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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
ELECTRONICS AND COMPUTER SCIENCE DEPARTMENT

Doctor of Philosophy

HIGH FIDELITY IMAGING IN ELECTRICAL IMPEDANCE TOMOGRAPHY
By Marc Molinari

This thesis addresses the computational reconstruction of images using Electri-
cal Impedance Tomography (EIT). EIT is an imaging method, in which electrical
currents are injected through electrodes into a conducting volume and the resulting
potential distribution is measured at surface electrodes. From these potentials, an
image of the electrical conductivity can be obtained using numerical reconstruction
techniques. This non-linear reconstruction is mathematically difficult and compu-
tationally intensive. Most applications in medicine and industry rely upon a fast
and accurate image acquisition. The aim of this investigation is to find methods
which improve the speed and accuracy of EIT by a range of improvements to the
numerical methods used in the forward solution and inverse reconstruction.

We investigate the impact of the finite element discretization on the performance
of computing the electric field forward solution. We derive an a posteriori error
estimate on the finite element mesh and implement 2D adaptive mesh refinement
techniques in an optimised forward solver. Our results of this novel approach show
that a speed-up of approximately an order of magnitude can be obtained.

We extend the developed iterative Newton-Raphson algorithm to include im-
age smoothness constraints and adaptive mesh refinement based on conductivity
gradients in the image. The results show that the image resolution can be made
independent of the underlying numerical discretization and therefore is limited only
by the level of noise present in the measurements. An additional benefit of this new
technique is the automatic focus of available computational resources on key regions
for forward solution and inverse reconstruction.

As 3D impedance imaging becomes computationally too expensive for the Newton-
Raphson method, we develop a novel non-linear conjugate gradient algorithm in-
corporating 3D adaptive mesh refinement routines, and present results showing the
decrease of memory requirements and the increase in image reconstruction perfor-
mance. In addition, a Matlab software package containing optimised routines for
the finite element-based computations in EIT has been developed as part of this
work.

Finally, we outline a method for obtaining a map for the determination of the
reconstruction reliability and image correlation of an EIT algorithm.

With the improvements to reconstruction accuracy and speed investigated in
this thesis, we conclude that efficient non-linear 3D impedance imaging is feasible.
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Chapter 1

Introduction

1.1 Electrical Impedance Tomography

The non-invasive and non-destructive imaging of the interior of objects has long
been a challenge. Electrical Impedance Tomography (EIT) is one possible answer
to the question of how to obtain information from otherwise inaccessible regions
within a closed and often opaque volume. EIT is a technique which can produce
images of the electric admittivity or conductivity distribution of electrically con-
ducting objects by injecting known amounts of current and measuring the resulting
electric field at the surface of the object. This technology has a wide variety of
applications in many different fields which we will discuss briefly in the following
sections before concentrating our review on reconstruction algorithms for absolute

imaging purposes.

1.2 Applications

1.2.1 EIT in Process Tomography

Applications of EIT exist in the monitoring of conducting liquids or in the eval-
uation of chemical compounds in pipes and stirring vessels. The petrochemical
industry as well as other branches concerned with material processes are interested
in imaging characteristics such as liquid quantity, mixing behaviour and rate of flow
using electrical resistance tomography applications (Dickin and Wang, 1996). The
accurate knowledge of fixed electrode positions and the often simple geometry of

the container as well as the possibility of applying relatively large currents through



the compound make electrical tomography a well-suited candidate for industrial ap-
plications. Much research is currently carried out in this field, supported by many
manufacturing companies, and the popularity of EIT in the commercial sector is

rising continuously (WCIPT, 2001).

1.2.2 EIT in Geophysical Research

Electrical properties of soil, rocks, liquids and ancient building material contain
a variety of information about the processes within the earth and geophysical and
archaeological structures below the earth’s surface. Geophysical research using elec-
trical resistance tomography has been known for a long time and examples of its
use include the detection of buried buildings and walls, the monitoring of ground
water, the detection of mines and caves as well as the discovery of hidden water or
oil reservoirs. In archaeology, this type of measurement allows to build up a picture
of a site before disturbing it, so that targeted excavation can be carried out to avoid
damaging valuable ancient and preserved sites.

Typical characteristics of geophysical prospecting experiments are the large cur-
rent (up to 15 Amp) and the electrode spacing (1000m), as for example given in
Schiitze (1998). If higher resolution is sought, as required in the case of archaeolog-
ical research, then electrode arrays with a grid spacing of typically 0.5m are used
(Szymanski and Tsourlos, 1993). Although a particular difficulty of this technique
is the behaviour of the ground as a non-linear capacitor exhibiting subsurface polar-
ization (Coskun and Szymanski, 1993), satisfying results of reconstructions can be
achieved. Often, the permittivity (or polarization) is measured using the transient

response of the investigated volume.

1.2.3 EIT for Non-Destructive Material Testing

Although EIT has large potential in the material and food sciences sector for the
classification, testing and quality assessment of industrially manufactured products,
few compelling examples are in widespread use. EIT has been used in quality

assurance of agricultural products such as muskmelons (Toyoda, 2000).



1.2.4 EIT for Medical Imaging

A major application area for EIT is the medical sciences (Committee on the Math-
ematics and Physics of Emerging Dynamic, 1996). These have experienced the
proliferation of a broad range of different imaging methods in recent years includ-
ing X-Ray Imaging, Computer Tomography (CT), Ultrasound Imaging, Magnetic
Resonance Tomography (MRT), Positron Emission Tomography (PET), Single Pho-
ton Emission Computed Tomography (SPECT) and many others. The resolution
of some of these is incredibly high: spiral computed tomography, for example,
can achieve spatial resolutions down to 1 mm (Dawn et al., 2001; Siemens, 1999).
However, this comes at a very large cost for the apparatus and requires expensive
hospital space as well as pre-booking mechanisms for scheduled use. Most of these
methods are hence not suitable for (long-term) monitoring of patient parameters.

Table 1.1 gives an overview of some of the most common imaging methods used
for medical purposes and their characteristics as given by Webb (1988) and by
Budinger (2001).

An ideal imaging method for the medical field would be non-invasive, portable
(small and light), harmless to the patient, inexpensive and easy-to-use at the same
time as providing medically relevant information. A device with these properties
would equally allow for real-time imaging as well as for long-term monitoring, in
particular since it could be held at hospitals in large numbers (Gaeke, 1992). An
Electrical Impedance Tomograph fulfils these requirements and has large potential
in medical imaging since it provides images of parameters which cannot be obtained
by most of the other methods. In addition it can be made safe to comply to British
and European Standards by restricting current densities and frequencies (Lionheart
et al., 2001).

Figure 1.1 shows the distinct wide range of electrical conductivities in biological
tissues, ranging from 0.0067 S/m for bone to 1.6 S/m for cerebrospinal fluid.

For comparison, the absorption coefficients for X-ray imaging are plotted in the
same graph. The figure indicates that EIT images of biological material should
be superior to X-ray images in terms of tissue contrast. However, the low resolu-

tion of EIT imaging prevents the images from showing the same detail as X-Ray



Technology  Spatial Time res- Cost Imaging modality Physical mechanism

resolution olution
EIT low msec-sec  low mainly physiological electrical conductivity
Infra-Red low real-time  low mainly anatomical temperature
Ultra-Sound low real-time  low anatomical + physiological acoustic impedance / Doppler shift
MRI v.high sec high mainly anatomical density of protons (spin relaxation)
X-Ray high - medium anatomical absorption & scattering
X-Ray CT v.high - high anatomical absorption
SPECT medium sec-min high anatomical + physiological single photon emission
PET high sec-min v.high anatomical + physiological gamma ray emission

Table 1.1:  Comparison of medical imaging methods.
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Figure 1.1: Comparison of EIT and X-Ray contrasts in biological tissues (values from Meeson
1997).

images. Although EIT resolution is low at present, the advantages over higher reso-
lution imaging techniques make it worthwhile to further investigate EIT techniques
(Meeson, 1997).

A summary of the major medical applications of EIT is given, for example,
by Brown (1990) and in Cheney et al. (1999); a further overview by Bhar can be
found in Webster (1990). These applications include cardio-pulmonary monitoring
(Brown et al., 1985), the imaging and monitoring of gastric emptying (Avill et al.,
1989), measurement of lung resistivity (Woo et al., 1992) and lung water, assess-
ment of acute pulmonary edema (Newell et al., 1993), detection of intra-ventricular
haemorrhage, pulmonary function studies and lung ventilation (Adler et al., 1996),

cancer detection, and brain activity localization, to mention but a few.

Dynamic vs. Static Imaging

Electrical Impedance Tomography can be used for differing clinical applications,
depending on the imaging modality used. The two main forms of impedance to-
mography are dynamic imaging and static imaging yielding differential and abso-
lute images respectively. The images produced by differential imaging represent the
conductivity changes of a region between two time intervals, as initially introduced

by Barber and Brown (1984). This allows for monitoring changes such as gastric



emptying or long-term observation of body functions/volume changes. Imaging
physiological function within the body largely relies on this technique which is rel-
atively simple to implement. A more recent meaning of “dynamic imaging” has
been introduced by the work of the Kuopio group, which is looking at imaging and
tracking objects in the fluid flow within a pipe.

In this thesis, however, we are mainly concerned with the quantitative recon-
struction of static conductivity images which requires more advanced numerical
algorithms.

The reasons that EIT is not yet a well-established tool in the biomedical sector
are mainly its sensitivity to electrode positioning, its rather low image resolution
due to noise in the measurements and numerical effects of the discretization, the
often time-consuming non-linear numerical reconstruction and a lack of dedicated

easy-to-use software.

1.3 A brief history of EIT

In this section, we summarise some of the key developments in the history of impe-
dance imaging which form the basis and framework for current and future research.

Reconstruction

1978 The first attempt at producing images of a body in terms of its electrical
properties was done by Henderson and Webster (1978). They used a single large
electrode to drive current through the body to a 12 by 12 square electrode array on
the other side.

1980 Calderon (1980) formulated the mathematical background of electrical
prospection as a boundary value problem and showed that the derivative is in-
jective.

1984 The initial work of Barber and Brown (1984) on Applied Potential To-
mography (APT) was one of the first to address the problem of reconstructing
conductivity images for medical application. A backprojection algorithm was used
for reconstruction which is similar to those used for X-Ray CT imaging.

1985 Murai and Kagawa (1985) based their EIT reconstruction on a finite el-

ement discretization of a 2D domain. The similarity between the FE formulation



and electrical circuits was used to reconstruct conductivity images according to the
sensitivity or lead theorem as derived by Geselowitz (1971) and Lehr (1972).

1985-1987 Two significant papers of Kohn and Vogelius (1985) and Sylvester
and Uhlman (1987) contain mathematical proofs that both piecewise analytic and
smooth conductivities can be distinguished theoretically by boundary measurements
made with infinite precision.

1987 In one of the most frequently cited articles in EIT, Yorkey et al. (1987)
compared the performance of six different reconstruction algorithms. He detailed
two methods for obtaining the Jacobian for the modified Newton-Raphson method
which proved to be the most robust and efficient technique for conductivity recon-
structions. It was found later that the two methods were the same.

1987 The SVD method was used by Breckon and Pidcock (1987a) to analyze
instability in the EIT problem. EIT has been described as a highly ill-posed, non-
linear inverse problem (Breckon and Pidcock, 1987b) and techniques for producing
absolute images are all extremely sensitive to any errors which occur in the system.

1987 Seagar et al. (1987) investigated the theoretical limits of sensitivity and
resolution in EIT. They derived a method to predict the smallest object size de-
tectable by measurements with a known level of noise. They addressed the aspects
of geometric flexibility, dimensionality, approximations, speed and computational
effort required for an efficient EIT reconstruction algorithm.

1989 Clarke and Janday (1989) explained the method of maximum statistical
entropy and demonstrate how it can be applied to biomagnetic inverse problems by
finding the solution for a simplified spherical inverse problem. This work is based
on previous work by Skilling and Bryan (1984) and by Clarke (1989) on the use of
probabilistic methods in inverse problems.

1990 Gisser et al. (1990) studied the problem of choosing current patterns,
electrode size and number in terms of the spectral properties of certain pseudo-
differential operators. He found that the resolution goes to zero as the number of
electrodes goes to infinity for pair drives.

1991 Somersalo et al. (1991) presented the Layer stripping algorithm for impe-

dance imaging. This algorithm is critically dependent upon the noise level, even



when as low as 0.05% and its reconstruction cost is dominated by the cost of back-
propagating the matrix elements; corresponding to a CPU cost growth of O(nyy)
with n,; being the number of measurements.

1992 Dobson (1992) addressed convergence properties of reconstruction algo-
rithms.

1993 Woo et al. (1993) found that Hachtel’s augmented Matrix method for
solving the normal equations is faster than Yorkey et al’'s (1987) technique as the
Hessian matrix does not need explicit computation and the augmented matrix is
sparse.

1994 The work by Artola and Dell (1994) tried to obtain quicker covergence
through modifying the Newton method by approximating the Jacobian with a sin-
gular value decomposition. Although their quasi-Newton algorithm achieved super-
linear convergence, the results were obtained with perfect noise-free measurement
data only.

1994 A reconstruction algorithm based on optimal experiments, called POMPUS,
has been developed and presented by Paulson et al. (1994). It is a fast and efficient
reconstruction algorithm which converges along the direction of steepest descent
and reduces the computational cost of solving the linearized form of the inverse
problem from O(n%) to an optimal O(n?) (Paulson et al., 1995).

1994 Incorporation of prior information of the conductivity distribution into
the EIT problem formulation has been attempted by Dobson and Santosa (1994a).
They included the assumption that the unknown conductivity is “blocky”, i.e. a
piecewise constant function with small variation in the discontinuities. With this
approach, reconstructions of fine details and highly oscillatory features were difficult
or impossible to obtain.

1994 Otto and Chew (1994) derived a time-harmonic formulation for the solution
of the EIT inverse problem. Their T-matrix method is very fast, finite element
free and addresses the problem of low resolution of the electrostatic description by
applying an electrodynamic physical model. Results show that only few iterations
are required to obtain good results from 2D data with no additional cost compared

to an FE solution.



1995 Bayford et al. (1995) presented experimental results from a reconstruction
algorithm based on backprojection of Lagrange multipliers. The data was collected
in a cylindrical saline-filled tank and the results show that it is possible to produce
images in conditions similar to those producing epileptic activity. Although the
algorithm does not show much improvement compared to the Barber and Seagar
backprojection algorithm, the ringing artefact in the image was reduced.

1995 3D reconstruction has been attempted in Morruci et al. (1995) using a
direct sensitivity matrix approach.

1996 Vadasz and Sebestyen (1996) compared the modified Newton-Raphson al-
gorithm of Yorkey et al. (1987) with the Spectral Expansion Reconstruction method
of Zadehkoochak et al. (1991). They found that the spectral expansion analysis
is identical to one step of the Newton-Raphson algorithm and that thus the two
methods can be combined to develop more sophisticated reconstruction procedures
(Zadehkoochak, 1992).

1996 A constructive proof of uniqueness for the 2D boundary value problem was
derived by Nachman (1996). Siltanen and Mueller implemented his technique later.

1996 An article in Nature by Metherall et al. (1996) described a 3D EIT ex-
periment performed with the 64-electrode Sheffield Mark3b system. Their compu-
tationally reconstructed images compare very closely with the real objects in the
experimental setup.

1997 Cohen-Bacrie et al. (1997) adopted a linearized approximation to the for-
ward problem in order to reduce computational load. The tuning parameters for
the reconstruction are automatically determined from the measured data. Regular-
ization using a variance uniformization approach yields results similar to Tikhonov
regularisation, but with higher sensitivity in the central regions of the 2D volume.

Inversion by (linearized) Fourier transformation was carried out in Cohen-Bacrie
et al. (1997).

1999 A reconstruction algorithm adapted for data collection on rectangular elec-
trode arrays is presented by Mueller et al. (1999).

2000 Siltanen et al. (2000) implemented the direct reconstruction method of

Nachman for the 2D inverse problem.



2000 The Matlab software package EIDORS for 2D reconstructions in impedance
and diffuse optical tomography has been released.

2001 Borcea (2001) investigates a non-linear multigrid method for forward and
inverse solution in low-frequency electrical imaging.

2002 The Matlab software package EIDORS for 3D reconstructions in EIT has
been released.

2002/2003 Knudsen (2003) discusses a new direct method for reconstructing
isotropic conductivities in the plane based on scattering transforms.

Distinguishability & Optimal Current

1986 Isaacson (1986) derived and presented criteria for measuring the distin-
guishability of two different conductivity distributions. He showed how these criteria
can be used to determine the measurement precision needed to distinguish between
two differing distributions. The selection of current injection patterns is discussed
in the context of achieving maximum distinguishability in the reconstruction.

1996 A neasure of fidelity of an image based on Isaacson’s criteria was discussed
by Vadasz and Sebestyen (1996).

Measurement error

1988 Breckon and Pidcock (1988) published an article dealing with data errors
and their effects on reconstruction algorithms.

1997 Cohen-Bacrie et al. (1997) assumed a measurement noise of 20 dB in their
reconstructions.

Regularization

1992 The question of determining the regularization parameter has been studied
by many authors and a review of several techniques can be found in Galatsanos and
Katsaggelos (1992).

1995 Dobson (1997) details a method of “image enhancement” for electrical
impedance tomography, in which he bases the recovery of typically blocky images
on the total variation regularization technique of Rudin et al. (1992).

1997 Vassilevski and Wade (1997) investigate numerical methods for solving

inverse problems based on total variation regularization. They conduct several
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numerical experiments to compare the effects of various multilevel iterative methods
used as pre-conditioners for the conjugate gradient solver used.

1997 Vauhkonen et al. (1997) present a new method of incorporating prior in-
formation in the EIT reconstruction process by simulating samples of feasible con-
ductivities and thus approximating the prior covariance matrix. This corresponds
to a novel method of regularizing the EIT problem based on anatomic information
of the body.

1997 Pinheiro et al. (1997) compared smoothness-constrained inversion with
Levenberg-Marquardt regularization. The results indicate that smoothness-constrained
regularization shows superior robustness when noise is present in the measurements.

2002 Borsic (2002) implements Total Variation regularisation and investigates a
range of other regularisation methods for electrical imaging.

Linearization Methods

Cohen-Bacrie et al. (1997) summarised the different flavours of linearization
methods published in the literature and used up to then:

The integral method initially proposed by Chen. Using Born approximation on
the inhomogenous factor (6o /0 << 1), the sensitivity matrix S is computed in an
analytical manner under the assumption of a circular medium and dipolar current
patterns. A more general formulation for a larger class of current input patterns
was provided by Dobson and Santosa (1994b).

The sensitivity method developed by Barber and Brown (1984) uses the Geselowitz
theorem (Geselowitz, 1971). The computational burden can be high due to the na-
ture of the integrals that need to be evaluated.

The first order approximation of the FEM corresponds to using a linearized
approximation of the solution on the FE model around a given initial objective o;.
In this case, the sensitivity matrix is given by the Jacobian of the FE solution at
point o;.

The linearization through Fourier coefficients assumes that the medium is cir-
cular and analytically derives the expression of the potentials around the object

through expansions of Green functions in Fourier series.
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Cohen-Bacrie et al. (1997) comment that “both the sensitivity method and first
order approximation of the FE model require large amounts of computations for
the evaluation of the sensitivity matrix.”

1990 Kohn and McKenney (1990) found that the solution of variational methods
for the inverse problem as presented by Kohn and Vogelius (1987) show best per-
formance in terms of stability and robustness when a Newton-type solver is used.
Early termination of the iterative process shows a “desirable” smoothing effect.

Finite Elements in EIT

1959 Duffin (1959) demonstrated that the potential distribution inside a quadri-
lateral finite element can be solved using an equivalent resistor network.

The FEM has been used by many biomedical engineering researchers. Early
FE based work was carried out in cardiology (Kim, 1982), and in defibrillation
studies (Kothiyal et al., 1988); in studies of the electric field distribution in human
bodies by Natarajan and Seshadri (1976), impedance cardiography (Kim et al.,
1988), plethysmography (Batacharya and Tandon, 1988) and in EIT by Murai and
Kagawa (1985); Yorkey et al. (1987); Liu et al. (1988); Wexler (1988); Webster
(1990); Hua et al. (1991); Woo et al. (1993).

1985 Murai and Kagawa (1985) used FE for EIT reconstruction.

1988 A finite element model with node renumbering for adaptive impedance
imaging was presented by Woo et al. (1988).

1990 Yorkey (1990) investigated the use of higher order polynomial represen-
tations of the conductivity in the reconstruction process and demonstrated that
(bi)linear conductivity distributions might not be enough to increase resolution.
Their results showed that the increase in degrees of freedom causes a large increase
in compute time, however, they were not decreasing the number of elements in their
original mesh for an increasing polynomial order.

1993 Hua et al. (1993) demonstrated how to model the electrode-skin contact
in a finite element representation of the boundary of a body.

1994 Woo et al. (1994) described a FE based analysis software package for EIT,
including a simple interactive graphical mesh generator and fast algorithms for

solving linear systems of equations using sparse-matrix techniques.
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1994 Schmidt et al. (1994) presented a general purpose mesh generator and a
method for adaptive mesh refinement for electrocardiography and cardiac defibril-
lation. They highlight the suitability of adaptive mesh refinement techniques for
solving electric field problems in computational medicine.

1994 The work of Johnson and McLeod (1994) addressed the use of mesh adap-
tion based on a posteriori error estimates in forward and inverse bioelectric field
problems.

1994 Kytomaa and Weselake (1994) investigated the effects of two current pro-
jection techniques in combination with a finite element configuration producing a
mesh of uniform sensitivity. Their results indicate that the adapted mesh yields
superior results. This, however, seems to be due to the increased mesh density at
the electrode boundaries rather than the uniform sensitivity.

1995 The use of a range of renumbering algorithms for the system matrix was
investigated by Fulton and Lipczynski (1995). The authors compared a natural
row-by-row ordering, the minimum degree odering, the irregular nested dissection
algorithm and the regular mesh nested dissection ordering with each other. The
results show that the regular nested dissection gives best results in terms of factori-
sation and backsubstitution speed as it has the smallest element fill-in.

1996 The Computational Science Education Project in the USA published an
online book entitled “Direct and Inverse Bioelectric Field Problems” (CSEP, 1996),
in which the basics of computational bioelectric field modelling are detailed and the
potential of future techniques (e.g. adaptive meshing) is discussed.

1997 A fast meshing algorithm using a special binary tree method has been
described by Karamete et al. (1997). The authors adaptively refine a coarse initial
mesh depending on the local element density and thus obtain a method with a
linear scaling of total number of nodes in the mesh and computational time.

1997 Borouchaki and George (1997) employed an iterative approach for perform-
ing Laplace smoothing, which is used to improve the quality of the finite elements in
the domain for numerical simulations. We will show later that Laplace smoothing

can be performed using a linear algorithm.
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2000 High quality (anisotropic) unstructured meshes can be obtained by ellip-
soidal bubble packing as implemented by Yamakawa and Shimada (2000). They
present and discuss a computational method for anisotropic tetrahedral meshing of
3D domains by modified bubble meshing in combination with the advancing front
method. The advantage of bubble meshing is the high quality of elements in the
produced mesh, however, as the distance matrix needs to be computed repeatedly,
the computation time can be high.

2000 Schinnerl et al. (2000) developed a nested multigrid method for fast nu-
merical computations of 3D Magnetic fields; similar to finite difference multigrid
computations, but with a hierarchy of FE discretizations. They compare results
from the nested multigrid algorithm with a pre-condicitoned conjugate gradient
solver. The results show that for an example involving 1,900,000 degrees of free-
dom, the solver time can be reduced by an order of magnitude.

EIT Measurement Systems

1987 The development of the Sheffield Mark I system was reported by Brown
and Seagar (1987). In 1990 the Sheffield Mark II system came into existence.

A number of systems were reported in the literature for 1990 (Boone and Holder,
1996), major developments followed in 1992 with the OXPACT-IT and ACT-III
systems.

1994 The year with the most publications on EIT instrumentation and measure-
ment systems. The development of Sheffield Mark III and OXBACT-III fall into
this period.

1999 Siemens titled the TransScan TS2000 system as “one of the most important
innovations in the diagnosis of breast cancer in the last 25 years” (Siemens, 1999).
Although this can be considered part of their marketing strategy, the approval by
the FDA in the USA for clinical use shows that there is a niche in the market for
this type of device.

Parallelization

1992 Paulson (1992) investigated the possibility of parallelizing algorithms to

increase the reconstruction performance in EIT.
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1993 Woo et al. (1993) developed a modified Newton-Raphson algorithm which
uses Hachtel’s augmented matrix method (Gjelsvik et al., 1985) for static impe-
dance reconstruction. The subsequent parallelization using a 20 processor Symme-
try system from Sequent Computer Systems Inc resulted - as expected - in a major
speed-up of the reconstruction process.

Electrodes & Measurements

1987 The Sheffield protocol (Brown and Seagar, 1987) allows for ny(n, — 3)/2
independent measurement to be made when ny, is the number of electrodes in the
system.

1993 Kyriacou et al. (1993) investigate the dependence of the sensitivity matrix
on the location of the sensing electrodes on the boundary.

1996 In induced current EIT (ic-EIT), currents are induced into the volume by
time-varying magnetic fields produced by coils surrounding the medium. Hence the
contact impedance usually occuring by chemical processes under injection electrodes
can be neglected (Ruan et al., 1996). The number of measurement in ic-EIT is not
determined solely by the number of voltage electrodes, and (n;,—1)n¢c measurements
can be made where ny, is the number of voltage measurement surface electrodes and
ne is the number of injection coils used.

1997 Paulson et al. (1997) presented mathematical models for the modeling of
electrodes in EIT.

2000 Generalized Optimal current patterns and electrical safety in EIT are dis-

cussed in Lionheart et al. (2001).

1.4 Thesis overview

This work addresses the slow reconstruction speed of absolute conductivity images
and the currently rather low image resolution in Electrical Impedance Tomography.
We will try to improve these factors by introducing and combining special numerical
techniques into the reconstruction process of EIT.

To achieve this, we first introduce the basics of electrical impedance tomography,
such as the governing physical equation, electrode models, basic theory of inverse

problems and the solution of the forward problem in chapter 2.
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Chapter 3 deals with the discretization of the derived continuous problem for nu-
merical investigations with finite elements. We then move on to show how adaptive
mesh refinement techniques can improve the performance of the forward solution in
chapter 4 and we investigate the impact of mesh refinement on the inverse solution
in terms of resolution and speed improvements in chapter 5.

In chapter 6, we extend our reconstructions from two-dimensional to three-
dimensional objects and introduce a novel conjugate gradient algorithm as alterna-
tive to the common non-linear Newton-Raphson iterative solver.

Finally, we summarise our findings and conclusions in chapter 7 and take an

outlook on possible future work in 7.2.

1.5 Contributions to the field

The contributions to the field of image reconstruction as detailed in this thesis are

as follows:

1. We have employed adaptive mesh refinement methods to focus the available
computational resources on regions where they have highest impact on the
forward solution. This results in a more efficient 2D reconstruction algorithm
with improved accuracy. (Molinari et al., 2001a,d,e,b)

2. Some of the finite element code written has been reused and applied as part of
a project on finite element modeling of photonic crystals. (Generowicz et al.,
2002)

3. We have devised a method employing adaptive finite elements in the 2D in-
verse problem which makes the reconstruction independent of the numerical
discretization. The resolution is then only limited by the noise of the mea-
surement system. (Molinari et al., 2002b)

4. We have developed a novel conjugate gradient algorithm, incorporating adap-
tive mesh refinement techniques, to enable large-scale 3D reconstructions (in

comparison to Newton-Raphson). (Molinari et al., 2001c, 2002a)
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Chapter 2

How does EIT work?

Electrical Impedance Tomography seeks to image the electrical impedance distri-
bution in an inhomogenous medium by applying external sources of electric current
and making surface measurements of the resulting electric field.

Figure 2.1 shows a typical experimental set-up for a 2D cross-sectional recon-
struction problem. It consists of 16 electrodes attached to the surface of the object

under investigation, 2. In this example, one pair of electrodes is used to inject a

‘ 7 Electrodes

)
U™

Figure 2.1:  Electrical Impedance Tomography experiment. Measurement of the resulting
potential at surface electrodes V; after current I is injected into object €.
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small time-harmonic current I of frequency w into the object. The resulting poten-
tial distribution ¢ within €2 is then measured at the remaining surface electrodes,V}.

An initial estimate of the contained material is updated iteratively on a computer
so that the application of the measurement procedure to the model yields the real
measurements as closely as possible. This leads to a conductivity image which is
assumed to resemble the real distribution. The evaluation of the correctness of this
image has to be performed carefully since the ill-posedness of the problem allows
for several conductivity distributions giving similar potential measurement at the
electrodes.

To model the processes taking place when a current is injected into the body, we
need to know the behaviour of electric and magnetic fields within our object under
investigation or the biological tissue respectively. We will derive the equations of
EIT starting from first principles, applying simplifications and defining appropriate
boundary conditions as imposed by the electrodes. EIT measurements will be
presented and we will detail some of the theory behind the solution of the forward

and the inverse problem.

2.1 The physical model

The electromagnetic field within a body €2 is governed by the well-known Maxwell
Equations, for which Jackson (1998) gives an excellent introduction. They have
been studied in the context of EIT by, for example, Ackermann (1962) and Doer-
stling (1995):

0B
oD
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The electric displacement D and the magnetic induction B can be expressed in

terms of the electric field E and the magnetic field H as:

= ¢E (2.3)

B = uH, (2.4)

where € and i denote the electrical permittivity and magnetic permeability respec-
tively. In EIT, these parameters are generally considered isotropic although Geddes
and Baker (1967) have shown that some tissues behave, in fact, highly anisotropi-
cally (for example muscle tissue as present in the heart.) At this stage, we follow
the common assumption of isotropic €, 1 and electric conductivity o and leave the
anisotropic case for further studies. Substituting the current density as J = oE
and applying the plane-wave definitions for the electric field, E = Ee“"t, and the

magnetic field, B = Be!, equations (2.1) and (2.2) can be rewritten into the form

VXE = —iwuH (2.5)

VxH = J+iweE. (2.6)

The two components forming J = J, 4+ J5 are the current density caused by ohmic
current J, = oE, and the current density resulting from internal sources, J;, such
as brain or heart activity. Js can be neglected for the frequency range used in EIT

studies. Thus we obtain the Maxwell Equations applicable to EIT in the form

VxE = —iwuH (2.7)

VxH = (0+iwe)E (2.8)

Nunez (1981) and Vauhkonen (1997) showed that it is valid for biological tissue

to neglect the electric field contributed by magnetic induction and hence use the
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definition of E under quasi-static conditions,

E= Vo, (2.9)

where ¢ is the electric potential. Substituting equation (2.9) into equation (2.8)
and taking the divergence of both sides yields

V- (VxH) = V- (0+iwe)E (2.10)
0 = V- (0+iwe)Ve. (2.11)

Hence the governing equation for Electrical Impedance Tomography inside the body
) becomes

V(0 +iwe)Veo = 0. (2.12)

Applying low frequency or direct currents (w = 0) reduces equation (2.12) to
the governing equation for Electrical Resistance Tomography (ERT), which is often
referred to as the governing equation for EIT and which we will use throughout the
thesis:

V- (0Ve) =0. (2.13)

The approximation is valid as long as w is within a range of approximately 0-10 kHz
in which biological tissue exhibits distinct conductivity values as shown in figure 2.2.

Even at certain higher frequencies the capacitive term can be neglected according

to Nunez (1981); Barber and Brown (1984) and Webster (1990).

2.1.1 Current density from MR-EIT

The latest method to obtain the current density within a body is to perform current
injection while the object is in a MR scanner. This method is called MREIT and
is a research field on its own. The spatial resolution of the current density image
is comparable with that of an MRI image. For further details see, for example,

Eyiiboglu et al. (2000) or Kwon et al. (2002).
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Figure 2.2:  Electrical conductivity of human tissue at different current frequencies. The
discrete points shown are averaged values from Foster and Schwan (1989). The low frequency
range of 0-10 kHz is most suitable for medical imaging purposes as biological cells exhibit their
most distinct differing conductivities in this frequency range.

2.2 Electrode models and boundary conditions

Equation (2.13) is a second order elliptic partial differential equation (PDE) in
¢. For a unique solution to exist, the definition of boundary conditions (BC) is
required. The BCs for this PDE depend on the electrode type used and the model

assumed for its behaviour (Cheng et al., 1989; Somersalo et al., 1992).

The continuum model
The most simplistic case for the BCs would be to use the continuum model which
does not take into account the presence of electrodes. The current density j applied

in normal inward direction n to the object’s surface, 0¢2, is then defined as
. 09
Jj=0— on OS). (2.14)
n

Cheng et al. (1989) showed that this model overestimates the resistivities by as

much as 25 % and is hence not applicable to EIT reconstructions.
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The gap model
Though the alternative gap model does account for the presence of Nj electrodes

and assumes the injection of the current I, into electrode number ¢ with area Sy,

j= g_z; (=1,2,....,N, (2.15)
7= 0 in gaps between the electrodes, (2.16)

it is not much more accurate than the continuum model. This is due to the fact that
both ignore the shunting effect of the electrodes and the contact impedance caused

by electrochemical reactions at the gel interface between body skin and electrodes.

The shunt model

The shunting effect is represented by the shunt model which assumes a constant

measured potential 1, across electrodes,
o=V, onlS, (=1,2,...,Np, (2.17)
and uses the more reliable boundary condition for current injection,

¢
—ds =1 =1,2,..., Ng. 2.1
/Szo—ands l 14 3 4y sy VL ( 8)

The complete model

While the former two models overestimate the resistivity, the latter model underes-
timates it because it still does not take into account the contact impedance (Cheney
et al., 1999). The electrochemical effect that takes place between the electrode and
the body is the formation of a thin and highly resistive layer. This layer is char-
acterized by the contact impedance z,. Typically, z, is in the range 200 — 400Q2cm?
(Heimbach, 1990).
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Accounting for 2, results in replacing equation 2.17 by

¢+zeg—i:w (=1,2,...,Ny. (2.19)

Somersalo et al. (1992) have shown that this complete model is able to predict
the experimental measurements to better than 0.1 % which is in the region of the
noise-to-signal ratio common to current measurement systems and thus the most
appropriate electrode model for EIT reconstruction.

For existence and uniqueness of a solution to equation (2.13), all the described

models require the additional formulation of the following two Kirchhoff conditions:

Ny
I, =0 conservation of charge (2.20)
=1
Ny,
> Vi=0 choice of a ground. (2.21)
=1

2.2.1 The complete formulation
We will employ the complete electrode model throughout this thesis. For conve-
nience, we summarize the complete set of equations on which the EIT forward

solution and reconstruction process will be based in chapters 4 to 6:

V- (oVep)=0 governing equation (2.22)
Is, o%ds = I, current injection, vonNeumann BC (2.23)
ag—ﬁ =0 gaps between the electrodes (2.24)
o+ Zgg—ﬁ =V, potential measurement, Dirichlet BC (2.25)
Sl =0 conservation of charge (2.26)
V=0 choice of ground. (2.27)
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Figure 2.3: Electrical Impedance Tomography system. See text for explanation of devices.

2.3 EIT measurements

EIT data acquisition, which consists of current injection and subsequent measure-
ment of the resulting electrode potentials, can be performed in many different ways.
What hardware to use and how to carry out the measurements in order to obtain
the best possible resolution and a stable reconstruction is an important question in
EIT (Dobson and Santosa, 1994b). Different strategies for current injection have
been investigated by Hua et al. (1992) and optimal voltage measurement schemes
are discussed in Paulson et al. (1993).

In order to achieve a unique result, an infinite number of measurements of infinite

precision is required (Sylvester and Uhlman, 1987).

2.3.1 Measurement hardware

Figure 2.3 shows the main parts of an electrical impedance imaging system. It
comprises of a number of current generators and voltage measurement devices con-
nected to electrodes on the surface of the body. A control circuit switches/assigns
the electrodes to the current generator and voltmeter input and output. When only
one generator is present, only two electrodes at any one time can be used for current
injection. If more than one voltmeter is present, the voltage measurements can be
made in parallel and hence shorter acquisition times can be achieved. The computer
is used to control the measurement process and to store, process and visualize the
data. See Webster (1990) for more details about the hardware of EIT measurement

systems.
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2.3.2 Current patterns

Current can be injected either through a few electrodes or through many/all elec-
trodes at the same time. The set of the combinations of electrodes involved and the
amplitudes of the currents applied in each set form a current pattern. Main current

patterns — as described in Vauhkonen (1997) — are:

e the neighbouring pattern, where current is injected through neighboured elec-
trodes and voltage is measured at the remaining electrodes. This technique
was initially used by Barber and Brown (1984) with backprojection recon-
structions and corresponds to the presence of pseudo-dipoles along the bound-
ary.

e the opposite pattern, where current is injected through electrodes on opposite
sides of the object’s surface. This method deploys a more uniform current
density in the center of the object and hence results in increased sensitivity
in that region.

e the cross pattern, which uses one electrode as current reference electrode and
all the others in turn for injection. The voltages are measured with respect
to one reference electrode.

e the optimal pattern. Hua et al. (1991) derived optimal current patterns by
adapting the reconstruction algorithm used to minimize the difference between
measured potential values and those predicted by the model. In this case,
current of adapted amplitude is driven through all electrodes at the same
time which leads to increased sensitivity to conductivity changes.

e the trigonometric pattern. Paulson et al. (1993) and others (Vauhkonen et al.,
1999; Cheney et al., 1999) use trigonometric current patterns where the am-
plitude of the injected current, [y, varies with the angular position 6, of the
electrode ¢ on the boundary of a circular plate: I, = Iycos(f;). The advan-
tage is the more evenly distributed current density within the object and the

increased sensitivity in the center of the object.

Throughout the course of this thesis, we will use the neighbouring measurement

pattern which corresponds to N, = Np — 1 linear independent current injections
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w independent voltage measurements, where Ny, is the

and a total of Ny, =
number of electrodes used.

When performing 3D impedance imaging, the current patterns can not be as
easily differentiated as in 2D. The best approach in this case is to use the optimal

pattern as it adapts the measurement to the object’s properties.

2.3.3 Measurement error

All physical measurements carry measurement errors caused by random and sys-
tematic error sources. Random errors originate in the measurement electronics and
often cannot be avoided. The reduction of thermal fluctuations and digital quanti-
zation error can be performed by using electronic parts of high specification. When
living systems are investigated, noise is often caused by physiological changes within
the body during the measurement period. Sources of systematic errors are manifold
and start with simple mislocation of electrodes, the interchange of electrode con-
nections, and others. They often include errors caused by inaccurate geometrical
or numerical modelling. Systematic errors usually scale with the size of the mea-
surements and there are often ways of identifying these, for example by applying
the reciprocity theorem'. Meeson et al. (1996) showed that this reciprocity may be

used to measure noise performance and to check the quality of data.

2.4 The forward and the inverse problem

The classical forward or direct problem consists of finding a unique effect resulting
from a given cause through a known mathematical or physical model. This type
of problem is usually well-posed in the sense of Hadamard (1923), and as given by
Lamm (1993):

1. There exists a (globally-defined) solution for all reasonable data;

2. The solution is unique;

3. The solution depends continuously on given data (stability).

Many physical situations satisfy these conditions of existence, uniqueness and

stability and are hence well-posed. However, there exists a large class of problems

'If a voltage source S acting in one branch of a network causes a current I to flow in another
branch of the network, then the same voltage source S acting in the second branch would cause
an identical current I to flow in the first branch (Geselowitz, 1971).
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Figure 2.4:  Classification of inverse problems. Top: Forward problem — cause and model
are known, effects are sought. Centre: Model identification problem — cause and effect are
known. Bottom: Source identification problem — model and effect are known.

in science and technology which are not necessarily well-posed (Groetsch, 1993).
These problems are inverse to the classical forward problem and do not necessarily
have unique solutions or the solutions may be very sensitive to small changes in

data (or very insensitive to large changes in data).

2.4.1 Problem classification

Figure 2.4 shows the 3 different classes of numerical simulations where an unknown
quantity needs to be determined from a set of known parameters.

The top model shows the solution of the so-called forward problem. Most nu-
merical solutions to questions in the physical and engineering science are solutions
of the forward problem, where the causes and physical model are known and the
resulting effects need to be found. In the case of EIT, this corresponds to the
computation of the electrode potentials when the current injection is given and the
conductivity distribution is known.

The middle row represents the typical problem in EIT, the model identification
problem. In this case, the cause — the injected current — is known, as well as the
effect — the measured electrode potential — however, most of the physical model is

unknown.

27



Known conductivity €) Resulting
and injected current Potential
I( Distribution ¢

Forward
Solution

| nver se

Problem
Computed Measured Electrode

Conductivity o (b) Potentials V,

Figure 2.5: (a) In the forward solution, the potential ¢ is sought whereas in the (b) inverse
problem the physical model based on the conductivity distribution has to be determined.

Finally, the model in the bottom row shows the source identification problem.
This problem is encountered, for example, in Electrical Encephalographic (EEG)
reconstructions of the current dipoles in the brain when surface potentials can be
measured and the brain tissue conductivities are assumed known.

Although the reconstruction of conductivity distributions in EIT is of the model
identification problem class, the solution of the forward problem is a central part of
many iterative solvers. One of these iterative solution methods is outlined in figure
2.5. In the remaining chapters of this thesis, we will show the implementation of
such an iterative solver incorporating a solution to the forward problem and solving

the inverse model identification problem.

2.4.2 Forward solution

The typical forward problem in EIT is as follows: Given the conductivity distribu-
tion ¢ and the currents injected through boundary electrodes, I, find the potential
distribution ¢ within the object 2 and in particular the resulting voltages at the
potential measurement electrodes, V, see figure 2.5a.

The solution of the forward problem is rather simple as it only requires solving

the linear system

V-oVe=0 (2.28)

28



for ¢ in () together with the application of the boundary conditions imposed by the
current injection and subsequent determination of the electrode voltages V. This

formula can be rewritten as an operator equation,

Y(o)¢ = j, (2.29)

where Y (o) is known as the conductivity-dependent Dirichlet-to- Neumann map and
j is the current density applied trough boundary conditions. We will see in the next
chapter how this operator is derived and expressed in a discrete form on a finite

element mesh.

2.4.3 Theory of inverse problems

The actual challenge for using this method for tomographic purposes is the inverse
problem, which is based on the inverse model identification problem as follows: Given
the injected currents I (the causes) and the corresponding voltages at the potential
measurement electrodes V (the effects), find the conductivity distribution o (the
physical model) within €.

The transfer impedance model can be described by the operator R = V! which
projects the current densities injected through the electrodes, 7, onto the potential
distribution ¢ which we measure on the electrodes, V, see figure 2.5b.

In this case, equation (2.28) turns out to be non-linear in ¢ as the potential ¢

is a function of the conductivity, ¢ = ¢(o),

V- oVé(o) = j (2.30)

and hence we cannot easily solve this equation for o.

In fact, equation (2.30) can not be solved analytically for arbitrary o’s and thus
requires the application of appropriate numerical techniques. In order to obtain
a numerical solution to the continuous problem, the solution domain needs to be

discretized into small elements, on which a solution is then approximated.
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In general, it can be said that to obtain the image of an unknown interior of an
object, we have to create a numerical model on which the simulation of the potential
measurement is approximated as closely as possible to the real measurement. The
model of an initial conductivity distribution is then adaptively changed to match
the physical properties of the original object so that the calculated effects (electrode
potentials) match the real measurements.

There are other methods to deal with this type of ill-posed inverse problem. A
non-exhaustive list of these as applied to inverse problems in recent years, is for

example:

e stochastic reconstruction (Maximum entropy)
e non-linear iterative reconstruction
e linearized reconstruction

e direct reconstruction (Nachman)

backprojection algorithms

The classical forward problem is to find a unique effect of a given cause by
using an appropriate mathematical or physical model. This class of problems is
usually well-posed, which means that it has a unique solution and the solution
is insensitive to small changes in the data. Traditionally, it was thought that all
physical situations lead to well-posed problems, but today we know that many
problems in science and technology are not necessarily well-posed. These problems
are inverse to the classical forward problems. There exist two different types of
inverse problems: (1) The source identification problem where the model is given,
the effects can be measured and the unknown cause is sought, and (2) the model
identification problem where cause and effect are known and the physical model is
sought. These inverse problems do not necessarily have unique and stable solutions
and small changes in the data can cause large variations in the solution. For this
reason, inverse problems are called ill-posed or ill-conditioned respectively in the
sense of Hadamard (1923).

In this chapter, some topics in the field of inverse problems are reviewed and
solution strategies discussed. The focus is on the model identification problem as

Electrical Impedance Tomography belongs to this class of ill-posed problems. The
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major solution methods can be categorized as deterministic and statistical meth-
ods. It is assumed that the physically continuous problem has been discretized and
the discussion is therefore based on a finite-dimensional system. From a mathe-
matical point of view is the discrete problem always well-posed because arbitrarily
small changes in the data cannot cause arbitrarily large variations in the solution.
However, finite dimensional discrete problems have properties very similar to those
of continuous ill-posed problems and it is therefore natural to consider only finite-

dimensional problems.

2.4.4 Deterministic method

Consider the equation

o= h(p), (2.31)

where 0 € RM denotes the M observations or measurements, and h represents the
physical model which is depending on the physical parameter vector p € RY of size
N.

If the model A is linear with respect to p, equation 2.31 can be written in the

form of a linear matrix equation,
o=Hp,  HeR"Y, (2.32)

If h or H are known, the effect o can be calculated for a given p. This is the
classical forward problem which is usually stable and has a unique solution. In the
model-identification inverse problem, the observation o is measured and the physical
model h is to be determined. The observations are usually measured with a certain
error. Is the problem ill-posed, the solution p can be very sensitive to these small
errors and hence vary in a wide range. This behaviour of ill-posed inverse problems
corresponds to an ill-conditioning in H. The condition number of the matrix H is

calculated as ratio between largest and smallest non-zero singular value of H:
max(svd(H))

_ max{svaii)) _ ARG
) = TS — = 2 (2.33)



H™ is the Moore-Penrose inverse of H, 7, is the largest singular value of H and 7,
is the smallest non-zero singular value of H. r denotes the numerical rank of H.

The larger the condition number, the more ill-conditioned the problem is.

2.4.5 Non-linear least squares

In practice, a general solution is sought which minimizes the difference between
observations and measurements simulated on the numerical model.

In cases where the number of measurements, M, equals the number of unknown
parameters, N, a simple inversion of the model matrix H would be sufficient to
determine p. For the case of underdetermined systems (M < N) or overdetermined
systems (M > N) a best fit solution needs to be found.

One method to find such a solution is to use (weighted) least squares. The

vector p is called the weighted least squares solution if it solves the problem
p = min||Lo — Lh(p)|l5- (2.34)

W = LTL is the so-called weighting matrix.
If h(p) is a non-linear function, there exist several possibilities to solve equation
2.34. If the non-linearity of the problem is weak, the model h(p) can be linearized

around pg according to a Taylor series expansion:

h(p) = hipo) + Z—Z(po)(p ~ o)+ o(llp — pol); (2.35)

where Oh(po)/0p is referred to as the Jacobian, J, of h(p) at p = py. Neglecting

higher order terms and rearranging then yields

h(p) — h(po) = J(p — po)- (2.36)
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With Ap = (p — py), and Ao = h(p) — h(po), we obtain

JAp = Ao. (2.37)

This equation represents the linearized relation between a change in parameter p
with respect to a change in the observation o in the vicinity of the local point py.
The least-squares solution to this linearized equation can now be obtained with the

help of the Moore-Penrose inverse or pseudoinverse of H:

Ap = H" Ao, (2.38)

where

HY = (J"wW)~J'w. (2.39)

Here, Ap now represents the parameter update required based on the observation
difference Ao when J is determined by the physical model. If H has a trivial null
space, {y € RY|Hy =0 for y =0 only}, then the solution is unique. Cases
with non-trivial null space as in the case of measurement noise require regularisation
and will be considered later.

Sylvester and Uhlman (1987) proved that the Dirichlet-to-Neumann map uniquely
determines C? conductivities for this type of boundary-value problem which was
identified first by Calderon (1980). The proof outlines a direct method for recon-
structing the conductivity under the assumption that the measurement data are

exact.

2.5 Image smoothness constraint

The reformulation of the problem yields a well-posed problem instead of an ill-
posed problem. So far we have started from the assumption that the difference in
measured (V;) and computed (U,) electrode voltages has to be minimized under
the assumption of measurement noise. We assume that the set of measurements

made and the error on these follows a Normal distribution and we can thus scale
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the voltage values by the variance of the voltage set as measurement noise (§V; =

(var)(Ve)).

This leads to the formulation of the objective function

(o) = [V 1 (0)T - VP (2.40)

o = argmin {% (VE(;_VEUEY} (2.41)

(=1

or in Lagrangian formulation:

N 2

L Ve—Uz>

minimize E < : (2.42)
=1 Ve

However, Pinheiro et al. (1997, p.301) demonstrated that “Fitting data rather
than noise is a necessary requirement in order to reconstruct meaningful images.
The use of a smoothness-constrained model is a means to obviate this problem. It
has been shown that the smoothness-constrained regularization is superior to the
[Levenberg-Marquardt method] in stabilizing the inversion procedure”. Smoothness-
constrained inversion is also often referred to as Occam’s inversion in the geophysical
literature (Constable et al., 1987).

The idea behind this inversion technique is that, rather than fitting the experi-
mental data as closely as possible which maximizes the roughness of the model, the
smoothest model is sought which fits the data to within an expected tolerance.

The Levenberg-Marquardt method tries to stabilise the problem by adding a
matrix with small diagonal elements (e1) to the Hessian approximation J7.J.

Often, the Tikhonov regularization method is used to stabilize the problem and
to make it more well-posed in terms of the singular value decomposition (SVD)
components and the matrix conditioning. Tikhonov regularization can be written

as

A (Ve— U\
U:argmin{z< fm “) +)\||a||} (2.43)



or in Lagrangian formulation:

(Vi U\
minimize Z ( eéV E) under the condition ||Ko|| <, (2.44)
¢
=1

with K being the matrix representation of a linear integral operator.
The conditioning of the problem is now influenced by the Lagrange parameter
A. The size of this factor balances between a large contribution of the constraint

(A large) or a large contribution of the original term (A — 0).

2.5.1 ? fitting

We address the problem of conditioning the problem by minimising a x? functional
under the condition of image smoothness. The y? method has been applied for many
years in the physical and engineering sciences where statistical measurements of data
are taken repetitively. The mean value and the standard deviation of these repetitive
measurements give an indication of how well the measured data is approximated by
the simulated data when measurement error (represented by the standard deviation)
is present.

Let o; + do; be a set of observations of size No(i = 1...Ng). These observa-
tions deviate from the “exact” theoretically predicted value o; by an error of do;.
Repetitive measurement (m = 1...M) of these observations result in a set of mea-
surements, M € RNo*Nv  from which mean observations o; and their standard
deviations do; can be derived.

To obtain a measure of how well the observed values match a set of computed

observations 0;, their difference should be within the error limits of +do;, i.e.
(6; — 0;)* < 607 (2.45)
or

~ _ 2
<@§ﬁg <1 (2.46)
0;
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If we sum up all contributions, we obtain an expression for a good fit of the computed

observations to the real observations in the x? sense:

o — 0\ ZNO
(3 K3 < )
< 00; ) T4 ! (2 47)

~ — 2
(0’6__ 01) < No. (2.48)
=1

This assumes that all measurements carry an error # 0. If the computed observa-
tions now fall within the error limits of the real observations, the criterion xy* < Np
is satisfied and a best fit computed solution to the problem is found.

There obviously exist a number of possible solutions which all satisfy the y?

goodness-of-fit, criterion.

2.6 Summary

In this chapter, we have introduced the physical principles behind Electrical Impe-
dance Tomography and detailed electrode models and current injection patterns.
We have discussed the basics of solving the forward problem and given an intro-
duction to the different types of inverse problems and their solution method which
we will apply in this thesis. The next chapter will take the continuous model we
have developed and we apply the finite element method as discretization method

for numerical computation.
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Chapter 3

The Finite Element Method in EIT

In the engineering sciences there exist many different types of electro-magnetic field
problems which are simulated and solved numerically with computers. From the

most common numerical techniques as listed in Schwab (1998),

e FDM - the finite difference method,

e BEM - the boundary element method,
e FEM - the finite element method,

e SC - simulation charges, and

e MCM - the Monte-Carlo method,

e F'VM - the finite volume method,

the finite element method is the most applicable method for complex geometries and
non-trivial boundary conditions (Burnett, 1987; Bathe, 1982; Silvester and Ferrari,
1996; Salazar-Palma et al., 1998). In EIT, it provides piecewise solutions for both
the approximation of the potential and the determination of conductivities (Miller
and Henriquez, 1990) and hence we will mainly apply this technique for the required
computations throughout this document.

The FDM - although reasonably simple and fast - is restricted to pointwise so-
lutions on a pre-defined and usually square grid and hence cannot cater for the
arbitrary boundaries of complex geometries such as those of tissue within the hu-
man body. The BEM is more suitable for problems where there are few regions
of homogenous conductivity with well-known boundaries within the body, which

are often unavailable in the case of EIT reconstruction. Simulation charges can be
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applied to model electrostatic fields if the current source and - once again - the con-
ductivity were known. The Monte-Carlo method is a powerful technique based on
statistical sampling of the electro-magnetic field. This interesting method, however,
often requires too much computation time compared to other methods.

The finite element method was first used by Courant (1943) for vibrational
studies in mechanical engineering. Some sources (Williamson, 1980) cite Schellbach
(Schellbach, 1851) as first application of finite element analysis since he determined
a surface of minimum area enclosed by a given closed boundary curve with a finite
element-like solution.

The finite element solution to a problem, set up by a PDE and additional bound-
ary conditions, consists of the following steps (Burnett, 1987):

Discretization of the object volume/field area into single elements,
Approzimation of the potential function ¢ within a single element,
Determination of the elemental matrices,

Assembly of the system matrix (or transfer matrix, stiffness matrix),

Boundary condition imposition, and

A AN e B

Solution of the (linear) set of equations.

3.1 Discretization & Meshing

To allow for numerical calculations, we need to divide the domain 2 into a finite
number of elements — this process is known as meshing.

Numerical simulations can only produce accurate results if the discretization of
the volume under investigation is chosen suitably for the applied numerical algo-
rithm. In EIT, a poor discretization might yield inaccurate results since it affects
several steps of the reconstruction process at once (forward solution, inverse prob-
lem, final visualisation). In particular the effects of the discretization on the accu-
racy of the predicted voltages on the boundary and the effects on the sensitivity
due to conductivity change in the interior are highly significant in this field.

There are a number of factors in the discretization process which need to be
taken into account for any numerical simulation and we will address the issues

involved in the following sections:
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e Meshing software

e Element geometry

e Element & mesh quality

e Element size and density

e Mesh smoothing

e Boundary model accuracy (shape & electrode modelling)
e Node numbering

e Algorithms and computational implementation (bubble, vertex)

3.1.1 Meshing software

The discretization of the object 2 into elements can be performed using publicly
available software, for example: Easymesh (Niceno, 2001) or Triangle (Shewchuk,
1996) for two-dimensional areas; and Gmesh (Geuzaine and Remacle, 2000), Geom-
pack (Joe, 1996), Netgen (Schéberl, 2001) or the well-known QHull package (Barber
et al., 1996) for three- and higher-dimensional volumes.

These packages are usually based on Octree, Divide-and-Conquer or Advancing
Front techniques (Thompson et al., 1999) in combination with Delaunay triangula-
tion algorithms (Delaunay, 1934). Some of these can produce very irregular meshes
which contain non-equilateral elements with rather sharp angles, which should in
general be avoided as they can distort the numerical solution unnecessarily.

An alternative to these approaches is to write software which is based on physical
techniques such as, for example, bubble meshing (Cingoski et al., 1997), spring
meshing, or a Vortex-based method (Fangohr et al., 2001). If more structured
meshes are required, a simple way of creating such a mesh is to fill the domain
(defined by its fixed boundary) with a structured/regular mesh and to subsequently
adjust this to the boundary shape by smoothing it (see 3.1.7).

Good mesh generators should be able to meet the following criteria:

User Input e ability to accurately define boundaries
e possibility to specify a node or element density function

e allowing for remeshing of existing meshes
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Meshing e conform to complex boundary
e create unstructured mesh to avoid anisotropies
e create elements with high quality
e generate element density according to user input
e perform automatic computation without the requirement
for user interaction
e carry out fast construction of meshes

e be robust: creation of valid meshes

Output e restricted to useful and meaningful parameters, such as
topology and node positions
e possibility of choosing different output structures

(topology, edge connection, etc.)

The Handbook of Grid Generation (Thompson et al., 1999) and the Meshing Re-
search Corner (Meshing Research Corner, 2001) are valuable resources, presenting
and discussing many different methods for the generation of finite element meshes.

However, it seems that many researchers make use of meshing programs without
considering the impact of unsuitable volume discretizations on the reconstruction.

We have found that mesh generation based on physical principles gives the best
results in terms of element shape and grading. In particular, we have employed two
novel methods of generating high quality meshes fitted to a given mesh density:
(a) a modified version of bubble meshing (Cingoski et al., 1997) and (b) a vortex
dynamics (Fangohr et al., 2000, 2001) meshing technique. Both methods are based
on Molecular Dynamics (MD) principles (Haile, 1997) which minimize the chosen

system’s energy functional:

(a) In modified bubble meshing, the nodes of the mesh are represented
by spheres of finite size, interacting only with their nearest neighbours
according to Hooke’s law. The variation of the node density across the
domain results from making the radius of the bubbles a function of their

position.
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Figure 3.1: Mesh created by the Vortex meshing method.
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Figure 3.2:  Mesh created by the Bubble meshing method.

(b) In vortex meshing, repulsive forces govern the equations of motion
of the point-like vortices which have no spatial extension. An addi-
tional potential distribution enforces the density variation of nodes in

the mesh.

The theoretical ground state (i.e. the lowest energy configuration) of both meth-
ods in the absence of density variations is, in two dimensions, a hexagonal lattice
and, more generally, the closest sphere packing configuration (Aste and Weaire,
2000). For bubble meshing, this configuration corresponds to the lattice of atoms
in solid state matter, whereas for vortex meshing it relates to the (two-dimensional)
Abrikosov state (for a review see Blatter et al., 1994) in Type-II Superconductors.

The mesh shown in figure 3.1 shows a Delaunay triangulation of a set of node
positions generated by the vortex meshing technique using periodic boundary con-
ditions. The node density in the mesh is determined by a ‘pinning’ potential as

shown in figure 3.1(a). Vortices are attracted from the pinning potential (it reduces
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Method Density Quality Remeshing Time

Advancing front adaptive good N fast
Bubble Meshing adaptive high Y fast-moderate
Vortex Dynamics adaptive very high Y moderate
Mesh conforming depends on depends on Y very fast
refinement previous mesh  previous mesh

Table 3.1: Properties of different finite element mesh creation techniques.

their energy) and thus vortices accumulate in the centre of the domain. Figure 3.2
shows a corresponding result from the bubble meshing technique.

Meshing algorithms usually employ the Delaunay triangulation method for which
fast and hence efficient algorithms exist, for example the ghull package (Barber et al.,
1996). Table 3.1 gives an overview of some meshing methods and their performance

benefits.

3.1.2 Element geometry

Although many different shapes of finite elements can be used to discretize a given
domain, the most commonly used shapes are the trianglular or quadrilateral element
in 2D and the tetrahedral or hexahedral element in 3D. We will be using the triangle
and tetrahedron respectively as these are the simplest geometric constructs defining
a plane by 3 points and a volume by 4 points, assuming points are not co-linear/co-
planar.

The boundary of these elements consists of straight edges. There also exist - so-
called isoparametric - elements with their surface defined by NURBS (Non-uniform
rational bilinear spline) functions. These are rather difficult to handle numerically
and computations involving these require large resources so that for fast and efficient
computation, we will avoid their usage. In particular, there exists no analytical
formula for integrating the form functions/solution along the boundaries compared

to the simpler straight-edged elements (see Appendix A).

3.1.3 Element & mesh quality

Whilst for applications such as viscous fluid flow simulations elements with high as-

pect ratios may be desirable, general problems with lower variations in flux, such as
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for example EIT, require elements with more regular shape. In 2D, the use of equi-
lateral triangles and in 3D the use of regular tetrahedrons allows the discretization
of a domain without preferring any particular direction. This property is known as
geometric isotropy (Burnett, 1987) and ensures that one variable is not represented
more accurately than the others.

A limited set of possible measures for the quality of elements, which are equally

applicable to 2D and 3D, is given here:

true volume true surface

- 1 <qgm <3 3.1
dgm ideal volume = ideal surface S dgm = (3.1)
97 true volume 1/3
B 0<gmr=1 3.2
qrr <2\/§ sphere volume> S GQrr S (3.2)
R;
= U= 0<g<1. 3.3
"=7%, 08 (3.3

¢gm and g¢,, are presented and discussed in Robert et al. (1998) in the context
of optimising tetrahedral space station arrangements. The higher the value, the
better the quality of the element. The ideal volume and surface area are those
obtained from a regular tetrahedron whose four angles, four faces and six edges are
of the same shape and size, respectively. The true volume and true surface refer to
the sizes obtained from the real (distorted) element whose quality is measured. In
equation 3.2, the sphere volume is that of the circumscribing sphere which intersects
the (real) tetrahedron at all vertices.

In general, it can be said that the mesh quality depends on the solution on the
domain and elements with high aspect ratios might be suitable for solutions with
highly unisotropic gradients. As we do not know the solution in advance in EIT,
the general approach of using equilateral elements seems to be most promising. As
the solution is assumed to be smooth, “smooth” transitions of element sizes seem to
be a reasonable approximation. These are obtained by using these near-equilateral
elements with high quality according to above quality measures.

In the following chapters, we will employ the quality measure ¢ of equation 3.3

presented by Golias and Dutton (1997). R; and R, denote the radius of inscribed
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Figure 3.3: Example of calculation of element quality from inscribed and circumscribed circle.

Figure 3.4: Derivation of tetrahedral element quality by computation of radii of inscribed
and circumscribed spheres.

and circumscribed circle/sphere respectively and D is the dimension of the prob-
lem. Figure 3.5(b) shows a typical quality distribution of ¢ on the 3D mesh in
figure 3.5(a). From the bar graph distribution, we can visually determine how good
the overall mesh quality is. As measure for the mesh quality, we will use the mean
value of the ¢-distribution and its standard deviation.

As an example, we will derive the quality measure of a single tetrahedral element
(figure 3.4):

To find the circumscribed sphere, we need the point that is equidistant from all

four vertices, defined by the position vectors rg, ..., rs with respect to the origin;
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Figure 3.5: (a) High quality 3D finite element mesh consisting of 6535 tetrahedral elements,
(b) quality plot of the elements contained in the cube (<¢> = 0.89).

i.e. we want to find the centre of the sphere, r, such that

(r—r,)-(r—1r,) = R*> ; n=0...3

r?=2r-r,+1. = R

If we move rg into the origin, i.e. using the d,, in place of the r,, then r? = R?

(sphere radius) and the equations reduce to

2r-d, =d> ; n=1.3

This yields the matrix equation for the center of the sphere,

dl:L‘ dly dlz Ty d%
2 d2:1: d2y d2z Ty = d% ’ (3 4)
d3:v d3y d3z Ty d%

from which we obtain for the radius R, of the circumscribed sphere:

2 _ .2 2 2
R, =ry+r, +71;

We derive the radius R; of the innerscribed sphere/circle by subdivision of the el-

ement with a new point placed in the centre and by connecting this centre point
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to the vertices of the element. Then the volume Vj of the subdivision j is calcu-
lated from its surface area A; and the radius R; which represents the height of the

tetraeder /triangle j in D dimensions:

A;R;
=" (55)
The total volume then corresponds to
R; R;A
V:5;AJ: R (3.6)
which leads to
R, = DK (3.7)
i =D .

A; represents the area of face j in 3D or the length of edge j in 2D respectively. In

3D, the total volume is obtained as

1 1 1 1
A= Z A]' = 5”(11 Xd2||+§||d1Xd3||+§||d2Xd3||+§||(d2—d1) X (dg—dg)” (38)

faces

An alternative method for computing the quality indicator for 2D triangles can

be derived with the help of Sieber and Huber (1990) as follows:

s a+b+c
R, = where s = ———
4 cos(2) cos(£) cos(2) 2

R; = 4R,sin (%) sin (g) sin (%)
Qi = 2% = 8sin <%> sin (g) sin (%) ,
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With sin(§) = 4/ % (Sieber and Huber, 1990) follows

= \/(s—biis—c)\/(s—a()lis—c)\/(s—a()ll()s—b) (3.9

_ (s—a)(s—b)(s—c). (3.10)

abe

With these formula, we can easily compute a quality indicator of single elements
and of a whole mesh, which we make use of in some of the examples in following

chapters.

3.1.4 Element size & density

Mesh refinement. We will see in the following chapter that adaptive mesh re-
finement is a highly applicable technique for 2D Electrical Impedance Tomography.
An initial coarse mesh can be refined to improve the accuracy of the solution as
well as the resolution of material boundaries. The local refinement is then based
on error or material gradient indicators, which guide the refinement process in re-
gions of interest or where the solution varies rapidly. This saves a large amount of
computation time for obtaining results of same accuracy compared to globally fine
meshes.

Three major methods of mesh refinement are presented in literature. These
include h-refinement, p-refinement and r-refinement; we will discuss further details
of these methods in section 4.2.

Often, techniques for mesh creation or refinement, such as ‘edge swapping’ and
‘element conforming subdivision’ are much simpler to implement for two dimensions
than for three dimensions. For 3D problems, other methods, such as those presented
above have to be devised. We mainly concentrate on h-refinement of linear elements,
which is both computationally efficient and adds a relatively small number of nodes

and elements to the existing mesh.

3.1.5 Error Estimation

Since the true solution for the problem is unknown (otherwise we would not have

to compute it numerically), the error of the approximation on the discretization is
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unknown. However, once an approximated solution of the potentials at the nodes
of our mesh is obtained, we can calculate a so-called a posteriori error estimate on
an element and the mesh (Salazar-Palma et al., 1998; Bathe, 1982). In Electrical
Impedance Tomography, the solution of the forward problem gives us the poten-
tial at the nodes of our mesh with linear interpolation. The normal component of
the current density within each element has to be continuous across inter-element
boundaries. The approximate solution obtained from the FE discretization usually
violates this (smoothness) condition. We can estimate the square norm of the error
of the forward solution on element e, £2(e), by summing the jumps of the squared
residuals of the current density normal components (V) across the surfaces be-
tween element e and its fth neighbour (f = 1...N,;), given by the outward normal

vector Sgy.

Nup

e2(e) =g ) (09 — 0/Vpyp) - Sep)? (3.11)
f=1

g is a geometrical factor, taking into account the element’s shape. To obtain the

total error on the mesh, we sum up the contributions of each element and take its

norm
e =] Y €Xe). (3.12)
elements

This error estimate is physically sound and robust (Salazar-Palma et al., 1998)
and can be carried out quite quickly. Again, for higher order elements, more terms
have to be taken into account and integrals across the element’s surface and in its
interior have to be determined, which can slow down the computation significantly.
Applying this error estimate to an object with surface electrodes attached, we
observe that the largest error is located in regions with highest current density,
which is around the electrodes. This error in boundary regions around the electrodes
affects the solution in inner regions of the domain significantly so that refinement

is desirable as discussed previously.
Another possibility for mesh refinement is based not on the error but on the

gradient of conductivity between neighbouring elements. This results in higher
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resolution of material boundaries, which allows for better image resolution in ET
(as we will see in the following chapter). The material gradient estimator used in
the inverse problem, 7 is computed using the distance d.; centres of mass of the

element e and its neighbour f, and their respective conductivities, o, and oy:

Z |08 — 0f| (3.13)

3.1.6 Mesh Templating & Deformation

In medical applications such as functional brain imaging, there arises the need
for meshes which have certain built in features, for example a local high mesh
density around the optic nerve or pre-defined materials in local regions. For this
purpose, mesh templates can be defined which consist of a mesh corresponding to
an ‘average’ model of the domain, for example the head. Methods are required
to easily modify/deform this pre-defined template mesh to fit individual patients’
geometries and/or internal material structures. Powerful tools exist for this type
of reshaping (for example IDEAS), however, it would be useful to have Electrical
Tomography software packages which incorporate such tools.

Our meshing methods allow for the reshaping of existing meshes by changing
the bubble size in bubble meshing or the potential in the vortex dynamics based
technique. Hence no new mesh needs to be computed and optimized topologies of

mesh templates can be re-applied to many geometrically equivalent shapes.

3.1.7 Laplace mesh smoothing

To improve the shape and thus the quality of elements in a mesh, a smoothing
operation can be carried out on an existing mesh obtained from a meshing package.
Laplace smoothing is a common technique to perform this task by moving a vertex
in the mesh in the centre of mass of its neighbored vertices, see figure 3.6 and figure
3.7 for a mesh (with edges represented by springs).

The difficulty with this is the definition of the term ‘nearest neighbours’. How-
ever, if a Delaunay triangulation is carried out, then the vertices are connected
with their nearest neighbours in the Delaunay sense (Thompson et al., 1999) via

the topological definitions (edges). Surprisingly, this then reduces the problem to
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Figure 3.6: Laplace Smoothing technique: The vertex is moved into the centre of mass of
its neighbours.
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Figure 3.7:  Smoothing of a mesh by the Laplace Smoothing technique: The mesh quality is
visibly improved (edges between vertices are represented as springs).

the solution of a linear system of equations, and not — as is often assumed — a
system of non-linear type as we will show in the following paragraph:

Assume a set of N, given vertex positions, P € R¥*¢ with dimension d, some
of them (P¢ C P) with fixed positions (e.g. on the boundary) and all the others
which can be moved freely (P, € P\P¢). From the Delaunay triangulation, we can
easily obtain a very sparse vertex connection matrix, C, with Cj; = 1 when vertex 4
and j are connected by an edge and C;; = 0 otherwise. The diagonal of C' always is
0 as there is no edge between a vertex and itself. The number of vertices connected
to a specific vertex k can then easily be found by summing up the entries in the
connection matrix in row (or column) k: ng = > _;(Cix) = >2;(Chj).

We obtain a linear system of equations which determines the new positions of

the movable vertices, Py pew (the others stay fixed):
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C P P
" = diag(n) ' (3.14)
CM Pm Pm,new

To obtain solely the new positions of the movable vertices, we have to solve for

Pm,new:

P
Pinnew = diag(1/n) Cy . (3.15)

Py
The implementation in Matlab is straightforward and results in a very fast and
efficient smoothing operation without the need for iterations.If we start with a high
quality mesh, the resulting mesh is very likely to satisfy the Delaunay criterion.

This, however, cannot be guaranteed and retriangulating according to the Delaunay

criterion might be advisable to obtain a Delaunay-conform topology.

3.1.8 Node numbering

The numbering of the vertices in a finite element mesh can affect the solution speed
of the numerical algorithm used to perform an inversion of a matrix. As we will see
later, the matrices involved in the solution process are of size Ny X Ny with Ny
being the number of vertices. Entries in this matrix only exist where two vertices i
and j are connected via an edge and hence it is very sparse.

The Cholesky decomposition of a positive definite matrix and subsequent re-
substitution can be performed faster and with less memory requirements if the
vertices are numbered in such a way that the Cholesky factor of the matrix is
also sparse. This is possible using, for example, the so-called symmetric minimum
degree algorithm, “symmmd” (Press et al., 1997; Golub and vanLoan, 1989). This
and other methods for the use specifically in EIT have been investigated by Fulton
and Lipczynski (1995).

Figure 3.8 shows the permutation in the entries of the system matrix of a simple
system of size 267 x267 and the number of nonzero entries in the matrix.

The time needed to Cholesky-decompose the matrices for a solution of the for-
ward problem is 14.8 ms for the unaltered matrix and 3.2 ms for the permuted

matrix plus 2.2 ms for the symmmd algorithm — this is a factor of approximately

ol



System matrix System matrix after symmmd

0 0
501 s 50},
A -
100f:.z, . - G 100
150f: - 1, 150
200}, 200
250}:; 250 .
0 0 100 200
nz = 1743
Cholesky decomposition with symmmd
0 0 — z
) A ®~
ST e e S te a
50 y Vie. - 50
% RN TRRT %
in 1w N b
100 J {& 100 . ad
10 H &
L ] i,
150 150 X
(]
e
|):.n
200 200 B
250 250
0 100 200 0 100 200
nz = 10978 nz = 3174

Figure 3.8:  Results of permutation of the vertex numbers by the “Symmetric Minimum
Degree” technique. Upper row: system matrix before (left) and after (right) minimum degree
permutation. Bottom row: Cholesky decomposition of above matrices.

2.74 faster. The respective back-substitution times are 30.7 ms and 6.1 ms — this is
another factor of approximately 5 faster for the permuted matrix. Altogether, we
compare (14.8 ms+30.7 ms =) 45.5 ms to (3.2 ms+2.2 ms+6.1 ms =) 11.5 ms, this
corresponds to a speed-up factor of 3.96 for a relatively small problem!

These results were obtained on a 7T00MHz Pentium PC in Matlab Version 5.3.

In the case of complex matrices, which occur when in addition to the conductiv-
ity also the permittivity is sought, Cholesky decomposition cannot be used as the
system matrix will not be positive definite any more. The alternative solution for
this case is to use the LU decomposition method, with the same aim to keep the L

and U matrices as sparse as possible to maintain the highest possible efficiency.

3.2 Results

We show Electrical Impedance Tomography reconstructions of the same configu-

ration on different types of 2D Finite Element meshes. All meshes are based on
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# Nodes # Elements Quality ) Error E Time (ms)

17 16 0.63 0.40 10
27 36 0.92 0.24 10
43 68 0.96 0.21 14
56 91 0.95 0.19 20
77 121 0.93 0.17 30
136 233 0.95 0.14 50
267 472 0.94 0.12 100
511 947 0.96 0.09 230
823 1542 0.95 0.07 441
2447 4727 0.96 0.01 3560
6047 11890 0.96 (0.00)  ~19 sec

Table 3.2:  Different timings for meshes with linear interpolation functions on which the
forward problem in EIT was computed, see text for definition of terms.

first order linear interpolation functions with constant conductivity values across
the elements. The quality of the mesh can be given as a bargraph or - as we applied
it - as a mean value of the distribution and its standard deviation. Table 3.2 gives
a quantitative overview of the different meshes used and figure 3.9 indicates that
the relation between number of nodes/elements and the time for solving the linear
system is of exponential nature.

@ is calculated as the mean of ¢. = 2R;(e)/R,(e). The error E indicates the
normalised difference between computed and measured voltages U and V at the
electrodes, F = ||U — V||/||V]|. The time given was spent on computing not only
the solution but also on memory allocation and assembly of the system matrix,
computation of the matrices relevant for the complete electrode model (CEM),
assembly of the CEM system matrix and finally the solution of the linearized matrix
system. The time was taken on a PC with 512 MB main memory and a 900 MHz
with MATLAB 5.3 for the calculations. To obtain an accurate estimate of the
‘true’ solution we computed the voltages at the electrodes U using the mesh with
11 890 elements (as shown in figure 3.10) and used these in the calculation of F.

We can see that the element density is the most critical component in terms of

accuracy. In figure 3.11, we present the variation in the potential distribution for
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Figure 3.9: Time spent on solution of the forward problem with respect to the number of
elements / nodes in the mesh. Numbers correspond to those given in table 3.2.

an identical current injection in all cases, coming in just before the three o’clock po-
sition through the electrode indicated by the bar around the boundary and coming
out at the opposite electrode, positioned at just before nine o’clock.

By making the mesh denser (and application of Laplace mesh smoothing to
improve the quality of mesh elements), we find that forward solution and reso-
lution improve by a factor of approximately 2 for employing ten times as many
elements/nodes resulting in apprximately a ten-fold increase in computation time.

Table 3.3 contains the refinement steps carried out on the initially very coarse
and unsuitable mesh with 17 nodes and 16 elements. Figure 3.12 shows the im-
provement of accuracy in the forward solution by using adaptive, error-estimator
based refinement. Comparing the time (71 ms) and error (0.110) to the values given
above, we achieved a result equivalent to the use of a mesh of size 267 nodes or 472

elements respectively.
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Quality g = 0.962 + 0.044
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Figure 3.10: (a) The finite element mesh consisting of 6,047 nodes and 11,890 elements
used for the most accurate computation of the potential shown in (b). The error estimator
indicates that the error of the solution is large at the edges of the electrodes, especially of the
two current injection electrodes (c). Graph (d) shows the very high geometrical quality of the
elements in the mesh as defined in equation (3.3).

_— 17n, 16e / 43n, 68e L/, 77n,121e
E =0.40 E=0.21 E=0.17

Hl—""" 136n, 233e S 267n, 738e 2447n, 4727e
E=0.14 E =0.12 E=0.01

Figure 3.11:  Potential distribution for differing finite element meshes. The numbers next

to the meshes indicate the number of nodes and elements used. E denotes the error of the
solution on the mesh.
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# Nodes # Elements Error £ Time (ms)

Starting state 17 16 0.400 11
Refinement 1 31 38 0.235 20
Refinement 2 47 64 0.191 20
Refinement 3 69 100 0.110 20
Result: 69 100 0.110 71
Global refinement 267 472 0.12 100

Table 3.3:  Auto-adaptive refinement decreases the error on the solution using less nodes /
elements than the global refinement and achieves a comparable error in even less time!
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Figure 3.12: (a) shows an unsuitable mesh for reconstruction which we will refine according
to the error estimator on the elements shown in (b). After three auto-adaptive refinement
and smoothing steps, we obtain the mesh in (c) which results in the potential dicstribution
in (d). This adaptive meshing is much faster and produces more accurate results than global
fine meshes (see table 3.3)
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Figure 3.13: Node distribution on elements with first, 2nd and 374 order interpolation

3.3 Approximation of potential

Once the FE discretization D of the domain €2 is obtained, the potential ¢(r) within

an element r € Q(¢) can be approximated as

o) % (1) = > ai(r) (3.16)

where the «;(r) are known as basis, interpolation or form functions and the ¢;
represent the potential at node ¢ within the element. Ny denotes the total number

of nodes.

3.3.1 Choice of interpolation function

A commonly made choice for the interpolation function «;(r) are Lagrange polyno-
mials of grade p, and we define the first order interpolation in two dimensions as
agl)(r) = ;(r) = ¢ +car +c3y. The coefficients ¢; are determined by the geometry
of the element, and the number of coefficients necessary for a polynomial of order
p increases as (p+ 1)(p+2)/2 for 2D and as (p+ 1)(p + 2)(p + 3)/6 for 3D.

In the case of linear interpolation, the nodes on the element correspond to the
vertices which define the element. Higher order interpolation leads to additional
nodes on the faces of the elements and above second order interpolation, there will
be nodes within the elements. Figure 3.13 shows how the nodes will be distributed
across the elements.

The approximation space associated with all elements having polynomial inter-

polation functions belongs to the space of continuous functions, C°. Extending the

formulation to approximation spaces that have continuous first derivatives across
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element edges is surprisingly difficult. The simplest C' element in 2D is the 21

noded triangle with 5%

-order interpolation function.

Higher order polynomials as base functions provide better approximations, how-
ever, at the cost of increased computational complexity and resources. Generowicz
et al. (2002) investigated the impact of higher order interpolation functions on
the computational cost of solving a generalised eigenvalue problem for photonic
bandgap modelling. The results of this comparison of first to sixth order polyno-
mials show that second order basis functions perform best in terms of computation
time compared to achievable accuracy.

Not only the the order of the basis functions but also their shape plays an im-
portant role in the accurate representation of the solution on the mesh. The shape
functions tend to be standard polynomials or - depending on the symmetry of the
domain - can be Bessel or Legendre functions or any other type of C° functions.
It is desirable to use a problem-adapted base function which simplifies the numeri-
cal approximation and provides a high level of accuracy. The most suitable shape
functions for arbitrary geometries are Lagrange interpolation polynomials. They
provide interpolation up to any desired polynomial order. We note that with in-
creasing order (so-called p-refinement), the number of interpolation nodes required
for a given mesh increases and the subsequent higher computational cost leads to
an increase in computation time.

We can see from the work of Vauhkonen et al. (1999) that for achieving a better
accuracy of a factor 2 to 5, the number of interpolation nodes in the p-refinement
case increases by a factor of 7, which leads to a slow-down of at least a factor 10 in
the reconstruction.

We have decided to employ simple piecewise linear shape functions which are
both fast to compute and easy to maintain in programming structures. The com-
puting time saved in this way is then spent on refining the mesh locally rather than

on global higher-order functions.
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3.4 Determination of system matrix

To obtain the numerical solution to the general continuous equation

—Vo(r)Vo(r) + f(r)(r) = f(r), (3.17)

an approximation is required on the discretization D. The most commonly used
technique is the Rayleigh-Ritz-Galerkin variational method (Schwab, 1998) where
the interpolation functions «; are used as weighting functions for the residual R of

the approximated solution:
R(r; ) = =Va(r)Ve(r) + B(r)o(r) — f(r). (3.18)
The variational integral of the a;-weighted residual then yields
/ai{—VUV¢+B¢—f} dV =0 1=1,2,...,Ny. (3.19)

Integration by parts and application of the Gaussian integration formula leads to

/{UVOzi Vo + a;Bp} AV = /aif dv — j[ozz-jn ds, (3.20)

where the first term on the right hand side represents internal current sources and
the second represents the boundary influx of the normal current density j,, through
the surface of the object.

Approximating ¢ with the trial solution ¢ from equation (3.16), we obtain

Z{/aVai-Vozj dV—l—/ﬁaiozj dV} 0; = /aifd\/—j{aijn ds.  (3.21)

J=1
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We define the Dirichlet or stiffness matrix (D), the Metric or mass matrix (M), the

internal source or load vector (@™) and the external source/load vector (o) as
Dij = /O’VOZZ' . V(l/j dVv (322)
Mij = /ﬁOziOéj dv (323)
?t==!/aJdV (3.24)

>t = ]{aij_n ds. (3.25)
Equation (3.21) can then be rewritten as a linear matrix equation:
K¢ =o, (3.26)

where K = D + M denotes the system matriz of size Nyx Ny, relating the nodal
potentials in ¢ to the electric field sources in g. It is very sparse as entries at
positions Kj; exist only when nodes 7 and j are on the same edge of an element. The
system matrix is often described as the stiffness matriz (in mechanical engineering)
or as the admittance matriz (in electrical engineering).

In EIT it is indeed a discrete approximation to the transfer admittance operator
Y =R}, resembling closely the structure of a resistor network. Therefore, we will
refer to the system matrix as the admittance matrix henceforth and call its inverse
— the discrete approximation of the transfer resistance operator R — the resistance
matriz. Both are symmetric and positive definite if the conductivity complies with
the physical restrictions of being positive and limited to an upper bound.

In Electrical Impedance Tomography, internal sources usually do not exist and
hence f = 0 in equation (3.19). The vector of external sources contains the infor-
mation of the Neuman BC. For the forward problem of EIT, these are represented
by piecewise polynomial approximations of the current injected through boundary
electrodes on the finite element mesh. The actual boundary conditions require a

closer look as their formulation expands the system matrix by including the contact
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impedance in the equations.

3.5 Application of boundary conditions

We have seen in chapter 2 that in addition to the formulation of the basic differential
equations, boundary conditions need to be specified. The incorporation of the
complete electrode model as given by equations 2.22-2.27 extends the system matrix
to incorporate additional terms containing the contact impedance z. The surface
integral on right hand side of equation (3.21) representing the injected current, is

then replaced by the term obtained from equation (2.25):

/ a,oVp;-ndS = / aiw — i gs (3.27)
Sy Sy <
% 1
= _E (673 ds — —/ QP4 ds. (328)
z Sy z Sy

The contact impedance can then be identified by 5 = 1/z and hence we obtain from

equation (3.21):

Nn 1 Ny, %
14
]: —

This leads in the numerical representation of an extended system matrix as follows
S = = , (3.30)

where

Np
1
Kz] = /UVQiVdeV+— E /OzzOt]dS fOI' i,j:1,2,...,NN
Q 2= IS

1
Cij = ——/aidS fori=1,2,...,Ny; j=1,2,..., N (3.31)
z Sy
1
Gij = —Z/ apdS  fori,j=1,2,...,N.
z S
k l
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To obtain the measured voltages V from this matrix equation, only a part of
the inverse of S of size Ny X Ny, is required which relates the nodal voltage values to
the electrode potentials. The solution of the above system can be achieved quickly
by Cholesky decomposition and backsubstitution (Press et al., 1997). Extending
the lower right hand side vector by a unit matrix, the required inverse part of S
can be obtained in the same Cholesky process and hence no additional inversion is

required.

3.6 Convergence of the finite element method

The ultimate goal of the forward problem in EIT is to predict the potential distribu-
tion within the object of known conductivity and to obtain the resulting voltages at
the measurement electrodes. The accuracy required from the voltages is predeter-
mined by the measurement accuracy and has to be met by the model. For iterative
reconstruction algorithms, the modelling must be both accurate and fast. The ac-
curacy is limited by the characteristics of the elements, coarseness of the mesh and
accuracy of the boundary model. As there is no a priori way of determining the
best configuration of the discretization used in the numerical approximation, we
will demonstrate the theoretically achievable limit and introduce an a posterior:
estimate of error on the solution.

The convergence of the finite element approximation, ¢, to the solution ¢ of
a second order elliptic partial differential equation can be expressed as stated in

Paulson (1992):

||¢ B QOHS < OthJJrl*S, (332)
[@llp+1
where || - ||s is the Sobolev norm of degree s and C' is a constant. The radius of

an element, h, corresponds to the radius of the smallest circle circumscribing the
element. In a mesh composed of many elements, h represents the maximum radius
of any of its elements. Hence the global absolute convergence depends on the size of
the largest element in the mesh, and as h,,,; — 0, the solution converges to the true
solution, ¢ — ¢ (Burnett, 1987). Here, p denotes the degree of the interpolation

polynomial used for the approximation and in the linear case (p = 1), we obtain for
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a zero order Sobolev norm (s = 0) the convergence relation

¢ — ¢llo < ORI — OB = O(12). (3.33)
@114

For the finite element solution to have uniform error across the region, the radius h
and hence the element size needs to be tuned locally to the variation of the potential
field. However, this is impossible as long as the solution — which depends on the
conductivity distribution — is not known. We show in the next section how to derive
an estimate of the solution error after a solution is obtained (a so-called a posteriori

error estimate).

3.7 Solution of the forward problem

Having the discretization, a solution can be obtained using an approximation func-
tion. The most straightforward approach is the assumption of a linear basis function

for the potential ¢ within an element e,

ooz, y) =c1+or+ey=1,2,9) (c,0,03)", (3.34)

where the ¢; are a priori unknown coefficients. These can be calculated by taking
into account the vertex positions of a single triangle, (z;, y;), and their corresponding

potential values ¢;:
-1

1z » 1
Cc = 1 z9 Yo P9 . (335)
I z3 y3 ©3
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Figure 3.14: Zero-order interpolation function for conductivity o on two elements

Thus, the element potential function can be expressed as

Spe(x:y) — (any)'cT

1 =z wn P1
= (La,y)- | 1 29 9, P2 (3.36)
1 z3 ys ©3
3
goe(:v,y) = Zoz,,(:v,y) Pu- (3-37)
v=1

The potential is formed by the nodal potentials ¢, multiplied by the position
dependent interpolation or form functions c,(x,y), which are ‘tent-like’ for the
linear case (i.e. they have value one at vertex v, value zero at all other vertices and
a constant slope between). An additional property of the form functions is that

they add up to one, > «a, = 1.

3.7.1 Interpolation function

As for the potential distribution in the forward problem, we need to numerically ap-
proximate the conductivity distribution for the inverse problem. Two-dimensional
images usually consist of square pixels with each pixel containing a single color
value. Again, we are using finite elements in the numerical reconstruction and thus,
our pixels are represented by triangles. The interpolation function we choose is
of uniform nature, i.e. represents a constant conductivity across a single element.

Figure 3.14 shows the conductivity distribution of such an element.
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3.8 Visualisation tools

The results of tomographic reconstruction are often difficult to visualise in a way
that is useful for clinicians/human monitors. In particular, three-dimensional visu-
alization is not very simple in the coding/programming sense. Commercial software
such as, for example, MATLAB from The Mathworks enables full three-dimensional
imaging across different Operating System platforms. MATLAB - as well as many
other powerful visualisation packages (DataExplorer, GeomView, AVS, IDL, Iri-
sExplorer to name but a few) - uses OpenGL implementations for visualisation.
With OpenGL, the display of iso-surfaces, data interpolations and the application
of a range of image processing algorithms can be carried out with considerable
ease. Furthermore, the flexible graphical user interfaces often simplify functions
such as zooming, rotating, panning, etc. OpenGL is a powerful, operating system
independent graphics standard for which implementations such as GLUT (2001)
or MESA (2001) are freely available. In addition, cheap graphics cards aimed at
the PC games market provide highly optimized OpenGL performance, which was
only possible on expensive graphics workstations a few years ago. The FE meshes
used for reconstruction can also be used for visualisation. By applying clipping
planes or isosurface display techniques, quantities such as potential, current density

or material in the interior of a volume can efficiently be presented to the user.

3.9 Software implementation

The computational algorihms needed for a full reconstruction cycle in Electrical
Impedance Tomography required the writing of a large number of routines and
functions which — during the course of this project — were not available otherwise
or in development.

We decided to use Matlab as development and run-time environment, as it offers
very efficient matrix handling, built-in visualisation tools and optimised algorithms.
Matlab is a mathematical scripting and execution environment for Linux and Win-
dows operating systems which allows for fast prototyping.

The implementation of the algorithms for EIT reconstruction was performed in

a number of steps.
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Routines for loading the experiment configuration, mesh and data files had to
be written.

A suite of mesh tools (termed ‘SMESH’) was developed to simplify the creation,
loading and saving of FE meshes, the adaptation by refinement, computation of
the Dirichlet system matrix, extraction of element centres, volumes and materials
as well as assignment of boundary conditions and mesh smoothing. Table 3.4 gives
an overview of the routines implemented for FE mesh handling.

The Newton-Raphson algorithm as well as the Conjugate gradient algorithm
and the computation of the regularisation matrix were performed without using
the existing Matlab toolboxes so that it was possible to profile the code and also
because many of the pre-defined Matlab routines did not provide the flexibility
required. The numerical routines were then optimised according to the timing
profile obtained from the Matlab profiler.

A number of visualisation routines was also written which allowed the 2D and
3D visualisation of meshes, potentials, conductivity distributions and display of
subset of these.

The Matlab software routines required to solve the actual forward and inverse
problems in EIT on the finite element discretisation, have been assembled in a pack-
age titled SEFIT, which is an abbreviation for Southampton’s Extended Electrical
Impedance Tomography software.

Table 3.5 details the functions as part of this package and figure 3.15 shows a
typical call graph, representing the interconnections between the SEEIT functions.

It should be noted that the recent large interest in such software for EIT re-
construction has led to the development of a collection of Matlab routines for 2D
(Vauhkonen et al., 2001) and subsequently 3D (Polydorides and Lionheart, 2002)
Electrical Impedance and Diffuse Optical Reconstruction Software, also known as
the EIDORS project, which has been released (http://www.eidors.org, 2002) under
the GNU public license.

The software presented in this section sllows for the application of most of the

optimisations as mentioned in this chapter. We are going to employ these routines of
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Matlab function Description

mesh_bubble.m Simple bubble meshing routine. Returns mesh
from polygon boundary definitions.

mesh_create.m Creates meshes from polygon boundary defini-
tions.

mesh_defineBC.m Define & assign boundary conditions in graphical
user interface.

mesh_density.m Computes local element density.

mesh_dirichlet.m Computes the Dirichlet /stiffness matrix for the FE
mesh.

mesh_disp.m Display different flavours of the mesh and the so-

lutions on it. Allows for element /vertex/face high-
lighting and numbering to be displayed as well as
element-based material distributions and vertex-
based solutions, such as iso-lines, iso-surfaces, elec-

trodes, etc.

mesh_disp_elems.m Simple element graphic routines for element dis-
play.

mesh_disp_unv.m More universal display modes.

mesh_edgecentre.m Computes and returns vector of centre positions of
edges.

mesh_edgelength.m Computes and returns vector of edge lengths.

mesh_edges.m Computes and returns the edges in a FE mesh in
matrix format (vertex 1, vertex 2).

mesh_elemcentre.m Computes and returns the centre of mass of all or

of a range of elements in vector format.

mesh_elemdirichlet.m Computes and returns a vector of matrices con-
taining the Dirichlet /stiffness matrices for the ele-
ments in the FE mesh.

mesh_elemvolume.m  Computes and returns vector of element volumes
(areas in 2D).

mesh_faces.m Assembles and returns the face matrix containing
the vertices and the neighbouring elements of a
face in a row (v1, v2, v3, nL, nR).

mesh _facesize.m Computes the face sizes of a range of or of all faces
in the FE mesh.

mesh_load.m Loads a range of FE mesh formats from data files.

mesh_loadAVS.m Loads meshes in AVS format.

mesh_loadEASY.m Loads meshes in EASYMESH format.

mesh_loadFEM.m Loads meshes in standard FEM format.

mesh_loadGEOM.m  Loads meshes in GEOMPACK format.

mesh_loadMSH.m Loads meshes in SMESH format (with extension
.msh).

Table 3.4: Description of meshing functions written in Matlab as part of the SMESH package.
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Table 3.4 continued.

Matlab function Description

mesh_loadNETGEN.m Loads meshes in NETGEN format.

mesh_loadQHULL.m Loads meshes in QHULL format.
mesh_loadRAMPANT.m  Loads meshes in RAMPANT format.
mesh_loadTRIA.m Loads meshes in TRIANGLE format.
mesh_loadcomplete.m Loads a range of FE meshes and carries out in-

tegrity checks as well as constructs the missing en-
tries in the mesh structure (faces, surface, etc.)
before returning the Matlab mesh structure.

mesh_matgradient.m Computes the material gradients across face
boundaries between elements.

mesh_quality.m Computes and returns a vector containing the
quality factor of elements (¢ = dim * r;/r,).

mesh_refine.m Performs h-refinement of FE meshes by either
edge, face or centred point insertion.

mesh_save.m Saves meshes in SMESH format (with extension
.msh).

mesh_savePOS.m Saves positions of vertices only.

mesh_saveSTURGEON.m Saves mesh in STURGEON format.

mesh_smooth.m Performs Laplace smoothing of mesh points and
returns vector with new vertex positions.

mesh_surfacevertices.m Extracts surface vertices from the mesh.

mesh_surffaces.m Extracts the surface of the FE mesh.

obj_*.m Files containing polygon definition routines for ob-

ject surfaces.

the SEEIT and SMESH packages in the following chapters to compute the forward

solution and solve the inverse problem with adaptive mesh refinement techniques.
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Matlab function

Description

ApplyElectrodeDef.m

AssCurrPattMatrix.m

ElecFindPatch.m
Jacobian.m
LoadElectDef.m
LoadMeasData.m

LoadProject.m

LoadSimMeasData.m
LogRegularisation.m
RefineSGradient.m

SaveSimMeasData.m
Solve_fwd.m

Applies electrode definitions (as boundary condi-
tions) to the FE mesh and returns current pattern
and voltage measurement matrices.

Assembles the current pattern and voltage mea-
surement matrices from the parameters given in
the project file.

Finds elements and their faces underneath elec-
trode patches.

Computes the Jacobian of the voltages with re-
spect to the element conductivities.

Loads electrode definition parameters from data
file (versions V1 and V2).

Loads real measurement data and computes noise
from the variation of the measurements.

Loads project description file with parameters such
as mesh files used, electrode and injection param-
eters, reconstruction parameters, ...

Loads simulated measurement data and adds
Gaussian noise.

Computes and returns the regularisation matrix
and/or vector in log-space.

Refines the mesh at conductivity gradients and
adapts boundary conditions and Dirichlet matrix.
Saves simulated measurement data to file.

Solves the forward problem on a given FE mesh
with given conductivities and boundary condi-
tions.

Table 3.5:  Description of functions used in the reconstruction of EIT images as part of the
SEEIT software package.
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Chapter 4

Adaptive Mesh Refinement for

Forward Solution

In the previous chapter, we have reviewed the factors affecting the numerical ap-
proximation of the continuous electric potential. The finite element method allowed
us to approximate the potential distribution by subdividing the object region into
numerical entities, the elements. As the approximation is relatively coarse, the use
of smaller elements for the discretization would improve the accuracy of the solu-
tion. However, using more elements requires higher computational resources. In
this chapter, we will devise a method which balances computational requirements
with achievable accuracy of the forward solution to obtain a high computational
performance. We introduce adaptive mesh refinement and demonstrate how results
computed using a self-adaptive refinement algorithm based on an a posteriori error
estimate compare to uniform mesh refinement in terms of computational efficiency.

Electrical Impedance Tomography (EIT) can provide images with well-defined
characteristics only when the full non-linear reconstruction process is constrained
by a property of the image such as its local smoothness, applied in parallel with
the requirement to fit the data to within clearly defined statistical criteria (Blott
et al., 1998b, 2000). The finite element forward solution is a significant part of
the computational cost of such a reconstruction (Yorkey et al., 1987; Johnson and
McLeod, 1994). This cost grows quickly when the image is subdivided into smaller

and smaller elements to obtain an image whose accuracy is governed by the quality
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of the input data alone and not by the choice of discretization. To overcome the
problems involved in handling high-density discretizations, sparse matrix techniques
have been applied in the past (Pinheiro and Dickin, 1997) without taking into
account that a huge amount of the cost could be avoided by using meshes adapted
to the problem. We have developed an algorithm which automatically adapts to
the reconstructed image by producing finer meshes in areas where there are sharp
gradients in the EIT image. Typically, refinement is required at interfaces between
regions with differing conductivities. Although adaptive meshing has not yet been
applied to resistance or impedance modelling in a biomedical context, there exists
some work on applications of AMR in modelling heart current sources (Johnson
and McLeod, 1994) - a topic related to EIT. We apply the auto-adaptive refinement
method to the forward modelling problem and demonstrate that the method quickly
reduces the number of nodes and elements so that the calculation converges much
more rapidly to the true solution. In particular, to obtain the same accuracy as
uniform refinement, the adaptive refinement reduces the number of elements by a

factor of more than three, which yields up to an order of magnitude speed-up.

4.1 A posteriori error estimation

Once a numerical approximation ¢ to the continuous potential ¢ is obtained, we
can estimate its error introduced by the finite element mesh discretization D. For
this, we will consider the general form of the elliptic second order boundary value
problem given as

—VoVop+bp+ f=0 in €, (4.1)

where o is a given and defined function of the location r, 0 = o(r) and ¢ represents

the solution of the equation. The boundary conditions are defined as

$»=0 on 0€lp (4.2)
n-oVeo=j, on 0fy, (4.3)
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where 002 = 90€2p U0y denotes the boundary of 2 and 7 is the unit normal vector

on the surface of ).

We assume that the solution belongs to the Hilbert space ¢ € H(Q).

The

space of functions fulfilling the Dirichlet boundary condition is called Hj (). Now

multiplying (4.1) by an arbitrary weighting function v € H}(f2), and integrating by

parts

—/QI/[V-JVQS] dV+/Qu[bq5] dV+/QV[f] dv =0,

using the identity
v(V-0Ve)=V-(oVor) —a(Vo) - (Vv)
yields

—/Qv-(awy) dV+/Qa(V¢) (V) dV+/

Q Q

Applying the Gauss integration formula to the first term

/ V- (oVor)dV = / oVov-ndS = / Jnv dS,
Q o9 o9

and substituting, results in

—/ I/jndS+/a(ng5)-(Vl/)dV+ /l/bd)d\/ + /l/fd\/ —0.
o0 Q Q Q

. ~- 7 . ~ v} I\

surface sources volume conductance surface conductance internal sources

v(bg) dV + /I/(f) dv =0.

(4.4)

(4.5)

(4.6)

(4.7)

Using the numerical approximation of ¢ as given by equation (3.16), substituting

¢ in equation (4.8) with ¢, and replacing the continuous weighting function v by
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the discretized weighting function «; yields

/J(Vgph)-(Vaj)dv—l—/ozjbgphdv:/ i dS—/ozjde. (4.9)
Q Q N Q

Integration by parts, re-substitution of a; by v and expression of the solution

on an elemental basis (for all elements N,) leads to

Z/ AV AVl dV+Z/ (oV iy dV+/1/bg0h dVv

Q

:/mujndS—/Qude. (4.10)

Application of Gauss’ integration formula and formulating the second term as sum
over the jumps of j, = 7-oc V" at internal faces and such with Dirichlet BCs leads

to

Z/ —vV oV dV + Z

[]ele“ — e“g“]u ds + /I/bgoh dv
Frg 00N Q2

:/agujndS—/Qz/de. (4.11)

If we define the jump in the normal current density vector across inter-element
boundaries as ¢ := —[j* — j,"*"] and assume that the injected currents j, in
the right-hand term are accurate currents (which is correct in the case of exact

boundary modelling), we can write
—V oV —o+bo" + f=0. (4.12)

Subtracting this discretized version from the continuous equation then yields the

residual R

R=-V-0Vé+bp+f—{-V oV +bo"+f g} =0 (4.13)
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and by denoting the error of the numerical solution as £ := ¢ — ¢ we obtain
R=-V.oVE+DE+p=0. (4.14)

Multiplication with the error as an arbitrary weighting function and integrating
over the whole area gives us the error of the approximation in the form of an energy

(power) norm

1€]1E = /Q (=EV - aVE +bE? + 0€) AV, (4.15)

which in form of the residuals can be written as

||5||E_Z/ —EV - aVE) AV + /bg2dv + > /gé’dS. (4.16)
J/ S———

]:kﬁaﬂN

~

intra-domain residual
intra- element residual inter- element residual

An estimate of this error may be obtained in the form

Ne
IElF ~ =& =) e (4.17)
e=1

where £ denotes the global error estimate assembled from the local error estimates

€. which are associated with the e-th element as given by

S /r dV + S Z /rfcdS (4.18)

FegoOy

Here, 7, denotes the distributed residual over the e-th element and 7. denotes the
element’s lumped residual across inter-element faces without Neumann BC, I'}. a.
and [, are constants which have to be determined from the elemental geometry.

According to Salazar-Palma et al. (1998), the following expression has been derived
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for triangular elements

e = f— - /r dv + ffc Z /rfds (4.19)

fe 70N

where f; and f;. are numerically estimated weighting factors associated with the
surface and singular residual errors respectively. h is the diameter of the element
with conductivity o and p is the order of the approximation used.

In summary, once the error of the solution on the discretization can be estimated,
this error estimate can be used to reshape/refine the discretization so that the error
becomes smaller.

The basic equation of electrical impedance tomography in the case of imaging
conductivity (or analogously for impedance imaging) is a reduced version of equation
4.1:

V-oVp=10 (4.20)

subject to the boundary conditions:

=V on voltage electrodes Sy, (4.21)

/ a—ds = [,  on current electrodes Sy, (4.22)
Sy

where ¢ and V; represent electrostatic potentials resulting from the injected currents
I in direction of the surface normal n, and S, and S, are the boundaries with
Dirichlet or von Neumann conditions, respectively.

To solve equation (4.20) numerically, the problem domain is subdivided into
discrete finite elements. If insufficient elements are used, the choice of discretization
will affect the accuracy of the potential distribution, and also the calculation of
the Jacobian in the non-linear reconstruction of the conductivities. It is therefore
common practice to refine the mesh globally to improve the accuracy of the solution
across the whole domain. However, it is in fact only necessary to refine the mesh

where the error is large: the paradox is that the exact error is only known if the
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Figure 4.1: The error in potentials is caused by non-continuous normal components of the
electric current across element boundaries. | is the injected current, the arrows indicate the
current density in each element and the dotted lines are the iso-potentials.

exact solution is available!

We therefore use the a posteriori error estimate to determine whether refine-
ment of the mesh is required. Starting with an initially rather coarse quality mesh
(Shewchuk, 1996), we refine according to this estimator and adapt the mesh to give
an accurate solution.

Figure 4.1 shows where the error on FE originates from - it is the normal com-
ponent of the electric field which jumps between the elements, which is not possible
in reality.

Analytical solutions for the forward problem only exist for very simple geome-
tries, such as a cylinder of homogenous conductivity (see for example Appendix B).
We found that there is good agreement between the a posteriori error estimate and
the error between numerical and analytic solution for this simple case. However,
the estimate should be treated as a more general approximation for more complex

geometries and conductivity distributions.

4.2 Types of mesh refinement

The error estimate can be used in three ways to refine the mesh:

1. h-refinement consists of subdividing elements into two or more elements; h
represents the element size (Burnett, 1987).

2. p-refinement increases the rate of convergence by using higher order interpo-
lating basis functions on the elements (Zienkiewicz and Craig, 1986).

3. r-refinement relocates the existing nodes of a mesh in a more appropriate

fashion without adding any new nodes (Shephard, 1985; Baines, 1998).

7



Efficient hybrids of these methods also exist, but can be complicated to implement.
In this article, we focus on h-refinement of linear elements, which is both fast and
adds relatively few additional elements and nodes to the mesh. p-refinement is an
already commonly used improvement but produces larger matrices with increasing
polynomial order. r-refinement requires modification of the mesh at each refinement
stage but does usually not significantly improve the solution, however, it might be
useful in time-dependent problems such as monitoring breathing, where the nodes

of the mesh can follow predefined trajectories.

4.3 Auto-adaptive mesh algorithm

Figure 4.2 shows the steps in the adaptive meshing algorithm. We initialise the
procedure with a coarse mesh and with the configuration of electrodes used. For
reasons of simplicity we assume point-sized electrodes, however, the method works
equally well for the complete electrode model (Somersalo et al., 1992). For each step
in the forward solution of the EIT reconstruction, we estimate the local error using
equation (4.18) and compute the global error using equation (4.17). If the global
error estimate is larger than a pre-defined threshold, the refinement procedure is
started. Otherwise, the refinement is complete. The refinement algorithm then
starts by marking ‘primary’ elements, which are those with a local error estimate
above a certain percentage of the maximum occurring local error (usually 40-50 %
for best efficiency).

As shown in figure 4.3, the primary elements are then subdivided into four
smaller elements. This yields ‘floating” nodes on the sides of adjacent secondary
elements, which must be subsequently refined to maintain the required node con-
nectivity within the mesh.

If we are using a fully nonlinear reconstruction algorithm (Blott et al., 2000),

then the mesh refinement steps form a natural part of the iterative solver.

4.4 Results

We have implemented the adaptive-meshing algorithm described in the previous
section. Our results demonstrate the application of the method when solving the

forward problem i.e. computing the potentials given the conductivities. Figure 4.4
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’Create initial mesh (solution domain)l

l

[Solve forward problem ] <

ICompute local & global error estimatel

\ 4

- - — Mesh refined onl
l Check if global error estimate lower than limit } y
l yes where necessary
no

’Refine elements with large error as ‘primary'l

[Mark adjacent elements as ‘secondary’l :|

lCreated further secondary elements ?I

yes
no

lRefine secondary elementsl

Figure 4.2: Steps in auto adaptive mesh algorithm for solution of one instance of the forward

problem.
Primary Secondary A
AN

Figure 4.3: Refinement of triangular elements

shows a model of a transverse slice of the head with two electrodes, where we have
used typical values for the conductivities of the tissue (0.25 S/m), bone (0.018
S/m) and cerebro-spinal fluid (1.79 S/m). This configuration could be used to
monitor intra-ventricular haemorrhaging. As the mesh is refined, the equi-potential
lines tend to the true solution, which we have verified using an independent FE
solver (PDE-Flex). Figure 4.5 shows the method being applied where we refine the
mesh at boundaries between materials with significantly differing conductivities.
In a practical application of our technique, it would be desirable to combine both
strategies to yield an accurate solution, which can give good resolution of material
boundaries. If the image contains materials with differing conductivities, we can
replace the error estimate, which determines when elements are refined, with one

which refines elements based on the gradient of the reconstructed conductivity. This
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Figure 4.4: Example of auto-adaptive meshing for a head model showing bone, white matter
and ventricles. (Left) Finite element mesh. (Centre) Local error estimates for each element
in z-direction. (Right) Potential distribution in the region of interest for (a) the initial mesh,
(b) after three refinement steps and (c) after seven refinement steps.

allows such boundaries to be more sharply resolved.

In figure 4.6 we show the performance benefits of our approach, by comparing
the convergence of our method with a uniform refinement strategy. The adaptive
algorithm requires only a small fraction of the number of elements/nodes in the
uniformly refined mesh to achieve a given global error estimate. In particular,
to attain a global error of 0.1 requires 300 elements and 0.01 seconds using the
adaptive technique compared to 7000 elements and 100 seconds of compute time
for the global refinement strategy. Since the solution of the forward problem scales
with order between Nx% and NZ, where Ny is the number of nodes, reducing Ny
saves both computation time and storage requirements for the system matrix.

Whilst there are many benefits of the adaptive refinement procedure, a number
of numerical issues can arise. For example, the method for subdividing the elements
has to be chosen in a way to avoid degenerate elements of high aspect ratios (small
angles) and subsequent incorrect solutions (Salazar-Palma et al., 1998). In addition,
non-smooth transitions between regions of low and high mesh densities are likely

to produce less accurate results (Burnett, 1987).
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Figure 4.7: Speed-up of solution when adaptive meshing and a sparse matrix Cholesky solver
is used.

Our results were obtained on a 500MHz PC with 128 MB main memory run-
ning Windows NT 4.0; the code is written in C++ and compiled using MS Visual
C++ 6.0; it was later converted into Matlab.

Figure 4.7 shows the corresponding decrease in computational time spent on

solving the forward solution with the sparse matrix Cholesky solver.

4.5 Effects of measurement noise on solution accuracy

Every real measurement carries measurement noise. To explore the effects of this
noise on the forward solution, we simulate 100 measurements on an object with
homogenous background conductivity. The simulations carry a normal-distributed
random noise with a SNR of 60 dB which corresponds to a 0.1 % noise level.

We employ the complete electrode model and use a neighbouring current in-

jection pattern for all of the 16 electrodes used. This leads to a total number of
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b)

The measurement simulations are performed on a 11 890 element finite element

The results show that the error on the simulated mesh taken over the set of 100
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a coarse mesh and forward solution with mesh refinement.

B8 8 10 12 14

Figure 4.8: Error of forward solution. Left column: meshes and electrodes used, right column:
electrode potentials and errors of a series of 100 measurements with simulated Gaussian noise
at 0.1 %. (a) shows the mesh used for the simulation of the measurements with 11 890
elements, (b) represents the coarse mesh with 334 elements and (c) the mesh with 3 step
mesh refinement (549 elements).

(16*13)/2 = 104 independent voltage measurements. The contact impedance is

assumed to be 1/400 S/m.

mesh and we use a base mesh of 334 elements for the solution of the forward problem.
Figure 4.8 shows details of the meshes used for the simulation, forward solution on

The mesh is refined

based on the error estimator across the entire mesh, taking into account all current

measurements is — as expected — 10~ 3, corresponding to the noise level of 0.1 %.
Solving the forward problem for the whole set of experiments on the coarse mesh
and comparing the electrode voltages against those obtained from the simulation,

we obtain an error of approximately 2.4 %. When mesh refinement (3 steps at 40 %



of maximum error) is switched on, the electrode voltage error is reduced to 0.7 %
for meshes then containing 549 elements.

We can conclude that the error of the electrode voltages overall is very small
in both cases, without and with mesh refinement, however, the application of mesh

refinement results in a factor 3 improved accuracy at the electrodes.

4.6 Conclusions

We have developed an efficient adaptive mesh refinement algorithm and applied
it to improve the performance of EIT reconstruction algorithms by reducing both
computational and storage requirements. We demonstrate its application to imag-
ing of a section through the head and show that (i) the accuracy of the forward
solution is improved using considerably fewer elements than a global refinement
strategy, and (ii) the mesh resolution of interfaces between materials with differing
conductivities is improved.

Our results indicate that it is possible to reduce the number of nodes required by
at least a factor of three to obtain an accurate image reconstruction, over a uniform
refinement strategy. This results in at least an order of magnitude improvement in
the speed of the forward problem and increases the feasibility of performing fully
non-linear reconstructions for complex large-scale biomedical problems in real-time
using standard PC technology.

We could also show that the effects of measurement noise on the forward solution
of the electrode voltages can be reduced by using adaptive mesh refinement with
an example using the complete electrode model.

In the next chapter, we apply the refinement methods of this chapter to the
solution of the inverse problem to investigate if our assumptions about the material

gradient-dependent mesh refinement are correct.
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Chapter 5

Adaptive solution of the inverse

problem

In non-linear electrical impedance tomography the goodness of fit of the trial images
is assessed by the well-established statistical y2-criterion applied to the measured
and predicted data sets. Further selection from the range of images that fit the
data is affected by imposing an explicit constraint on the form of the image, such
as minimisation of the image gradients. In particular, the logarithm of the image
gradients is chosen so that conductive and resistive deviations are treated in the
same way. In this chapter we introduce the idea of adaptive mesh refinement to the
2D problem so that the local scale of the mesh is always matched to the scale of the
image structures. This improves the reconstruction resolution so that the image
constraint adopted dominates and is not perturbed by the mesh discretization.
The avoidance of unnecessary mesh elements optimises the speed of reconstruction
without degrading the resulting images. Starting with a mesh scale length of the
order of the electrode separation it is shown that, for data obtained at presently
achievable signal-to-noise ratios of 60 dB to 80 dB, one or two refinement stages are
sufficient to generate high quality images.

Over the past three decades, much research has been carried out in the area of
direct and inverse electric field problems (Geselowitz, 1971; Webster, 1990). Elec-
trical Impedance Tomography (EIT) which measures the internal electric property

distribution has become a very active research topic for medical applications. Some
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advantages of EIT over other imaging methods such as MRI or X-Ray imaging are
that it is very cost-effective, fast and portable but a key advantage is the close
correlation of conductivity changes with physiological function.

The finite element mesh is the accepted method of image representation in con-
temporary EIT. The speed of reconstruction and the resolution are competing fac-
tors in the choice of finite elements; large elements reduce computational time at
the expense of resolution. However, resolution can be regained where it is necessary
by adaptively adjusting the size of the elements as the image is reconstructed.

In this chapter, we apply adaptive mesh refinement to non-linear EIT reconstruc-
tion and give examples of how this improves the image resolution while keeping the
computational costs down. But first, we review the essential processes for generat-
ing well-characterized images in EIT; the y2-statistic for goodness of fit is applied

in conjunction with an explicit smoothness constraint on the image.

5.1 The objective function - choice of log, image smoothness

The problem of reconstructing a scalar conductivity distribution o within a body

B consists of solving the non-linear equation

V-oVp =0 (5.1)

for 0. Here, ¢ denotes the potential at a point within €2 resulting from a current
injection normal to the surface of 2. We will denote the measured potentials at
surface electrodes as V = ¢(electrodes) and the electrode potentials based on the
computed conductivity distribution o as U.

A conductivity distribution satisfying the equality of observed and predicted
voltages is our target solution. However, all physical measurement processes have an
inherent limitation in accuracy caused by the random noise generated in the signal
source or measurement instrument. The irreducible random noise contribution 6V

to the signal V introduces statistical uncertainty in the imaging process. The
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goodness of fit is then measured by the y2-statistic, defined as:

Num 2
U —Vi
2
p— -2
X % ( 5V ) (5.2)

The criterion for an adequate fit is x? ~ Ny, where Ny, is the number of in-
dependent measurements. Values of x? > Nj; would suggest significant statistical
disagreement between U and V while x*> < Nj; would introduce artefacts into o
solely to fit the noise in the data. Even when an adequate fit is achieved, a wide
variety of solutions is possible. Because of the inherently limited spatial resolution
of EIT, the values of U are unaffected by small spatial scale fluctuations in conduc-
tivity, even of large amplitude. Hence solutions containing these still fit the data
according to x? and a means to restrict the range of solutions needs to be found.

One possible method to accomplish this is to construct an explicit measure of
image quality, such as smoothness. Blott et al. (1998b) chose a logarithmic function
as the image constraint. It treats deviations in conductivity or resistivity in the same

way and uses the local conductivity gradient as a definition of smoothness:

U= / IV log o|* dady (5.3)
image

The parameter A is used as a weighting factor to balance between the contribu-
tion of x? and the image smoothness function. \ is adjusted until y? equals N, or
cannot be reduced further. In the latter case, the noise level has been misjudged or
systematic errors are present. One avoidable systematic error is discretizing the im-
age space using a mesh that is too coarse so that the values of U are not sufficiently

accurate.

5.1.1 Newton-Raphson

The Taylor expansion of the non-linear forward problem leads to a Newton-Raphson

type algorithm where updates of the conductivity lead to a local or global solution.
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5.1.2 Derivation of Jacobian

In order to solve

JAo = (U—-V), (5.4)

where Ao is the change in conductivity, U is the vector containing the computed
voltages at the electrodes for all current pattern applied and V' contains the corre-

sponding measured electrode voltages, we need to calculate the Jacobian .J:

oU;
aO'j
0
= — (YD),

aO'j( )Z
- a(Yﬁl)Zk
= oo,

oY1), _
- (Tj)’“ym(Y Yol

0

[aTQ(

Jij =

0
Yﬁl)ikYkl} - (Yﬁl)z‘kgym] (Yﬁl)lk[k
j

Jij = —(Y Y (Ye) U (5.5)

9o

J;; represents the sensitivity of the voltage measured at index i (given by electrode
number and current pattern index) with respect to the conductivity of element
number j. J can be derived in different ways which can include the application of
the identity (A™')" = —A7'ATA~!. As we use a constant conductivity across the

element, the derivative in the last row of equation 5.5 can be rewritten as

a 9 (m) )
aT‘j(Ykl) = aﬁ‘j(; omDy”) = Dy, (5.6)

where D,(c{) is the Dirichlet matrix of element j.

5.2 Auto-adaptive inverse solver

For the computational reconstruction the domain under investigation has to be

discretized into small elements. We employ triangular finite elements with linear
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Figure 5.1: The modified iterative reconstruction algorithm incorporating material gradient
estimation and auto-adaptive mesh refinement techniques. max_refstep defines the maximal
number of refinement steps allowed.

base functions and constant conductivity. If the pre-selected mesh is too coarse,
the image resolution will be very poor. However, if the discretization is very fine,
the search space for solutions is large and leads to a very slow reconstruction which
may not even converge. We overcome this problem by using adaptive meshing. In
the case of the forward problem - computing the potential distribution given the
conductivities and injected current - we have shown (Molinari et al., 2001a) that the
finite element mesh need only be fine in regions where high current density gradients
are present. These regions were identified by an error estimator constructed from
current density residuals across inter-element boundaries.

Applying the same mesh refinement technique to the inverse problem - recon-
struction of conductivity knowing only electrode voltages - is now based on the
conductivity gradient between the elements to obtain fine resolutions where tissue
or organ boundaries are present.

Figure 5.1 shows the modification made to a standard iterative Newton-Raphson

algorithm to include the mesh refinement procedure. We used the software package
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Matlab to implement the non-linear iteration algorithm and finite element tech-
nique. An initial relatively coarse mesh is used to reconstruct an approximate
conductivity distribution. When the x? = N,; target is achieved or when sub-
sequent iterations change the result by less than 5 %, the mesh is automatically
refined in regions with high conductivity gradients. In order to apply equation (5.3)
to a finite element representation of o(z,y) we need an approximation to ¥. We

use

> [log(oy) — log(a;)[*Lij, (5.7)

edges

where [;; is the length of the edge separating elements 7 and j. For deciding on
whether to refine the mesh, we use the quantity |log(c;) — log(o;)|.

As a first approach, we refine elements whose average conductivity differences
with its adjacent elements is larger than 40 % of the maximal occurring difference in
the mesh. This refinement criterion certainly needs adjustment as central elements
exhibit a smoother transition than those closer to the boundary. In the test cases,
this experimentally obtained choice always produced good results.

The selected elements are then refined by inserting vertices on the centres of all
three edges. A local re-triangulation according to the Delaunay criterion (Delaunay,
1934) is carried out and subsequent Laplacian mesh smoothing (Freitag, 1997) en-
sures the use of near equilateral high-quality elements. This procedure is confined
locally and hence very fast. It is auto-adaptive in the sense that it does not require
user interaction once the parameter A is chosen. Also, it is self-consistent in the
sense that it does not require any prior information or knowledge about boundaries

or approximate material distributions.

5.3 Simulation results

We have applied our algorithm (figure 5.1) to the reconstruction of data from several
test structures. In this section we introduce a measure of image error, then present
the reconstruction parameters and simulation results before investigating the effect

of differing noise levels on the images.
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5.3.1 Image comparison

To compare the reconstructed images with the simulated conductivity distributions
we need a distance function as an indicator of reconstruction error. A direct method
for comparing two images is to take the norm of the difference of conductivities at
sample points across the image. Since we are comparing images reconstructed on
triangular pixels, the simplest method to use would be to compare the material at
the centre points of the finite elements. However, we are adapting and thus chang-
ing the underlying mesh including triangle sizes, shapes and positions so that this
method is not applicable. In fact, some papers (for example Tang et al. 2001) com-
pare images on differing meshes using this method which could result in erroneous
conclusions about the reconstruction accuracy achieved.

A better way of comparing images - which is also applicable to elements with
higher order internal variation in conductivity - is to resample the image on a regular
(square) grid which allows for comparison across a range of images. We define the

image distance D between two conductivity images, o, and o9, by application of

the 1.2 norm
D= nl—p Z (01() — 2 (i))2. (5.8)

Here, n, denotes the number of total sampling points across the image. We
choose to use a grid with n, = 10 000. This corresponds to an image resolution of
1 % along each dimension.

The norm D corresponds directly to the error of a reconstructed image oy =
Orecon 1f 1t is compared to the original simulated material distribution oy = ogjy.

We will employ this quantity to obtain the absolute average error £ per pixel:

&= D(Urecon: Usim)- (59)

5.3.2 Reconstruction parameters

As an example we show the reconstruction of two T-shaped objects contained in a
cylindrical area. The base conductivity of the cylinder is 1 S/m and the conductiv-

ities of the objects are 5 S/m and 0.2 S/m respectively for lower and upper T. We
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investigate the resolution at the centre as well as throughout the image by taking
cuts through the object as indicated in figure 5.2(a) which shows the original con-
ductivity distribution. The scale of the axes is logarithmic so that the conductivity
values of the two objects are log(5) and log(0.2) = —log(5) respectively, with the
background conductivity set to log(1) = 0. This example tests for image resolution
at the centre and also for the symmetry in treatment of conductivity and resistivity
deviations.

We use the following measurement protocol: Np electrodes driven with neigh-
bouring current injection patterns result in Ny (NN, — 3)/2 independent potential
measurements. We apply Ny, = 16 equally spaced point-size electrodes around the
boundary of the circular object and obtain 104 independent measurements. The
simulation of the measurements was carried out on a high density unstructured
finite element mesh consisting of 11 815 elements to obtain an accurate approxi-
mation to continuous matter; the computation of the measurements required 14.1
seconds. We assume the hardware measurement signal-to-noise ratio (SNR) to be in
the range of 60 dB (=0.1% noise) to 80 dB (=0.01% noise), which can be achieved

with today’s measurement systems.

5.3.3 Results

Initial mesh elements are chosen with a scale to match the electrode spacing. Fig-
ure 5.2(b) shows the reconstruction on the initial coarse mesh with 304 elements
after the Y2 < N,; condition has been reached; this required 4 iteration steps.
Applying one adaptive refinement step and iterating again results in the image in
figure 5.2(c). We see clearly how the resolution even in the centre of the image
has improved drastically. If we repeat this procedure again, further improvement is
achieved, however, not as large as before if we compare the average pixel error £.

Table 5.1 lists mesh sizes, error and reconstruction times at a noise level of
80 dB. The reconstructions were carried out in Matlab on a 900 MHz Processor
with 1 GB RAM running the SuSE Linux 7.1 operating system.

The relatively large reconstruction time originates in the fact that the Newton-

Raphson algorithm inverts a matrix of the size of the number of elements squared
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Figure 5.2:  (a) Simulated conductivity distribution with 0 = 5 S/m for lower T-shape
and 0 = 0.2 S/m for upper T-shape. (b) Reconstruction at a SNR of 80 dB without mesh
refinement, (c) after one refinement step, (d) after two refinement steps. The axes show
the logarithmic conductivity corresponding to the cuts indicated in the image. The image is
scanned from left to right and bottom to top at the slices indicated by letters a to f.

abc 1 abc 1 abc abc

0.

0.

0.

0.2

o > o ®
20—
o o o o
o N S (=] =]
2o -
o o o o
o N S (=] =<
2o -
o o o o
o N S =) 0
LY
%
>
20—

(@ (b) () (d)

Figure 5.3:  (a) Simulated conductivity distribution with ¢ = 5 S/m for lower T-shape
and 0 = 0.2 S/m for upper T-shape. (b) Reconstruction at a SNR of 60 dB without mesh
refinement, (c) after one refinement step, (d) after two refinement steps. The axes show the
logarithmic conductivity corresponding to the cuts indicated in the image.
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Table 5.1: Reconstruction parameters before and after application of the adaptive recon-
struction algorithm at a SNR of 80 dB

Initial mesh after 1% refinement after 27? refinement

Elements 304 533 1222
Nodes 201 316 663
Error B 0.008 0.005 0.004
Refinement (sec) 1n.a. 1.10 2.22
Time/iteration (sec) 0.59 1.26 5.31
Iterations required 4 4 4(+1)
Total time for

reconstruction (sec)  2.36 8.50 31.96

and in the computation of the smoothness constraint for each iteration. The inver-
sion of the matrix could be avoided by application of the so-called adjoint method
(Arridge and Schweiger, 1998) which does not require the explicit computation of
the Jacobian in the reconstruction process; or by using Hachtel’s augmented matrix

method, or by using the Woodbury formula.

5.3.4 Reconstruction at differing noise levels

We reconstructed the same test objects under the assumption of a higher noise level
corresponding to a signal-to-noise ratio of 60 dB. The results are similar to those
shown in table 5.1, however, the error does not decrease as fast with increasing
number of mesh refinements.

A third refinement results in no further improvements which means that the
error is no longer sensitive to the discretization. This leads to the conclusion that
the error is determined wholly by the smoothness constraint which in turn depends
on the signal-to-noise ratio of the measurement system.

Figure 5.4(d)-(f) shows the image resolution achievable at SNR levels of 60 dB,
80 dB and impossibly high 170 dB. The results suggest that further improvements

are possible for higher signal-to-noise ratios until machine accuracy is reached.
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Figure 5.4: (a) Simulated conductivity distribution. (b) Initial mesh used for reconstruction.

(c) Resulting mesh after 3 refinement steps during reconstruction. Reconstructions shown are
at SNR’s of (d) 60 dB, (e) 80 dB and (f) 170 dB.

5.4 Effects of measurement noise on inverse solution accuracy

We have shown in the previous chapter that the measurement noise affects the ac-
curacy of the electrode potentials in the forward solution. A similar investigation
can be carried out for the inverse problem: We would like to know how much this
random Gaussian measurement noise affects the inverse solution accuracy. As the
computational load is significantly higher, we simulate only 20 different measure-
ments with noise (compared to 100 in the case of the forward solution).

The measurements are made on the 2D distribution as seen in the previous
section. The simulations carry a normal-distributed random noise with a SNR of
40 dB which corresponds to a 1 % noise level.

We employ the complete electrode model and use a neighbouring current injec-
tion pattern for all of the 16 point-electrodes used. This leads to a total number
of (16*13)/2 = 104 independent voltage measurements. The contact impedance is
assumed to be 1/400 S/m.

We use the same conductivity distribution as in figure 5.3 but we calculate the

error introduced by measurement noise using 20 reconstructions of random Gaussian

noise.
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Figure 5.5:  Error of inverse solution. (a) shows the mean (blue) with standard deviation
(red) applied of 20 reconstructions with random Gaussian measurement noise at an SNR of
40 dB. (b) shows the same but with two stages of auto-adaptive meshrefinement carried out.
Adaptive mesh refinement in the inverse problem results in a smaller effect of measurement
noise on the reconstruction error and thus more robust imaging.
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The results in figure 5.5 show the mean value of the 20 reconstructed conduc-
tivities on the slices a—f as a thick blue line; the standard deviation are indicated as
error limits with the thinner red lines above and below the mean. We can see that
the error in reconstruction due to measurement noise is reduced when mesh refine-
ment is applied. This leads to the conclusion that the the finer the mesh around
the object boundaries is, the more robust the reconstruction becomes. The better

the mesh discretisation, the lesser does measurement noise affect the image.

5.5 Conclusions

In this chapter, we have focused on the issue of unavoidable random noise as the
ultimate factor governing the optimum quality of image attainable in electrical
impedance tomography. We have shown that the application of adaptive mesh
refinement allows for the effective operation of an explicit image constraint. The
choice of constraint to generate optimal images will depend to some extent on the
nature of the interpretations sought by the user. Here we have chosen to select the
smoothest images consistent with fitting the data. The results demonstrate clearly
that the degree of detail which may be imaged depends on the level of random
noise in the data. With presently available systems, the level of signal-to-noise
achievable with a few seconds of data is in the range 60 dB to 80 dB. At these levels
we have found that one or two refinement stages are sufficient to prevent the mesh
discretization from affecting the image.

We have not considered the effect of systematic errors which may in principle be
discoverable. The positions of the electrodes are measurable, but small movements
during measurement may be unavoidable and their effect may need to be attenuated
(Blott et al., 1998a). Systematic effects may appear as distortions in the images
where account may be taken of them, or they may appear as an inability to minimise
x? during the reconstruction process. In which case they may have to be included
in the estimate of noise used to construct x?2.

However, we have demonstrated that it is not necessary to uniformly refine the
mesh to improve the solution quality, only to locally adapt where the reconstruction
algorithm indicates large gradients in conductivity. This has a clear benefit in the

computation time required whilst not sacrificing essential accuracy. The advantages
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of tuning the element density adaptively at solution time are even greater in 3D
EIT as we will see in the following chapter.

Refining the mesh adaptively has the advantage that the same image smoothness
or regularisation term is better approximated in local regions of high conductivity
gradients and hence the extend of the smoothing property becomes more localised
and makes it feasible to resolve sharper boundaries more easily.

We have also shown that the better the discretisation is adapted to bound-
aries within the volume, the more robust the algorithm becomes with respect to
measurement noise effects.

If in addition to the conductivity also the electrical permittivity is reconstructed,
either an additional mesh with refinement only around high gradients of the per-
mittivity can be used or the same mesh as for the conductivity with both material-
gradient refinements applied. The investigation of the effects of these two differing
methods on the performance of reconstructions needs to be investigated as part of

future work.
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Chapter 6

From 2D to 3D EIT

Non-linear electrical impedance tomography reconstruction algorithms usually em-
ploy the Newton-Raphson iteration scheme to image the conductivity distribution
inside the body. For complex 3D problems, the application of this method is not
feasible any more due to the large matrices involved and their large storage require-
ments. In this chapter we demonstrate the suitability of an alternative conjugate
gradient reconstruction algorithm for 3D tomographic imaging incorporating adap-
tive mesh refinement and requiring less storage space than Newton-Raphson. We
compare the reconstruction efficiency of both algorithms for a simple 3D head mo-
del. The results show that an increase in speed of about 30 % is achievable with
the conjugate gradient-based method without loss of accuracy.

The generation of electrical conductivity tomograms from external measure-
ments is approaching the limits of development using 2D models (Holder and Brown,
1993; Blott et al., 1998b; Vauhkonen et al., 2001). The principals of the reconstruc-
tion method are the incorporation of a statistical test of acceptance for how well
the reconstructed image accounts for the data bearing in mind the noise in the
measurements, and the creation of a measure of the image characteristics. The lat-
ter “smoothness” measure is essential to ensure that only the features in the image
that can be relied upon are retained. The inverse problem is then solved with a
non-linear Newton-Raphson (NR) algorithm. The calculation of the tomograms is

implemented with the aid of a finite element mesh in which, to keep computing
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time down, the element size is adapted to match the scale of the image variations
(Molinari et al., 2002b).

In three dimensional medical electrical impedance tomography the complexity
of body shapes and components requires a large number of mesh elements which
raises new computer capacity problems on single processor systems. Either the mesh
discretization becomes too coarse to obtain images unaffected by the element size, or
it causes the computer to run out of memory with the commonly used algorithms.
There exist two ways of addressing this capacity problem: (1) to parallelise and
thus distribute the problem onto several processors (Paulson, 1992; Woo et al.,
1993; Blott et al., 2000) and (2) to investigate alternatives to Newton-Raphson for
the optimization problem — we will focus on a non-linear conjugate gradient (CQG)
approach.

After reviewing, in the next section, the requirements for efficacious reconstruc-
tion algorithms on electrical impedance tomography, we take the second approach
and give details about our implementation of a Newton-Raphson based algorithm
as well as a new conjugate-gradient algorithm to solve the 3D inverse problem. In
the section thereafter, we compare the efficacy of these two algorithms applied to

the reconstruction of a simple head model before we finally draw our conclusions.

6.1 Issues involved (slicing etc.)

Table 6.1 summarizes the major requirements for algorithms applicable to medi-
cal electrical impedance tomography. The model of an object created in the pre-
processing stage affects the flexibility of the algorithm which impacts on the whole
reconstruction process. Accuracy and speed are mainly affected by numerical code
implementations. After a satisfactory solution is obtained, its visual representation
in a medically useful format should not be overlooked. Visualization characteristics
in the post-processing stage often depend on the initial model and the reconstruc-
tion algorithm used.

Some of the requirements listed in table 6.1 have been addressed in the context
of 3D electrical impedance tomography in previous works, others still remain to be

investigated. Amongst these are:
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Accurate boundary shape representation as investigated for 2D problems by
Jain et al. (1997).
Modelling of general object shapes, such as the head (Gibson et al., 2000)

High reconstruction times caused by large dense matrices

Resolution inaccuracies caused by deficient element quality (Vauhkonen et al.,

1999)

Accounting for the influence of off-plane structures in 3D reconstructions

(Metherall et al., 1996).

6.2 From Newton-Raphson to Conjugate Gradient

Our reconstruction of a conductivity distribution ¢ within a volume conductor {2
by means of electrical impedance tomography is based on the minimization of a
functional ®, which employs the statistical y2-criterion for goodness of fit. It works
on the difference between computed U and measured V electrode voltages, U; — V;,
for all measurements 7 = 1... N, and accounts for the measurement error §V;. A

well-defined reconstruction is ensured by the image smoothness term |V logo|?:

Table 6.1: Requirements for an efficient EIT reconstruction algorithm for medical applications
(extended from Molinari et al. 2001c)

Flexibility Accurate modelling of complex 2D and 3D geometries
Easy application of differing electrode types
Possibility of node relocation for dynamic imaging

Accuracy Usage of high-quality domain discretization
Robustness with respect to noise
Minimal influence of algorithmic constraints on solution accuracy
Suitable algorithm for the problem’s non-linear nature

Speed Application of sparse matrix storage schemes and solver techniques
Algorithm with problem-adaptive mesh density
Parallelization of code

Visualisation Extraction of medically significant features from image
Display of slices, surfaces, volumes
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d = %(Ui_%>2+)\/|Vloga|Qd3x (6.1)
3V a ‘

=1

= X+ 0. (6.2)

This system is equivalent for two- and three-dimensional problems. A more
detailed discussion of this functional and the determination of the parameter A\ can
be found in Blott et al. (1998b). There exist a number of techniques to estimate A
from solutions obtained. These include the L-curve method, the generalised cross-
validation method and Morozov’s discrepancy principle, however, the details of
these are outside the scope of this work.

Since there exist no analytic solutions to the generalized problem, we employ the
well-studied finite element method (Burnett, 1987) to discretize 2 for a numerical
solution. We use tetrahedral elements with piecewise linear base functions for the
potentials and a constant conductivity parameter. This choice reduces the size of the
matrices involved and therefore ensures an efficient reconstruction compared with
higher order interpolation. The main advantages of the finite element discretization
compared to other numerical methods are its flexibility in terms of geometry and
application of different types of boundary conditions imposed by the electrodes
used. These outweigh by far the disadvantage of the rather complex coding of finite
element programs.

To minimize equation (6.1) with respect to the discretized conductivity distri-
bution o, we initially employ the non-linear Newton-Raphson iteration scheme for
which Yorkey et al. (1987) showed fastest convergence out of a number of 2D ET
reconstruction algorithms.

This iterative algorithm updates an initial homogenous conductivity guess by

Ao during each iteration according to the following formula:

(JT"T+AR) Ao = J" (%) + Ar. (6.3)
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The solution of this system involves the construction and Cholesky decomposi-
tion of the large dense sensitivity matrix J7.J + AR of size Nz, where Ny is the
number of finite elements. .J denotes the Jacobian weighted by the measurement
uncertainties V. R and r are a sparse matrix and a vector respectively, both in-
troduced by the image smoothness term in equation (6.1). While R is constant for
a mesh and has to be computed only once, J and r require updating during each
iteration step.

The repeated computation and subsequent Cholesky decomposition of the dense
sensitivity matrix makes the Newton-Raphson approach unsuitable for large com-
plex 3D problems as Ng can easily exceed 5000, which corresponds to a matrix size
of 25 -10% or a memory requirement of 200 MByte to store the matrix alone.

An alternative approach is the application of a non-linear conjugate gradient
(CG) algorithm. This type of algorithm is well-studied (Hake, 1992) and recog-
nized as one of the most suitable numerical algorithms for complex ill-conditioned
large-scale applications (Golub and O’Leary, 1989; Arridge and Schweiger, 1998).
The CG method searches for a minimum of the functional ® by taking conjugate
search directions for every iteration step and requires the computation of the gra-
dient of ® only, instead of the full second derivative. Different choices for finding
the minimum along a search direction exist. The application of an inexact line
search algorithm does avoid the necessity of computing the Jacobian for every iter-
ation step. We implemented the CG algorithm with the Polak-Ribiere parameter
updating technique (see, for example, Shewchuk 1994).

Figure 6.1 and figure 6.2 show the two algorithms with the auto-adaptive mesh
refinement wrapper. Both algorithms terminate when the statistical criterion y? ~
N,y is satisfied, where Nj, is the number of independent measurements made, and

the targeted number of refinements is reached.

6.3 Adaptive mesh refinement in 3D

The speed and accuracy of the imaging process — the reconstruction of conductivities
given only surface potential measurements — depends not only on the algorithm used
but also strongly on the underlying finite element discretization. We have shown

that adaptive mesh refinement techniques can have a major impact on the efficient

103



( Start ’

\ 4
( Make initial uniform o guess )

A

A
@etermine forward solution U(O’D

{ Update o by Ac )

A

( refstep = refstep+1 )
A

C

Compute X2

no

Compute Ao from
(J"IH+AR) Ao = =J(U(0)-Um) + A

) @eﬁne the mesh IocallD
I A

) 4
|)(2 converged ?I

yes

>
n

y
2 M?I|n0

yes

A
. 1no
I refstep = max_refstep ? I

:‘, Adjust A ’

(Compute o gradients)
A

yes

A 4

‘ Image ’

Figure 6.1:
in the reconstruction process.

( Make initial uniform o guess )

<

Outline of Newton-Raphson imaging algorithm with adaptive mesh refinement

-8

<

\ 4
CSet search direction d = —aqn/aa

| P™

«

(Find o that minimises ®(o+ad)

C )

Update o by ad

no

Determine new conjugate
search direction d

A

x? converged ?I

yes

yes

A
2
[e=w-]

A

y
|no

( refstep = refstep+1 )
A

@eﬁne the mesh IocaIID
A

(Compute o gradients)
A

I refstep = max_refstep ? I
yes

A 4

{ Image ’

Figure 6.2:  Outline of the non-linear conjugate gradient algorithm. Not shown are parameters
such as termination criteria, Polak Ribiére updating and restarting criteria.

104



solution of the forward problem (Molinari et al., 2001a) as well as on achieving the
image resolution intrinsic in the data (Molinari et al., 2002b).

We have modified the NR and CG algorithms to include mesh refinement tech-
niques. h-refinement — the subdivision of elements in the initial rather coarse mesh
— is fast and offers a number of additional advantages, such as maintaining the un-
derlying element geometry and focusing on selected areas (Burnett, 1987), as well
as being applicable to both the forward solution and the inverse problem. An error
estimator in the former case and a conductivity gradient indicator in the latter case
determine the elements to be refined. In three dimensions, the number of possible
subdivisions of these selected elements is larger than in 2D thus allowing for more
flexible control over local element density in the mesh as indicated in figure 6.3.

Refinement for the inverse problem is carried out when the y2-criterion is met
after a number of iterations. Thus, the adaptive refinement code wraps around the
actual algorithm. The flow diagram assumes that the initial mesh is not so coarse
that x2 ~ Nj; cannot be reached. Tests at 80 dB signal-to-noise level have shown
that after three refinement stages, no significant improvement is achieved by further
refining the mesh.

To maintain the node connectivity within the mesh after adding a number of
nodes, a local Delaunay re-triangulation (Golias and Dutton, 1997) of the nodes
within and adjacent to the refined elements is required. This can be carried out
quickly and efficiently with, for example, the Qhull algorithm (Barber et al., 1996).

Element-centred point insertion maintains the element boundaries and adds only
3 further elements within the existing one. This leads to the addition of relatively
few elements at the expense of distorted element geometries. It is advisable to
maintain element geometries which are as close as possible to equilateral tetrahedra.
This so-called high-quality mesh avoids geometrical anisotropies causing numerical
errors, especially in the region around the electrodes. The addition of 6 nodes on
the edges of a selected element leads to the addition of 7 elements of similar quality
to the base element and should hence be preferred to the former two methods.

Mesh-conforming refinement is essential as the potential values of the forward

solution computed at the nodes are used in the computation of the sensitivity
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Figure 6.3:  h-refinement by point insertion for 3D tetrahedra: (a) longest-edge bisection;
(b) element-centred, (c) face-centred and (d) edge-centred point insertion.

matrix, J, in the Newton-Raphson procedure. This means that some of the nodes
used in the computation of the forward solution must correspond to the nodes
at which potential values are evaluated for the inverse solution. This is either
done by using a base mesh and refining it according to its task (accurate forward
solution or high conductivity boundary resolution) or combining these two meshes
into one which incorporates both features. The latter option has the disadvantage
of producing a large number of elements in places not specifically required for the
inverse problem and hence causes longer computation times than necessary. Its
advantages are the easier algorithmic implementation and the potential of quality
improvement by relocating nodes in the centres of their adjacent neighbours — the

Laplace-Smoothing discussed in chapter 3.1.7.

6.4 Simulation results

We show results from reconstructions obtained with the algorithms described above
on synthetic data. We use a simple dummy head model made up from a combination
of solid-constructive-geometry objects, such as cylinders and spheres, and meshed
with Netgen (Schoberl, 2001). We simulated three conductivity parameters within
the head mesh consisting of 40 216 elements: the head itself filled with grey matter
of 0.15 S/m (Foster and Schwan, 1989) and a mouth region of an estimated 0.01 S/m
as well as a blood clot of 0.67 S/m (Geddes and Baker, 1967) in a central region
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Figure 6.4: Front, left and top view of head dummy simulation with background conductivity
(grey matter, 0.15 S/m), mouth cave region (air, 0.01 S/m) and object behind left eye (blood
0.67 S/m).

behind the left eye of the patient. Figure 6.4 shows the simulated materials in front,
side and top view and Figure 6.5 shows slices at the indicated heights.

To avoid shape mismatch between the electrodes applied to the surface in the
forward case and those in the inverse case, we decided to employ point electrodes.
The algorithm, however, is equally applicable to the complete electrode model as
introduced by Somersalo et al. (1992). 24 electrodes in total have been applied —
6 on top, 6 at the back and 6 on each side of the head — to ensure an appropriate
coverage of the surface. Current injection is performed through both opposed and
adjacent electrode pairs so that a total of 24 current patterns was used. This
corresponds to a total of (24 x 21)/2 = 252 independent potential measurements.
We assumed a signal-to-noise ratio of about 80 dB in the measurements, which is
about the best achievable with current technology.

The initial mesh for the reconstruction consists of 5027 elements which corre-
sponds to a spatial resolution of about 5.8%. This model does not take into account
the possible shunting effect by the skin and insulation by the skull barrier. These
might affect the reconstruction from real measurements significantly. However, we
are mainly concerned here with the performance aspects of the algorithm rather
than the fidelity of the simulation.

Imaging results:
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Figure 6.5: Slices through the head at the indicated heights showing the conjugate gradient
based reconstructed conductivity distribution. The centre-left column represents the original
values and the centre-right column displays the reconstructed values. Mouth cave and blood
clot are clearly detectable. The range of reconstructed conductivites lies within the simu-
lated values as indicated by the colour distribution. The Newton-Raphson result is visually
indistinguishable.

Figure 6.5 shows the result of the CG algorithm which is visually indistinguish-
able from the NR algorithm. The quantitative analysis of the pixel error £ in ta-
ble 6.2 reveals that both algorithms perform also equally well in terms of absolute
conductivity reconstruction. & is the averaged Frobenius norm of the difference
between simulated and reconstructed conductivities sampled on a 100x100x100
point grid.

Although CG requires much less memory than Newton-Raphson, many more
iterations have to be carried out to reach the statistical x? stopping criterion. The
large number of iterations required increases the solution time and partly balances
out the speed advantages. Nevertheless, our new CG based approach achieved a
28% decrease in computing time. The calculation was performed using Matlab

Release 12 on a 900 MHz processor PC with 1024 MB of memory and running the
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Table 6.2: Comparison of Newton-Raphson (NR) and conjugate gradient (CG) algorithms

Newton-Raphson Conjugate gradient

Storage requirement (MByte) 220 7.8
Number of iterations 9 172
Solution time (min) 16.9 12.2
Average pixel error £(S/m)  0.0136 0.0143

SuSE Linux 7.1 operating system.

6.5 Discussion & Conclusions

The iterative Newton-Raphson method is the method of choice for small scale elec-
trical impedance tomography problems. It exhibits robustness and high accuracy
in the absolute imaging of synthetic data. When it comes to 3D imaging with ar-
bitrarily shaped complex geometries, such as the head, this method becomes more
and more unsuitable due to the large matrices involved. Storage and computing
time rises as a factor of the number of elements involved and hence an alternative
algorithm has to be found.

We have investigated the possible use of a non-linear conjugate gradient based
algorithm. The results presented show that it is superior to Newton-Raphson in
terms of speed and storage requirements as only the first derivative of the objective
function needs to be computed. This leads to an increase in speed of about 28 %
for our example which consists of about 5000 elements only. As conjugate gradient
time complexity scales with O(Né/3) (Shewchuk, 1994), where Ngz= number of
elements, compared to Newton-Raphson which scales with O(N3), significantly
larger differences in reconstruction speed can be expected if even more elements
are used. The fact that the conjugate gradient algorithm is easier to parallelize
onto several processors (Takeda et al., 2000) makes it a suitable candidate for 3D
electrical impedance tomography reconstructions. It is in particular more suitable
for complex large-scale problems when the number of elements increases above
10 000 and the matrices involved would require too much memory in the Newton-

Raphson method.
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To obtain fast reconstructions, not only the algorithm employed, but also tech-
nqiues such as adaptive mesh refinement play a crucial role. We have presented a
number of possible refinement strategies for 3D tetrahedral finite elements which
help to increase mesh density where required for forward and inverse problem solu-
tion. Further work is required to find the best way of obtaining the most suitable
high-quality finite element mesh for image reconstruction and to investigate the
usefulness of special numerical tools such as the Woodbury formula. These and
the parallelization in 3D of the new conjugate gradient based code will be the next

problems to address in non-linear three-dimensional electrical impedance tomogra-

phy.
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Chapter 7

Conclusions

7.1 Summary of main findings

The aim of this PhD project has been to investigate the inverse problem in elec-
trical impedance reconstruction and to develop appropriate algorithms for fast and
accurate imaging purposes in two and three dimensions.

Chapter 1 presents the possible applications of Electrical Impedance Tomog-
raphy. We identified the requirements for modern EIT as high speed/real-time
reconstructions of high resolution images and concentrated on the reconstruction of
absolute and static images.

In chapter 2, we reviewed the physical basis and mathematical models for EIT
and discussed the general properties of inverse problems. We discretized and ap-
proximated the derived continuous equations using finite element analysis as nu-
merical tool in chapter 3 as well as addressed the issues of boundary condition,
convergence and error estimation on the finite element mesh. We were able to show
that the error at the edges of electrodes is largest and thus requires a finer mesh to
model the solution more accurately across the domain.

Throughout the course of this work, a software package for finite element mesh
computations (SMESH) has been developed in Matlab and the routines have been
optimised in terms of computational speed. An additional suite of Matlab functions
(SEEIT) has been developed to deal with the reconstructions of impedance images.

In chapter 4 we introduced adaptive mesh refinement techniques to the field of

EIT modelling. Based on an a posteriori error estimation on the forward solution,
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we were able to show that this technique increases performance of both simulation
and solution of the inverse problem by approximately an order of magnitude. This
allows for faster image acquisition than using a globally fine mesh while preserving
the resolution required for an accurate solution. The adaptive meshing affects the
voltage prediction in the forward solution as well as the sensitivity accuracy as the
sensitivity matrix is modelled using the same interpolation functions.

Adaptive mesh refinement has also been implemented into a Newton-Raphson
based reconstruction algorithm in chapter 5. In this case, the refinement has been
based on the gradient of conductivities in the computed image. This particularly
novel approach shows that the application of adaptive mesh refinement allows for
the effective operation of an explicit smoothness constraint on the image. We have
reconstructed images at different measurement noise levels and showed that the
degree of detail in the image can be made independent of the finite discretization
and is only limited by the noise in the measurements. An additional benefit is
the faster reconstruction by focussing the available computational resources on key
regions for the forward solution and inverse reconstruction.

We have demonstrated that local adaption of the finite element mesh to changes
in conductivity has a clear benefit in the computation time required whilst not
sacrificing essential accuracy. In addition does mesh refinement give a better ap-
proximation to local variations in the smoothing constraint which leads to better
localised image resolution.

Furthermore, numerical simulations of the reconstruction error caused by ran-
dom Gaussian noise in the voltage measurements showed that refined meshes result
in a more stable behaviour of the reconstruction algorithm and a much reduced
effect of the noise on the final image.

If in addition to the conductivity also the electrical permittivity is reconstructed,
either an additional mesh with refinement only around high gradients of the per-
mittivity can be used or the same mesh as for the conductivity with both material-
gradient refinements applied. The investigation of the effects of these two differing
methods on the performance of reconstructions needs to be investigated as part of

future work.
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Although the introduced mesh refinement concentrates computing power to re-
gions where required by the algorithm, the imaging algorithm based on the Newton-
Raphson scheme is computationally still very expensive. Chapter 6 introduces an
alternative non-linear conjugate gradient based algorithm for the reconstruction of
the image. We could show that the advantages of tuning the element density adap-
tively at solution time are even greater in 3D EIT compared to 2D. The results
show that non-linear 3D imaging is now possible on machines with less power but

with a conservation of the high pixel resolution in the image.

7.2 Suggested future work

This work has specifically focused on the reconstruction algorithm and its imple-
mentation with adaptive finite element meshing. There are still a number of issues
which need to be addressed in the future to enable EIT to become a fast routine
application in the medical and/or industrial sector.

The computation of the Jacobian — which is required for both methods (NR
& CG) — is still the computationally most expensive part in computed impedance
tomography. An alternative to investigate would be the method of adjoint sources
as described in Arridge and Schweiger (1998) or to use Hachtel’s augmented matrix
method.

Our developed software routines and algorithms will allow further research into
issues not yet solved in Electrical Impedance Tomography, such as the effect of
electrode size, location and discrete representation on the final image, as well as
convergence behaviour of a number of different algorithms.

The combination of the different optimisation techniques (mesh refinement, fast
numerical algorithms, adaptive current patterns, electrode positions, etc.) could
lead to even more improved solutions and efficiency of the combined process.

Software will be required which is suitable for distributed computing on PC
clusters and on the Grid. In particular for image farming purposes (as described in
Appendix C).

A full impedance reconstruction method using adaptive mesh refinement needs
to be derived — in particular for applications in which both, the reconstruction of

conductivity and electrical permittivity are of equal importance.
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In addition to the mesh refinement methods, it would be interesting to investi-
gate de-refinement methods and also consider intelligent meshes which adapt them-
selves to prior information of the object and thus to the expected image.

An as yet unsolved problem in EIT is the computational geometric modelling of
electrodes in finite element meshes, in particular surface electrodes for medical 3D
imaging. This field could prove important for future work in EIT as the electrodes
contribute some of the largest errors towards the reconstructions. Extending this
field of computational geometry to the remeshing of not only electrodes but also
fixed or moving internal boundary structures offers potential for a large range of

further research.
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Appendix A

Triangle Integration Formulas

In finite element analysis, we often encounter integrals of the basis or shape functions

over the area or along an edge of a regular triangular element, for example,

I = //Qesoz-(x,y)w(x,y) dz dy, (A1)

or

I, = /v2 wi(x,y) ds. (A.2)

v1

These integrals may be evaluated with the following triangle integration formulae:

U!'m!n!
leme de dy = 2A A3
/Qe<12C3 v (I+m+n+2)! (4:3)
J U!m!
Iemds = ——— L. A4
/i CZCJ S (l+m+1)' J ( )
where
Q° integration area of triangular element

(1,(o,(3 the three area coordinates raised to powers l,m,n
A area of the triangle

L;; length of edge between vertices ¢ and j.
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Note that 0! = 1. In the case of a C°linear triangle, a special solution is

1=]

o L F ]

clb o>

A.1  Area, triangular, simplex or barycentric coordinates

Area coordinates (also known as triangular, simplex or barycentric coordinates)
are a set of three coordinates naturally realted to triangular geometry (fig. 13.16
in Burnett, p.572). Each coordinate varies linearly from the value 0 on one of
the sides to the value 1 at the opposite vertex. Geometrically, (; is a fractional
area, ¢; = A;/A and also the fractional distance from the side opposite node i,
as indicated by the coordinate lines for {; shown in the figure. It is immediately
apparent from the geometry that the area coordinates are not independent, but in

fact satisfy the relation

G+e+G=1 (A.6)

The shape functions are identical with the area coordinates for a C°-linear triangle.
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Appendix B

Possible analytic solution of simple

geometry

For simple geometries with uniform conductivity distribution, we can derive an
analytic solution for the potential throughout the object. As an example, we will
use a cylinder of radius R and height H, filled with homogenous material of isotropic
constant conductivity o. Current I will be injected through two point electrodes at
positions p; (R, 1) and ps(R, ) as given in figure B.1. Using cylinder coordinates

with the origin as the axis of the cylinder, the potential ¢4 at position p(r, ) can

Figure B.1:  Set-up for analytical solution on simple cylinder with line electrodes on the
boundary and homogenous conductivity o
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be found by using the Green function for a point source in two dimensions,

1

G(r,r') =In o] (B.1)
and the corresponding formulation of the resulting potential
V2G(r,r') = =§(r — 1). (B.2)

In electrical impedance tomography, the forward solution can be calculated an-
alytically only for very simple conductivity sets such as, for example, a circular
uniform conductivity distribution with point electrodes on the surface.

In this case, we can deduce the solution by solving Laplace’s equation

V2 =0 (B.3)

subject to boundary conditions specifying the current injection.

When a current I is injected between two points on the boundary of a circular
medium at angular positions «; (source) and s (sink). If a medium of conductivity
o, radius R and thickness ¢ is assumed, the equation which gives the potential
difference ¢po between point P(r, o) within the medium and point O in the centre

of the circle, is given by

I d2\?
= —In(— B.4
Vro omot (dl) (B-4)
_ 1 In 14 (5)? — 2(%) cos(as — ) ‘ (B.5)
2ot 1+ (5)% = 2(5) cos(ar — ay)
On the boundary with » = R, we obtain:
I 1 —cos(ay — ay)
Vpo = ] P2 B.6
PO = Srat (1 — cos(ay — Ozp)> (B6)
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This formula can be derived from basic principles:

To solve the Laplace Equation

Vi =0 (B.7)

with boundary conditions
n-oVo(R,a1) = j (B.8)
n- O-VQS(Ra (1/2) = —J (Bg)

we employ the method based on Green functions. In this method, the governing
equation for the potential of a unit point source, represented by the delta function,

can be written as given in Bronstein and Semendjajew (1991):

ViG(x,x) = —276(x — x') (B.10)

The delta function can, for example, be represented by a Gaussian bell shaped

distribution,

1 oo 1
i(z) = / e 22" dx, (B.11)

210 J_o

with the standard deviation o equal to the root of the variance V,

o=V, (B.12)
Vo= E(X?) = (E(X))* = E((z — E(X))?) = X4 (z — E(X))’pr (B.13)

and the expectation or mean value (= center of distribution) of a measurement xy,
with probability py:
E(X) =z (B.14)
k
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The Green function for this 2D problem is

G(x,x') = —2In|x — x|, (B.15)

where x represents the point of potential measurement, x’ denotes the location of
the electric field source.
The boundary term % can be derived from the injected current, I, of density j,

mn

and the height of the cylinder, H:

I = / j-dA=j,HR (B.16)
electrode

= aa—d) HR. (B.17)
onl|
i

Hence we obtain for g—ﬁ
0¢ I;
—L(p;) = "oy — o). B.1
(1) = — 1 b — o) (B.13)

Writing the potential ¢ as effect of the von Neumann point source boundary

conditions yields

1
d(x) = Sg—iﬁﬂlﬂx—xﬂds'
I 1
= f R (0(ar —a') = 6(ag — )) 2—2ln V72 + R2 — 2rRcos(a/ — ag) Rdo/
50 7
I

= 57 7{1 (6(ay — ') — 8(ay — ') 2In /12 + R? — 2rR cos(o/ — o) do’

_ I 9l <\/7“2+R2—21"Rc0s(041 —ao))
2roH \/7“2 + R? — 2rR cos(ag — ap)
I n <r2 + R?> — 2rRcos(a; — 040))
2noH r2 4+ R? — 2rR cos(as — )

(B.19)

This is the analytical solution for the potential within a rotationally symmetric

cylinder. Figure B.1(b) shows the isopotential lines for a current injection through
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electrodes at positions 12 o’clock and 3 o’clock.
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Appendix C

Image Farming in non-linear 3D EIT

The convergence of non-linear reconstruction algorithms for Electrical Impedance
Tomography (EIT) depends on many factors, such as the noise of the measurement
system, the numerical discretization of the object and the starting value of the
iterative approximation. We have shown previously that the result can be made
independent of the underlying numerical discretization of the object when adap-
tive mesh refinement methods are used in combination with a logarithmic image
smoothness constraint.

The non-linear nature of EIT reconstruction and the unavoidable measurement
noise, however, cause several differing solutions in the image space to satisfy the
conditions for a ‘best-fit’ conductivity distribution. A verification of the correctness
of an obtained image can only be carried out if the true distribution is known. This,
however, is not possible when in-vivo measurements are made and hence we need to
establish a measure of similarity between the reconstructed result and a simulated
object to characterize the algorithmic behaviour for real experiments.

By distributing and reconstructing a large number of different initial conductiv-
ity guesses on a commodity cluster of PCs, we can determine the quality of the final
images and correlate the results with the true images within a short time-span. This
gives an indication of the quality of image and provides a measure of convergence
properties and robustness of the tested algorithms.

In this chapter, we present results from these investigations into the character-

istics and efficient reconstruction of the final image and comment on the clinical
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Figure C.1: Image Farming in non-linear 3D EIT

importance of choice of starting value.

C.1 Introduction

In the previous chapters, we have developed all the tools needed for a fully non-
linear 3D reconstruction of electrical conductivity images using image smoothness
constraint, adaptive mesh refinement techniques and conjugate gradient algorithm.
The remaining question is how the choice of starting value of the reconstruction
algorithm affects the resulting image. In this chapter, we will derive a method to
investigate the different choices of starting value and their corresponding resulting
images to be able to draw a map for indicators for the reliability and robustness of
a specific reconstruction algorithm.

The non-linear nature of the problem as well as the low sensitivity of electrode
voltages to changes of conductivity within central elements, and the measurement
noise lead to a large solution space for the conductivy image which contains several
local minimia. We will enable the investigation of the convergence behaviour of
the algorithm by comparing the resulting images which may be local or the global
minimia with the initial starting position of the algorithm.

If the true image is not known, for example as during in-vivo imaging, this
method can be used to reconstruct images from a number of different starting

choices to obtain a view whether all of the reconstructions are similar. This allows
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for obtaining a measure of confidence in the reconstruction, which is important if

medical findings are to be based on these images.

C.2 Simulation on distributed resources

Current and future technology allows to assemble together independent PC’s to
form a computational cluster on which a number of these simulations can be run
in parallel. The advantage of such technology in the medical area is that instead
of only a single image, a range of possible images showing different interpretations
of the measurements can be obtained simultaneously and the decision of a physi-
cian regarding possible treatment and/or surgery can be made with all possible
information at hand (and not only based on a potentially wrong single image).

In the view of current and future Grid technology (Foster, 2002) it will be possi-
ble to use distributed machines and computational clusters of PC’s at remote sites
for this task. In particular, the Condor system developed at the University of Wis-
consin (The Condor Project, 2002) allows for the use of distributed computational
resources in an easy-to-use way and offers huge potential for the investigation of

large parameter sets.

C.3 Methods

Tools

To make comparisons of resulting images with their simulated ‘real’ counter-
parts, we need an ‘exact’ object model on which we will carry out the simulations
of real measurements, a statistical model which adds the measurement noise onto
these measurements and a measure of goodness of reconstruction or the correlation

of the results with initial starting point in o-space.

C.4 Measurement of image correlation

Correlation of conductivity images & measure of fidelity
To compare two conductivity distributions, the method of choice would be to
compare the (triangular) pixels directly. However, since we are changing the dis-

cretization and each element can contain a different conductivity, this method would
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have its shortcomings (difficult implementation, distortion of the density of com-
parison points).

Instead, we use the method as described in the previous chapter, where a regular
grid of points is used for determining the conductivity distribution in 2D images
and 3D volumes.

The conductivity defined on the triangular elements is mapped by a fast algo-
rithm (Qhull’s tsearch) to the regular grid points. The points in the regular grid
then sample/identify a unique and homogenous representation of the conductivity
distribution and the comparison of differing images/volumes is straightforward. For
this comparison, we employ the correlation measure as follows:

Assume that r; = [z;,v;, 2], (i € [1...N]) represents the positions of the N
regular grid points in three-dimensional space. The corresponding conductivity
measurements are then stored in a vector o of size (N x 1).

There will be three such vectors for each simulation we are performing: oq
representing the conductivities of the original image at the positions r; og for the
starting value of the computation; and of containing the conductivities of the final
result once the computation has finished.

As all three vectors are sampled at the same positions within the volume, we
can easily compute their correlation to obtain a measure of closeness of the images
as follows (Bronstein and Semendjajew, 1991, p.692).

For two vectors x; and y; (i = 1..N) with respective mean values of Z and 7,
and variances s2 = 1= 3N (2, — )2 and 2 = 55 3 (3 — )%, the covariance

is defined as
N

=1

The correlation coeflficient between these two vectors is

N - 2 TN - 9

In addition to the correlation, which only gives an indication of relative changes,

we employ the following measure to obtain an absolute measure of the convergence
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behaviour of the algorithm.

The measure of fidelity

As a measure of fidelity, we follow the method proposed by Yorkey et al. (1987).
We define the measure of fidelity, F, as the squared inner product of the difference
between the true resistivity profile (o) and the estimate (o), normalised by the

squared inner product between the true resistivity and its average value (dy), i.e.

(00 — U)T(Uo —0)
(00 — G0)T (00 — Go)

Flo) =

(C.3)

The normalisation allows to express F in the range 0 < F < 1. This corresponds
to a value of F = 1 if we choose the average distribution as starting value, and a
value of F = 0 when the reconstruction is perfect. Vadasz and Sebestyen (1996)
emphasize that this choice of average conductivity of the object as initial guess is
also pratical with real measurements, since it is usually known or can easily be
extracted from the measurements.

The measure would be unsuitable for homogenous distributions as the denomi-
nator would be equal to zero, however, we will only investigate conductivity distri-
butions which contain conductivity variations.

We have devised a method for the testing of the convergence properties and
hence robustness of reconstruction algorithms. This method allows the exploration
of the image space by farming out a large number of starting guesses for the initial
conductivity distribution. However, further work is required to extend and apply
these ideas to real test cases and to be able to determine the robustness of a range

of reconstruction algorithms used in the EIT community.
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Appendix D

Terminology of electric + magnetic

parameters

R= % resistance Widerstand

G=+% conductance (Wirk) Leitwert

0= RTA resistivity Spezifischer Widerstand

o= % conductivity Leitfahigkeit

€ = €,€ electric permittivity Permittivitat

=y Lo magnetic permeability Permeabilitat

7 = % = R+:X impedance Scheinwiderstand / Impedanz
Y =1 =G+iB admittance Scheinleitwert / Admittanz
X reactance Blindwiderstand / Reaktanz
B susceptance Blindleitwert / Suszeptanz
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