.

This technique offers a solution to the problem of key distribution by separating
cryptographic keys into a public and private portion. This simplifies the problem into one of
exchanging the non-secret public keys; requiring only that the integrity, and hence the
trust-worthiness, of those keys is protected. Their content, as implied by the name public
does not need to be kept secret.

Asymmetric cryptography can be used in two main ways:

1. To encrypt a message using the recipient’s public key. Only the holder of the private
key can decrypt it and so read the plain text.

2. To sign a message using the signer’s private key. Anyone with access to the
corresponding public key can verify that the message was signed by the signer, and
that it has not been altered since signing.

Typically in implementation, an algorithm such as RSA is used indirectly to encrypt a
symmetric key that is used to encrypt the actual data; or to sign a secure hash of the data,
rather than encrypting or signing the full data itself. (See Section 3.2.1).

Although perhaps the best known example, RSA is not the only widely-used asymmetric
encryption algorithm, and cryptography based on the mathematics of elliptic curves [155]
[156] has taken over in many applications because of its computational efficiency [157].

The asymmetric RSA cryptographic algorithm is generally well regarded as being secure
[158] and is used to protect much secure Internet traffic. This was originally via the use of
Secure Sockets Layer (SSL), although this is now regarded as obsolete due to security
vulnerabilities [159], and today is replaced by use of the more recent TLS [160] (which is
still regarded as secure). There is however still a small risk of compromise to a
man-in-the-middle attack, if the key distribution is poorly engineered. If a malicious

28 Chapter 2. Cybersecurity and The Internet of Things

third-party is able to intercept the key exchange messages, it would be possible for that
party to provide its own certificates in place of the genuine certificates in order to
impersonate the server to the device, and the device to the server. Although such a party
never has access to any of the private keys it could still successfully trick the device into
thinking its communicating with the genuine server, since without additional measures such
as key signing, the device would have no way to know that the public key retrieved did not
belong to the genuine server.

2.8.3 Diffie-Hellman key exchange

A related technology, is a technique to enable the generation of a shared-secret (to be used
for generation of a shared secret key), by exchange of public messages. This was also first
invented within GCHQ in the 1970s (by mathematician Malcolm Williamson1), and which
was independently invented by W. Diffie and M. Hellman in 1976 [161]. This technique
(commonly referred to as Diffie-Hellman key exchange) enables the parties to exchange
data in public which can be used to generate a common shared-secret which can then be
used as the basis of a cryptographic key for use with conventional symmetric encryption
techniques. The original Diffie-Hellman algorithm uses exponentiation and modulo division
(performed using values selected in secret by the two-parties to the exchange, and using
publicly agreed values for a modulus and generator); but Elliptic Curve Diffie-Hellman
(ECDH) which uses Elliptic Curve Cryptography (ECC) techniques is now commonly used.

2.8.4 Quantum computing

Although very widely used today, algorithms such as RSA or ECC are vulnerable to the
power of quantum computing [162]. A quantum computer is a computational device that
uses the effects of quantum mechanics, such as superposition, to perform calculations
[163]. By using a quantum computer of a sufficient scale, and techniques such as Shor’s
algorithm [164], computations such as integer factorization could be performed fast enough
to break today’s cryptography [165]. Although no known quantum computer is able to
operate at this scale today, the development of cryptographic techniques (such as lattice
encryption [166]), which are resistant to known quantum computing algorithms, have been
underway for some time.

2.9 Summary

This Chapter has explored the background of cybersecurity and encryption for the Internet
of Things; examining a history of malware, and a number of common attack types and

1https://www.gchq.gov.uk/person/malcolm-williamson

https://www.gchq.gov.uk/person/malcolm-williamson

2.9. Summary 29

threat actors especially as they apply to the IoT. These topics will be revisited in Chapter 8,
where solutions to many of the problems described here will be proposed in the context of
this research.

The next Chapter will explore some common Internet protocols, and examine in detail
some specifically related to the IoT.

31

Chapter 3

Commonly used Internet of Things
Protocols

This chapter will examine the types of communications protocol used for general-purpose
Internet traffic, as well as looking in detail at some specific protocols designed for
limited-bandwidth applications such as may be encountered within the IoT: in particular the
MQTT protocol which has been used extensively within this research. It will also describe
some architectural models that can utilize these protocols to provide interfaces to IoT
devices, and look at some of the communications architectures in use today within the IoT.

3.1 Internet communications

Any Internet-connected device, whether a traditional computing device or an IoT device,
requires suitable network protocols to enable it to send and receive data.

The Internet Protocol Suite (TCP/IP) [167] is organized into four abstraction layers:

1. Link Layer
Defining the lowest-level of the stack, and considering the physical bearer and
associated networking standards: such as Ethernet (IEEE 802.3) [168] or WiFi (IEEE
802.11) [169]

2. Internet Layer
Providing inter-networking protocols: e.g. Internet Protocol Version 4 (IPv4) & IPv6
[30]

3. Transport Layer
Providing host-to-host communications, such as Transmission Control Protocol
(TCP) & User Datagram Protocol (UDP).

32 Chapter 3. Commonly used Internet of Things Protocols

4. Application Layer
Providing the protocols directly used by applications — such as HTTP, File Transfer
Protocol (FTP), Secure Shell (SSH), & MQTT.

3.1.1 Link and inter-networking layer protocols

Ethernet [168] was originally developed by Xerox at their PARC facility in the 1970s, and is
based on the earlier AlohaNet system [170], and which was commercialized and
standardized in the 1980s [171]. Today it is an almost ubiquitous link-layer protocol for
wired communications, outside of specialist protocols used within applications such as
HPC. Whilst the original implementation had a speed of just under 3 Mbit/s [172], modern
Terabit Ethernet [173] can reach speeds of up-to 400 Gbit/s [174].

The Internet Protocol (IP) is a protocol for routing data packets across network boundaries
(or internetworking). Its use has become widespread since its development by V. Cerf and
R. Kahn in 1974 [175] as a part of the DoD funded ARPANET [176]. Although other
protocols, such as Asynchronous Transfer Mode (ATM) [177], have been used historically,
today IP based networks have become ubiquitous in most applications.

3.1.2 Transport layer protocols

Traffic on IP networks is carried as either TCP or UDP packets. TCP [175], [178] provides
reliable (assured delivery) communications with error checking, and in-order delivery. By
contrast, UDP [179] provides connectionless communications, where data is sent with no
guarantees of delivery or the order of that delivery.

3.1.3 Application layer protocols

Since the inception of the prototypical form of the ARPANET, in the late 1960s, numerous
Application Layer communications protocols have been used to carry different types of
information over the network. Some, such as Gopher [180] have faded into obscurity, whilst
others, most notably HTTP [21] have become near ubiquitous since its invention and the
development of the World Wide Web in 1990 [181].

Although the use of HTTP is very widespread, it is an unencrypted protocol; thus any data
sent using HTTP is open to interception by third-parties. Given the requirement for secured
communications, an encrypted connection is therefore required. (See Section 3.2.3).

3.2. Cryptographic protocols 33

3.2 Cryptographic protocols

3.2.1 Modern symmetric encryption and message digest algorithms

The most common way to secure information in-transit over the Internet is by using
Transport Layer Security. The Secure Hyper-Text Transfer Protocol (HTTPS) uses TLS to
both facilitate the encryption of the data traffic, and to provide assurance around the
authenticity of the web server supplying the data.

The data itself is commonly encrypted using the Advanced Encryption Standard (AES)
algorithm, using a 256-bit key.

AES was adopted by the United States’ National Institute of Standards and Technology
(NIST) in 2001 [182], using a cryptographic scheme proposed by Joan Demen and
Vincent Rijmen, named Rijndael [183].

NIST also standardized the Secure Hash Algorithm, version 2 (SHA-2) cryptographic hash
functions [184] in 2002 [185]. Cryptographic hash algorithms provide a one-way operation
that will generate a fixed-length output for any given input. The generated hash value is
unique for any given input, and as such provides a simple and computationally inexpensive
mechanism to determine if any two blocks of data are identical or not [184].

The 256-byte SHA-2 (SHA-256) hash algorithm (which produces a 256-byte digest), is
generally used in combination with RSA for message signing.

3.2.2 IPSec

One approach to the provision of secure communications, is to secure the whole IP stack
— using Internet Protocol Security (IPSec) [186].

IPSec encrypts the entire communications stack at the Internet Layer — meaning that
applications sending data over an IPSec protected connection do not need to be aware of
the security (unlike TLS which runs at the transport layer). IPSec is most commonly used
to provide very secure end-to-end encryption for high security Virtual Private Networks
(VPNs). IPSec is compatible with IPv6 and mechanisms for its efficient use over 6LoWPAN
have been identified [187]. IPSec is however relatively uncommonly used on public
communications networks — outside of its use for VPNs and Voice over Internet Protocol
(VoIP).

34 Chapter 3. Commonly used Internet of Things Protocols

3.2.3 Transport Layer Security

The alternative to encrypting the whole stack, is to use a protocol to secure the data.
Transport Layer Security 1.0 [188] was the successor to the original SSL [189] protocols
used to secure Internet traffic, and has been updated since its inception to the (now) widely
supported TLS 1.2 [160] and the most-recent TLS version 1.3 [23] (published in 2018).

TLS facilitates HTTPS [190], providing both security for the connection by encrypting the
data, and authentication of the identity of the communicating parties. In the context of a
website visited using HTTPS establishing the identity of the web server is especially
important — since this effectively prevents genuine sites being spoofed via a
man-in-the-middle attack.

A TLS connection is established via a TLS handshake [160]. The client device attempts a
connection to the server (the CLIENT HELLO message), which describes the version of TLS
that it supports, and which of the various cipher suites that it supports. The server then
responds (with a SERVER HELLO message), which indicates which of the cipher suites the
server has selected for use, and a copy of the server’s certificate. Typically a modern client
and server will use either Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) or RSA to
facilitate key-exchange and deriving a 256-bit key to be used with AES to encrypt the traffic
(commonly operating in Galois/Counter Mode (GCM) to permit higher throughput), and
using RSA together with SHA-2 with a 256 or 384-byte digest for message signing. (e.g.
using the ECDHE-RSA-AES���-GCM-SHA��� or AES���-GCM-SHA��� cipher suites).

HTTPS uses TLS to encrypt the HTTP connection [190] and is very widely used to secure
Internet traffic. Although originally reserved for use with specifically secure web sites (such
as Internet banking or shopping), the use of HTTPS is now increasingly widespread as
concerns grow over privacy and the interception of personal information, and as the barrier
to entry to use TLS is lowered through the provision of free Certificate Authority providers
such as Let’s Encrypt [191].

In addition to its use to encrypt traffic, TLS also provides authentication of the identity of
the web-server being visited, via the use of International Telecommunication Union X.509
certificates [192].

3.2.4 X.509: certificates and identity

Although formally defined by the International Telecommunication Union (ITU), X.509
certificates as they are generally used in practice on the Internet, are used as defined by
the Internet Engineering Task Force’s RFC5280: “Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile” [193]. This defines a hierarchical
scheme to establish a root-of-trust for identity on the Internet. For example, a website

3.2. Cryptographic protocols 35

wishing to establish its identity can obtain a certificate from a trusted third-party known as a
Certificate Authority (CA), which has been signed by that issuer. That CA possesses an
intermediate certificate that has been signed by an intermediate CA, and ultimately that
intermediate CA’s certificate will have been signed by a root CA. The public keys
associated with this small number of root CAs are typically distributed as a part of the
operating system or web browser application software, and hence may generally be
assumed as being already present on the target device.

The system is also sufficiently flexible to permit anyone to generate a root certificate, and a
user who trusts the issuer of this certificate may use it to form their own root-of-trust in
determining the veracity of other certificates signed by that root. This means that a
company or organization can issue their own chain of certificates, without recourse to any
external organization, for use in establishing the identity of servers or devices.

Figure 3.1 illustrates the process of certificate generation.

X.509 uses a Certificate Signing Request (CSR) to enable the generation of a certificate.
This not-only enables the generation of a certificate corresponding to a key-pair, without
exposing that key-pair to the signing CA directly, it also permits the incorporation of a
number of fields into the certificate. Of particular importance is the subject field which
provides several attributes, including the Common Name (CN) which is used (in the case of
certificates for use with TLS) to denote the Universal Resource Locator (URL) that the
certificate applies to.

3.2.5 Quick UDP Internet Connections

Quick UDP Internet Connections (QUIC) is an experimental secure internet transport layer,
first proposed by Jim Roskind from Google, in 2012 [194]. QUIC provides a multiplexed
connection over UDP, in order to provide TCP-like connection with reduced latency and
improved performance for loading pages, something observed in real-world testing [195].
QUIC utilizes TLS 1.3 and requires all connections to be encrypted using TLS using a
minimum handshaking overhead [196].

Due to the influence of Google, and their ability to control both client (through the Chrome
web browser) and server side (through their provision of many popular websites) — it was
estimated in 2017 that QUIC accounted for around 6% of all Internet traffic [197].

3.2.6 Datagram Transport Layer Security

Datagram Transport Layer Security (DTLS) [198] is based on the operation of TLS, but
uses unreliable UDP packets rather than TCP [199]. Although generally regarded as

36 Chapter 3. Commonly used Internet of Things Protocols

FIGURE 3.1: A flowchart depicting the process to generate an X.509 certificate and CA
certificate

secure, some plain text recovery attacks have been shown against some implementations
of the protocol [200].

3.2.7 Secure shell

SSH [201] is a secure remote-access protocol widely used for remote command-line login
and execution. SSH uses public-key cryptography (typically RSA) to authenticate the user
and remote computer. This enables a user who requires frequent access to a remote
server to store a copy of their public-key on the server (and associated with their user
account on that server), and then use the presence of their private key on the device they
are initiating the connection from as a determination of their identity rather than having to
enter their password. For even greater security, use of a password to log in can be disabled
on the server, preventing any user who does not possess a private key corresponding to a
public key on the device from logging in.

SSH also provides authentication of the identity of the remote server. When establishing
the connection to a server for the first time, the system will display an Elliptic Curve Digital
Signature Algorithm (ECDSA) key fingerprint in the form of a SHA-256 hash. If accepted
this will be stored (along with the target’s Fully Qualified Domain Name (FQDN) and IP

3.3. Constrained protocols 37

address). If subsequently the value received on connection differs from the stored version,
the user will be warned as to the possibility of an man-in-the-middle attack.

The SSH protocol is also used as the basis for the SSH File Transfer Protocol (SFTP),
commonly used for secure remote file copy.

3.3 Constrained protocols

As described in Section 1.2.3, deployed IoT devices may be expected to need to be able to
make efficient use of poor quality network conditions. As such they can be expected to
make use of protocols that are specifically tailored for such situations.

HTTP (and the secured HTTPS) is an ideal protocol to provide human computer interfaces.
Due to the ubiquity of the use of HTTP for the web, just about any conceivable
general-purpose computing device will have at least one web browser application available,
and a human operator could therefore use this to interact with an IoT system. Furthermore
if a bespoke local application is desired — just about every major programming framework
will include support for HTTP / HTTPS. HTTP is also well suited to situations where you
wish to expose an Application Program Interface (API) to other applications. Using a
Representational State Transfer (REST) [202] API over HTTP is very widely supported and
it makes it easy for a third-party application to consume a service without any detailed
knowledge of the implementation of the service.

However, for all its ubiquity in the desktop and handheld computing domain, HTTP has a
considerable overhead in terms of the size of its headers, and in the relative complexity of
the process of establishing connections. Whilst this makes it an easy protocol to use, it is
not a protocol that is especially well suited to some aspects of M2M communication. In
particular HTTP is especially poorly suited for use in situations where high-frequency short
messages are exchanged — the type of data flow that may be generated by a frequently
updating IoT sensor. In this situation the cost of the message headers far outweighs the
size of the data being sent. Whilst this is unlikely to be an issue for a device using a modern
network connection: for a device in a location where network speed is measured in Kilobits
per second, this is quite wasteful, and significantly limits the traffic rate of the device.

To address this requirement, there are a number of constrained protocols optimized for use
with IoT devices. These protocols are specifically designed to have a small data overhead
such that they can be effectively used in situations where network bandwidth is limited —
or connections are intermittent. The performance and efficiency benefits (in terms of
overheads and constraints) for IoT protocols in comparison with HTTP, are described in
detail by Naik [203].

38 Chapter 3. Commonly used Internet of Things Protocols

Two of the most commonly used constrained protocols within the IoT [204], [205] are
MQTT, and the Constrained Application Protocol (CoAP). These will be examined further
in the following Sections.

3.3.1 CoAP

CoAP [206] — is a web transfer protocol designed for constrained environments. It
provides a RESTful HTTP-like request/response paradigm — but unlike HTTP it uses very
small data headers designed for use in low-bandwidth (and limited computing power and
memory) scenarios such as may be found within the IoT [206].

When using HTTP to connect an IoT device to the Internet, the device would typically be
the client — and would connect over HTTP to a web server on the Internet to retrieve (GET)
or send (POST) data. However, with CoAP this is reversed. The typical implementation
would have the IoT device as the CoAP server — and Internet resources acting as the
client to retrieve or send data, to and from the device.

CoAP uses the connectionless UDP [179] as the transport layer. CoAP also supports
Group Communication via IP Multicast, enabling the efficient sending of data to multiple
recipients [207].

Within the CoAP standard, a mechanism to enable resource discovery is specified. This
enables a client to request a list of all of the resources that a server provides, by visiting a
standard CoAP Uniform Resource Identifier (URI) on that server.

coap://example.com/.well-known/core

The list returned includes metadata about the resources, all specified using the
Constrained RESTful Environments (CoRE) link format [208].

CoAP can be used in a secure mode — where DTLS is used to encrypt the underlying
UDP traffic [209].

3.3.1.1 CoAP Publish and Subscribe

CoAP supports a publish-subscribe model, known as Resource Observe — where a server
can track observers, and notify them when the end-point they are observing is updated; but
this is un-brokered and so requires the server to actively track the subscribing observers.

3.3.1.2 CoAP Quality of Service

CoAP supports two levels of Quality of Service (QoS). Requests and responses may be
either confirmable (in which case they must be acknowledged by the receiver) or

3.3. Constrained protocols 39

non-confirmable. Neither CoAP nor the underlying UDP transport layer provides any
guarantee about the delivery of non-confirmable messages.

3.3.1.3 Network access

Given the server-oriented nature of a typical CoAP device, in order for a CoAP client to
establish a connection to a CoAP server, the client must be able to route to it. This is not
typically possible in environments where NAT is in operation without specialist setups,
tunnelling, or (for simple cases with only a single device on the local network) port
forwarding. As such CoAP is better suited to networking environments using IPv6 — which
permit direct routing to the device from the Internet.

CoAP is still relatively immature and is not yet very widely used, although there are a
number of reference implementations available for a number of different programming
languages and development platforms: for example, the CoAPthon project provides an
easy to use Python implementation, but it has been shown to have relatively poor
performance under high load conditions [210].

3.3.2 MQTT

MQTT is a lightweight brokered publish / subscribe messaging protocol, originally
developed by Andy Stanford-Clark (IBM) and Arlen Nipper (Arcom) in 1999 to provide
lightweight telemetry for the oil and gas industry, and it became an OASIS standard in
2013 [24]. Version 5.0 of the MQTT standard was published in 2019 [211].

MQTT runs over TCP/IP networks, using TCP [178] as the transport layer. Unlike CoAP
and HTTP, all messages must be routed via a broker. The broker is responsible for tracking
all subscriptions, and sending data to subscribers when a publisher issues a message.
There are a number of open-source brokers — two of the best supported are Mosquitto
and Paho — both Eclipse IoT projects.

This research makes extensive use of MQTT, and the Mosquitto broker [212], [213] has
been used throughout.

3.3.3 MQTT Messages

All data exchanges using MQTT take the form of messages. Messages consist of the
MQTT message headers, and a user-defined block of variable-length data, known as the
payload. The MQTT specification makes no attempt to define the meaning of the payload,
and in fact explicitly declares that “ The content and format of the data is application

40 Chapter 3. Commonly used Internet of Things Protocols

specific.” [211]. This means that applications using MQTT are free to define their message
payload as required.

Messages are disseminated by being sent to a broker, using a particular topic. The broker
will respond by relaying the message payload to any subscribers that have registered a
subscription for that given topic.

3.3.3.1 MQTT Topics

Under MQTT all messages belong to a topic and connected clients can subscribe or
publish to any topics they have access to. Topics in MQTT are hierarchical, so a client
subscribing to a base topic, can also elect to receive any messages published to any of its
subtopics using wildcards.

For the purposes of subscriptions, topic wildcards are supported via the � and � characters,
with � denoting a multi-level wildcard, and � representing a single-level wildcard.

This is described further in the standard description, with the following examples. A
subscription to sport/tennis/� will receive all messages sent to any of
sport/tennis/player�, sport/tennis/player�/ranking, or sport/tennis/player�.
Whereas a subscription to sport/tennis/� will receive sport/tennis/player�, and
sport/tennis/player�, but NOT sport/tennis/player�/ranking. The single-level
wildcard can also be used to specify a subscription topic in the form: sport/�/player�,
which would receive both sport/tennis/player� and sport/golf/player�. [211].

3.3.3.2 MQTT Quality of Service

MQTT supports three levels of Quality of Service, ranging from the fire and forget nature of
QoS0 (“Deliver at most once”), where there are no delivery guarantees beyond those
offered by TCP, to QoS1 (“Deliver at least once”), and QoS2 (“Deliver exactly once”),
where the receipt of each message is actively confirmed. QoS2 is correspondingly the
slowest QoS level — and is therefore generally only used for situations where reception of
duplicate messages would be actively harmful. MQTT supports multiple different QoS for
different connections (i.e. a given device could publish on one topic using QoS1, and
subscribe on another topic at QoS0).

3.3.4 MQTT Security

MQTT is by default an insecure protocol (all data is sent as plain text), and has no
authentication (anyone can connect to a broker, and publish or subscribe to any topic). In
this configuration, the protocol is clearly unsuited for use in any secure applications,

3.4. Summary 41

however it can be secured by the application of TLS to the message traffic, and the use of
authentication to restrict access to the broker. If using encryption, it is clearly necessary to
also use some form of access control, otherwise an eavesdropper could simply request a
subscription to the topic of interest.

Mosquitto supports both conventional asymmetric (public-key) encryption over TLS, and
the use of Transport Layer Security using a Pre-Shared Key (TLS-PSK) [214]. TLS-PSK is
not widely adopted but it has some potential advantages over the use of asymmetric keys
in the context of very low powered IoT devices. As the level of processing required is
reduced, it is better suited for use in systems with very low-powered processors. Not all
MQTT clients support TLS-PSK however, and the sample Mosquitto clients provide the
most complete implementation. The price of using this method is that it requires the
system to define a secure method for private key exchange, and that it provides no future
security [215] (so in the event of a compromise of the key, all previous messages protected
using that key are compromised). As the power of IoT devices increases the value of using
this approach over conventional TLS reduces.

Further detail on the MQTT protocol can be found in Appendix A.

3.4 Summary

This Chapter has examined a number of Internet protocols, and in particular the MQTT
protocol which is very widely used within the IoT; and which is the basis of this research
work. It has also described the use of Transport Layer Security and X.509 certificates in
the context of secure Internet communications.

The next Chapter will introduce the final background concept to this work, and discuss the
application of Command and Control architectures to IoT messaging.

43

Chapter 4

Command and Control Architecture
and the Internet of Things

The previous Chapter explored some communications protocols and architectures for use
within the IoT. This Chapter will examine the concept of Command and Control and some
different architectures for C2 networks. It also considers the security requirements for C2
messages, and examines some C2 message types and their applications as they pertain to
use within the IoT.

4.1 Command and Control

Command and Control (C2), whilst traditionally thought of in a military context, simply
denotes the process whereby a hierarchically superior entity, sets an objective for
(command), or provides direct instructions to (control), a subordinate entity. More
generally, it is defined by the North Atlantic Treaty Organization (NATO) as: “. . . the
exercise of authority and direction by a commander over assigned and attached
[resources] in the accomplishment of [a goal].” [216].

Within the context of this research, C2 can be thought of as referring to any
communications which take place within an hierarchical structure where information is
exchanged between a controlling entity and a subordinate entity, in order to enable
direction of the operation of the subordinate entity by the superior controlling entity.

There are two main types of C2 architectures: a purely hierarchical approach, such as is
typically adopted within the context of military or civilian law-enforcement personnel, and a
peer-to-peer approach.

44 Chapter 4. Command and Control Architecture and the Internet of Things

4.1.1 Hierarchical versus peer-to-peer architectures

Within a strictly hierarchical C2 model of communications, all communications between
nodes must flow via a (common) superior commander.

In a military-context, it is typical to see multiple layers of command and control nodes —
intermediate commanders responsible for making delegated decisions, and to pass reports
up, and instructions down to superior and subordinate commanders.

Where there is a requirement for messages to be sent between leaf nodes, they will always
be passed through a superior commander, typically the lowest level of command layer to
which both nodes are subordinate. An example of this is shown in Figure 4.1.

Whilst not a perfect analogy, email may be thought of as something broadly operating
along this type of C2 architecture. Users sharing a common mail-server will exchange
messages within that server, but messages between users on different servers need to be
passed over to a different server to be accessed by the user.

FIGURE 4.1: A diagram showing message flow between leaf nodes within a multi-level
C2 hierarchy. The purple data flow goes through the common intermediate commander,
whereas the red must go to the top-level commander since the two nodes involved share

no other common command node.

By contrast to this approach, a purely peer-to-peer communications model permits direct
communication between any nodes. An architecture adopting this scheme will have an
entirely flat hierarchy, where all nodes are equal and any communications flows directly
between end-points. In practice there are relatively few such models adopted in
mainstream communications architectures. Traditional two-way radio communications is
perhaps the best example, although there are also some privacy-oriented communications

4.1. Command and Control 45

tools such as Shazzle1 and Mesh2 which do adopt a true peer-to-peer messaging
architecture.

More typically within nominally peer-to-peer communications (such as the telephone
system, for example) messages are routed or relayed via a server, exchange, or other
broker at one or more levels of hierarchical extraction from the user. This is still the case
within most End-to-End Encrypted (E2EE) messaging services [217] such as Signal3.

4.1.2 C2 and the IoT

This work primarily considers a use-case commonly seen within the IoT — where a
particular class (or family of classes) of device are deployed, and use a C2 function
provided by a centralized service. That service can support one or more users, each of
whom would have access to one or more devices.

This model, utilizing a system with centralized control, and providing an interface to control
connected devices via the internet, is one that has been adopted by a number of
commercially available products such as Philips Hue smart light bulbs [218].

An example of this architectural approach is shown in Figure 4.2.

FIGURE 4.2: A diagram showing a generic C2 architecture for the Internet of Things.

1https://shazzle.com/shazzlechat/
2https://mesh.im
3https://signal.org

https://shazzle.com/shazzlechat/
https://mesh.im
https://signal.org

46 Chapter 4. Command and Control Architecture and the Internet of Things

This is also compatible with the emerging trend to see IoT devices make use of, and
integrate with, existing cloud services such as those provided by Google or Amazon. This
approach provides easy integration with home-automation hub devices such as Amazon
Echo (and the Alexa voice assistant) and Google Home. Typically the implementation of
services enabling smart devices to be controlled by a voice assistant, will make use of a
secured HTTPS API end-point. The voice assistant uses this REST API to exchange data
with the smart device’s C2 service. The C2 service then subsequently sending suitable
messages to the end device to perform the actions requested by the user.

4.1.3 C2 for military applications of IoT

Given the requirement for IoT and IoBT systems in a military context (described in Chapter
1) there is a clear requirement for a C2 system to integrate them into existing military
decision-making processes and structures. For example, the IoBT research conducted by
the United States Army Research Laboratory proposes a future scenario where highly
autonomous devices are ubiquitous in a battlefield environment [219], requiring a robust
C2 system.

The infrastructure requirements underpinning network connectivity for a deployment of
IoBT devices may be satisfied by deployed military systems, or the indigenous systems of
the operational theatre (or a combination of both). However depending on the scale of any
such deployment of IoBT devices, the infrastructure may be insufficient to meet the
requirements for connectivity to support real-time C2. The use of meshed networks,
consisting of device to device communication, and more complex network management
may address some of these issues [52].

As described in Chapter 1, not all military use of IoT will be in the context of high-intensity
war-fighting. Other military IoT will also require C2 for the devices — which for some
applications may be required to integrate into existing military C2 systems via the
automated generation of situational reporting. Raglin, Metu, Russell, et al. propose a
“conceptual IoT to C2 framework” [220] that addresses aspects of this requirement.

Lastly it must be noted that the technical challenges of C2 messaging are distinct from the
organizational challenges of decision-making, information management and situational
awareness that future IoBT systems will also face [221].

4.2 Security requirements for C2 messaging

The traditional view of information security is one of “Confidentiality, Integrity, &
Availability. . . ” [222]; but within the IoT, this thesis proposes that this should instead be
viewed as “Confidentiality, Integrity, & Authenticity. . . ” [223] — since within the IoT

4.2. Security requirements for C2 messaging 47

availability may not be achievable, or (in the case of covert devices that might be employed
in an IoBT context) desirable. Proof of the authenticity of the origin of C2 messages is
critical within a C2 context — in addition to Integrity of the content of the messages
themselves being assured. Whilst confidentiality will be a key requirement in many cases, it
is not universally required — and providing a system can guarantee the other two, it may
not always be necessary. This is especially true in situations where very low power
consumption devices that are used for reporting on non-sensitive data and for which the
additional power overhead of running encrypted communications may not be justified.

An illustration showing the classic triad redrawn for IoT is shown in Figure 4.3.

FIGURE 4.3: A diagram showing an alternative expansion of CIA for the Internet of Things.

These three elements are required for a C2 message to be considered secure:

1. Message Confidentiality
Message confidentiality simply refers to the requirement that it not be possible for an
external third-party to intercept and read a message in transit. This requirement is
easily addressed by the addition of suitable message encryption.

2. Message Integrity
Message integrity refers to the ability to verify that the message has not been
changed or tampered with in transit, and to verify that the message has not been
received before. This latter point is very important for IoT C2 traffic, since the ability
to detect the re-transmission of a previously sent (but otherwise valid) message
mitigates Replay Attacks (see Section 2.6.2.4). Without protecting against replay

48 Chapter 4. Command and Control Architecture and the Internet of Things

attack, systems are susceptible to an attacker using traffic capture to store a
previously sent message, and replaying that to perform operations on demand, or
stage DoS attacks against the device. There are a number of different techniques to
address this threat, which are discussed further in Section 8.1.

3. Message Authenticity
Message authenticity refers to the requirement that it must be possible to verify that a
given message genuinely originates from a specific sender. Solutions for both
authenticity and integrity can be addressed using cryptographic signature
techniques.

4.3 IoT Command and Control message types

There are three main types of message that are required within the context of an IoT C2
system:

1. Messages concerned with the operation of the devices

2. Messages concerned with the operation of the C2 network

3. Messages concerned with the operation of the functional system

4.3.1 Messages concerned with the operation of the devices

There are several types of message that form a broad class of messages which are
required to carry any information required to change the state or operation of the device.
Such messages can either be direct command actions (for example causing the device to
switch on an effector, or enter a different power-mode), or may be control messages
providing specific data (for example, a message specifying a new temperature value for a
thermostat to locally regulate the temperature to).

4.3.1.1 Software update

One specialist type of device oriented C2 message, is a message pertaining to device
configuration, and especially software update (which may be viewed as a special case of
device configuration update). One of the major challenges in constructing a secure IoT
system is the requirement to be able to perform secure remote updates of the configuration
on the devices, since once devices are deployed the feasibility of performing in-person
updates may be extremely limited.

4.3. IoT Command and Control message types 49

Software in this context could include anything from device firmware for an embedded
component, through to a set of configuration data. Although the term software is typically
used to describe programs running on a device (in the form of binary executable or
interpreted script code), a device may require other types of configuration data updates
which may be considered alongside the traditional definition of software in this context.
Such data may either be to change the operation of the device (such as specifying different
operating parameters), or to provide system configuration data (for example, updating a
cryptographic key).

A number of approaches have been adopted for this requirement, but they broadly fall into
approaches focused on update of embedded firmware [224] or approaches more focused
on the more general problem [225].

4.3.2 Messages concerned with the operation of the C2 network

A common C2 message type are those which are concerned with the operation of the C2
network itself. For example messages pertaining to the device’s membership of the C2
network. Depending on the system these could include both requests from devices to join
a given C2 network, and messages removing devices from the network.

4.3.3 Messages concerned with the operation of the functional system

Just about every IoT device will have a requirement to send or receive messages pertaining
to the primary application of the system. For example, a device which is (or which contains)
a sensor will almost certainly have a requirement to send the data from that sensor to
another platform. Sensor data may need to be sent to a cloud service hosting a software
application, or to an end-user device, or an external data store. Whilst this type of message
may strictly be considered outside of the scope for a C2 message, any device operating in
a C2-based system, could adopt the scheme devised for the secure transmission of C2
messages for these application messages, especially since (depending on the specifics of
the system), there is a high likelihood that the same requirements for authenticity, integrity
& confidentiality are present for application data as they are for C2 data.

With a desire to create a single, integrated messaging protocol to cover all of the
messaging requirements of a system it is highly advantageous to include application data
messages as a sub-type within the suite of C2 messages.

50 Chapter 4. Command and Control Architecture and the Internet of Things

4.4 Summary

This Chapter has explored the concept of C2 messages, and how they relate to the IoT.
This Chapter concludes the first Part of the thesis, which has focused on the background to
this research. The second Part will start to explore the original research that has been
conducted in order to answer the research questions. In particular, the next Chapter
introduces the Secure Remote Update Protocol, a messaging protocol for the IoT
developed as a part of this research, and which has been designed to provide a secure
protocol for C2 messages in the context of IoT applications.

51

Part II

The Secure Remote Update Protocol

53

Chapter 5

The Secure Remote Update Protocol

This Chapter introduces and examines the first original element of this research: a protocol
to address the requirements of secure C2 messaging for the IoT, and seeks to answer
Research Question RQ1.

Elements of this Chapter have been previously published as [2] and [3].

5.1 Design concept

In order to address Research Question RQ1, the Secure Remote Update Protocol (SRUP)
was designed to make use of well-established, and therefore well-known and well-trusted,
components to implement a secure, efficient and straightforward protocol to carry C2
messages between IoT devices and a Command and Control server.

The protocol was originally envisaged as a mechanism to provide a means to signal
deployed IoT devices to perform a software update (hence the name), but as research
work progressed it was highly apparent that this same protocol could also be used as a
general-purpose communications protocol for all C2 operations associated with an IoT
device and its controlling server.

The SRUP protocol is built on top of MQTT (see Section 3.3.2) — and provides an
efficiently packed binary message structure within the payload of an MQTT message. It
uses cryptographic protocols such as SHA-2 and RSA to provide authentication and
message integrity, and a system built using SRUP can also use TLS to provide message
confidentiality, where required.

SRUP has been designed so that the specific cryptographic protocols in use, could be
easily substituted independent of the C2 messaging protocol itself. Whilst the sender and
receiver need to both be using the same cryptography in order to be able to successfully

54 Chapter 5. The Secure Remote Update Protocol

understand and verify messages, any given system utilizing SRUP could simply swap to a
different implementation using any other asymmetric signature algorithm. This
crypto-agility [226] is especially important for future-proofing the protocol to remain relevant
in a future post-quantum computing world.

SRUP messages themselves consist of a byte-stream composed of a concatenation of a
number of fields. These fields consist of both the specific information to be communicated
(e.g. instructing the device to perform a given command), and additional elements to
ensure the integrity of the message. The hash digest of the message is signed using the
sender’s private key. Using this approach provides assurance that the message has not
become corrupted or tampered with in transit, and provides a way to positively verify that
the message has originated from the source that it claims to have come from. Although the
protocol is independent of the specific cryptographic algorithms adopted, the reference
implementation of SRUP (see Chapter 9), protects the messages by signing the SHA-256
hash value of the message with an RSA signature.

Regardless of the algorithm, provided that the device has a copy of the server’s public key
it can authenticate that any messages received genuinely originate, in the form received,
from that server. Similarly any message from a device can be authenticated by the server,
using the copy of the device’s public key held by the server.

5.2 MQTT payload

Given the requirement for IoT devices to operate in constrained or austere network
environments described in Section 1.2.3, it is important for SRUP to adopt an approach
which maximizes efficiency when sending data. Therefore, whilst it would be perfectly
possible to utilize a human-readable, ASCII text-based format such as JavaScript Object
Notation (JSON) [227] for the elements of a SRUP message, this would require one byte
per character, and therefore be very inefficient [228]. As such the format adopted by SRUP
is to use a raw binary byte-stream, utilizing the position within the byte-stream to indicate
the field-boundaries.

Although commonly used to send printable ASCII characters, the MQTT payload is defined
as a simple byte-stream. As such, any raw data may be placed in the payload of a
message that is published to the broker, and this data will then be sent to all subscribers.

As this raw binary format is supported by MQTT, all bytes are written directly into the
MQTT payload (including elements such as the message signature). This is in contrast to
the approach which would be required if using a text-based format, where constraining the
payload to only ASCII characters would require the use of an encoding technique such as
Base64 encoding [229] to represent the binary data using printable characters.

5.3. SRUP message elements 55

The elements contained within a SRUP message include both static and dynamic length
fields. For the purposes of marshalling the data into a byte-stream, variable length fields
are preceded in the byte-stream by a two-byte representation of their length; whereas
fixed-length fields are simply appended onto the byte-stream. This means that a receiving
system can parse the data very easily to reconstruct the message, and can allocate the
correct number of bytes of memory for the variable length items, before populating the
fields.

Although a number of data marshalling libraries (for example Google Protocol Buffers1)
[230] are extant and in widespread use, they are relatively complex and heavyweight for
the simple and fixed requirements of SRUP — and so a simple, bespoke, solution was
adopted instead.

5.3 SRUP message elements

All SRUP messages are formed of a common set of fields, plus any message-type specific
data that is required. This common base message, consists of the following elements:

• A two-byte header, consisting of:

– One byte used to signal the version of the protocol in use.

– One byte used to signal the message type.

• An eight-byte Sequence ID number: used to prevent replay attacks.

• An eight-byte Sender ID: this denotes the identity of the sender, and thus enables the
receiver to ascertain the correct public key against which to validate the signature.

• A transaction token, used to identify a particular message thread, for multi-part
operations. This consists of:

– A two-byte token length.

– A variable length token.

• The cryptographic signature, consisting of:

– A two-byte length for the signature.

– The signature data itself (of variable length).

The 8-byte (64-bit) sequence ID value is used to protect against a replay attack (see
Section 8.1). It therefore requires that all devices receiving a SRUP message, must reject
any messages where the sequence ID of the received message is not strictly greater than
the last received sequence ID from that sender.

1https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/

56 Chapter 5. The Secure Remote Update Protocol

5.4 MQTT topics and message addressing

SRUP messages do not contain an explicit destination field, but instead rely on the use of
MQTT topics to route messages to the correct recipients.

5.4.1 Message source

SRUP uses the MQTT topic as an informational element within the messaging scheme.
Each individual device uses a separate MQTT topic for its message traffic, and C2 servers
subscribe to topics corresponding to devices that they control.

For example, consider a hypothetical example with the following three devices:

• Device_�x��

• Device_�x��

• Device_�x��

Each device uses an MQTT topic for its own messages.

• SRUP/dev�x��

• SRUP/dev�x��

• SRUP/dev�x��

(Note: in a real system the device ID would be a 64-bit randomly generated value, but for
the clarity of this example, these rather more complex values have been substituted for
more readable IDs).

If the C2 server wishes to send Device_�x�� a message — that message will be published
to the SRUP/dev�x�� topic. A message from Device_�x�� to the server will also be sent on
the SRUP/dev�x�� topic.

In a system where there is only ever one C2 server communicating with a device at any
one time, no additional information is required to indicate the sender of a message. A C2
server will know which device a message pertains to because of the MQTT topic in use,
and a a message sent to a device will always originate from that device’s current C2 server.

Although this is the expected standard configuration for SRUP, there are scenarios where
devices may have multiple C2 servers (for example where different elements of the
device’s operation are controlled by different C2 systems). In such a scenario where a

5.4. MQTT topics and message addressing 57

device was receiving messages from more than one C2 server, this simple model is
insufficient. In that scenario an additional mechanism is required to identify the sender, and
therefore to identify which public key should be used to verify the message signature.

The simplest possible solution would be to have the receiver try each of the keys it has in
turn before either verifying the sender, or concluding that the message cannot be verified.
However this is neither a scalable nor elegant solution.

Another alternative would be to adopt a more complex MQTT topic hierarchy to signify the
sender. For example, rather than subscribing to SRUP/dev�x�� — the device and server(s)
could subscribe to SRUP/dev�x��/� (using the MQTT topic wildcard character �). This
would then enable messages from the device to use the higher-level topic — and for
messages from different servers to use subtopics (e.g. SRUP/dev�x��/sv�x�F) to indicate
their origination. The sender could then be identified by parsing the MQTT topic, and the
subtopic element could then be extracted in order to determine the identity of the sender.
This too was rejected for being unnecessarily complicated.

The third approach, which was adopted, is to include an additional field within the SRUP
messages to contain the Sender ID. This method requires the smallest amount of work
from the receiver to identify the sender, however it also has the largest additional overhead
on the size of the message traffic. A typical SRUP base message has a length of 286
bytes. This is composed from: a 2 byte header, 18 bytes for the token (including its length),
8 bytes for the Sequence ID, 2 bytes for the signature length, and 256 bytes for the
signature (assuming the Public-Key Cryptography Standard #1 (PKCS#1) [231] is adopted,
as per the reference implementation, and that a 2048-bit key-length is used). With the
addition of a 64-bit Sender ID field, the base message size increases to 294 bytes —
approximately a 3% increase in size. Although not negligible this may be considered a
preferable approach compared with the relative complexity of using the topic
hierarchy-based approach.

As such, all SRUP messages have a sender ID associated with them, as a part of the base
message. This ensures that (regardless of the C2 topology adopted within the
implementation of any given system), a receiver of a message can always positively
identify the sender and validate the message using that sender’s public key.

5.4.2 Destination addressing

Using the approach described in Section 5.4.1, and by controlling the MQTT topics to
which devices are able to subscribe, it may be assumed that any message received by a
device is intended for that device. Although it would be possible to mirror the approach
adopted for the Sender ID, and add a Destination ID field to the SRUP messages, an
explicit destination ID was not included.

58 Chapter 5. The Secure Remote Update Protocol

5.4.2.1 Positive device identification

The inclusion of a specific destination address would be consistent with lower-level
networking protocols (such as TCP); however, unlike lower-level protocols this destination
addressing is not required for routing (at either a highly abstracted logical level, or at the
network transport layer level) — since the centralized MQTT broker and the publish /
subscribe model take care of both of these. Furthermore because SRUP imposes a
centralized C2 model, there is no scope for direct device-to-device messaging.

There is however, one type of SRUP message which does make use of an explicit
destination ID: the software update initiate message. This is a deliberate exception. By
adopting an explicit target identification field, it forces a strictly one-to-one mapping
between specific devices and the corresponding update initiation messages. Although the
topic addressing approach used elsewhere within SRUP can be used to sufficiently convey
the destination, there is a requirement (articulated in conversations with potential users of
the protocol) within some military and safety-critical applications to guarantee that
device-specific payload delivery can be maintained. To provide such assurance the
additional field was added to the protocol.

5.4.2.2 Multiple C2 servers

Given the all-to-all nature of the MQTT publish / subscribe model (where all messages
published to a specified topic are relayed to all subscribers), a system with multiple C2
servers subscribing to a channel used for a specific device also have the problem of
identifying to which of the potential recipients a message is addressed.

This is largely a problem which must be solved at the level of the design for a system using
this model however, and is not a specific issue which SRUP is required to solve. There are
a number of approaches that could be adopted by a C2 system to address the potential
ambiguities of having multiple C2 reporting lines, which are well understood within the
military domain. For example, a system could adopt segregation by message type (where
messages of one type are handled by one C2 server, and messages of another type are
handled by a different C2 node); a multi-level superior / subordinate hierarchical approach
could be adopted (with some C2 operations delegated to the lower level, and others
passed up to the superior commander); or control of a device could simply be handed over
from one server to another, eliminating the situation where a device was simultaneously
connected to multiple C2 servers. This latter approach, which is the expected mode of
operation for the majority of situations where multiple C2 elements are required, can be
implemented by simply ensuring that only a single C2 server is subscribed to a given
device topic at any one time, and using SRUP join and remove message types (see
Section 5.6.5) to explicitly handover control between C2 servers.

5.5. Message encryption and access control 59

5.5 Message encryption and access control

If encrypted messaging is to be adopted within a SRUP system, then a mechanism is
required to restrict access to the topics which can be subscribed to via the MQTT broker.
Given the open device registration model (see Chapter 6), without such restrictions on
topic subscriptions, anyone could simply register a device and subscribe to receive any
messages: effectively bypassing the message encryption as they would become a valid
recipient.

5.5.1 Encrypted messages and topic access control

When a C2 network is utilizing TLS for MQTT message encryption it is therefore necessary
to both restrict access to the MQTT broker itself, and to limit the topics to which a given
MQTT client is able to connect. In the context of SRUP, the broker needs specifically to be
able to identify the client’s identity, and then to use this to restrict the access for that client,
so that it can only subscribe and publish to topics that are permitted for that identity, using
the topic-based addressing scheme previously described.

This is accomplished by using a custom X.509 certificate to enable connection to the
MQTT broker, and by configuring the broker to only permit connections from devices
bearing a valid certificate. The certificates contain an MQTT username (stored within the
CN field), and the certificate generation process ensures that the username matches the
device ID. The broker then uses an Access Control List (ACL), which specifies that devices
are only able to subscribe to a topic associated with their MQTT username. An example of
this is shown in Figure 5.1.

In addition to having full read / write (publish and subscribe) access to their own topic,
devices also require a means to send messages to servers that are not yet subscribing to
that topic as a part of the process of joining a new C2 network. In order to accomplish this
without breaking the model of restricting access to the topics, devices will initiate a request
to join a C2 network, by using a topic associated with that particular server. For example,
to join a network controlled by server �xFEDCBA��, the device would publish their join
request message on topic SRUP/SERVER/�xFEDCBA��.

By using an additional level of topic hierarchy (SRUP/SERVER/...), together with an ACL
written to also permit the use of wildcards, it is possible to permit any device able to
connect to the broker to be granted write-only access to the topic of any server (e.g. to any
subtopic of SRUP/SERVER/). The ACL rules for these server topics, will permit any client
able to connect to the broker, to be able to publish to these topics, whilst limiting the ability
to subscribe only to the servers.

60 Chapter 5. The Secure Remote Update Protocol

FIGURE 5.1: A diagram illustrating the use of topic access control to restrict access to
MQTT topics by the broker.

For further details on how the MQTT broker ACL described here works with the identity
model adopted within SRUP, see Chapter 6.

5.6 Message types

Within SRUP each message has a specific message type associated with it, signalling to
the receiver which fields to expect to find within the message, in addition to the base
message fields described in Section 5.3. As the message type is contained within the
header, it permits a device receiving the message to read the header, to therefore know
how to demarshall the data contained within the MQTT message.

These message types are grouped into families: each associated with a different type of
C2 transaction.

5.6. Message types 61

There are seven main families of message type:

• Update Messages

• Response Messages

• Action Messages

• Data Messages

• Join Messages

• Remove Messages

• Syndication Messages

A summary of the first six of these families of messages, and their intended usage, is
shown in Table 5.1. Note that the final version of the protocol also includes a number of
additional message types to support the final message family, syndication messages.
These are not discussed further in this Chapter, but full details of syndication, and the
supporting message types are described in Chapter 10.

The following Sections contain a brief summary of the message types shown in Table 5.1;
for full details of the messages, and detailed descriptions of the message fields contained
within them, see the complete protocol specification in Appendix B.

5.6.1 Update messages

The most complex of the message families is the update message family. This consists of
two discrete message types:

• Update Initiate Messages

• Update Activation Messages

The update process also makes use of the response message type (see 5.6.2) to signal
the outcome of the update operations. An example of the update process using SRUP is
shown in Section 5.7.

62 Chapter 5. The Secure Remote Update Protocol

Message Type ID Family Description
Initialize 0x01 Update Used to initiate the software update process.

Response 0x02 Response
Used as a response message for all actions
requiring confirmation.

Activate 0x03 Update
Used to instruct a device to switch to using
the new software update previously received.

Action 0x04 Action
Used to command a device to perform an
action.

Data 0x05 Data
Used to send arbitrary data between a server
and a device, or vice versa.

ID Request 0x06 Action
A special case of an action message,
requesting that the receiving device sends its
identification string.

Join Request 0x09 Join
Used by a device to make a simple join
request to a C2 server.

Join Command 0x0A Join
Used by a C2 server to instruct a device to
join a C2 network.

Human
Moderated Join 0x0B Join

Used by a device to request a human
moderated join.

Human Join
Response 0x0C Join

Used by the C2 server to send the human
join response code.

Observed Join
Request 0x0D Join

Used by a device to request a machine
observed join.

Observed Join
Response 0x0E Join

Used by the C2 server to send the observed
join response code.

Observation
Request 0x0F Join

Used by the C2 server to request that an
observer performs an observation for a given
join operation.

Resign
Request 0x10 Remove

Used by a device to request to leave a C2
network.

Terminate
Command 0x11 Remove

Used by a C2 server to instruct a device to
leave a C2 network.

Deregister
Request 0x12 Remove

Used by a device to inform a C2 server that
it is permanently leaving a C2 network.

Deregister
Command 0x13 Remove

Used by a C2 server to instruct a device that
its identity has been permanently blocked
within that SRUP universe.

TABLE 5.1: A table showing the main SRUP message types, and their intended uses

5.6. Message types 63

5.6.1.1 Update initiate message

The update initiate message is designed to initiate the process of causing a device to
retrieve a software (or other configuration data file) update.

The message consists of the standard base elements, plus:

1. An eight-byte target ID — used to ensure that the received update message is
intended for the receiving device.

2. A URL from which the software is to be retrieved, and a two-byte length for that URL.

3. A message digest for the software to be retrieved, and a two-byte digest length.

As described in Section 5.3, this makes use of a number of variable length fields. This
ensures that elements such as the URL are sent as efficiently as possible (without
padding) and without arbitrarily constraining the length of the URL that could be used. It is
necessary to send two additional bytes for these variable length elements, denoting the
length. Using two bytes ensures that there is effectively no practical limit on the length of
the elements. (216−1) ≡ 65,535 characters: more than long-enough for any currently
conceivable URL or cryptosystem signature / hash value.

On reception of a valid message, the device should attempt to retrieve the data from the
specified URL, check it against the hash value provided, and then signal back to the
sender as to the outcome of this process — using a response message.

5.6.1.2 Update activate message

The update activate message is designed to trigger the receiving device to activate the
software update which it has previously retrieved.

The use of an activate message enables the C2 server to stage the deployment of a
software update. All devices can be signalled to retrieve the update using the initiate
message, and then at a future time (after all of the devices in question have responded to
inform the C2 server that they have successfully retrieved the update) all the devices can
be activated en masse. This would be especially important if, for example, the software
update for the devices was to switch them to use a new cryptographic key as part of their
primary function.

The activate message contains no additional data elements, beyond those in the base
message.

Further details of the security-related aspects of the SRUP update messages can be found
in Chapter 8.

64 Chapter 5. The Secure Remote Update Protocol

5.6.2 Response messages

The response message is used to signal the outcome of a variety of different SRUP
operations. It consists of the base message — plus one additional element, a one-byte
status. The values that may be taken by this status byte are defined in the specification
(see Appendix B).

5.6.3 Action messages

The action message is a message type to be used when sending a request that the device
performs some kind of action. The message consists of the base message — plus an
additional one-byte Action ID. The meaning of any given value of this byte is user-defined,
and therefore must be agreed upon for any devices and servers within a given system.

Receiving devices may optionally send a response message to signal the outcome of the
request.

5.6.3.1 Identification request message

The identification request message is essentially a special type of action message,
designed to provide a mechanism for the C2 server to request a state description or other
identification string from a given node. Whilst the details of this are deliberately
implementation specific, an example of this would be for a C2 server to request the version
of the software running on that device, the device’s serial number, or a hash of the exact
version of the software that the device is running.

When a device receives a identification request message, it should respond by sending a
data message containing an identification response string containing the expected data.

Whilst the generic identification request is included as a separate message type, in the
event that a given implementation requires additional request types for identity or version
information this may be accomplished by defining additional action message types for this
purpose.

5.6. Message types 65

5.6.4 Data messages

The data message consists of the base message, plus two additional variable length
elements:

• Data ID: an application specific value, used to denote the identity of the data being
sent (and thus informing the receiver as to what to do with the data)

• Data: the actual data itself as an arbitrary-length byte-stream.

Note that both of these elements are variable length — and so are each delimited using
two-byte length elements, also sent within the message type.

The details of the implementation of the data message are application specific — so, for
example, the data type and semantic meaning of a value with a given data ID (e.g.
FAN_SPEED) must be agreed between sending and receiving applications as a part of the
implemented system specification.

In practice this means, that when the data message type is implemented, it is necessary
for the receiving device to know what data type the received data should be interpreted as.
This must always be explicitly interpreted by the receiving application, on the basis of the
specified data ID, since the data contained within the SRUP message is just a byte-stream.
So, in the previous example, both senders and receivers within a given system
implementation must have an agreed definition that the data associated with data ID
FAN_SPEED, will be (for example) an integer value.

5.6.5 Join and remove messages

The join and remove message families are used to negotiate devices joining or leaving the
control of a specified C2 server. A number of different message types are specified in order
to facilitate different types of join operation. In order to remove a device from the control of
a server, SRUP provides resignation and termination message types. Devices may be
permanently removed from the system via deregistration messages.

66 Chapter 5. The Secure Remote Update Protocol

5.6.5.1 Join messages

The SRUP protocol identifies three types of join operation.

• Unmoderated, or simple, join

• Human-moderated join

• Machine-moderated, or observed, join

Unmoderated join operations are used in situations or systems where no additional
confirmation of the device’s identity is required. The C2 server simply accepts (or refuses)
the request with no additional steps.

Human and machine moderated join operations are used for situations where it is
necessary for the device to physically confirm that it has the same identity as the logical
device making the request. See Chapter 7 for more information on moderated join
operations.

Note that the protocol supports both device-led joining (where the device makes the
request to join a C2 network), and also C2-led joining, where devices that are already a
part of one C2 network may be given a command to join a different C2 network. This
second C2 network must be a part of the same SRUP backend system (also referred to as
a SRUP universe). See Chapter 6 for more information on the SRUP backend system.

5.6.5.2 Remove messages

Similarly to the join messages — SRUP also supports removal of devices from a C2
network via distinct message types. Devices may request that they are removed from the
C2 network, or the C2 server may issue a termination command to inform a device that it
has been removed from a C2 network.

5.6.5.3 Deregistration

Distinct from removal messages, deregistration messages cause the device’s public key to
be deleted from the system. Devices should also remove the server public keys that they
hold, upon notification of deregistration.

As with removal, the deregistration operation can be initiated from either the device (as a
request) — or the C2 server as a command. Similarly, since only the device’s C2 server
may send a message to a device to force it to deregister, there is no scope for abusing this
message type as a part of a deauthing attack.

5.7. SRUP in action 67

5.6.6 Syndication messages

Although not originally a part of the SRUP protocol, before the completion of the research
work, an additional family of message-types was added to support Syndication operations.
Please see Chapter 10 for further details of these message types.

5.7 SRUP in action

In order to better understand how the protocol works, an example of information flow
between a C2 server and a device during a software update is illustrated as a sequence
diagram, in Figure 5.2.

FIGURE 5.2: A sequence diagram illustrating the data flow during a SRUP software update
operation.

The server is requesting that the device in question retrieves an update data file from a
specified location, and that it applies the update according to the (implementation specific)
update process.

68 Chapter 5. The Secure Remote Update Protocol

To do this, a SRUP UPDATE_INITIATE message is first created.

The message fields corresponding to this message are shown in Table 5.2, and result in
the byte-stream shown in Table 5.3. This byte-stream would then form the payload of the
MQTT message.

Note that to aid exposition — the binary SRUP fields (such as the signature data) used
here all take illustrative example values.

Element Value Length
Version �x�� 1
Message Type �x�� 1
Sequence ID �xB����F�C��E��A�B 8
Sender ID �x�E�DA���B��DA��� 8
Token TOKEN 5
Signature SIG_DATA 8
Target TARGET 6
URL https://www.example.com 23
Digest DIGEST 6

TABLE 5.2: The elements of an example SRUP update initiate message

Hex Data Meaning
�� Version
�� Message Type
B� �� �F �C �� E� �A �B Sequence ID
�E �D A� �� B� �D A� �� Sender ID
�� �� Length of Token (5)
�� �F �B �� �E ASCII String: TOKEN
�� �� Length of Signature (8)
�� �� �� �F �� �� �� �� ASCII String: SIG_DATA
�� �� Length of Target (6)
�� �� �� �� �� �� ASCII String: TARGET
�� �� Length of URL (23)
�� �� �� �� �� �A �F �F
�� �� �� �E �� �� �� �D
�� �C �� �E �� �F �D

ASCII String:
https://www.example.com

�� �� Length of Digest (6)
�� �� �� �� �� �� ASCII String: DIGEST

TABLE 5.3: An expansion of the raw bytes of a SRUP update initiate message

These 76-bytes form the payload of the MQTT message which is sent to the broker, and
then on to the subscribing device.

Having received the message, validated the signature, and checked the sequence ID, the
device would then attempt to retrieve the data file containing the update from the specified
address via HTTPS. If the specified end-point requires authentication, then it is assumed
that the device will already have whatever access credentials are required. These may
either be hard-coded into the device’s current software, or may have been sent previously
in the form of a data message.

5.8. Alternative transports for the SRUP protocol 69

If the data has been successfully downloaded to the device, the SHA-256 hash value for
the data file will be calculated. This hash will then be compared to the value specified in
the SRUP message. The hash values must match for the device to send a successful
status within a response message.

Alternatively, if the data cannot be received (either because the web-server returned an
HTTP 404 code to denote that the specified file did not exist; or because the server itself
did not respond, such as in the case of the server being off-line); or if the hash did not
match, then this information will be used as the status of a unsuccessful SRUP response
message.

The token specified in this response message must match the one sent by the server in the
update initiate message to enable the server to correctly associate the received response
message with this update request.

The final part of the process is for the control server to send a SRUP message to the
device to tell it to activate the newly received update. Again, the token sent here must
match the token used elsewhere in this update operation. The server should only send the
activate message after receiving a response signalling an update success. A device
receiving an activate message associated with an unknown token, or a token for which no
update success message was sent, should ignore the activate message.

5.8 Alternative transports for the SRUP protocol

5.8.1 The need for alternative transport mechanisms for SRUP

MQTT is an ideal protocol for applications where network connectivity is intended to be
continuous (even if unreliable). Using appropriate MQTT QoS settings, will enable a sender
to be confident that a target device will receive a message providing that device remains
connected to the broker. The MQTT standard usually requires that at least one message is
sent by a device within 1.5 times the specified keep-alive time. This message may either
be a normal MQTT message or an MQTT PINGREQ message (which is used to signal that
the device is still connected — but that it has no data to send). The MQTT standard defines
the maximum keep-alive time as a 16-bit value expressed in seconds, and hence the
maximum permitted value is a little over eighteen hours, as shown in Equation 5.1.

216−1 seconds ≡ 65535 seconds ≡ 18 hours, 12 minutes & 15 seconds (5.1)

This means that the network connectivity of a device must (effectively) guarantee that at
least one MQTT message or PINGREQ can be sent by the device within a time period of no

70 Chapter 5. The Secure Remote Update Protocol

more than 27 hours (18×1.5), or more quickly, if a shorter keep alive time is defined by the
broker configuration.

However for some applications, especially remotely deployed sensors intended to run for
extended periods of time, a device may be totally dormant and disconnected from the
network for periods far exceeding this maximum keep-alive time. Although in some brokers
keep alive can be disabled by specifying a zero value, MQTT is not well suited to this type
of use requiring extended open-ended periods of disconnection.

Devices may operate on this type of schedule for a variety of reasons — such as for
operational emissions control purposes (such as devices wishing to remain covert, without
signaling their position or existence), or for power consumption reasons (such as wishing to
maximize the life of the battery).

For such devices, instead of waking every 27-hours, it may be required that the device may
be awoken only once per week to check for messages. Moreover in many scenarios this
interval may not be predictable. Periods of dormancy may be triggered externally (by the
device itself, or the user of the device) due to the specific operating circumstances or
environmental conditions at hand. In such a situation it is highly likely that the device would
be required to remain dormant until such a time that a second physical action triggers the
resumption of connectivity.

Although this use-case is somewhat outside the typical use-case for IoT devices, other
types of remote sensing devices, or CPS may have requirements of this type, and these
may also have security and authenticity requirements that could be satisfied by the use of
the SRUP protocol.

Open-ended long-duration schedules such as these, would be incompatible with MQTT,
but they could be achieved by using SRUP with an alternative application transport layer.

5.8.2 HTTP transport for SRUP

Although the SRUP protocol is designed to work using MQTT as the application transport
mechanism, the protocol itself is abstract from that underlying mechanism. This permits
the substitution of the transport for any given system or, by the use of a protocol bridge, the
use of an additional alternative transport for some parts of a system.

For example, the device could connect to an HTTPS server (at a predetermined address)
and retrieve data. This could be a simple JSON file (with each element of the SRUP
message to be sent or retrieved, provided as a discrete JSON field), or to minimize the
data file size an equivalent binary serialization format such as MessagePack [232] could be
used.

5.8. Alternative transports for the SRUP protocol 71

Since the SRUP specification defines the order of the fields, the additional overhead of
identifying the fields by name is not strictly required. For maximum efficiency a pure binary
data format similar to the on-the-wire structure of the MQTT payload in MQTT SRUP could
also be used.

Regardless of the data format involved, the device would be allocated a unique URL
endpoint (using the web-server, effectively, as a communications broker), to which the
device would issue a GET request.

For a further reduction in network bandwidth — the HTTP server could be substituted for a
CoAP server, although in this context the client and server would be reversed from the
usual CoAP architecture (where a device would typically be the CoAP server).

Multiple messages may be sent from a C2 server to the device during the time that the
device is dormant, so it will be necessary that the platform acting as the message broker
be able to queue multiple messages for a given device.

The simplest way to do this would be to encapsulate multiple messages into a JSON
structure, where each message is a discrete object within the larger JSON data file. The
downside of this approach is that the device may be required to receive a large block of
data upon connection, in the event that a large number of messages had been sent during
its dormant period.

A preferred approach may therefore be to have the web API endpoint return data (such as
a JSON object) containing the total number of messages to be retrieved. The device could
then retrieve these individually or in bulk.

For example:

GET http://server/device�����/

{"message_count": ��}

GET http://server/device�����/message/�

{"message_ID": �, {�SRUP MESSAGE�}}

Finally this approach could be combined with a prioritization system which could be used
to differentiate between urgent and non-urgent messages...

GET http://server/device�����/

72 Chapter 5. The Secure Remote Update Protocol

{"urgent_message_count": ��, "other_message_count": ��}

GET http://server/device�����/urgent/�

{"message_ID": ��, {�SRUP MESSAGE�}}

Clearly this can be extended to a system which uses a rule-set to rank messages for
delivery, such that if a device is only able to connect for a very-short period it can ensure
that the most critical message(s) are retrieved ahead of other messages.

Similarly an HTTPS transport can be used to support messages from the device to the
server. In this case the device would send a POST request to the web-application server
end-point which would send a JSON (or other format) data message to the server.
Obviously a similar approach to message queuing could be adopted for messages
originated from the device during a period of device network dormancy, subject to storage
constraints of the device.

Other transport mechanisms could also be adopted. However, the two-way nature of the
C2 information flow requires a mechanism that supports both uplink from, and downlink to,
a target device. This could include a low-power, long-range protocol such as LoRaWAN
[233]. Consideration would need to be given as to the suitability of any particular
implementation based on the requirements of the frequency and size of messages, and as
to the likely proportion of messages originating at the devices versus those originating at
the C2 server.

5.9 Summary

This Chapter has examined the design concept for the Secure Remote Update Protocol,
the types of message that the protocol supports; and considered how the protocol can be
used with an MQTT publish / subscribe architecture. The next Chapter will explore
questions around identity management for IoT devices, and an automated identity
management scheme to be used in conjunction with the SRUP protocol.

73

Chapter 6

Identity and Key Distribution

This chapter examines the challenges associated with the problem of identity
management, and key distribution within the IoT, and its application within SRUP. It will
examine two methods of identity assignment for IoT devices, considering the advantages
and disadvantages of each. The material in this Chapter addresses Research Question
RQ2, and represents the second original element of the research.

Elements of this Chapter have been previously published as [3].

6.1 Identity and the Internet of Things

The Secure Remote Update Protocol described in Chapter 5 makes extensive use of
device identity. In this context identity consists of a label (unique within a given system)
which provides an identifiable name for individual devices or servers. If identities are
assigned at random (which reduces the likelihood of an attacker guessing a valid identity),
then in order to guarantee uniqueness the pool from which identities are assigned needs to
be sufficiently large, coupled with a guarantee of uniqueness of generation such that there
is no possibility of collision of identity within the system. An easy way to achieve these
requirements is to make use of a Universally Unique Identifier (UUID) [234]: such as may
be generated using the Linux uuidgen command, or Boost C++ libraries [235]. UUIDs are
128-bits in length, and when using the randomly generated UUID version 4 variant, the
number of random version-4 UUIDs which need to be generated in order to have an
approximately 50% probability of at least one collision (as given by solution of the birthday
problem [236]) is shown in Equation 6.1.

n ≈ 1
2

�
1
4
+2× ln(2)×2122 ≈ 2.71×1018 (6.1)

74 Chapter 6. Identity and Key Distribution

This number is equivalent to generating 1 billion UUIDs per second for about 85 years,
which is more than enough to ever avoid collisions in any conceivable system.

In a system where cryptographic keys are used to assure the authenticity of messages, it
can be asserted that having a given identity, has equivalence with the device in question
having a copy of the private key corresponding to the public key associated with that
identity’s UUID.

Depending on the specific implementation to be used, the device identity could be
assigned by the server (thus guaranteeing uniqueness for a given system), or it could be
generated by the device itself. In this second case, it is still necessary for the server to
validate the generated identity, in order to ensure uniqueness within the system. Although
a randomly generated 128-bit UUID is extremely unlikely to ever result in collision (hence
the fact that such values are used as an Universally Unique Identifier), the validation is
necessary to prevent a deliberate collision attack against the system.

There are two approaches to defining the identity of a hardware device. To either use a
static device identity, or a dynamic identity.

6.1.1 Static device identity

The first of these approaches is to adopt a static identity. In this model, each device is
permanently issued with a fixed (and unchangeable) identity at, for example, the time of
manufacture. This permanent assignment may be carried out by burning the identity value
into ROM, Programmable Read Only Memory (PROM), or any other write-once media
type. The storage media used for this either needs to be an integral part of the device (to
prevent its physical replacement by a new storage device, containing a new identity value),
or to be digitally signed by a suitable Certificate Authority to ensure it cannot be
undetectably modified. A related approach is the use of a cryptographic storage device
[237], such as a Trusted Platform Module (TPM) [238] to store the identity value.

An alternative approach for the issuance of a static identity, is to derive the identity using
intrinsic physical characteristics of the hardware — such as Physical Unclonable Functions
(PUFs) [239].

6.1.2 Dynamic device identity

The alternative method, which alleviates the need to rely on predetermined fixed identities,
is to use dynamically generated identities. This technique creates a unique identity only at
the time that a device is registered with the system, and allows that identity to be revoked
and subsequently a new identity may be created.

6.1. Identity and the Internet of Things 75

Adopting this approach has a number of advantages. It eliminates the requirement to
securely generate and distribute the keys associated with a fixed identity conferred at the
time of manufacture. Given that it also enables the identity associated with a device to be
revoked, and for a new identity to be assigned, this approach makes it much easier to
ascertain that any previous access to a device has been revoked since the identity to which
any previous permissions applied no longer exists. This concept is especially important for
high-value Internet-connected devices, such as cars, which may be expected to have more
than one owner during their lifetime. When utilising a fixed identity it is not possible for the
new owner of a device to be certain that all previous owners have relinquished all access to
the device; but when dynamic identities are used, the new owner may simply generate a
new identity for the device and delete the old identity, guaranteeing that no other user has
the security credentials for the newly created identity.

Dynamic identity also has the advantage that a device may be joined to any compatible
system—with the minimum prior knowledge of that system. Providing the device knows the
URI end-point address for the system’s key registration service (and the core protocols that
the system uses), all other data can be bootstrapped. Moreover, the C2 service does not
require any previous relationship with the device manufacturer or originator.

6.1.3 Registering a dynamic identity

When initially registering with the system (or when replacing a previous identity with a
newly created one), devices are able to establish contact with a web application over
HTTPS to request an identity (and to perform the subsequent key exchange with the
system). By using HTTPS, the device is able to positively determine the identity of the web
service, and prevent a man-in-the-middle attack versus the key exchange process. This
may exploit public CAs for Internet-based resources (where an appropriate root CA
certificate is already present within the root of trust on the device), or by the a priori
provision of a private CA certificate to the devices for systems designed to operate on
private networks. Using HTTPS also ensures that the traffic between the device and web
application is encrypted against eavesdropping.

6.1.4 Using dynamic identity in a C2 system

Once a device has an established identity, that device may elect to join a C2 network,
either autonomously or as a result of a user-interaction. In low-security scenarios a C2
server may be configured to permit joining of any devices without further establishment of
their credentials and as such, a simple join operation may be conducted.

Since any device joining the system may have just generated (or regenerated) its identity it
is not possible for the C2 server (or a human operator of that C2 server) to ascertain the

76 Chapter 6. Identity and Key Distribution

physical device to which that identity pertains. For low security systems (those where there
are no sensitivities to the data and where the system itself is not controlling critical
operations), this may be regarded as acceptable. However, for systems where there is the
risk of an attacker injecting false data into the system, such an approach cannot be
adopted. Solutions addressing this requirement are discussed further in Chapter 7.

The behaviour governing what types of join can be permitted (either globally, or on a device
type basis) is determined in software by the C2 system.

6.2 Cryptographic key distribution and the Secure Remote
Update Protocol

If a message is to be signed using asymmetric cryptography then the sender will require a
copy of a suitable private key, and the receiver will require a copy of the public key
associated with that private key. If it is to be encrypted, then the sender needs access to
the public key that is associated with a private key held by the recipient. In both scenarios it
is essential that the private key is not made available to any party other than the authorized
holder. Therefore a safe, secure, and convenient mechanism for public key distribution is
essential to ensure the integrity of secure messaging.

Consider an example IoT system using the SRUP protocol introduced in Chapter 5. This
example system consists of an Internet-hosted C2 server, and one or more devices under
the server’s control. In order to perform the initial registration of the device with the system,
there are five pieces of information that need to be exchanged between the server and the
device.

1. The device needs to know the address of the MQTT Broker being used to route
messages

2. The device needs to know the identity of the server to which it wishes to become
subordinate

3. The device needs to know the server’s public key, in order to validate messages from
the server

4. The server needs to know the device’s identity

5. The server needs to know the public key corresponding to the device’s identity

6.2.1 SRUP key exchange via an HTTPS secure web service

The mechanism adopted to conduct the initial registration process within SRUP is to
provide the device with an HTTPS URL which addresses a website to be used to securely

6.2. Cryptographic key distribution and SRUP 77

exchange the data. By using a TLS protected connection to the web server the data is
encrypted in transit, and since TLS also provides proof of the identity of the web-server the
device is able to trust that the exchange process is taking place with the correct party. By
using such a mechanism, SRUP does not need to solve the key exchange problem within
the protocol itself. Providing the CA used to sign the site’s certificate is within the root of
trust for the device, then TLS solves the problem of key exchange for the HTTPS
connection by using the standard web-based key signing X.509 certificates. Since HTTPS
over TLS provides this, it is not necessary to re-implement the process within SRUP.

Therefore to use this approach for the distribution of the server’s key, all that is required is
that a C2 server (or a suitable proxy within the wider system) has a suitable certificate and
REST API, and to arrange that this will provide the data that the device requires.

Sethi, Arkko, Keranen, et al. independently describe a broadly similar approach (albeit
based around the CoAP protocol) for very simple devices, although their approach does
not utilize the web of trust available by using public root CAs described here. Instead the
approach adopted was for their devices to generate their own identities and for these to be
communicated “. . . out-of-band to the peers that need to know what devices to trust . . . ”
[240].

6.2.2 SRUP registration and key exchange workflow

Using the approach described in the preceding Section, SRUP requires a suitable key-pair
to be used by both the device and the C2 server when communicating via SRUP
messages. Additionally, for systems electing to use MQTT over TLS for message security,
the service also issues the device with a TLS certificate and key, enabling the device to
participate in encrypted communications with the MQTT broker (as described in Section
5.5).

The combination of the SRUP backend (the key exchange service and secured MQTT
broker) and the underlying cryptographic system being used for that specific instance of
SRUP traffic can be referred to as a SRUP universe. Syndication operations involving
communications between C2 systems in multiple SRUP universes are discussed in
Chapter 10.

The specific process for the initial registration (up to and including the operation to join the
relevant C2 network) generically consists of the following 10-step process. For a system
not using a TLS encrypted MQTT connection, steps 6 – 7 are skipped.

1. A new device connects to the initial registration server URL to retrieve the status, and
ID of the server.

78 Chapter 6. Identity and Key Distribution

2. The device then sends a POST request consisting of the UUID device ID, a locally
generated public key for the device, and any additional information that the specific
implementation may require such as a device type identifier. This data is enclosed
within a JSON object communicated using the REST API.

3. The server responds by sending the MQTT broker URL, the identity of the default C2
server for that given universe, and a copy of that server’s public key. Again, this is
sent as a JSON object.

4. The device then signs its identity with its private key and sends this to the server.

5. The server is now able to validate the received public key for the device — and
reciprocate the process.

6. The device having received the server’s signed identity and validated the previously
received server public key, may then generate a second key for use with TLS
protected MQTT, along with a CSR with the CN field set to equal the device’s identity.
This is then sent to the server, together with a signature generated using the C2
protocol key.

7. If the data received by the server is valid, and the CN field is equal to the identity
possessing the key used to sign the message data — the server generates a device
certificate, signing it with a SRUP CA root key. The server then sends the device
certificate and the CA certificate to the broker.

8. The device now connects to the MQTT Broker specified in step 4 — using the device
MQTT key and certificate (and the CA certificate), if required.

9. The broker will permit the device to subscribe to the topic associated with its unique
identity.

10. The device may now issue a join request to join the C2 network.

6.2.2.1 Initial registration

The initial registration process corresponds to steps 1–3 of the 10-step process described
in 6.2.2, and is illustrated as a sequence diagram in Figure 6.1.

The registration process can take place without any human interaction. The device
connects to the registration URL, and after communication has been established, it sends
a POST request to send its identity, its public key, and any additional information about the
device that the specific system implementation requires. In return, the response from the
server will contain the URL for the MQTT broker, and the default server’s public key. The
mechanism to store the server key and URL on the device will naturally be device-specific,
but could consist of the device’s file-system or a dedicated flash memory or Electrically

6.2. Cryptographic key distribution and SRUP 79

FIGURE 6.1: A sequence diagram illustrating the key exchange and registration process
for a new device (steps 1–3)

Erasable Programmable Read Only Memory (EEPROM) module. On the server-side it
would be expected that this information would be stored on a suitably protected private
database.

Registration requests can be received from any device without prior arrangement. Simply
having registered a device on the system does not establish any specific relationship
between that device and any server, nor does it assign trust to the device. As such, an
attacker registering one or more devices with the C2 server has very little impact on the
operation of the system.

Given there is no requirement for manual intervention within the initial registration process
— it can be considered to scale very well, even to extremely large numbers of devices. The
only constraints on the number of devices that can register this way are the storage on the
server issuing the keys, and the bandwidth / availability of the server to receive multiple
simultaneous connections. Both of these can be addressed with the provision of scalable

80 Chapter 6. Identity and Key Distribution

cloud services — such as Amazon Web Services (AWS) Elastic Cloud Compute (EC2)
[241].

In the edge case of a system that may be (or is being) subjected to a DoS attack, where an
attacker attempts to overwhelm the registration web-server by sending an extremely large
number of mendacious device requests, some mitigation may be provided by filtering or
otherwise restricting registration requests. The utilization of modern good-practice
implementation of web services, to provide load-balancing to the server backend (both at
the web-service layer, and also the underlying database mechanism used to store the
identities), may also go some way to help to mitigate this type of attack. In order to prevent
a DoS attack on the registration service causing disruption to the operation of devices
already using the C2 system, the use of a microservices-based architecture should be
adopted to prevent the MQTT broker and C2 system’s operation from being affected.

Filtering registration requests through the addition of HTTPS authentication could be
trivially added to restrict access to the registration end-point. This could be on an individual
device basis, or (for devices permitting richer human-computer interaction) on an individual
registrant basis (see Section 6.2.3).

6.2.2.2 Additional steps for systems using TLS protected MQTT

For systems which are to use a TLS encrypted MQTT connection — an additional set of
steps (corresponding to steps 6–7 in the list shown in Section 6.2.2) are required.

The device making the request must first generate a new key to be used solely for the
MQTT over TLS connection. It must also generate a CSR for this key. The CSR’s CN field
must be set to be the device’s identity. This CSR is then sent to the server, along with the
identity of the device, and a signature derived from the identity and CSR data. In keeping
with the common conventions for REST API end-points, all of this data would be sent as a
JSON object, using base64 encoding [229].

On receiving this, the server must check that the signature is valid — and that the CN field
of the CSR matches the device identity of the device possessing the key used to sign the
message. Assuming that it does, the server will then generate a certificate (using the
system’s CA key), which can be used along with the public-part of the TLS key when
connecting to the MQTT server. Since the CA key is used only for private communications
with the MQTT broker there is no requirement for the CA key to be signed by a publicly
known root CA certificate. The broker may use a signed CA, or it may generate its own
self-signed CA key. However, since the device will not recognize authority of a self-signed
CA key — the server must also supply a copy of the CA certificate to the device, when it
returns the newly created device certificate.

A sequence diagram outlining these steps can be seen in Figure 6.2.

6.2. Cryptographic key distribution and SRUP 81

FIGURE 6.2: A sequence diagram illustrating the additional key exchange process for sys-
tems using MQTT encryption (steps 4–7)

6.2.3 Communicating the registration URL

Providing that there is physical access to the device at the time it is deployed,
communicating the initial registration URL to the device is very straightforward. It could be
hard-coded into the device, or the user deploying it could manually enter the URL in full (or
using a public or private URL shortening service — assuming that such a service is
considered suitably trustworthy). A non-textual mechanism for encoding of the URL could
also be adopted. For example, this could be in the form of a QR-code [242] or other
two-dimensional bar-code, or it could use radio-frequency communications via an
Near-Field Communication (NFC) tag [243] or a Bluetooth Low Energy (BLE) beacon [244]
protocol such as Eddystone [245]. If using this approach, combined with a device which

82 Chapter 6. Identity and Key Distribution

supports an HCI permitting it, the human registrant could also use individual registrant
credentials for the registration process.

For a system where it is not possible or desirable to have physical access to the device at
the time of registration it would be necessary to adopt a hard-coded approach of providing
this initial registration URL in the device’s software or firmware. This is clearly less flexible
as an overall solution since it constrains the device to only be usable in the context of one
specific system, however for many systems this may be considered a desirable feature, as
it would lock the device into only being used as a part of the system in question.

Whatever the means of providing the URL, it is to be expected that in the majority of cases
the registration process will take place before the device has been deployed. This means
that despite the potentially limited bandwidth available to the device in the field, the
registration operation can be assumed to occur without specific bandwidth constraints, and
hence the additional overheads of a HTTPS connection are not regarded as an issue.

6.3 Key revocation

Key revocation is a vital, but often overlooked [246] aspect of any IoT system. It is,
however, simple to implement in the context of a C2 based approach to an IoT system
utilizing dynamic identities.

There are two types of revocation that need to be considered.

1. The removal of a device as a subordinate to a C2 server such that it is no longer
subject to control by that server whilst retaining the device within the wider system.
This is the opposite of a join operation.

2. The permanent withdrawal of the device from the system as a whole. This is the
opposite of initial device registration.

These are associated with the Remove and Registration message types described
previously (see Section 5.6.5).

To remove a device from a particular C2 network, the device may either elect to resign by
sending a removal request message, or it may be removed by the server by being sent a
removal command message. Given the hierarchical nature of the communications — any
device is expected to comply with such a command. However even if it does not (such as
may be expected from a malicious or otherwise compromised device), the C2 server will
have unsubscribed to the MQTT topic pertaining to the device — and as such, the device
will not be able to communicate with the system, even if it is still attempting to do so.

6.4. Server configuration and identity 83

If the device is being disconnected by the server, the server would simply remove the
record pertaining to the device from its list of subordinate devices. If the device is
requesting to resign then the server should send a response message with a status to
indicate whether or not that resignation is accepted. If it is, then the key would be removed
as previously described.

For a permanent, and system-wide deregistration of a device, a C2 protocol can also be
used — despite the fact that the initial registration took place outside of the protocol. The
data exchange is essentially the same as for the resign / terminate use-cases, but with
specific message types associated with removal from the system with the device’s key
being permanently removed from the system’s key store.

The permanent deregistration of a device is intended to be used in situations where the
device in question is being withdrawn from the system. For example, an environmental
monitoring device may be registered before being deployed to gather data. On the
completion of its deployment it may then be withdrawn, and deregistered to prevent it
accidentally being rejoined to a C2 network. The device may be redeployed at a future
time, by simply re-registering it and then using that new identity to join the new C2 network.

Deregistration can also be used to revoke access for a device known, or suspected, to be
compromised (physically or logically) by an attacker.

Within the SRUP protocol, identity revocation can be conducted either from the device (for
example as a result of user interaction), or from the C2 server. Revocation from the device
ensures that the old identity no longer exists, regardless of whether it remains registered
within the C2 system. This has the advantage that it does not require consent from the C2
system, and enables the device to join a new (or rejoin the previous) C2 system under a
new identity. Devices should send a deregister request to inform the server that their
identity is being revoked, but this is not mandatory. Revocation from the C2 server will
result in the device being sent a deregister command message. On receipt of this the
device should revert to an unregistered state since it will no longer be able to communicate
with servers using the identity it currently holds. Within the protocol it is not possible for a
third-party to cause the revocation of an identity, which would otherwise open an attack
surface for attacks against devices.

6.4 Server configuration and identity

The process for device identity management is intended to be automatic, so that devices
can register with the service automatically as required. However, the process for
registering a server with the key service was deliberately designed to require intervention
from a human administrator. In order to provide an additional validation step, so only valid
C2 systems can be registered with a given SRUP backend, it is necessary to generate a

84 Chapter 6. Identity and Key Distribution

server token file. This file consists of a base-64 encoded [247] version of the RSA
signature generated when the future server’s public key is signed by the backend system’s
(key exchange server) private key. When a server attempts to register with the key service,
it is required to send this data, along with its public key. The backend system can then
validate that the request is being made by someone who has (or who has had)
administrative access to the backend system within that universe. This additional
generation step can be easily accomplished by an administrator with access to the backend
system, but ensures that only manually approved servers can operate within that universe.

6.5 Summary

This Chapter has introduced the concept of dynamic identity, and has examined how this
can be used within the context of the IoT and SRUP — a topic which will be explored
further in the next Chapter. The key distribution model used within SRUP has also been
presented, and the required information exchange process has been explored. In the next
Chapter a technique for providing assurance around the identity corresponding to physical
devices is introduced, along with discussion of how this can be utilized in the context of the
SRUP protocol.

85

Chapter 7

Command and Control Network
Management

This Chapter will examine the issues around how a given physical device, using dynamic
device identity as described in the previous Chapter, may provide assurance that it
corresponds to a particular logical device identity. This Chapter will introduce a mechanism
to solve this problem: and also introduces a number of specific techniques that can be
used in support of this. This Chapter addresses Research Question RQ3, and represents
the third original element of this research.

Elements of this Chapter have been previously published as [3] and [6], and presented as
[5].

7.1 Proof of identity

As described in Section 6.1.4, the use of Dynamic Device Identity necessitates a solution
to the problem of mapping a given physical device to whatever logical device identity that it
happens to have at any given time. In particular this is required at the time that a given
device joins a C2 network. If the device’s identity can be established at the time it joins,
then this can then be maintained throughout its participation within the C2 network.

7.1.1 Simple join

As described in Section 5.6.5.1, the simplest form of join operation is the simple or
unmoderated join. This makes no attempt to validate the identity of the joining device, and
accepts the request based only on the credentials supplied (such as device type) when
performing the initial device registration. An example of this is shown in Figure 7.1.

86 Chapter 7. Command and Control Network Management

This type of join is only appropriate for situations where there is either no danger of a
malicious device being added (such as may be the case in a closed network within a
secure perimeter) or for the situation where the overall system cannot be adversely
effected by spurious or malicious data being sent from a device. Given the MQTT
addressing model, and the use of topic access control (see Section 5.5) there is no
significantly greater danger of a malicious device being able to intercept or corrupt the
messages to and from other devices (assuming the MQTT broker implementation is
bug-free and robust to attempts to employ techniques such as buffer overflow, see Section
2.4.1, to interfere with the operation of the broker).

FIGURE 7.1: A sequence diagram showing the message flows for a simple, unmoderated,
join operation

7.2 Validating physical identity using third-party observation

The risk from a simple join is that an attacker could stage an attack against the system by
intercepting the initial registration request from a device and then registering their own
device in place of the real device, since in the context of a simple join there is no validation
of the physical identity of the device that has just requested to join.

Addressing this requires a third-party (trusted by the C2 system) in order to perform the
validation step by examining the physical device, at the time of the join attempt, to ensure

7.2. Validating physical identity using third-party observation 87

that it is the device which has the identity in question. This observation may be carried out
either by a human, or a machine-based, observer. In both cases the process is essentially
the same. After receiving a request to perform an observed join, the C2 server will
generate a randomly selected, 128-bit, nonce value and encrypt this using the public key
associated with the identity in question, and which will then be sent to the device. On
receipt of this, the device will decrypt the value (using its private key) and present the data
to the observer. This observation will take place out of band to the SRUP protocol. The two
values will then be compared and the join operation will only be permitted if they match.
This technique guarantees that only the logical device involved in the join request is in
possession of the correct nonce value, and since the third-party is interacting with the
physical device in the physical-world, if the physical device is able to provide this value to
the observer then the logical device must correspond to that physical device.

Note that since the device would not be part of an existing C2 network at the the time of the
join request, the message would need to be sent over an MQTT topic corresponding to the
server’s ID, specifically reserved for join requests, and to which all registered devices have
write-only access within MQTT.

A flowchart illustrating the generic observed join process is shown in Figure 7.2.

Although this approach is still theoretically susceptible to an attack scenario where an
attacker is able to trigger a malicious device to attempt to join a C2 network, such an
approach requires the device to be co-located with the deployed system, and to hastily
(and covertly) read the value presented to the observer and relay it to the observer before
the genuine device. For critical systems, such as those posing a hazard to life (or systems
for which an elevated threat is suspected), there would still therefore be a requirement to
adopt traditional techniques of manual inspection to determine the authenticity of the
physical device, before the join process is initiated; as well as to practice appropriate
physical security around the joining process. As always in security, if the attacker has
physical access to facilities or other locations, there are a great many other (simpler) forms
of attack that they could exploit.

This observation process may be thought of as analogous to the types of physical
verification that we are accustomed to in the physical world, for example a photograph in a
passport. Although a state-issued document such as a passport is generally regarded to
be a means to positively establish the identity of the holder — the mere possession of a
passport is insufficient. Rather such documents use a simple to check (but difficult to alter)
photograph, and the document is only regarded as valid if the photograph matches (or at
least resembles) the bearer. Thus anyone fraudulently obtaining a passport is unable to
use it to establish a false identity without modifying it to reflect their appearance (or vice
versa).

88 Chapter 7. Command and Control Network Management

FIGURE 7.2: A flowchart illustrating the observed join process, showing the roles of each
of the three entities involved.

7.3 Human moderated joins

The human moderated join is the simplest of the two types of moderated join, since it is
assumed that the human has easy access to information presented in the C2 system, and
is able to view and compare two values without further support from the software. A human
moderated join requires that a trusted human operator is present with the device at the
time of the join operation, such as might be the case for a sensor (or other device) being
manually deployed. Whilst this would likely include most domestic applications, it could
also include any commercial, industrial, or military application where the deployment is
conducted by-hand.

7.3. Human moderated joins 89

In this type of join, the join operation is expected to be conducted with relation to a specific
pre-known device being deployed or installed, and where the human installer will manually
trigger the device to initiate the join process. When the device presents the nonce value for
comparison, it is assumed that the human observer is (or is in communication with) the
operator of the server, and as such is able to perform the comparison.

A sequence diagram showing the information flow during a human-moderated join
operation is shown in Figure 7.3.

FIGURE 7.3: A sequence diagram showing the message flows for a human moderated join
operation

Depending on the device (and the nature of the system, and technical proficiency of the
operator) this presentation and comparison can be made in a number of different ways. In

90 Chapter 7. Command and Control Network Management

the simplest case, the device could display the decrypted numeric value on a suitable
display unit.

7.3.1 Hexadecimal notation

Conventionally 128-bit numbers used as UUIDs are shown as a string representation of a
32-digit hexadecimal value, and are typically presented using the 8-4-4-4-12 format
described in [234]. Given the visual clarity of this format, it is desirable to adopt the same
approach to presenting the 16-bytes of any 128-bit value, including the nonce values used
for human observation. An example of a 128-bit UUID used by the protocol, formatted in
this manner can be seen in Figure 7.4.

C�BF����-����-��E�-���F-D��F�A��C�AD

FIGURE 7.4: An example of a 36-character string depicting a 128-bit binary value in stan-
dard hexadecimal notation.

Such an option is the simplest method to implement. A small 16×2 character, text-mode
Liquid Crystal Display (LCD) or Organic Light Emitting Diode (OLED) display would be
sufficient to display such a value (without hyphenation), and would likely add only around
$3-4 to the bill-of-materials cost for a device. This approach would be technically
compatible with even the most basic 8-bit microcontroller. An example of this is shown in
Figure 7.5.

FIGURE 7.5: The 128-bit UUID value, rendered on an OLED screen.

Requiring the careful comparison of two 32-character hexadecimal values is not an
especially user-friendly interface, and is really only well suited to environments with
specialist users. Research in other contexts [248] has shown that users are not well able to
successfully compare values presented in this way.

Instead other options could be adopted to present the value for comparison. Crucially it is
not important that the observer be able to identify the underlying value presented to them,

7.3. Human moderated joins 91

but rather only to recognise whether two examples presented match or differ from each
other, so alternative methods for comparison may be adopted.

7.3.2 Pictographic representation

An alternative means to present a 128-bit value, is in the form of a pictograph consisting of
a 12×12 grid of 144 monochromatic cells. Since such a grid presents 16 additional cells
(over and above the 128 required to simply encode the 128-bit value, with each bit
denoting the color of a given cell in the grid), the number of cells in use within the grid can
be reduced, by placing a 2x2 block in each corner.

Such a pictograph would have an appearance something similar to that of a 2D barcode,
although one that is designed for human comparison, rather than machine readability. An
example of the appearance of such a pictograph is shown in Figure 7.6.

FIGURE 7.6: An example black and white, 12x12 grid depicting a 128-bit binary value.

By analogy with computer graphics, the same number of bits can encode for a smaller 8×8
grid of cells, coloured with one of four colours by using 2-bits per cell. With careful
selection of the colours it is possible to produce a grid with sufficient visual difference to be
easily distinguished, whilst also avoiding combinations that are indistinct to those with
various forms of colourblindness. In particular white, red, blue and yellow were selected
since these are still easily distinguishable by patients with deuteranopia or protanopia (both
forms of red-green colour blindness), and tritanopia (a rare form of blue-green colour
blindness) [249].

An example of using this four-colour approach is shown in Figure 7.7.

For a device with a graphical screen capable of rendering such a pictograph (or which has
the necessary hardware to permit its connection to an external display for the purposes of

92 Chapter 7. Command and Control Network Management

FIGURE 7.7: An example four-colour, 8x8 grid depicting a 128-bit binary value.

validating the join operation) an image of one of these two types could be displayed by the
device, and also presented on the user-interface to the server (e.g. a web page) after the
registration process had been initiated.

An example device (consisting of a Raspberry Pi 3 fitted with a full-colour LCD graphics
display panel) was built, and is shown displaying a four-colour pictogram in Figure 7.8. This
device was used in conjunction with an implementation of SRUP using a four-colour
pictogram for human moderated joins. The web-based C2 server, which was configured to
show a four-colour pictogram is shown in Figure 7.9.

7.3.3 Word-list representation

An alternative to a graphical depiction of the value, would be to present the nonce value in
the form of a phrase generated by combining words taken from a standard word-list, with
the multiple parts of the 128-bit value mapped onto individual words from the list. Similar
approaches have been shown for presenting cryptographic keys to users [250], but such a
technique can easily also be applied to the presentation of Identity.

A 128-bit value can be divided into ten, 12-bit fragments, with each 12-bit fragment being
mapped on to one of a list of 212 = 4096 different words drawn from a suitably distinctive
word-list. A suitable word-list would be one designed for use as a means of providing users
a mechanism to generate high-entropy passwords, such as Diceware [251]. The remaining
8-bits of the original 128-bit value, could then be represented either by one of 256
additional words; or by using words from within the same list (and using the previously
described technique of padding the value with four additional ‘fixed’ bits). Alternatively the
technique adopted for the purposes of the demonstration of the capability was to use nine

7.3. Human moderated joins 93

FIGURE 7.8: An example Internet of Things (IoT) device—built from a Raspberry Pi 3 fitted
with a full-colour liquid crystal display (LCD) graphics display panel.

13-bit values, plus an additional tenth 11-bit value (padded to 13 bits). The code used to
generate the word list is shown in Listing 7.1.

1 def wordlist(data):
2 bits_list � []
3 words � []
4 mask � �x�FFF
5 int_value � data
6 for i in range(�):
7 bits_list.append((int_value �� (�� * i)) & mask)
8

9 bits_list.append(int_value �� ���)
10

11 � Now we have the word list - we need to pad the final block to ��-bits...
12 bits_list[�] � bits_list[�] �� �
13 for i in range(�, len(bits_list), �):
14 t � [word_list[bits_list[i]], word_list[bits_list[i��]]]
15 words.append(t)
16 return words

LISTING 7.1: A Python function to generate an identity word list from a 128-bit value

Using this technique the user would be presented with a ten-word “phrase” for comparison
to assure identity during the join operation.

An example of using words selected from such a word-list to generate an identity-phrase
can be seen in Figure 7.10.

94 Chapter 7. Command and Control Network Management

FIGURE 7.9: An example web-based C2 interface for an IoT system, showing an example
display depicting a human-comparable display of a nonce value as a four-colour pictogram.

aggregate diffuser
straw zeppelin
exponent ungraded
problem flail
dust postbox

FIGURE 7.10: An example of an identity phrase generated using a word-list.

The options for presentation of this phrase to the user are similar to those for the
presentation of both pictographs and the text strings — although a screen suitable to
display simple textual information is simpler than that which might be required to render a
coloured pictograph.

As a part of the evaluation of this concept, a device (shown in Figure 7.11) was constructed
consisting of a Raspberry Pi Zero W and a three-colour Electronic Ink (eInk) [252] display.
This device was used to demonstrate the use of word-list observation.

A video depicting an implementation of the human comparison (showing both word lists,
and pictograms) in action can be found at: https://youtu.be/-qBzZ3wT1Tc [253].

https://youtu.be/-qBzZ3wT1Tc

7.4. Machine moderated joins 95

FIGURE 7.11: An example IoT device—built from a Raspberry Pi Zero W fitted with a
three-colour eInk display, and depicting a word-list to be used for comparison of 128-bit

values.

7.3.4 Other comparison techniques

A number of similar methods have been applied previously [254] to the visualization of
complex cryptographic data such as Pretty Good Privacy (PGP) [255] keys, and the ‘Visual
Host Key’ visualization used with SSH (also known as the ‘drunken bishop’ algorithm)
[256]; as well as more complex approaches requiring the combination of two pieces of
information, such as visual cryptography [257]. Tan, Bauer, Bonneau, et al. even
demonstrated the use of unicorn-based graphical presentations of cryptographic keys
[248].

7.4 Machine moderated joins

An alternative to using a human to perform the observation and verification steps, is to use
a machine-based observer.

This approach is particularly well suited to scenarios with a large number of devices, or
where devices are expected to be deployed autonomously without a human presence. For
this to work, a trusted observer node must be present within the C2 network, and must
have already securely joined (for example using a human-moderated observation—as
described in the previous Section). This observer node will then utilize one or more
techniques to observe the value presented by the joining device, and to confirm that this
matches the value that the C2 server had transmitted.

96 Chapter 7. Command and Control Network Management

Figure 7.12 shows a sequence diagram depicting the protocol message flows for an
machine observed join.

FIGURE 7.12: A sequence diagram showing the message flows for autonomous, observed,
machine moderated join operations

Unlike a scheme adopting a human observer, where the C2 system may be able to directly
present a representation of the value to the user for them to compare with the device, an
automated observer node must also be securely sent a copy of the code. Specifically, once
the C2 server receives an observed join request from a device, the server will respond by
sending an OBSERVED_JOIN_RESPONSE message to the device, as well as an
OBSERVATION_REQUEST message to the observer. Both of these messages contain a copy
of the 128-bit nonce value to be used for the comparison, and each message is encrypted
using the recipient’s SRUP public-key, ensuring that only that recipient is able to decrypt
the data and read the value.

7.4. Machine moderated joins 97

Once the observer and the device each have their own copy of the nonce, the device
should present the value to the observer for comparison and onward signalling.

Although there are a range of technologies that could be adopted to provide this
short-range, point-to-point link, this work has specifically examined visual presentation, and
short-range RF signalling.

7.4.1 Visual observation technologies

One set of technologies that can be adopted for the observation is machine-readable visual
codes—such as barcodes, QR or Data Matrix codes.

Conventional one-dimensional barcodes can store a maximum of around 100 characters
(for example Code 128 [258] can store 103 data symbols). However, two-dimensional
barcodes such as the QR Code [242], or Data Matrix [259] can store over 1000 symbols.

Since for SRUP observations we need to encode a 128-bit value, any display hardware
capable of displaying either a one- or two-dimensional barcode could be adopted — along
with any barcode technology capable of displaying 32 hexadecimal characters (e.g.
Code-128, Code-93, or Code-39).

The disadvantage of linear one-dimensional codes is that for a 32-character code, the
resulting barcode is quite long, and exceeds the convenient aspect-ratio and dimensions of
many displays without unduly squeezing the vertical height — resulting in the mark / space
size of the code being significantly reduced.

Figure 7.13 shows the same 32-character hexadecimal value, rendered in a number of
one-dimensional codes, and Figure 7.14 shows the same data rendered as
two-dimensional codes. In all of these cases this is a UUID value, with the punctuating
dashes removed to minimize the number of characters required to represent it.

Experimentation using codes for a randomly selected UUID value, rendered on an LCD
display, and read using a smartphone camera showed that only Code-93 and Code-128
linear barcodes could be reliably read (and that Code-93, see Figure 7.13b, was most often
read). Code-39 format barcodes of the 128-bit value were not readable on the
experimental hardware setup

Two-dimensional codes, on the other hand, are already more suitable to being rendered on
a display, due to their square shape, and both Data Matrix and QR codes could be easily
read by the app, with approximately the same accuracy.

The Data Matrix code has some potential advantages over the QR code, including the
resulting size of the code required for a given length of data being smaller, and improved
detection and error correction [260].

98 Chapter 7. Command and Control Network Management

(A) Code-39

(B) Code-93

(C) Code-128

FIGURE 7.13: A 32-character hexadecimal value, rendered in a number of one-dimensional
bar code types.

(A) Data Matrix Code (B) QR Code

FIGURE 7.14: A 32-character hexadecimal value, rendered as two-dimensional bar code
types.

To further explore the utility of these approaches an experiment was created using a
Raspberry Pi and camera, looking to automatically locate and extract a 32-character
hexadecimal value encoded as a two-dimensional barcode. Unlike the previous example
utilizing a smart-phone, here the code was not manually aligned with the reader, rather the
software was required to identify where in the image streamed from the camera the
barcode was located before it could be decoded.

In both cases the Pi (a Raspberry Pi 3B+), fitted with a Raspberry Pi Camera Module, was
running Python code to process the image. For the Data Matrix code, the pylibdmtx

library [261] was used, and the QR codes were read using the pyzbar library [262]. The
setup is depicted in Figure 7.15.

In both cases the code was tweaked to maximize performance. With the Data Matrix code,
the best performance was achieved when processing a 320×240 grayscale .PNG file
(taken from an video capture of the camera, to which the code was being presented) and it

7.4. Machine moderated joins 99

(A) Raspberry Pi with Camera Module

(B) Raspberry Pi with LCD Screen showing a QR Code

FIGURE 7.15: Two Raspberry Pi 3B+ used to assess the performance of a QR code based
system for observations. In this example, one is setup as a QR Code reader (fitted with
a Raspberry Pi Camera Module); and the other has a colour LCD Screen showing a QR

Code.

took an average of 12.7 seconds per image to detect and extract the code. This is in
contrast to less than a second when the DM code is manually cropped from the image file.
This is unacceptably slow for a system processing video frames, and is in contrast to the
pyzbar library, searching for QR codes — which was shown to manage to process several
frames per second.

100 Chapter 7. Command and Control Network Management

Although additional image processing and manipulation techniques could be used (for
example to detect and crop the DM code in the image), for the purposes of demonstrating
the machine observation techniques, a QR code based approach was selected.

7.4.2 Radio Frequency Identification

In addition to visual observation, a short-range RF link was also adopted to demonstrate a
different class of observation node. Although a number of technologies were initially
considered (including Bluetooth [263], and the IEEE 802.15.4 Zigbee standard [264]), the
best guarantees as to the physical location of the device in question were achieved when
using ultra short-range RF communications such as those used for RFID.

RFID technologies fall into two broad classes: low-frequency devices (operating at 125 kHz
in Europe), and high-frequency devices operating at 13.56 MHz. [265].

Low frequency systems typically have an operating range of 100mm, but have very low
data transfer capabilities and are only used with simple passive tags containing a static
serial number determined at the time of manufacture. Such devices are typically used for
asset tracking. High frequency systems may store up to 4 Kb of data [266], and may be
writable as well as readable. This class of tag is often produced in a credit-card sized
form-factor, and is often used to provide security access tokens, as well as cashless
ticketing in public transportation systems.

NFC also operates on the 13.56 MHz frequency and supports active communication
between two devices, over a range of a few centimetres.

Despite (or perhaps because of) its ubiquity within the security (RFID) and banking sector
(NFC for contactless payments), the state of easily accessible and open-source software to
support operations more complex than reading or writing to simple tags is somewhat
limited.

Most devices capable of reading NFC data (including most mobile phones) are able to read
static tags which have been formatted using the NFC Data Exchange Format (NDEF)
standard [267], but there is somewhat limited support for the active data exchange
provided by the Simple NDEF Exchange Protocol (SNEP) [268], [269].

To experiment with this technology, a simple device was constructed to utilize SNEP,
utilizing open-source example C code and based on the PN532 NFC chipset [270]
connected using the Inter-Integrated Circuit Protocol (I2C). This was interfaced to a
Raspberry Pi as a USB serial device, using an Arduino development board, based on the
Atmel ATMega32U [271] microcontroller, which is shown in Figure 7.16, and used in
conjunction with a simple SRUP implementation.

7.5. Other machine moderated device identity validation techniques 101

FIGURE 7.16: An near-field communication (NFC) Observer device, consisting of a PN532
NFC module, connected via I2C to a development board based on an Atmel ATMega32U4

microcontroller, connected to a Raspberry Pi via Universal Serial Bus (USB).

A video demonstrating the machine moderated join process (and depicting both a QR Code
based system, and the NFC system) can be found at: https://youtu.be/Vi135raj1LE [272].

7.5 Other machine moderated device identity validation
techniques

El-hajj, Fadlallah, Chamoun, et al. identify a taxonomy for IoT authentication schemes
[273], identifying Token-based and Procedurally based techniques for device

https://youtu.be/Vi135raj1LE

102 Chapter 7. Command and Control Network Management

authentication, in addition to identification based around the static hardware-based
approaches described in Section 6.1.2.

Token-based authentication schemes, such as OAuth2’s Device Authorization Grant [274],
are typically used to provide a secure mechanism for an individual user to validate their
credentials for a given service on a specific device, which is carried out using a third-party
device, such as using a mobile-phone, to visit a URL associated with the process. This
approach may be seen, for example, when a user logs into a video-sharing website on a
smart-television, which presents a QR code for the user to read with their phone, causing
the phone’s browser to access the page to complete the validation operation.

Although superficially similar, the Device Authorization Grant approach is very different to
the one outlined in Section 7.4.1. This approach utilizes the OAuth2 [275] token-based
approach and is designed to permit a user to associate a device with the identity that they
have defined with an external identity provider (for example, Google, Facebook, etc.).
Although a bespoke authorization service could be constructed within the specifications of
the OAuth2 standard, this falls somewhat outside of the typical OAuth2 use-case.
Additionally, such an approach requires a human-in-the-loop to conventionally log into the
authorization service in question, and offers no fully automatic mechanism to pair the
physical and logical device identities.

Moreover, using an OAuth-based approach requires that the device (in its deployed state)
is able to make outbound HTTPS requests. In contrast, although SRUP does require the
device to utilize HTTPS as a part of the initial registration phase (which may be performed
prior to operational deployment), the remainder of the join operations take place wholly
over the MQTT protocol, which is much more suited to potentially constrained network
conditions which may be expected in an operational deployment of a IoT device.

Procedurally based approaches, such as DTLS [199], are utilized for devices adopting
static identity and provide security for the messages, but do not themselves offer any
guarantee that the physical device in question corresponds to the identity of the logical
device and rely on secure on-device storage of the certificate and key.

7.6 Implementing observation-based identity confirmation

A series of devices were constructed, based on the Raspberry Pi platform and utilizing the
pySRUP library (see Chapter 9). By using pySRUP, a SRUP IoT device can be quickly
written in Python, which can exploit all of the features of the SRUP protocol.

The full information exchange process that occurs during the machine-moderated observed
join process (as implemented in SRUP) is illustrated as a sequence diagram in Figure 7.17.

7.6. Implementing observation-based identity confirmation 103

FIGURE 7.17: A sequence diagram showing the machine-moderated join process

7.6.1 Hardware

Two sets of devices were constructed around the Raspberry Pi hardware, one using the
visual recognition scheme and one using NFC.

The visual device was identical to the one used for the human-readable pictograms, with a
simple observer constructed from a Raspberry Pi fitted with a camera module.

The NFC hardware consisted of two Raspberry Pi computers, each connected to a PN532
module over USB (as described previously). One unit was configured as an NFC observer
and a second as a joining device.

In the case of both the visual and the NFC devices, the same pySRUP library code was
utilized. The only change required was that the device must specify the required operation
in the call-back function relating to the observation and presentation of the identity
confirmation.

104 Chapter 7. Command and Control Network Management

7.6.2 Operation

With the visual observation scheme, the target device is required to be within the field of
view of the observing camera. For the NFC-based observer, the device must be close
enough to the observer for the observer to be able to read the data.

In either case, the outcome of an observation attempt is one of three states: either the
code was read correctly (VALID), or an invalid code was read (INVALID), or no code could
be read and the observation operation timed-out (FAILED). For this example system, in the
event that the observer signalled back to the C2 server that it failed to read a value, the C2
server would simply reissue the observation request to both the device and the observer.
In a real-world system, the implementation should cap the number of failed read requests
by a given device to a (highly system- and implementation-specific) reasonable number,
but for testing purposes this was not capped in the demonstration.

7.7 Considerations for real-world use of observed join

7.7.1 Human versus machine observation

The question of which type of observer (human or machine), and the larger question of
whether an observed join is required at all, is highly dependent on the specifics of the
operation and deployment of a given system.

A system utilizing wired sensors on a closed network (such as that found within a larger
operational platform, such as a vehicle or factory) may not require any identity validation
when joining (especially where physical access to an air-gapped network is controlled). A
more typical deployment in a domestic or commercial setting may utilize an open Internet
connection to facilitate the communications and as such could use a controlled join. For
small-scale deployments, a human-moderated join is an ideal mechanism, especially since
this has no requirement for specialist observation nodes. However, a smartphone
application could be utilized as an observer (itself joining via a human-moderated join), and
then subsequently using either the smartphone’s camera for visual recognition, or
potentially utilising the phone’s NFC capabilities to read values from devices without a
user-interface capable of displaying a visual code. Although this implementation has not
been explored in this work, the majority of modern smartphones support NFC for mobile
payment, and APIs exist within major smartphone operating systems to access some or all
of the functionality of the NFC hardware within the phone.

Human moderated joins provide the highest guarantee of device identity, since the human
observer is explicitly able to ascertain that the device in question is the device that is being
joined (especially where the human installer has manually triggered the join operation

7.7. Considerations for real-world use of observed join 105

themselves). It is however the least scalable to very large deployments, or for scenarios
where a large number of join and leave operations are expected to be conducted.

For such large-scale operations, installed devices could join the C2 network, and have their
identity validated by a dedicated observation node. For example, within a factory setting an
installer could utilize a hand-held observer device using NFC to positively validate devices
as they were installed and joined into the system, or for a distributed sensor application,
devices could be joined (and validated) as they are deployed.

7.7.2 Benefits of machine observation

In a real-world deployment, different scenarios have different requirements for a
machine-moderated join. For devices where the deployment conditions prevent the
observer node from physically coming into close proximity to the device (such as an
observer covering an area deployment), it may be preferable to conduct an observation via
a visual method from a longer distance than may be possible with other technologies. This
may require the device to be large enough that both the display, and the device to which it
is mounted, are sufficiently visible to the remote observer.

Physical proximity can provide the best guarantee of the identity of the physical device, for
scenarios where this is achievable. For example, devices being deployed via a conveyor
belt-fed system, devices which are at a known and physically small location (such as
passing through a door, or gateway), or devices where a human can physically access and
tap the device could all utilize this type of approach.

Although designed around the IoT, and the idea of largely static devices, this approach
(and the SRUP protocol in general) will work well to support broader classes of smart
devices, including smart vehicles. However, for the purposes of identity validation, neither
of the technologies employed in this example implementation work especially well for
scenarios where the device is in motion.

For example, in a scenario where the device would only be in the observers field-of-view
for a short period, careful and accurate timing would be required to ensure that the
messages supporting the request have been sent (and arrived) with sufficient time for the
observer to be ready to view the device. This may require, for example, that the device
makes the request some period of time before it expects to be observable (although the
longer the time period between the message and the observation, the greater the risk of
another device being detected instead).

Similarly, both technologies require some finite time for the read operation to complete (a
visual observer would require that the entire display is visible in at least one frame of video,
and a Radio Frequency-based observer would require the device to be within the operating
range of the reader for at least the duration of the read operation). As such, operations to

106 Chapter 7. Command and Control Network Management

perform the join may be required to take place during a time period when the device was
static (such as at a control point or barrier—prior to entering the smart system’s control).

7.7.3 Issues

In the present implementation of the system, a device is required to know the identity of the
observer that it wishes to use. In the examples shown above, this is hard-coded into the
device’s source code. There is currently no explicit mechanism within SRUP to specifically
enable transmission of an observer’s identity to a device. This is deliberate, since until or
unless a device joins a C2 network, it is not defined as to which servers may send SRUP
messages to it. This is in contrast to the identity of the default C2 server for a given device,
which is explicitly sent to the device as a part of its initial registration and key exchange
process.

Since the device has the SRUP public key belonging to the default server (required so that
it can be used as a part of the joining process to validate messages from the server), the
server could use the extant DATA message within the SRUP protocol in order to send the
identity of the observer that should be used, after the server has refused the initial simple
join. This could be trivially implemented by a system using the pySRUP library by simply
adding a data message handler callback function to the device code and using the existing
send_SRUP_Data method from the library, to send the observer ID from the server.

7.8 Summary

This Chapter has examined the approach taken to solve the problems associated with the
use of dynamic identity within the IoT and described the experimental implementations
demonstrated to evaluate these in the context of SRUP. This has shown that both human
and machine moderated joining can be used to support the proof-of-identity within an
implementation of SRUP. The next and final Chapter in this second part of the thesis will
describe how the design of the SRUP protocol addresses and mitigates the security
concerns highlighted in Chapter 2.

107

Chapter 8

Internet of Things Network Security

Chapter 2 outlined a number of cybersecurity risks, and described how they can apply to
the IoT. This Chapter will describe how the Secure Remote Update Protocol described in
Chapter 5 addresses these risk through the design and implementation of the protocol, and
how these address Research Question RQ4.

Section 2.6 introduced three main types of threat to an IoT system:

Threat 1: Compromise of data (or services) from the devices

Threat 2: Attacks against the device

Threat 3: Attacks against connected physical systems

This Chapter will discuss how a number of security risks have been addressed, and in
each case the threat will be mapped back against this list.

8.1 Replay attack

For a C2 messaging system, incorporating message signing, one potentially very serious
attack vector against a message, is replay attack (see Section 2.6.2.4). The specific risk
from replay attack depends on the particular messages being replayed. For example, an
attacker capturing a software update message, and after detecting a subsequent update
message at a future time may in theory be able to roll the device back to a previous
version. Replay attacks primarily fall into either denying service to or from a device (Threat
1), or affecting connected systems (Threat 3).

108 Chapter 8. Internet of Things Network Security

8.1.1 Common mitigation to replay attack

A number of approaches can be adopted to protect against a replay attack. However, many
techniques from other domains are not well suited to applications within IoT C2.

8.1.1.1 Nonce tokens

A common solution to replay attacks is to introduce an additional nonce element within the
communication (for example, as used within HTTP ‘Basic’ Authentication [276], [277]) —
such that a reply to one message will not be valid when sent in conjunction with another.

By analogy with TCP and the use of tokens within HTTP basic auth, in an IoT C2 context
this could take the form of a three-way handshake, utilizing session and device tokens. In
this context, messages such as update initialization messages would need to contain an
additional element (the session token). A device receiving this would then be required to
send a reply containing that session token, plus a device token which it generates. The C2
server would then be required to reply to this message to instigate the action (e.g. a
software update), and include both the session and device tokens within the message to
validate that the message is not a replay of prior messages. A similar approach is outlined
by Feng, Wang, Weng, et al. [278].

This approach is not well suited to the IoT however, and goes against the design concept
for a lightweight C2 protocol, designed to minimize the communications overhead. It would
be very poorly suited for use in situations where devices may have poor-quality network
connections, due to the considerable overhead of the additional message traffic.

8.1.1.2 Timestamps

Another commonly adopted solution is to introduce an accurate timestamp within the
message [279], which is the approach used by Kerberos Network Authentication [280].
However for this technique to work, it requires that all devices have access to a very
accurately synchronized time-signal. Although this could be implemented using Network
Time Protocol (NTP) [281] for IoT devices with reliable network connections, it is potentially
very challenging if considering communications to deployed devices, over potentially
austere data networks.

8.1.1.3 Logging

Another, and much simpler, solution that might be adopted in the context of a C2 protocol,
would be to require each device to keep a log of all of the messages that they have

8.1. Replay attack 109

previously received. This could either take the form of logging tokens that they have
received (restricted to only the tokens contained within validly signed messages to prevent
a brute force attack from overwhelming the storage), or by logging a suitable hash of the
messages themselves [282]. When using this approach, it would be required that a device
checks that any new message received does not match one that has been previously
stored. The disadvantage of this approach is that it consumes storage on the device. A
128-bit UUID value such as may be used for the token consumes 16-bytes of storage, and
hashing could consume twice this amount of storage per message (assuming SHA-256
hashing at 256-bits or 32-bytes per hash). A receiving device would need to store tokens or
hashes in persistent memory in order to prevent the list being reset by forcing the device to
power-cycle. Assuming 16-byte tokens, then 512 tokens would consume 8Kb of storage.
Whilst this would be trivial for a device with attached storage and a file-system, it would be
potentially highly significant for a more simple type of device. This approach also requires
that the recipient is able to search the history of previous messages, which further adds to
the overhead processing time.

8.1.2 A sequence ID based approach

The method adopted for use within SRUP is a sequence ID based approach, similar in
concept to that used within the LoRaWAN protocol for controlling network join requests
[283]. This approach has a very small overhead, as it only requires that devices store the
most recent sequence ID value that they have received from any given sender. The
approach works by requiring that the device compares any newly received message’s
sequence ID to the stored value for that sender. Only messages that have a sequence ID
greater than the stored last received sequence ID from that server may be considered
valid. Any message received where the sequence ID is less than or equal to a previously
received sequence ID should be discarded.

Adopting this method requires an additional value (a sequence ID) within all messages. A
64-bit (8-byte) sequence ID has been selected, since this would permit the system to send
1,000,000 messages a second for over 58,000 years before overflowing the total possible
sequence ID values (see Equations 8.1 & 8.2).

264

1×106 ≈ 1.845×1012
s (8.1)

1.845×1012
s

60×60×24
≈ 2.17days ≈ 58,000years (8.2)

In order to conserve space in the message, it might appear to be preferable to adopt a
smaller size (e.g. a 6-byte sequence ID — which would still permit 100,000 messages /
second for 89 years). However since a 6-byte integer is not a standard size it would be

110 Chapter 8. Internet of Things Network Security

required to implement a bespoke 6-byte integer type to handle this value, and although this
could be easily done in most languages, given that for even the smallest message type the
difference would make < 1% difference to the overall message size there is no value in
doing this versus using a standard 64-bit integer (e.g. uint��_t or unsigned long long

in C) for the Sequence ID.

The implementation would work in the same way for messages sent by the server, and
messages sent by the devices. In all cases, the sender would simply store the last value it
used to communicate with that receiver, in local persistent storage, and increment it by one
for each new message.

Since under the hierarchical C2 paradigm used by SRUP, devices can only accept
messages from a C2 server devices would be required to store (within persistent storage
such as a file system or EEPROM) just one such value for each server that the device
receives messages from, and one for each server it sends messages to. The relatively
small-size of the sequence ID means that even devices implemented using tiny
microcontroller-based hardware, would be unlikely to face storage limitations. For example
just 1kB of storage is more than sufficient for 128 sequence IDs at 64-bits (and it is
asserted that a requirement for a device to be in active communications with 64 different
C2 servers at any one time is highly unlikely).

On the server side, it can be assumed that storage will be much less of an issue. This
approach would require that a server keeps a last Sequence ID from all devices that they
have communicated with (until such a time that the device has been removed from the
system). Even a server with 100,000,000 devices would require less than 800MB of
storage for their current Sequence IDs, a relatively trivial amount for any cloud-based
server implementation.

8.2 Message spoofing

The use of cryptographic signatures to protect messages means that it is extremely difficult
for an attacker to create a spoof message that would not be rejected by the receiver.
Spoofed messages are primarily a threat to connected systems (Threat 3).

Once a message has been assembled from its constituent fields, the SHA-256
cryptographic hash function is run to generate a secure message hash. This hash is then
signed using the sender’s private key. Subsequent validation of the message requires the
receiver to check that the signature received corresponds to the hash value received when
decrypted using the sender’s public key. If any part of the data is altered, it will cause the
signature to fail to validate against the content of the message.

There are two possible attacks versus this scheme. Either the attacker needs to break the
algorithm used to sign the hash — to create a new message with a different hash, but still

8.3. Attacks against MQTT and C2 systems 111

appearing to originate from the original sender; or to break the hashing algorithm to
generate a new message with the same message hash. In both cases there are no known
mechanisms to achieve this. The RSA cryptosystem is generally regarded as secure [284]
as are modern implementations of the Secure Hash Algorithm (SHA) — such as SHA-256.
There have however been a number of attacks versus earlier versions of SHA, and SHA-1
was shown in 2017 to be broken, such that two non-identical documents could yield the
same hash [285]. As such, use of a more secure algorithm such as SHA-256 is required to
prevent this type of collision attack.

8.3 Attacks against MQTT and C2 systems

For systems where there is a requirement for message confidentiality, the use of MQTT
over TLS means that data in transit is well protected against eavesdropping and
interception (Threat 1). Therefore in order to attack the system so as to be able to obtain
data from devices or sensors, it would be necessary to attack either the broker or the C2
server itself.

8.3.1 MQTT broker attack

One potential weak-point of any system built around the MQTT protocol is the broker,
however the OSS implementations of MQTT broker software are well-regarded in terms of
security and are the subject of active security research [286]. In particular though there is a
threat to the broker from DoS attacks both from malicious publishing of large volumes of
large sized MQTT messages to overwhelm the broker, and from more generic packet
flooding attacks [287], such as TCP synchronize or SYN flooding.

Of these approaches Firdous, Baig, Valli, et al. show the more disruptive is the publish
flood. However, the use of a certificate-based TLS encrypted MQTT connection (see
Section 5.5) would somewhat mitigate against this by restricting broker access only to
registered devices, and thus any nodes being used to stage such as DDoS being required
to have established an identity with the Key Exchange service (see Section 6.2.1) prior to
joining the attack. Although SYN flooding [288] is widely seen versus HTTP its impact on
MQTT was shown to be minimal, apart from the risk to disrupting legitimate traffic to the
broker by choking the broker’s incoming bandwidth [287]. Research has shown [289] that
machine-learning approaches to DoS attack detection and protection can also be adopted
to minimize this threat.

112 Chapter 8. Internet of Things Network Security

8.3.2 C2 server attack

The other potential area of attack against the data within a C2 system, is an attack against
the C2 server itself.

The use of the server token file (see Section 6.4) ensures that only approved servers can
operate within a given SRUP universe. This ensures that devices cannot be hijacked by a
malicious C2 server, preventing both man-in-the-middle attacks and a scenario equivalent
to deauthing [290] devices in a given C2 network.

Although this work describes a reference implementation of a C2 server (see Chapter 9),
the detailed specifics of any real-world C2 server implementation are inherently application
specific. It is anticipated that the C2 server would be implemented using a cloud-hosting
service such that it was Internet-facing, and that the implementation would provide a
web-application front-end. This approach requires only that the user of the C2 service had
access to a compatible web browser, obviating the need for a bespoke client application.
However a hybrid approach utilizing a REST API which could be consumed by a desktop,
mobile, or third-party web application, could also be adopted where required.

User authentication in this context could adopt standard techniques for web authentication
— of a type very generally used across the Internet for web applications.

Given the potential to attack the back-end services, it is also necessary to secure the cloud
hosting platform against attack. This too is, however, a well understood issue and is in
common with the in-service deployment of any real-world web application. Providing user
authentication, and the security of the servers on which the application runs, are not
breached the C2 server may be regarded as secure to attacks.

8.3.3 Attack of observer nodes

A third type of attack which falls under Threat 1 is the addition of a malicious node within a
C2 system. Although techniques to observe join operations (see Section 7.2) protect
against this type of attack, there is the potential to stage an attack against an automated
observer node. However the use of additional payload encryption for the observation
request message (see Figure 7.2) makes a direct attack on the process somewhat
infeasible. There is however a potential for a malicious observer to join the system, if not
correctly protected. If a malicious observer was present within the system, then it could
enable the addition of a malicious device to a C2 system. To prevent against this, it is
essential than any observer nodes present within a system are themselves joined via an
observed join (e.g. a human join — although in principle one observer node could add
another, the first such node in a system would always require a trusted human observer for
its deployment).

8.3. Attacks against MQTT and C2 systems 113

8.3.4 Crypto-agility

As described in Section 5.1, the protocol is designed independently of any specific
cryptographic algorithm or implementation. As such, although a given implementation of
SRUP will necessarily adopt a particular cryptosystem (as a part of both protecting against
Threat 1 and Threat 3), the underlying protocol’s independence from this means that the
protocol (and, to a slightly lesser extent, any given implementation of it) demonstrates
crypto-agility. As such if at some future time the RSA protocol is broken, either as a result
of quantum computing (see Section 2.8.4) or any other discovered attack, a new
implementation of SRUP could easily be built to utilize any other asymmetric protocol
which supports both message encryption and message signing.

8.3.5 Physical attack

In the event that an attacker is able to gain physical access to the device it can be assumed
that, unless the device has been built to utilize encrypted storage and a trusted boot
process [291], the attacker would be able to gain access to any data stored on the device
(Threat 1), as well as installing malware on the device (Threat 2), and be able to interfere
(physically or electronically) with any connected equipment (Threat 3). As such it is
essential (in any real-world deployment of an IoT system) to either provide physical
security for the devices to prevent them falling into the hands of malicious parties, or to
protect them electronically through the addition of trusted boot (and ideally, both).

For a system built using SRUP, having physical access to a device also equates to gaining
access to the device’s private key (as well as the server’s public key). Since the server’s
public key is by definition publicly available (on demand via the registration process) we
may largely disregard this as being of use to an attacker. However having access to the
device’s private key means that (by the definition used in Section 6.1) the attacker may take
over the identity of the device. As such any messages that the system would permit the
device to send, could be spoofed and be sent by any other device that the attacker may
devise (and assign the original device’s identity to).

Although a system based around the principles described here, makes no attempt to
provide a mechanism to monitor or detect such device identity theft, the centralized nature
of the C2 server paradigm, with no peer-to-peer messaging, means that the potential
damage that can be caused by that identity theft may be contained to the server. Other
devices on the C2 network can not be directly affected. Given that (by definition) devices
are always subordinate to the server, there is limited scope for damaging the overall
system via spoofing device messages, beyond that which may be caused by directly
interfering with the device’s sensors (which would also be possible in the event that the
attacker had physical access to the device).

114 Chapter 8. Internet of Things Network Security

In the event that such an attack were detected, the device can be centrally removed or
deregistered from the network, to revoke its ability to communicate further on the system.

Although such a device may be able to re-register and gain a new identity (subject to any
registration access credentials not also having been revoked), in a human-moderated
system it would not be able to join the server without the assistance of a compromised (but
trusted by the system) human. This insider threat situation is one which almost no security
paradigm would be able to protect against. The greatest threat to any centralized C2
system is compromise of the centre, however the asymmetric cryptographic approach
described means that compromise of a subordinate node has no impact on the security of
the central server, and the likely cloud-based nature of the C2 server means that generic
(and industry-standard) best-practice defences can be applied.

8.4 Software update

One of the primary mechanisms to reduce the likelihood of malware infections for IoT
devices, and therefore addressing Threat 2, is a secure software update process.

The security involved with such a process is three-fold. Firstly it is important that only an
authorised party can trigger a software update operation in the first place. Since only a C2
server can instigate an update, spoofing an update message (either to attempt to get the
device to load a malicious software update; or to roll-back a previous update; or to cycle a
continuous update to cause a DoS against the device) is protected against using the
mechanisms discussed elsewhere in this Chapter.

The second part of the update process is to ensure that when the device acts in response
to an authentic update message, that it retrieves the correct and unmodified data. This is
protected against within SRUP via the fields within the SRUP update messages (see
Section 5.6.1). The addition of a SHA-256 hash for the software to be downloaded, all-but
guarantees that the device is able to validate that the software it obtains is the software
payload that it was intended to receive. The use of a HTTPS connection to retrieve this
software (combined with authenticated access, with the credentials passed to the device
previously via other C2 messages) also ensures that the origin of the software cannot be
spoofed, and that the data cannot easily be obtained by a third-party for purposes such as
reverse engineering.

The final part is that the process of obtaining a software update is separated from the
process to activate that software on the device. The SRUP protocol requires that the
devices confirm reception of the software to the C2 server (either confirming successful
retrieval of the software, or signalling a failure caused by either the message hash not
matching; the file not being available on the server; or that the server could not be
accessed). This positive confirmation process ensures that a C2 server can track whether

8.5. SRUP and the DCMS Code of Practice for IoT security 115

and when the devices are ready to activate the new software. The C2 server can then send
activate messages to the device(s) to trigger the new software to be installed / deployed /
etc. (although the details of how the device actually executes this update, are application
and device implementation specific). This additional step should ensure that all devices
can switch at the same time and so avoid a situation where multiple versions of the device
software are live on the network at any given time.

Finally the addition of the ID Request message (Section 5.6.3.1) means that the C2 server
can positively confirm the version of the software being run on any given device. (Although
the details of the content of the Device ID message are implementation specific — it could
easily include details such as the SHA-256 hash of the software that the device is running).

8.5 SRUP and the DCMS Code of Practice for IoT security

Section 2.6 described the thirteen design principles of the NCSC / DCMS Code of Practice
for Consumer IoT Security [125].

Not all of these are applicable to a protocol such as SRUP; but items 1, 3–7 are relevant to
this research.

1. No default passwords

3. Keep software updated

4. Securely store credentials and security-sensitive data

5. Communicate securely

6. Minimize exposed attack surfaces

7. Ensure software integrity

SRUP does not use passwords for device security (although a real-world implementation of
a web-based C2 system would likely use a password-based user authentication scheme),
and the dynamic identity and key distribution system described in Chapter 6 address this
requirement (1) well.

The software update messages within SRUP are designed to both facilitate easier remote
software operations, and provide assurances about software integrity via integrated
message hashing and validation (3, 7).

All SRUP messages can be encapsulated within TLS encrypted MQTT, satisfying the
requirement for secure (encrypted) communications (5).

116 Chapter 8. Internet of Things Network Security

The use of MQTT was selected in part because it eliminates the requirement for a device
to have other ports open for message traffic (6).

Only recommendation 4 is not directly implemented as a part of this work. However, if
running on suitable hardware, SRUP could easily be implemented to make use of TPM or
other trusted-execution environments for secure boot, and storage of cryptographic keys.

8.6 Summary

This final Chapter in the second Part of the thesis has described how the SRUP protocol
has been designed to mitigate the cybersecurity risks described previously in this thesis.
The third Part of the thesis will describe the implementation of the protocol and supporting
technologies as described in this second Part, and will explore how together these address
the final three Research Questions. The next Chapter (Chapter 9) will describe the
reference implementation of SRUP in the form of a software library, and discus how this
has been optimized for ease of use by developers wishing to utilize it to build their own
SRUP-based IoT systems.

117

Part III

Implementation & Experimentation

119

Chapter 9

Implementing the Secure Remote
Update Protocol

The third and final Part of this thesis describes the implementation of SRUP and
experimental assessment of its performance. This Chapter describes the software library
implementation of SRUP, its associated backend key-exchange service, and other related
tools. This Chapter describes the work to answer Research Question RQ5.

All of the original software described in the Chapter is Open Source Software, and has
been released [292] under the terms of the MIT Licence1.

Elements of this Chapter have been previously published as [4], and presented as [5].

9.1 SRUP library architecture

In order to combine the best elements of a binary implementation, and the ease of use of a
scripting-language, a hybrid approach was adopted for the implementation of SRUP. For
the purposes of this research, the binary code was written in C++, and Python was the
scripting-language selected.

The design concept was to produce an underlying implementation to generate and process
the byte-stream to be used as the MQTT message payload. This code was implemented
using C++, and formed a binary library (libSRUP_Lib). Using this approach ensured that
extant OSS binary library implementations of cryptographic functions (such as RSA
signatures) could be efficiently included by incorporating these libraries (e.g. libcrypto —
a part of OpenSSL2) into the build process.

1https://mit-license.org
2https://www.openssl.org

https://mit-license.org
https://www.openssl.org

120 Chapter 9. Implementing the Secure Remote Update Protocol

A Python wrapper (pySRUPLib) was implemented to permit direct utilization of the binary
library implementation of SRUP within Python, and this was then itself wrapped with a pure
Python library (pySRUP) consisting of classes intended to be called directly from a user’s
application code. This Python wrapper was designed to implement as much of the generic
SRUP functionality (such as ensuring valid sequence IDs) as possible, and thus greatly
reducing the implementation (and therefore detailed understanding of the protocol
required) to build an application using it.

An architecture diagram illustrating this approach can be seen in Figure 9.1.

FIGURE 9.1: An architecture diagram illustrating the combined C++ / Python implemen-
tation. The colour of the box denotes the type of the element, and the colour of the text

denotes the programming language used for this element.

Specifically, the following elements were implemented as a part of this work:

1. C++ library (libSRUP_Lib)

2. Binary Python library (pySRUPLib)

3. Pure Python wrapper class (pySRUP)

9.2. C++ library 121

4. Key exchange server

5. Example web-based C2 system

6. Containerized backend

7. Bootstrapping key generation tool

Each of these will be described in more detail, in the following Sections.

9.2 C++ library

The core of the implementation of SRUP has been the C++ implementation of
libSRUP_Lib. The implementation adopted an object-oriented approach — defining an
abstract base class for SRUP messages, and subsequently deriving all of the concrete
message classes from this.

A Unified Modeling Language (UML) class diagram for the classes defined within the
library is shown in Figure 9.2.

The implementation makes use of C++ inheritance in order to reduce the complexity
required within each message class. All messages inherit from a base message class, and
therefore can utilize the implementation of the methods and properties within that
base-class. Two other abstract classes are also defined: one to provide an implementation
for all of the message types that do not add any additional fields to the base message
(SRUP_MSG_SIMPLE); and one for the observation messages which need to include
additional encryption elements (SRUP_MSG_OBS_BASE).

To avoid making assumptions about the data sizes of particular C++ types on any given
platform that the library may be built for (given that the C++ standard makes only minimum
length guarantees [293]) explicitly sized data types were used throughout (e.g. uint��_t
used to store 2-byte length elements).

C++ was selected as the development language for this library due to the ease of
manipulating low-level data structures which C++ shares with C, and because of the
modern language’s performance characteristics. It is also a language for which there exist
easy bindings to build Python classes, using (for example) Boost.Python [294]. However,
although C++ is a very widely used language, it is a language where there are frequently
cited significant concerns over memory safety (for example [295]).

Therefore were SRUP to ever be adopted in any safety-critical applications, the protocol
could be reimplemented in a memory safe language such as Rust, which has been shown
to be verifiably memory safe [296] [297], when used correctly [298].

122 Chapter 9. Implementing the Secure Remote Update Protocol

FIGURE 9.2: A UML Class diagram depicting the hierarchical class structure for the SRUP
message classes, as defined within the C++ implementation of the libSRUP_Lib library.

9.3. Binary Python library 123

When reassembling the messages from the byte-stream the C++ library will first decode
the message using the generic message class. This will only attempt to use the first few
bytes of the message — but will enable the calling code to identify which type of message
the byte-stream contains. Once this has been determined, the message can then be
demarshalled into the correct message class.

The SRUP data messages do not contain any specific indicators as to the type of the data
they contain — beyond the (application specific) data ID value. Therefore although the data
message will contain a byte-stream relating to the data, the data message class is not able
to determine the type of that data. Consequentially the class implements a number of
getter functions for the data property of a message, with each (attempting to) return the
data using the specified type. The calling code must know the type of the data associated
with the data ID therefore, and use the correct method when accessing the data.

9.3 Binary Python library

Software development today is increasingly about assembling extant components into
assembled applications. This trend is exemplified by programming languages such as
JavaScript and Python — where developers use package management tools to
automatically retrieve and install libraries and their dependencies from which the
application software is composed. This approach allows for far higher productivity from a
software developer, allowing them to concentrate on the features required within the
software, and not on the implementation of the lower-level capabilities required to enable
them. The performance of modern hardware is sufficient that the cost in terms of the
speed of execution of running slower software is no longer a consideration. By 2000, (the
then still nascent) Python was approaching comparable performance to compiled code for
some real-world tasks [299], and by 2020 Python was widely regarded as the language of
choice for data science and other data processing tasks [300].

This progression, of increasing abstraction from the underlying hardware, is the
continuation of a trend from the earliest days of computing. Today, almost no one would
consider developing application software by directly using machine code or assembly
language, and increasingly intermediate languages (such as C or C++) are restricted to
being used only for systems programming, or applications for which the speed of execution
is critical.

9.3.1 Why Python?

Given the prevalence of Python in the current software trends (Python is regularly ranked
as the ‘top’ programming language in surveys of real-world language use [301]), its ease of

124 Chapter 9. Implementing the Secure Remote Update Protocol

use, and the ease to which Python can interface with C/C++ code — it is a very good fit for
a system such as described here. By interfacing with the existing C++ library the
lower-level work (such as marshalling & demarshalling bytes, and calculating & checking
cryptographic signatures) can be performed in a language optimized for speed and efficient
byte-level operations on data. Extant MQTT and HTTP libraries (such as Paho3 and
Requests4) make it extremely easy to interface with the backend systems from Python.

9.3.2 Calling C++ from Python

A number of approaches exist to call C & C++ code from Python. These range from using
Python’s built-in ctypes library and a suitably built C or C++ library [302], using Cython to
build the C / C++ within the Python code [303], or using a dynamic approach to call a
separately executing binary via interprocess communication — such as Apache Thrift
[304].

The selected approach was to utilize the Boost.Python C++ library [305], to build a native
binary which can be called directly from Python, and which fully supports language
features from both C++ and Python.

The resulting pySRUPLib library provides a Python class for each of the (concrete) C++
SRUP message classes, utilizing a similar approach to the class hierarchy to maximize
reuse by exploiting inheritance. This library added no additional functionality over the C++
implementation of libSRUP_Lib.

9.4 Python wrapper class

The third element of the implementation was specifically designed to address RQ5, and
the question of making SRUP easier to use than implementing an alternative approach.

Implementing a secure system from scratch not only requires a high degree of
understanding of security principles and components, but also requires a significant
additional effort over and above an insecure (or unsecured) configuration. As such, even if
a device developer wants to create a secure device, there is a significant barrier to entry.

Ideally any solution would enable a device developer to utilize secure communications
without needing to be exposed to the specific details of the security process and its
implementation. A measure of success in this regards therefore, is whether a device can
be implemented in less code than would be required for an unsecured solution.

3https://pypi.org/project/paho-mqtt/
4https://github.com/requests/requests

https://pypi.org/project/paho-mqtt/
https://github.com/requests/requests

9.4. Python wrapper class 125

In order to achieve this, the pySRUP library was created. This library is wholly written in
Python (making it what is also known as a pure Python library), and interfaces with the
pySRUPLib binary library. However, in addition to the simple implementation of the SRUP
message classes, pySRUP wraps in all of the functionality to interface with the MQTT
broker (via the Paho library), and all of the registration and key exchange services (utilizing
the Requests HTTP library). The library implements three classes: one for a device, one
for a C2 server, and one supporting syndication devices (see Chapter 10).

Providing the necessary backend is in place (see Section 9.6), the only thing that a device
developer needs to know is the URL for the key exchange service associated with that
backend. All other aspects of the device registration and configuration process are taken
care of automatically by the pySRUP library code, and subsequently saved to a
(user-specified) configuration file for future use.

In order to permit the device specific code to be triggered on the basis of different SRUP
messages, pySRUP supports the use of callback functions to be used on receipt of various
message types (once they have been validated by the library). For example, a developer
wishing to construct a device which can handle a SRUP action message can simply write a
function defining the behaviour of the device required for a given action type. This is
passed to the object instantiated from the pySRUP device class, in the form of a callback
function. The underlying library code will then handle the detailed implementation of the
messaging process (such as receiving the underlying MQTT message, validating the
message signature, and checking the sequence ID). If the message passes the validation
tests, then the details of the message will be passed to the handler function to perform the
correct action.

For the more complex process around the software update operation, the library can
automatically handle the intermediate message exchanges, notifying the user application
only when the retrieval and validation of the update data has been completed, and the
activation signal has been received.

9.4.1 Ease of use comparison

In order to demonstrate the simplicity of using pySRUP, a simple example IoT device was
constructed from a Raspberry Pi Zero W and a custom circuit-board with a number of Light
Emitting Diodes (LEDs) to represent different actions that the device could perform. This
example device is shown in Figure 9.3.

126 Chapter 9. Implementing the Secure Remote Update Protocol

FIGURE 9.3: A photograph of an example IoT device, consisting of a Raspberry Pi Zero
W and a custom circuit board, used as a part of an experiment to examine the the ease of

use of the pySRUP library.

The device software, written using the pySRUP library, included handling SRUP action and
data messages, as well as a simple implementation of remote software update. This
software consisted of less than 100-lines of Python code. Listings 9.1 & 9.2 illustrate the
brevity of the code required to implement the behavior of this device.

Inspecting the code more closely, it can be seen that Listing 9.1 contains the Python import
statements, and the definitions of the functions determining the actual behaviour of the
device, and only Listing 9.2 contains the pySRUP specific code to trigger that behaviour
based on the SRUP messages received. Note that this example also includes a simplified
remote software update. All of the code to process the update initiate message, retrieve
and validate the software files, and signal back to the C2 server has been automatically
handled by the library in this case.

When utilizing the pySRUP library, a developer is required to write significantly less code
than would be necessary to implement a simple unsecured communication model,
because the pySRUP library takes care of all of the low-level setup for the MQTT client. A
developer implementing even a simple MQTT-based communications model by directly
using the same Paho MQTT library, would be required to explicitly connect to the broker
and subscribe to suitable topics, and implement their own on_message() handler to parse
the MQTT messages. When a message is received, this function would be required to
identify the correct behaviour to perform. Both of these elements require considerably
more code and more consideration than an approach based on pySRUP.

9.4. Python wrapper class 127

1 import RPi.GPIO as GPIO
2 import time
3 import os
4 import sys
5 import shutil
6 import pySRUP
7

8 FILENAME � "device.py"
9 DELAY � �.��

10 LED_STATE � False
11 auth � ("AJP", "Password!")
12

13 def led_setup():
14 � Set LED pins to output & their state as off...
15 GPIO.setmode(GPIO.BCM)
16 GPIO.setup(��, GPIO.OUT)
17 GPIO.setup(��, GPIO.OUT)
18 GPIO.setup(�, GPIO.OUT)
19 GPIO.setup(��, GPIO.OUT)
20 GPIO.setup(��, GPIO.OUT)
21

22 GPIO.output(��, GPIO.LOW)
23 GPIO.output(��, GPIO.LOW)
24 GPIO.output(�, GPIO.LOW)
25 GPIO.output(��, GPIO.LOW)
26 GPIO.output(��, GPIO.LOW)
27

28 def toggle(state):
29 � Toggle state of one of the LEDs
30 if not state:
31 GPIO.output(��, GPIO.HIGH)
32 return True
33 else:
34 GPIO.output(��, GPIO.LOW)
35 return False
36

37 def switch():
38 � Switch LED on for DELAY msec...
39 GPIO.output(��, GPIO.HIGH)
40 time.sleep(DELAY)
41 GPIO.output(��, GPIO.LOW)

LISTING 9.1: The device-side Python code for a simple IoT application, using the SRUP
protocol to control a device: part one — preamble & GPIO setup.

128 Chapter 9. Implementing the Secure Remote Update Protocol

43 def on_action(msg_action):
44 � Callback function for SRUP ACTION messages
45 global LED_STATE
46 if msg_action.action_id �� �x��:
47 LED_STATE � toggle(LED_STATE)
48 elif msg_action.action_id �� �xFF:
49 switch()
50

51 def on_data(msg_data):
52 global DELAY
53 if msg_data.data_id �� "Delay":
54 DELAY � msg_data.double_data
55

56 def on_update(FILENAME):
57 shutil.copy(filename, *sys.argv)
58 python � sys.executable
59 os.execl(python, python, *sys.argv)
60

61 client � pySRUP.Client("device.cfg", "https://iot-lab.uk")
62 client.on_action(on_action)
63 client.on_data(on_data)
64 client.on_update(on_update)
65 client.update_filename("update.dat")
66 client.update_fetch_auth(auth)
67

68 led_setup()
69

70 with client:
71 try:
72 while �:
73 GPIO.output(��, GPIO.HIGH)
74 time.sleep(�.�)
75 GPIO.output(��, GPIO.LOW)
76 time.sleep(�.�)
77 except KeyboardInterrupt:
78 print("\nExiting\n")
79 GPIO.cleanup()

LISTING 9.2: The device-side Python code for a simple IoT application, using the SRUP
protocol to control a device: part two — SRUP Specific Code.

9.5 Web-based C2 system

An example implementation of a web-based C2 system was also produced as a part of this
work. This too was implemented in Python, since the pySRUP library (as described in
Section 9.4) could be utilized. The C2 system instantiates the Server class from pySRUP.
For this example the Flask5 library was utilized to provide the web development framework,
although any other framework could very easily be substituted. Flask [306] was adopted,
since it provides a very lightweight web development framework, supporting Jinja6

5https://flask.palletsprojects.com/
6https://www.palletsprojects.com/p/jinja/

https://flask.palletsprojects.com/
https://www.palletsprojects.com/p/jinja/

9.6. Backend services 129

templates for dynamic page generation. Any C2 system for real-world use is inherently
application specific, so this example implementation is included only as a reference for
developers implementing their own bespoke systems.

Setting up a C2 server requires some additional steps when compared with setting up a
device, not-least when it comes to setting up the C2 server’s security credentials. Unlike
devices (which can request registration and generate an identity by simply visiting the key
exchange service’s URL), the registration process for servers requires the generation of a
server token file (see Section 6.4). This along with the server identity must be specified in a
manually generated configuration file.

The reference implementation of a C2 server also supports human and machine
moderated joining. It permits the use of colour or monochrome pictograms (Section 7.3.2),
word lists (Section 7.3.3), and hexadecimal notation (Section 7.3.1). It also includes a
simple example of visualizing data from a device by plotting a graph, although for a
real-world (production) system it would be highly desirable to utilize scalable, off-the-shelf
data storage and visualization tools for time-series data — such as InfluxDb [307] and
Grafana [308].

The main body of the implementation consists of less than 500 lines of Python code (plus
small amounts of additional code for tasks such as generating the pictograms).

It should be noted that the C2 system implemented does not utilize any type of client-side
user authentication. This was deliberately omitted from the example system for
demonstration purposes. However the implementation of user authentication for web
applications is a solved problem, and a number of off-the-shelf OSS solutions compatible
with the Python implementation (such as Flask-Login7) exist and could be easily added for
any real-world use.

9.6 Backend services

A reference implementation for the backend services for SRUP was also produced. This
consists of two main parts: the key exchange server; and the supporting infrastructure for
hosting and MQTT message brokering.

9.6.1 Key exchange server

The key exchange server was implemented as a relatively simple Python application. It
implements a REST API endpoint for all of the stages of the device registration process,
and again uses the Flask library to provide the web services framework. All of the data

7https://flask-login.readthedocs.io/en/latest/

https://flask-login.readthedocs.io/en/latest/

130 Chapter 9. Implementing the Secure Remote Update Protocol

(such as the device identities and keys) are stored locally using an SQLite database [309],
however for a larger-scale full production system this could be easily swapped out for any
other SQL database system (such as PostgreSQL [310]).

Table 9.1 depicts the REST end-points which are implemented.

End-Point Type Service
../register/status GET Returns the status of the KeyEx server
../register/register POST Performs the registration of a device ID
../register/validate POST Performs the mutual validation of exchanged keys

../register/access POST
Process the device’s CSR and return the MQTT
access key and certificate for the device

../register/get_key GET Returns the public key for a supplied device ID

../register/get_type GET Returns the device type for a device ID

../register/C�_check GET Is C2 server registered with the KeyEx service?

../register/C� POST Performs C2 server registration with the service

TABLE 9.1: The REST API end-points implemented by the SRUP key-exchange service

9.6.2 Containerization

Although the key exchange server is relatively simple (especially when running locally), the
configuration required to host this securely on a remote web-server (including the provision
of a TLS certificate for the hosting domain) and the configuration required by the MQTT
broker represent additional steps. Although these do not represent anything that an
experienced backend web developer wouldn’t be familiar with — in keeping with the goal to
make SRUP as easy to use as possible, an implementation of the backend as a series of
Docker containers has also been provided.

By making use of Docker [311] and the Docker-compose orchestration system [312] it is
easily (and reproducibly) possible to specify a standing configuration for these components.

The main configuration for the orchestration is specified using the YAML (YAML Ain’t
Markup Language) format [313], and is contained in the docker-compose.yml file. This
defines four micro-services — each of which is implemented as a docker container. These
are described in Table 9.2.

Of these, only the KeyEx service is a bespoke container. The other three all use extant
container images, and augment these with specific configuration settings specified in the
docker compose file. These are presented to the containers via the filesystem, using
Docker Volumes.

The Dockerfile specifying build process for the KeyEx image, simply takes the latest Python
3 container image, and installs the Python library dependencies for KeyEx. These include

9.7. Bootstrapping SRUP and the Key Generation Tool 131

Service Name Container Image Service description

web nginx:latest
Implements nginx as a web server and
reverse proxy

keyex Bespoke
Implements the SRUP Key Service
(building from the specified Dockerfile)

broker eclipse-mosquitto:latest
Implements the Eclipse Mosquitto
MQTT Broker

certbot certbot/certbot
Implements the Let’s Encrypt certbot
for TLS certificate generation

TABLE 9.2: The micro-services implementing the SRUP backend

Flask, the Cryptography8 library, and Green Unicorn9 which implements the Python
Web-Server Gateway Interface (WSGI) [314]. The final step is to specify the startup script
for the KeyEx service.

Thus the entire backend may be distributed as a series of small source code files, which
can be assembled by Docker and Docker-Compose to deploy a complete SRUP universe
on any server with the minimal of developer intervention. Although Docker-Compose has
been adopted for the reference implementation, alternative orchestration layers such as
Kubernetes [315] may be substituted, especially for running large-scale deployments under
high or variable load.

An architecture diagram depicting how all of the components fit together is shown in Figure
9.4.

9.7 Bootstrapping SRUP and the Key Generation Tool

The final part required to ensure that a SRUP universe can be stood up from scratch is a
means to generate the set of certificates and keys that are required. For a universe running

8https://cryptography.io
9https://gunicorn.org

https://cryptography.io
https://gunicorn.org

132 Chapter 9. Implementing the Secure Remote Update Protocol

FIGURE 9.4: An architecture diagram showing the components of the containerized SRUP
backend.

on an Internet connected network, a total of eight such files are necessary:

• Broker CA certificate

• C2 server public & private key-pair (used for the C2 server identity)

• C2 server token file

• Key Exchange server public & private key-pair (used for the KeyEx server identity)

• C2 broker access key and certificate (used for the C2 server’s access to the MQTT
broker)

For a system running on a private (or otherwise non-Internet connected network), two
additional files are also required:

• Private web CA root key

• Private web CA root certificate

The process to generate these files, especially the root CA files is, whilst not especially

9.8. Hardware 133

difficult [316], fairly involved. As such, a key generation tool (also written in Python) has
been created to be distributed with the other elements of the backend.

This tool is designed to generate both the initial bootstrapping configuration for a new
installation of a SRUP backend universe (as described in Section 9.6.2), and to generate
the necessary credentials (including the server token file) for any C2 servers which are to
be used within that universe.

Figure 9.5 depicts the tool in operation, and the interrelationships between the various files
generated.

This containerized approach to the deployment of a backend system also supports the
intent of Research Question RQ1. By utilizing Docker, the containerized approach
establishes the backend as a component which can easily be deployed by a user without
needing to implement the complexities of securing the broker and managing the key
exchange themselves.

This approach therefore makes it possible to consider the deployment of a SRUP universe
as a commodity service. Either offered as a turn-key commodity deployment for
non-technical users, or as a part of a hosting package. For individuals or organizations with
a particular requirement for privacy or security of their IoT systems, they could provision
the requisite backend systems for their IoT devices within their own controlled network
infrastructure or hosting environments, and thus be able to provide guarantees as to the
availability and accessibility of TLS keys used for MQTT traffic encryption.

9.8 Hardware

Whilst not directly addressing RQ5, the final part of the implementation work for SRUP was
to design and construct a number of exemplar IoT devices to be controlled by the protocol.
In addition to the device depicted in Figure 9.3 (which was used during the development of
the software), two other hardware device designs were constructed and built in small
numbers. These are described in more detail in the following Sections.

9.8.1 Timing device

For the purposes of the performance evaluation of the SRUP protocol (see Chapter 11) a
simple IoT device was built, which consisted of a small custom circuit board, built using a
prototyping board. The purpose of this board was to provide a device with a visual output
(via the LEDs) and permitting user input (via a push-button) to allow the user to signal the
device was ready to start the experiment.

134 Chapter 9. Implementing the Secure Remote Update Protocol

FIGURE 9.5: A diagram depicting the SRUP Key Generation Tool in operation to boot-
strap a new SRUP universe, and showing the interrelationships between the various files

generated.

9.8. Hardware 135

A circuit schematic for this board can be seen in Figure 9.6, and a photograph is shown in
Figure 9.7.

FIGURE 9.6: The circuit schematic for the simple IoT device used for the SRUP perfor-
mance evaluation experiments.

FIGURE 9.7: A photograph showing the prototyping board used to make the simple IoT
device used for the SRUP performance evaluation experiments.

136 Chapter 9. Implementing the Secure Remote Update Protocol

9.8.2 Syndication experiment device

A second device was built for the capstone demonstration of the research. This device was
more sophisticated than the devices described previously, and incorporated two small
ambient condition sensors. The sensors (connected via an I2C connection) were each
capable of measuring temperature, humidity and barometric pressure. The boards also
incorporated a 3.2" colour LCD touchscreen, connected via the Serial Peripheral Interface
(SPI) bus of the Raspberry Pi.

This device was designed to provide representative, real-world, data acquisition — and the
attached LCD display both represented the sort of display that a room thermostat would
likely be fitted with, and enabled observed C2 joining operations. The board also featured
an I2C EEPROM module, which enable it to store Linux kernel configuration settings, as
specified in the Hardware Attached on Top (HAT) specification [317] (although
mechanically the board did not incorporate the necessary cutouts to fully adhere to the
HAT standard). The design also incorporated a number of additional features, which were
not used in the eventual experiment: such as an additional (user-accessible) EEPROM
module, and an 8-byte ROM hardware serial number.

Due to the relative complexity of the board design (in comparison with previous boards),
this board was designed to be manufactured as a Printed Circuit Board (PCB). Using a
double-sided PCB layout, and surface-mount components enabled a greater density of
components than would otherwise have been possible, as well as enabling the integration
of commercially available sensors.

The circuit schematic is shown in Figure 9.8.

The PCB layout for this board is shown in Figure 9.9, and a rendering of the PCB is shown
in Figure 9.10. (The assembled hardware is shown in Figure 10.6).

9.8. Hardware 137

FIGURE 9.8: The circuit schematic for the syndication experiment device

138 Chapter 9. Implementing the Secure Remote Update Protocol

FIGURE 9.9: The PCB layout for the syndication experiment device

FIGURE 9.10: A rendering of the PCB layout for the syndication experiment device

9.9. Summary 139

The full Bill of Material (BOM) (excluding the Raspberry Pi, and passive components) is
shown in Table 9.3.

Part Number Qtty Component Interface Data Sheet
DS2401Z 1 64bit ROM Memory 1-wire https://bit.ly/33WU6qN
24LC256 2 256kbit Serial EEPROM I2C https://bit.ly/3tVbnLC
BME280 2 Temperature Sensor I2C https://bit.ly/3wicPct
4DPI-32 1 3.2" colour LCD screen SPI https://bit.ly/3bCiMcz

TABLE 9.3: The main Bill of Material for the Syndication Experiment Device, excluding the
Raspberry Pi single board computer

This device and the capstone demonstration itself are described further in Chapter 10.

9.8.3 Other hardware

Several other single-purpose devices were built to evaluate specific aspects of the
research. These included a device consisting of an eInk display fitted to a Raspberry Pi
Zero W used for evaluating the word list comparison (see Section 7.3.3 and Figure 7.11), a
device consisting of a colour LCD display fitted to a Raspberry Pi 3B+ for the pictographic
comparison (see Section 7.3.2 and Figure 7.8), and an NFC reader to evaluate the use of
RFID techniques for observation (See Section 7.4.2 and Figure 7.16).

9.9 Summary

This Chapter has described the implementation of a software library for SRUP and has
demonstrated its ease of use for developing IoT systems, in comparison to hand-building
an insecure solution using only MQTT. It has also described the containerized backend
solution to deploy a SRUP universe, and tools to support bootstrapping such a new
deployment. Example hardware devices to exploit SRUP for real-world applications were
also described. In the next Chapter, the final original element of the research is described:
introducing the concept of syndication, and describing how it can be applied to the problem
of how to control the sharing of information between IoT C2 systems.

https://bit.ly/33WU6qN
https://bit.ly/3tVbnLC
https://bit.ly/3wicPct
https://bit.ly/3bCiMcz

141

Chapter 10

Syndication

This Chapter introduces the concept of syndication to SRUP as a means to address
Research Question RQ6. Specifically this aspect of the research was motivated by the
requirement to be able to share both data from, and control of, devices from one C2
network to another — without requiring a trusted relationship between the two C2 networks.

Elements of this Chapter have been previously published as [7].

10.1 Sharing data and control without a fully
trusted-relationship

Although the concept of C2 for the IoT is a powerful one, there are use-cases for deployed
IoT devices which do not fully map onto a simple C2. An example of this is a scenario
where the operators of a sensor system wish to share some parts of the data collected by
those sensors with another party, but without giving that third-party full access to their
devices. This is a scenario that is quite likely in the context of an IoBT system, where the
military operators may wish to share some aspects of the data with non-combatant parties
(such as NGOs or local law-enforcement).

As an example, consider a case where there is a deployed IoT system consisting of a
number of fixed sensor devices, and where the devices belong to a controlling C2 system,
all operating as a part of a smart city [318]. In the event of an emergency scenario, these
devices could be augmented by combining them with a second set of mobile devices,
operated by local fire and rescue services. SRUP supports the dynamic addition of devices
to a C2 network, as well as commands requesting that devices transfer their registration to
another C2 server (see Section 5.6.5.1), providing the C2 systems in question are
operating within the same SRUP universe (see Section 6.2.2).

142 Chapter 10. Syndication

Figure 10.1 depicts three discrete C2 systems that may be operating within the same
location, and which in some circumstances may wish to be combined by their operators.

FIGURE 10.1: An example of three IoT-based sensor systems, which may be required to
operate together in an emergency scenario.

For the purposes of this Chapter, consider a hypothetical use-case of a network of fixed
sensors, installed to measure air quality and to provide real-time alerting to citizens if the

10.1. Sharing data and control without a fully trusted-relationship 143

air quality deteriorates below a certain threshold. This sensor network is owned and
operated by a metropolitan region, such as a city.

In the event of a major fire or other disaster, it may be desirable for this system to be
augmented with a number of additional mobile sensors, such as may be deployed by the
local fire brigade. Within SRUP this can be easily achieved by the fire brigade’s sensors
being commanded to join the city’s C2 network. This combined C2 system is depicted in
Figure 10.2.

FIGURE 10.2: An example of a mobile system joining its sensors to a fixed system during
an emergency scenario.

In order to create this combined C2 system, it is necessary to add the fire service’s mobile
sensors to the city’s fixed sensor network, and to then add the fire service to the city’s C2
system as a user. More generally, for this to be possible, it is asserted that the following
three conditions must all be true:

1. The systems must use (or be compatible with and be able to use) the same SRUP
universe

2. The owner of the sensors which are to be joined to the existing C2 system accepts
(temporarily) losing ownership of the sensors to the operator of the fixed system

3. The owner of the fixed system accepts the new sensors, and takes temporary
responsibility for them

Conditions 2 and 3 are especially important. Since the devices in question will become full
members of the new C2 network, both parties must be willing for the systems to be joined,
implying a degree of trust. For example, the side hosting the C2 network needs to trust that
the devices joining are not compromised with malware, and the side providing the devices

144 Chapter 10. Syndication

needs to trust that the other party will be diligent to ensure that they do not become so, and
that they will be returned to their control at the completion of the operation.

There are scenarios, however, where such a join is not possible to achieve because one or
more of the preconditions are not, and cannot, be satisfied (for example, when one party is
unwilling to assign their devices to the C2 network operator’s control — or where the
devices in question necessarily utilize different backend systems).

Combining C2 systems is not always required however. Depending on the specific
requirements, it is also possible to simply provide access for the third-party into the existing
C2 system, or provide simple data export (either in the form of static data, or in the form of
a live API).

10.2 Syndication concept

To explore this further, imagine that the emergency scenario described in Section 10.1 is
sufficiently serious that, in addition to resources from civilian fire and rescue services, other
specialist resources are brought in to provide assistance to the regular civil authorities. For
example, a situation such as may occur in the event of a natural disaster. This additional
assistance may be provided by military units, NGOs, or even specialist commercial
providers.

In this example, assume that neither condition 1 nor condition 2 hold true; the sensors in
question use their own backend system (and potentially a different cryptographic standard
too, especially in the case of a military system) and the provider of the sensors wishes to
retain full control over their devices. Additionally, in this scenario the provider is not willing
to share all of the data with the city, but they do wish to provide a live feed of some of their
data to the city’s C2 system. Reluctance to share a totality of the data may be due to
commercial, security, or other reasons. Similarly other data may not be relevant to the
situation for which the systems are cooperating, and so may not be shared to avoid
overloading or confusing operators with unnecessary information.

To address this requirement, the concept of Syndication has been developed. Syndication
is a term coined by analogy to newspapers, where syndicated content may be reprinted in
other publications where a pre-existing relationship exists to the original publisher. Within
SRUP, syndication provides a mechanism for two C2 systems — operating within different
universes — to collaboratively share data and commands between them.

Syndication not only permits sharing of data without ownership of devices changing, it also
enables the C2 server corresponding to the source of the information to moderate the
information flow, thereby controlling which data types (and data from which platforms) are
shared.

10.3. Syndication messages 145

By the addition of a specialized syndication device to act as a bridge between the two
universes, it is possible to facilitate communications between C2 systems that do not have
a cryptographic algorithm in common.

Although syndication is primarily intended to link networks which operate in different SRUP
universes, the technique could also be applied to discrete C2 networks operating within the
same SRUP universe.

Given the increase in utilization of IoT devices, the need to facilitate sharing of data
between discrete C2 networks is important in order to enable dynamic cooperation
between the operators of deployed services, especially in the context of future smart cities
where standing networks of sensors or other devices may need augmentation with
additional capabilities provided by third-parties during times of emergency or crisis.

10.3 Syndication messages

In each of the following Sections, the setup is assumed to be as follows:

• There are two backend universes: Universe A and Universe B.

• There is a SRUP C2 server which controls one or more devices and which is willing
to share data with another C2 server. This is the syndicated server and it operates
within Universe A.

• There is a second C2 server, which operates within Universe B. This server is the
syndicating server, the server which wishes to receive data from the syndicated
server.

• There is also a syndication device. This device is subordinate to the syndicating
server, primarily operating within Universe B. It only makes connection to Universe A
during syndication operations, when it forms a bridge between the two universes.

A sequence diagram illustrating the data flow during syndication operations can be seen in
Figure 10.3.

It is also assumed that the ability to initiate a syndication between two C2 systems will be
controlled by a pre-shared secret. This may be a static secret, or dynamically generated.
This is, however, an implementation detail, and in either case the operators of the C2
systems would need to communicate this secret out-of-band to the SRUP protocol. Use of
a pre-shared secret is not mandatory, and insecure C2 servers could also be configured to
permit syndication requests without validation if required.

146 Chapter 10. Syndication

FIGURE 10.3: A sequence diagram showing an example data exchange between the de-
vices during SRUP syndication operations. The text beneath the message-type line de-

notes the MQTT topic used by SRUP to carry the message

10.3. Syndication messages 147

10.3.1 Syndication initialization

To begin syndication operations, it is first necessary to send a syndication initialization
message from the syndicating C2 server to the syndication device in order to initialize the
join. This is sent using the Universe B backend, keys and cryptographic protocols, via the
syndication device’s MQTT topic.

This message contains the URL for the Universe A key service registration, and the
pre-shared secret to be used to authenticate the syndication.

On receipt of this, the syndication device should attempt to connect to the provided URL
and perform the initial registration process with a new device identity to be used within
Universe A. It should perform the subsequent MQTT operations using a second MQTT
client connection (and using the necessary keys and certificates received as a part of the
registration to the new universe).

10.3.2 Syndication request

Having successfully joined the universe A C2 system (likely requiring a human or machine
moderated join), the syndication device will then send a syndication request message. It is
sent using the syndication device’s Universe A identity for the MQTT topic, and includes
the pre-shared secret that the syndication device received as a part of the syndication
initialization message.

10.3.3 Syndicated device count and syndicated device list

The process for determining the validity of the syndication request is application-specific,
and is not enforced by the protocol. However, having received a valid syndication request
message, and having determined that the request is acceptable, a C2 server which is to
become syndicated must send a syndicated device count message to the syndicating C2
server, stating the number of subordinate devices that it intends to syndicate. This is
initially sent to the syndication device (using its Universe A identity), and then relayed by
the syndication device, to the syndicating server (using its Universe B identity and topic
when communicating with the syndicating server). This approach of message relaying by
the syndication device — using its two identities — is similarly adopted for all other
syndication message types.

After a suitable message propagation delay, the syndicated server begins sending
syndicated device list messages. These consist of two fields: the identity of one of the
devices to be syndicated, and an integer index value to indicate which of the devices in the
list of n devices that identity pertains to (where n is the value sent in the syndicated device

148 Chapter 10. Syndication

count message). In all cases, the identity that is sent is the Universe A identity of the end
device, since devices that are syndicated (by definition) do not have any identity within
Universe B.

10.3.4 Syndicated ID request

After the receipt of a syndicated device list message, the syndicating server may optionally
send a syndicated ID request message to the syndicated server, asking that the ID request
string corresponding to the device in question is sent to it. The ID data may either be sent
directly by the syndicated server, via a syndicated data message containing the ID request
data it has previously received from the device, or may be passed on to the end device (in
the form of a regular ID request message) to enable the device to update this information.
This determination is made by the configuration of the syndicated server.

10.3.5 Syndicated data

Syndicated data messages are used by a syndicated C2 server to send data on behalf of
one of its subordinate devices. These may be as a part of an ID Request, or as a part of
sending operational data from a subordinate device. In either case, the message consists
of three elements, over and above the standard SRUP message:

• the source ID — containing the ID of the device from which the data originates

• the data ID — used identically to the non-syndicated SRUP data message to indicate
the meaning of the data

• the data value itself

Syndicated data messages always originate from a syndicated C2 server, and never
directly from an end device. This means that the syndicated C2 server always has the
ability to moderate what is sent. In practice, this means that a syndicated C2 server can
easily be configured to share only certain types of data (e.g. temperature and humidity, but
not barometric pressure), to share data only from certain devices, or to downgrade the
precision of data before it is sent. For example, a military operator may elect to share a
reduced-precision form of geolocation data with civilian authorities.

10.3.6 Syndicated action

In addition to receiving data from a syndicated C2 server, a syndicating server may make
requests for actions to be performed by the syndicated server’s devices. As with the data

10.3. Syndication messages 149

messages, there is no direct connection between the syndicating server and the
syndicated devices, so all requests are moderated by the syndicated C2 server. The
syndicated C2 system can therefore be configured to permit or deny different action types,
for different devices, or simply accept any requests and pass them on to the corresponding
target device.

The syndicated action message consists of the target device’s identity, as well as the 8-bit
integer value corresponding to the action type that is being requested.

10.3.7 Syndicated C2 request

The syndicated C2 request message allows for the syndicating C2 server to send a
request (and any associated data) to the syndicated C2 server. This message consists of
an 8-bit integer C2 request ID (corresponding to one of up to 256 pre-defined C2 request
types), along with a byte-stream containing any data that may be required to support this
request type.

This can be used, for example, to request to change a parameter of the server’s operation
such as the update frequency of the sensors (which would not necessarily require any
supporting data), or for a more complex request such as requesting that the syndicated
server applies a software update to its devices (in which case the details would be supplied
within the data field).

In common with all of the other syndication messages, the syndicated server must
determine whether or not to accept the request. The specifics of how it does this are, of
course, implementation specific: but this could be an automated decision, or it could be
passed to the operators of the syndicated C2 server to make the decision as to whether or
not to accept the request.

10.3.8 Syndication termination and syndication end

Either party within the syndication can end the syndication session at any time. There are
two ways that this can be achieved:

• The syndicating server may send a syndication end request message. This is used to
inform the syndicated server that it should stop sending syndication messages, and
to instruct the syndication device to stop accepting messages from the syndicated
server once it has received a response message with a status of END SYNDICATION.

• The syndicated server may send a syndication termination message, which is used
to inform the syndicating server that the syndicated server will no longer send
syndication messages.

150 Chapter 10. Syndication

These represent a situation analogous to either party hanging up during a telephone
conversation: either the caller signalling that they have finished the conversation, or the
recipient of the call electing to end it.

There is no mechanism within SRUP for any other party to end active syndication.

10.4 Syndication example

Figure 10.4 shows an example of how syndication might work, in the context of the
scenario described in Section 10.2. In this example, the military units provide a syndication
device, which is compatible with both their own universe and the universe in which the
civilian systems operate. The syndication device, would then be joined to the civilian C2
system, and used to initialize syndication with the military C2 system. The military C2
system can then provide a suitably moderated version of the data available to it, which can
be used by users of the civilian authority’s C2 system.

FIGURE 10.4: An example of syndication in action, showing how output from a restricted-
access system can be syndicated with existing fixed, and mobile sensors.

There may also be a requirement for mutual, bidirectional, data exchange between two
SRUP universes. For example, sharing of the city’s data with the military C2 system, as
well as sharing the military data with the city. The syndication approach described here
could easily be adopted by both parties. Such a mutual syndication approach would enable
each to be both syndicating and syndicated: each with their own set of rules about data
sharing, processing action requests, and so on. Depending on the specifics of the
situation, and how the data is being used, there may be additional concerns about the
trustworthiness of the data being ingested into a more secure system — although the

10.5. Experimental implementation 151

syndication process easily allows data received this way to be segregated by the C2
system if required.

Although the initial implementation of syndication within SRUP C2 servers was built to
permit just one syndication session at any time, the underlying SRUP protocol has no such
restrictions and a C2 server could support simultaneous bidirectional, syndication to
multiple other systems.

10.5 Experimental implementation

An implementation of the syndication approach was created for SRUP, building the
additional message types onto the software stack described in Chapter 9. This
implementation was then utilized to conduct a small-scale table-top experiment to establish
the correct operation of the syndication process.

For the purposes of this experiment a total of twelve of the room monitoring IoT devices
(see Section 9.8.2) were deployed within a laboratory setting, along with three separate
instances of a web-based C2 interface (see Section 9.5). An example of two of the C2
interfaces (showing syndication in action) can be seen in Figure 10.5), and an example of
one of the deployed hardware devices is shown in Figure 10.6.

FIGURE 10.5: A screenshot from the example implementation of the web-based C2 system
during syndication operations.

Both syndicating and syndicated C2 networks were constructed, and a full set of
syndication operations were demonstrated to work. For the purposes of this experiment
the web-based C2 interface was configured to enable a subset of the data from devices
joined to the syndicated network to be viewed in the C2 system for the syndicating network,
and the syndicating system was able to make action requests to the syndicated devices.

An architecture diagram showing the full experimental setup can be seen in Figure 10.7.

152 Chapter 10. Syndication

FIGURE 10.6: An example of the Raspberry Pi based hardware device used in the experi-
mental assessment of syndication operations.

A demonstration of SRUP syndication operations can be seen at:
https://www.youtube.com/watch?v=F0_qlqh0Oiw&t=459s [319].

10.6 Guest user

Although the concept of syndication was conceived in relation to wanting to share data
between discrete C2 systems, during its development it became apparent that the concept
can also be used to solve the problem of how to provide guests with limited or partial
access to smart devices in an area they are visiting.

The problem of providing guest access is not new, but as the prevalence of IoT devices
increases, the degree to which they become tightly integrated with their C2 systems is
likely to grow. As a consequence of increased complexity, the full range of an installed
device’s functionality may not be accessible without a user also having access to the
associated C2 system’s user interface (typically provided via a smartphone app). Although
simply giving a guest access to a building’s C2 system is relatively simple, the challenge is
to be able to securely revoke that access once the guest has left (or is otherwise no longer
permitted access).

An example of the SRUP syndication solution is depicted in Figure 10.8. Here the guest
user is given time-bounded access to a subset of the devices on the owner’s C2 system, in

https://www.youtube.com/watch?v=F0_qlqh0Oiw&t=459s

10.6. Guest user 153

FIGURE 10.7: An architecture diagram showing the experimental setup used for a practical
evaluation of syndication operations

154 Chapter 10. Syndication

FIGURE 10.8: An illustration of the integration of guest access to a C2 system, utilizing
syndication to provide moderated access to parts of the system.

order to facilitate access to only a selection of available devices, with more sensitive or
secure devices being restricted to control by the system owner only.

By adopting an approach based around SRUP syndication the guest user could add
access to the permitted devices to their existing C2 instance, integrating them alongside
any other devices that they either own or have been granted access to, as a part of their
own personal C2 console. Guest access can subsequently be securely revoked by the
owning C2 system (either automatically after a designated period of time has elapsed, or at
the request of the C2 system operator manually revoking access) without effecting other
user’s access to the devices. The use of syndication would also make it possible to
dynamically moderate the data and control shared, based on criteria such as location, time
of day, or the state of other devices within the system. For example an implementation of
this type could limit the guest user’s access to certain devices to during the daytime only, or
restrict to occasions when the user is physically at the location in question. Similarly, by
utilizing the state of other devices within the system, control may be granted to devices on
the basis of certain conditions being met — for example, smoke detector activation could
enable the unlocking of windows or doors.

10.7. Summary 155

Although this approach to combining C2 interfaces for domestic devices flies somewhat in
the face of the current walled garden approach to IoT device control (where each new
device typically requires its own bespoke app to permit the user to interact with it) it aligns
well with the growing hub-based approach used to permit devices such as digital
assistants to control multiple systems of devices from a single interface. Although currently
this latter approach does not use a unified C2 model, and instead relies on API hooks into
REST interfaces, the adoption of such an approach as described here and previously
would enable superior integration, whilst still enabling more advanced functionality to be
controlled from a dedicated app.

The adoption of open standards for IoT C2, alongside the provision of freely available OSS
implementations of backend services, would also help to eliminate the problems caused
when hardware vendors remove support for older products. If manufacturers adopted open
standards, then instead of leaving customers with unusable devices when vendors cease
provision of backend services, those customers would be able to provision their own
backend services (either locally or via cloud-based servers) or purchase third party
provision from a service provider.

10.7 Summary

This Chapter has described syndication in the context of SRUP and examined how it can
be utilized to address the requirement to be able to control the sharing of information
between adjacent C2 systems, as well as describing its use for the related problem of how
to permit time-bounded guest access to IoT systems. The next Chapter will describe in
detail the experimental work to assess the performance of the SRUP protocol in simulated
real-world conditions, and examine the overhead costs associated with running the
protocol, in terms of additional processing time, message size and power consumption.

157

Chapter 11

Experimental Assessment of the
Performance of SRUP

This Chapter looks to answer the final Research Question (RQ7), by describing a set of
experiments conducted to evaluate the performance of the SRUP protocol. These
experiments were designed to compare the relative processing time, message size and
power consumption of a device using the SRUP protocol, with an identical device taking an
insecure approach, and directly utilizing plain MQTT messages.

Elements of this Chapter have been previously submitted for publication as [8].

11.1 Execution time analysis

In 2017, an initial assessment of the protocol’s performance was made, by timing the
execution of the cryptographic functions used to support the SRUP protocol. A test case
was evaluated, measuring the time taken to sign and verify a representative SRUP update
initiate message (selected as it is the largest of the SRUP message types). This process
was run five times on a Raspberry Pi 3 B, with the mean time calculated. As per the
standard implementation of SRUP the signing functions used SHA-256 to generate the
message hash, and then an RSA signature was then calculated for this hash value. This
signing process took an average of 56.68ms, and the average time to verify the signature
was just 9.910ms. The full data set for this initial experiment is available [320], and further
details of the testing are described in Appendix C.

158 Chapter 11. Experimental Assessment of the Performance of SRUP

11.2 SRUP and MQTT performance comparison

A more formal set of experiments were conducted in 2020. These experiments consisted
of comparing two cases (SRUP messages, and simple unencrypted MQTT messages)
across a number of different network conditions. In the first of these cases SRUP action
messages were created, sent over a TLS encrypted connection via a broker, decoded and
validated by the recipient and finally processed. In comparison, for the direct use of MQTT
the process consisted of sending the message over an unencrypted MQTT topic, and was
then processed by the receiver. Three sets of measurements were taken: the average time
taken between sending the message and the receiver responding; the power consumption
of the device; and the overall message data packet size.

The comparison between the two cases allows for the assessment of the overhead added
by the use of the cryptographic algorithms. Since the direct MQTT case makes no use of
either TLS for the MQTT message traffic encryption or RSA for message signing,
comparing the two approaches enabled the measurement of the overhead caused by
these elements.

When using SRUP, there is a one-time key exchange process which only occurs when the
device initially joins the C2 network. This process results in a short additional time delay,
which is not part of the usual operation of the protocol. This registration and key exchange
process uses HTTPS rather than MQTT to retrieve the key. As there is no equivalent step
within the MQTT-only setup, the key exchange element was deliberately excluded from the
comparison experiment.

A diagram depicting factors associated with the total processing delay for a SRUP
message can be seen in Figure 11.1.

11.2.1 Hardware

The experimental setup consisted of five IoT devices, each built from a Raspberry Pi 3B+
single board computer, fitted with a custom circuit board which included two LED status
indicators and a push button for user interaction. An example of the device can be seen in
Figure 11.2.

All of the experiments were performed in lab conditions. The devices were connected over
Ethernet to a Raspberry Pi 3B+, acting as the C2 server. The C2 server was running
custom software that selected one of the five devices at random, sent a message to that
device requesting that it toggled the state of the LED, and then waiting for a random
interval before looping back. The program execution continued until each device had
received a total of 250 messages. This workflow is illustrated in Figure 11.3. Two separate

11.2. SRUP and MQTT performance comparison 159

FIGURE 11.1: A diagram showing the information flow associated with the processing of a
SRUP message, which contribute to the time taken.

implementations of the C2 software were written. One using SRUP action messages over
the TLS encrypted MQTT connection, and one using a simple plain-text MQTT message.

The a priori assumption was that a significant proportion of any additional delay would be
due to the time taken to process the cryptographic algorithms used for message signing. In
order to evaluate the extent to which the performance of the protocol is influenced by the
speed of the hardware, an additional device was built using a faster Raspberry Pi 4 single
board computer, allowing for a performance comparison with the other devices. The Pi 4
device was identical to the devices described above, apart from the CPU and the RAM
(Random Access Memory) configuration changes between the Pi 3 and Pi 4. A summary
of the configuration of the two systems is shown in Table 11.1

Model CPU CPU Clock RAM Size SDRAM Type

Raspberry Pi 3B+
Broadcom BCM2837B0
Quad-core Cortex-A53
ARMv8 64-bit

1.4GHz 1GB LPDDR2

Raspberry Pi 4
Broadcom BCM2711
Quad-core Cortex-A72
ARMv8 64-bit

1.5GHz 2GB LPDDR4

TABLE 11.1: Specification differences between the Raspberry Pi 3B+ and Raspberry Pi 4
Single Board Computers used within the experiments.

160 Chapter 11. Experimental Assessment of the Performance of SRUP

FIGURE 11.2: The experimental hardware, consisting of a Raspberry Pi 3B+ single-board
computer, and a custom circuit board.

11.2.2 Software

The devices utilized the software stack described in Chapter 9, which enabled the device
code to consist of a short and easy-to-understand Python script. Listings of the software
can be seen in Appendix D.

11.2.3 Time synchronization

In order to measure the temporal overhead, the experiment made use of log files
generated by the devices and by the C2 server. These logs indicate the time at which the
server initiated the generation of the command and the time at which the receiving device
had processed the message. The timestamps were subsequently used to calculate the
elapsed wall-clock time for the operation. In order to ensure that the clocks on both devices
were synchronized as accurately as possible, the device acting as a C2 server was also
configured to act as an NTP [281] server using the chrony tool1. Since there was no

1https://chrony.tuxfamily.org

https://chrony.tuxfamily.org

11.3. Network conditions 161

FIGURE 11.3: A flowchart showing the execution of the C2 server during the experiment

requirement for precise synchronization to an absolute time reference, the C2 server was
running as the authoritative time source on the local network. Configuring the device’s
clocks to use the local time-server as their sole source of time ensured that the clocks were
as tightly aligned as possible.

11.3 Network conditions

Due to the difficulty in deploying devices in remote locations caused by the ongoing
COVID-19 (SARS-CoV-2) pandemic, combined with the greater reproducibility from using
controlled conditions, all of the network conditions were simulated, rather than using
real-world cellular data services.

11.3.1 Network condition simulation

For the purposes of the experiment, it was assumed that the experimental hardware
represented deployed IoT devices, connected to a C2 server over a cellular data

162 Chapter 11. Experimental Assessment of the Performance of SRUP

connection. Network condition simulation was used in order to appropriately represent the
behaviour of a cellular network in different operating environments. This simulation was
conducted using the Linux tc tool [321] and associated tcconfig wrapper tools (such as
tcset 2) [322].

Work by Khatouni, Trevisan, and Giordano provides performance data for cellular networks
in a range of conditions [323], and this was used to select representative parameters for tc.
In order to assess the performance comparison across a broad-range of conditions, ten
different network conditions were selected. These were drawn from a software
implementation of the Khatouni, Trevisan, and Giordano dataset produced by Trevisan
[324]. The cases selected ranged from the theoretical ‘best case’, where all devices were
running on the same Local Area Network (LAN) without additional delays, through to
simulations of 4G and 3G cellular networks in ‘good’ to ‘medium’ and ‘poor’ signal
conditions.

11.3.2 Operation in austere network conditions

In order to test the operation of the SRUP protocol in conditions of extremely poor network
signal, such as may be considered as the extreme of conditions in which a protocol such
as SRUP may wish to be used; network conditions simulating these worst-case conditions
were also considered.

A simple real-world measurement was taken within an isolated area of the New Forest
National Park, to augment this dataset and provide a representative data point for
deployment of a 3G device in a rural location. The New Forest was selected as an area
local to Southampton, with poor network coverage in order to record real-world conditions
for signal strength and network performance in an area of known poor coverage.

A measurement made using a smartphone ‘network cell information’ measurement app
[325] showed a very poor signal strength of -128 decibel-milliwatts (dBm) of Reference
Signals Received Power (RSRP), and 115 kilobits per second (kb/s) upload. A photograph
illustrating this is shown in Figure 11.4.

In order to assess performance when operating on slow or narrow-bandwidth connections,
the example of legacy Second-Generation (2G) networks, such as GSM (Global System
for Mobile Communications) [326], were included too. However, given the lack of published
data for the simulation of the network conditions of GSM, representative propagation delay
data was taken for 3G networks from Khatouni, Trevisan, and Giordano: with the data
transfer rates capped at the ‘best cases’ for both the Enhanced Data Rates for GSM
Evolution (EDGE) [327] and General Packet Radio Service (GPRS) [328] standards.

2https://tcconfig.readthedocs.io/

https://tcconfig.readthedocs.io/

11.3. Network conditions 163

FIGURE 11.4: A screenshot from the mobile application used to assess cellular network
performance in a rural area of Southern England

Finally, in order to establish a plausible ‘worst case’, packet loss data taken from Ghaderi
and Boutaba [329] were applied to the network conditions simulation, in addition to the
network propagation time delays.

11.3.3 Experimental conditions

The configuration for the experimental runs were as shown in Table 11.2, and the full details
of the network condition parameters used for each of these can be found in Appendix E.

Each of these conditions were run as an experiment, with all five devices running the
SRUP protocol.

164 Chapter 11. Experimental Assessment of the Performance of SRUP

Experiment Condition

1
LAN Ethernet
(no network conditioning)

2 ‘Good’ strength 4G
3 ‘Medium’ Strength 4G
4 ‘Good’ 3G
5 ‘Poor’ 3G
6 2G EDGE ‘best case’

7
Observed 3G ‘poor’ signal
(including a capped data rate)

8 2G GPRS ‘best case’
9 3G ‘poor’ signal + 5% loss
10 2G GPRS + 10% loss

TABLE 11.2: Network conditioning settings for each of the ten cases used for the experi-
mental assessment of the SRUP protocol.

For the comparison experiment (using the MQTT protocol), a representative sample of five
of the network conditions were examined: the ‘best case’, reasonable ‘worst case’, and
three cases in between (cases 1, 2, 3, 5, & 9). These five cases, where both SRUP and
MQTT were run, will be referred to as the ‘combined experiments’.

11.4 Experimental hypothesis and measurements

When using the SRUP protocol, an increase in the time taken for message processing was
expected, along with increase in the power consumption of the device (both due to the
additional processing requirements of running the message signing algorithms). The total
size of the data sent was also expected to be increased (due to the additional fields used
by SRUP to ensure message security).

When conducting the experimental runs, the following measurements were taken:

1. Time
The actual performance measurement has been assessed by analysis of the log files
produced by the devices, and the server for any given experimental run. Full details
of this analysis can be seen in Section 11.5.

2. Power
Assessment was made of the average power consumption of one of the devices
when running both the MQTT and SRUP conditions. Measurement was made using
a logging USB power meter.

3. Message Size
The network traffic was captured using Wireshark [330] and examined to identify the
size of the raw MQTT and the SRUP implementation’s MQTT messages.

11.5. Analysis 165

11.5 Analysis

All of the log file analysis was performed using Python and Jupyter notebooks [331]. The
pandas library [332] was used for ‘data wrangling’ and collation.

This analysis involved:

1. Mapping device ID to logical device number

2. Loading the log files from the C2 server for each experiment

3. Stripping the unused columns out of the resulting dataframe

4. Loading all of the log files from each device, for each experiment, and combining
them into a single Python object (a list of dictionaries of dataframes).

5. Generating a new dataframe for each row in the C2 log dataframe, recording the
device number, the type of operation (on or off), and the timestamp at which the
command was sent

6. For each row in the dataframe generated in step 5, extracting the timestamp at which
this command was received by the device

7. Calculating the time delay between sending and receiving, in milliseconds

Each experiment generated a graph, which was used to check the data ingestion process
(exemplars shown in Figures 11.5 and 11.6). As expected, experiments where a delay
distribution had been applied had a significantly greater standard deviation. A similar
analysis process was also conducted for the experimental runs using MQTT.

FIGURE 11.5: A graph showing the delay distribution associated with SRUP message
propagation and processing time, for experiment 1 (no network conditioning).

166 Chapter 11. Experimental Assessment of the Performance of SRUP

FIGURE 11.6: A graph showing the delay distribution associated with SRUP message
propagation and processing time, for experiment 7 (Observed 3G poor signal).

Once complete, the next step of the analysis process was to calculate the mean delay for
each device, for each experiment. The means for each device were then averaged in order
to calculate the combined mean for each experiment, and the total processing overhead for
each experiment could then be calculated. Full details of the analyses can be seen in the
Jupyter notebooks in [333].

11.6 Results

11.6.1 SRUP vs. MQTT performance comparison

A graph showing the mean delay for each of the SRUP experiments is shown in Figure
11.7, and a graph showing the combined means for each device for a given experiment (for
both the SRUP and MQTT cases) is shown in Figure 11.8. The difference between the
mean delays for each protocol is shown in Figure 11.9.

The total combined mean processing overhead for SRUP, when compared with MQTT,
across all network conditions, was shown to be an additional 51.60ms. This compares to
the worst-case of 56.13ms when excluding the effects of the network delay (experiment 1).
Although on an Ethernet LAN this represents a significant additional delay (58.44ms vs.
2.308ms) compared with a wholly insecure system, when compared with a more
representative scenario for deployed IoT (experiment 3, medium strength 4G): the
overhead represents only 53.55% of the MQTT delay (147.7ms vs. 96.17ms = 51.53ms)

11.6. Results 167

FIGURE 11.7: A graph showing the mean SRUP message network and processing delay
by device, for each of the experiments.

FIGURE 11.8: A graph showing the total mean network and processing delay for both
MQTT and SRUP messages, in the five combined experiments (experiments 1, 2, 3, 5, &

9).

168 Chapter 11. Experimental Assessment of the Performance of SRUP

FIGURE 11.9: A graph showing the difference between the total mean network and pro-
cessing delay for the five combined experiments.

Even in the worst-case, the processing overhead means that only where a message
frequency exceeds 17.82Hz, will the additional processing time be greater than the natural
message period (Equation 11.1).

1
56.13ms

= 17.82Hz (11.1)

Since a typical real-world IoT device may be expected to have a mean time between
messages of minutes, the additional processing overhead in the order of tens of
milliseconds is a very small additional price to pay for the very significant security benefits
that the SRUP protocol offers.

However this result does show that the protocol in its current form may not be well suited to
highly time-critical applications, when running on lower-specification hardware.

A boxplot graph depicting the extent of the distribution of the data across all of the
combined experiments (and showing the minima, maxima, median and 1st & 3rd quartiles)
is shown in Figure 11.10.

The analysis also shows that the SRUP protocol is robust to even extremely poor network
conditions. Even in the worst case (case 10) all messages were correctly received within
4026ms (s = 182.7ms, x̄ = 219.6ms) (as shown in Figure 11.11) due to the robust nature of
the underpinning MQTT protocol.

11.6. Results 169

FIGURE 11.10: A box-plot chart showing the distribution of differences in the network and
processing delay between the MQTT and SRUP experiments, considered over all of the

combined experiments.

FIGURE 11.11: A graph showing the delay distribution associated with message propaga-
tion and processing time, for experiment 10 (2G GPRS + 10% packet loss).

11.6.2 Raspberry Pi 3B+ vs. Raspberry Pi 4

The additional processing power of the Pi 4 was shown to have a benefit in reducing the
overhead incurred by the use of SRUP. The Pi 4 was, on average, 8.681ms faster than the
Pi 3B+ when using the SRUP protocol. In comparison, the MQTT protocol was just
0.2738ms faster in the same context. Thus, the use of a Pi 4 reduces the total overhead
processing delay to 42.92ms for SRUP.

11.6.3 SRUP vs. MQTT power consumption

A graph showing the instantaneous power consumption for a Raspberry Pi 3B+ device,
running the combined experiment (network conditions 1) is shown in Figure 11.12.

170 Chapter 11. Experimental Assessment of the Performance of SRUP

FIGURE 11.12: A graph showing the instantaneous power consumption of the experimental
device, by time, for a combined experiment (using network conditions 1).

The mean power consumption for the MQTT run is 1.312W (s = 0.04007W), which
compares to a mean power consumption of 2.039W (s = 0.04703W) for SRUP. The power
consumption of the device when running SRUP can thus be shown to be an additional
727.6mW when compared with MQTT.

This represents an increase in power-consumption of 55.47%. (Equation 11.2).

727.6mW

1.312W
×100 = 55.47% (11.2)

If the device was powered over USB (at 5V) from a 10000mAh battery, the energy of the
battery may be expressed as (10,000×5)�1000 = 50Wh.

50Wh

1.312W
= 38.14h (11.3)

50Wh

2.039W
= 24.52h (11.4)

38.14h−24.52h = 13.62h (11.5)

We can calculate (Equations 11.3, 11.4, & 11.5) that the battery would be expected to last
for 38.14 hours of continual MQTT activity, versus 24.52 hours of SRUP operation: a
difference of 13.62 hours of continuous operation. A real-world IoT application, however,
would be very unlikely to be operating in a state of continuous message exchange, and in
may typically exchange at most a few messages per minute, therefore the additional power

11.7. Evaluation of results 171

required to process the messages represents only a very small proportion of the overall
power consumption in use.

11.6.4 SRUP vs. MQTT message size

Analysis of the Wireshark traffic capture shows the differences between the message
lengths. For the MQTT setup, a single text character was sent as the message payload
using either an ASCII (American Standard Code for Information Interchange) ‘�’ or a ‘�’

(ASCII 31 or 30), corresponding to the on or off operation. This, combined with the MQTT
topic used to identify the destination device (e.g. test/d�), results in a message size of 80
bytes.

In comparison, for the SRUP experiment the same signal was sent using a message
comprised of:

• One byte (�x�� or �xFF) to signify the operation to perform (on or off)

• A two-byte SRUP message header

• An eight-byte sequence ID

• An eight-byte sender ID

• A variable-length token

• The RSA signature

The message is sent to an MQTT topic corresponding to the device ID prefixed by the word
SRUP. This results in a SRUP message size of 359 bytes, and an overall TLS packet length
of 430 bytes. This represents an approximately 540% increase in data for the SRUP
application when compared with MQTT.

An example dataframe corresponding to each of these two message types can be seen in
Figure 11.13.

11.7 Evaluation of results

The experimental data and subsequent analysis has shown that the overhead associated
in processing messages sent using SRUP, in comparison with insecure MQTT messages,
is independent of the network conditions. SRUP has also been shown to have an overhead
that is tolerable for all messaging applications bar those that are the most time-sensitive or
those requiring a higher message frequency than 17.8 messages-per-second.

172 Chapter 11. Experimental Assessment of the Performance of SRUP

(A) The raw data from an MQTT message. Note that the data is unencrypted and visible as cleartext.

(B) The raw data from a SRUP message, encrypted using Transport Layer Security.

FIGURE 11.13: The raw network data for two messages (one an MQTT and the other a
SRUP message) carrying the same data, captured in Wireshark

The benefits of using SRUP are highly significant for any real-world application of IoT
technologies. Without message encryption, the data contained within the messages may
be freely obtained by anyone with access to the transport network or anyone who is able to
sniff traffic leaving or entering the devices or servers. Authentication ensures that
messages are protected from both deliberate tampering or accidental corruption in transit,
and ensures that only validated and approved senders can issue commands to devices.
The SRUP protocol offers protection against replay attacks by removing the possibility of
an attacker capturing a valid message. Such protections greatly enhance the security of
IoT systems, rendering them much more suitable for use in applications such as building
management or monitoring. The processing delay that is required to provide these benefits
is small, and acceptable for devices running on hardware with higher-performance CPUs.

Although there is a cost in terms of the power consumption of devices using SRUP, this is
only an issue for battery-powered devices which have a high message rate.

11.8. Summary 173

Although the data packet size of SRUP messages is significantly larger when compared to
MQTT, these experiments have shown that SRUP traffic is robust to even extremely poor
network conditions and that messages are still successfully delivered in a timely manner.
This increased packet size does, however, mean that the protocol is not well-suited for use
with extremely constrained bandwidth communications bearers, such as LoRa [334] or
SigFox [335].

11.8 Summary

This Chapter has described the experimental assessment of the SRUP protocol, and the
subsequent analysis of the data produced. It has shown that the SRUP protocol (when
compared with a simple, insecure, MQTT implementation) has a total message processing
delay of between 51.60ms and 42.92ms when running on Raspberry Pi hardware, and an
increased power consumption of 727.6mW whilst processing messages.

The next and final Chapter concludes the work, summarizing the contributions to
knowledge made by this research, and answering the Research Questions posed in
Chapter 1. It also makes some recommendations for follow-on work to enable the further
exploitation of this research.

175

Chapter 12

Conclusions

This final Chapter describes the conclusions of this work. It seeks to identify the
contribution made by this research, and to discuss how it has answered the research
questions posed at the beginning of this thesis. It also discusses some recommendations
for future work and describes the potential future impact of the work.

A short summary video that demonstrates the implementation of many of the aspects of
this research can be seen at: https://youtu.be/F0_qlqh0Oiw [319].

12.1 Answering the Research Questions

Section 1.1.1 introduced the seven research questions, which this work has sought to
address. In this Section, these will be examined in turn and answered.

12.1.1 Research Question 1

How can a secure protocol for Command and Control messaging for the
Internet of Things be developed from extant, tried and tested, commodity
software and network communications components?

The Secure Remote Update Protocol provides an efficient design and implementation for
secure C2 messaging for IoT applications. All of the underpinning elements for SRUP are
off-the-shelf components. It has been built on top of the very widely used MQTT protocol
(which itself runs over TCP). It exploits TLS (and within that, AES) for message encryption,
and (in its reference implementation) utilizes RSA and SHA-256 for message signing. This
adoption of well known components lends some credibility to the protocol, and makes it
easier for users to understand. The widespread use of these components also helps to

https://youtu.be/F0_qlqh0Oiw

176 Chapter 12. Conclusions

ensure that they are robust and error-free — which in turn makes it easier to ensure the
successful operation of SRUP.

12.1.2 Research Question 2

How can such a protocol be used to enable automated secure key distribution
and identity management?

SRUP adopts the paradigm of dynamic identity. This, combined with the self-service device
registration and key exchange model adopted, ensures that no human intervention is
required to support the process of a device registering with a SRUP universe once the
device in question has received the registration URL for that universe. The use of MQTT
broker access control measures such as an ACL and the careful use of MQTT topics
ensure that messages can only be sent by valid devices, and only received by their
intended recipients. The semi-automated process for C2 server registration (requiring
access to the SRUP backend) ensures that only correctly approved C2 servers may be
added to a universe, but that once they have been, the SRUP backend system
automatically provides the necessary identity management to support devices joining that
C2 server.

12.1.3 Research Question 3

How can such a protocol (and associated architectures) be used to provide
assurance around the identity of a physical device?

The use of dynamic identity means that external mechanisms are required to ensure that
the logical identity of a given physical device can be proven. The utilization of the observed
join process enables the provision of such guarantees, either supported by a trusted
human user (manually comparing proof-of-identity codes, using one of the visual
techniques such as pictograms), or supported by an automated observer device reading
the code via computer vision techniques (such as QR codes) or Near-Field
Communication. Adopting this approach means that for systems utilizing SRUP there is no
requirement for fixed identities. This both reduces the complexity of building compatible
devices and permits easier and more thorough revocation of identity to ensure security
when devices change ownership.

12.1. Answering the Research Questions 177

12.1.4 Research Question 4

Can the protocol be made robust to attempted attacks against it, and its
supporting infrastructure?

SRUP has been designed from the outset of this research work to be security-focused.
The message-signing and encryption ensure confidentiality, authenticity and integrity of the
data and wider systems built using SRUP. The protocol is resistant to replay attacks, and
the support for authenticated software update means that systems utilizing this approach
are resistant to malicious remote update attacks.

The designed in crypto-agility means that although any specific implementation may be
subject to future attacks against the cryptosystem in use, the protocol itself may simply be
reimplemented to use any other asymmetric cryptosystem that supports message signing
and encryption.

12.1.5 Research Question 5

How can the protocol be made sufficiently easy to use, that it becomes simpler
for a prospective user to adopt the secure protocol, than to implement an
insecure system?

Implementing secure systems using the SRUP protocol can be accomplished by using the
abstracted code libraries such as pySRUP. By adopting this approach a user may develop
complex systems whilst writing the minimum of code to handle the implementation of the
protocol itself. Although at present the library code must be built locally (and isn’t available
for direct installation via public library repositories and package management systems), the
use of automated build scripts makes this process very straightforward. Together with the
containerized backend systems, and the key generation tool to bootstrap a new setup, the
barrier of entry to using the SRUP protocol is extremely low.

12.1.6 Research Question 6

Can such a protocol be extended to provide a mechanism to securely share
controlled subsets of data between Command and Control systems, whilst
enabling system owners to retain overall control?

The syndication process developed during this work permits the cooperation between
different C2 systems — even if they operate within different SRUP universes (and
regardless of whether or not they use the same underlying cryptosystems). This will enable
devices utilizing SRUP to share partial information (and the option for moderated control)

178 Chapter 12. Conclusions

with other C2 systems which are not fully trusted by the providing system. The ability to
utilize this approach in the context of the provision of guest access to IoT devices in
commercial and domestic settings is potentially a very important element in the solution of
the problem of how to permit guest users within increasingly automated systems.

12.1.7 Research Question 7

What is the performance overhead of such a protocol when compared to
insecure methods, and how well does it cope with poor network conditions?

The experimental evaluation of the protocol has shown that SRUP operates successfully,
even in extremely poor network conditions (far beyond those which would typically be seen
in the vast majority of real-world deployments). The experimentation showed that although
there is a performance overhead associated with using the protocol, this is a relatively
small factor for most realistic use-cases. This overhead is processor dependent and so the
utilization of faster CPU will reduce this cost. There is an associated increase in power
consumption when using the secured protocol (with its greater CPU utilization), however it
is not expected that many deployed (and battery powered) devices would use continuous
message exchange in real-world applications. Although message sizes (and
correspondingly the data rates) are necessarily larger when using the encrypted and
secured protocol, the overhead in absolute terms is still very small.

12.2 Contributions to knowledge

This research has introduced a number of original elements. These are highlighted in this
Section.

12.2.1 The Secure Remote Update Protocol

The Secure Remote Update Protocol itself represents an entirely new protocol, defining a
schema for the payload of MQTT messages and the associated protocol rules in terms of
message handling, validation and C2 network operations. The protocol has been
implemented and evaluated experimentally, and has been shown to work with only a small
overhead processing delay of 51.60ms.

12.2.2 Dynamic identity and key management

The adoption of dynamic identity for IoT devices reduces the complexity of device
production and facilitates identity revocation and regeneration to ensure that device access

12.3. Recommendations for future work 179

by legacy users can be prevented. The automated key management process means that
devices can register automatically and without recourse to human intervention until they
are being added to a particular C2 network which may require this to perform a join
operation. This separates the registration and deployment into two discrete phases, and
which use different networking protocols to complete.

12.2.3 Device identity validation

The use of dynamic identity and the automated key exchange process is made possible by
the use of the observation process to relate the physical object to its logical identity. The
use of techniques to aid human comparison of secure identity values such as wordlists and
pictograms in this context is innovative, as is the use of machine-based observation
processes.

12.2.4 Software library implementation and containerized backend systems

The software implementation in the form of an easy to use library enables non-specialists
to implement secure C2 networks. The use of easy to configure containerized backend
systems makes it easier to deploy a SRUP system than would otherwise be possible. By
turning this into a commodity component, hosting a self-contained universe for C2
networks also becomes something that non-specialists can do, and could be adopted by
individuals or organizations with strong privacy concerns.

12.2.5 Syndication

The syndication concept enables sharing of information across organizational or system
boundaries, and its applicability as a solution to the problem of guest access is an
important innovation.

12.3 Recommendations for future work

Although the current research project is now complete, a number of additional areas have
been identified where follow-on work can be recommended.

12.3.1 SRUP for microcontrollers

Although all of the work conducted during this research has considered IoT devices built
using single-board computers running a full version of the Linux Operating System, the

180 Chapter 12. Conclusions

protocol itself does not require such a system, and could be implemented on much simpler
microcontroller-based devices. Such devices would not-only likely have better power
consumption and a lower cost, but due to them not running a full OS, may be more resilient
to some types of attack (exploiting wider vulnerabilities within the Linux OS). Therefore
further research is recommended to evaluate the performance characteristics, security and
power consumption demands of running SRUP on battery powered devices that utilize
specialized low power hardware and embedded microcontrollers, such as the ESP321, or
RP20402. Although traditionally microcontroller based devices have not been well-suited to
algorithms utilizing asymmetric cryptography (due to the processing demands of such
techniques), modern ARM-based microcontrollers such as the RP2040 (which utilizes an
ARM Cortex-M0 processor) feature multi-core 32-bit CPUs; and others (such as the
ESP32), include dedicated cryptographic co-processor hardware for greater performance.

12.3.2 Alternative transports for the SRUP protocol

Whilst the SRUP protocol was designed around using MQTT as the application transport
layer for exchanging data between devices, a revised version of the protocol could be
created to utilize alternative transport. Such an approach may be especially well suited to
devices designed to be deployed for greatly extended periods of time — and which would
be designed to spend much of their deployment in low-power sleep modes where power
consuming peripherals such as RF network interfaces would be turned off for much of the
time. It is recommended that future work be conducted to explore approaches that could
be applied in order to extend the concept of SRUP to this class of device.

12.3.3 SRUP Syndication for guest access

The concept of using syndication to facilitate guest access for IoT has not been explored
experimentally. It is recommended that research to evaluate syndication specifically in this
context be conducted, along with related work to examine how SRUP and syndication
could be utilized in the context of contemporary domestic and commercial IoT devices and
the hub-based control model of automation and digital personal assistants.

12.3.4 Real-world evaluation of machine-based observation

This research established proof-of-concept demonstrations of machine-based observation
to establish device identity. However it is recommended that experimental work be
conducted to evaluate the concept in real-world scenarios. These could include both the

1https://esp32.com
2https://www.raspberrypi.org/products/raspberry-pi-pico/

https://esp32.com
https://www.raspberrypi.org/products/raspberry-pi-pico/

12.3. Recommendations for future work 181

use of SRUP for the management of automated entities joining a C2 network, and a
scenario for deploying devices at scale, where an operator could initiate the joining of the
device to the C2 system, and then confirm its identity using a hand-held reader or
smartphone.

12.3.5 Human comparison of security identifiers

Although a number of approaches to enable easy human comparison of large
cryptographic identity values were described within this research, it is recommended that
further work be conducted to evaluate human-performance in the context of correctly
discriminating between accidental and deliberate mismatches. This research should
conduct assessments of both speed and error-rate of comparisons using a range of
different visualization and presentation techniques, in a range of human subjects.

12.3.6 Publication of binary version of SRUP library

Although the software implementations of SRUP (such as the pySRUP library) are publicly
accessible, the software must be built from the supplied source code, as no extant binary
distributions are available. In order to encourage more widespread use of the protocol, it is
recommended that additional work is conducted to make such binary distributions
available, and in particular to publish a version of pySRUP to the Python Package Index
repository3 so that it can be automatically installed by potential users, using standard
Python package management tools (such as pip). Additional work would also be required
to produce suitable supporting documentation for the library, backend, and key generation
tools.

12.3.7 Application of SRUP in related domains

SRUP was designed for use in the context of C2 messaging for the Internet of Things, but
the protocol is potentially also well suited for use in wider domains where C2 messages are
required to be sent from a server to a device. These could include autonomous uncrewed
vehicles, semi-autonomous platooned vehicle convoys, or highway smart signalling
applications. Research should be conducted to understand the particular requirements of
these applications (such as timeliness, latency, and message volume), and to then assess
the viability of utilizing SRUP for these types of use-case.

3https://pypi.org

https://pypi.org

182 Chapter 12. Conclusions

12.4 Potential future impact of the research

Although development builds of the SRUP software have been publicly available since the
beginning of this research, the final version has only recently been completed ––– and as
such its use beyond this research is not widespread at this time.

If more widely adopted however, the research described herein could provide a very
significant benefit to the security of IoT devices, and other types of CPS for which remote
C2 operations are required, as well as making the development of such devices (and their
secure operation) accessible to a much larger group of individuals than is currently the
case.

12.5 Summary

This research has proposed, implemented, and experimentally validated a number of
techniques to provide for the cybersecurity of Command and Control (C2) messaging for
the IoT. C2 systems form a key part of civilian, industrial and military applications. The
focus of this research has been on ensuring their security, which is essential for their safe
and efficient operation.

The Secure Remote Update Protocol has been proposed and described in detail, as a
solution to the requirements for secure C2 messaging for IoT devices.

Seven research questions have been answered, covering the development of a protocol,
key distribution and management, device identity, the robustness and security of the
protocol, ease of use, sharing of data, and assessing the overhead associated with using
the protocol.

An Open Source Software implementation of the protocol has been developed, published
on GitHub [292], and described; and has been experimentally validated and shown to have
an acceptable message processing overhead when compared to insecure
communications. The implementation has been focused around ease-of-use for IoT
application developers, to provide a tool that facilitates secure communications, and which
requires less work from an application developer than an equivalent insecure
implementation of IoT communications.

183

Appendix A

The operation of MQTT in detail

This Appendix describes the operation of the MQTT protocol in more detail. For further
detail, please see the MQTT Specification (version 5.0), [211].

A.1 Connection

When a client connects to the broker it sends a MQTT Connect (CONNECT) message to the
broker. The message headers indicate whether or not the connecting client wishes to
specify a Will, the keep alive time for this client, as well as whether or not the client wishes
to specify a username and password.

The payload of the CONNECT message contains details of the identifier for the client (which
the standard requires is unique amongst all other connected clients using that broker at
that time), as well as the Will topic and message, and the username and password to use
to establish the connection (noting that MQTT is itself unencrypted so these are passed in
plaintext unless a TLS connection is used).

Upon successful connection — the broker will send a Connection Acknowledge (CONNACK)
message back to the client.

A.2 Keep alive

Upon initial connection to the broker, a client must specify a “keep alive” time. This is the
maximum permissible interval (in seconds) that may elapse between that client sending
one control message (PUBLISH, PUBACK, etc.) and the next. In the absence of having data
to send — the client must send a Ping Request (PINGREQ) control message within the time
interval.

184 Chapter A. The operation of MQTT in detail

The standard requires that the broker should consider the client to be disconnected if it has
not received any control messages from that client within 1.5 times the keep alive period.

It is possible to specify a zero-value for keep alive to disable this feature for a given client,
and the maximum value (given that a 16-bit word is used for the value) is 18 hours, 12
minutes, and 15 seconds.

A.3 Ping request & response

Upon receiving a PINGREQ message from a client the broker will respond by sending a ping
response message (PINGRESP). This enables the client to determine that the broker is still
alive: and that the network connection is still active.

A.4 Last will & testament

MQTT also supports a concept informally known as Last will & testament. This is well
suited to the sorts of unreliable network environments where a client may be inadvertently
disconnected by a dropped connection.

To use the Last Will & Testament — a client sends the details of a Will message, as
optional fields upon connection with the broker. The broker stores this message until such
a time that it receives a DISCONNECT message from the client (in which case it discards the
Will message) or if the client fails to respond within the Keep Alive time: in which case the
Will message is sent. A client wishing to disconnect cleanly must therefore send a
DISCONNECT message to disconnect from the broker.

The MQTT protocol makes no attempt to define what clients receiving this message should
do (nor the format of the message) — this is therefore application specific.

The concept is designed to enable a device connecting to the broker via an unreliable
network channel, to signal to other devices on the network that it has lost connection. For
example, if a device (with a device ID of device���) connects to the broker using a
CONNECT message, containing the lastWillTopic field set to /device���/STATUS, and
the lastWillMessage field set to a suitable message (e.g. “OFFLINE”). In the event that
the connection between device��� and the broker drops, such that the device will no
longer respond to PINGREQ messages from the broker (and without device��� having sent
a DISCONNECT message): the broker will then consider the device to be disconnected, and
publish the Will message on the specified topic. Thus any subscriber to that topic will
receive the message — and therefore know that the device suffered unintended
disconnection.

A.5. Publishing a message 185

Optionally the Will message can also have the lasteWillRetain field set to TRUE, and
thus be set to be retained by the broker. In this case, any new subscribers joining the Will
topic (after the Will message was published) will also receive a copy (e.g. to signal that the
device in question is off-line), until such a time that this is cleared by the device manually
sending a zero-byte message to the Will topic upon reconnection.

A.5 Publishing a message

To publish a message the client sends a publish message (PUBLISH) consisting of a
two-byte header which specifies which Quality of Service it wishes to use, identifies the
message as a PUBLISH message, and specifies the length of the remainder of the
message. The message itself contains the topic that the client is publishing to, the packet
identifier (if using QoS 1 or 2) and the payload itself.

A.6 MQTT Quality of Service

MQTT supports three QoS settings.

• QoS0: Deliver at most once

• QoS1: Deliver at least once

• QoS2: Deliver Exactly once

The primary difference between these three modes is the relative overhead sent alongside
the message to provide assurance that the message has been correctly delivered.

Given the brokered publish / subscribe model — and the fact that MQTT supports multiple
different QoS for different connections (i.e. publishing device A could use QoS1 to talk to
the broker, whilst device B subscribes at QoS0) the broker can either be the sender or
receiver in the following examples.

A.6.1 QoS0

QoS0 is often referred to as fire and forget. There are no delivery guarantees beyond those
offered by TCP. Messages are not acknowledged — the receiver does not send any
acknowledgement message back to the sender. Consequently QoS0 has the smallest
overhead.

186 Chapter A. The operation of MQTT in detail

QoS0 is ideally suited for lossless (or almost lossless) connections — or situations where
messages are sent at a high data rate (and therefore where the next message will be
received within a short-interval to replace the missed message).

A.6.2 QoS1

QoS1 guarantees that the message will be delivered at least once. At QoS1, messages
received by a receiver are confirmed by the use of a publish acknowledgement message
(PUBACK). The PUBACK is sent by the receiver on receipt of a message. If the sender does
not receive a PUBACK for a message that it has published, it will resend the message. As
such it is possible for messages to be retrieved multiple times (if the PUBACK message is
not delivered).

QoS1 adds a relatively small overhead: the PUBACK message is a 4-bytes MQTT message
— consisting of a 2-byte header, and a 2-byte message identifier to relate it to the originally
published message. This gives a total size of 60-bytes when including the TCP/IP headers.

QoS1 is perhaps the most useful QoS level as it guarantees all messages are delivered,
whilst avoiding undue overhead.

A.6.3 QoS2

At QoS2 delivered messages are guaranteed to be delivered exactly once. This is
accomplished using a three-part message exchange. After the initial message has been
received the receiver will respond by sending a Publish Received message (PUBREC) back
to the sender. Once the sender has received the PUBREC, it then responds by sending a
Publish Release Message (PUBREL) back to the receiver. Finally the transaction is
concluded by the receiver sending a Publish Complete (PUBCOMP) message back to the
sender. This clearly adds a more significant overhead to the traffic — as each of the control
messages equates to a 4-byte MQTT message (which is a 60-byte total packet).

QoS2 is also the slowest QoS level — and is therefore generally only used for situations
where reception of duplicate messages would be actively harmful.

A.7 MQTT subscription

When a client subscribes to a topic, it sends a Subscribe message (SUBSCRIBE) in which it
must specify the topic (or topics) it wishes to subscribe to — and the QoS it wishes to use
for the subscription to the topic. Multiple topic subscriptions can be contained within a

A.7. MQTT subscription 187

single SUBSCRIBE message. The broker will reply with a Subscription Acknowledgement
(SUBACK) message confirming the subscription and QoS.

MQTT topics are hierarchical (although their use is application specific, and as such users
may elect to use a flat hierarchy with all topics at the top level). Clients may subscribe to
specific topic end-points — or to topic parents at any level in the hierarchy. Subscribing to a
parent topic also subscribes to all child topics.

189

Appendix B

The Secure Remote Update Protocol
Specification v3.0

B.1 MQTT topics

All messages sent using the Secure Remote Update Protocol will be sent using MQTT
topics corresponding to individual devices. When a device connects to the broker within a
SRUP system, it shall be required to subscribe to a topic related to its identity — using the
form SRUP/�DEVICE ID�.

For example if a device has an identity of ���b��fc�a����d�, then it shall be required to
subscribe to the topic:

SRUP/���b��fc�a����d�.

In order to signal to a C2 Server that a device wishes to apply to JOIN that server’s C2
network — then it will send a message to a topic (reserved for use only for the initial JOIN
REQUEST message) in the form of SRUP/servers/�SERVER ID�/�DEVICE ID�.

For example if the device with an identity of ���b��fc�a����d� wishes to send a JOIN

REQUEST to a server with an identity of b�d���e������cf�: then it will use the MQTT topic:

SRUP/servers/b�d���e������cf�/���b��fc�a����d�.

Upon accepting the JOIN REQUEST the server shall be required to subscribe to the device’s
topic.

All subsequent messages to or from the device shall be sent via the device’s topic.

190 Chapter B. The Secure Remote Update Protocol Specification v3.0

B.2 Update messages

The SRUP Update Messages are provided to initiate and trigger a software update
operation. The Server must begin by sending the INITIATE message to the Device. On
receipt of an INITIATE message the Device must attempt to retrieve the update data from
the specified URL. The Device must then send a SRUP Response message to the Server
to indicate the outcome of the retrieval operation. If the status SRUP_UPDATE_SUCCESS is
received the Server may then send an ACTIVATE message to signal that the Device should
apply the retrieved update.

B.2.1 Update initiate message

On receiving an INITIATE message the Device must attempt to retrieve the data from the
specified URL, and compare the digest of this data with the value specified. If the operation
is successful it must send a SRUP Response message (see B.3) — with a status code of
�x�� (SRUP_UPDATE_SUCCESS). If the operation fails it must send a RESPONSE message with
a status code indicating the source of the failure.

• �xFD (SRUP_UPDATE_FAIL_SERVER) should be sent if the server cannot be reached

• �xFE (SRUP_UPDATE_FAIL_FILE) should be used if the server cannot supply the file
specified

• �xFF (SRUP_UPDATE_FAIL_DIGEST) should be used if the digest of the retrieved file
does not match the value specified in the INITIATE message

• Optionally �xFC (SRUP_UPDATE_FAIL_HTTP_ERROR) may be sent in place of �xFD
(SRUP_UPDATE_FAIL_SERVER) to indicate that a more detailed HTTP error code is
available

If the �xFC (SRUP_UPDATE_FAIL_DETAILED) status code is sent, the Device must then send
two SRUP Data messages (see Section B.5) to communicate the HTTP response to the
Server. The first DATA message must have a Data ID of HTTP_STATUS and contain the
HTTP status code returned by the web-server in the Data field. The second DATA message
must have a Data ID of HTTP_RESPONSE — and the received HTTP response must be
contained within the Data field.

Full details of the INITIATE message are shown in Table B.1.

B.2.2 Update activate message

On receiving an ACTIVATE message the Device must apply application or system specific
procedures to apply an update previously received and specified by the TOKEN.

B.3. Response message 191

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_INITIATE
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
URL Length uint��_t
URL char* Variable length
Digest Length uint��_t
Digest uint�_t* Variable length

TABLE B.1: The SRUP UPDATE INITIATE Message

The Device optionally may then send a further RESPONSE message — signalling the
outcome of attempting to apply the update. A STATUS code of �x�� —
SRUP_ACTIVATE_SUCCESS should be used to signal that the activation was successful, and
�x�F — SRUP_ACTIVATE_FAIL should be used if the activation failed.

Full details of the INITIATE message are shown in Table B.2.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_ACTIVATE
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.2: The SRUP UPDATE ACTIVATE Message

B.3 Response message

The SRUP Response message is used to signal the outcome of a number of operations
within SRUP. Permissible status values are defined for each operation type which uses the
RESPONSE message.

Full details of the RESPONSE message are shown in Table B.3.

192 Chapter B. The Secure Remote Update Protocol Specification v3.0

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_RESPONSE
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

Status uint�_t

Values:
�x�� — SRUP_UPDATE_SUCCESS
�x�� — SRUP_ACTIVATE_SUCCESS
�x�F — SRUP_ACTIVATE_FAIL
�x�� — SRUP_ACTION_SUCCESS
�x�E — SRUP_ACTION_UNKNOWN
�x�F — SRUP_ACTION_FAIL
�x�F — SRUP_DATA_TYPE_UKNOWN
�x�� — SRUP_JOIN_SUCCESS
�x�E — SRUP_JOIN_REFUSED
�x�F — SRUP_JOIN_FAIL
�x�� — SRUP_OBSERVED_JOIN_VALID
�x�E — SRUP_OBSERVED_JOIN_INVALID
�x�F — SRUP_OBSERVED_JOIN_FAIL
�x�� — SRUP_RESIGN_SUCCESS
�x�F — SRUP_RESIGN_FAIL
�x�� — SRUP_DEREGISTER_SUCCESS
�x�F — SRUP_DEREGISTER_FAIL
�x�F — SRUP_SYNDICATION_END
�xFC — SRUP_UPDATE_FAIL_HTTP_ERROR
�xFD — SRUP_UPDATE_FAIL_SERVER
�xFE — SRUP_UPDATE_FAIL_FILE
�xFF — SRUP_UPDATE_FAIL_DIGEST

TABLE B.3: The SRUP RESPONSE Message

B.4 Action message

The SRUP Action message is used to permit a Server to send an arbitrary command to a
Device. The Action ID field denotes the action that is being requested. These values are
not defined by the protocol — but are application or system defined values. The recipient
may optionally send a RESPONSE message to signal the outcome of the action (�x�� —
SRUP_ACTION_SUCCESS or �x�F — SRUP_ACTION_FAIL).

Actions requiring parametric data can be communicated to the recipient by first sending
one or more Data messages containing the parameter(s), before sending the ACTION

message.

B.5. Data message 193

Messages with an Action ID value unknown to the recipient should be ignored. The
recipient may optionally send a RESPONSE message with a status value of �x�E —
SRUP_ACTION_UKNOWN. Full details of the DATA message are shown in Table B.4.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_ACTION
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Action ID uint�_t*

TABLE B.4: The SRUP ACTION Message

B.5 Data message

The SRUP Data message is designed to permit Servers and Devices to exchange arbitrary
data. Each message may consist of a data item, identified by means of the Data ID field.
Messages with a Data ID value unknown to the recipient should be ignored. The recipient
may send a RESPONSE message with a status value of �x�F — SRUP_DATA_TYPE_UNKNOWN.

Note that although the values that can be taken by the Data ID field are not defined within
the protocol, the values HTTP_ERROR & HTTP_RESPONSE are reserved for use in conjunction
with the SRUP_UPADTE_FAIL_DETAILED status of the SRUP_RESPONSE message. (See
Section B.2.2), and IDENTIFICATION_RESPONSE is reserved for use in connection with the
Identification Request message (See Section B.6).

Full details of the DATA message are shown in Table B.5.

194 Chapter B. The Secure Remote Update Protocol Specification v3.0

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_DATA
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Data ID Length uint��_t
Data ID uint�_t* Variable length
Data Length uint��_t
Data uint�_t* Variable length

TABLE B.5: The SRUP DATA Message

B.6 Identification request message

There is a requirement for an operator of a device to be able to query that device to identify
settings or parameters in use on that device. Whilst the details of these would be
application specific, examples might include the specific version or build of the software
running on the device, specific hardware version or other details, etc. The Identify Request
Message is a message type used to initiate the exchange of Identification information. On
receiving the message, the recipient must reply with a DATA message (see Section B.5)
with the Data ID field containing IDENTIFICATION_RESPONSE, and the identification
information contained within the Data field.

Full details of the IDENTIFICATION_REQUEST message are shown in Table B.6.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_ID_REQUEST
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.6: The SRUP IDENTIFY REQUEST Message

B.7 Group messages

An earlier version of the SRUP specification [336], described a series of “group” messages
to be used in conjunction with the concept of communications groups (enabling a server to

B.8. Join messages 195

send communications to multiple devices directly).

However due to the requirements to enable secure MQTT messaging (MQTT over TLS) —
this has been removed. This eliminates the requirement for a non-standard MQTT broker
application to support dynamic access-control lists. C2 Servers may still implement their
own virtual groups: but all communication with devices is on a per-device level using a
topic corresponding to the device in question.

B.8 Join messages

The Join Message family is used to negotiate Devices joining the control of (and thus
becoming subordinate to) a specified C2 Server. A number of different message types are
specified in order to provide simple (unmediated) Joining, and both human-mediated, &
machine-mediated Joining.

B.8.1 Simple join messages

B.8.1.1 Join request

A Device may send a Join Request message to a given Server requesting to join the C2
network controlled by that Server. Note that unlike other SRUP messages sent from a
Device this message must be sent on the MQTT Topic associated with the Server’s identity
(since, by definition, the Server is not yet subscribed to the Device’s topic).

On receiving a Join Request message the Server must either accept the Join — or refuse
it.

If accepting it, it must attempt to subscribe to a topic associated with the Sender ID of the
JOIN REQUEST message, and send a RESPONSE message with the Status set to �x�� —
SRUP_JOIN_SUCCESS if successful, or a �x�F — SRUP_JOIN_FAIL if the subscribe fails.

If refusing the request the Server must send a RESPONSE message with the Status set to
�x�E — SRUP_JOIN_REFUSED.

Full details of the JOIN REQUEST message are shown in Table B.7.

B.8.1.2 Join command

A Server may send a Join Command to a Device: such as in the scenario where the user
initiates the Join process by providing the Server with the identity of the Device directly via
the Server’s user-interface.

196 Chapter B. The Secure Remote Update Protocol Specification v3.0

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_JOIN_REQ
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.7: The SRUP JOIN REQUEST Message

On receiving a Join Command message the Device must signal acceptance of this
operation by sending a RESPONSE message with the Status set to �x�� —
SRUP_JOIN_SUCCESS. Since the Server controls to which Devices it sends through the use
of the MQTT topic no further action is required by the Device. Optionally the Device may
decline the command (subject to system specific implementation) — which may be
signalled via a RESPONSE message with the Status set to �x�E — SRUP_JOIN_REFUSED.
Note that the Device must respond. The Server must be prepared not to receive a
response (such as may be the case if the Device in question is off-line): in which case it
should assume that the Join has failed.

Full details of the JOIN COMMAND message are shown in Table B.8.

Field Type Notes
Message Type uint�_t �x�A — SRUP_MESSAGE_TYPE_JOIN_COMMAND
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

Device ID uint��_t
Device ID for device to that is being
instructed to become subordinate to the
C2 Server

TABLE B.8: The SRUP JOIN COMMAND Message

B.8.2 Human-mediated join messages

B.8.2.1 Human-mediated join request message

If the Server requires additional confirmation of the identity of the Device before accepting
the Join, then a human-mediated Join operation can be used. In this scenario the Device
initiates the process by sending a Human-Mediated Join Request Message to the Server.

B.8. Join messages 197

(Note as described in Section B.8.1.1 the Device must send this message using the MQTT
topic corresponding to the Server’s identity). On receiving this message the Server must
then send a Mediated Join Response message to the Device. (See Section B.8.2.2).

Full details of the HUMAN-MEDIATED JOIN REQUEST message are shown in Table B.9.

Field Type Notes
Message Type uint�_t �x�B — SRUP_MESSAGE_TYPE_HM_JOIN_REQ
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.9: The SRUP HUMAN-MEDIATED JOIN REQUEST Message

B.8.2.2 Human-mediated join response message

The Human-Mediated Join Response Message consists of an encrypted random
confirmation value sent to the Device (and separately by the C2 system to the user — e.g.
over a HTTPS web connection) which can be used by the Device to prove to the human
observer that the physical Device presenting the information corresponds to the Device
that is requesting the Join operation within SRUP.

In order to practically implement this, the Server must generate a 128-bit random
confirmation value, which is then encrypted using the intended recipient’s public key (for
example using RSA — although this is implementation dependant). This value is then sent
within the Human-Mediated Join Response Message. The mechanism for the human
observer to check the confirmation value, and then accept / reject is not specified within
SRUP.

Full details of the HUMAN-MEDIATED JOIN RESPONSE message are shown in Table B.10.

B.8.3 Machine-mediated join messages

In scenarios where no human-observer may be present a machine-mediated version of the
Join process is provided. This process requires a trusted third-party (already subordinate
to the C2 Server) to take the place of the human observer — with the observation
taking-place over a short-range point-to-point communication channel outside of SRUP.
The protocol does not specify the mechanism for this observation to take place.

198 Chapter B. The Secure Remote Update Protocol Specification v3.0

Field Type Notes
Message Type uint�_t �x�C — SRUP_MESSAGE_TYPE_HM_JOIN_RESP
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Conf. Length uint��_t

Encrypted Conf. uint�_t*

Length will be RSA key-length / 8
e.g. 256 bytes for a 2048-bit key.
Unencrypted confirmation value is 128-bits
implemented as uint�_t[�]

TABLE B.10: The SRUP HUMAN-MEDIATED JOIN RESPONSE Message

B.8.3.1 Observed join request message

The Device must first identify details of the C2 Server and the Observer outside of the
protocol. Once this has been done, the Device must send a Observed Join Request
Message to the Server. (Note as described in Section B.8.1.1 the Device must send this
message using the MQTT topic corresponding to the Server’s identity).

The Observed Join Request Message contains the identity of the Observer node in the
Observer ID field.

On receiving a valid Observed Join Request message the Server must then send an
Observed Join Response message back to the Device, and an Observation Request
message to the Observer Node. (See Sections B.8.3.2 & B.8.3.3).

Full details of the OBSERVED JOIN REQUEST message are shown in Table B.11.

Field Type Notes
Message Type uint�_t �x�D — SRUP_MESSAGE_TYPE_OBS_JOIN_REQ
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Observer ID uint��_t

TABLE B.11: The SRUP OBSERVED JOIN REQUEST Message

B.8. Join messages 199

B.8.3.2 Observed join response message

The Observed Join Response message is identical in content to the Human-Mediated Join
Response Message (Section B.8.2.1), however it is included as a discrete message type to
simplify the implementation of systems in which both human- and machine-mediated join
operations may occur.

Upon receiving a Observed Join Response Message a Device must transmit the
unencrypted Confirmation value to the observer externally to the protocol.

Full details of the OBSERVED JOIN RESPONSE message are shown in Table B.12.

Field Type Notes
Message Type uint�_t �x�E — SRUP_MESSAGE_TYPE_OBS_JOIN_RESP
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Conf. Length uint��_t

Encrypted Conf. uint�_t*

Length will be RSA key-length / 8
e.g. 256 bytes for a 2048-bit key.
Unencrypted confirmation value is 128-bits
implemented as uint�_t[�]

TABLE B.12: The SRUP OBSERVED JOIN RESPONSE Message

B.8.3.3 Observation request message

The Observation Request Message is used to communicate the Confirmation value to the
Observer node. The format is similar to the OBSERVED JOIN RESPONSE Message (Section
B.8.3.2) — though the Confirmation value is encrypted using the Observation Node’s
public key. It also contains an additional field — to be used to store the device ID of the
joining device. This is required to permit the observer to respond to the C2 Server, as
which device it has observed, in the event that multiple observations are requested within
the same time period.

On receiving an OBSERVATION REQUEST message the Observer Node must prepare to
receive the Confirmation value from the Device requesting the Join, externally to the
protocol, and then to compare the received value to the value contained within the
OBSERVATION REQUEST message. The Observer must then send a RESPONSE message
back to the Server to signal the outcome of the comparison. This RESPONSE message
should have a Status of �x�� — SRUP_OBSERVED_JOIN_VALID if the two values match, or a

200 Chapter B. The Secure Remote Update Protocol Specification v3.0

Status of �x�E — SRUP_OBSERVED_JOIN_INVALID if they do not. A Status of �x�F —
SRUP_OBSERVED_JOIN_FAIL may be used if the operation fails (such as no data is received
by the Observer).

Full details of the OBSERVATION REQUEST message are shown in Table B.12.

Field Type Notes
Message Type uint�_t �x�F — SRUP_MESSAGE_TYPE_OBSERVE_REQ
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Joining Device ID uint��_t
Conf. Length uint��_t

Encrypted Conf. uint�_t*

Length will be RSA key-length / 8
e.g. 256 bytes for a 2048-bit key.
Unencrypted confirmation value is 128-bits
implemented as uint�_t[�]

TABLE B.13: The SRUP OBSERVATION REQUEST Message

B.9 Resignation and termination messages

In order to remove a Device from the control of a Server, SRUP provides Resignation &
Termination message types.

B.9.1 Resign request

If a Device wishes to resign from the control of a Server it may send a Resign Request
Message to the Server. Upon receiving a RESIGN REQUEST message the Server may either
accept or reject the request, and then it must send a RESPONSE message — with a Status
of �x�� — SRUP_RESIGN_SUCCESS, or �x�F — SRUP_RESIGN_FAIL if the resignation
request is not accepted.

Full details of the RESIGN REQUEST message are shown in Table B.14.

B.9.2 Termination command

A Server may send a Termination Command message to any subordinate Device to
instruct it that it is no longer subject to control by the Server. On receiving a Termination

B.10. Deregistration messages 201

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_RESIGN_REQ
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.14: The RESIGN REQUEST Message

Command message the Device may optionally send a RESPONSE message — with a Status
of �x�� — SRUP_RESIGN_SUCCESS to the Server (via the MQTT topic associated with the
Server’s identity). The Server must not send any further messages to the Device without
another Join operation (see Section B.8) first taking place.

Full details of the TERMINATION COMMAND message are shown in Table B.15.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_TERMINATE_COM
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.15: The TERMINATION COMMAND Message

B.10 Deregistration messages

Devices may be permanently removed from the system via a Deregistration message.
Deregistration causes the Device’s public key to be deleted from the System. Devices
should also remove the Server public keys that they hold, upon notification of
deregistration.

B.10.1 Deregister request

A Device wishing to be permanently deregistered from a given system may send a
Deregister Request message to any Server to which it is subordinate. The Server must
then send a final RESPONSE message to the Device with a status of �x�� —
SRUP_DEREGISTER_SUCCESS, or in the event that the Deregistration cannot be processed, a

202 Chapter B. The Secure Remote Update Protocol Specification v3.0

status of �x�F — SRUP_DEREGISTER_FAIL may be sent. This should be used exceptionally
however as Deregistration requests should always be honoured unless they cannot be
processed. The Device must participate in Registration (see Section B.11) and Join
(Section B.8) operations before it is able to receive further SRUP messages.

Full details of the DEREGISTER REQUEST message are shown in Table B.15.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_DEREGISTER_REG
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.16: The DEREGISTER REQUEST Message

B.10.2 Deregister command

A Server may send a Deregister Command message to any subordinate Device to instruct
it that it is no longer Registered within the system and that its access has been revoked. A
Device receiving a Deregister Command should not attempt to send any further SRUP
messages — and it should disconnect from the MQTT Broker being used for SRUP
messages. Full details of the DEREGISTER COMMAND message are shown in Table B.17.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_DEREGISTER_COM
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.17: The DEREGISTER COMMAND Message

B.11 Registration

The process of a Device performing initial Registration to facilitate registration of the
Device’s public key is performed entirely outside of the SRUP protocol. An explanation of
the process is included for completeness — and an outline of a reference implementation
is described.

B.12. Syndication messages 203

B.11.1 Registration requirements

SRUP requires that key exchange has taken place before the first Join operation. It is
therefore assumed that the Device will already have a copy of the public key for any Server
that it wishes to communicate with (or for any which would wish to communicate with it),
and that all Servers have a copy of the public key for any Devices that they will
communicate before SRUP operations can commence.

B.11.2 Example reference registration scheme

It is expected that implementations will use an HTTPS web API running over TLS. Using
this approach the Device would send its Identity and public key to the web-server via a
HTTPS POST request (together with any additional system implementation specific
information required), and receive a response from the web-service containing the address
of the MQTT broker and the Server public key (or a HTTPS URL from which the key or
keys may be retrieved — e.g. by using a GET request against an end-point corresponding
to the Server ID, though again this is on an implementation-specific basis).

Once registration is complete the C2 server(s) need to receive a copy of the keys. Similarly
a mechanism should be provided for a Server to, on receipt of a Deregister Request (See
Section B.10.1), propagate the requirement for removal of the key to all other Servers.

B.12 Syndication messages

Syndication messages were introduced to address the requirement to provide shared
access from one C2 system to another without a fully trusted relationship between the two.
The syndication family of messages consists of the following message types:

• Syndication Init

• Syndication Request

• Syndicated Device Count

• Syndicated Device List

• Syndicated Data

• Syndicated Action

• Syndicated IQ Request

• Syndicated C2 Request

204 Chapter B. The Secure Remote Update Protocol Specification v3.0

• Syndicated End Request

• Syndicated Terminate Command

There are three primary parties involved in syndication operations.

• The Syndicating Server is the C2 server that is requesting to receive data from
another C2 system

• The Syndicated Server is the C2 server that is sharing its data

• The Syndication Device is a special class of SRUP device which acts as a bridge
between the two SRUP universes involved in the syndication

B.12.1 Syndication initialization

The SYNDICATION INIT message is used to initialize syndication operations. It is sent from
the syndicating server to the syndication device, and contains all of the data that is
required by the syndication device to initialize syndication operations — including
registering an identity in the syndicated server’s universe.

Full details of the SYNDICATION INIT message are shown in Table B.18.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_SYNDICATION_INIT
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
URL Length uint��_t*
Registration URL char* Variable length
Key Length uint��_t
Syndication Key uint�_t Variable length

TABLE B.18: The SRUP SYNDICATED INIT Message

B.12.2 Syndication request

Once a syndication device has registered and joined a syndicated C2 server — the
syndication device will then send a SYNDICATION REQUEST message to request the
syndication is commenced. This will include the key value used to authenticate the request.

Details of the SYNDICATION INIT message are shown in Table B.19.

B.12. Syndication messages 205

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_SYNDICATION_REQUEST
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Key Length uint��_t
Syndication Key uint�_t Variable length

TABLE B.19: The SRUP SYNDICATION REQUEST Message

B.12.3 Syndicated device count

Having received a valid SYNDICATION REQUEST message, the syndicated server must then
respond by sending a SYNDICATED DEVICE COUNT message to the syndication device,
which will then send a second SYNDICATED DEVICE COUNT message to the syndicating
server. This will contain the total number of devices that the syndicated server is going to
share with the syndicating server.

The details of the SYNDICATED DEVICE COUNT message are shown in Table B.20.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_SYNDICATED_DEV_COUNT
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Device Sequence uint��_t
Device ID uint��_t

TABLE B.20: The SRUP SYNDICATED DEVICE COUNT Message

B.12.4 Syndicated device list

Having sent the SYNDICATED DEVICE COUNT message, the syndicated server will then
send a series of SYNDICATED DEVICE LIST messages, consisting of the ID for a given
device from the set of devices it is sharing with the syndicating server, and an ordinal index
value for that device. Again this is initially sent to the syndication device, which then sends
a copy on to the syndicating server.

206 Chapter B. The Secure Remote Update Protocol Specification v3.0

The details of the SYNDICATED DEVICE LIST message are shown in Table B.21.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_SYNDICATED_DEV_LIST
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Device Count uint��_t

TABLE B.21: The SRUP SYNDICATED DEVICE LIST Message

B.12.5 Syndicated data

The SYNDICATED DATA message is used to share a data value with a syndicating server.
The message is identical to the regular DATA message — with the addition of a 64-bit
Source ID field appended to the end of the message. This is used to denote the ID of the
source device from where the original data message originated. The SYNDICATED DATA

message is sent by the syndicated server (and never by the source device itself).

Full details of the SYNDICATED DATA message are shown in Table B.22.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_SYNDICATED_DATA
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Data ID Length uint��_t
Data ID uint�_t* Variable length
Data Length uint��_t
Data uint�_t* Variable length
Source ID uint��_t

TABLE B.22: The SRUP SYNDICATED DATA Message

B.13 Syndicated action

The SYNDICATED ACTION message is analogous to the regular SRUP ACTION message,
and is used to send a request for an action to be performed, from a syndicating C2 server

B.14. Syndicated ID request 207

to a syndicated server. As with all other syndication messages the SYNDICATED ACTION

message is sent via the syndication device.

Details of the SYNDICATED ACTION message are shown in Table B.23.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_SYNDICATED_ACTION
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Action ID uint�_t*
Source ID uint��_t

TABLE B.23: The SRUP SYNDICATED ACTION Message

B.14 Syndicated ID request

The SYNDICATED ID REQUEST message is used to allow a syndicating server to send a
request for the ID string for a given device. This is optional but may typically be sent after
reception of the SYNDICATED DEVICE LIST message corresponding to that device. On
receiving the SYNDICATED ID REQUEST message from a syndication device, a syndicated
server must either send the current ID value it has previously received from that device, or
send a ID REQUEST message to the device in order to update the value. The response is
sent to the requester as a SYNDICATED DATA message, using the
IDENTIFICATION_RESPONSE data ID. The device for which the ID is being made is included
in the Target ID field.

The details of the SYNDICATED ID REQUEST message are shown in Table B.24.

Field Type Notes
Message Type uint�_t �x�� — SRUP_MESSAGE_TYPE_SYNDICATED_ID_REQUEST
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Target ID uint��_t

TABLE B.24: The SRUP SYNDICATED ID REQUEST Message

208 Chapter B. The Secure Remote Update Protocol Specification v3.0

B.14.1 Syndicated C2 request

The SYNDICATED C� REQUEST message is used to send a request from a syndicating
server to a syndicated server requesting that the syndicated server performs one of a
(previously determined and agreed) set of C2 operations. These are not defined within the
specification, but could include requesting an update operation, or the change of system
configuration. The message consists of a standard SRUP message, plus a 256-bit integer
to denote which of the operations is being requested, and a byte-stream consisting of any
required configuration data.

The details of the SYNDICATED C� REQUEST message are shown in Table B.25.

Field Type Notes
Message Type uint�_t �x�C — SRUP_MESSAGE_TYPE_SYNDICATED_C�_REQ
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length
Data Length uint��_t
Data uint�_t* Variable length
Request ID uint�_t

TABLE B.25: The SRUP SYNDICATED C2 REQUEST Message

B.14.2 Syndicated end request and syndicated termination

There are two ways that syndication operations can be ended. Either the syndicating
server may send a SYNDICATION END REQUEST message to the syndicated server, to
request that no further syndication messages are sent, or the syndicated server may send
a SYNDICATION TERMINATION message to inform the syndicating server than syndication
operations have been ended by the remote party.

On receipt of a SYNDICATION END REQUEST message the syndicated server should
respond with a RESPONSE message with a status of SRUP_SYNDICATION_END (0x9F).

The full details of the SYNDICATION TERMINATION message and the SYNDICATION END

REQUEST message are shown in Figures B.26 & B.27.

B.14. Syndicated ID request 209

Field Type Notes
Message Type uint�_t �x�F — SRUP_MESSAGE_TYPE_SYNDICATION_TERMINATE
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.26: The SRUP SYNDICATION TERMINATION Message

Field Type Notes
Message Type uint�_t �x�E — SRUP_MESSAGE_TYPE_SYNDICATION_END
Version uint�_t
Sequence ID uint��_t
Sender ID uint��_t
Token Length uint��_t
Token uint�_t* Variable length
Signature Length uint��_t
Signature uint�_t* Variable length

TABLE B.27: The SRUP SYNDICATION END REQUEST Message

211

Appendix C

Timing Experiment

In order to determine the performance of the cryptographic algorithms supporting the
SRUP protocol on low-cost commodity hardware, their performance was measured on a
Raspberry Pi 3.

This experiment was run on 16th September 2017.

A program built from the source code shown in Source Code listing C.1 was run to
measure the time taken for the sign & verify functions to execute.

1 �include �SRUP.h�
2 �include �SRUP_Init.h�
3

4 �include �chrono�
5 �include �iostream�
6

7 �define TARGET "TARGET"
8 �define TOKEN "e�cfa���-���e-���c-����-������ece���"
9 �define URL "http://iot-lab.uk/SRUP.device.py"

10 �define DIGEST "�c�d�����f�ead�fc����af�������dda���e���cf�e���dc�b�f�bafb��cbd"
11 �define PVKEY "private_key.pem"
12 �define PBKEY "public_key.pem"
13

14 int main()
15 {
16 char* target;
17 char* token;
18 char* url;
19 char* digest;
20 char* pvkeyfile;
21 char* pbkeyfile;
22

23 unsigned char* r_serial_data;

212 Chapter C. Timing Experiment

24 unsigned char* s_serial_data;
25 int sz;
26

27 SRUP_MSG_INIT *msg_init;
28 SRUP_MSG_INIT *msg_init�;
29

30 // Setup...
31 msg_init � new SRUP_MSG_INIT;
32 target � new char[std::strlen(TARGET)];
33 std::strcpy(target, TARGET);
34 token � new char[std::strlen(TOKEN)];
35 std::strcpy(token, TOKEN);
36 url � new char[std::strlen(URL)];
37 std::strcpy(url, URL);
38 digest � new char[std::strlen(DIGEST)];
39 std::strcpy(digest, DIGEST);
40 pvkeyfile � new char[std::strlen(PVKEY)];
41 std::strcpy(pvkeyfile, PVKEY);
42 pbkeyfile � new char[std::strlen(PBKEY)];
43 std::strcpy(pbkeyfile, PBKEY);
44

45 msg_init-�token(token);
46 msg_init-�target(target);
47 msg_init-�url(url);
48 msg_init-�digest(digest);
49

50 // Time to execute "sign"
51 auto t� � std::chrono::high_resolution_clock::now();
52 msg_init-�Sign(pvkeyfile);
53 auto t� � std::chrono::high_resolution_clock::now();
54 auto dts � �.e-� * std::chrono::duration_cast�std::chrono::nanoseconds�(t�-�

� t�).count();
55

56 std::cout �� "'SIGN' Time: " �� dts �� " seconds." �� std::endl;
57

58 // Setup for verify...
59 r_serial_data � msg_init-�Serialized();
60 sz � msg_init-�SerializedLength();
61

62 msg_init� � new SRUP_MSG_INIT;
63 s_serial_data � new unsigned char[sz];
64 std::memcpy(s_serial_data, r_serial_data, sz);
65 msg_init�-�DeSerialize(s_serial_data);
66

67 // Time to execute "verify"
68 auto t� � std::chrono::high_resolution_clock::now();
69 msg_init�-�Verify(pbkeyfile);

213

70 auto t� � std::chrono::high_resolution_clock::now();
71 auto dtv � �.e-� * std::chrono::duration_cast�std::chrono::nanoseconds�(t�-�

� t�).count();
72

73 std::cout �� "'VERIFY' Time: " �� dtv �� " seconds." �� std::endl;
74

75 // Clean-up
76 delete(msg_init);
77 delete(target);
78 delete(token);
79 delete(url);
80 delete(digest);
81 delete(pvkeyfile);
82 delete(pbkeyfile);
83 delete(msg_init�);
84 delete(s_serial_data);
85

86 return �;
87 }

LISTING C.1: A C++ test program to be used to measure the performance of the SRUP
sign and verify functions when running on a Raspberry Pi

This code was compiled, using default compiler flags, and the resulting executable was run
5 times, with the output captured from stdout to a series of text files. The raw data is
shown here.

'SIGN' Time: �.������� seconds.
'VERIFY' Time: �.������� seconds.

'SIGN' Time: �.������� seconds.
'VERIFY' Time: �.������� seconds.

'SIGN' Time: �.������� seconds.
'VERIFY' Time: �.�������� seconds.

'SIGN' Time: �.������� seconds.
'VERIFY' Time: �.������ seconds.

'SIGN' Time: �.������� seconds.
'VERIFY' Time: �.������� seconds.

214 Chapter C. Timing Experiment

SIGN VERIFY

Test 1 61.93ms 10.78ms

Test 2 61.60ms 10.42ms

Test 3 36.86ms 6.439ms

Test 4 61.77ms 11.16ms

Test 5 61.24ms 10.75ms

Arithmetic Mean 56.67ms 9.911ms

TABLE C.1: Execution time, in milliseconds, of the SRUP cryptographic functions on Rasp-
berry Pi 3B hardware

The calculations were then performed using a Microsoft Excel spreadsheet, the summary
results from which are shown in Table C.1.

The full dataset for this experiment is available from the University of Southampton
repository at https://doi.org/10.5258/SOTON/D0486 [320].

https://doi.org/10.5258/SOTON/D0486

215

Appendix D

Performance Comparison
Experiment — device code

This Appendix contains a listing of the code used for the SRUP performance experiments
described in Chapter 11.

D.1 SRUP device code

1 from gpiozero import LED, Button
2 import time
3 import pySRUP
4 from datetime import datetime
5 import logging
6 import logging.handlers
7 import atexit
8 import coloredlogs
9

10 running � True
11 led_state � False
12 ready � False
13 button�Button(��, False)
14 orange_led � LED(��)
15 blue_led � LED(��)
16

17 def make_ready():
18 global ready
19 ready � True
20

21 def resign(srup_client):
22 old_server_id � srup_client.server_id

216 Chapter D. Performance Comparison Experiment — device code

23 srup_client.send_SRUP_Resign_Request()
24 � To avoid having to reset the demo every-time
25 � we'll restore the server for the config file..
26 srup_client.server_id � old_server_id
27 logging.info("Saving settings...")
28 client.save_settings()
29 logging.info("Exiting client_demo.")
30 global running
31 running � False
32

33 def on_action(msg_action):
34 global led_state
35 if msg_action.action_id �� �x��:
36 now � datetime.now()
37 blue_led.on()
38 logging.info("ACTION\tSTART\t{}".format(now))
39 elif msg_action.action_id �� �xFF:
40 now � datetime.now()
41 blue_led.off()
42 logging.info("ACTION\tSTOP\t{}".format(now))
43

44 def on_join_succeed():
45 logging.info("Join Accepted")
46 orange_led.on()
47

48 def on_terminate():
49 global running
50 orange_led.off()
51 client.save_settings()
52 logging.info("Termination command received - leaving C�")
53 running � False
54

55 LOG_FILE � "ex�_D�.log"
56

57 logger � logging.getLogger()
58 logger.setLevel(logging.DEBUG)
59 log_format_string � '�(asctime)s.�(msecs)��d \t [�(levelname)s] \t �(message)s'
60

61 fHandler � logging.FileHandler(LOG_FILE)
62 fHandler.setLevel(logging.INFO)
63 f_format � logging.Formatter(log_format_string, "�Y-�m-�d �H:�M:�S")
64 fHandler.setFormatter(f_format)
65 logger.addHandler(fHandler)
66

67 coloredlogs.DEFAULT_LOG_FORMAT � log_format_string
68 coloredlogs.install(level�'INFO')
69

D.1. SRUP device code 217

70 button.when_pressed � make_ready
71

72 client � pySRUP.Client("ex�_dev.cfg", "https://beta.local", "web.crt", "TEST")
73 client.on_action(on_action)
74 client.on_join_succeed(on_join_succeed)
75 client.on_terminate(on_terminate)
76

77 logging.info("Device {} starting up...".format(client.id))
78

79 while not ready:
80 orange_led.on()
81 time.sleep(�.��)
82 orange_led.off()
83 time.sleep(�.��)
84

85 logging.info("Done waiting")
86

87 with client:
88 � Start by joining the server defined in the config...
89 client.send_SRUP_simple_join()
90 try:
91 while running:
92 pass
93

94 except KeyboardInterrupt:
95 logging.info("User requested exit - via Keyboard Interrupt...")
96 resign(client)

LISTING D.1: SRUP Device Code

218 Chapter D. Performance Comparison Experiment — device code

D.2 MQTT device code

1 from gpiozero import LED, Button
2 import paho.mqtt.client as mqtt
3 import time
4 from datetime import datetime
5 import logging
6 import logging.handlers
7 import coloredlogs
8

9 running � True
10 led_state � False
11 ready � False
12 button�Button(��, False)
13 orange_led � LED(��)
14 blue_led � LED(��)
15

16 dev_id � �
17

18 � The callback for when the client receives a CONNACK response from the server.
19 def on_connect(client, userdata, flags, rc):
20 � Subscribing in on_connect() means that if we lose the connection and
21 � reconnect then subscriptions will be renewed.
22 client.subscribe("test/d{}".format(dev_id), qos��)
23

24 � The callback for when a PUBLISH message is received from the server.
25 def on_message(client, userdata, msg):
26 � print(msg.payload)
27 global led_state
28 if msg.payload.decode() �� '�':
29 now � datetime.now()
30 blue_led.on()
31 logging.info("ACTION\tSTART\t{}".format(now))
32

33 elif msg.payload.decode() �� '�':
34 now � datetime.now()
35 blue_led.off()
36 logging.info("ACTION\tSTOP\t{}".format(now))
37

38 elif msg.payload.decode() �� 'X':
39 terminate()
40

41 def make_ready():
42 global ready
43 ready � True
44

45 def terminate():

D.2. MQTT device code 219

46 global running
47 orange_led.off()
48 logging.info("Terminate recieved - exiting")
49 running � False
50

51 LOG_FILE � "ex�_mqtt_d{}.log".format(dev_id)
52

53 logger � logging.getLogger()
54 logger.setLevel(logging.DEBUG)
55

56 log_format_string � '�(asctime)s.�(msecs)��d \t [�(levelname)s] \t �(message)s'
57

58 fHandler � logging.FileHandler(LOG_FILE)
59 fHandler.setLevel(logging.INFO)
60

61 f_format � logging.Formatter(log_format_string, "�Y-�m-�d �H:�M:�S")
62 fHandler.setFormatter(f_format)
63

64 logger.addHandler(fHandler)
65

66 coloredlogs.DEFAULT_LOG_FORMAT � log_format_string
67 coloredlogs.install(level�'INFO')
68

69 client � mqtt.Client(client_id�"Device {} Client".format(dev_id))
70 client.on_connect � on_connect
71 client.on_message � on_message
72

73 client.connect("beta.local",����, ��)
74 button.when_pressed � make_ready
75

76 logging.info("Device {} starting up...".format(dev_id))
77

78 while not ready:
79 orange_led.on()
80 time.sleep(�.��)
81 orange_led.off()
82 time.sleep(�.��)
83

84 orange_led.on()
85 client.publish("test", payload�dev_id, qos��)
86 client.loop()
87 logging.info("Done waiting")
88

89 try:
90 while running:
91 client.loop()
92

220 Chapter D. Performance Comparison Experiment — device code

93 except KeyboardInterrupt:
94 logging.info("User requested exit - via Keyboard Interrupt...")
95

96 finally:
97 client.disconnect()

LISTING D.2: MQTT Device Code

221

Appendix E

Network Conditioning Simulation
Setup

During the experimental work (11), the following network conditioning parameters were
used. Experiment 1 used no network-conditioning. Experiments 2–5 used network delay
distribution data tables taken from [324]. The specific delay data table used is described
here. For experiments 6–10, tc settings were directly applied (based on data from [323],
as well as published standards and observations made). The tcset tool was used to load
these parameters, and the parameters used are shown in Table E.1.

222
C

hapterE
.

N
etw

ork
C

onditioning
S

im
ulation

S
etup

Experiment Description Distribution Used tc Settings Applied

1 LAN Ethernet No network conditioning -

2 Good Strength 4G H�G_Access_AB.good.�G.no_roaming -

3 Medium Strength 4G TIM.medium.�G.no_roaming -

4 Good 3G TIM.good.�G.no_roaming

5 Poor 3G TIM.bad.�G.no_roaming

6 2G EDGE best-case -
–rate ���Kbps –delay ���.�ms

–delay-distro ��.�

7 Observed 3G poor signal -
–rate ���Kbps –delay ���.�ms

–delay-distro ��.�

8 2G GPRS best-case -
–rate ��Kbps –delay ���.�ms

–delay-distro ��.�

9 3G poor signal + 5% loss -
–rate ���Kbps –delay ���.�ms

–delay-distro ��.� –loss �

10 2G GPRS + 10% loss -
–rate ��Kbps –delay ���.�ms

–delay-distro ��.� –loss ��

TABLE E.1: The detailed network conditioning settings for each of the ten experiments.

223

Appendix F

Security Analysis of the Secure
Remote Update Protocol

This Appendix contains a more detailed description of the analysis and assessment of the
security of the SRUP protocol and its software implementation, as described elsewhere
within this thesis.

F.1 Secure by Design

Although pre-dating the 2018 DCMS report “Secure by Design: Improving the cyber
security of consumer Internet of Things” [337], and the subsequent code of practice [125],
the SRUP protocol was designed from the outset to be secure, meeting the design
principles of the DCMS code of practice (see Chapter 8). The design incorporated features
in order to be robust against attacks versus the protocol itself, and against attacks targeting
the protocol’s associated infrastructure.

F.1.1 Adversarial Design

The primary consideration when the protocol was designed was to preemptively counter
potential attacks against it. This was accomplished by taking an adversarial approach to
the design, specifically: “If I had hostile intent, how would I attack this? How can I break it?
How can I access the data? What would I need to do to be able to interfere with it?”.
Countermeasures against these attacks were then identified and incorporated into the
design from the outset, long before any code had been written. This approach was also
taken for each subsequent feature being added.

224 Chapter F. Security Analysis of the Secure Remote Update Protocol

F.1.2 Use of extant and trusted libraries

Another significant way that SRUP ensures correctness of operation is by making
extensive use of extant library code. Wherever possible in the development of the SRUP
code-base, widely-used — and therefore likely already well-tested and validated —
libraries were utilized. In all cases, the library to be used was selected on the basis of it
being the ‘best in class’ for the specific requirement: determined by factors such as how
frequently used and frequently updated the library was, as well as on the basis of feature
selection. As described in Section 2.5, widely-used libraries will be more likely to have
received significant amounts of scrutiny and examination

Using an extant library is particularly important in the context of cryptography, since
developing and ensuring the correctness of cryptographic routines is especially
challenging. However, in addition to using ostensibly correct implementations of
cryptographic functions via libcrypto, it is also essential to ensure that these functions
are used correctly. To this end, all routines where cryptographic functions are called are
written based on (and are consistent with) code examples within the the OpenSSL
documentation [22]. This ensures that, for example, RSA envelope padding is correctly
implemented using the provided library functions in the correct combination.

F.1.3 Library code used within SRUP

As described in Chapter 9, the code for the SRUP protocol itself comprises three main
parts:

• The underpinning C++ library — libSRUP

• The Python wrapper of this library — pySRUP_lib

• The object-oriented Python package — pySRUP

The fourth and final element, consists of the example implementations of C2 server and
other back-end services, as well as the example implementations of devices, etc.

The library code used by each of these four parts is summarized in Table F.1.

Note: although the example implementations of the back-end services make use of flask
to provide HTTP & HTTPS server-side web application capabilities, the actual web serving
is implemented in the example using nginx running within a docker container (see Section
9.6.2).

F.2. MQTT Security Assessment 225

SRUP Component Language Library Used Purpose

libSRUP C++
OpenSSL
(libcrypto.a) Cryptographic functions

pySRUP_Lib C++ Boost Python
Enable wrapping of the C++
class for access as a native
binary CPython library

pySRUP Python paho.mqtt.client MQTT client implementation

Python requests
HTTP and HTTPS client
implementation

Python cryptography
Implementations of RSA
and X.509

SRUP Backend Python flask
HTTP & HTTPS server-side
web application capabilities

TABLE F.1: The extant libraries used by different components of the SRUP system.

F.2 MQTT Security Assessment

Independent of this research, an (unpublished) assessment of the potential vulnerabilities
in the MQTT protocol in the context of IoT was undertaken by the Defence Science and
Technology Laboratory (Dstl) in 2017. This concluded, in part, that some of the major
issues with the use of MQTT were its lack of encryption (by default), the lack of message
integrity, and the lack of an authenticated way to identify the sender of a message.
Although predating that assessment, the development of the SRUP protocol addresses
each of these points, mitigating the weaknesses in MQTT highlighted.

F.3 Static and Dynamic Analysis

All of the code written was subjected to extensive static and dynamic analysis to ensure
validity. The static analysis of the C++ code was conducted using the CppCheck tool [338]
built into the CLion Integrated Development Environment (IDE). For dynamic analysis,
Valgrind tools [339] were used to identify errors such as memory leaks.

F.3.1 Static Analysis

All compiler warnings having previously been addressed, the code was subjected to
analysis by CppCheck in order to identify issues such as incorrectly initialized constructors,
incorrectly freed dynamic memory, or other structural errors. All such issues were then
rectified, either using the recommendations from CppCheck directly or by otherwise
re-writing the code section in question.

226 Chapter F. Security Analysis of the Secure Remote Update Protocol

In particular running CppCheck on the SRUP codebase, generated two main types of
recommendations.

The first of these was to mark as const, a number of getter methods for class properties
which return, unchanged, a protected member variable (see an example of this in Listing
F.1).

1 const uint��_t *SRUP_MSG::senderID()
2 {
3 return m_sender_ID;
4 }

LISTING F.1: Example of a const property getter function

The second recommendation was to change the way that the delete function is used in a
few places where it didn’t correctly match the way that the heap memory had been
allocated. When delete(ptr�) is called, it will free the memory at the location being
pointed to by ptr�; but if ptr� is actually pointing to an array (e.g. the memory in question
was allocated using new uint�_t[���];) then in order to free the whole structure (and not
just the initial location), delete should be called using the syntax delete[] ptr�;

See Listings F.2, F.3 & F.4 for examples of this being used correctly: depicting the
constructor, the setter method for a property, and the class destructor.

F.3.2 Dynamic Analysis

Execution of the C++ binary library was subsequently examined using Valgrind’s
memcheck tool, to attempt to identify any run-time memory leaks or invalid heap pointer
accesses. In all cases any identified issues were rectified.

F.3.3 Analysis of Python Code

The Python code was also subjected to static analysis using the PyLint tool [340] to ensure
that it met the standard of PEP8 [341]. Although this is not a guarantee of correctness, it
does check adherence to the very widely-adopted Python coding standard. Failure to
adhere to standards is one source of ‘code smells’ [342] and can easily conceal errors. As
before, all issues identified by the Python linter were fully addressed before release.

F.4 Unit Testing

The software development process for the implementation of the SRUP protocol made
extensive use of unit testing to ensure the correctness of the classes, methods, and

F.4. Unit Testing 227

1 �include "SRUP.h"
2

3 SRUP_MSG::SRUP_MSG()
4 {
5 m_version � new uint�_t[�];
6 m_msgtype � new uint�_t[�];
7

8 // We won't actually allocate any space for the other members in the �� constructor...
9 // We'll do that dynamically on assignment.

10

11 m_version[�] � SRUP::SRUP_VERSION;
12

13 m_sig_len � �;
14 m_unsigned_length � �;
15 m_token_len � �;
16 m_serial_length � �;
17

18 m_is_serialized � false;
19

20 m_signature � nullptr;
21 m_token � nullptr;
22 m_serialized � nullptr;
23 m_unsigned_message � nullptr;
24 m_sequence_ID � nullptr;
25 m_sender_ID � nullptr;
26 }

LISTING F.2: The SRUP base-class constructor function

1 bool SRUP_MSG::token(const uint�_t* t, uint��_t len)
2 {
3 try
4 {
5 if (len � �)
6 return false;
7 else
8 {
9 delete[] m_token;

10

11 m_token � new uint�_t[len];
12 std::memcpy(m_token, t, len);
13 m_token_len � len;
14 }
15 }
16 catch (...)
17 {
18 m_token � nullptr;
19 return false;
20 }
21

22 return true;
23 }

LISTING F.3: The SRUP base-class token property setter function

228 Chapter F. Security Analysis of the Secure Remote Update Protocol

1 SRUP_MSG::�SRUP_MSG()
2 {
3 delete[] m_version;
4 delete[] m_msgtype;
5 delete[] m_unsigned_message;
6 delete[] m_signature;
7 delete[] m_token;
8 delete[] m_serialized;
9 delete (m_sequence_ID);

10 delete (m_sender_ID);
11 }

LISTING F.4: The SRUP base-class destructor function

functions providing the functionality of the library code. Specifically, the C++ classes within
libSRUP_Lib.so were tested using the Google Test framework [343], and the Python
classes created within pySRUPLib.so (although also written in C++) were tested from
within Python using the pytest framework [344].

In each case, the tests were automatically run as a part of the build process every time the
corresponding source code was changed. In addition to ensuring that the code was correct
to begin with, this approach also ensured that it remained so and did not become
inadvertently broken by other changes elsewhere in the codebase. Any failing tests were
reported, investigated, and solved. All releases of the codebase fully passed all of the test
suites.

F.4.1 C++

Using the Google Test framework, extensive testing was conducted to ensure the validity of
the C++ code.

These tests included testing: the cryptographic methods in isolation (both the encryption
and the verification of signatures); each of the message type classes’ getter and setter
methods; data length verification; correct serialization and deserialization; as well as
testing that the class functions ‘gracefully fail’ when applied to invalid or incomplete data.

In keeping with good practice [345], tests written using the Google Test framework made
extensive use of test fixtures (in the form of SetUp() and TearDown() functions), and were
designed in order to test as complete a range of conditions as possible (such as missing
fields, excessively large data, boundary conditions, etc.). They also tested that the generic
message type (used as a placeholder when processing a received message) worked
correctly when used with any full message type.

The full list of the C++ / Google Test unit tests can be seen in the file tests.cpp available
in the Tests directory of the source code repository on GitHub
(https://github.com/dstl/srup/blob/master/Test/tests.cpp).

https://github.com/dstl/srup/blob/master/Test/tests.cpp

F.5. Incremental development and testing 229

A screenshot showing the C++ tests running in the CLion IDE can be seen in Figure F.1.

FIGURE F.1: A screenshot showing the C++ unit test runner in CLion.

F.4.2 Python

The same approach was adopted using pytest. Each of the classes created by
pySRUPLib.so are tested using a separate test file (adopting the standard naming
convention of �classname�_test.py).

Again, the tests were designed to test setters and getters, serialization, under- and
overflow, etc., as well as testing the correct processing of data messages into native
Python data types.

The full list of the Python / pytest unit tests can be seen in the files contained within the
directory ./pySRUP/Python/tests/ available in the source code repository on GitHub
(https://github.com/dstl/srup/tree/master/pySRUP/Python/tests).

F.5 Incremental development and testing

The design and implementation approach adopted for the development of the SRUP
libraries has been an incremental and iterative one. At all stages in the development work,

https://github.com/dstl/srup/tree/master/pySRUP/Python/tests

230 Chapter F. Security Analysis of the Secure Remote Update Protocol

functionality has first been prototyped in the context of software-only implementations run
on a development laptop, before moving to increasingly complete implementations on
representative (and then real) hardware. As described in Section F.4, all classes, methods,
and functions were subjected to unit testing to ensure their operation in isolation matched
the intended output. This approach has also ensured that the more complex functionality
within the protocol could be evaluated (and iteratively designed) based on performance
and operation.

F.6 Future Work

There are a number of additional avenues of security assessment of the SRUP protocol,
and its software implementation, that could be carried out in the future in order to provide
even greater assurance as to the correctness of the protocol and its robustness to attack.

F.6.1 Adversarial testing

To date, all of the assessment of the security of the protocol has been conducted by the
author, as a part of this PhD research. Although an adversarial approach has been taken
in the design and assessment of the protocol (see Section F.1.1), no truly independent
testing has been carried out by a third-party. Whilst all efforts were made to ensure that the
assessment was conducted fairly and with all due diligence, it is inevitable that individuals
alone will not be able to imagine all potential threat paths. As such, true adversarial testing
(also known as red teaming) by an independent party should be conducted in order to
provide greater guarantees as to the correctness and robustness of the protocol. In
addition to analysis of the protocol itself, there are a number of techniques that could be
applied in order to test the software implementation — the most common approaches for
an application such as this would be fuzzing and reverse engineering.

F.6.1.1 Fuzzing

Fuzzing [346] is a process whereby inputs to a piece of software are automatically
generated by a test tool, in order to both establish that the software under test responds
correctly to an expected range of inputs and to attempt to cause the software’s input
validation to fail by generating input that has unintended effects. A simple example of this
may be to submit oversized and otherwise malformed input, in order to attempt to cause a
buffer overflow. Depending on the structure of the software, such an overflow may cause a
vulnerability permitting arbitrary code execution (see Section 2.4.1). Although this
approach requires a concrete instance of the implementation of the protocol to test against,

F.6. Future Work 231

it is capable of identifying vulnerabilities in both the implementation and the underlying
design of the protocol (such as the use of fixed data type sizes).

F.6.1.2 Software Reverse Engineering

Another approach targeting a specific implementation of the protocol (or other element of
the software) is software reverse engineering. This (extremely time-consuming) approach
takes the compiled binary form of an executable or software library, turns the binary
machine code back into human-readable assembler code (disassembly), and then turns
that assembly code into equivalent C code (decompilation). Once this has been done,
skilled users of these tools can reconstruct the data flow within the binary code to
understand its structure and composition without ever having seen the original source
code. Using this inside knowledge of the construction of the code, alongside other
techniques mentioned in this section, can enable the identification of implementation
issues, both in the application’s source code and in its interaction with any statically linked
libraries.

In the context of open source software (such as the implementation of SRUP) this step can
be omitted and the published source code could be analysed instead — although by
analysing the reverse engineered binary it is possible to be certain that the source code
wasn’t changed from the published version before compilation.

A thorough code review process can then be conducted to closely examine all potential
sources of errors and vulnerabilities (such as the use of input buffers, type definitions,
dynamic heap variable allocation, etc.), with findings being tested either using more
directed fuzzing or via hand-crafting specific adversarial inputs.

F.6.2 Formal Risk Analysis

A more rigorous approach to establishing the validity of a protocol can be taken by
performing formal risk analysis. This is a process that takes formal consideration of
elements of the expected use case, the constructional elements, and the data flows, and
considers the impact that compromise to any part of the system may have on other
elements or the system as a whole [347]. Microsoft use the mnemonic STRIDE (Spoofing,
Tampering, Repudiation, Information disclosure, Denial-of-service, Elevation of privilege) to
categorize the types of threats considered by their threat analysis process [348].

Such a process, whilst largely a formalization of the approach used by the adversarial
design concept described in Section F.1.1, provides greater assurance that nothing has
been overlooked by following a described process and by producing documentary evidence
that the process has been followed. This consistent approach is also reproducible. It can
also describe precisely how the system is robust to threats against each component.

232 Chapter F. Security Analysis of the Secure Remote Update Protocol

F.6.3 Formal Verification

For the highest degree of assurance, formal verification of the protocol and its software
implementation could be performed.

This is the most time-consuming of the approaches as it requires the formalization of both
the design and the implementation, but it does offer the most comprehensive guarantees
as to the correctness of the system. Using techniques such as Z Notation [349], one can
precisely specify the requirements of the system using a mathematical notation, and using
these formally prove that only permitted operations can occur. Using this formal
specification, software implementations can then be developed, and can be demonstrated
to have the same properties of correctness. Due to the complexities, time, and cost
required to perform this type of formal verification on anything other than a trivial system, in
practice these techniques are reserved for safety-critical software applications (such as
medical devices [350] or flight-control systems [351]).

F.6. Future Work 233

235

Acronyms

2G Second-Generation. 162

3G Third-Generation. 8, 162

4G Fourth-Generation. 8, 162, 166

5G Fifth-Generation. 8

6LoWPAN IPv6 over Low power Wireless Personal Area Networks. 7, 33

ACL Access Control List. 59, 60, 176

AES Advanced Encryption Standard. 33, 34, 175

API Application Program Interface. 37, 46, 71, 77, 78, 80, 104, 112, 129, 144, 155, 203

ARPANET Advanced Research Project Agency Network. 15, 32

ASCII American Standard Code for Information Interchange. 26, 54, 171

ATM Asynchronous Transfer Mode. 32

AWS Amazon Web Services. 80

BIOS Basic Input/Output System. 14

BLE Bluetooth Low Energy. 81

BOM Bill of Material. 139

C2 Command and Control. 3, 4, 22, 41, 43–50, 53, 56–60, 62–67, 71, 72, 75–80, 82, 83,
85–88, 95, 96, 104–108, 110–115, 121, 125, 126, 128–130, 132, 133, 136, 139,
141–145, 147–152, 154, 155, 158–161, 165, 175–179, 181, 182, 189, 195, 203, 204,
206, 208, 224

CA Certificate Authority. 34, 35, 74, 75, 77, 78, 80, 132

CN Common Name. 35, 59, 78, 80

236 Acronyms

CNI Critical National Infrastructure. 11, 23, 24

CoAP Constrained Application Protocol. 38, 39, 71, 77

CoRE Constrained RESTful Environments. 38

CPS Cyber Physical Systems. 10, 11, 23, 24, 70, 182

CPU Central Processing Unit. 6, 159, 172, 178, 180

CSR Certificate Signing Request. 35, 78, 80

dBm decibel-milliwatts. 162

DCMS Department of Digital, Culture, Media & Sport. 20, 115, 223

DDoS Distributed Denial of Service. 17, 21, 22, 111

DNS Domain Name System. 22

DoD United States’ Department of Defense. 13, 14, 32

DoE United States Department of Energy. 14

DOS Disk Operating System. 14, 19

DoS Denial of Service. 15, 17, 21, 48, 80, 111, 114

Dstl the Defence Science and Technology Laboratory. xxi, 225

DTLS Datagram Transport Layer Security. 35, 38, 102

E2EE End-to-End Encrypted. 45

EC2 Elastic Cloud Compute. 80

ECC Elliptic Curve Cryptography. 28

ECDH Elliptic Curve Diffie-Hellman. 28

ECDHE Elliptic Curve Diffie-Hellman Ephemeral. 34

ECDSA Elliptic Curve Digital Signature Algorithm. 36

EDGE Enhanced Data Rates for GSM Evolution. 162

EEPROM Electrically Erasable Programmable Read Only Memory. 78, 110, 136

eInk Electronic Ink. 94, 139

FQDN Fully Qualified Domain Name. 36

FTP File Transfer Protocol. 32

Acronyms 237

GC&CS Government Code and Cipher School. 25

GCHQ Government Communications Headquarters. 25, 28

GPRS General Packet Radio Service. 162

GSM Global System for Mobile Communications. 162

HAT Hardware Attached on Top. 136

HCI Human-Computer Interface. 9, 82

HPC High Performance Computing. 6, 32

HTTP Hyper-Text Transfer Protocol. 6, 15, 32, 34, 37–39, 69, 71, 108, 111, 124, 125, 190,
224, 225

HTTPS Secure Hyper-Text Transfer Protocol. 33, 34, 37, 46, 68, 70, 72, 75–77, 80, 82,
102, 114, 158, 197, 203, 224, 225

I2C Inter-Integrated Circuit Protocol. 100, 101, 136

IDE Integrated Development Environment. 225, 229

IIoT Industrial Internet of Things. 8, 23

IIS Internet Information Services. 15

IoBT Internet of Battle Things. 9–11, 46, 47, 141

IoT Internet of Things. 3–11, 13, 20–24, 28, 29, 31, 37, 38, 41, 43, 45–50, 53, 54, 70, 72,
73, 76, 82, 84, 101, 102, 105–108, 113, 114, 116, 125, 133, 135, 139, 141, 142, 145,
151, 152, 155, 158, 161, 166, 168, 170, 172, 175, 178–182, 225

IP Internet Protocol. 7, 8, 32, 33, 38, 186

IPSec Internet Protocol Security. 33

IPv4 Internet Protocol Version 4. 31

IPv6 Internet Protocol Version 6. 7, 8, 31, 33, 39

ITU International Telecommunication Union. 34

JSON JavaScript Object Notation. 54, 70–72, 78, 80

kb/s kilobits per second. 162

LAN Local Area Network. 162, 164, 166

LCD Liquid Crystal Display. 90, 92, 97, 136, 139

238 Acronyms

LED Light Emitting Diode. 125, 133, 158

LPDDR2 second generation Low-Power Double Data Rate. 159

LPDDR4 fourth generation Low-Power Double Data Rate. 159

M2M Machine-to-Machine. 7–9, 37

MACA Military Aid to the Civil Authorities. 9

MaDIoT Manipulation of Demand via Internet of Things. 23

MQTT Message Queuing Telemetry Transport. 6, 31, 32, 38–41, 53, 54, 56–60, 68–72,
76–78, 80, 82, 86, 87, 102, 111, 115, 116, 119, 124–126, 129, 130, 132, 133, 139,
146, 147, 157–159, 164–166, 168–171, 173, 175, 176, 178, 180, 183–187, 189,
195–198, 201–203, 225

NASA National Aeronautics and Space Administration. 6

NAT Network Address Translation. 8, 39

NATO North Atlantic Treaty Organization. 43

NCSC National Cyber Security Centre. 20, 115

NDEF NFC Data Exchange Format. 100

NFC Near-Field Communication. 81, 100, 101, 103–105, 139, 176

NGO Non-Governmental Organization. 17, 141, 144

NHS UK National Health Service. 16

NIST the United States’ National Institute of Standards and Technology. 33

NSA United States National Security Agency. 14

NTP Network Time Protocol. 108, 160

OLED Organic Light Emitting Diode. 90

OS Operating System. 14, 15, 18, 179, 180

OSS Open Source Software. 6, 111, 119, 129, 155, 182

PARC Palo Alto Research Center. 7, 32

PC Personal Computer. 14

PCB Printed Circuit Board. 136

PGP Pretty Good Privacy. 95

Acronyms 239

PKCS#1 Public-Key Cryptography Standard #1. 57

PROM Programmable Read Only Memory. 74

PUF Physical Unclonable Function. 74

QoS Quality of Service. 38, 40, 69, 185, 187

QUIC Quick UDP Internet Connections. 35

RAM Random Access Memory. 159

RAT Remote Access Trojan. 17

REST Representational State Transfer. 37, 38, 46, 77, 78, 80, 112, 129, 130, 155

RF Radio Frequency. 17, 18, 97, 105, 180

RFID Radio-Frequency Identification. 7, 100, 139

ROM Read Only Memory. 14, 74, 136

RSA Rivest-Shamir-Adleman. 27, 28, 33, 34, 36, 53, 54, 84, 111, 113, 119, 157, 158, 171,
175, 197, 224, 225

RSRP Reference Signals Received Power. 162

SDRAM Synchronous Dynamic Random-Access Memory. 159

SFTP SSH File Transfer Protocol. 37

SHA Secure Hash Algorithm. 111

SHA-2 Secure Hash Algorithm, version 2. 33, 34, 53

SHA-256 256-byte SHA-2. 33, 36, 54, 69, 109–111, 114, 115, 157, 175

SNEP Simple NDEF Exchange Protocol. 100

SPI Serial Peripheral Interface. 136

SQL Structured Query Language. 18, 130

SRUP Secure Remote Update Protocol. 53–73, 76–78, 83, 84, 87, 92, 96, 97, 100, 102,
105–107, 109, 110, 112–116, 119–126, 129–131, 133–135, 139, 141, 143–146, 148,
150–152, 154, 155, 157–159, 162–164, 166, 168–173, 175–182, 189–195, 197, 200,
202–204, 206, 208, 215, 223–226, 229–231

SSH Secure Shell. 32, 36, 37, 95

SSL Secure Sockets Layer. 27, 34

240 Acronyms

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial-of-service,
Elevation of privilege. 231

TCP Transmission Control Protocol. 31, 32, 35, 39, 40, 58, 108, 111, 175, 185, 186

TCP/IP Internet Protocol Suite. 31, 39

TLS Transport Layer Security. 6, 27, 33–35, 41, 53, 59, 77, 78, 80, 111, 115, 130, 133,
158, 159, 171, 175, 183, 203

TLS-PSK Transport Layer Security using a Pre-Shared Key. 41

TPM Trusted Platform Module. 74, 116

UDP User Datagram Protocol. 31, 32, 35, 38, 39

UML Unified Modeling Language. 121

URI Uniform Resource Identifier. 38, 75

URL Universal Resource Locator. 35, 63, 71, 76–78, 81, 82, 102, 125, 129, 147, 176, 190,
203

US ARL United States Army Research Laboratory. 9, 46

USAF United States Air Force. 14, 18

USB Universal Serial Bus. 101, 103, 164, 170

UUID Universally Unique Identifier. 73, 74, 78, 90, 97, 109

VoIP Voice over Internet Protocol. 33

VPN Virtual Private Network. 33

WSGI Web-Server Gateway Interface. 131

X.509 International Telecommunication Union X.509. 34, 35, 59, 77, 225

XOR Exclusive OR. 26

YAML YAML Ain’t Markup Language. 130

241

References

[1] A. J. Poulter, S. J. Johnston, and S. J. Cox, “Using the MEAN Stack to Implement a
RESTful Service for an Internet of Things Application,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), Jan. 2015, pp. 280–285. DOI:
10.1109/WF-IoT.2015.7389066.

[2] ——, “SRUP: The Secure Remote Update Protocol,” in 2016 IEEE 3rd World Forum
on Internet of Things (WF-IoT), IEEE, Jan. 2016, pp. 42–47. DOI:
10.1109/WF-IoT.2016.7845397.

[3] ——, “Extensions and Enhancements to The Secure Remote Update Protocol,”
Future Internet, vol. 9, no. 4, p. 59, Sep. 2017. DOI: 10.3390/fi9040059.

[4] ——, “pySRUP – Simplifying Secure Communications for Command Control in the
Internet of Things,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT),
Apr. 2019, pp. 273–277. DOI: 10.1109/WF-IoT.2019.8767205.

[5] A. J. Poulter, S. Johnston, and S. Cox, “Secure Messaging, Key Management &
Device identity for the IoT,” in Presentation to IoT Security Foundation Conference
2019, IoT Security Foundation, Nov. 2019. [Online]. Available:
https://youtu.be/vdjY617WvHo.

[6] A. J. Poulter, S. J. Ossont, and S. J. Cox, “Enabling the Secure Use of Dynamic
Identity for the Internet of Things—Using the Secure Remote Update Protocol
(SRUP),” Future Internet, vol. 12, no. 8, p. 138, Aug. 2020. DOI:
10.3390/fi12080138.

[7] A. J. Poulter and S. J. Cox, “Enabling secure guest access for
Command-and-Control of Internet of Things devices,” IoT, vol. 2, no. 2,
pp. 236–248, 2021. DOI: 10.3390/iot2020013.

[8] ——, “An assessment of the performance of the secure remote update protocol in
simulated real-world conditions,” IoT, vol. 2, no. 4, pp. 549–563, 2021. DOI:
10.3390/iot2040028.

[9] K. L. Lueth, State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT
for the first time, Nov. 2020. [Online]. Available: https://iot-analytics.com/state-of-
the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/.

https://doi.org/10.1109/WF-IoT.2015.7389066
https://doi.org/10.1109/WF-IoT.2016.7845397
https://doi.org/10.3390/fi9040059
https://doi.org/10.1109/WF-IoT.2019.8767205
https://youtu.be/vdjY617WvHo
https://doi.org/10.3390/fi12080138
https://doi.org/10.3390/iot2020013
https://doi.org/10.3390/iot2040028
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/

242 REFERENCES

[10] T. Sterling, D. Savarese, D. J. Becker, B. Fryxell, and K. Olson, “Communication
Overhead for Space Science Applications on the Beowulf Parallel Workstation,” in
Proceedings of the Fourth IEEE International Symposium on High Performance
Distributed Computing, Aug. 1995, pp. 23–30. DOI: 10.1109/HPDC.1995.518691.

[11] S. J. Cox, D. A. Nicole, and K. Takeda, “Commodity High Performance Computing
at Commodity Prices,” in Proceedings of the 21st World Occam and Transputer
User Group Technical Meeting, IOS Press, 1998.

[12] J. Dongarra, E. Strohmaier, H. Simon, and M. Meuer, November 2020: TOP500
List, https://top500.org/lists/top500/2020/11/, Nov. 2020. [Online]. Available:
https://top500.org/lists/top500/2020/11.

[13] G. Halfacree and E. Upton, Raspberry Pi User Guide, 1st ed. Wiley Publishing,
2012, ISBN: 111846446X.

[14] B. Balon and M. Simić, “Using Raspberry Pi Computers in Education,” in 2019 42nd
International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2019, pp. 671–676. DOI:
10.23919/MIPRO.2019.8756967.

[15] V. Vujović and M. Maksimović, “Raspberry Pi as a Sensor Web node for home
automation,” Computers and Electrical Engineering, vol. 44, pp. 153–171, 2015.
DOI: https://doi.org/10.1016/j.compeleceng.2015.01.019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0045790615000257.

[16] T. Sorwar, S. B. Azad, S. R. Hussain, and A. I. Mahmood, “Real-time Vehicle
monitoring for traffic surveillance and adaptive change detection using Raspberry
Pi camera module,” in 2017 IEEE Region 10 Humanitarian Technology Conference
(R10-HTC), Dec. 2017, pp. 481–484. DOI: 10.1109/R10-HTC.2017.8289003.

[17] A. K. Saha, S. Roy, A. Bhattacharya, P. Shankar, A. K. Sarkar, H. N. Saha, and
P. Dasgupta, “A low cost remote controlled underwater rover using Raspberry Pi,” in
2018 IEEE 8th Annual Computing and Communication Workshop and Conference
(CCWC), Jan. 2018, pp. 769–772. DOI: 10.1109/CCWC.2018.8301657.

[18] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S. O’Brien,
“Iridis-pi: A low-cost, compact demonstration cluster,” Cluster Computing, vol. 17,
pp. 349–358, Jun. 2013. DOI: https://doi.org/10.1007/s10586-013-0282-7.

[19] D. Cassel, The Hardware and Software Used in Space,
https://thenewstack.io/the-hardware-and-software-used-in-space/, Oct. 2020.
[Online]. Available:
https://thenewstack.io/the-hardware-and-software-used-in-space/.

[20] J. Delaune, R. Brockers, D. S. Bayard, H. Dor, R. Hewitt, J. Sawoniewicz,
G. Kubiak, T. Tzanetos, L. Matthies, and J. Balaram, “Extended Navigation
Capabilities for a Future Mars Science Helicopter Concept,” in 2020 IEEE
Aerospace Conference, 2020, pp. 1–10. DOI: 10.1109/AERO47225.2020.9172289.

https://doi.org/10.1109/HPDC.1995.518691
https://top500.org/lists/top500/2020/11/
https://top500.org/lists/top500/2020/11
https://doi.org/10.23919/MIPRO.2019.8756967
https://doi.org/https://doi.org/10.1016/j.compeleceng.2015.01.019
http://www.sciencedirect.com/science/article/pii/S0045790615000257
https://doi.org/10.1109/R10-HTC.2017.8289003
https://doi.org/10.1109/CCWC.2018.8301657
https://doi.org/https://doi.org/10.1007/s10586-013-0282-7
https://thenewstack.io/the-hardware-and-software-used-in-space/
https://doi.org/10.1109/AERO47225.2020.9172289

REFERENCES 243

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” Internet Engineering
Task Force, Tech. Rep. RFC2616, Jun. 1, 1999. [Online]. Available:
https://tools.ietf.org/html/rfc2616.

[22] OpenSSL Software Foundation, OpenSSL - Cryptography and SSL/TLS Toolkit.
[Online]. Available: https://www.openssl.org/ (visited on 04/06/2018).

[23] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” Internet
Engineering Task Force, Standard RFC 8446, Aug. 2018. [Online]. Available:
https://tools.ietf.org/html/rfc8446 (visited on 03/15/2021).

[24] A. Banks and R. Gupta, “MQTT Version 3.1.1,” Oasis Standard, A. Banks and
R. Gupta, Eds., Oct. 29, 2014. [Online]. Available:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[25] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE
Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015. DOI:
10.1109/COMST.2015.2444095.

[26] W. A. Jabbar, H. K. Shang, S. N. I. S. Hamid, A. A. Almohammedi, R. M. Ramli, and
M. A. H. Ali, “IoT-BBMS: Internet of Things-Based Baby Monitoring System for
Smart Cradle,” IEEE Access, vol. 7, pp. 93 791–93 805, 2019. DOI:
10.1109/ACCESS.2019.2928481.

[27] M. Weiser, “The Computer for the 21st-Century,” Scientific American, vol. 265,
no. 3, pp. 94–104, Sep. 1991. DOI: 10.1038/scientificamerican0991-94.

[28] R. Want, B. N. Schilit, N. I. Adams, R. Gold, K. Petersen, D. Goldberg, J. R. Ellis,
and M. Weiser, “An Overview of the PARCTAB Ubiquitous Computing Experiment,”
IEEE Personal Communications, vol. 2, no. 6, pp. 28–43, Dec. 1995. DOI:
10.1109/98.475986.

[29] G. Montenegro, N. Kushalnagar, J. W. Hui, and D. E. Culler, Transmission of IPv6
Packets over IEEE 802.15.4 Networks, IETF, Sep. 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4944.

[30] S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, Internet
Engineering Task Force, Jul. 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8200.

[31] IEEE Computer Society, IEEE Standard for Local and metropolitan area
networks—Part 15.4: Low-Rate Wireless Personal Area Networks (WPANs), Sep.
2011. [Online]. Available:
https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf.

[32] C. Everhart, E. Caplan, and R. Frederking, The "Only" Coke Machine on the
Internet, Jun. 1998. [Online]. Available:
https://www.cs.cmu.edu/~coke/history_long.txt (visited on 03/22/2021).

https://tools.ietf.org/html/rfc2616
https://www.openssl.org/
https://tools.ietf.org/html/rfc8446
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/ACCESS.2019.2928481
https://doi.org/10.1038/scientificamerican0991-94
https://doi.org/10.1109/98.475986
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc8200
https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
https://www.cs.cmu.edu/~coke/history_long.txt

244 REFERENCES

[33] E. Perahia, “IEEE 802.11n Development: History, Process, and Technology,” IEEE
Communications Magazine, vol. 46, no. 7, pp. 48–55, 2008. DOI:
10.1109/MCOM.2008.4557042.

[34] C. R. Schoenberger, “The internet of things,” Forbes, Mar. 2002. [Online]. Available:
http://www.forbes.com/global/2002/0318/092.html.

[35] K. Ashton. (Jun. 2009). “That ‘Internet of Things’ Thing - RFID Journal,” [Online].
Available: http://www.rfidjournal.com/articles/view?4986.

[36] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer
Networks, vol. 54, no. 15, pp. 2787–2805, 2010. DOI:
10.1016/j.comnet.2010.05.010.

[37] G. Lawton, “Machine-to-machine technology gears up for growth,” Computer,
vol. 37, no. 9, pp. 12–15, 2004. DOI: 10.1109/MC.2004.137.

[38] P. Lade, R. Ghosh, and S. Srinivasan, “Manufacturing Analytics and Industrial
Internet of Things,” IEEE Intelligent Systems, vol. 32, no. 3, pp. 74–79, May 2017.
DOI: 10.1109/MIS.2017.49. [Online]. Available:
http://ieeexplore.ieee.org/document/7933925/.

[39] B. Schneier, Click Here to Kill Everyone. New York, New York, USA: W. W. Norton &
Company, 2018, ISBN: 0-393-60888-3.

[40] S. Sorrell, “’Internet of Things’ connected deviuces to triple by 2021, reaching over
46 Billion units,” Juniper Research, Whitepaper, Dec. 2016. [Online]. Available:
https://www.juniperresearch.com/press/press-releases/%E2%80%98internet-of-
things%E2%80%99-connected-devices-triple-2021.

[41] M. Rothmuller and S. Barker, “IoT The Internet of Transformation 2020,” Juniper
Research, White paper, Apr. 2020.

[42] D. Maimon, M. Becker, S. Patil, and J. Katz, “Self-protective behaviors over public
WiFi networks,” in The LASER workshop: Learning from authoritative security
experiment results (LASER 2017), 2017, pp. 69–76.

[43] J. Foust, “SpaceX’s space-Internet woes: Despite technical glitches, the company
plans to launch the first of nearly 12,000 satellites in 2019,” IEEE Spectrum, vol. 56,
no. 1, pp. 50–51, 2019. DOI: 10.1109/MSPEC.2019.8594798.

[44] T. Wei, W. Feng, Y. Chen, C.-X. Wang, N. Ge, and J. Lu, “Hybrid Satellite-Terrestrial
Communication Networks for the Maritime Internet of Things: Key Technologies,
Opportunities, and Challenges,” IEEE Internet of Things Journal, pp. 1–1, 2021.
DOI: 10.1109/JIOT.2021.3056091.

[45] T. Duan and V. Dinavahi, “Starlink Space Network Enhanced Cyber-Physical Power
System,” IEEE Transactions on Smart Grid, pp. 1–1, 2021. DOI:
10.1109/TSG.2021.3068046.

https://doi.org/10.1109/MCOM.2008.4557042
http://www.forbes.com/global/2002/0318/092.html
http://www.rfidjournal.com/articles/view?4986
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/MC.2004.137
https://doi.org/10.1109/MIS.2017.49
http://ieeexplore.ieee.org/document/7933925/
https://www.juniperresearch.com/press/press-releases/%E2%80%98internet-of-things%E2%80%99-connected-devices-triple-2021
https://www.juniperresearch.com/press/press-releases/%E2%80%98internet-of-things%E2%80%99-connected-devices-triple-2021
https://doi.org/10.1109/MSPEC.2019.8594798
https://doi.org/10.1109/JIOT.2021.3056091
https://doi.org/10.1109/TSG.2021.3068046

REFERENCES 245

[46] J. H. Chang, M. Tabassum, U. Qidwai, S. B. A. Kashem, P. Suresh, and
U. Saravanakumar, “Design and Evaluate Low-Cost Wireless Sensor Network
Infrastructure to Monitor the Jetty Docking Area in Rural Areas,” in Advances in
Smart System Technologies, Springer, 2021, pp. 689–700.

[47] D. Wing, “Network Address Translation: Extending the Internet Address Space,”
IEEE Internet Computing, vol. 14, no. 4, pp. 66–70, Jun. 2010. DOI:
10.1109/MIC.2010.96. [Online]. Available:
http://ieeexplore.ieee.org/document/5496805/.

[48] S. Sreeraj and G. S. Kumar, “Performance of IoT protocols under constrained
network, a Use Case based approach,” in 2018 International Conference on
Communication, Computing and Internet of Things (IC3IoT), 2018, pp. 495–498.
DOI: 10.1109/IC3IoT.2018.8668105.

[49] A. Pandharipande, M. Zhao, E. Frimout, and P. Thijssen, “IoT lighting: Towards a
connected building eco-system,” in 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT), 2018, pp. 664–669. DOI: 10.1109/WF-IoT.2018.8355196.

[50] A. Kott, A. Swami, and B. J. West, “The Internet of Battle Things,” IEEE Computer,
vol. 49, no. 12, pp. 70–75, Dec. 2016. DOI: 10.1109/MC.2016.355.

[51] A. K. Cebrowski and J. H. Garstka, “Network-Centric Warfare - Its Origin and
Future,” Proceedings of the United States Naval Institute, Jan. 1998. [Online].
Available: https://www.usni.org/magazines/proceedings/1998-01/network-centric-
warfare-its-origin-and-future.

[52] M. J. Farooq and Q. Zhu, “On the Secure and Reconfigurable Multi-Layer Network
Design for Critical Information Dissemination in the Internet of Battlefield Things
(IoBT),” IEEE Transactions on Wireless Communications, vol. 17, no. 4,
pp. 2618–2632, 2018. DOI: 10.1109/TWC.2018.2799860.

[53] G. J. Gagnon, C. W. McLeod, and D. Thompson, “Space as a War-fighting Domain,”
Air & Space Power Journal, vol. 32, no. 2, pp. 4–9, 2018.

[54] P. M. Nakasone and C. Lewis, “Cyberspace in multi-domain battle,” The Cyber
Defense Review, vol. 2, no. 1, pp. 15–26, 2017.

[55] D. E. Zheng and W. A. Carter, “Leveraging the Internet of Things for a more
Efficient and Effective Military,” Center for Stategic & International Studies, Tech.
Rep., Sep. 2015. [Online]. Available: https://csis-prod.s3.amazonaws.com/s3fs-
public/legacy_files/files/publication/150915_Zheng_LeveragingInternet_WEB.pdf.

[56] UK Ministry of Defence, Military Aid to the Civil Authorities for activities in the UK,
Policy Paper, Aug. 2016. [Online]. Available:
https://www.gov.uk/government/publications/2015-to-2020-government-policy-
military-aid-to-the-civil-authorities-for-activities-in-the-uk.

[57] W. Wolf, “Cyber-Pysical Systems,” Computer, vol. 42, no. 3, pp. 88–89, 2009. DOI:
10.1109/MC.2009.81.

https://doi.org/10.1109/MIC.2010.96
http://ieeexplore.ieee.org/document/5496805/
https://doi.org/10.1109/IC3IoT.2018.8668105
https://doi.org/10.1109/WF-IoT.2018.8355196
https://doi.org/10.1109/MC.2016.355
https://www.usni.org/magazines/proceedings/1998-01/network-centric-warfare-its-origin-and-future
https://www.usni.org/magazines/proceedings/1998-01/network-centric-warfare-its-origin-and-future
https://doi.org/10.1109/TWC.2018.2799860
https://csis-prod.s3.amazonaws.com/s3fs-public/legacy_files/files/publication/150915_Zheng_LeveragingInternet_WEB.pdf
https://csis-prod.s3.amazonaws.com/s3fs-public/legacy_files/files/publication/150915_Zheng_LeveragingInternet_WEB.pdf
https://www.gov.uk/government/publications/2015-to-2020-government-policy-military-aid-to-the-civil-authorities-for-activities-in-the-uk
https://www.gov.uk/government/publications/2015-to-2020-government-policy-military-aid-to-the-civil-authorities-for-activities-in-the-uk
https://doi.org/10.1109/MC.2009.81

246 REFERENCES

[58] E. K. Wang, Y. Ye, X. Xu, S. M. Yiu, L. C. K. Hui, and K. P. Chow, “Security Issues
and Challenges for Cyber Physical System,” in Int’l Conference on Cyber, Physical
and Social Computing (CPSCom), IEEE, Mar. 2011, pp. 733–738, ISBN:
978-1-4244-9779-9. DOI: 10.1109/GreenCom-CPSCom.2010.36. [Online].
Available: http://ieeexplore.ieee.org/document/5724910.

[59] S. K. Khaitan and J. D. McCalley, “Design Techniques and Applications of
Cyberphysical Systems: A Survey,” IEEE Systems Journal, vol. 9, no. 2,
pp. 350–365, 2015. DOI: 10.1109/JSYST.2014.2322503.

[60] M. Walport, “The Internet of Things,” Tech. Rep. GS/14/1230, Dec. 2014.

[61] Civil Contingencies Secretariat, “Strategic framework and policy statement on
improving the resilience of critical infrastructure to disruption from natural hazards,”
Cabinet Office, London, Tech. Rep., Mar. 2010. [Online]. Available:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
62504/strategic-framework.pdf.

[62] M. Sparkes, “How do we solve the problem of ransomware?” New Scientist,
vol. 250, no. 3336, p. 13, 2021, ISSN: 0262-4079. DOI:
https://doi.org/10.1016/S0262-4079(21)00899-X.

[63] R. A. Kemmerer, “Cybersecurity,” in 25th International Conference on Software
Engineering, 2003. Proceedings., 2003, pp. 705–715. DOI:
10.1109/ICSE.2003.1201257.

[64] R. von Solms and J. van Niekerk, “From information security to cyber security,”
Computers & Security, vol. 38, pp. 97–102, 2013, Cybercrime in the Digital
Economy, ISSN: 0167-4048. DOI: https://doi.org/10.1016/j.cose.2013.04.004.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404813000801.

[65] M. Warner, “Cybersecurity: A Pre-history,” Intelligence and National Security,
vol. 27, no. 5, pp. 781–799, 2012. DOI: 10.1080/02684527.2012.708530. eprint:
https://doi.org/10.1080/02684527.2012.708530. [Online]. Available:
https://doi.org/10.1080/02684527.2012.708530.

[66] K. A. Minihan, “Statement to the Senate Governmental Affairs Committee Hearing
on Vulnerabilities of the National Information Infrastructure,” Jun. 1998. [Online].
Available: https://www.hsgac.senate.gov/imo/media/doc/minihan.pdf.

[67] C. Brown, D. Lee, C. Scott, and D. Strunk, American cyber insecurity: The growing
danger of cyber attacks, 2014.

[68] J. D. Boys, “The Clinton administration’s development and implementation of
cybersecurity strategy (1993–2001),” Intelligence and National Security, vol. 33,
no. 5, pp. 755–770, 2018. DOI: 10.1080/02684527.2018.1449369. eprint:
https://doi.org/10.1080/02684527.2018.1449369. [Online]. Available:
https://doi.org/10.1080/02684527.2018.1449369.

https://doi.org/10.1109/GreenCom-CPSCom.2010.36
http://ieeexplore.ieee.org/document/5724910
https://doi.org/10.1109/JSYST.2014.2322503
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/62504/strategic-framework.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/62504/strategic-framework.pdf
https://doi.org/https://doi.org/10.1016/S0262-4079(21)00899-X
https://doi.org/10.1109/ICSE.2003.1201257
https://doi.org/https://doi.org/10.1016/j.cose.2013.04.004
https://www.sciencedirect.com/science/article/pii/S0167404813000801
https://doi.org/10.1080/02684527.2012.708530
https://doi.org/10.1080/02684527.2012.708530
https://doi.org/10.1080/02684527.2012.708530
https://www.hsgac.senate.gov/imo/media/doc/minihan.pdf
https://doi.org/10.1080/02684527.2018.1449369
https://doi.org/10.1080/02684527.2018.1449369
https://doi.org/10.1080/02684527.2018.1449369

REFERENCES 247

[69] N. Milosevic, “History of Malware,” Digital forensics, vol. 1, no. 16, pp. 58–66, Aug.
2013.

[70] A. Abusitta, M. Q. Li, and B. C. M. Fung, “Malware classification and composition
analysis: A survey of recent developments,” Journal of Information Security and
Applications, vol. 59, p. 102 828, 2021, ISSN: 2214-2126. DOI:
10.1016/j.jisa.2021.102828.

[71] G. H. Khanaka and W. J. Orvis, “Virus Information Update,” Department of Engergy
– Computer Incident Advisory Capability, Oak Ridge, Tennessee, USA, Tech. Rep.
CIAC-2301, May 1998. eprint: https://apps.dtic.mil/sti/pdfs/ADA394231.pdf.

[72] R. van Heerden, H. Pieterse, and B. Irwin, “Mapping the Most Significant Computer
Hacking Events to a Temporal Computer Attack Model,” in ICT Critical
Infrastructures and Society, M. D. Hercheui, D. Whitehouse, W. McIver, and
J. Phahlamohlaka, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 226–236, ISBN: 978-3-642-33332-3.

[73] V. Bontchev, “Possible macro virus attacks and how to prevent them,” Computers &
Security, vol. 15, no. 7, pp. 595–626, 1996, ISSN: 0167-4048. DOI:
https://doi.org/10.1016/S0167-4048(97)88131-X. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016740489788131X.

[74] P. Docherty and P. Simpson, “Macro attacks: What next after Melissa?” Computers
& Security, vol. 18, no. 5, pp. 391–395, 1999, ISSN: 0167-4048. DOI:
https://doi.org/10.1016/S0167-4048(99)80084-4. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404899800844.

[75] A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, “Malware Dynamic
Analysis Evasion Techniques: A Survey,” ACM Comput. Surv., vol. 52, no. 6, Nov.
2019, ISSN: 0360-0300. DOI: 10.1145/3365001. [Online]. Available:
https://doi.org/10.1145/3365001.

[76] H. Orman, “The Morris worm: a fifteen-year perspective,” IEEE Security Privacy,
vol. 1, no. 5, pp. 35–43, 2003. DOI: 10.1109/MSECP.2003.1236233.

[77] T. Eisenberg, D. Gries, J. Hartmanis, D. Holcomb, M. S. Lynn, and T. Santoro, “The
Cornell Commission: On Morris and the Worm,” Commun. ACM, vol. 32, no. 6,
pp. 706–709, Jun. 1989, ISSN: 0001-0782. DOI: 10.1145/63526.63530. [Online].
Available: https://doi.org/10.1145/63526.63530.

[78] S. Furnell and E. H. Spafford, “The Morris Worm at 30,” ITNOW, vol. 61, no. 1,
pp. 32–33, Feb. 2019, ISSN: 1746-5702. DOI: 10.1093/itnow/bwz013. eprint:
https://academic.oup.com/itnow/article-pdf/61/1/32/28269379/bwz013.pdf. [Online].
Available: https://doi.org/10.1093/itnow/bwz013.

[79] H. Berghel, “The Code Red worm,” Communications of the ACM, vol. 44, no. 12,
pp. 15–19, 2001.

https://doi.org/10.1016/j.jisa.2021.102828
https://apps.dtic.mil/sti/pdfs/ADA394231.pdf
https://doi.org/https://doi.org/10.1016/S0167-4048(97)88131-X
https://www.sciencedirect.com/science/article/pii/S016740489788131X
https://doi.org/https://doi.org/10.1016/S0167-4048(99)80084-4
https://www.sciencedirect.com/science/article/pii/S0167404899800844
https://doi.org/10.1145/3365001
https://doi.org/10.1145/3365001
https://doi.org/10.1109/MSECP.2003.1236233
https://doi.org/10.1145/63526.63530
https://doi.org/10.1145/63526.63530
https://doi.org/10.1093/itnow/bwz013
https://academic.oup.com/itnow/article-pdf/61/1/32/28269379/bwz013.pdf
https://doi.org/10.1093/itnow/bwz013

248 REFERENCES

[80] D. Moore, C. Shannon, and K. Claffy, “Code-Red: A Case Study on the Spread and
Victims of an Internet Worm,” in Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet Measurment, ser. IMW ’02, Marseille, France: Association for
Computing Machinery, 2002, pp. 273–284, ISBN: 158113603X. DOI:
10.1145/637201.637244. [Online]. Available:
https://doi.org/10.1145/637201.637244.

[81] J. S. Aidan, H. K. Verma, and L. K. Awasthi, “Comprehensive Survey on Petya
Ransomware Attack,” in 2017 International Conference on Next Generation
Computing and Information Systems (ICNGCIS), 2017, pp. 122–125. DOI:
10.1109/ICNGCIS.2017.30.

[82] A. Greenberg, “The untold story of NotPetya, the most devastating cyberattack in
history,” Wired, August, vol. 22, 2018.

[83] S. Y. A. Fayi, “What Petya/NotPetya Ransomware Is and What Its Remidiations
Are,” in Information Technology - New Generations, S. Latifi, Ed., Cham: Springer
International Publishing, 2018, pp. 93–100, ISBN: 978-3-319-77028-4.

[84] S. B. Wicker, “The Ethics of Zero-Day Exploits—: The NSA Meets the Trolley Car,”
Commun. ACM, vol. 64, no. 1, pp. 97–103, Dec. 2020, ISSN: 0001-0782. DOI:
10.1145/3393670. [Online]. Available: https://doi.org/10.1145/3393670.

[85] M. R. Faghani, A. Matrawy, and C.-H. Lung, “A Study of Trojan Propagation in
Online Social Networks,” in 2012 5th International Conference on New
Technologies, Mobility and Security (NTMS), 2012, pp. 1–5. DOI:
10.1109/NTMS.2012.6208767.

[86] S. Mansfield-Devine, “When advertising turns nasty,” Network Security, vol. 2015,
no. 11, pp. 5–8, 2015, ISSN: 1353-4858. DOI:
https://doi.org/10.1016/S1353-4858(15)30098-2. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1353485815300982.

[87] M. Hypponen, “Malware goes mobile,” Scientific American, vol. 295, no. 5,
pp. 70–77, 2006. [Online]. Available: http://www.jstor.org/stable/26069041.

[88] C. G. J. Putman, S. Abhishta, and L. J. M. Nieuwenhuis, “Business Model of a
Botnet,” in 2018 26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), 2018, pp. 441–445. DOI:
10.1109/PDP2018.2018.00077.

[89] S. Greengard, “The Worsening State of Ransomware,” Communications of the
ACM, vol. 64, no. 4, pp. 15–17, Mar. 2021, ISSN: 0001-0782. DOI:
10.1145/3449054. [Online]. Available: https://doi.org/10.1145/3449054.

[90] A. L. Young and M. Yung, “On Ransomware and Envisioning the Enemy of
Tomorrow,” IEEE Computer, vol. 50, no. 11, pp. 82–85, 2017. DOI:
10.1109/MC.2017.4041366.

https://doi.org/10.1145/637201.637244
https://doi.org/10.1145/637201.637244
https://doi.org/10.1109/ICNGCIS.2017.30
https://doi.org/10.1145/3393670
https://doi.org/10.1145/3393670
https://doi.org/10.1109/NTMS.2012.6208767
https://doi.org/https://doi.org/10.1016/S1353-4858(15)30098-2
https://www.sciencedirect.com/science/article/pii/S1353485815300982
http://www.jstor.org/stable/26069041
https://doi.org/10.1109/PDP2018.2018.00077
https://doi.org/10.1145/3449054
https://doi.org/10.1145/3449054
https://doi.org/10.1109/MC.2017.4041366

REFERENCES 249

[91] Q. Chen and R. A. Bridges, “Automated Behavioral Analysis of Malware: A Case
Study of WannaCry Ransomware,” in 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), 2017, pp. 454–460. DOI:
10.1109/ICMLA.2017.0-119.

[92] M. Burgess, “Everything you need to know about EternalBlue–the NSA exploit
linked to Petya,” WIRED, WIRED UK, vol. 29, 2017.

[93] H. Orman, “Evil Offspring - Ransomware and Crypto Technology,” IEEE Internet
Computing, vol. 20, no. 5, pp. 89–94, 2016. DOI: 10.1109/MIC.2016.90.

[94] S. S. C. Silva, R. M. P. Silva, R. C. G. Pinto, and R. M. Salles, “Botnets: A survey,”
Computer Networks, vol. 57, no. 2, pp. 378–403, 2013, Botnet Activity: Analysis,
Detection and Shutdown, ISSN: 1389-1286. DOI:
https://doi.org/10.1016/j.comnet.2012.07.021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128612003568.

[95] P. Wainwright and H. Kettani, “An Analysis of Botnet Models,” in Proceedings of the
2019 3rd International Conference on Compute and Data Analysis, ser. ICCDA
2019, Kahului, HI, USA: Association for Computing Machinery, 2019, pp. 116–121,
ISBN: 9781450366342. DOI: 10.1145/3314545.3314562. [Online]. Available:
https://doi.org/10.1145/3314545.3314562.

[96] A. Zimba, Z. Wang, M. Mulenga, and N. H. Odongo, “Crypto Mining Attacks in
Information Systems: An Emerging Threat to Cyber Security,” Journal of Computer
Information Systems, vol. 60, no. 4, pp. 297–308, 2020. DOI:
10.1080/08874417.2018.1477076. eprint:
https://doi.org/10.1080/08874417.2018.1477076. [Online]. Available:
https://doi.org/10.1080/08874417.2018.1477076.

[97] E. Bertino and N. Islam, “Botnets and Internet of Things Security,” Computer,
vol. 50, no. 2, pp. 76–79, 2017. DOI: 10.1109/mc.2017.62. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7842850&
contentType=Journals+%26+Magazines.

[98] İ. Kara and M. Aydos, “The Ghost In The System: Technical analysis of Remote
Acccess Trojan,” International Journal on Information Technologies & Security,
vol. 11, no. 1, pp. 73–84, 2019.

[99] M. Libicki, “The coming of cyber espionage norms,” in 2017 9th International
Conference on Cyber Conflict (CyCon), 2017, pp. 1–17. DOI:
10.23919/CYCON.2017.8240325.

[100] F. Ullah, M. Edwards, R. Ramdhany, R. Chitchyan, M. A. Babar, and A. Rashid,
“Data exfiltration: A review of external attack vectors and countermeasures,”
Journal of Network and Computer Applications, vol. 101, pp. 18–54, 2018, ISSN:
1084-8045. DOI: https://doi.org/10.1016/j.jnca.2017.10.016.

https://doi.org/10.1109/ICMLA.2017.0-119
https://doi.org/10.1109/MIC.2016.90
https://doi.org/https://doi.org/10.1016/j.comnet.2012.07.021
https://www.sciencedirect.com/science/article/pii/S1389128612003568
https://doi.org/10.1145/3314545.3314562
https://doi.org/10.1145/3314545.3314562
https://doi.org/10.1080/08874417.2018.1477076
https://doi.org/10.1080/08874417.2018.1477076
https://doi.org/10.1080/08874417.2018.1477076
https://doi.org/10.1109/mc.2017.62
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7842850&contentType=Journals+%26+Magazines
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7842850&contentType=Journals+%26+Magazines
https://doi.org/10.23919/CYCON.2017.8240325
https://doi.org/https://doi.org/10.1016/j.jnca.2017.10.016

250 REFERENCES

[101] J. Menn, Cult of the Dead Cow: How the Original Hacking Supergroup Might Just
Save the World, 1st ed. Hachette Book Group, 2019, ISBN: 154176238X.

[102] M. Rezaeirad, B. Farinholt, H. Dharmdasani, P. Pearce, K. Levchenko, and
D. McCoy, “Schrödinger’s RAT: Profiling the stakeholders in the remote access
trojan ecosystem,” in 27th USENIX security symposium (USENIX Security 18),
2018, pp. 1043–1060.

[103] S. Le Blond, A. Uritesc, C. Gilbert, Z. L. Chua, P. Saxena, and E. Kirda, “A look at
targeted attacks through the lens of an NGO,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 543–558.

[104] T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang, “A survey of distributed denial-of-service
attack, prevention, and mitigation techniques,” International Journal of Distributed
Sensor Networks, vol. 13, no. 12, p. 1 550 147 717 741 463, 2017. DOI:
10.1177/1550147717741463. eprint: https://doi.org/10.1177/1550147717741463.
[Online]. Available: https://doi.org/10.1177/1550147717741463.

[105] L. Garber, “Denial-of-service attacks rip the internet,” Computer, vol. 33, no. 4,
pp. 12–17, 2000. DOI: 10.1109/MC.2000.839316.

[106] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai and
Other Botnets,” IEEE Computer, vol. 50, no. 7, pp. 80–84, 2017. DOI:
10.1109/MC.2017.201.

[107] D. Czerwinski, J. Nowak, and S. Przylucki, “Evaluation of the Jammers Performance
in the WiFi Band,” in Computer Networks, P. Gaj, M. Sawicki, G. Suchacka, and
A. Kwiecień, Eds., Cham: Springer International Publishing, 2018, pp. 171–182,
ISBN: 978-3-319-92459-5.

[108] W. Yu, X. Liang, Y. Sun, J. Luo, and S. Xin, “Study of Fire Control Radar Technology
Countering Electronic Attack,” in Man-Machine-Environment System Engineering,
S. Long and B. S. Dhillon, Eds., Singapore: Springer Singapore, 2020, pp. 531–538.

[109] M. D. Hill, J. Masters, P. Ranganathan, P. Turner, and J. L. Hennessy, “On the
Spectre and Meltdown Processor Security Vulnerabilities,” IEEE Micro, vol. 39,
no. 2, pp. 9–19, 2019. DOI: 10.1109/MM.2019.2897677.

[110] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious kingdoms: A taxonomy
of software security errors,” IEEE Security Privacy, vol. 3, no. 6, pp. 81–84, 2005.
DOI: 10.1109/MSP.2005.159.

[111] K. Chen, S. Zhang, Z. Li, Y. Zhang, Q. Deng, S. Ray, and Y. Jin, “Internet-of-Things
Security and Vulnerabilities: Taxonomy, Challenges, and Practice,” Journal of
Hardware and Systems Security, vol. 2, no. 2, pp. 97–110, 2018, ISSN: 2509-3436.
DOI: 10.1007/s41635-017-0029-7.

https://doi.org/10.1177/1550147717741463
https://doi.org/10.1177/1550147717741463
https://doi.org/10.1177/1550147717741463
https://doi.org/10.1109/MC.2000.839316
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/MM.2019.2897677
https://doi.org/10.1109/MSP.2005.159
https://doi.org/10.1007/s41635-017-0029-7

REFERENCES 251

[112] S, . Nicula and R. D. Zota, “Exploiting stack-based buffer overflow using modern day
techniques,” Procedia Computer Science, vol. 160, pp. 9–14, 2019, The 10th
International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN-2019) / The 9th International Conference on Current and Future Trends of
Information and Communication Technologies in Healthcare (ICTH-2019) / Affiliated
Workshops, ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2019.09.437.

[113] G. Mullen and L. Meany, “Assessment of Buffer Overflow Based Attacks On an IoT
Operating System,” in 2019 Global IoT Summit (GIoTS), 2019, pp. 1–6. DOI:
10.1109/GIOTS.2019.8766434.

[114] Y. Roumani and J. Nwankpa, “Examining Exploitability Risk of Vulnerabilities: A
Hazard Model,” Communications of the Association for Information Systems,
vol. 46, 2020, ISSN: 1529-3181. DOI: 10.17705/1CAIS.04618.

[115] J. P. Anderson, “Computer Security Technology Planning Study,” United States Air
Force, Bedford Massachusetts, USA, Tech. Rep. ESD-TR-73-51, Volume 2, Oct.
1972. eprint: http://csrc.nist.gov/publications/history/ande72.pdf.

[116] E. H. Spafford, “The Internet Worm Program: An Analysis,” SIGCOMM Comput.
Commun. Rev., vol. 19, no. 1, pp. 17–57, Jan. 1989, ISSN: 0146-4833. DOI:
10.1145/66093.66095. [Online]. Available: https://doi.org/10.1145/66093.66095.

[117] E. Levy, “Smashing the Stack for Fun and Profit,” Phrack, vol. 49, no. 14, 1996.
[Online]. Available: http://phrack.org/issues/49/14.html.

[118] D. Ray and J. Ligatti, “Defining Code-Injection Attacks,” SIGPLAN Notices, vol. 47,
no. 1, pp. 179–190, Jan. 2012, ISSN: 0362-1340. DOI: 10.1145/2103621.2103678.
[Online]. Available: https://doi.org/10.1145/2103621.2103678.

[119] J. Forristal, “NT Web Technology Vulnerabilities,” Phrack, vol. 8, no. 54, Dec. 1998.

[120] W. G. Halfond, J. Viegas, and A. Orso, “A classification of SQL-injection attacks and
countermeasures,” in Proceedings of the IEEE international symposium on secure
software engineering, IEEE, vol. 1, 2006, pp. 13–15.

[121] M. Horner and T. Hyslip, “SQL Injection: The Longest Running Sequel in
Programming History,” The Journal of Digital Forensics , Security and Law, vol. 12,
no. 2, pp. 97–108, Jun. 2017.

[122] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman, “The Matter of Heartbleed,” in
Proceedings of the 2014 Conference on Internet Measurement Conference,
ser. IMC ’14, Vancouver, BC, Canada: Association for Computing Machinery, 2014,
pp. 475–488, ISBN: 9781450332132. DOI: 10.1145/2663716.2663755. [Online].
Available: https://doi.org/10.1145/2663716.2663755.

[123] National Institute of Standards and Technology, “CVE-2021-44228 Detail,” National
Vulnerability Database, Tech. Rep. CVE-2021-44228, Dec. 2021. [Online].
Available: https://nvd.nist.gov/vuln/detail/CVE-2021-44228.

https://doi.org/https://doi.org/10.1016/j.procs.2019.09.437
https://doi.org/10.1109/GIOTS.2019.8766434
https://doi.org/10.17705/1CAIS.04618
http://csrc.nist.gov/publications/history/ande72.pdf
https://doi.org/10.1145/66093.66095
https://doi.org/10.1145/66093.66095
http://phrack.org/issues/49/14.html
https://doi.org/10.1145/2103621.2103678
https://doi.org/10.1145/2103621.2103678
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

252 REFERENCES

[124] N. Dragoni, A. Giaretta, and M. Mazzara, “The Internet of Hackable Things,” in
Proceedings of 5th International Conference in Software Engineering for Defence
Applications, P. Ciancarini, S. Litvinov, A. Messina, A. Sillitti, and G. Succi, Eds.,
Cham: Springer International Publishing, 2016, pp. 129–140, ISBN:
978-3-319-70578-1.

[125] Department for Digital, Culture, Media & Sport, “Code of Practice for Consumer IoT
Security,” HM Government (UK), Tech. Rep., Oct. 2018. [Online]. Available: https:
//www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security.

[126] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever,
Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou,
“Understanding the Mirai Botnet,” in Proceedings of the 26th USENIX Security
Symposium, Aug. 2017. [Online]. Available: https:
//www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf.

[127] T. Hunt. (Feb. 2016). “Controlling vehicle features of Nissan LEAFs across the
globe via vulnerable APIs,” [Online]. Available:
http://www.troyhunt.com/2016/02/controlling-vehicle-features-of-nissan.html
(visited on 03/22/2021).

[128] D’Orazio, Christian J., Choo, Kim-Kwang Raymond, and Yang, Laurence T., “Data
Exfiltration From Internet of Things Devices: iOS Devices as Case Studies,” IEEE
Internet of Things Journal, vol. 4, no. 2, pp. 524–535, May 2016. DOI:
10.1109/JIOT.2016.2569094. [Online]. Available:
http://ieeexplore.ieee.org/document/7470257/.

[129] B. Vignau, R. Khoury, and S. Hallé, “10 Years of IoT Malware: A Feature-Based
Taxonomy,” in 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), 2019, pp. 458–465. DOI:
10.1109/QRS-C.2019.00088.

[130] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “IoT Goes Nuclear:
Creating a ZigBee Chain Reaction,” in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 195–212. DOI: 10.1109/SP.2017.14.

[131] C. Wüest, “Is Ransomware coming to IoT devices?” In CRESTcon & IISP Congress
Conference 2016, Mar. 2016. [Online]. Available:
http://www.crestandiisp.com/wp-content/uploads/2016/03/CandidWueest.pdf.

[132] S. R. Zahra and M. Ahsan Chishti, “RansomWare and Internet of Things: A New
Security Nightmare,” in 2019 9th International Conference on Cloud Computing,
Data Science Engineering (Confluence), 2019, pp. 551–555. DOI:
10.1109/CONFLUENCE.2019.8776926.

https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
http://www.troyhunt.com/2016/02/controlling-vehicle-features-of-nissan.html
https://doi.org/10.1109/JIOT.2016.2569094
http://ieeexplore.ieee.org/document/7470257/
https://doi.org/10.1109/QRS-C.2019.00088
https://doi.org/10.1109/SP.2017.14
http://www.crestandiisp.com/wp-content/uploads/2016/03/CandidWueest.pdf
https://doi.org/10.1109/CONFLUENCE.2019.8776926

REFERENCES 253

[133] P. Bajpai and R. Enbody, “Preparing Smart Cities for Ransomware Attacks,” in 2020
3rd International Conference on Data Intelligence and Security (ICDIS), 2020,
pp. 127–133. DOI: 10.1109/ICDIS50059.2020.00023.

[134] C. D. McDermott, F. Majdani, and A. V. Petrovski, “Botnet Detection in the Internet
of Things using Deep Learning Approaches,” in 2018 International Joint Conference
on Neural Networks (IJCNN), 2018, pp. 1–8. DOI: 10.1109/IJCNN.2018.8489489.

[135] R. Hallman, J. Bryan, G. Palavicini, J. Divita, and J. Romero-Mariona, “IoDDoS —
The Internet of Distributed Denial of Service Attacks - A Case Study of the Mirai
Malware and IoT-Based Botnets,” in Proceedings of the 2nd International
Conference on Internet of Things, Big Data and Security, 2017, pp. 47–58, ISBN:
978-989-758-245-5. DOI: 10.5220/0006246600470058. [Online]. Available: http:
//www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006246600470058.

[136] P. Syverson, “A taxonomy of replay attacks [cryptographic protocols],” in
Proceedings The Computer Security Foundations Workshop VII, 1994,
pp. 187–191. DOI: 10.1109/CSFW.1994.315935.

[137] D. Kushner, “The real story of Stuxnet,” IEEE Spectrum, pp. 48–53, Mar. 2013. DOI:
10.1109/MSPEC.2013.6471059. [Online]. Available:
http://ieeexplore.ieee.org/document/6471059/.

[138] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Security Privacy,
vol. 9, no. 3, pp. 49–51, 2011. DOI: 10.1109/MSP.2011.67.

[139] D. Albright, P. Brannan, and C. Walrond, “Stuxnet Malware and Natanz,” Institute for
Science and International Security, Tech. Rep., Feb. 2011. [Online]. Available:
http://isis-online.org/isis-reports/detail/stuxnet-malware-and-natanz-update-of-isis-
december-22-2010-reportsupa-href1/8.

[140] S. Soltan, P. Mittal, and H. V. Poor, “BlackIoT: IoT botnet of high wattage devices
can disrupt the power grid,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 15–32.

[141] B. Huang, A. A. Cardenas, and R. Baldick, “Not everything is dark and gloomy:
Power grid protections against IoT demand attacks,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 1115–1132.

[142] D. Palmer, S. Fazzari, and S. Wartenberg, “Defense Systems and IoT: Security
Issues in an Era of Distributed Command and Control,” in Proceedings of the 26th
Edition on Great Lakes Symposium on VLSI, ser. GLSVLSI ’16, Boston,
Massachusetts, USA: Association for Computing Machinery, 2016, pp. 175–179,
ISBN: 9781450342742. DOI: 10.1145/2902961.2903038. [Online]. Available:
https://doi.org/10.1145/2902961.2903038.

https://doi.org/10.1109/ICDIS50059.2020.00023
https://doi.org/10.1109/IJCNN.2018.8489489
https://doi.org/10.5220/0006246600470058
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006246600470058
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006246600470058
https://doi.org/10.1109/CSFW.1994.315935
https://doi.org/10.1109/MSPEC.2013.6471059
http://ieeexplore.ieee.org/document/6471059/
https://doi.org/10.1109/MSP.2011.67
http://isis-online.org/isis-reports/detail/stuxnet-malware-and-natanz-update-of-isis-december-22-2010-reportsupa-href1/8
http://isis-online.org/isis-reports/detail/stuxnet-malware-and-natanz-update-of-isis-december-22-2010-reportsupa-href1/8
https://doi.org/10.1145/2902961.2903038
https://doi.org/10.1145/2902961.2903038

254 REFERENCES

[143] R. E. Hiromoto, M. Haney, and A. Vakanski, “A secure architecture for IoT with
supply chain risk management,” in 2017 9th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), vol. 1, 2017, pp. 431–435. DOI:
10.1109/IDAACS.2017.8095118.

[144] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s Knife Collection: A
Review of Open Source Software Supply Chain Attacks,” in Detection of Intrusions
and Malware, and Vulnerability Assessment, C. Maurice, L. Bilge, G. Stringhini, and
N. Neves, Eds., Cham: Springer International Publishing, 2020, pp. 23–43, ISBN:
978-3-030-52683-2.

[145] D.-L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta, “Typosquatting and
Combosquatting Attacks on the Python Ecosystem,” in 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW), 2020, pp. 509–514.
DOI: 10.1109/EuroSPW51379.2020.00074.

[146] National Cyber Security Center of the Netherlands, “Cyber Security Assessment
Netherlands 2017,” National Cyber Security Center of the Netherlands, Tech. Rep.
CSAN2017, Aug. 2017. [Online]. Available: https://www.ncsc.nl/english/current-
topics/Cyber+Security+Assessment+Netherlands/cyber-security-assessment-
netherlands-2017.html.

[147] W. A. Arbaugh, W. L. Fithen, and J. McHugh, “Windows of vulnerability: A case
study analysis,” Computer, vol. 33, no. 12, pp. 52–59, 2000. DOI: 10.1109/2.889093.

[148] S. Datta Burton, L. M. Tanczer, S. Vasudevan, S. Hailes, and M. Carr, “The UK
Code of Practice for Consumer IoT Cybersecurity: ’where we are and what next’.,”
Mar. 2021. DOI: DOI:10.14324/000.rp.10117734.

[149] D. Kahn, The Code Breakers: The Compreshnsive History of Secret
Communication fropm Ancient Times to the Internet. Scribner, 1996.

[150] F. W. Winterbotham, The Ultra Secret. London: Weidenfeld and Nicolson, Oct.
1974, ISBN: 0297768328.

[151] G. Welchman, The Hut Siz Story. McGraw-Hill, Mar. 1982, ISBN: 0070691800.

[152] J. H. Ellis, “The possibility of Secure “Non-Secret” Digital Encryption,” GCHQ, Tech.
Rep. 3006, Jan. 1970.

[153] C. C. Cocks, “A Note on ‘Non-Secret Encryption’,” GCHQ, Tech. Rep., Nov. 1973.

[154] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems.,” Communications of the ACM, vol. 21,
no. 2, pp. 120–126, Feb. 1978. DOI: 10.1145/359340.359342.

[155] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on the theory and
application of cryptographic techniques, Springer, 1985, pp. 417–426.

[156] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation, vol. 48,
no. 177, pp. 203–209, 1987.

https://doi.org/10.1109/IDAACS.2017.8095118
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://www.ncsc.nl/english/current-topics/Cyber+Security+Assessment+Netherlands/cyber-security-assessment-netherlands-2017.html
https://www.ncsc.nl/english/current-topics/Cyber+Security+Assessment+Netherlands/cyber-security-assessment-netherlands-2017.html
https://www.ncsc.nl/english/current-topics/Cyber+Security+Assessment+Netherlands/cyber-security-assessment-netherlands-2017.html
https://doi.org/10.1109/2.889093
https://doi.org/DOI:%2010.14324/000.rp.10117734
https://doi.org/10.1145/359340.359342

REFERENCES 255

[157] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[158] D. Boneh, “Twenty Years of Attacks on the RSA Cryptosystem,” Notices of the
American Mathematical Society, vol. 46, no. 2, pp. 203–213, Feb. 1999. [Online].
Available: http://www.ams.org/notices/199902/boneh.pdf.

[159] US-CERT, “SSL 3.0 Protocol Vulnerability and POODLE Attack,” Tech. Rep. Alert
(TA14-290A), Oct. 2014. [Online]. Available:
https://www.us-cert.gov/ncas/alerts/TA14-290A.

[160] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2,” Internet Engineering Task Force, Tech. Rep. RFC5246, Aug. 2008. DOI:
10.17487/rfc5246. [Online]. Available: https://www.rfc-editor.org/info/rfc5246.

[161] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. 22, no. 6, pp. 644–654, 1976. DOI:
10.1109/TIT.1976.1055638.

[162] C. Cheng, R. Lu, A. Petzoldt, and T. Takagi, “Securing the Internet of Things in a
Quantum World,” IEEE Communications Magazine, vol. 55, no. 2, pp. 116–120,
2017. DOI: 10.1109/MCOM.2017.1600522CM.

[163] A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2,
p. 117, 1998.

[164] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and
factoring,” in Proceedings 35th annual symposium on foundations of computer
science, Ieee, 1994, pp. 124–134.

[165] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang,
I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science,
vol. 351, no. 6277, pp. 1068–1070, 2016.

[166] U. Pujeri, P. S. Aithal, and R. Pujeri, “Survey of Lattice to Design Post Quantum
Cryptographic Algorithm Using Lattice,” International Journal of Engineering Trends
and Technology, vol. 69, no. 1, pp. 92–96, Jan. 2021, (January 25, 2021). DOI:
10.2139/ssrn.3805387.

[167] R. Braden, “Requirements for Internet Hosts – Communication Layers,” Tech. Rep.
RFC 1122, Oct. 1, 1989. [Online]. Available: https://tools.ietf.org/html/rfc1122.

[168] IEEE, IEEE Standard for Ethernet, IEEE, Piscataway, NJ, USA, Mar. 2016. DOI:
10.1109/IEEESTD.2016.7428776. [Online]. Available:
http://ieeexplore.ieee.org/document/7428776/.

[169] ——, IEEE Standard for Wireless LAN, IEEE, Piscataway, NJ, USA, Dec. 2016.
DOI: 10.1109/IEEESTD.2016.7786995. [Online]. Available:
http://ieeexplore.ieee.org/document/7786995/.

[170] N. Abramson, “Development of the ALOHANET,” IEEE Transactions on Information
Theory, vol. 31, no. 2, pp. 119–123, 1985. DOI: 10.1109/TIT.1985.1057021.

http://www.ams.org/notices/199902/boneh.pdf
https://www.us-cert.gov/ncas/alerts/TA14-290A
https://doi.org/10.17487/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/MCOM.2017.1600522CM
https://doi.org/10.2139/ssrn.3805387
https://tools.ietf.org/html/rfc1122
https://doi.org/10.1109/IEEESTD.2016.7428776
http://ieeexplore.ieee.org/document/7428776/
https://doi.org/10.1109/IEEESTD.2016.7786995
http://ieeexplore.ieee.org/document/7786995/
https://doi.org/10.1109/TIT.1985.1057021

256 REFERENCES

[171] C. E. Spurgeon and J. Zimmerman, Ethernet: the definitive guide, Second. O’Reilly
Media, Inc., Mar. 2014, ISBN: 978-1-449-36184-6.

[172] Xerox Corporation, ALTO: A Personal Computer System Hardware Manual, Xerox
Corporation, 3333 Coyote Hill Road, Palo Alto, California, Aug. 1976. [Online].
Available:
http://www.bitsavers.org/pdf/xerox/alto/Alto_Hardware_Manual_Aug76.pdf.

[173] P. C. Jain, “Recent trends in next generation terabit Ethernet and gigabit wireless
local area network,” in 2016 International Conference on Signal Processing and
Communication (ICSC), 2016, pp. 106–110. DOI:
10.1109/ICSPCom.2016.7980557.

[174] IEEE, “IEEE Standard for Ethernet Amendment 10: Media Access Control
Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400
Gb/s Operation,” IEEE, Tech. Rep. IEEE 802.3bs-2017, Dec. 2017. [Online].
Available: https://standards.ieee.org/standard/802_3bs-2017.html.

[175] V. Cerf and R. Kahn, “A Protocol for Packet Network Intercommunication,” IEEE
Transactions on Communications, vol. 22, no. 5, pp. 637–648, 1974. DOI:
10.1109/TCOM.1974.1092259. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1092259.

[176] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel,
L. G. Roberts, and S. S. Wolff, “The Past and Future History of the Internet,”
Communications of the ACM, vol. 40, no. 2, pp. 102–108, Feb. 1997, ISSN:
0001-0782. DOI: 10.1145/253671.253741. [Online]. Available:
https://doi.org/10.1145/253671.253741.

[177] S. McKenzie, “Asynchronous Transfer Mode (ATM),” in Encyclopedia of Computer
Science. GBR: John Wiley and Sons Ltd., 2003, pp. 107–108, ISBN: 0470864125.

[178] J. Postel, “Transmission Control Protocol,” Internet Engineering Task Force, Tech.
Rep. RFC793, Sep. 1981. DOI: 10.17487/rfc0793. [Online]. Available:
https://tools.ietf.org/html/rfc793.

[179] J. Postel, “User Datagram Protocol,” Internet Engineering Task Force, Tech. Rep.
RFC768, Aug. 1980. DOI: 10.17487/rfc0768. [Online]. Available:
https://www.rfc-editor.org/info/rfc0768.

[180] F. X. Anklesaria, M. P. McCahill, P. Lindner, D. Johnson, D. Torrey, and B. Albert,
“The Internet Gopher Protocol (a distributed document search and retrieval
protocol).,” Internet Engineering Task Force, Tech. Rep. RFC1436, 1993. DOI:
10.17487/RFC1436. [Online]. Available: https://www.rfc-editor.org/info/rfc1436.

[181] T. Berners-Lee, “Information Management: A Proposal,” Conseil Européen pour la
Recherche Nucléaire, Geneva, Tech. Rep., 1990. [Online]. Available:
https://www.w3.org/History/1989/proposal.html.

http://www.bitsavers.org/pdf/xerox/alto/Alto_Hardware_Manual_Aug76.pdf
https://doi.org/10.1109/ICSPCom.2016.7980557
https://standards.ieee.org/standard/802_3bs-2017.html
https://doi.org/10.1109/TCOM.1974.1092259
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1092259
https://doi.org/10.1145/253671.253741
https://doi.org/10.1145/253671.253741
https://doi.org/10.17487/rfc0793
https://tools.ietf.org/html/rfc793
https://doi.org/10.17487/rfc0768
https://www.rfc-editor.org/info/rfc0768
https://doi.org/10.17487/RFC1436
https://www.rfc-editor.org/info/rfc1436
https://www.w3.org/History/1989/proposal.html

REFERENCES 257

[182] National Institute of Standards and Technology, “Announcing the Advanced
Encryption Standard (AES),” National Institute of Standards and Technology, Tech.
Rep. FIPS197, Nov. 2001. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[183] J. Demen and V. Rijmen, “AES Proposal: Rijndael,” National Institute of Standards
and Technology, Tech. Rep., 1999.

[184] W. Penard and T. van Werkhoven, “On the Secure Hash Algorithm family,” National
Institute of Standards and Technology, Tech. Rep., 2001.

[185] National Institute of Standards and Technology, “Announcing Approval of Federal
Information Processing Standard (FIPS) 180-2, Secure Hash Standard,” National
Institute of Standards and Technology, Tech. Rep. FIPS180-2, 2002.

[186] K. Seo and S. Kent, “Security Architecture for the Internet Protocol,” Tech. Rep.
RFC4301, Dec. 2005. [Online]. Available: http://tools.ietf.org/html/rfc4301.

[187] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt, “Secure
communication for the Internet of Things—a comparison of link-layer security and
IPsec for 6LoWPAN,” Security and Communication Networks, vol. 7, no. 12,
pp. 2654–2668, Dec. 2014. DOI: 10.1002/sec.406. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/sec.406/full.

[188] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” Tech. Rep. RFC2246, Jan.
1999. [Online]. Available: https://tools.ietf.org/html/rfc2246.

[189] A. Freier, P. Karlton, and P. Kocher, “The Secure Sockets Layer (SSL) Protocol
Version 3.0,” Internet Engineering Task Force, Tech. Rep. RFC6101, Aug. 2011.
[Online]. Available: https://tools.ietf.org/html/rfc6101.

[190] E. Rescorla, “HTTP over TLS,” Internet Engineering Task Force, Tech. Rep.
RFC2818, May 2000. [Online]. Available: https://tools.ietf.org/html/rfc2818.

[191] Let’s Encrypt. (). “About Let’s Encrypt,” [Online]. Available:
https://letsencrypt.org/about/.

[192] International Telecommunication Union, “X.509 : Information technology - Open
Systems Interconnection - The Directory: Public-key and attribute certificate
frameworks,” International Telecommunications Union, Tech. Rep. X.509 (10/19),
Oct. 2019.

[193] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” Internet Engineering Task Force, Tech. Rep., 2008.

[194] J. Roskind, “QUIC: Design Document and Specification Rationale,” Google, Tech.
Rep., Apr. 2012. [Online]. Available:
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-
ev2jRFUoVD34/.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://tools.ietf.org/html/rfc4301
https://doi.org/10.1002/sec.406
http://onlinelibrary.wiley.com/doi/10.1002/sec.406/full
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc2818
https://letsencrypt.org/about/
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/

258 REFERENCES

[195] P. Biswal and O. Gnawali, “Does QUIC Make the Web Faster?” In 2016 IEEE Global
Communications Conference (GLOBECOM), Dec. 2016, pp. 1–6. DOI:
10.1109/GLOCOM.2016.7841749.

[196] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, “Innovating Transport with QUIC:
Design Approaches and Research Challenges,” IEEE Internet Computing, vol. 21,
no. 2, pp. 72–76, Mar. 2017, ISSN: 1089-7801. DOI: 10.1109/MIC.2017.44.

[197] D. Murray, T. Koziniec, S. Zander, M. Dixon, and P. Koutsakis, “An analysis of
changing enterprise network traffic characteristics,” in 2017 23rd Asia-Pacific
Conference on Communications (APCC), Dec. 2017, pp. 1–6. DOI:
10.23919/APCC.2017.8303960.

[198] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2,”
Internet Engineering Task Force, Tech. Rep., 2012.

[199] T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, and G. Carle, “DTLS based security and
two-way authentication for the Internet of Things,” Ad Hoc Networks, vol. 11, no. 8,
pp. 2710–2723, 2013, ISSN: 1570-8705. DOI:
https://doi.org/10.1016/j.adhoc.2013.05.003. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570870513001029.

[200] N. AlFardan and K. G. Paterson, “Plaintext-recovery attacks against datagram TLS,”
in Network and Dstributed System Security symposium (NDSS 2012), 2012.

[201] T. Ylönen, “The Secure Shell (SSH) Connection Protocol,” Internet Engineering
Task Force, Tech. Rep. RFC 4254, 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4254.

[202] R. T. Fielding and R. N. Taylor, “Principled design of the modern Web architecture,”
in International Conference on Software Engineering, New York, New York, USA:
ACM Press, 2000, pp. 407–416. DOI: 10.1145/337180.337228. [Online]. Available:
http://dx.doi.org/10.1145%2F337180.337228.

[203] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP,” in 2017 IEEE International Systems Engineering Symposium
(ISSE), Oct. 2017, pp. 1–7. DOI: 10.1109/SysEng.2017.8088251.

[204] H. W. van der Westhuizen and G. P. Hancke, “Practical Comparison between COAP
and MQTT - Sensor to Server level,” in 2018 Wireless Advanced (WiAd), 2018,
pp. 1–6. DOI: 10.1109/WIAD.2018.8588443.

[205] Y. Guamán, G. Ninahualpa, G. Salazar, and T. Guarda, “Comparative Performance
Analysis between MQTT and CoAP Protocols for IoT with Raspberry PI 3 in IEEE
802.11 Environments,” in 2020 15th Iberian Conference on Information Systems
and Technologies (CISTI), 2020, pp. 1–6. DOI:
10.23919/CISTI49556.2020.9140905.

https://doi.org/10.1109/GLOCOM.2016.7841749
https://doi.org/10.1109/MIC.2017.44
https://doi.org/10.23919/APCC.2017.8303960
https://doi.org/https://doi.org/10.1016/j.adhoc.2013.05.003
https://www.sciencedirect.com/science/article/pii/S1570870513001029
https://tools.ietf.org/html/rfc4254
https://doi.org/10.1145/337180.337228
http://dx.doi.org/10.1145%2F337180.337228
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/WIAD.2018.8588443
https://doi.org/10.23919/CISTI49556.2020.9140905

REFERENCES 259

[206] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An Application Protocol for
Billions of Tiny Internet Nodes,” IEEE Internet Computing, vol. 16, no. 2, pp. 62–67,
2012. DOI: 10.1109/MIC.2012.29.

[207] A. Rahman and E. Dijk, “Group Communication for the Constrained Application
Protocol (CoAP),” Tech. Rep. RFC7390, Oct. 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7390.

[208] Z. Shelby, “Constrained RESTful Environments (CoRE) Link Format,” Tech. Rep.
RFC6690, Aug. 2012. [Online]. Available: https://tools.ietf.org/html/rfc6690.

[209] R. A. Rahman and B. Shah, “Security analysis of IoT protocols: A focus in CoAP,” in
2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC),
2016, pp. 1–7. DOI: 10.1109/ICBDSC.2016.7460363.

[210] G. Tanganelli, C. Vallati, and E. Mingozzi, “CoAPthon: Easy development of
CoAP-based IoT applications with Python,” in 2015 IEEE 2nd World Forum on
Internet of Things (WF-IoT), 2015, pp. 63–68. DOI: 10.1109/WF-IoT.2015.7389028.

[211] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “MQTT Specification (version
5.0),” OASIS, Tech. Rep., Mar. 2019. [Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf.

[212] R. A. Light, “Mosquitto: server and client implementation of the MQTT protocol,”
Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[213] K. Hwang, J. M. Lee, I. H. Jung, and D. Lee, “Modification of Mosquitto Broker for
Delivery of Urgent MQTT Message,” in 2019 IEEE Eurasia Conference on IOT,
Communication and Engineering (ECICE), 2019, pp. 166–167. DOI:
10.1109/ECICE47484.2019.8942800.

[214] P. Eronen and H. Tschofenig, “Pre-shared key ciphersuites for transport layer
security (TLS),” Tech. Rep. RFC4048, 2005. DOI: 10.17487/rfc4048. [Online].
Available: https://www.rfc-editor.org/info/rfc4048.

[215] S. Han, E. Chang, W. Liu, J. Wang, and V. Potdar, “A new encryption algorithm over
elliptic curve,” in INDIN ’05. 2005 3rd IEEE International Conference on Industrial
Informatics, 2005., 2005, pp. 675–679. DOI: 10.1109/INDIN.2005.1560456.

[216] North Atlantic Treaty Organization, Allied Joint Dctrine for the conduct of
operations, AJP-3(B). NATO, Jun. 2017. [Online]. Available:
https://www.gov.uk/government/publications/allied-joint-doctrine-for-the-conduct-
of-operations-ajp-3b.

[217] W. Bai, M. Pearson, P. G. Kelley, and M. L. Mazurek, “Improving Non-Experts’
Understanding of End-to-End Encryption: An Exploratory Study,” in 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS PW), 2020,
pp. 210–219. DOI: 10.1109/EuroSPW51379.2020.00036.

https://doi.org/10.1109/MIC.2012.29
https://tools.ietf.org/html/rfc7390
https://tools.ietf.org/html/rfc6690
https://doi.org/10.1109/ICBDSC.2016.7460363
https://doi.org/10.1109/WF-IoT.2015.7389028
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://doi.org/10.1109/ECICE47484.2019.8942800
https://doi.org/10.17487/rfc4048
https://www.rfc-editor.org/info/rfc4048
https://doi.org/10.1109/INDIN.2005.1560456
https://www.gov.uk/government/publications/allied-joint-doctrine-for-the-conduct-of-operations-ajp-3b
https://www.gov.uk/government/publications/allied-joint-doctrine-for-the-conduct-of-operations-ajp-3b
https://doi.org/10.1109/EuroSPW51379.2020.00036

260 REFERENCES

[218] M. van Straten, “The Google Cloud powers your Philips Hue Lightbulbs,” in GDG
DevFest Ukraine 2018, 2018. [Online]. Available:
https://speakerdeck.com/crunchie84/the-google-cloud-powers-your-philips-hue-
lightbulbs.

[219] A. Kott, “Challenges and characteristics of intelligent autonomy for Internet of Battle
Things in highly adversarial environments,” arXiv preprint arXiv:1803.11256, 2018.

[220] A. Raglin, S. Metu, S. Russell, and P. Budulas, “Implementing Internet of Things in
a military command and control environment,” Proceedings of the Society of
Photo-Optical Instrumentation Engineers, vol. 10207, May 2017. DOI:
10.1117/12.2265030. [Online]. Available:
https://www.spiedigitallibrary.org/conference-proceedings-of-
spie/10207/1020708/Implementing-Internet-of-Things-in-a-military-command-and-
control/10.1117/12.2265030.full.

[221] A. Kott and D. S. Alberts, “How Do You Command an Army of Intelligent Things?”
IEEE Computer, vol. 50, no. 12, pp. 96–100, Dec. 2017. DOI:
10.1109/MC.2017.4451205.

[222] S. Samonas and D. Coss, “The CIA Strikes Back: Redefinning Confidentiality,
Integrity and Availability in security.,” Journal of Information System Security,
vol. 10, no. 3, 2014.

[223] J. Braun, J. Buchmann, D. Demirel, M. Geihs, M. Fujiwara, S. Moriai, M. Sasaki,
and A. Waseda, “LINCOS: A Storage System Providing Long-Term Integrity,
Authenticity, and Confidentiality,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ser. ASIA CCS ’17, Abu
Dhabi, United Arab Emirates: Association for Computing Machinery, 2017,
pp. 461–468, ISBN: 9781450349444. DOI: 10.1145/3052973.3053043. [Online].
Available: https://doi.org/10.1145/3052973.3053043.

[224] K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragkiadakis,
Firmware over-the-air programming techniques for iot networks – a survey, 2020.
arXiv: 2009.02260 [cs.NI].

[225] J. L. Hernández-Ramos, G. Baldini, S. N. Matheu, and A. Skarmeta, “Updating IoT
devices: challenges and potential approaches,” in 2020 Global Internet of Things
Summit (GIoTS), 2020, pp. 1–5. DOI: 10.1109/GIOTS49054.2020.9119514.

[226] O. Grote, A. Ahrens, and C. Benavente-Peces, “A Review of Post-quantum
Cryptography and Crypto-agility Strategies,” in 2019 International Interdisciplinary
PhD Workshop (IIPhDW), 2019, pp. 115–120. DOI: 10.1109/IIPHDW.2019.8755433.

[227] D. Peng, L. Cao, and W. Xu, “Using JSON for data exchanging in web service
applications,” Journal of Computational Information Systems, vol. 7, no. 16,
pp. 5883–5890, 2011.

https://speakerdeck.com/crunchie84/the-google-cloud-powers-your-philips-hue-lightbulbs
https://speakerdeck.com/crunchie84/the-google-cloud-powers-your-philips-hue-lightbulbs
https://doi.org/10.1117/12.2265030
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10207/1020708/Implementing-Internet-of-Things-in-a-military-command-and-control/10.1117/12.2265030.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10207/1020708/Implementing-Internet-of-Things-in-a-military-command-and-control/10.1117/12.2265030.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10207/1020708/Implementing-Internet-of-Things-in-a-military-command-and-control/10.1117/12.2265030.full
https://doi.org/10.1109/MC.2017.4451205
https://doi.org/10.1145/3052973.3053043
https://doi.org/10.1145/3052973.3053043
https://arxiv.org/abs/2009.02260
https://doi.org/10.1109/GIOTS49054.2020.9119514
https://doi.org/10.1109/IIPHDW.2019.8755433

REFERENCES 261

[228] K. Maeda, “Performance evaluation of object serialization libraries in XML, JSON
and binary formats,” in 2012 Second International Conference on Digital
Information and Communication Technology and it’s Applications (DICTAP), 2012,
pp. 177–182. DOI: 10.1109/DICTAP.2012.6215346.

[229] S. Wen and W. Dang, “Research on Base64 Encoding Algorithm and PHP
Implementation,” in 2018 26th International Conference on Geoinformatics, 2018,
pp. 1–5. DOI: 10.1109/GEOINFORMATICS.2018.8557068.

[230] S. Popić, D. Pezer, B. Mrazovac, and N. Teslić, “Performance evaluation of using
Protocol Buffers in the Internet of Things communication,” in 2016 International
Conference on Smart Systems and Technologies (SST), 2016, pp. 261–265. DOI:
10.1109/SST.2016.7765670.

[231] J. Jonsson and B. Kaliski, “Public-key cryptography standards (PKCS)# 1: RSA
cryptography specifications version 2.1,” Internet Engineering Task Force (IETF),
Tech. Rep. RFC 3447, Feb. 2003.

[232] S. Furuhashi. (). “MessagePack,” [Online]. Available: https://msgpack.org/index.html
(visited on 04/04/2018).

[233] F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Scalability
Analysis of Large-Scale LoRaWAN Networks in ns-3,” IEEE Internet of Things
Journal, vol. 4, no. 6, pp. 2186–2198, 2017. DOI: 10.1109/JIOT.2017.2768498.

[234] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier (UUID) URN
Namespace,” RFC Editor, Tech. Rep. RFC4122, Jul. 2005. DOI: 10.17487/rfc4122.

[235] B. Schiling, The Boost C++ Libraries. XML Press, Jul. 2011, ISBN: 0982219199.
[Online]. Available: http://www.worldcat.org/title/boost-c-libraries/oclc/929660203.

[236] F. H. Mathis, “A Generalized Birthday Problem,” SIAM Review, vol. 33, no. 2,
pp. 265–270, Jul. 1991. DOI: 10.1137/1033051. [Online]. Available:
https://doi.org/10.1137/1033051.

[237] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, “A Formal Analysis of
Authentication in the TPM,” in Formal Aspects of Security and Trust, P. Degano,
S. Etalle, and J. Guttman, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 111–125, ISBN: 978-3-642-19751-2.

[238] S. L. Kinney, Trusted platform module basics: using TPM in embedded systems.
Elsevier, 2006.

[239] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in 2007 44th ACM/IEEE Design
Automation Conference, Jun. 2007, pp. 9–14.

[240] M. Sethi, J. Arkko, A. Keranen, and H. Back, “Practical Considerations and
Implementation Experiences in Securing Smart Object Networks,” Internet
Engineering Task Force, Tech. Rep. draft-ietf-lwig-crypto-sensors-05, Dec. 2017.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-lwig-crypto-sensors-05.

https://doi.org/10.1109/DICTAP.2012.6215346
https://doi.org/10.1109/GEOINFORMATICS.2018.8557068
https://doi.org/10.1109/SST.2016.7765670
https://msgpack.org/index.html
https://doi.org/10.1109/JIOT.2017.2768498
https://doi.org/10.17487/rfc4122
http://www.worldcat.org/title/boost-c-libraries/oclc/929660203
https://doi.org/10.1137/1033051
https://doi.org/10.1137/1033051
https://tools.ietf.org/html/draft-ietf-lwig-crypto-sensors-05

262 REFERENCES

[241] S. Garfinkel, “An Evaluation of Amazon’s Grid Computing Services: EC2, S3, and
SQS,” Harvard University Computer Science Group, Tech. Rep. TR-08-07, 2007.
[Online]. Available: http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829568.

[242] S. Tiwari, “An Introduction to QR Code Technology,” in 2016 International
Conference on Information Technology (ICIT), 2016, pp. 39–44. DOI:
10.1109/ICIT.2016.021.

[243] G. Madlmayr, J. Langer, C. Kantner, and J. Scharinger, “NFC Devices: Security and
Privacy,” in 2008 Third International Conference on Availability, Reliability and
Security, 2008, pp. 642–647. DOI: 10.1109/ARES.2008.105.

[244] K. E. Jeon, J. She, P. Soonsawad, and P. C. Ng, “BLE Beacons for Internet of
Things Applications: Survey, Challenges, and Opportunities,” IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 811–828, 2018. DOI: 10.1109/JIOT.2017.2788449.

[245] D. Bhattacharya, M. Canul, and S. Knight, “Impact of the Physical Web and BLE
Beacons,” in Proceedings of the 5th Annual Conference on Research in Information
Technology, ser. RIIT ’16, Boston, Massachusetts, USA: Association for Computing
Machinery, 2016, p. 53, ISBN: 9781450344531. DOI: 10.1145/2978178.2978179.
[Online]. Available: https://doi.org/10.1145/2978178.2978179.

[246] C. Henderson, “IoT: End of Shorter Days,” in RSA Conference 2017, San
Francisco, 2017. [Online]. Available:
https://www.rsaconference.com/videos/iot-end-of-shorter-days.

[247] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,” Internet
Engineering Task Force (IETF), Tech. Rep. RFC3548, Jul. 2003.

[248] J. Tan, L. Bauer, J. Bonneau, L. F. Cranor, J. Thomas, and B. Ur, “Can Unicorns
Help Users Compare Crypto Key Fingerprints?” In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’17, New York, NY,
USA: Association for Computing Machinery, 2017, pp. 3787–3798, ISBN:
9781450346559. DOI: 10.1145/3025453.3025733. [Online]. Available:
https://doi.org/10.1145/3025453.3025733.

[249] N. Gordon, “Colour blindness,” Public Health, vol. 112, no. 2, pp. 81–84, 1998,
ISSN: 0033-3506. DOI: https://doi.org/10.1038/sj.ph.1900446. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0033350698005903.

[250] D. L. McDonald, “A convention for human-readable 128-bit keys,” Internet
Engineering Task Force, Tech. Rep. RFC 1751, 1994. DOI: 10.17487/rfc1751.
[Online]. Available: https://www.rfc-editor.org/info/rfc1751.

[251] M. D. Leonhard and V. N. Venkatakrishnan, “A comparative study of three random
password generators,” in 2007 IEEE International Conference on
Electro/Information Technology, 2007, pp. 227–232. DOI:
10.1109/EIT.2007.4374533.

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829568
https://doi.org/10.1109/ICIT.2016.021
https://doi.org/10.1109/ARES.2008.105
https://doi.org/10.1109/JIOT.2017.2788449
https://doi.org/10.1145/2978178.2978179
https://doi.org/10.1145/2978178.2978179
https://www.rsaconference.com/videos/iot-end-of-shorter-days
https://doi.org/10.1145/3025453.3025733
https://doi.org/10.1145/3025453.3025733
https://doi.org/https://doi.org/10.1038/sj.ph.1900446
https://www.sciencedirect.com/science/article/pii/S0033350698005903
https://doi.org/10.17487/rfc1751
https://www.rfc-editor.org/info/rfc1751
https://doi.org/10.1109/EIT.2007.4374533

REFERENCES 263

[252] Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Flexible
active-matrix electronic ink display,” Nature, vol. 423, no. 69366936, pp. 136–136,
May 2003, ISSN: 1476-4687. DOI: 10.1038/423136a.

[253] A. J. Poulter, pySRUP – Human verficiation of device identity, Video, Sep. 2019.
[Online]. Available: https://youtu.be/-qBzZ3wT1Tc.

[254] O. Lobachev, “Direct visualization of cryptographic keys for enhanced security,” The
Visual Computer, vol. 34, no. 12, pp. 1749–1759, Dec. 2018. DOI:
10.1007/s00371-017-1466-6.

[255] P. R. Zimmermann, The official PGP user’s guide. MIT press, 1995.

[256] D. Loss, T. Limmer, and A. von Gernler, “The Drunken Bishop: An Analysis of the
OpenSSH Fingerprint Visualization Algorithm,” Jan. 2009.

[257] M. Naor and A. Shamir, “Visual cryptography,” in Advances in Cryptology —
EUROCRYPT’94, A. De Santis, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 1–12, ISBN: 978-3-540-44717-7. DOI: 10.1007/BFb0053418. [Online].
Available: http://link.springer.com/10.1007/BFb0053418.

[258] International Organization for Standardization, “Information technology —
Automatic identification and data capture techniques — Code 128 bar code
symbology specification,” International Organization for Standardization, Tech. Rep.
ISO/IEC 15417:2007, Jun. 2007. [Online]. Available: https://www.iso.org/cms/
render/live/en/sites/isoorg/contents/data/standard/04/38/43896.html.

[259] I.-C. Dita, M. Otesteanu, and F. Quint, “Data Matrix Code — A reliable optical
identification of microelectronic components,” in 2011 IEEE 17th International
Symposium for Design and Technology in Electronic Packaging (SIITME), 2011,
pp. 39–44. DOI: 10.1109/SIITME.2011.6102683.

[260] R. Kulshreshtha, A. Kamboj, and S. Singh, “Decoding robustness performance
comparison for QR and data matrix code,” ser. CCSEIT ’12, Association for
Computing Machinery, Oct. 2012, pp. 722–731, ISBN: 978-1-4503-1310-0. DOI:
10.1145/2393216.2393337. [Online]. Available:
https://doi.org/10.1145/2393216.2393337.

[261] L. Hudson, V. Kursancew, and J. Weston, pylibdmtx,
https://github.com/NaturalHistoryMuseum/pylibdmtx, May 2020.

[262] L. Hudson and A. Newby, pyzbar, https://github.com/NaturalHistoryMuseum/pyzbar,
Natural History Museum, May 2020.

[263] J. C. Haartsen, “The Bluetooth radio system,” IEEE Personal Communications,
vol. 7, no. 1, pp. 28–36, 2000. DOI: 10.1109/98.824570.

[264] S. Safaric and K. Malaric, “ZigBee wireless standard,” in Proceedings of 2006
International Symposium on Electronics in Marine (ELMAR 2006), M. Grgić and
S. Grgić, Eds., IEEE, Zadar, Croatia: Institute of Electrical and Electronic
Engineers, Jun. 2006, pp. 259–262. DOI: 10.1109/ELMAR.2006.329562.

https://doi.org/10.1038/423136a
https://youtu.be/-qBzZ3wT1Tc
https://doi.org/10.1007/s00371-017-1466-6
https://doi.org/10.1007/BFb0053418
http://link.springer.com/10.1007/BFb0053418
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/38/43896.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/38/43896.html
https://doi.org/10.1109/SIITME.2011.6102683
https://doi.org/10.1145/2393216.2393337
https://doi.org/10.1145/2393216.2393337
https://github.com/NaturalHistoryMuseum/pylibdmtx
https://github.com/NaturalHistoryMuseum/pyzbar
https://doi.org/10.1109/98.824570
https://doi.org/10.1109/ELMAR.2006.329562

264 REFERENCES

[265] S. A. Weis, “RFID (radio frequency identification): Principles and applications,”
System, vol. 2, no. 3, pp. 1–23, 2007.

[266] F. D. Garcia, G. de Koning Gans, R. Muijrers, P. Van Rossum, R. Verdult,
R. W. Schreur, and B. Jacobs, “Dismantling MIFARE classic,” in European
symposium on research in computer security, 2008, pp. 97–114.

[267] NFC Forum, NFC Data Exchange Format (NDEF) Technical Specification, Jul.
2006.

[268] NFC Forum Technical Specification, SNEP: Simple NDEF Exchange Protcol.
[Online]. Available: http://www.nfcforum.org/specs/spec-list/.

[269] A. Lotito and D. Mazzocchi, “OPEN-SNEP Project: Enabling P2P over NFC Using
NPP and SNEP,” in 2013 5th International Workshop on Near Field Communication
(NFC), Feb. 2013, pp. 1–6. DOI: 10.1109/NFC.2013.6482447.

[270] NXP Semiconductors B.V., PN532/C1 - Near Field Communication (NFC)
controller, NXP B.V., Nov. 2017. [Online]. Available:
https://www.nxp.com/docs/en/nxp/data-sheets/PN532_C1.pdf.

[271] Microchip Technology Inc., ATmega16U4 / ATmega32U4 — 8-bit Microcontroller
with 16/32K bytes of ISP Flash and USB Controller, Microchip Technology Inc.,
2016. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-
ATmega16U4-32U4_Summary.pdf.

[272] A. J. Poulter, SRUP Machine Moderated Joins, Video, Aug. 2020. [Online].
Available: https://youtu.be/Vi135raj1LE.

[273] M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A Survey of Internet of
Things (IoT) Authentication Schemes,” Sensors, vol. 19, no. 5, p. 1141, Jan. 2019.
DOI: 10.3390/s19051141.

[274] J. Bradley, W. Denniss, H. Tschofenig, and M. Jones, OAuth 2.0 Device
Authorization Grant, en, https://tools.ietf.org/html/rfc8628, Aug. 2019.

[275] D. Hardt, “The OAuth 2.0 Authorization Framework,” Tech. Rep. RFC6749, 2012.
DOI: 10.17487/rfc6749. [Online]. Available: https://www.rfc-editor.org/info/rfc6749.

[276] J. Franks, P. J. Leach, A. Luotonen, P. M. Hallam-Baker, S. D. Lawrence,
J. L. Hostetler, and L. C. Stewart, “HTTP Authentication: Basic and Digest Access
Authentication,” Tech. Rep. RFC2617, Jun. 1999. DOI: 10.17487/rfc2617. [Online].
Available: https://www.rfc-editor.org/info/rfc2617.

[277] J. Reschke, “The ’Basic’ HTTP Authentication Scheme,” Internet Engineering Task
Force, Tech. Rep. RFC7617, Sep. 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7617.

http://www.nfcforum.org/specs/spec-list/
https://doi.org/10.1109/NFC.2013.6482447
https://www.nxp.com/docs/en/nxp/data-sheets/PN532_C1.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Summary.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Summary.pdf
https://youtu.be/Vi135raj1LE
https://doi.org/10.3390/s19051141
https://doi.org/10.17487/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://doi.org/10.17487/rfc2617
https://www.rfc-editor.org/info/rfc2617
https://tools.ietf.org/html/rfc7617

REFERENCES 265

[278] Y. Feng, W. Wang, Y. Weng, and H. Zhang, “A Replay-Attack Resistant
Authentication Scheme for the Internet of Things,” in 2017 IEEE International
Conference on Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1,
Jul. 2017, pp. 541–547. DOI: 10.1109/CSE-EUC.2017.101.

[279] K. Greene, D. Rodgers, H. Dykhuizen, K. McNeil, Q. Niyaz, and K. A. Shamaileh,
“Timestamp-based Defense Mechanism Against Replay Attack in Remote Keyless
Entry Systems,” in 2020 IEEE International Conference on Consumer Electronics
(ICCE), 2020, pp. 1–4. DOI: 10.1109/ICCE46568.2020.9043039.

[280] S. M. Bellovin and M. Merritt, “Limitations of the Kerberos Authentication System,”
ACM SIGCOMM Computer Communication Review, vol. 20, no. 5, pp. 119–132,
Oct. 1990, ISSN: 0146-4833. DOI: 10.1145/381906.381946. [Online]. Available:
https://doi.org/10.1145/381906.381946.

[281] D. Mills and U. Delaware, “Https://www.ietf.org/rfc/rfc5905.txt,” Internet Engineering
Task Force, Tech. Rep. RFC 5905, Jun. 2010. [Online]. Available:
https://www.ietf.org/rfc/rfc5905.txt.

[282] K. H. M. Wong, Y. Zheng, J. Cao, and S. Wang, “A dynamic user authentication
scheme for wireless sensor networks,” in IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC’06), vol. 1, 2006. DOI:
10.1109/SUTC.2006.1636182.

[283] S. Tomasin, S. Zulian, and L. Vangelista, “Security Analysis of LoRaWAN Join
Procedure for Internet of Things Networks,” in 2017 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW), 2017,
pp. 1–6. DOI: 10.1109/WCNCW.2017.7919091.

[284] K. Pavani and P. Sriramya, “Enhancing Public Key Cryptography using RSA,
RSA-CRT and N-Prime RSA with Multiple Keys,” in 2021 Third International
Conference on Intelligent Communication Technologies and Virtual Mobile
Networks (ICICV), 2021, pp. 1–6. DOI: 10.1109/ICICV50876.2021.9388621.

[285] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The First
Collision for Full SHA-1,” English, in Advances in Cryptology, Santa Barbara, CA:
Springer, Cham, Aug. 2017, pp. 570–596, ISBN: 978-3-319-63687-0. DOI:
10.1007/978-3-319-63688-7_19. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-63688-7_19.

[286] H. Sochor, F. Ferrarotti, and R. Ramler, “Automated Security Test Generation for
MQTT Using Attack Patterns,” in Proceedings of the 15th International Conference
on Availability, Reliability and Security, ser. ARES ’20, Virtual Event, Ireland:
Association for Computing Machinery, 2020, ISBN: 9781450388337. DOI:
10.1145/3407023.3407078. [Online]. Available:
https://doi.org/10.1145/3407023.3407078.

https://doi.org/10.1109/CSE-EUC.2017.101
https://doi.org/10.1109/ICCE46568.2020.9043039
https://doi.org/10.1145/381906.381946
https://doi.org/10.1145/381906.381946
https://www.ietf.org/rfc/rfc5905.txt
https://doi.org/10.1109/SUTC.2006.1636182
https://doi.org/10.1109/WCNCW.2017.7919091
https://doi.org/10.1109/ICICV50876.2021.9388621
https://doi.org/10.1007/978-3-319-63688-7_19
https://link.springer.com/chapter/10.1007/978-3-319-63688-7_19
https://doi.org/10.1145/3407023.3407078
https://doi.org/10.1145/3407023.3407078

266 REFERENCES

[287] S. N. Firdous, Z. Baig, C. Valli, and A. Ibrahim, “Modelling and Evaluation of
Malicious Attacks against the IoT MQTT Protocol,” in 2017 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), Jun. 2017, pp. 748–755. DOI:
10.1109/iThings-GreenCom-CPSCom-SmartData.2017.115.

[288] M. Bogdanoski, T. Shuminoski, and A. Risteski, “Analysis of the SYN Flood DoS
Attack,” International Journal of Computer Network and Information Security, vol. 5,
no. 8, pp. 15–11, Jun. 2013. DOI: 10.5815/ijcnis.2013.08.01. [Online]. Available:
http://www.mecs-press.org/ijcnis/ijcnis-v5-n8/v5n8-1.html.

[289] S. N. Firdous, Z. Baig, A. Ibrahim, and C. Valli, “Denial of service attack detection
through machine learning for the IoT,” Journal of Information and
Telecommunication, vol. 4, no. 4, pp. 482–503, 2020. DOI:
10.1080/24751839.2020.1767484. eprint:
https://doi.org/10.1080/24751839.2020.1767484. [Online]. Available:
https://doi.org/10.1080/24751839.2020.1767484.

[290] M. M. Hafiz and F. H. Mohd Ali, “Profiling and mitigating brute force attack in home
wireless LAN,” in 2014 International Conference on Computational Science and
Technology (ICCST), 2014, pp. 1–6. DOI: 10.1109/ICCST.2014.7045190.

[291] S. J. Johnston, M. Scott, and S. J. Cox, “Recommendations for securing Internet of
Things devices using commodity hardware,” in 2016 IEEE 3rd World Forum on
Internet of Things (WF-IoT), Dec. 2016, pp. 307–310. DOI:
10.1109/WF-IoT.2016.7845410.

[292] A. J. Poulter, The Secure Remote Update Protocol v.6.0, GitHub.com, Jun. 2021.
DOI: 10.5281/zenodo.5041190. [Online]. Available: https://github.com/dstl/srup.

[293] B. Stroustrup, The C++ Programming Language, 4th Edition. Addison-Wesley
Professional, May 2013, ISBN: 9780133522884.

[294] S. Koranne, “Boost C++ Libraries,” in Handbook of Open Source Tools. Boston, MA:
Springer US, 2011, pp. 127–143, ISBN: 978-1-4419-7719-9. DOI:
10.1007/978-1-4419-7719-9_6. [Online]. Available:
https://doi.org/10.1007/978-1-4419-7719-9_6.

[295] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in Memory,” in 2013
IEEE Symposium on Security and Privacy, 2013, pp. 48–62. DOI:
10.1109/SP.2013.13.

[296] M. Lindner, N. Fitinghoff, J. Eriksson, and P. Lindgren, “Verification of Safety
Functions Implemented in Rust - a Symbolic Execution based approach,” in 2019
IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1, 2019,
pp. 432–439. DOI: 10.1109/INDIN41052.2019.8972014.

https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.115
https://doi.org/10.5815/ijcnis.2013.08.01
http://www.mecs-press.org/ijcnis/ijcnis-v5-n8/v5n8-1.html
https://doi.org/10.1080/24751839.2020.1767484
https://doi.org/10.1080/24751839.2020.1767484
https://doi.org/10.1080/24751839.2020.1767484
https://doi.org/10.1109/ICCST.2014.7045190
https://doi.org/10.1109/WF-IoT.2016.7845410
https://doi.org/10.5281/zenodo.5041190
https://github.com/dstl/srup
https://doi.org/10.1007/978-1-4419-7719-9_6
https://doi.org/10.1007/978-1-4419-7719-9_6
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/INDIN41052.2019.8972014

REFERENCES 267

[297] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Safe Systems Programming in
Rust,” Communications of the ACM, vol. 64, no. 4, pp. 144–52, Mar. 2021, ISSN:
0001-0782. DOI: 10.1145/3418295.

[298] A. N. Evans, B. Campbell, and M. L. Soffa, “Is Rust Used Safely by Software
Developers?” In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), 2020, pp. 246–257. [Online]. Available:
https://ieeexplore.ieee.org/document/9283950.

[299] L. Prechelt, “An empirical comparison of seven programming languages,”
Computer, vol. 33, no. 10, pp. 23–29, 2000. DOI: 10.1109/2.876288.

[300] S. Raschka, J. Patterson, and C. Nolet, “Machine Learning in Python: Main
Developments and Technology Trends in Data Science, Machine Learning, and
Artificial Intelligence,” Information, vol. 11, no. 4, 2020, ISSN: 2078-2489. DOI:
10.3390/info11040193. [Online]. Available:
https://www.mdpi.com/2078-2489/11/4/193.

[301] S. Cass, “The top programming languages: Our latest rankings put Python on
top-again,” IEEE Spectrum, vol. 57, no. 8, pp. 22–22, 2020. DOI:
10.1109/MSPEC.2020.9150550.

[302] G. K. Kloss, “Automatic C library wrapping Ctypes from the trenches,” 2009.

[303] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith, “Cython:
The Best of Both Worlds,” Computing in Science Engineering, vol. 13, no. 2,
pp. 31–39, 2011. DOI: 10.1109/MCSE.2010.118.

[304] K. Rakowski, Learning Apache Thrift. Packt Publishing Ltd, 2015.

[305] D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid systems with Boost.
Python,” CC Plus Plus Users Journal, vol. 21, no. 7, pp. 29–36, 2003.

[306] M. Grinberg, Flask Web Development: Developing Web Applications with Python.
O’Reilly Media, Inc., 2018.

[307] M. Giacobbe, C. Chaouch, M. Scarpa, and A. Puliafito, “An Implementation of
InfluxDB for Monitoring and Analytics in Distributed IoT Environments,” in
Proceedings of the 8th International Conference on Sciences of Electronics,
Technologies of Information and Telecommunications (SETIT’18), Vol.1,
M. S. Bouhlel and S. Rovetta, Eds., Cham: Springer International Publishing, 2020,
pp. 155–162, ISBN: 978-3-030-21005-2.

[308] Beermann, Thomas, Alekseev, Aleksandr, Baberis, Dario, Crépé-Renaudin,
Sabine, Elmsheuser, Johannes, Glushkov, Ivan, Svatos, Michal, Vartapetian,
Armen, Vokac, Petr, and Wolters, Helmut, “Implementation of ATLAS Distributed
Computing monitoring dashboards using InfluxDB and Grafana,” in 24th
International Conference on Computing in High Energy and Nuclear Physics
(CHEP 2019), vol. 245, Nov. 2020, p. 03 031. DOI: 10.1051/epjconf/202024503031.

https://doi.org/10.1145/3418295
https://ieeexplore.ieee.org/document/9283950
https://doi.org/10.1109/2.876288
https://doi.org/10.3390/info11040193
https://www.mdpi.com/2078-2489/11/4/193
https://doi.org/10.1109/MSPEC.2020.9150550
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1051/epjconf/202024503031

268 REFERENCES

[309] L. Junyan, X. Shiguo, and L. Yijie, “Application Research of Embedded Database
SQLite,” in 2009 International Forum on Information Technology and Applications,
vol. 2, 2009, pp. 539–543. DOI: 10.1109/IFITA.2009.408.

[310] J. D. Drake and J. C. Worsley, Practical PostgreSQL. O’Reilly Media, Inc., 2002.

[311] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices architecture by
using Docker technology,” in IEEE SoutheastCon 2016, 2016, pp. 1–5. DOI:
10.1109/SECON.2016.7506647.

[312] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen, “Orchestration
of Microservices for IoT Using Docker and Edge Computing,” IEEE Communications
Magazine, vol. 56, no. 9, pp. 118–123, 2018. DOI: 10.1109/MCOM.2018.1701233.

[313] O. Ben-Kiki, C. Evans, and B. Ingerson, “Yaml ain’t markup language (yaml™)
version 1.1,” Working Draft 2008-05, vol. 11, 2009.

[314] P. J. Eby, “Python Web Server Gateway Interface v1.0.1,” Python Software
Foundation, Tech. Rep. PEP 3333, Sep. 2010.

[315] J. Shah and D. Dubaria, “Building Modern Clouds: Using Docker, Kubernetes
Google Cloud Platform,” in 2019 IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), 2019, pp. 0184–0189. DOI:
10.1109/CCWC.2019.8666479.

[316] M. W. Lucas, TLS Mastery. Tilted Windmill Press, 2020, ISBN: 978-1-64235-053-1.

[317] J. Adams, P. Elwell, A. Scheller, R. Getz, P. Rosenberger, J. Hughes, and J. Hickey,
Raspberry Pi Add-on Boards and HATs Specification, Raspberry Pi Foundation,
Cambridge, UK, 2014. [Online]. Available: https://github.com/raspberrypi/hats.

[318] M. Eremia, L. Toma, and M. Sanduleac, “The Smart City Concept in the 21st
Century,” Procedia Engineering, vol. 181, pp. 12–19, 2017, 10th International
Conference Interdisciplinarity in Engineering, INTER-ENG 2016, 6-7 October 2016,
Tirgu Mures, Romania, ISSN: 1877-7058. DOI:
https://doi.org/10.1016/j.proeng.2017.02.357. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877705817309402.

[319] A. J. Poulter, The Secure Remote Update Protocol (SRUP) in Action, Video, May
2021. [Online]. Available: https://youtu.be/F0_qlqh0Oiw.

[320] ——, SRUP Timing Experiment, University of Southampton, 2017. DOI:
10.5258/SOTON/D0486. [Online]. Available: https://doi.org/10.5258/SOTON/D0486.

[321] A. N. Kuznetsov, Iproute2 routing commands and utilities, https://git.kernel.org/,
2001. [Online]. Available: https://man7.org/linux/man-pages/man8/tc.8.html.

[322] T. Hombashi. (Aug. 2020). “tcconfig: A tc command wrapper.,” GitHub, [Online].
Available: https://github.com/thombashi/tcconfig.

https://doi.org/10.1109/IFITA.2009.408
https://doi.org/10.1109/SECON.2016.7506647
https://doi.org/10.1109/MCOM.2018.1701233
https://doi.org/10.1109/CCWC.2019.8666479
https://github.com/raspberrypi/hats
https://doi.org/https://doi.org/10.1016/j.proeng.2017.02.357
https://www.sciencedirect.com/science/article/pii/S1877705817309402
https://youtu.be/F0_qlqh0Oiw
https://doi.org/10.5258/SOTON/D0486
https://doi.org/10.5258/SOTON/D0486
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/thombashi/tcconfig

REFERENCES 269

[323] A. S. Khatouni, M. Trevisan, and D. Giordano, “Data-Driven Emulation of Mobile
Access Networks,” in 2019 15th International Conference on Network and Service
Management (CNSM), Oct. 2019, pp. 1–6. DOI:
10.23919/CNSM46954.2019.9012691.

[324] M. Trevisan. (2019). “Mobile Network Latency Emulator,” GitHub, [Online].
Available: https://github.com/marty90/mobile-latency-emulator.

[325] M2Catalyst LLC, Network cell info app, M2Catalyst LLC. [Online]. Available:
https://m2catalyst.com/apps/network-cell-info.

[326] A. Sultan and M. Pope, Digital cellular telecommunications system (phase 2+)
(gsm); universal mobile telecommunications system (umts); network architecture,
European Telecommunications Standards Institute, 1999.

[327] P. Schramm, H. Andreasson, C. Edholm, N. Edvardsson, M. Hook, S. Javerbring,
F. Muller, and J. Skold, “Radio interface performance of EDGE, a proposal for
enhanced data rates in existing digital cellular systems,” in VTC ’98. 48th IEEE
Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat.
No.98CH36151), vol. 2, 1998, 1064–1068 vol.2. DOI:
10.1109/VETEC.1998.686403.

[328] H. P. Naper and M. Pope, Digital cellular telecommunications system (Phase 2+)
(GSM); Universal Mobile Telecommunications System (UMTS); General Packet
Radio Service (GPRS); Service description; Stage 2, 1999.

[329] M. Ghaderi and R. Boutaba, “Data Service Performance Analysis in GPRS
Systems,” in 2004 IEEE 15th International Symposium on Personal, Indoor and
Mobile Radio Communications (IEEE Cat. No.04TH8754), vol. 1, Sep. 2004,
556–560 Vol.1. DOI: 10.1109/PIMRC.2004.1370932.

[330] P. Goyal and A. Goyal, “Comparative study of two most popular packet sniffing tools
- Tcpdump and Wireshark,” in 2017 9th International Conference on Computational
Intelligence and Communication Networks (CICN), 2017, pp. 77–81. DOI:
10.1109/CICN.2017.8319360.

[331] J. M. Perkel, “Why Jupyter is data scientists’ computational notebook of choice,”
Nature news, vol. 563, no. 7732, pp. 145–146, Oct. 2018. DOI:
10.1038/d41586-018-07196-1.

[332] I. Stančin and A. Jović, “An overview and comparison of free Python libraries for
data mining and big data analysis,” in 2019 42nd International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO), 2019, pp. 977–982. DOI: 10.23919/MIPRO.2019.8757088.

[333] A. J. Poulter, Dataset for An assessment of the Performance of the Secure Remote
Update Performance in Simulated Real-World Conditions, University of
Southampton, May 2021. DOI: 10.5258/SOTON/D1817.

https://doi.org/10.23919/CNSM46954.2019.9012691
https://github.com/marty90/mobile-latency-emulator
https://m2catalyst.com/apps/network-cell-info
https://doi.org/10.1109/VETEC.1998.686403
https://doi.org/10.1109/PIMRC.2004.1370932
https://doi.org/10.1109/CICN.2017.8319360
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.23919/MIPRO.2019.8757088
https://doi.org/10.5258/SOTON/D1817

270 REFERENCES

[334] A. Zourmand, A. L. Kun Hing, C. Wai Hung, and M. AbdulRehman, “Internet of
things (iot) using lora technology,” in 2019 IEEE International Conference on
Automatic Control and Intelligent Systems (I2CACIS), 2019, pp. 324–330. DOI:
10.1109/I2CACIS.2019.8825008.

[335] A. Lavric, A. I. Petrariu, and V. Popa, “SigFox Communication Protocol: The New
Era of IoT?” In 2019 International Conference on Sensing and Instrumentation in
IoT Era (ISSI), 2019, pp. 1–4. DOI: 10.1109/ISSI47111.2019.9043727.

[336] A. J. Poulter, The Secure Remote Update Protocol - A Specification, Unviersity of
Southampton, Jul. 2017. DOI: 10.5258/SOTON/D0232.

[337] Department for Digital, Culture, Media & Sport, “Secure by Design: Improving the
cyber security of consumer Internet of Things,” HM Government (UK), Tech. Rep.,
Mar. 2018. [Online]. Available:
https://www.gov.uk/government/publications/secure-by-design-report.

[338] J. D’Abruzzo Pereira and M. Vieira, “On the Use of Open-Source C/C++ Static
Analysis Tools in Large Projects,” in 2020 16th European Dependable Computing
Conference (EDCC), 2020, pp. 97–102. DOI: 10.1109/EDCC51268.2020.00025.

[339] N. Nethercote and J. Seward, “Valgrind: A Program Supervision Framework,”
Electronic Notes in Theoretical Computer Science, vol. 89, no. 2, pp. 44–66, 2003,
RV ’2003, Run-time Verification (Satellite Workshop of CAV ’03), ISSN: 1571-0661.
DOI: https://doi.org/10.1016/S1571-0661(04)81042-9. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1571066104810429.

[340] S. Thénault, Pylint – code analysis for Python, comp. software, 2006. [Online].
Available: https://pylint.org/.

[341] G. Van Rossum, B. Warsaw, and N. Coghlan, “PEP 8: style guide for Python code,”
Python.org, Tech. Rep., Jul. 2001. [Online]. Available:
https://www.python.org/dev/peps/pep-0008/.

[342] M. Fowler, Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[343] A. Sen, “A quick introduction to the Google C++ Testing Framework,” IBM
DeveloperWorks, vol. 20, pp. 1–10, 2010.

[344] J. Hunt, “PyTest Testing Framework,” in Advanced Guide to Python 3 Programming.
Cham: Springer International Publishing, 2019, pp. 175–186, ISBN:
978-3-030-25943-3. DOI: 10.1007/978-3-030-25943-3_15. [Online]. Available:
https://doi.org/10.1007/978-3-030-25943-3_15.

[345] P. Hamill, Unit test frameworks: tools for high-quality software development. O’Reilly
Media, Inc., 2004, ISBN: 978-0596006891.

[346] Sutton, Michael and Greene, Adam and Amini, Pedram, Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, Jun. 2007, ISBN:
978-0321446114.

https://doi.org/10.1109/I2CACIS.2019.8825008
https://doi.org/10.1109/ISSI47111.2019.9043727
https://doi.org/10.5258/SOTON/D0232
https://www.gov.uk/government/publications/secure-by-design-report
https://doi.org/10.1109/EDCC51268.2020.00025
https://doi.org/https://doi.org/10.1016/S1571-0661(04)81042-9
https://www.sciencedirect.com/science/article/pii/S1571066104810429
https://pylint.org/
https://www.python.org/dev/peps/pep-0008/
https://doi.org/10.1007/978-3-030-25943-3_15
https://doi.org/10.1007/978-3-030-25943-3_15

REFERENCES 271

[347] A. Shostack, Threat modeling: Designing for security. John Wiley & Sons, Feb.
2014, ISBN: 978-1118809990.

[348] P. Torr, “Demystifying the threat modeling process,” IEEE Security Privacy, vol. 3,
no. 5, pp. 66–70, 2005. DOI: 10.1109/MSP.2005.119.

[349] J. M. Spivey, The Z Notation: A Reference Manual. Prentice Hall International,
1989.

[350] N. A. El-Araby, A. M. Wahba, and M. M. Taher, “Implementation of formally verified
real time distributed systems: Simplified flight control system,” in The 2011
International Conference on Computer Engineering Systems, 2011, pp. 25–32. DOI:
10.1109/ICCES.2011.6141006.

[351] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam, “Modeling and
Verification of a Dual Chamber Implantable Pacemaker,” in Tools and Algorithms for
the Construction and Analysis of Systems, C. Flanagan and B. König, Eds.,
Springer Berlin Heidelberg, 2012, pp. 188–203.

https://doi.org/10.1109/MSP.2005.119
https://doi.org/10.1109/ICCES.2011.6141006

	List of Figures
	List of Tables
	Listings
	Declaration of Authorship
	Acknowledgements
	I Background
	1 Introduction
	1.1 Outline, research questions, and thesis structure
	1.1.1 Research questions
	1.1.2 Structure of this thesis
	1.1.3 Research methodology
	1.1.4 The effects of the COVID-19 pandemic on this work

	1.2 Background and concepts
	1.2.1 Commodity components
	1.2.2 Connected digital devices
	1.2.3 The Internet of Things
	1.2.4 Military applications of the Internet of Things
	1.2.5 Cyber Physical Systems
	1.2.6 The defence and national security challenges of the IoT and Cyber Physical Systems
	1.2.7 Critical National Infrastructure

	1.3 Summary

	2 Cybersecurity and The Internet of Things
	2.1 Cybersecurity
	2.1.1 Cybersecurity as an element of national security

	2.2 Malware
	2.2.1 Viruses
	2.2.2 Worms
	2.2.3 Trojans

	2.3 Attack types
	2.3.1 Cryptoransomware
	2.3.2 Botnets
	2.3.3 Remote access and data exfiltration
	2.3.4 Denial of Service attack
	2.3.5 Physical attacks against network infrastructure

	2.4 Software vulnerabilities
	2.4.1 Buffer overflow
	2.4.2 Code injection

	2.5 Software Libraries
	2.6 Threats to IoT security
	2.6.1 Compromise of data or services
	2.6.2 Attacks against the device
	2.6.2.1 Denial of use of the device
	2.6.2.2 IoT device ransomware
	2.6.2.3 IoT botnets and Distributed Denial of Service attacks
	2.6.2.4 Replay attack

	2.6.3 Attacks against connected physical systems
	2.6.4 Supply chain attacks

	2.7 Cyber threat actors
	2.8 Encryption
	2.8.1 Historical ciphers
	2.8.1.1 Substitution ciphers
	2.8.1.2 One-time pads

	2.8.2 Asymmetric encryption
	2.8.3 Diffie-Hellman key exchange
	2.8.4 Quantum computing

	2.9 Summary

	3 Commonly used Internet of Things Protocols
	3.1 Internet communications
	3.1.1 Link and inter-networking layer protocols
	3.1.2 Transport layer protocols
	3.1.3 Application layer protocols

	3.2 Cryptographic protocols
	3.2.1 Modern symmetric encryption and message digest algorithms
	3.2.2 IPSec
	3.2.3 Transport Layer Security
	3.2.4 X.509: certificates and identity
	3.2.5 Quick UDP Internet Connections
	3.2.6 Datagram Transport Layer Security
	3.2.7 Secure shell

	3.3 Constrained protocols
	3.3.1 CoAP
	3.3.1.1 CoAP Publish and Subscribe
	3.3.1.2 CoAP Quality of Service
	3.3.1.3 Network access

	3.3.2 MQTT
	3.3.3 MQTT Messages
	3.3.3.1 MQTT Topics
	3.3.3.2 MQTT Quality of Service

	3.3.4 MQTT Security

	3.4 Summary

	4 Command and Control Architecture and the Internet of Things
	4.1 Command and Control
	4.1.1 Hierarchical versus peer-to-peer architectures
	4.1.2 C2 and the IoT
	4.1.3 C2 for military applications of IoT

	4.2 Security requirements for C2 messaging
	4.3 IoT Command and Control message types
	4.3.1 Messages concerned with the operation of the devices
	4.3.1.1 Software update

	4.3.2 Messages concerned with the operation of the C2 network
	4.3.3 Messages concerned with the operation of the functional system

	4.4 Summary

	II The Secure Remote Update Protocol
	5 The Secure Remote Update Protocol
	5.1 Design concept
	5.2 MQTT payload
	5.3 SRUP message elements
	5.4 MQTT topics and message addressing
	5.4.1 Message source
	5.4.2 Destination addressing
	5.4.2.1 Positive device identification
	5.4.2.2 Multiple C2 servers

	5.5 Message encryption and access control
	5.5.1 Encrypted messages and topic access control

	5.6 Message types
	5.6.1 Update messages
	5.6.1.1 Update initiate message
	5.6.1.2 Update activate message

	5.6.2 Response messages
	5.6.3 Action messages
	5.6.3.1 Identification request message

	5.6.4 Data messages
	5.6.5 Join and remove messages
	5.6.5.1 Join messages
	5.6.5.2 Remove messages
	5.6.5.3 Deregistration

	5.6.6 Syndication messages

	5.7 SRUP in action
	5.8 Alternative transports for the SRUP protocol
	5.8.1 The need for alternative transport mechanisms for SRUP
	5.8.2 HTTP transport for SRUP

	5.9 Summary

	6 Identity and Key Distribution
	6.1 Identity and the Internet of Things
	6.1.1 Static device identity
	6.1.2 Dynamic device identity
	6.1.3 Registering a dynamic identity
	6.1.4 Using dynamic identity in a C2 system

	6.2 Cryptographic key distribution and SRUP
	6.2.1 SRUP key exchange via an HTTPS secure web service
	6.2.2 SRUP registration and key exchange workflow
	6.2.2.1 Initial registration
	6.2.2.2 Additional steps for systems using TLS protected MQTT

	6.2.3 Communicating the registration URL

	6.3 Key revocation
	6.4 Server configuration and identity
	6.5 Summary

	7 Command and Control Network Management
	7.1 Proof of identity
	7.1.1 Simple join

	7.2 Validating physical identity using third-party observation
	7.3 Human moderated joins
	7.3.1 Hexadecimal notation
	7.3.2 Pictographic representation
	7.3.3 Word-list representation
	7.3.4 Other comparison techniques

	7.4 Machine moderated joins
	7.4.1 Visual observation technologies
	7.4.2 Radio Frequency Identification

	7.5 Other machine moderated device identity validation techniques
	7.6 Implementing observation-based identity confirmation
	7.6.1 Hardware
	7.6.2 Operation

	7.7 Considerations for real-world use of observed join
	7.7.1 Human versus machine observation
	7.7.2 Benefits of machine observation
	7.7.3 Issues

	7.8 Summary

	8 Internet of Things Network Security
	8.1 Replay attack
	8.1.1 Common mitigation to replay attack
	8.1.1.1 Nonce tokens
	8.1.1.2 Timestamps
	8.1.1.3 Logging

	8.1.2 A sequence ID based approach

	8.2 Message spoofing
	8.3 Attacks against MQTT and C2 systems
	8.3.1 MQTT broker attack
	8.3.2 C2 server attack
	8.3.3 Attack of observer nodes
	8.3.4 Crypto-agility
	8.3.5 Physical attack

	8.4 Software update
	8.5 SRUP and the DCMS Code of Practice for IoT security
	8.6 Summary

	III Implementation & Experimentation
	9 Implementing the Secure Remote Update Protocol
	9.1 SRUP library architecture
	9.2 C++ library
	9.3 Binary Python library
	9.3.1 Why Python?
	9.3.2 Calling C++ from Python

	9.4 Python wrapper class
	9.4.1 Ease of use comparison

	9.5 Web-based C2 system
	9.6 Backend services
	9.6.1 Key exchange server
	9.6.2 Containerization

	9.7 Bootstrapping SRUP and the Key Generation Tool
	9.8 Hardware
	9.8.1 Timing device
	9.8.2 Syndication experiment device
	9.8.3 Other hardware

	9.9 Summary

	10 Syndication
	10.1 Sharing data and control without a fully trusted-relationship
	10.2 Syndication concept
	10.3 Syndication messages
	10.3.1 Syndication initialization
	10.3.2 Syndication request
	10.3.3 Syndicated device count and syndicated device list
	10.3.4 Syndicated ID request
	10.3.5 Syndicated data
	10.3.6 Syndicated action
	10.3.7 Syndicated C2 request
	10.3.8 Syndication termination and syndication end

	10.4 Syndication example
	10.5 Experimental implementation
	10.6 Guest user
	10.7 Summary

	11 Experimental Assessment of the Performance of SRUP
	11.1 Execution time analysis
	11.2 SRUP and MQTT performance comparison
	11.2.1 Hardware
	11.2.2 Software
	11.2.3 Time synchronization

	11.3 Network conditions
	11.3.1 Network condition simulation
	11.3.2 Operation in austere network conditions
	11.3.3 Experimental conditions

	11.4 Experimental hypothesis and measurements
	11.5 Analysis
	11.6 Results
	11.6.1 SRUP vs. MQTT performance comparison
	11.6.2 Raspberry Pi 3B+ vs. Raspberry Pi 4
	11.6.3 SRUP vs. MQTT power consumption
	11.6.4 SRUP vs. MQTT message size

	11.7 Evaluation of results
	11.8 Summary

	12 Conclusions
	12.1 Answering the Research Questions
	12.1.1 Research Question 1
	12.1.2 Research Question 2
	12.1.3 Research Question 3
	12.1.4 Research Question 4
	12.1.5 Research Question 5
	12.1.6 Research Question 6
	12.1.7 Research Question 7

	12.2 Contributions to knowledge
	12.2.1 The Secure Remote Update Protocol
	12.2.2 Dynamic identity and key management
	12.2.3 Device identity validation
	12.2.4 Software library implementation and containerized backend systems
	12.2.5 Syndication

	12.3 Recommendations for future work
	12.3.1 SRUP for microcontrollers
	12.3.2 Alternative transports for the SRUP protocol
	12.3.3 SRUP Syndication for guest access
	12.3.4 Real-world evaluation of machine-based observation
	12.3.5 Human comparison of security identifiers
	12.3.6 Publication of binary version of SRUP library
	12.3.7 Application of SRUP in related domains

	12.4 Potential future impact of the research
	12.5 Summary

	Appendix A The operation of MQTT in detail
	Appendix A.1 Connection
	Appendix A.2 Keep alive
	Appendix A.3 Ping request & response
	Appendix A.4 Last will & testament
	Appendix A.5 Publishing a message
	Appendix A.6 MQTT Quality of Service
	Appendix A.6.1 QoS0
	Appendix A.6.2 QoS1
	Appendix A.6.3 QoS2

	Appendix A.7 MQTT subscription

	Appendix B The Secure Remote Update Protocol Specification v3.0
	Appendix B.1 MQTT topics
	Appendix B.2 Update messages
	Appendix B.2.1 Update initiate message
	Appendix B.2.2 Update activate message

	Appendix B.3 Response message
	Appendix B.4 Action message
	Appendix B.5 Data message
	Appendix B.6 Identification request message
	Appendix B.7 Group messages
	Appendix B.8 Join messages
	Appendix B.8.1 Simple join messages
	Appendix B.8.1.1 Join request
	Appendix B.8.1.2 Join command

	Appendix B.8.2 Human-mediated join messages
	Appendix B.8.2.1 Human-mediated join request message
	Appendix B.8.2.2 Human-mediated join response message

	Appendix B.8.3 Machine-mediated join messages
	Appendix B.8.3.1 Observed join request message
	Appendix B.8.3.2 Observed join response message
	Appendix B.8.3.3 Observation request message

	Appendix B.9 Resignation and termination messages
	Appendix B.9.1 Resign request
	Appendix B.9.2 Termination command

	Appendix B.10 Deregistration messages
	Appendix B.10.1 Deregister request
	Appendix B.10.2 Deregister command

	Appendix B.11 Registration
	Appendix B.11.1 Registration requirements
	Appendix B.11.2 Example reference registration scheme

	Appendix B.12 Syndication messages
	Appendix B.12.1 Syndication initialization
	Appendix B.12.2 Syndication request
	Appendix B.12.3 Syndicated device count
	Appendix B.12.4 Syndicated device list
	Appendix B.12.5 Syndicated data

	Appendix B.13 Syndicated action
	Appendix B.14 Syndicated ID request
	Appendix B.14.1 Syndicated C2 request
	Appendix B.14.2 Syndicated end request and syndicated termination

	Appendix C Timing Experiment
	Appendix D Performance Comparison Experiment — device code
	Appendix D.1 SRUP device code
	Appendix D.2 MQTT device code

	Appendix E Network Conditioning Simulation Setup
	Appendix F Security Analysis of the Secure Remote Update Protocol
	Appendix F.1 Secure by Design
	Appendix F.1.1 Adversarial Design
	Appendix F.1.2 Use of extant and trusted libraries
	Appendix F.1.3 Library code used within SRUP

	Appendix F.2 MQTT Security Assessment
	Appendix F.3 Static and Dynamic Analysis
	Appendix F.3.1 Static Analysis
	Appendix F.3.2 Dynamic Analysis
	Appendix F.3.3 Analysis of Python Code

	Appendix F.4 Unit Testing
	Appendix F.4.1 C++
	Appendix F.4.2 Python

	Appendix F.5 Incremental development and testing
	Appendix F.6 Future Work
	Appendix F.6.1 Adversarial testing
	Appendix F.6.1.1 Fuzzing
	Appendix F.6.1.2 Software Reverse Engineering

	Appendix F.6.2 Formal Risk Analysis
	Appendix F.6.3 Formal Verification

	Acronyms
	References

