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Abstract—3D local binary pattern (LBP) shows significant 

performance in many domains such as solid textures analysis, face 

recognition and tumor detection. In recent years, rotation 

invariant 3D LBP texture descriptors have received increasing 

attention and several variants have been proposed. However, they 

are sensitive to the noise present in the image. In this paper, we 

propose an efficient rotation invariant texture descriptor known 

as robust extended 3D LBP (RELBP) for volumetric texture 

classification. Unlike the current 3D LBP framework, our 

descriptor uses the information of neighboring voxels to reduce 

noise. First, the 3D weighted average filter is employed to process 

each voxel in the image, in which the center voxel is replaced by 

the average local gray level based on weights. Besides, equidistant 

points on a sphere are sampled to construct a set of rotation 

invariant features. Our experiments demonstrate that the RELBP 

proposed here shows superior classification performance in 

texture classification tasks and our method is highly robust to 

image noise on benchmark datasets. 

Keywords—3D local binary pattern (3D LBP); volumetric 

texture; texture descriptors 

I.  INTRODUCTION  

Texture analysis plays a significant role in image processing 
and pattern recognition, especially in medical applications [1]. 
Texture descriptors provide rich information about the 
characterization and properties of objects or regions in various 
types of images [2]. In the past decades, many texture feature 
extraction methods have been proposed [3] and successfully 
employed in many domains such as human detection, medical 
image analysis and face recognition [4]. Encoding high 
discriminant descriptors is essential to address specific tasks, but 
feature extraction may be affected by noise and some image 
transformations such as rotation and translation [5]. In order to 
overcome such issues, researchers have proposed some 
strategies to make the texture model more robust [6]. However, 
most of these techniques are developed to capture robust texture 
descriptors in 2D images and there are a few approaches 
proposed for 3D texture analysis [7]. Compared to 2D images 
[8], 3D volumetric images contain rich spatial information and 
usually lead to algorithms with more superior performances in 
many applications such as brain tumor detection in magnetic 
resonance imaging (MRI) [9]. Therefore, extending 2D texture 
analysis methods to characterize 3D images is pretty valuable, 

but such an extension faces many challenges such as increases 
in computation time and the presence of noise interference [10]. 

Local binary pattern (LBP) descriptor was initially proposed 
by Ojala et al. for 2D texture analysis and demonstrates superior 
performance in texture classification and segmentation tasks 
[11]. Due to its outstanding advantages of easy implementation 
and low computational complexity, LBP has been widely used 
for texture analysis in the past decade and various variants for 
LBP have been put forward to improve its model capabilities 
[12][13][16][14][15]. For example, Guo et al. developed a 
completed LBP (CLBP) scheme that combined the sign and 
magnitude components to encode the texture descriptors and 
improve its discriminative power [3]. Rakesh Mehta and Karen 
Egiazarian proposed a novel texture descriptor known as 
DRLBP that captured both the structural information and 
magnitude information in a local pattern to extract rotation 
invariant features and improve classification performance [2]. 
Although much progress has been made, these algorithms are 
usually applied in 2D texture analysis and few 3D LBP variants 
are proposed to match the requirements. 

The main challenges for 3D LBP descriptors are to deal with 
rotation invariance [16] and noise sensitivity [17]. Some 
approaches have been proposed to construct 3D rotation 
invariant LBP descriptors to overcome image orientation [16]. 
For example, Citraro et al. proposed an Icosahedron spherical 
structure to sample equidistant points and used “Uniform” 
patterns to achieve rotation invariance [1]. J. Fehr and H. 
Burkhardt proposed a novel method that constructed a sphere 
and employed spherical harmonics to calculate rotation invariant 
3D LBP descriptors [18]. Although scholars have presented 
some strategies to improve the noise-tolerance property of LBP 
methods, those approaches are only limited to 2D texture 
analysis. For example, Fathi et al. presented a noise-tolerant 
LBP descriptor that used a circular majority voting filter and 
labeling scheme to improve model robustness and 
discrimination ability [19]. Based on the uniform LBP, Chen et 
al. proposed a robust texture descriptor by changing the coding 
of the three-bit substring to make the model more robust against 
noise [20]. Nonetheless, as far as we know, there is no robust 3D 
LBP descriptor in the literature. 

The main contribution of this paper is to propose an efficient 
3D LBP descriptor to achieve rotation invariance and improve 
noise tolerance. To the best of our knowledge, this is the first 



work in which a robust texture descriptor is proposed to 
overcome the noise sensitivity issue in the 3D LBP framework. 
For each voxel in the 3D images, we employ a 3D weighted 
average filter that replaces its original gray scale value with the 
average local voxel based on weights to reduce the influence of 
noise. In addition, inspired by the extended LBP (ELBP) variant, 
we combine the texture features of center intensity-based (CI), 
neighborhood intensity-based (NI) and radial difference-based 
(RD) descriptors to enhance model robustness and classification 
performance [21]. In order to construct rotation invariant 
descriptors, we distribute equidistant neighboring points on the 
sphere surrounding the center voxel to encode uniform and non-
uniform patterns. Unlike deep convolutional neural networks, 
our method only requires a small number of training samples and 
enjoys low computational costs. More importantly, our method 
proposed here demonstrates strong robustness, to image 
orientation and noise contamination. Therefore, the robust 
extended 3D LBP method (RELBP) is suitable for small datasets 
such as medical images. Our experimental results illustrate that 
the RELBP method achieves excellent classification 
performance in volumetric texture classification and is robust to 
image noise in public datasets.  

II. RELATED WORK 

A. 3D local binary pattern 

Zhao and Pietikäinen first introduced the concept of 3D 
LBP by proposing volume LBP (VLBP) descriptors to extract 
the texture features in a local neighborhood of the center 
volume [22]. Then Paulhac et al. proposed a rotation invariant 

3D LBP descriptor known as 𝐿𝐵𝑃𝑟𝑖𝑢3 that constructed a sphere 
for each voxel to encode texture values with “Uniform” patterns 
[16], which is the most popular 3D LBP variant in the literature. 
In details, given a voxel 𝑣𝑐  in the image, the LBP value is 
calculated by binary encoding the differences between 𝑣𝑐 and 
its neighboring point 𝑣𝑖. In 3D space, neighboring points are 
uniformly sampled from a series of circles in a sphere. Each 
vertex 𝑣𝑐 in the sphere is assigned a gray value based on the 
bilinear interpolation of several neighboring voxels. We let s 
represent the number of circles and p is the number of vertexes 

in each circle. 𝑝′ = (𝑠 − 2) × 𝑝 + 2  denotes the number of 
neighbors for the center voxel. Formally, the 3D LBP descriptor 
is defined as follows: 

𝐿𝐵𝑃 = {
∑ 𝑓(𝑣𝑖 − 𝑣𝑐)

𝑝−1

𝑖=0
    𝑖𝑓 𝑈 ≤ 𝑉

𝑝                            𝑒𝑙𝑠𝑒 𝑈 > 𝑉

(1) 

where 

𝑓(𝑥) = { 
1           𝑖𝑓   𝑥 ≥ 0

 0        𝑒𝑙𝑠𝑒   𝑥 < 0
(2) 

and 

                             𝑈 = |𝑓(𝑣𝑝−1 − 𝑣𝑐) − 𝑓(𝑣0 − 𝑣𝑐)|   

+ ∑ |𝑓(𝑣𝑖 − 𝑣𝑐) − 𝑓(𝑣𝑖−1 − 𝑣𝑐)|          

𝑝−1

𝑖=1

 (3) 

In equations (1) to (3), U represents the measurement that counts 
the number of bit transitions from 1 to 0 or vice versa. V denotes 
the threshold that defines the LBP as “uniform” or “non-
uniform”. 

B. 3D extended local binary pattern 

Since the original LBP only captures the relationship 
between the center point and its neighbors, some spatial 
relationships in a local region may be lost. To resolve this issue, 
Liu et al. proposed a novel method known as ELBP which 
consisted of three different LBP descriptors referred to CI, NI, 
RD to extract more distinctive spatial information and to 
improve classification performance for 2D texture analysis [21]. 
Then Citraro et al. extended this framework to 3D space 
(NI/RD/CI-𝐿𝐵𝑃𝑟𝑖𝑢3) by constructing a sphere for each voxel 
and uniformly searching for neighboring points on the sphere 
to calculate CI, NI, RD descriptor [1]. The first descriptor CI 
encodes the contrast information between the center voxel 𝑣𝑐 
and the mean of the whole image m: 

𝐶𝐼𝑝,𝑟 = 𝑓(𝑣𝑐 − 𝑚) (4) 

Another LBP descriptor NI uses the mean value n of 
neighboring points as the threshold instead of the center voxel 
to calculate the LBP value, i.e.: 

  𝑁𝐼𝑝,𝑟 = {
∑ 𝑓(𝑣𝑖 − 𝑛)

𝑝−1

𝑖=0
    𝑖𝑓 𝑈 ≤ 𝑉

𝑝                            𝑒𝑙𝑠𝑒 𝑈 > 𝑉

(5) 

with  𝑛 =
1

𝑝
∑ 𝑣𝑖

𝑝−1
𝑖=0  . 

The final descriptor RD encodes the voxel differences in 
radial directions: 

𝑅𝐷𝑝,𝑟 = {
∑ 𝑓(𝑣𝑖

𝑟 − 𝑣𝑖
𝑟−1)

𝑝−1

𝑖=0
    𝑖𝑓 𝑈 ≤ 𝑉

𝑝                                  𝑒𝑙𝑠𝑒 𝑈 > 𝑉

(6) 

III. METHOD 

A. Uniform spherical sampling 

A rotation invariant 3D LBP descriptor is not expected to 
change under all points of camera view. Searching for 
minimum LBP over all angles of the neighboring points with 
fixed weights in 3D space leads to high computational 
complexity [18]. In addition, this strategy does not provide very 
good discrimination. Motived by “Uniform” patterns [11], we 
assign the same weight to the neighbors from different angles 
to achieve rotation invariance. A significant step toward 
constructing rotation invariant descriptors is to sample 
equidistant points on the sphere. However, it is not trivial to 
construct such a geometrical structure in a spherical 
neighborhood [23]. Citraro et al. developed a geodesic sphere 
that subdivided the surface in uniform flat polygonal faces to 
achieve equidistant neighboring points sampling [1]. However, 
the number of points is limited to specific values. In this paper, 
we adopt a solution where equidistant and unlimited number of 
vertices (𝑝) are placed on the sphere surrounding the center 



voxel. In details, we choose circles of latitude at constant 
intervals 𝑑𝜃  and sample points on those circles at constant 
intervals 𝑑𝜑 , such that 𝑑𝜃 ≈ 𝑑𝜑  and 𝑝 × (𝑑𝜃 × 𝑑𝜑) equals to 

the area of the sphere [24]. The configuration of voxels in a 
spherical neighborhood is shown in Fig. 1. Then we use the gray 
values of the center voxel 𝑣𝑐  and neighboring points 𝑣𝑖  to 
encode texture patterns.  

 

Fig. 1. A center voxel and spherical neighbourhood in 3D space. 

B. Robust 3D extended local binary pattern descriptors 

Although 3D LBP has high discriminative power, it is very 
vulnerable to image noise and such a noise sensitivity for the 
3D LBP framework has not been addressed in the literature. In 
order to reduce the influence of noise present in images, we 
consider a weighted average function 𝑔(𝑣𝑐| 𝑤, 𝑝)  for each 
voxel 𝑣𝑐 in the image to make the model more robust against 
noise [3] as presented in equation (7): 

                            𝑔(𝑣𝑐| 𝑤, 𝑝) =
∑ (𝑣𝑖 + 𝑣𝑐 × 𝑤)

𝑝−1
𝑖=0

𝑤 + 𝑝
                 (7) 

where, p is the number of neighboring points around the center 
voxel and w represents the weight of the center voxel. Such 
voxel contains more valuable information than its neighbors. 
By calculating the mean gray value based on weights, instead 
of the original gray scale value of the central voxel, we can 
reduce the influence of noise.  

We use individual central voxel with regional representation 
in LBP value calculations and consider three robust texture 
descriptors.  

Robust CI (RCI) descriptor is defined as follows: 

                                𝑅𝐶𝐼𝑝,𝑟,𝑤 = 𝑓(𝑔(𝑣𝑐|𝑤, 𝑝)−∝)                      (8) 

where, ∝ is the mean voxel of the whole image processed by the 
weighted average function 𝑔(𝑣𝑐|𝑤, 𝑝).  

Robust NI (RNI) descriptor is defined as: 

  𝑅𝑁𝐼𝑝,𝑟,𝑤 = {
∑ 𝑓(𝑔(𝑣𝑖|𝑤, 𝑝) −∝𝑐)

𝑝−1

𝑖=0
 𝑖𝑓 𝑈 ≤ 𝑉

𝑝                                          𝑒𝑙𝑠𝑒 𝑈 > 𝑉

(9) 

where 

                                     ∝𝑐  =
1

𝑝
∑ 𝑔(𝑣𝑖|𝑤, 𝑝)  

𝑝−1

𝑖=0

                         (10) 

Robust RD (RRD) descriptor is presented as: 

𝑅𝑅𝐷𝑝,𝑟,𝑤 = {
∑ 𝑓(𝑔(𝑣𝑖

𝑟+1|𝑤, 𝑝) − 𝑔(𝑣𝑖
𝑟|𝑤, 𝑝))

𝑝−1

𝑖=0
    𝑖𝑓 𝑈 ≤ 𝑉

𝑝                                                                   𝑒𝑙𝑠𝑒 𝑈 > 𝑉

 

(11) 

After the LBP value of each voxel 𝑣𝑖,𝑗,𝑘  in the image is 

calculated, we compute a histogram 𝐻(𝑏), 𝑏 ∈ [0, 𝐵] to represent 
the texture descriptor. 

                         𝐻(𝑏) = ∑  ∑  ∑ 𝜑(𝐿𝐵𝑃𝑖,𝑗,𝑘, 𝑏)  

𝐾

𝑘=1

 

𝐽

𝑗=1

            (12)

𝐼

𝑖=1

 

and 

𝜑(𝛼, 𝛽) = {
 1  𝑖𝑓  𝛼 = 𝛽

  0  𝑒𝑙𝑠𝑒           
(13) 

where, 𝐵 denotes the maximum LBP value in a texture image. 

We calculate the histograms of the RCI, RNI and RRD 
descriptors respectively, and then concatenate these three 
histograms together to construct a feature vector of a texture. 
Among machine learning classifiers, k-nearest neighbors is 
adopted to achieve volumetric texture classification with the 
following texture feature: 

𝐻 = 𝐻𝑅𝐶𝐼⨁𝐻𝑅𝑁𝐼⨁𝐻𝑅𝑅𝐷 (14) 

where ⨁ represents concatenation operation. 

C. Multi-scale analysis 

Ojala et al. stated that multi-resolution analysis by 
combining the operators of various (p, r) could improve the 
classification performance of the LBP method for 2D texture 
analysis [11]. In this paper, we apply this strategy to the RELBP 
method to improve its discriminative capability. In details, we 
vary the radius r of the sphere surrounding the center voxel but 
sample the same number of neighboring points p. Then we 
calculate multiple RCI, RNI and RRD operators in various r and 
concatenate their histograms together. 

IV. EXPERIMENTS 

In order to evaluate the discriminative power and model 
robustness of our proposed RELBP method for 3D texture 
analysis, we perform a series of experiments on two different 
datasets, comparing to state-of-the-art methods. 

A. Datasets 

There is no standard 3D texture dataset for the evaluation of 
classification performance. As a result, researchers usually use 
datasets containing synthetic or real images to compare the 
performance of various 3D texture analysis methods. In this 



paper, we use two public datasets to make an effective 
comparison. 

The first one is the RFAI database1 that is synthetically 
constructed from 2D images by using four different methods 
[25]. The first method produces a 3D texture image by 
interpolating several 2D texture images. The second method 
employs geometric shapes such as cubes to generate 3D 
textures. In the third method, Fourier transformation is used to 
construct volumetric 3D textures. The final one mixes the three 
previous methods to synthesize a 3D image. Four categories 
named as “Interpolated”, “Geometric”, “Fourier” and “Mixed 
texture” are produced by these four image synthesis methods. 
Each category comprises five kinds of textures according to 
image distortion, including normal, noise, rotation, blurry and 
subsampling. We use the normal, noise and rotation subsets of 
the “Mixed texture” category which contains 25 classes to 
evaluate the performance of our method. There are 10 examples 
in each kind of texture and their size is 64 × 64 × 64.  

The realistic COVID dataset2 is CT images of the lung. It is 
used to evaluate 3D texture analysis methods in classifying 
COVID-19 and non-COVID-19 on CT scans. We pick 10 CT 
images of COVID-19 and non-COVID-19 respectively, from 
the COVID database. For each CT scan, we select two 
32 × 32 × 32 image patches from left and right lung regions 
respectively. Therefore, the COVID dataset contains 80 
samples. 

B. Metrics and settings 

To evaluate the noise-tolerance property of all methods, we 
add zero mean Gaussian noise with different intensities to 
volumetric images respectively. The signal-to-noise ratio (SNR) 
is used to represent the amount of noise contaminating 3D 
textures. Our experiments have been performed at SNR=20, 10 
6 and 5 respectively on RFAI and COVID datasets to compare 
the robustness of methods investigated here. We take 80% 
texture images for training and the remaining 20% for testing. 
The data is divided into five equal parts randomly using five-
folder cross validation. Our proposed RELBP method is 
examined by classification accuracy and F1 score. The F1 score 
is the harmonic mean of precision and recall, which is defined 
as follows: 

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(15) 

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(16) 

F1 =
2 × precision × recall

precision + recall
(17) 

Where, TP, FP, FN represent the true positive, false positive 
and false negative respectively. 

The 3 × 3 × 3  weighted average filter is used to process 
each voxel in the image (𝑝 = 26) and the weight of the center 
voxel w is set to 26. In terms of the k-nearest neighbors 

algorithm, we use the Manhattan distance to emphasize the 
discriminatory power of each descriptor, and k = 1 is selected 
for the texture classification task. Using the uniform spherical 
sampling scheme, we develop several 3D LBP variants and 
compare them with the RELBP method. The parameter settings 
for our various methods in this paper are as follows:  

a) RELBP: The radius 𝑟 of the sphere constructed for 

each voxel is set to 1 and we sample 12 uniformly distributed 

points on the sphere (p=12). The number of histogram bins of 

RCI, RNI and RRD descriptors are selected as 2, 14 and 14, 

respectively. 

b) Multi-scale RELBP (MS-RELBP): Here we combine 

multiple RELBP descriptors from various scales for 3D texture 

analysis. We use two groups represented by various values for 

(p, r), i.e. i) p=12, r=1 and ii) p=12, r=2 to calculate texture 

descriptors respectively and these three descriptors are then 

concatenated to be used in classification. 

c) Robust rotation invariant LBP (RRI-LBP): It is the 

traditional 3D LBP descriptor with “Uniform” patterns to 

encode the differences between the center voxel 𝑣𝑐  and its 

neighbors 𝑣𝑖 . Similarly to the RELBP descriptor (p=12, r=1), 

we use the weighted average function to process the volumetric 

image to reduce noise. The threshold is the weighted average of 

the gray value of the center voxel and its neighboring points, 

and the weight of 𝑣𝑐 is set to 12. 

C. Results and discussion 

To make an efficient evaluation, we compare the 
classification performance with other state-of-the-art 3D LBP 

variants. The first one is the 𝑉𝐿𝐵𝑃𝑟𝑖𝑢2 descriptor proposed by 
Zhao and Pietikäinen to process each sequence of dynamic 
textures via minimum search over circular bitwise right shifts 
for rotation invariant classification [22]. The second method 
LBP-TOP, only uses the co-occurrences of the LBP descriptors 
on three orthogonal planes and concatenates their histograms 
for volumetric texture classification [26]. This descriptor has 
low computational costs and superior discriminative capability, 
but lacks the rotation invariant property. The remaining two 3D 

rotation invariant LBP descriptors 𝐿𝐵𝑃𝑟𝑖𝑢3  and NI/RD/CI-

𝐿𝐵𝑃𝑟𝑖𝑢3
 are as introduced in related work. To evaluate the 

model capability between 𝑅𝐸𝐿𝐵𝑃 and other 3D LBP variants 
fairly, the parameters of comparison methods are assigned as 
follows:  

a) 𝑉𝐿𝐵𝑃𝑟𝑖𝑢2 : Three consecutive frames are stacked to 

encode the binary codes. We select 14 neighboring voxels for 

each center voxel [22].  

b) LBP-TOP: For each plane, we uniformly sample 8 
neighboring vertices in a circle and set the radius to 1. The value 
of concatenated histogram bins from three orthogonal planes is 
48 [26]. 

c) 𝐿𝐵𝑃𝑟𝑖𝑢3: Unity for radius, 8 for the number of points 
in each circle, 5 for the number of circles and 26 for the number 
of uniform patterns [16].  

d) NI/RD/CI-𝐿𝐵𝑃𝑟𝑖𝑢3: We employ the same parameter 
settings as the RELBP descriptor [1].  

 

1http://www.rfai.li.univ-tours.fr/fr/ressources/3Dsynthetic_images_database.html 
2https://aistudio.baidu.com/aistudio/datasetdetail/34221 



TABLE I.  CLASSIFICATION PERFORMANCE OF VARIOUS METHODS WITH GAUSSIAN NOISE ON THE RFAI DATASET 

Method 
Accuracy F1 

SNR=20 SNR=10 SNR=6 SNR=5 SNR=20 SNR=10 SNR=6 SNR=5 

RELBP 0.99 ± 0.01 0.96 ± 0.02 𝟎. 𝟖𝟖 ± 𝟎. 𝟎𝟑 𝟎. 𝟖𝟐 ± 𝟎. 𝟎𝟑 0.99 ± 0.01 0.96 ± 0.02 𝟎. 𝟖𝟔 ± 𝟎. 𝟎𝟒 𝟎. 𝟕𝟗 ± 𝟎. 𝟎𝟐 

RRI-LBP 0.99 ± 0.01 0.92 ± 0.02 0.70 ± 0.06 0.60 ± 0.04 0.99 ± 0.01 0.91 ± 0.02 0.68 ± 0.06 0.57 ± 0.05 

𝑉𝐿𝐵𝑃𝑟𝑖𝑢2 0.98 ± 0.01 0.80 ± 0.04 0.50 ± 0.06 0.38 ± 0.04 0.97 ± 0.01 0.78 ± 0.04 0.48 ± 0.06 0.37 ± 0.03 

LBP-TOP 𝟏. 𝟎𝟎 ± 𝟎. 𝟎𝟎 𝟎. 𝟗𝟕 ± 𝟎. 𝟎𝟑 0.63 ± 0.03 0.52 ± 0.05 𝟏. 𝟎𝟎 ± 𝟎. 𝟎𝟎 0.96 ± 0.02 0.59 ± 0.04 0.50 ± 0.03 

𝐿𝐵𝑃𝑟𝑖𝑢3 0.98 ± 0.01 0.92 ± 0.02 0.74 ± 0.06 0.72 ± 0.06 0.98 ± 0.01 0.91 ± 0.03 0.75 ± 0.06 0.69 ± 0.06 

NI/RD/CI-𝐿𝐵𝑃𝑟𝑖𝑢3 0.99 ± 0.01 𝟎. 𝟗𝟕 ± 𝟎. 𝟎𝟐 0.81 ± 0.05 0.64 ± 0.03 0.99 ± 0.01 𝟎. 𝟗𝟕 ± 𝟎. 𝟎𝟐 0.79 ± 0.06 0.61 ± 0.03 

 

Fig. 2. Comparing the classification performance of all methods on the noise 

subset of the RFAI dataset. 

To examine the noise-tolerant property of all methods, we 
compare their classification performance on the noise subset of 
the RFAI dataset. This subset is synthesized using 2D images 
with unknown kinds of noise. Classification accuracies and F1 
scores displayed in Fig. 2 indicate that the RELBP has stronger 
model robustness against noise than other 3D LBP variants. 
Furthermore, we add zero mean Gaussian noise to the normal 
subset of the RFAI dataset to form noisy volumetric textures 
with various SNRs and evaluate the performances. Table I 
compares the accuracies and F1 scores of different 3D LBP 
variants at the presence of additive zero mean Gaussian noise. 
We can see that our proposed RELBP descriptor is more robust 
against noise than other state-of-the-art LBP variants. All 
methods have excellent classification performance in the 
images with small noise. However, when SNR is less than 6, 
our method has obvious advantages and retains high accuracy. 
Compared with the RRI-LBP variant, our RELBP descriptor that 
combines the information of RCI, RNI and RRD operators has 
better discriminative capability and model robustness.   

We evaluate our RELBP method proposed here further by 
setting various weights w for the center voxel in the 3D 
weighted average filter. Table II demonstrates the experimental 
results on the normal subset contaminated with zero mean 
additive Gaussian noise (SNR=10). We can find that our 
method achieves the best performance when w is set to 13. 

Although the center voxel contains more valuable information 
than its neighbors, the weight should not be assigned too large. 

TABLE II.  CLASSIFICATION PERFORMANCE FOR VARIOUS WEIGHTS W 

OF THE CENTER VOXEL USING THE NORMAL SUBSET WITH SNR=10 

w Accuracy 

1 0.92 ± 0.04 

13 𝟎. 𝟗𝟕 ± 𝟎. 𝟎𝟐 

26 0.96 ± 0.03 

39 0.96 ± 0.03 

The rotation invariant property of our method is also 
investigated here on the rotation subset of the RFAI dataset. 
Each texture class of the rotation subset contains ten randomly 
rotated volumetric images. Fig. 3 illustrates the classification 
results of various 3D LBP variants on rotated images. Our 
proposed rotation invariant RELBP descriptor demonstrates 
excellent discriminative power, although texture images are 
rotated at random angles. In addition, the multi-scale strategy 
contributes to enhancing the classification performance of our 
RELBP descriptor.  

 

Fig. 3. Comparison of the classification accuracy obtained from various 

methods on the rotation subset of the RFAI dataset. 

Fig. 4 depicts the classification performance of all 3D LBP 
variants using the COVID dataset.  Our RELBP descriptor 



enjoys strong model robustness to noise and its classification 
accuracy drops modestly when lung CT images are 
contaminated with additive zero mean Gaussian noise. 
However, 𝑉𝐿𝐵𝑃𝑟𝑖𝑢2 and LBP-TOP variants are very vulnerable 
to noise present in the images and perform poorly in COVID-

19 detection. Compared with the NI/RD/CI-𝐿𝐵𝑃𝑟𝑖𝑢3
 variant, the 

3D weighted average filter plays an essential role in improving 
the noise-tolerant property of our RELBP descriptor because the 
weighted average function reduces the impacts of noise on the 
center voxel when encoding texture patterns. In Fig. 5, we show 
the confusion matrix for our method on the same data with 
additive zero mean Gaussian noise (SNR=6). As observed in 
this figure, the proposed descriptor RELBP is robust to noise 
contamination and provides high accuracies in both categories.  

 

Fig. 4. Comparing the classification performance of all methods with 

Gaussian noise on the COVID dataset. 

 

Fig. 5. Confusion matrix for our method using the COVID dataset with 

SNR=6. 

Apart from the k-nearest neighbors classifier, other 
classification algorithms, including random forest, support 
vector machine and decision tree, are also used to evaluate the 
performance of our proposed descriptor. Table III presents the 

classification results of the RELBP method using various 
machine learning classifiers on the COVID dataset with 
additive zero mean Gaussian noise (SNR=10). We can see that 
all classifiers provide high accuracies in noisy images and 
random forest demonstrates the best performance with an 
accuracy of 0.95. 

TABLE III.  COMPARE THE CLASSIFICATION ACCURACY OF VARIOUS 

MACHINE LEARNING CLASSIFIERS ON THE COVID DATASET 

Classifiers Accuracy 

k-nearest neighbors 0.91 ± 0.03 

random forest 𝟎. 𝟗𝟓 ± 𝟎. 𝟎𝟑 

support vector machine 0.93 ± 0.05 

decision tree 0.94 ± 0.03 

Our RELBP descriptor proposed here has excellent 
classification performance and model robustness in rotated and 
noisy images. In many practical applications such as medical 
imaging, not all images are scanned at a perfect angle and nor 
they may be free from noise. Our RELBP method can therefore 
be used in these tasks and it is robust against image perturbation 
caused by equipment or other uncertainties. 

CONCLUSION 

In this paper, we present a novel RELBP method for accurate 
and robust volumetric texture classification. Our method 
proposed here enhances the model robustness of 3D LBP at the 
presence of noise. The robust RELBP descriptor has strong noise 
tolerance, and also is invariant to rotation and illumination 
variations.  Our experiments demonstrate that the RELBP 
method has superior discriminative power, and it outperforms 
recent state-of-the-art 3D LBP variants in noisy and rotated 
images. As future work, we are desired to extend our method 
presented here to 3D volumetric texture segmentation and object 
localization. We also expect the proposed method to be 
generalized to other domains and motivate new researchers to 
improve the noise-tolerant property of models. 
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