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Understanding solvent effects at the metallic/liquid interface is critical to improving
and analysing heterogeneous catalytic processes. In addition to a growing body of
experimental work, computational studies are elucidating how the presence of wa-
ter affects both the electronic structure and the adsorption thermodynamics of the
metallic surface. However, computational methods such as ab initio Molecular Dy-
namics (AIMD) require extensive configurational sampling to obtain equilibrated ther-
modynamic quantities, precluding their use for wide-ranging studies. In contrast, by
considering the dynamic degrees of freedom as an average, implicit solvent methods
provide a route to tractable computational simulations of the aqueous environment,
while maintaining a quantum mechanical description of metallic/adsorbate interac-
tions. This thesis, in collaboration with the Pacific Northwest National Laboratory
(PNNL), describes how implicit solvent approaches can be applied as an inexpensive
method of evaluating both the electronic structure of the metal/liquid interface, and
the free energy change of adsorption in the aqueous phase for a range of organic adsor-
bates.

To ensure these calculations are performed accurately and efficiently, developments
were made to the linear scaling Density Functional Theory (DFT) code, ONETEP as
part of this work. These developments include the implementation of the soft sphere
dielectric cavity model, which gives the flexibility to parameterize the solvent model
for individual atomic centres. This contrasts with the original electron density based
cavity model, which applies a global cavity parameter, leading to poor descriptions
of the free energy changes of solvation for systems with mixtures of light organic and
heavy metallic species. A surface accessible volume term was also implemented for
the non-polar solvation term, which improves the correlation with experimental solva-
tion free energies compared to the surface area non-polar term. Furthermore, a Pulay
Hamiltonian mixing routine was implemented in the Ensemble DFT (EDFT) scheme of
ONETEP. This approach confers significantly improved convergence behaviour for sin-
gle point energy calculations performed in this work. This enables more efficient and
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accurate simulations of metallic systems, allowing for the evaluation of larger systems

studied in later chapters.

Utilising the implemented soft sphere model, this work assesses the ability of the soft
sphere model to capture the potential of zero charge and the work function of the metal-
lic/liquid interface. By reparameterizing the implicit solvent model in terms of the
work function values calculated from snapshots of an AIMD simulation, we were able
to capture the salient electronic structure changes of the solvated metallic surface and
electrochemical properties.

Then, combining the accelerated EDFT scheme and the implicit solvent parameteriza-
tion method used for the potential of zero charge, this thesis concludes with a contin-
uum solvent approach for calculating the aqueous phase adsorption free energy of or-
ganic molecules to the Pt(111) surface. In this work, approximations are derived for the
entropies of solvation for the metallic surface based on analytical statistical thermody-
namic expressions. These approximations allow us to parameterize the implicit solvent
mode AG,, for the metallic surface, enabling adsorption free energy with reasonable
accuracy for a range of coverages and orientations. This opens a route for computation-
ally inexpensive evaluations of adsorption processes at the aqueous Pt(111) interface,
which can provide an atomistic understanding of adsorption processes in support of

experimental studies.

The work presented in this thesis shows the usefulness of the implicit solvent method in
studies of heterogeneous catalytic processes and electrochemical interfaces. The tech-
niques described in this work show that thermodynamic and electrochemical proper-
ties can be calculated in a computationally tractable manner with implicit solvent. In
future, this could enable high throughput studies for a range of metallic surfaces and
adsorbates, aiding the design of catalysts for a range of applications.
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Chapter 1

Introduction

1.1 Computational Representation Aqueous/Metal Interfaces

Over the last three decades, the increasing sophistication of computing and electronic
structure theory has enabled ab initio computational modelling to take a more promi-
nent position in research. Even the simplest simulations performed in vacuum can val-
idate experimental observations and provide precise insight into the changes in elec-
tronic structure that occur during a reaction. However, omitting the effects of solva-
tion and electrolytes limit the accuracy of computational simulations. The influence
of water is especially important when considering processes involving the conversion
of biomass, which naturally contain large concentrations of water in the feedstock (see:
Table 1.1). Even simple reactions such as the adsorption of H, onto the Pt surface, which
form a basic step in the hydrodeoxygenation (HDO) reaction, are severely impeded by
the introduction of aqueous solvent. Without water, only 0.001 atm partial pressure of
hydrogen is required to achieve full coverage. However, water introduces an enthalpic
and entropic penalty that increases the pressure to achieve a partial coverage of 0.85
to 1000 bar [1]. As a result, the HDO reaction, which could otherwise be performed at
standard pressure in the absence of solvent, requires both high temperatures and high

pressures of Hj to achieve feasible rates under aqueous conditions.

1.1.1 Ab initio Molecular Dynamics

Simulating these complex environments at the metallic/solvent interface requires ad-
vanced theoretical techniques and greater computational resources compared to vac-
uum calculations. Molecular representations of water require one to consider the spa-
tial degrees of freedom of the system in order to attain both entropic and enthalpic
properties. Methods such as ab initio Molecular Dynamics (AIMD) allow the system

to propagate over time, while thermostats constrain the thermodynamic conditions of
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FIGURE 1.1: A simple schematic showing the the major simulation methods used to
represent the aqueous phase in ab initio simulations. From left to right: implicit solva-
tion, QM /MM and full quantum mechincal calculations.

the system according to the selected statistical thermodynamic ensemble. However,
obtaining the thermodynamic average of even simple energetic properties requires ad-
equate sampling of configurational space, which becomes increasingly unfeasible for
large systems. For example, simulations performed for a small, 84 atom Pt — H,O in-
terface require 24 ps of simulations - totalling 24,000 DFT single-point energy calcula-
tions - to achieve the distribution of energies characteristic of the Canonical Ensemble

[2].

Despite these costs, several studies have been conducted into aspects of the HDO re-
action using AIMD methods. Studies conducted by Yoon et al. [3] show the impact
of the aqueous environment on the conversion of phenol to hexanol. The solvent ef-
fects are believed to be twofold: (a) The deposition of water alters the electronic struc-
ture of the surface, such that the reductive potential of the surface is increased and
(b) the keto-enol tautmerisation equilibrium shifts to favour 3-cyclohexenone over 1,3-
cyclohexadienol, leading to a favoured cyclohexanone product in the aqueous phase.
Other AIMD studies at the aqueous /Pt interface reveal that under alkali conditions, ad-
sorbed OH™ ions lead to charge transfer to the surface, increasing the activation energy
of H adsorption. This corresponds to a decrease in the rate of phenol hydrogenation

with increasing pH values.

1.1.2 Quantum Mechanics/Molecular Mechanics (QM/MM)

The cost of AIMD calculations makes the study of extended systems unfeasible, neces-

sitating the use of simpler models. One such approach is the QM /MM model, which
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vastly reduces computational costs by describing the metallic surface and adsorbates
quantum mechanically, and the bulk water through a classical force field. This sig-
nificantly reduces the computational expense of representing the liquid environment,
as the interactions of the MM atoms are described through a simple integration over
point charges. However, these techniques require the total energy function to be re-cast
to approximate the interaction between the QM and the MM region,

E(xqm, xmm) = Eqm(xgm) + Emm(xmm) + E(xmm) (1.1)

where xgp and xpy are generic descriptors of the QM and MM atomic structures re-
spectively. Using the approach, the thermal effects of solvation which rely on extensive
sampling of configurational space can be calculated with significantly reduced com-
putational cost. This is achieved using a QM system with a fixed structure, and the
thermal degrees of freedom for water are captured using Newton’s equations of mo-
tion in an appropriate statistical ensemble.

This approach has been used to calculate the free energy of solvation (AG;,,) of adsor-
bates at the metallic surface [4, 5]. Thermal motions were shown to be important in
describing the energetics of solvation for small catalytic intermediates, where the en-
tropy of solvation (AS,) is highly negative. The increased ordering of water accounts
for a large component of AGs,,, where ASy,, = +32 k] mol~! and the enthalpy of
solvation (AH,,,) is -61 k] mol~! for CH,OH* adsorbed to Pt(111).

More advanced techniques such as QM /MM Free Energy Path (QM / MM-FEP) [6] al-
low the calculation of activation barriers and free energy changes of chemical reaction
processes, while including thermal and solvent effects. This approach calculates the
optimal reaction coordinates on the potential mean force surface (PMF). The PMF ap-
proximates the free energy surface in terms of the reaction coordinates in an ensemble
average (mean field) of the solvent degrees of freedom. This interpretation allows for
the evaluation of the potential energy surface, using a set of frozen QM geometries to
represent the reaction coordinates between the initial and final states. Schemes such
as eSMS (explicit Solvation for Metallic Surfaces) [7] have been developed using the
QM/MM-FEP framework to evaluate bond breaking/formations between adsorbates
on metallic facets in the aqueous phase [8]. This represents a promising method for
evaluating reaction mechanisms compared to ab initio MD, allowing for speed-ups of
up to an order of magnitude compared to the fully quantum description.

Recent developments to the QM /MM method include the improved description of the
solvent/metal interface through purpose-built force fields. One such example is the
GAL class of force fields (GAL17 [9]/GAL19 [10]), which are explicitly parameterized
to obtain the chemisorption energies at specific sites on noble metal surfaces. This is
achieved by applying a set of attractive Gaussian potentials to each surface site, and
capturing the angular dependence of the H,O binding strength through a truncated



1.1. Computational Representation Aqueous/Metal Interfaces 4

Fourier series. This approach can calculate the binding energy of water to various noble
metal surfaces with an error of 4.14 k] mol~! compared to DFT calculations. Follow-
up studies applied the GAL17 force field to the adsorption of phenol to Pt(111) in the
aqueous phase. They found this force field supported the experimentally observed
qualitative decrease of the adsorption free energy in the aqueous phase compared to the
vacuum phase [11]. However, by ignoring the configurational degrees of freedom of
the adsorbate, this method does not account for the large negative entropies associated
with the adsorption [12].

1.1.3 Implicit Solvent

Even with the computational savings brought about by the QM /MM method, equili-
bration of the MM system can still take a substantial amount of time and computational
effort. This is especially the case if sampling is performed over a range of reaction co-
ordinates along a free-energy path, or if many adsorbates need to be sampled in high-
throughput studies. This can be limiting in studies that hope to evaluate a large assay
of target molecules. Therefore, it can sometimes be useful to completely eliminate the
explicit representation of the solvent, instead using a set of experimentally derived bulk

properties to model the solute/solvent interactions.

One such approach is the implicit (continuum) solvent model [13], which treats the
solvent system as a dielectric continuum surrounding the system of interest. This po-
larising medium emulates the effect of water by representing the solute/solvent inter-
actions through the potential changes in a bulk dielectric. This essentially integrates
out the spatial degrees of freedom of the solvent analogously to the PME. As a well
established technique, the implicit solvent model has been implemented in a range of
forms including the Conductor-like Screening Model (COSMO) [14] and the Polariz-
able Continuum Model (PCM) [15]. A more complete description of the theory of the
Polarizable Continuum Model applied to quantum chemistry codes is given in Section
2.5.

The implicit solvent model has already demonstrated its ability to model transition
states for metallic surfaces [16]. Lu et al. [17] show the utility of this approach with
the mean-field microkinetic modelling of the HDO for guaiacol over Pt(111), where
the relative computational cost effectiveness of the solvent model allows the necessary
calculation of tens to hundreds of elementary reaction steps. These aid in confirming
important mechanistic details, such as the inactivity of the deoxygenation route of gua-
iacol on Pt(111) surfaces. This provides further evidence of the processes occurring
at the cocatalyst, where hydrogenation occurs on the noble metal surface and deoxy-
genation occurs exclusively on the support. Although this new technique has yet to be
used more broadly, these findings demonstrate that it has potential to guide catalysis
research by allowing a semi-quantitative account of environmental effects on kinetics.
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However, a well-known limitation of the implicit solvent model is the poor description
of strong bonding interactions between the solvent and solute. This is especially preva-
lent for species which form hydrogen bonds with water. Comparisons with QM /MM
studies show that for catalytic intermediates such as CH,OH* at the Pt(111) surface,
AGg,1, is underestimated by 12 kJ mol~! [5].

1.2 Conversion of Biomass to Biofuels

Simulations of metallic surfaces and the solvent environment can guide material de-
sign for industrial processes. One such application is the conversion of crude bio oils to
biofuels, which show promise as a sustainable and carbon neutral alternative to non-
renewable fossil fuels [18]. Although the biofuel sector is expanding 7% year-on-year,
continuous growth of 10% is required to meet the sustainability targets set by the In-
ternational Energy Agency [19]. In order to aid the expansion of this industry, further
research must be conducted to overcome the challenges limiting the economic feasibil-
ity of biofuel production. Solutions to these problems lie not only in improved logistics
[20] and optimised plant design [21], but also in forming a rational understanding of

the heterogeneous catalytic processes used at various stages of biomass conversion.

Early biomass sources, categorized as the first generation, are generated from purpose
grown food grade crops to produce bioethanol [22] [23]. However, the sustainability of
these feedstocks are questioned given their competition with domestic food markets,
which is projected to increase the price of commodities such as cereals up to 34% [24].
Further concerns have been raised about the environmental impact of intensive farm-
ing related to first-generation biomass production, namely the depletion of aquifers
and deforestation [25]. This mitigates some of the environmental benefits that biofuels
have over fossil fuels. To tackle these issues, the second generation of biomass feed-
stocks has been developed. These feedstocks are derived from agricultural, forestry

and household waste as well as purpose-grown non-food crops.

The primary components of biomass are lignin, cellulose, and a mixture of short-chain
sugars [26], all of which must be refined to short-chain hydrocarbons to be used as fuels.
Several promising techniques have been developed to convert raw biomass into feasi-
ble fuel sources, such as gasification and pyrolysis/liquification. Fast pyrolysis pro-
vides an easily implementable synthetic route for producing crude bio-oil, producing
up to 60% yields of potentially usable fuel by mass [27]. This technique involves heating
biomass to high temperatures (approximately 500 ° C) in the absence of oxygen with
short residence times, followed by rapid condensation of the resulting aerosols. The lig-
uid phase product is furthermore easily stored and transported, especially compared
to the products of the gaseous biomass conversion process. However, bio-oil produced
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Component  Corn Husks? Pine®

Water 25 24
Aldehydes 1 7
Acids 6 4
Carbohydrates 5 34
Phenols 4 15
Ketones 11 4
Furans 2 3
Alcohols 0 2
Unknown 46 57

TABLE 1.1: The bio-oil composition by wt% produced from fast Eyrolysis from two
feedstocks. Compiled by Mortenson et al. [29].  Mullen et al. [30]. ® Oasmaa et al. [31]

by fast pyrolysis has a considerable oxygen content (up to 60% wt) compared to non-
renewable fossil fuels. The high oxygen content imparts many undesirable properties
on the fuel, such as high viscosity, low volatility, and low energy density. Furthermore,
the low thermal stability of the oxygen groups leads to the polymerisation of the fuel
(coking) at operating temperatures. These properties were found to be disadvanta-
geous in the first tests of diesel engines, where the coking process and acidic impurities
in unrefined bio-0il damaged key components of the engine after prolonged operation
[28]. These problems preclude the use of crude bio-oils produced by fast pyrolysis as a

transportation fuel, limiting its application to standing boilers.

In order to broaden the utility of bio-oils to both automotive and aviation fuels, addi-
tional processing must be performed to reduce the oxygen content. Furthermore, since
the crude bio-oil product is a mixture of ethers, ketones, and phenolic compounds (the
components are shown in Table 1.1), the process must be robust enough to eliminate a
range of functional groups containing oxygen. In answer to this, the combination of fast
pyrolysis and catalytic upgrading through hydrodeoxygenation (HDO) has emerged
as one of the most prevalent routes to convert raw biomass to transportation fuel [33].
The HDO step is typically performed with zeolite/alumina/silicate supported metal-
lic nanoparticles of Pt, Ru, Cu or Ni, [34] or sulfided Co-Mo/Ni-Mo co-catalysts [35].
The latter catalysts represent the most common class in the early development of hy-
droupgrading, but the said catalysts rapidly deactivate under aqueous conditions [36]
and require high pressures of H; to perform hydrogenation [21]. The noble metal class
of catalysts are a promising alternative, exhibiting higher yields compared to the sul-
phided co-catalysts at lower hydrogen concentrations (3-5 MPa) [37], and greater resis-
tance to deactivation under aqueous conditions. Figure 1.3 shows how conversion is
carried out for a lignin-derived compound, guaiacol, with Pt/AlOs. Herein, the metal-
lic surface activates H, via. dissociative adsorption for hydrogenation of the C = C
groups, while the support provides a Bronsted acid site for the subsequent dehydra-
tion reaction. The optimisation of the design and composition of these catalysts is an
active area of research. The influence of the support has been highlighted, where the
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Adapted from Yue et al. [32]
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FIGURE 1.3: A simplified scheme of the conversion of guaiacol on a Pt/ AlOj3 catalyst.
Scheme adapted from Lee et al. [38]

zeolite support is known to be susceptible to deactivation from phenolic compounds
via. coking [39]. However, alumina supports have recently shown promise as a mate-
rial robust to poisoning [40]. Furthermore, the yield of these reactions are sensitive to
temperature effects, where the favoured product of HDO changes from cycloalkanes
at 200°C to phenolic/polymeric products at 300°C [41]. In addition, the choice of Ru
nanoparticle species as opposed to Pt can improve the yields of alkane products from
68.6% to 87.2% [42].

The precise understanding of this reaction is complicated by the interplay of support
and nanoparticle effects, coupled with reaction conditions such as the use of high tem-
peratures, pressure and acidity. As a result, computational studies can be used to pro-
vide insights into the precise mechanisms of the HDO reaction. However, producing
models for the HDO reaction is a complex task that requires careful consideration of

the environment.

1.3 Experimental Techniques for Measuring Adsorption Free

Energies

Accurate measurements of the energetics of adsorption are a vital part of understand-
ing heterogeneous catalytic processes. Especially in complex multicomponent mix-
tures, the competitive adsorption of different species can impact the turnover frequen-
cies of the target reaction [43], or lead to catalytic poisoning if certain species bind irre-
versibly to the catalyst compared to the desired reactant [44]. Furthermore, the presence
of solvent influences the thermodynamics of adsorption [45-47]. This is demonstrated
both enthalpically, by the energetic penalty of displacing the adsorbed H,O molecules
from the catalytic surface [48], and entropically through the favourable transfer of H,O
from dynamically restricted adsorbed configurations to the liquid phase [47, 49].

However, measuring the energetics of adsorption in the aqueous phase is particularly
challenging compared to the case in the gas phase. In experimental studies, quan-
titative measurements such as calorimetry are significantly less sensitive due to heat

cyclohexane
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dissipation through the solvent medium, meaning a large number of adsorption events
must be induced to adequately measure the heat released [50, 51]. Furthermore, the
structure and orientation of the adsorbates on the surface are sensitive to a variety of
properties within the aqueous environment, including the concentration of the adsor-
bate [52] and the presence of electrolytes [53]. As such, the measured binding modes
can often be ambiguous compared to ultrahigh vacuum experiments, which is further
complicated by many traditional microscopy techniques that require ultrahigh vacu-
ums to avoid scattering of the incident beam [54]. However, techniques using ultrathin
stable liquid layers have recently been developed for surface studies, which allows the
measurement of high-resolution images of the surface/adsorbate interface in the aque-
ous phase [54].

In computational studies, measurements of thermodynamic quantities at the aqueous
interface require extensive configurational sampling of the adsorbed system, typically
through molecular dynamics. However, these techniques require the calculation of
many thousands of snapshots to obtain equilibrium quantities. This is especially prob-
lematic for ab initio treatments, where individual energy and force evaluations are
computationally expensive. This is further exacerbated by the large amount of H,O
molecules introduced to the simulation cell, required to adequately simulate the solvent
environment [55]. Simplified models such as QM /MM (quantum mechanics/molecu-
lar mechanics) [10], which separate the system into a quantum and classical region,
allowing for more tractable calculations of adsorption processes. Alternatively, one can
use methods such as implicit solvation (or continuum solvation), which remove the
requirement to perform configurational sampling by averaging out the dynamic de-
grees of freedom for water [13, 56], drastically reducing the computational expense for

calculating properties in the solvent phase.

One of the primary objectives of this work is to provide methods for computing the free
energy changes associated with solvation, making use of the reduced computational
costs of the implicit solvent model. We will apply our implicit solvation approach to
the measurement of the free energy of adsorption under aqueous conditions (AG*%?) of

aromatic molecules on the surface of Pt(111). Furthermore, the accuracy of our adsorp-

solv

tion and solvation model will be assessed by comparing our AG):

to experimental

literature values.

To better inform our discussion, we will provide a brief account of the evolving tech-

niques used to obtain AG:%" experimentally. Early studies concerning the adsorption

of aliphatic and aromatic molecules to metallic electrodes in the aqueous phase were

performed largely through FTIR (Fourier Transformed Infrared Spectroscopy) and ra-

solv

diotracer techniques [45, 46]. These experiments obtain AG’

values by calculating

Kﬁglg as a function of coverage (f) over a range of concentrations.

Kb = exp{(_Acgd,uq,G/RT)} = exp{(_AHgd,aq,B/RT)} eXP{(ASSd,aq,e/R)}I (1.2)
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0 0
AHad,uq,G’ and ASad’aq,

ergy, enthalpy, and entropy of adsorption in the aqueous phase respectively. To calcu-

where AG?

adaq,07 o are the standard state changes in Gibbs free en-

late the coverage for a given concentration, the surface concentration of the adsorbate,
I' (measured in mol cm~2) is measured through the radiation signal of adsorbed C'3
isotopes. Coverage is then calculated as,

r

rmax

0 = , (1.3)
where I' is normalised against the surface concentration of one monolayer of coverage,
I'yax- The models of the isotherm for adsorption are then constructed by plotting c, s

vs. 6. Overall, the adsorption process is described as,
Mol(aq) +nH>O(adgs) — Mol(ads) +nH2Oy), (1.4)

where n is number of water molecules displaced by the adsorption of the water molecule.
The concentration of the adsorbate in solution and 6 (which is unitless throughout) are
related by the Temkin isotherm, which takes into account the lateral repulsions between
adsorbates [57]. In the linear form, the Temkin isotherm is defined as,

_Rr
K

RT

0 In K% + ——Incos, (1.5)
1

eq,0
where r; is the Temkin constant (which describes the variation of AG,4s with coverage
[47]), R is the gas constant, T is the temperature, and K;Zlg is the equilibrium constant.

Empirical studies of organic adsorption to metallic surfaces continued in the gas phase
through the SCAC (Single Crystal Adsorption Calorimetry) method [58], but until re-
cently there has been a dearth of reported adsorption free energy values for the aqueous
phase. However, measurements of AG*%/ are undergoing a revival, brought about by

ads

Cyclic Voltammetry (CV) techniques [49, 59, 60].

Similarly to the radiotracer approach, the CV method is used to obtain the coverage
of organic adsorbates at a given concentration. This technique exploits the hydrogen
underpotential deposition process, where hydrogen reversibly adsorbs to the metallic

surface at characteristic potentials in the underpotential region,
M-H — H:q +e” + M, (1.6)

where M—H represent the adsorbed hydrogen to the metallic surface, and M* repre-
sents an empty site. In equal electrochemical conditions, the potentials where hydro-
gen is deposited is determined by both the species of the metal and the crystallographic
direction of the facet. The number of hydrogens deposited on the metallic surface can
be calculated by the charge density (A cm~2 over the area of the surface), which is inte-

grated over the potential swept over the underpotential region. As organic adsorbates
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block the sites which can be occupied by the hydrogen adatoms, the coverage of the
adsorbates can be measured by the relative loss of current transferred during the CV

potential sweep. This is measured as,

9/(1 - 9) solv Cads

00/(1—00) — eab ¢y

(1.7)

where 0° is taken as 0.5 to simplify the expression 0°/ (1 — 6°) to 1. So far, this technique
has been used to measure the adsorption free energy changes of various aromatic com-
pounds to the Pt(111) surface.

Experimental data from electrochemical and radiotracer studies generally agree quan-
titatively with one another (Table 1.2 and 1.3) - the adsorption free energies for organics
in the aqueous phase are significantly less thermodynamically favourable than in the
gas phase. Monolayer coverage was reported as unobtainable at high concentrations.
This is rationalised as either the inability to determine the true number of surface Pt
atoms, the existence of sites inaccessible to the adsorbate or sites where the kinetics of
water desorption/adsorbate adsorption are unfavourable. However, these early stud-
ies agree overall with the qualitative decrease of AGS%? with respect to AGY¢ as found
in modern measurements (1.3. Therefore, these older studies will provide a valuable
resource in parameterizing our solvent model and testing its robustness to systems be-
yond cyclic aromatics.

TABLE 1.2: Vacuum phase heats of adsorption for a range of aromatic and common
hydrocarbons with oxygen-bearing functional groups.

Molecule 0 AHYS
/ k]rnol_1
Phenol (Pt(111)/Ni(111))* 1/16 —194, —175

Benzene (Pt(111)/Ni(111))® 1/16 —188, —183

Cyclohexene Pt(111)¢ 0 —130
Naphthalene Pt(111)4 0 —300
Methanol Pt(111)e 0 —60.5
Methoxy Pt(111)f 0 —187

a Ref. [61], Single Crystal Adsorption Calorimetry (SCAC), 100K. P Ref. [62], SCAC,
90K. © Ref. [63], SCAC, 300K, AH, 4, = (197 — 4860 — 8362). 9 Ref. [64], SCAC, 300K,
AH,;s = (300 — 346 — 19992). € Ref. [65], SCAC, 100K, between 0 — % coverage
AH,5 = (60.5 —19.30). f Ref. [65], derived from Hess cycle.

These studies have both attempted to derive further values such as the enthalpy and
entropies of adsorption, the bond strength of phenol and the rate constant. Firstly, the

Van’t Hoff equation can be rearranged into the Van’t Hoff plot,

1 ! !
MG _ Mgl ASH 1.9

RT RT R
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TABLE 1.3: Aqueous phase change in adsorption free energy and heat of adsorption

under standard conditions on the Pt(111) facet. AGY, 0,0=0 refers to the free energy

changes of adsorption proceeding from components in their aqueous phase.

Molecule Adsorbed AGZ‘;S%:O Angl;,’e:O ASZ%I;’G:O
/kKJmol™' /KkImol™! /JK!mol™!
Phenol? -9 —71 -
Phenol? —14 +38+£19  +174+ 64
Phenol© —40 +12 -
Benzaldehyde® -31 —43 -
Benzaldehyde? - —44 -
Cyclohexanol® -17 +2 -
Benzyl Alcohol? —33 —32 -
Butanol© —33 —-17 +59
Valeric Acid® —38 —13 +81
Benzoic Acid® —42 +13 +191
Naphthol® —54 +17 +244
Naphtholic Acid® —63 +17 +254

3 Ref. [45], Cyclic Voltammetry, standard conditions. P Ref. [49], Cyclic Voltammetry,
standard conditions. ¢ Ref. [47], Radiotracer/FTIR, standard conditions. 9 Ref. [66],
Aqueous phase calorimetry.

Through a linear regression of temperature with respect to AGS%?, AH;ZZSZ,’GZO and ASS9
can be calculated as the gradient and intercept, respectively, of Equation 1.8. As shown
in 1.3, the enthalpies of adsorption in the aqueous phase relative to the gas phase ad-
sorption enthalpies decrease significantly, which is largely attributed to the displace-
ment of water from the Pt(111) surface. However, these processes remain thermody-
namically feasible due to the large positive entropies attributed to the configurational
freedom gained by water desorbing from the surface and entering the aqueous phase.
However, Akinola et al. [49] notes that the Van’t Hoff approach involves large errors
in the measurements of AS%%/?, driven by the small variation of K%/’ across the exper-
imental temperature ranges. In the case of phenol adsorbing to the Pt(111) facet, the
error of entropy is estimated as +64 ] K~! mol~! compared to the measured value of

+174J K~! mol~! (where the error was obtained by performing repeat measurements
of ASsolo

ads

Further techniques have been developed to determine the bond strength (enthalpy of
binding for the adsorbate) in the aqueous phase by breaking the adsorption process into
its constituent elementary steps. In Bockris’ study of the adsorption enthalpy [47], the
adsorption process is divided into four enthalpic components, as shown in Figure 1.4:
(1) AH; the enthalpy of desorption for n displaced H,O molecules from the metal M,
(2) AH», the enthalpy of desolvation for a phenol molecule, (3) AH3, the condensation
enthalpy of n H,O molecules, and (4) AHjy, the enthalpy of adsorption of phenol to the
metallic surface. In this model, the unknown quantity (AH4) can then be calculated

using experimentally derived AH,4; and the largely available values for the quantities
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AHads
nHzO*(adS) + MOl(aq) —_— 1’1H20(1) + MOI*(adS)

AH\ AHM}VX&

nHzo(g) MOl(g)

FIGURE 1.4: The individual steps involved in the adsorption of a molecule in the aque-
ous phase in the metallic surface.

AH;, AH; and AH3. Once AHy is derived, the binding strength of AHZ% was derived
as AH3S" = AHy — AH,.

However, the ability of these early studies to accurately decompose the total AG3? into
elementary steps were further limited by the lack of data for certain values (e.g., the
adsorption enthalpy of water to the Pt surface). In the latter case, AH,;; was estimated
to be —92kJ mol~! compared to the accepted value of -51 k] mol~! [47], significantly
distorting many of their calculated heats of adsorption. Furthermore, these studies
largely ignore the energies of desolvating sections of the molecule that are inaccessible

to the solvent once adsorbed to the metallic surface.

The bond additivity model developed by Singh et al. [48] further expanded this work
by including the neglected energetic penalties of breaking water interactions with the
adsorbed segment of the molecule. This model also takes the energetically favourable
process of reforming the water bonds with the bulk aqueous phase into consideration.
Furthermore, the value of AH; was better represented by experimental measurements
of the adhesion energy of water to clean Pt(111) [67]. The bond additivity model pre-
dicts that the binding strength for phenol on Pt(111) as AH3%/? = —136 k] mol !, which
is 57 k] mol~! lower than the corresponding AH%¢ at high coverage. However, the cal-
culated AH35” matches AH¢ at high coverages, where the binding energy decreases
by approximately 50 k] mol~! compared to the limit of & = 0. Therefore, it has been
postulated that phenol forms islands of high coverage in the aqueous phase, implying

that the presence of water has little influence on the binding strength of phenol.

1.4 The Entropy of Adsorption

In computational studies, difficulty in calculating the free energy of adsorption arises
primarily from the entropic term. As an intrinsically statistical property, the calculation
of entropy requires the use of heavily approximated analytical statistical mechanics
expressions or configurational sampling across the potential energy surface. As this
requires energy evaluations for many thousands of configurations, this approach is
intrinsically computationally expensive. As a central quantity in determining AG,;s,
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we shall give a brief overview of the various assumptions used to calculate AS,;; in
both the aqueous and vacuum phase. An account of the basic 3D entropy equations for
isolated molecules in the gas phase are given in Appendix A to support this discussion.

As the largest entropy component across the surface, many studies are concerned with
estimations of the translational entropy of the molecule. In the simplest approximation,
one can approximate the entropy of the adsorbate on the surface (AS,4;) through the 2D
ideal gas equation, i.e., the free translator (FT) model [68]. This equation modifies the
translational component of entropy to,

oae oln vac,2D
oo =kIn (g 2D) +k+kT((ng )> , (1.9)
A

where k is Boltzmann’s constant, A is the area of the surface and """ is the transla-

tional partition function in vacuum across a 2D plane. qf“C’ZD is then defined as,

gt = <ZTZZkT>14, (1.10)
where m is the mass of the adsorbate and / is Planck’s constant. The adsorption en-
tropy is calculated relative to the ideal 3D entropy of the molecule, which is measured
in a given volume (Appendix A). Although conceptually intuitive, several assumptions
are being made of the surface and molecule under study. Firstly, we assume that the
diffusion barriers for the adsorbate are very small relative to the thermal energy of the
molecule (kT >> €;). This assumes not only a relatively flat potential energy surface,
but also high enough temperatures to overcome €. Jorgensenn et al. [69] demonstrated
that the FT model can act as a lower bound estimate for the loss of entropy, provided
that the potential energy surface is relatively flat for the adsorbate in question (e.g.,
Pt(111)/CO) [69]. However, for species such as oxygen on the Pt(111) surface, they
also showed that increased barriers, which hinder translation, lead to the free trans-
lator model overestimating the entropy of the adsorbate by a factor of two at room

temperature.

At the other extreme, one can assume that at sufficiently low temperatures (kT << €;),
the diffusion barrier is effectively infinite, so the entropy of adsorption is determined by
the distribution of the adsorbate across the adsorption sites. Therefore, in this model,
the entropy of the adsorbate in the gas phase (S%z) is taken in the limit of the ideal 2D
lattice gas, that is, the configuration entropy Sco,fig [70],

1-6
Seonfi = SU% = R1n<( ; )), (1.11)

where the adsorbates are considered indistinguishable and the entropy does not vary
significantly with temperature. This term makes a large contribution to adsorbates
with large lateral repulsions (such as NH; on Mg(100)), where S?% — 0 as 6 — 1

ads
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[12]. Later models such as the Hindered Translator (HT) [71, 72] model bridge the gap
between the extremes of the 2D ideal gas and 2D lattice gas assumption by formulating
a partition function within a periodic potential and applying a scaling relation to relate

the classical mechanical to the quantum mechanical partition function,

(Y

or

ac2D _ M(T) exp[—%] exp[—%x} I§[%]

(1 —exp| 7| > : oF [ (2 +216rx) T"] /

(1.12)

where M is proportional to the area (M = A/b? and b is the nearest neighbour distance
of a slab with 3-fold symmetry), ry = €/hvy, which gives the ratio of the diffusion bar-
rier and the energy of the vibrational frequency mode vy of the adsorbate on Pt(111) in
the x direction, Ty = kT /hvy is the dimensionless temperature normalised to the vibra-
tional frequency, and Iy is the zero-Bessel function of the first kind, designed to replicate
the periodicity of the potential. This approach is significantly more generalisable than
the 2D lattice and 2D ideal gas models alone, and allows for entropy approximations
for a range of species by explicitly including the ambient temperature and the relative
size of the vibrational energy compared to the diffusion barriers. The (HT) model com-
pares favourably with the CPES (complete potential energy sampling) technique [69],
which better describes the potential used in the partition function by integrating the
potential energy of the adsorbate across different positions within the metallic unit cell.
Across a range of temperatures for CO on the Pt(111) surface, the error of HT relative
to CPES is on an order of < 10% - however, as with the FT model, these errors are

relatively larger for Pt/O, where the potential energy surface is less homogeneous.

Experimentally, it has been determined that for adsorbates that exhibit attractive inter-
action, the 2D ideal gas approximation can be used to describe the entropy of an ad-
sorbate (S57°) through a linear relationship with the standard gas phase entropy ASgss
[12],

(T) —3.3R = 0.68(53D° — g3D0 (1.13)

SO (T) = 0750 gas 8as,t(z)

ads,gas gas

where Sgg’g(z) is the translational entropy associated with the z-direction, perpendicular
to the adsorption interface. From these experiments, we obtain a simple but powerful
validation of the simple 2D ideal gas model of adsorption in certain scenarios. How-
ever, as described in the case of NH3/Mg(100), this model does not account for adsor-
bates that strongly repel each other, which means that this equation does not apply to
all adsorbates. Furthermore, this model does not take into account the local environ-

ments of the adsorbate, which may further restrict the rotational entropy.

Dauenhauser et al. approximates the impact of the local environment by including the
entropy change induced by confinement within a zeolite cavity [73]. Applied to zeolites
with pores of varying volume, they found that alkanes placed within smaller volumes
lose a greater number of rotational degrees of freedom, while the translational entropy
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remains constant. As such, they propose a switching function, which modifies the total
entropy change as a function of the volume cavity occupied by the adsorbate,

ASpse = Sip 1. + (Frotsiab + ;[(1 — % —1)])s%,, (1.14)

occ
where F,y 5105 is the number of rotational degrees of freedom lost upon adsorption,
and V_jticq describes the volume in which all rotational degrees of freedom are lost.
Comparisons of the entropy between the smallest and largest cavity volumes for C3-
C6 alkanes showed that the overall entropy of adsorption from the gaseous phase can
decrease by a factor of two due to the confinement. Therefore, including the effect of
the local environment is a required to accurately reflect the overall change in entropy
[73].

Although a central quantity in the calculation of adsorption thermodynamics in the
aqueous phase, there is no definitive theoretical approximation for the desorption en-
tropy of a water layer, much less an experimental value. However, the body of litera-
ture allows one to intuit reasonable upper and lower bounds using both experimental
quantities, dynamics at the metallic surface, and 2D lattice statistics. Using the ice-like
bilayer model at low temperatures, the upper bound of ASZZSO can be calculated as the
entropy of fusion (ASg,s) for water, which is derived from readily available thermody-
namic data (S{y — S5/o = 25.1] K~ mol ) [49].

In contrast to the upper bound, in the lower bound, it is assumed that water retains
its liquid-like dynamics but is constrained to the xy-plane. The simplest representa-
tion of adsorption from Campbell et al. [12] (Equation 1.13) yields an entropy value of
Sgd(T) = 104.16 J K~ ! mol~!, which leads to an nonphysical positive entropy com-
pared to liquid water (S‘(’l)) = 69.95 ] K- mol~! [74]. A simple physical explanation
could be that this model does not take into account the relatively highly ordered nature
of water, that cannot be simply approximated by the loss of transitional freedom in the
z-axis. Theories which take into account further reductions in rotational entropy (such
as Dauenhauer’s Universal Descriptor of Adsorption Entropy for Confined molecules)
[73] similarly yield a positive entropy with respect to liquid water, even if all degrees
rotational degrees of freedom are constrained when transitioning from the gas to the
adsorbed aqueous phase. In the absence of a reasonable lower bound entropy of ad-
sorption for water, we derive an approximation based on the cavitation entropy of H,O

in Chapter 6.

1.5 Conclusions and Outlook

The study of reaction processes at the metallic surfaces is a rapidly evolving field of
enquiry, both from the perspective of experimentalists and theoreticians. Many of the
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techniques described in this chapter promise to provide a great deal of insight into
the design of heterogeneous catalysts. However, the body of experimental work is
relatively small because of the difficulty of measuring thermodynamic and structural
properties in the aqueous phase. There is therefore a large scope for computational
studies to support experimental work by providing atomistic information unobtainable
with current lab techniques. For example, DFT methods in vacuum can indicate the
effect of nanoparticle size on adsorbate binding, as well as the change in electronic

structure induced by adsorption [75].

This field will likely grow further in the coming years, and a greater amount of ex-
perimental data for adsorption processes will aid the development of computational
techniques and vice versa. In this work, we construct a framework in which solvent
calculations for surface processes can be performed at low computational cost. By do-
ing so, we can validate the conclusions of experimental work by providing structural
and electronic information of the adsorbates at the metallic surface, and guide experi-
mental work to metallic surfaces/nanoparticles with favourable catalytic behaviour.

Using the implicit solvent model, this thesis presents a set of methods to simulate effect
of the water environment on metallic surfaces. This enables the computation of both
electronic properties and adsorption properties at low computational costs. Chapter
2 gives a theoretical overview of DFT and the physical principles of periodic systems
employed in the ONETEP electronic structure code. Furthermore, the implicit solvent
method is discussed in more detail, including details unique to the ONETEP implemen-
tation. Chapter 3 then presents improvements made to the implicit solvent model by
reparameterizing non-polar cavity terms, and a distance based dielectric cavity model
(the soft sphere model). Further implementations to ONETEP are shown in Chapter
4, where the underlying total energy algorithm used in Ensemble DFT is accelerated
using a Pulay mixing algorithm. Using these developments, Chapter 5 explores the
use of a reparameterized implicit solvent model to calculate the change of the work
function of Pt(111) in the aqueous phase, which is compared to a set of AIMD simula-
tions of an explicit metal/solvent interface. Finally, continuing the calculations on the
Pt(111) surface, Chapter 6 uses the implicit solvent model to calculate the free energies

of adsorption in the water solvent environment for a set of organic molecules.
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Chapter 2

Theory

2.1 Wave Functions and Wave Mechanics

The task of quantum chemistry is to formulate a theory that is both physically reflec-
tive of the system and practicable in terms of computational resources. In order to
achieve this, vast amounts of thought have been dedicated to evaluating approxima-
tions and creating a framework which can be implemented in computational chemistry
software. Among the most common contemporary techniques is Density Functional
Theory (DFT), which is used extensively throughout this work. In this chapter, we will
describe the foundations of this theory, as well as practical developments made over
the decades to ensure that DFT can be used accurately and efficiently.

2.1.1 Schrodinger Equation

Schrodinger revolutionised the modern chemist’s approach to quantum mechanics by
applying the De Broglie relationship to the classical Jacobi-Hamiltonian operator, thereby
re-casting a previously intractable problem into a feasible eigenvalue expression [76],

H|Y) = E|Y), (2.1)

where the wavefunction (¥) is the many-body wavefunction containing all the infor-
mation for the system, H is the Hamiltonian operator and E is the total energy of the
system. In effect, this reduces the calculation of the total energy to an eigenvalue prob-
lem, provided that a precise form of the Hamiltonian is known. Although the concept
of the wave function was introduced with no formal definition itself, Born later postu-

lated that by taking a squared modulus of a normalised wavefunction, one obtains the



2.1. Wave Functions and Wave Mechanics 19

probability density (P(r)) of the particle represented by ¥,
- / ¥ () [2dxdydz, 2.2)

where r is a position vector defining a point in cartesian space (x,y, z). Therefore, the
Born interpretation postulates that the probability of finding a particle in a given vol-
ume is proportional to [¥(r)|?. As N¥(r) is also a solution to Equation 2.1, we can
normalise Equation 2.2 so that the probability of finding a particle in a given volume is
unity,

1= N2 / ¥ () 2dxdydz, 2.3)

For the purposes of quantum chemistry, the Hamiltonian operator [77] for an atomic
system of M nuclei and N electrons is formulated in terms of atomic units as,

N

. 1 ., ¥ 1
Htot:—zivi—;ZM
=1

i=1

Mz
XMZ

1 M N 7.7
7 ZZ AB/ (24)
A=1B>A

I
—_

where each term corresponds to the following properties: (1) the kinetic energy of the
ith electron, (2) the kinetic energy of the Ath nucleus with mass My, (3) the Coulombic
attraction between the electron i and the nucleus A with charge Z,, with the distance
between each nucleus and electron pair defined as r; 4 = |r; — Ral, (4) the repulsive

term between each of the electrons, and (5) the repulsive terms between nuclei A and
B.

However, even for molecular hydrogen, this form of the Schrodinger equation becomes
a many-body problem, for which there is no exact analytical solution. This arises from
the coupled motion of nuclei with electrons and, in the case of molecular systems, the
nuclei with other nuclei.

The Hamiltonian can be significantly simplified by introducing the Born-Oppenheimer
approximation, which postulates that due to the significantly higher mass of the nuclei
compared to the electrons, their velocities are correspondingly far smaller than those
of the electrons. Therefore, the nuclei can be considered as approximately stationary in
the co-ordinate system. With this approach, the electrons interact with a mean field of
positive charge, as opposed to a positively charged body with correlated motions. This
treatment simplifies the Hamiltonian in two ways. Firstly, the nuclear kinetic energy
term is eliminated as the nuclear velocity is set to zero. Secondly, electron-electron in-
teractions are decoupled from the nuclear interactions, allowing the formulation of a
Hamiltonian that depends only on the motion of the electrons in a field of point charges.

Furthermore, the nuclear-nuclear interactions can simply be treated as a fixed constant
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to the total energy. The results of this can be summarised by the decoupling of the elec-
tronic terms from the Hamiltonian, where equation (2.5) shows the electronic Hamilto-
nian of i*" electrons in a field of M positive point charges.

N M Z N N 1
elec = Z VZ E Z 227 (2.5)
i= iz1A=1 7 i=1i>j Tij
Helec’lP> = Eelec‘\F>/ (2-6)

where the total energy term can be obtained by adding the now constant nuclear-

nuclear attraction term.

ZaZp
Etot — Eelzc + Z Z
=1B>A Rap’

2.7)

2.1.2 The Variational Principle

Even with the Born-Oppenheimer approximation, systems as simple as H, prove im-
possible to solve analytically. This is due to the correlated motion between each of
the electrons in the electron-electron repulsion term, from which deriving an analytical
expression proves impossible because of the interdependency of their positions. How-
ever, one can use numerical procedures starting from an approximate first guess of ¥,
and iteratively solving the eigenvalue problem to obtain improved values of ¥ as close
as possible to the exact wavefunction. However, this relies on the variational principle,
which posits that the energy of the orthonormalised trial wavefunction gives an upper
bound solution to the exact ground state energy,

<\Ftrial’H“Yﬁial> > <TO‘H|TO> - Eexuct/ (2-8)
where,
<\Ftrial|‘¥trl‘ul> =1 (29)

Proof of this can be derived by representing the trial wave function ¥4, as a linear
combination of fixed eigenstates with expansion coefficients ¢;. This defines a set of
orthonormal basis functions, which reduces the task of finding an optimal solution
to the electronic eigenvalue problem (®,ysct and (E)exqact) to finding an accurate set of
values for ¢;.

N
W oria) = Y cili), (2.10)
i=1

where for an orthogonal set of single particle wavefunctions,

(wily;) = i, (2.11)
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where §;; = 1ifi = j, and §;; = 0 for i # j. These expressions can in turn be substituted
into the expression yielding the expectation energy value,

o <‘Ftrial|H’Ttrial>
E[lP] o <‘Ytrial|Ttriul> ' (2‘12)
_ Xy |ci? [ dryi(x) Hpi(r) (2.13)

Y leil? [ drei(x) i (x)
given the orthonormality condition for the basis functions of 1y,
~ N feilPE [ gi(o)yi(x)dx BN |oif*E;

E = = . 2.14
W= N el fnondr D P 219

By subtracting the exact energy (Eo) from both sides, one finally obtains the relationship
necessary to prove the variational principle.

N .. -
Ely] — Eo — Zim (B~ Eo) (2.15)

ity feif?

As the right-hand term is always greater than or equal to 0, it follows that the trial en-
ergy will always be greater or equivalent to the energy obtained by the exact solution,

therefore proving the equation (2.8).

This contains a simple but powerful idea: for different wavefunctions calculated through
solutions to the Schrodinger equation, there exists a hierarchy of solutions dictated by
their energies. We can therefore interpret wavefunctions which give a lower value of
E as being of intrinsically higher quality, and those with higher energies being further
from Ecyqer. Following from this, one can create iterative procedures from which the
wavefunction can be successively improved, until one obtains an upper bound to the
exact energy. Therefore, a relatively accurate solution to the eigenvalue problem can be
obtained without requiring either a full analytical expression or precise a priori knowl-

edge of the wavefunction.

2.2 Density Functional Theory

Early quantum chemistry made extensive use of the Hartree-Fock Theory. The key
assumption is the description of electron-electron electrostatic repulsions through a
mean-field, as defined in the Coulomb exchange terms (J;(r) and K;(r)) of the closed-
shell Fock operator:

X N2 R
f(xr) =h+ Z 27i(r) — Ki(r), (2.16)
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where h is the core Hamiltonian operator,

. 1 ) N M
h=—--V 217
VL L @17)
However, this assumption ignores the correlated motions between electrons, which
introduces an error compared to the exact energy, known as the correlation energy.

Ec = Eexac’t - EHF (2-18)

Post-Hartree Fock methods such as Configuration Interaction (CI) and Moller-Plesset
Theory (MP) partially account for the correlation energy by accounting for higher order
excitations of the ground state wavefunction by using multicomponent determinants.
However, these methods are incredibly computationally costly, and alternative formu-
lations of the eigenvalue problem become attractive. By far, the most popular of these is
the Density Functional Theory (DFT), which is founded on reforming the ground state
energy equation (Equation (2.4)) into a functional dependent on the electron density as
opposed to a many electron wavefunction (Equation (2.19)).

Euedn] = Fln(n)] + [ n(mfo()ldr, 219)

where the second term represents the interaction of the electron density (n(r)) with an
external potential (v(r)), and F[(n(r))] is an unknown functional which is a compos-
ite of the kinetic and exchange-correlation energies. In order to make this functional
physically useful, two key conditions are required: 1) Equation 2.19 needs to be made
applicable to all systems (universal), such that the Hamiltonian is fully known once
the number of electrons and external potential are known, and 2) a variational theorem

must be derived such that a minimum energy can be found.

2.21 Hohenberg-Kohn Theory

Both of the previously mentioned conditions were satisfied by two theorems postu-
lated by Kohn and Hohenberg [78]. The original formulations posed the number of
electrons, N and the external potential v.y(r) as the central properties of DFT, but their
work showed that there exists an exact energy functional depending solely on n(r). In
addition, this functional follows variational principle, meaning the quality of the n(r)
can be interpreted in terms of its calculated energy. The derivation of these principles
follows from two of their posited theorems.

THEOREM 1 : The external potential vey(r) is determined, within a trivial constant, by the
electron density n(r).
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This theorem posits that the many particle ground state can be uniquely derived from
n(r). This does so by linking each of the individual variables to the electron density,
thereby making it the basic variable. The multibody wave function is used to represent
the ground state electron density for a closed-shell system as follows,

=N / dl‘l /I‘NIY N)‘I'r* (1'1 PN I'N), (220)

where we condense ¥(r; ...rN) as ¥ (r) for ease of discussion.

The proof posed by Hohenberg-Kohn proceeds as follows. Two different multielectron
systems are hypothesised: (1) v,y (r) corresponding to ¥ and (2) v,_,(r) corresponding
to ¥'(r). Each of these wave functions are said to map to the same electron density
(¥'(r) — n(r) and ¥(r) — n(r)), but by necessity ¥'(r) # ¥(r) as they give rise to
two different Hamiltonians, H and H'. This means each of these wave functions corre-

sponds to solutions of different Schrodinger equations.

Using the minimal energy condition expressed in Section 2.1.2, ¥'(r) can be taken to be
a trial wavefunction of H, giving rise to a non-minimum energy. As the difference be-
tween the Hamiltonians arises through the different external potentials, the following

inequality can be derived.

E = (¥(r)|H[¥(r)) < (¥ (1) AY (1)) (2.21)
= (¥ (r)|H ¥ (1)) + (¥ (r)[H — H |¥ (1)) (2.22)
=E + [ n(r)[v(r) — o' (r))dr (2.23)

This logic can also be applied using ¥ (r) as a trial wave function.

E' = (¥(r)|H[¥(r)) + (¥(r)|[A — A[¥(r)) (2.24)

= Eg + /n(r) [0 (r) — v(r)]dr (2.25)

Adding these two inequalities yields E + E < E 4 E, which is clearly contradictory.
Therefore, this theorem proves that n(r) produces a unique Vext (1), which in turn fixes
the value of Hamiltonian for each value of the electron density. In addition, the number

of electrons N can be related to n(r) by a simple integration over the whole volume of

interest.
N:/ n(r)dr (2.26)

Therefore, we satisfy the requirement for a universally applicable energy functional

dependant only on n(r).

THEOREM 2: For a trial density, 7i(xr) > 0 and, [ fi(r)dr = NEy < E,[n(r)].
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This theorem is a simple extension of the principles stated in the first Kohn-Sham pos-
tulate and the variational theorem of a wave function-based multielectron minimal en-
ergy functional. As we know that the density yielding the exact minimum energy ny(r)
maps to a unique vp(r) and ¥, it stands to reason that trial density 7(r) will map to a

unique trial wavefunction ¥ and external potential 3(r),
(Y|IA¥) = /ﬁ(r)v(r)dt—l— Fuk|n(r)] = Ey[n(x)] > Eo[no(r)]. (2.27)

The result of these equations is a powerful ab initio technique which, in its formula-
tion, is exact and universal from the outset. However, this implies a full knowledge
of the functional Fyg(n), which is unfortunately unknown. Therefore, one must make
assumptions to obtain an approximate form of the functional in order to usefully apply
these results.

2.2.2 Kohn-Sham Theory

Early DFT formulations struggled to reproduce even basic electronic features otherwise
available through Hartree-Fock [79]. The central difficulty lay in the inability to exactly
formulate the kinetic energy through a functional, taking the electron density as a vari-
able. However, Kohn and Sham [80] re-cast density functional theory in a way which is
both easily implemented and significantly more accurate than its predecessors. Kohn
and Sham introduced the idea that the electron density can be constructed through a

set of N, single particle orbitals:

N
n(r) = Y lgi(0)?, (2.28)

where the kinetic energy can be defined as,

N
Tn(e)] = Y (il — 5 V219 2.29)
1
This formulation of the kinetic energy describes a system of N non-interacting elec-
trons. However, T;[n] does not directly correspond to the functional as defined in F|n].
However, by redefining F[n], Kohn and Sham showed that the orbital-dependent ki-
netic energy term can be separated out, and the remaining errors are grouped into an-
other functional. Therefore, making T;[n] an exact solution to the kinetic energy portion
of the ground state DFT functional. This functional is defined as,

F[n(r)] = Ts[n(r)] + Vi[n(r)] + Ex[n(r)], (2.30)

where T; is the kinetic energy term, Vp is the Hartree potential, and F,. is the exchange-

correlation term. The exchange-correlation term accounts for the error between the
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exact kinetic energy functional and the system of N non-interacting electrons, and the
exact electron-electron interaction energies. This expression is then used to derive the
Euler-Lagrange equation for the non-interacting case (a more in depth correlation and
discussion of this term can be found in [79]:

_ ST5[(r)]
y - veff(r) + (5n(r) 7 (231)
where v (r) is the effective potential defined as,
n(r) .
Vegt (1) = 0(r) + / Wdr + Uk (1), (2.32)

and the exchange correlation potential, vx.(r) is defined as the derivative of the exchange-
correlation functional.

OEyc[n]
on(r)

Oxe(r) = (2.33)
The central result of the Kohn-Sham formulation lies in the fact that equation (2.32)
is a simple rearrangement of the Lagrangian associated with the exact ground state
kinetic energy for an interacting electron system. Therefore, using a set of one-electron
equations, the electron density, n(r) can be derived through an eigenvalue problem
associated with a given vg.

[ - %VZ + Ueff(r)] i = €ip; (2.34)

Together, Equations (2.28), (2.34) and (2.33) form what are known as the Kohn-Sham
equations. From this basis, one can construct an iterative procedure from which one
can obtain successively more accurate electron densities. This can be achieved by using
a trial density, which calculates veg, which in turn can be applied to the single-electron
eigenproblem to obtain a new n(r).

Through this approach, Kohn-Sham secluded all the unknown functional forms into
the exchange-correlation term, making the rest of the equation universally applicable
to all systems. Many approaches exist to accurately describe this term, such as the lo-
cal density approximation (LDA) and the generalised gradient approximation (GGA),
which form the basis of the most functionals used in modern day quantum chemistry.
However, they all use the Kohn-Sham approach as their theoretical basis, which shall
be the assumed formulation of DFT throughout the rest of this text.
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2.2.3 Finite-Temperature DFT

This approach works demonstrably well for insulators, which by definition possess a
large band gap. This formulation begins to break down for conductive systems such as
metals due to the constraint of occupancies near Fermi level at 0 K, which are assumed
to be either occupied or unoccupied. This assumption leads to numerical instabilities
in conductive systems, where states near the Fermi level have near-degenerate eigen-
values, but significant differences in their spatial representations. This results in a phe-
nomenon called "level-crossing’, where the occupancy of states close to the Fermi level
repeatedly swaps, leading to large changes in the total energy [81]. With increasing
system sizes and decreasing HOMO-LUMO gaps, the number of iterations required
to obtain convergence which scales on an order of N or worse, which results from the

difficulty in determining the correct occupied and unoccupied orbitals [82].

However, one can improve the scaling of these calculations by relaxing the constraint
of binary occupancies. As such, methods such as the finite temperature Kohn-Sham
DFT [83, 84] determine occupancies near the Fermi level based on a probability distri-
bution at a constant electronic temperature, which in effect smears the occupancies of
the ground state electronic structure near the Fermi level. However, to achieve this the
total energy minimisation problem (Equation 2.19) must be re-cast to a grand potential
or a Helmholtz free energy,

A[Ti{eit, {lwi)}] = L filwil T+ Vel i) + Eni[n] + Excln] = TS[{fi}], (235

with k as the Boltzmann constant, y as the Fermi level, f; as the fractional occupancies
of the corresponding eigenstates and T as the finite electronic temperature. In addition
to this occupancy function, one must account for the fact that energies are no longer be-
ing calulated at 0 K, which introduces an electronic entropy term that must also be con-
sidered in the minimisation procedure. This is done so by considering the Helmholtz
free energy as opposed to the pure Kohn Sham energy, which adds an entropy term
to the standard energy functional, taking the occupancy of the electronic states as an

argument.
S{fH = =k} _[finfi + (1 = fi)ln(1 = f)]. (2.36)

The electron density expressed by the Born rule is expanded in terms of its wavefunc-
tions and the Fermi-Dirac probability function, f;,

fen)pi(r)yp; (), (2.37)

- MN\Z
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which corresponds to the overall occupancy of the state in terms of the probability f; of
observable microstate,

f(ei),:kT(aln(Z)>VT 1

op exp [E%Ty] +1

minimis

2.3 Periodic Boundary Conditions and the Plane Wave Basis
Set

2.3.1 Bloch’s Theorem

The study of metallic systems can be readily simplified by exploiting the periodicity of
perfect crystalline structures. Through this, the structural properties of large systems
such as infinitely extended surfaces or bulk systems can be modelled through a periodic
array of unit cells.

For a crystalline solid, the periodic array of underlying repeating units are described
through the Bravais lattice. In this framework, each point in the Bravais lattice can be
described through a three-dimensional position vector [85],

R = nja; + npay + nsas, (2.38)

where a; 3 are the primitive Bravais lattice vectors which maps any point in the Bravais
lattice onto a periodic replica in directions < a,b,c >, and 1 3 are integers describing
the number of units moved in each lattice direction. The lattice vectors furthermore
define the dimensions of the primitive unit cell. This cell is defined as the minimum
enclosed volume consisting exclusively of unique points in space (i.e., a region where
no points map to a periodic replica of itself). In principle, the Bravais lattice approach
allows for the description of infinitely repeating unit cells for bulk crystals and surface
facets. However, we have only presented the DFT framework in real space. Clearly, an
infinitely large system cannot be calculated computationally, so we must formulate a
set of basis functions which replicates the periodicity of the Bravais lattice. The bulk pe-
riodic system must therefore be described as a small unit cell under periodic boundary

conditions.

Alternatively, the Bravais lattice can be defined in terms of reciprocal lattice, where the

reciprocal lattice vectors are defined as,

G = g1b1 + gobo + g3bs (2.39)
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where the by 3 are the primitive reciprocal lattice vectors. These are defined in terms of
the real space Bravais lattice vectors such that,

az X az az X ai

X
b, =2n————, by =27 R

by =27 222% _axa
! T[al -(ap x a3)’ a; - (ap x a3)’ a; - (ap x a3)’

(2.40)
where the product in the denominator corresponds to the volume of the primitive unit
cell. Overall, the reciprocal lattice vector is defined such that when it is taken with a

dot product of the real space lattice vector, it yields,
G-R= 27r(g1n1 + gono + g31’13). (2.41)

Using Bloch’s theorem [86], the infinite system can be broken down into a sum of peri-
odic plane waves ek,
Pic(r) = Ty (r), (2.42)

where k is a wavevector, and uy(r) is a function chosen to have the same periodicity of
the Bravais lattice, such that,
ur(r+R) = uy(r). (2.43)

The proof also follows that y; (r) is an eigenstate of the translation operator T, which is
defined as shifting the selected function in question by R. When applied to eigenstate
Pk (r), we obtain,

Trii(r) = Prc(r + R) = X Ry (r 4 R) = XR . [eRTyy ()] = X Rp(r).  (2.44)

This has the benefit of making any two eigenfunctions differing by the inverse lattice
vector G equivalent to each other. By considering k = k 4 G, one prove this outcome
by transforming (2.42) for wavevector n (representing a band index) by the inverse
lattice vector,

erfglGr S 1 (1), (2.45)

Yo = TS, (1)] = ¢

The periodic function u, (r) can be decomposed into a Fourier series,
Up k (I‘) = 2 Cn,keiG‘r/ (2.46)
G

where the Fourier coefficient couples to the solution of another electron state, 71, which

takes the values from the wavevector,
_ —iGr 247
Cnk+G = Cm k€ ( . )

These powerful results show that instead of considering an infinite number of wave-
functions across the periodic system, one only needs to consider a finite number of basis
functions associated with each k. As such, the wavefunctions can be defined through

a finite basis of plane waves through u, \(r). Additionally, the periodicity of k means
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that only the first Brillouin zone, defined as the minimum unit cell of reciprocal space,

needs to be sampled to attain all the electronic information of the system.

2.3.2 Brillouin Zone Sampling

Calculating total energy with a plane wave scheme requires an integration with respect
to the wave vector k over the Brillouin zone. In practice, solutions are obtained nu-
merically, breaking down the expression into a sum of contributions for each point in
k-space. However, since this would require the computation of an infinite sum, sam-
pling schemes have been derived, so only a few k points need be considered when
calculating the electronic properties of a system.

By far, the most common k point sampling method is the Monkhorst-Pack scheme [87],
which constructs an NxNxN mesh of points defined along each reciprocal lattice.

k = ub; + M]‘bz + uybs (2.48)
2r—g—1
Uy = ZZ (2.49)

where r is a sequence of integers up to a maximum, q, specified for the calculation
(r=1,23,..9).

As the Brillouin zone is defined within reciprocal space, the size of the real space lattice
vectors and reciprocal lattice vectors are inversely linked. In practice, this leads to a
decrease in the size of the Brillouin zone when using large simulation cells. As a result,
the wavefunctions vary less across the inverse space, so fewer k-points are required to
gain satisfactory sampling. This increases to the point where, with sufficiently large
systems, only one k-point (known as the I' point) needs to be considered. Current
implementations of ONETEP all work under this approximation and only use I'-point

sampling.

In order to construct a mesh for a particular type of system, one must benchmark the
number k-points required to reach the total energy convergence on a system-by-system
basis. This is especially important for long-form studies on one type of system, where
poor sampling of the Brillouin zone can lead to significant error, while using too many

points involves unnecessary computational cost.
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24 ONETEP

2.4.1 Linear Scaling DFT

Plane wave Kohn-Sham DFT poses many improvements compared to Hartree-Fock,
and scales significantly better in terms of computational cost. Despite this, the delo-
calised KS orbitals extend across the whole simulation cell, meaning that the resources
required to perform a calculation scale cubically. Therefore, there is a significant in-
centive to find schemes that reduce the workload required to solve the single-particle
Kohn-Sham equations, ideally achieving a linear correlation between computational

time and system size.

A basis for linear-scaling schemes is found in the near-sightedness of electronic mat-
ter observed by Walter Kohn [88]. This principle states that electrostatic interactions
between the Kohn-Sham potential at ¥’ and a charge n(r) reduce to zero beyond short

distances.

At the core of this approach is the reformulation of the charge density p(r,r') in terms

of a single-particle density matrix,
N
p(rr) =} firi(Dgi(x'), (250)
j=1

where f; is the occupancy of the orbitals and ¥;(r) is the orthogonal set of Kohn Sham
states. This single body expression of the density corresponds to the interacting density
via.

n(r) =2o(x,1'). (2.51)

The original scheme by Kohn [89] stipulates that the single particle density must satisfy

the idempotency condition f? = f; (that is, the occupancies are either 0 or 1), such that,

o*(r,Y) = p(r,), (2.52)

which ensures that energy minimisation is performed in a stable manner, avoiding oc-
cupancies greater than 1 at lower energy levels. In principle, this method creates a
route for minimisation schemes with O(N) scaling, where evaluations of the Hartree
potential can be performed in a small subspace rather than across the entire simula-
tion cell. However, the long range nature of the orthogonalised Kohn-Sham orbitals
conflicts with the requirement to localise the interactions of p(r,r’) [90]. However, by
relaxing the orthogonality condition, one can use localised, non-orthogonal Wannier
functions to represent the Kohn-Sham orbitals through a unitary transformation. In the

next section, we will describe how this was achieved in the framework of ONETEP.
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2.4.2 Linear Scaling DFT in ONETEP

Atom Centred NGWF Psinc grid
NGWF, ¢, Overlap, Sop point, k

FIGURE 2.1: Demonstrates the NGWF basis as found in ONETEP. The simulation cell
is constructed from an underlying set of localised psinc functions Di(r), which only
take values within the sphere defined by r¢.

ONETEP [91] uses a set of atom-centred, localised, non-orthogonal Gannier wave func-
tions (NGWFs), which allows for the sparse representation of matrix quantities such as
the Hamiltonian and orbital overlap. This enables the use of sparse matrix algebra,
which yields improvement in scaling over traditional plane wave codes that require
cubically scaling dense diagonlisation procedures to solve the KS eigenvalue problem.
NGWFs are localised by specifying a cut-off radius, ., for which p(r,r') = 0 beyond
|r —r| > r.. By doing so, only interactions between atom centred functions within a lim-
ited range must be considered. This contrasts the traditional plane wave approaches,
where computations are required between points which nominally do not interact with

one another.

In the NGWF framework, the density is re-casted into an equivalent form,
o(r,x) = ga(r)KPPy(x ), (2.53)
where ¢, are the NGWFs and K*P represents the density kernel,

K =Y MifMP, (2.54)
n
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‘ Intialise |¢,), and K*F

Apply LNV to iteratively improve K*

|

TE and [K, H] Commutator below threshold?

l Yes

Update |¢,) with conjugate gradient scheme

NGWEF Gradient below threshold?

Converged!

FIGURE 2.2: The two loop total energy optimisation scheme used in ONETEP.

where f; represents the occupancy of state 7, and M" are the rotation matrices which
map the NGWFs into the orthogonal KS representation,

¢i(r) = ¢i(r) M. (2.55)

The NGWFs are then strictly localised within a sphere defined by 7., and expanded in
terms of periodic psinc functions centred on a grid of defined psinc centres,

¢a(r) =) Di(r)Cra, (2.56)
X

where Dy represents the psinc function at r, Cy , are a set of expansion coefficients and k
is the index defining the grid point in question. This scheme is demonstrated in Figure
2.1. Furthermore, the quality of the calculation can be tuned through two parameters,
the cutoff radius defining the localisation sphere of each function and the spacing of
the psinc grid, which is analogous to the kinetic energy cutoff found in traditional PW
approaches. The minimisation of the total energy in ONETEP is achieved through a
two-loop scheme. In the inner loop, K*/ is iteratively improved in a fixed basis of NG-
WFs, while the outer loop updates the NGWFs through a conjugate gradient scheme.
The minimisation scheme is shown in Figure 2.2. Convergence is reached for the inner

loop when the commutator [K”‘ﬁ, Ha/;] is below a specified threshold, and for the outer
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loop when the NGWF RMS gradient is below 2 x 10~¢ Ha. For insulating systems, the
energy minimisation scheme for K* is achieved using the Li, Nunes and Vanderbilt
(LNV) scheme [92]. However, for systems with small band gaps, such as metals, the
idempotency condition cannot be satisfied. This is because many electronic minimisa-
tion schemes for metals require fractional occupancies for stable convergence. There-
fore, the inner loop must be reformulated in terms of finite-temperature DFT, which is
achieved in the ensemble DFT framework [83] through iterative improvement of the

Hamiltonian. This scheme will be described in detail in Chapter 4.

By truncating the NGWFs and the density kernel beyond certain radii, we can per-
form DFT calculations with computational effort, which is reduced to O(N) scaling
as a function of the number of atoms. This takes practical advantage of the princi-
ple of near-sightedness of electronic matter [88]. Thus, ONETEP allows calculations
with much larger scale than conventional DFT approaches, which is critical for systems
where a large number of atoms are required. For example, ONETEP was used to obtain
accurate energies for statistical block copolymers up to thousands of atoms [93]. These
copolymers consist of donor and acceptor blocks, and are under ongoing investigation
for applications in organic photovoltaics. Using conventional cubic scaling approaches,
only short-chain polymers can be feasibly calculated [94], meaning studies regarding
the ratio and composition of donor and acceptor blocks are limited. However, the linear
scaling formulation in ONETEP enabled the calculation of long chain oligomers [93].
This study showed that varying ratios of donor and acceptor blocks has large effects
on the electronic properties of the polymer, leading to variations of the HOMO-LUMO

gap on a scale of approximately 0.1 eV.

2.4.3 Pseudopotentials and the PAW Method

In principle, the Kohn-Sham methods above can be applied to obtain the entire elec-
tronic structure of the system for all electrons. However, in practical calculations, it
is advantageous to represent the core states using an approximate, smooth potential.
There are two reasons within the framework of plane wave codes to make this ap-
proximation: a) most codes scale N° with the number of electrons included in the sys-
tem, which is especially punishing for higher atomic number elements with many core
states, b) the potential of the core states varies dramatically within a small span of space
- as these quantities must be represented on a grid with finite spacing, one must use in-
creasingly small grid sizes to represent the density of core states. In the plane wave
formalism, this in effect corresponds to the increase in basis set size/the increase in the
kinetic energy cut-off. Both of these factors mean in production calculations, explicit
calculations including the core electrons become unfeasibly computationally expensive
for larger systems.
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In chemical applications, one is primarily interested in studying bond interactions,
which occur predominantly between electrons within the valence states. However, the
influence of neighbouring atoms on the core states is relatively small, meaning the all
electron calculations dramatically increase computational costs in exchange for negli-
gible increases in accuracy for most chemical studies. The pseudopotential provides
a cheaper alternative in two ways. Firstly, the external potential due to the nucleus is
described through its effective ionic charge (Z, iF =21 — N¢|e|, where N, is the number
of core electrons), which emulates the screening of the ionic charge by the core elec-
trons without their inclusion in the total energy evaluation. By projecting out the core
states, we significantly reduce the number of computations required to solve the N°
scaling eigenvalue problem. Secondly, the valence states (|1, )) are converted into a set
of smooth pseudo-waves (| )). This simplifies the potential of the core regions into a

smooth function, which reduces the grid spacing required to store plane waves.

However, the orthogonality condition of the valence states with respect to the core
states must be maintained, ensuring that the eigenvalues of the valence states do not
converge to the core state. Furthermore, ordering of the eigenstates must be main-
tained according to the aufbau principle. This is achieved through the Orthoganlised
Plane Wave (OPW) method [95, 96], where the wavefunctions of the valence state are

orthogonalised with respect to an expanded set of projection operators.

vl) (vl

where the latter terms enforces orthogonality through the relation,

(4

where B, is a coefficient applied to ]1/)2> Overall, these relations yield a modified set of

NCO?E

|¥ps) = [Poar) — )

i

Your ) (257)

¢0a1> = —B,, (2.58)

valence wavefunctions, which contain either no or significantly fewer nodes in the core
regions. Underpinning the pseudopotential method is the frozen core approximation,
where the pseudowave functions are approximately orthogonal to the valence state,
regardless of the chemical environment. In effect, this allows one to use a fixed set of
core states and projectors, without requiring re-orthogonalisation of the core and va-
lence states. Improvements in the OPW formalism were made by imposing the norm-
conservation condition [97], where the charge of ‘l[)ps> within a specified core region

(re < |r— Ra| for atomic centre a) are set equal to the all-electron wavefunction (|¢4r)).

/ (s (1) 21247 = / e (v)[2r2dr (2.59)
re<|r—Ra,| re<|r—Ra|

Imposing this condition ensures that the electrostatic potential in the valence region
matches the all-electron form without resorting to renormalisation of the charge den-

sity.
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FIGURE 2.3: Simplified diagram of the PAW formalism. The unaltered valence wave-
functions [¢p,,;) through a linear transformation operator T are transformed to the all-
electron form through the addition of a set of all-electron partial waves |¢’) and the

subtraction of auxiliary smooth waves |¢) within the augmentation sphere, .. The
partial waves match |i,,) outside the augmentation sphere.

However, for transition metals, the construction of pseudopotentials which follow the
norm conservation is difficult, where the projections from [i,,;) to the |¢p,) state result
in still large spatial variations in the core regions. Furthermore, by generalising the core
region into a smooth potential, electron density information close to the nuclei is lost.
Later developed techniques such as the Projector Augmented Wave (PAW) approach
[98, 99] form a bridge between all electron and pseudpotential methods by perform-
ing a linear transformation which effectively splits the valence wavefunction into an
augmentation sphere which, matches the all-electron representation, and the valence
region, which matches the smooth wavefunction, approximating the all-electron wave-
function (|¢ar)) (Figure 2.3).

Formally, this linear transformation is described as,
¢') -

for an augmentation region (r.), where |¢') are the all-electron partial waves and

Four)) (P |9t (2.60)

7
val

are smooth auxiliary wavefunctions. The former are defined through the eigenstates of

Pae) = [oar) + ) (

an all-electron calculation for an isolated atom, and the former is defined as a smooth
extrapolation of the valence state into the core region. Both match the wavefunction
of the unaltered valence states outside the augmentation sphere defined by the total
energy calculation (|if,,)). Within the augmentation sphere defined as r. < |r —R|,
|hya1) is transformed into its all-electron equivalent,

o) (p

[YaE) =)

le1> : (2.61)



24. ONETEP 36

Outside of the augmentation sphere (r. > |r — R|) where |¢") — ‘(f)’> = 0, Py, matches
smooth valence states, in effect leaving these unaltered in the bonding regions,

[Yae) =)

¢i> <pi‘lpval> = [$oar) - (2.62)

In effect, the summation of equation 2.60 calculates the difference between the unal-
tered valence wave functions and the all-electron form both outside and within the
augmentation region. Core states are calculated in a similar way. By retaining the spa-
tial variation of the all-electron wavefunctions in the core regions, the PAW formalism
allows one to access properties such as the all-electron density and Hartree potential.
Furthermore, as total energy evaluations within the augmentation regions are calcu-
lated separately within a specially defined radial grid, calculations in the valence re-
gion can be performed with reduced grid spacing. This allows for less computationally

expensive total energy evaluations without the loss of accuracy.

We will also briefly mention Ultrasoft Pseudopotentials (USPPs) [100], which were de-
veloped in the same decade as PAWs and provide similar numerical advantages for
total energy evaluations. These pseudopotentials are still commonly used throughout
a range of plane wave codes and are in principle mathematically equivalent to PAWs
[101]. However, as PAWs are used primarily throughout the work, the reader is referred
to References [100, 101] for a more detailed discussion of USPPs.

2.4.4 Calculation of Forces and Geometry Relaxation

Beyond the electronic structure, ab initio simulations are often used to obtain struc-
tural information for molecules and crystals. Accurately describing the atomic posi-
tions of the system under study is vital for calculating binding strengths, crystal lattice
parameters, and thermodynamic properties. However, without a priori knowledge of
the precise atomic co-ordinates, it is necessary to perform geometry relaxation calcu-
lations to obtain the most energetically favoured structure. The goal of the geometry
optimisation procedure is to traverse the potential energy surface (PES) by changes in
the atomic positions, for which the local minima in the region of the starting geometry
can be found. This is achieved through iterative procedures which minimise the energy

in terms of well-conditioned changes in the atomic coordinates.

Evaluating the changes in energy with respect to the ionic positions (forces) is paramount
in finding the structural local minima. Within the framework of single-particle wave-
functions, it can be shown that forces need only be calculated for ionic terms within
the Hamiltonian. This is known as the Helmann-Feynman theorem [102], where the
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explicit derivative of the energy in terms of the atomic position of atom L (Rp) is ex-

pressed as,

__dE[gi(r),R,]
P - (2.63)

However, the wavefunctions are implicitly dependent on the ionic positions, meaning
the full force term requires an expansion in terms of partial derivatives,
_dE[¢i(r),Re] _ 9E[gi(r),Re]  9E[ii(r), Ry] 6¢pi(r)

dRL - E)RL 8¢1(r) 5RL ! (2‘64)

where the latter term includes the implicit dependency of the wavefunctions on atomic
positions. This is known as the Pulay force [103]. However, if the iterative electronic

minimisation scheme is successful, a stationary point of the energy is found such that,

OE[¢h;(1), Ry ]
oy (x)

As a result, for a complete basis set, F, can be described in terms of the explicit deriva-

=0. (2.65)

tive of the Hamiltonian. F; is then calculated as the sum of the forces from the ionic
cores (known as the Ewald force) and forces arising from the local and non-local energy
components of the pseudopotentials. However, there are cases where the Helmann-
Feynman theorem is weaker, such as where the basis set is not completely described.
As the framework of ONETEP is based on a set of finite localised, atom centred basis
functions dependent on the atomic position, we require an analytical expression of the
Pulay forces to obtain an accurate description of F; [104].

The geometry minimisation procedure itself is based on the quasi-Newton Broyden,
Fletcher, Goldfarb, and Shanno (BFGS) algorithm [105]. This approach is related to the
Newton class of numerical methods, which minimise an objective function (i.e., the

energy E[xx]) through successive updates of the atomic positions,
X1 = Xk — g Hi 'V E[x], (2.66)

where x; is a generic descriptor of the structure co-ordinates at step k, ay is the step
length, Hy ! is the inverse of the Hessian V2E[x;], and VE[x;] is the vector of forces.
Generally, « is defined through a line search, which sweeps through a range of step
sizes, calculates E[xi] for each trial step length, and finds the optimal «aj; through a
polynomial fit. However, this scheme requires the construction and the inversion of the
Hessian for every iteration, which is prohibitively expensive [106]. The BFGS algorithm
circumvents these computations by performing iterative updates of Hy, ! in addition to
X, meaning only the forces are required to compute the iterative step of Equation 2.66.
However, the memory usage of the BFGS scheme scales O(N?) with system size, which

can be problematic for larger systems. Modified schemes such as Limited Memory



2.5. Implicit Solvent Models 38

BFGS (L-BFGS) [107] reduce the memory scaling to O(N) by implicitly representing
Hj ! as a set of m vectors, as opposed to a dense matrix.

The performance of the BFGS scheme can be improved by constructing the Hessian
from the bulk properties empirically derived from the system [108]. Further improve-
ments can be attained by applying a preconditioner to the Hessian. For example, the
exponential preconditioner, which improves the conditioning of the Hessian by setting
the frequencies between atoms beyond a cut-off radius 7., to 0 [106]. This technique
drastically improves the convergence rate for the BEGS algorithm, halving the number

of iterations required to achieve converged geometries for metallic systems.

2.5 Implicit Solvent Models

In Chapter 1, we described how implicit solvent models provide a computationally
inexpensive method for calculating the thermodynamics of solvation. This section de-
tails how this is achieved within quantum chemical codes and the specific details of the
implementation in ONETEP prior to the developments in this thesis.

The implicit solvent model divides the free energy of solvation (AG,,) into electro-
static phenomenon (polar) calculated through the bulk dielectric constant of the solvent
(AGpor), and non-electrostatic contributions such as the cavitation free energy and van
der Waals energies (AG,,;0). By doing so, the configurational degrees of freedom asso-
ciated with the solvation shell are taken as an average, meaning the solvent is no longer
represented atomistically. As a result, the scale of solvation calculations are drastically
reduced.

The response to the bulk dielectric medium in quantum chemical codes is commonly
calculated through a modified form of the Poisson-Boltzmann equation,

Vchmc(r) = —47Nyec(r) = V - (€(r)) Vpsoro (r) = —47n5015 (1), (2.67)

where ¢(r) is the electrostatic potential, e(r) is the dielectric defined at position r, and
the subscripts denote whether the quantities are defined in solvent or vacuum. As
€(r) varies throughout the simulation cell, the solution to the Poisson equation can no
longer be easily solved in reciprocal space as electrostatic potential calculations are cal-
culated in a framework of a vacuum dielectric constant (where €(r) = 1). As such,
finite difference approaches in real space are applied [109], such as DL_.MG multigrid
Poisson-Boltzmann solver library [110]. However, later approaches such as those of
Andreussi et al. [111] separate the total charge density into the solute (1151, (1)) and
the polarised density that responds to the dielectric (npolur(r)). As the response to the
dielectric is included in n polur(r), the standard vacuum form Poisson equation in recip-

rocal space can be applied to 72,01, (1) and 701, (1) separately to obtain ¢ (r).
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The overall AG,, is calculated as the difference of total energy expressed in terms of

Nso1p (1) and #yac(1).
AGpo; = Elnsoro(1)] — E[1pac(1)]. (2.68)

In ONETEP, both quantities can be calculated in either fully periodic/open boundary
conditions within the DL_MG Poisson Boltzmann solver.

One further consideration made in the ONETEP implementation of the implicit solvent
is the treatment of the ionic charges. The point charge representation of the atomic cores
leads to singularities in the solutions of real-space Poisson-Boltzmann solvers [112].
However, this can be overcome by replacing the point charge with Gaussian smeared

charges expressed as,

p1(r) = —Zim? exp{(—h‘_?ﬂz> }, (2.69)

o7

for atom I, where 07 is the width of the Gaussian smearing and Z; is the atomic charge.
This allows for better representation of the ionic charges on the real-space grid, which
leads to efficient solutions to the Poisson-Boltzmann problem.

The non-polar contribution (AGy,,,;) can be calculated in a variety of ways. The initial
formulations used scaled particle theory (SPT) approximations of the free energy of
cavitation (AG¢;p) combined with the free energy of dispersion between the solute and
the solvent (AGyjsp) [113]. SPT is derived from the reversible work required to create a
spheric cavity of volume V,,;, based on the probability of displacing a number of solvent
molecules through the ratio of the radii of the solute and the solvent. This results in the

expression,

Al(c;;w ~In{l-y)+ ((13—yy) ) R+ [(13—yy) M g ( (1 . y))z] a 270)

where y is the reduced number density of solvent molecules (y = (4/ 3)”R§olv”solv)f

Rso1o is the radius of the solvent and 7, is the density of the solvent. R is the ratio
between the solvent radii of the solute and the solvent (R = (Ryy;/Rso1p)). However,
the value of AG., is highly sensitive to the input values of ng,, and Rgyj,. Therefore,
the large variation in experimental values for the radius of water (1.36-1.46 A) produces
large errors in the calculation of AGgy.

Later approximations of AGy, use the Solvent Accessible Surface Area (SASA) ap-
proach, expressed as,
AGppor = 7S, (2.71)

where 7 is the surface tension of the solvent and S is the surface area of the dielec-
tric cavity. However, this approximation systematically overestimates the nonpolar

contributions to AGg,, [114], since the linear relationship in effect only calculates the
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cavitation free energy. This ignores the dispersion-repulsion contributions of solvent,
which have been observed to follow a similar linear relationship with respect to the sur-
face area [115]. Therefore, greater precision is obtained in the implicit solvent model of
ONETEP by applying a simple scaling factor of 0.281 to -y, which is obtained by a linear
regression of the terms AGyjs_rep and AGeqy With respect to saturated hydrocarbons of
increasing length and surface area. However, it has been noted that the SASA model,
even with reparameterization, shows overall poor correlation with AG;,y,, for a range of
different species [116-118] and has shown poor transferability even between different
configurations of the same protein systems [119]. Alternative forms of AG,,,,; will be

discussed in Chapter 3.

Throughout the electronic structure minimisation procedure, the value of p(r) is up-
dated at every step (the self-consistent (SC) cavity). Therefore, the charge density-based
cavity function evolves throughout the energy minimisation calculation. Outside the
% = 0, additional terms must be introduced to the

energy gradient to explicitly treat the energetic changes with respect to changes in the

energetic minimum, where

dielectric cavity,

dE[ng01,(1)]
dnsolv(r)

5Aanol

5”5010 (I‘) ’ (2.72)

= Psolo — %W%olv\z +
where the second term corresponds to H';Sgiéz’rgr)]. However, as this term is small, the
values represented on the grid are indistinguishable from numerical noise. As such,
without representations of this term on very fine grids, the second term introduces nu-
merical instability to the energy minimisation calculation. However, a finer grid spac-
ing intrinsically leads to greater computational expense, and although defect correction
schemes significantly reduce associated errors, grid spacings 2 to 3 times of standard
ONETEDP calculations were required for reliable convergence [114]. However, these er-
rors can be overcome by fixing the cavity function (referred to the fixed cavity through-
out) to the converged density of a vacuum calculation, € (1, (r)). Especially for neutral
molecules, the charge density only changes marginally in response to the dielectric,
which means that the cavity shape constructed with €(71,.(r)) can adequately repre-
sent € (1,1, (r)). This leads to only a minor increase in the RMS error vs. the SC cavity
for a test set of neutrals, cations, and anions (15.9 k] mol~! vs. 17.1 k] mol~!) and leads
to no deterioration in the correlation coefficient (r=0.83) [114]. Both values compare
favourably compared to the Solvent Model based on Density (SMD) method, which
includes a highly parameterized AG,;,, term (RMS error: 14.2 k] mol~!, r = 0.87).

Construction of the dielectric cavity function e(r) must also be considered. The original
implementation of the implicit solvent model in ONETEP [114] follows the formulation
of Fattebert, Gygi and Scherlis [120-122], where the dielectric cavity is described in
terms of the electron density at the point r, which defines a smooth switching function
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from the vacuum to the bulk dielectric constant (1 — €),

_ gy o1 1—(p(r)/po)*
e(p(r)) =1+ 5 <l + i (p(r)/p0)25>' (2.73)

where py is the electron density isocontour where €.,/2 and B describes the slope of
the switching function. The values pp=0.0035 ||e|la—!) and B = 1.3 were selected with
a parameter sweep to minimise the error in AG,, for a range of neutral, cationic, and
anionic species [114]. The minimal parameterization required for the Fattebert, Gygi
and Scherlis (FGS) approach makes it a compelling cavitation model. However, the
isodensity model has several shortcomings: a) significant AG;,j, errors for anions with
the default parameterization of pg and b) as shall be discussed in Chapter 3 and 5, the
inability to simultaneously capture properties of metallic surfaces and light elements.
These problems are a consequence of defining the cavity function for the whole system
with a single value, pg. For species such as anions and metals, the cavity must be
adjusted while maintaining the default parameterization for neutral/light elements.
In these cases, the single parameter approach means one must sacrifice accuracy by
choosing either a compromise value of pp, or ignoring the need for species specific
cavities entirely.

To address this, the soft sphere cavity model of Fisicaro et al. [123] was implemented in
ONETERP as part of our investigation into the metal/solvent interface. By defining the
cavity function as a set of atom centered spheres, one can flexibly adjust the cavity for
species which require special consideration. This model defines the cavity as a set of
interlocking spheres with a set of distance-dependent / functions:

e(r;, Ri) = (e — D{[ [R({Z}; Ir = Ril)} + 1, (2.74)

where ||r — R;|| defines the distance to a point at position r from the atomic centre R;, €«
the dielectric permittivity of the bulk solvent, and ¢ the parameters for a specific atomic
centre. The h functions define a set of atom centred error functions (erf) smoothly vary-
ing from 0 to 1,

h(ry, A, - Rs|)) = ;[1+erf<||r_RAiH_ri>], (2.75)

where the values of A define how quickly the dielectric function varies from bulk to
vacuum permitivity values and r; the distance defining the midpoint of the dielectric

function (%) for the atomic centre i.

In the scheme of Fisicaro et al., the parameters r; and A were optimised using a pa-
rameter sweep over a test set of 13 molecules [123]. The cavity radii was varied by
multiplying the original set of r 4y by a scaling factor, f, where the van der Waals’
radii were derived from the Universal Force Field (UFF) [124]. Values of the Minimum
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FIGURE 2.4: The construction of the dielectric cavity in terms of interlocking spheres
based on the van der Waals’ radii from the atomic centre (Soft Sphere) or based on
isocontours of charge py (charge based cavity).

Absolute Error (MAE) for AG,,;, were measured relative to the Minnesota Solvation
Database [125], where the lowest errors were measured with f = 1.12, where the MAE
was 4.8 k] mol~!. Greater accuracy was obtained by substituting the atomic radii of
problematic elements such as N, for which the original UFF model does not properly
take into account the interaction of the N lone-pair with the H within H,O hydrogen
bonding. The soft sphere model compared favourably to charge density based cavity
models for neutral molecules when extended to a larger, 274 molecule test set (MAE:
4.69 vs. 4.77 k] mol~!). Furthermore, the soft sphere model is notably more accurate
for charged molecules, especially anions (MAE: 12.38 vs. 23.17 k] mol™!). The soft
sphere model therefore provides a simple and accurate approach to constructing the
dielectric cavity, without a loss of accuracy. Furthermore, the soft sphere model allows

for the parameterization of species which require different dielectric cavity sizes within
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the same simulation cell. As such, this model was implemented in ONETEP as a key
part of the work presented, as described in Chapter 3.
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Chapter 3

Extending the Implicit Solvent
Model

As discussed in Chapter 2, the implicit solvent model provides a computationally in-
expensive method for calculating the free energy of solvation, AG,,. The original im-
plementation in ONETEP [114] can compute AG,,, for neutral organic molecules with
high accuracy, yielding RMS errors of only 7.5 k] mol~! with respect to experimental
data. Combined with the linear scaling formulation of ONETEP, this allows compu-
tationally tractable calculations of solvation energies for larger molecules, which have
been applied in calculations of the binding energies for assays of large protein-ligand
complexes [112, 126].

However, the accuracy and flexibility of the implicit solvent model could be extended
further in two ways. First, the SASA model for the calculation of AG,, is known to
correlate poorly with explicit solvent values (correlation coefficients of r=0.4 for water
only and r=0.25 for a range of solvents [116]). Improvements in correlation were found
by introducing a linear term for AG,,,, based on the volume (SASA+SAV). We will
discuss the procedure used to parameterize the SASA+SAV model, and discuss the
benefits provided by describing surface tension () as a free parameter.

Secondly, although the charge based cavity model allows for the construction of a
dielectric cavity with minimal parameterization, it is sometimes desirable to main-
tain flexibility, so the cavity function can be defined separately for each atomic centre.
This is especially important for systems with charged fragments or chemically distinct
species (i.e. transition metals and light organics), where no single isodensity contour
would produce an optimal cavity function for different parts of the same system.

As was introduced in Section 2.5, the soft sphere model by Fisicaro [123] provides a
method for representing the atom centred, distance based cavity function compatible
with electronic structure codes. Therefore, we will describe our implementation of this
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model into the ONETEP code as part of this work. The soft sphere model will be es-
pecially useful in later chapters, where the ability to simultaneously parameterize the
dielectric cavity for light organics and metallic atoms allows for the calculation of the
free energy of adsorption in the aqueous phase.

In addition, we will determine the quality of the force calculations within the implicit
solvent model. In principle, the force terms associated with the change in the dielec-
tric cavity function with respect to position atomic position should be small. As such,
analytic force terms for the cavity were not implemented into ONETEP. However, this
is an untested assumption which requires validation for a range of systems with vary-
ing charges. To accomplish this, we will validate the force assumption by performing
a set of finite difference force tests, which in principle gives the exact change in en-
ergy with respect to atomic position. This will be performed with both the fixed and
self-consistent cavity update of the charge-based dielectric cavity method, where the
latter should, in principle, yield fully converged forces without extra analytical terms
in accordance with the Hellman-Feynman principle [102]. Furthermore, to facilitate fu-
ture work conducted with ONETEP, we also extended these tests to systems using an
electrolyte model [127, 128].

3.1 Background

3.1.1 Implementation and Parameterization of the Soft Sphere Cavity Model

As detailed in Section 2.5, the soft sphere model by Fisicaro [123] provides a dielectric

cavity function (e(r)) which is defined in terms of the distance from the atomic centres,
e(r;, Ri) = (e — D{[ [R({Z} Ir — Ril)} + 1. (3.1)
i

This is a product of interlocking distance based functions,

Rl — .
h(ri,A,Hr—RiH):;{1+erf<”r ll r”dwﬂ)], (3.2)

, both of which are fully defined in Section 2.5.

Implementing this model requires calculations of &, where the products of Equation 3.2
are defined for each atomic centre across the underlying grid points of the simulation
cell. The van der Waals radii (7,4, ;) defined for each atomic centre are obtained from
the van der Waals” model by Alvarez [129]. In principle, this set of radii should provide
benefits over the set of Universal Force Field (UFF) radii used in the original implemen-
tation of the soft sphere method [130], as Alvarez used a distance histogram approach,
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which measured the distribution of atomic distances from an extensive set of crystal-
lographic structural data. In contrast, the UFF approach calculates the van der Waals’
distance from the pairwise Lennard-Jones (L]) potential [124], which ignores the effects
of fine electronic features such as lone pairs. Furthermore, Alvarez uses the potential of
oxygen as a probe for determining the van der Waals” radius, which provides a good
approximation for the distance of H,O from the atomic centre.

3.1.2 Implementation and Parameterization of the SASA+SAV AG,,,;; Term

In the SASA+SAV model, we describe non-polar free energy change as,
AGupo = axyS+pV, (3.3)

where « is a scaling factor, which allows the surface tension 7y to be treated as a flexible
parameter, V is the volume of the cavity, and p is the solvent pressure. Further models
such as the dispersion model of Wagoner (SSA+SAV+WCA) [116] introduce Lennard-
Jones (L]) type attractive interactions to the cavity. However, the benefits provided by
SSA+SAV+WCA over SAV are not particularly large (r=0.95 vs. 0.94), and the majority
of the improvements in statistics are derived from the additional volume terms. There-

fore, we have only implemented the volume based term in the solvent model.

In both the soft sphere and electron density-based cavity models, the volume was cal-
culated using the product of the h({C};||r — R;||)} inverted, such that the function
switches from 1 inside the cavity to 0 outside. This can be obtained by the expression,
€0 — €(T
Ble(r)] = 7() (3.4)

€oo — 1

The quantum volume is therefore defined as,

Vie(r)] = / dr6[e(r)]. (3.5)

As the soft sphere model is formed from continuously differential spherical functions,
the surface value can be computed in terms of the gradient of the dielectric cavity func-

ion [123],
o ! / dr|Ve(r)| (3.6)
— . .

Sle(r)] =
() = —
In contrast, electron density based cavity function is defined using an isosurface as
opposed to a set of differentiable distance functions. Therefore, the original implemen-
tation of the quantum surface area is calculated through the difference in the surface

area between two isosurfaces,

5= [[ar(8,, 4 (o(6)) ~ 0,5 (o))} x L] 67)
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where 6,,(po(r)) is the cavity function (defined between 0 and 1, with 0.5 defined by
isodensity po) for the electron density at position r (o(r)). The parameter A defines
the cavity width between the two isosurfaces. However, as argued by Andreussi et al.
[111], po does not have a linear relation with the switching function, 6,,(o(r)). This
means that the cavity functions defined by py and pg + 4 have different topologies for
an equivalent p(r). Therefore, Equation 3.7 does not exactly calculate the difference
between two isosurfaces for 6, (p(r)) separated by 4, which results in approximately
20 % overestimates of the surface area.

This can be simply resolved by applying the parameter A to p(r) itself, yielding:

A

5) =0 (p(r) + 5) } % Vet (3.8)

s = [ ar{6n (o(r) -

3.2 Methodology

3.2.1 Outline of the Test Set

To parameterize the AG;,, values of the soft sphere model, we followed the method
of the original soft sphere paper [130] and the original density based cavity paper by
Andreussi et al. [111]. Firstly, we parameterized AG,, by sweeping through a range of
f values (which uniformly scale the set of soft sphere radii), minimising the MAE with
respect to another well parameterized code (in this case, the COMSO-SMD model [131]
of NWChem [132]). This was to avoid the situation where in parameterizing AGs,,
with respect to both AG,,; and AG,,,, a range of optimum values of f and -y can be
found through a fortuitous cancellation of errors. Afterwards, we minimised the MAE
of AGg,1, with respect to changes in AG,,,,; by modifying the value of y through an
additional scaling factor a with a fixed value of f.

Parameter sweeps for f were performed with a small test set of 13 molecules, repre-
sentative neutral molecules from the Minnesota Solvation Database [125]. Then, us-
ing a parameter sweep over a, overall AG;,, values are compared with the larger,
274 neutral molecule test set. Calculations were carried out using the Perdew-Burke-
Ernzerhof (PBE) [133] functional, Open Boundary Conditions, 600 eV Kinetic Energy
Cut-off, PAW pseudopotentials, and a 9.0 20 NGWF radii. NWChem calculations were
performed using the PBE functional and the 6-31++G* Pople basis set [134].
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3.2.2 Finite Difference Force Tests

Within the framework of ONETEP, the forces in vacuum for ion I are calculated as the

derivative of the energy with respect to a change in position from R; [135],

«f ap
b= GEKY ()] O g OF dK Z/ O _dgu() 5. (30

dR[ - _TRI B ap aK‘Xﬁ dRI (5 I‘ dR[

Within the two loop energy minimisation process, the partial derivatives of energy with
respect to K*f and ¢, (r) tend to 0 at self-consistency, meaning the latter two terms are
eliminated according to the Hellman-Feynman theorem [102]. As a result, forces can be
expressed purely in terms of an explicit derivative of the ionic potential (Ewald forces)
and local/nonlocal contributions from the pseudopotential.

In principle, we can obtain exact forces along a selected axis (x,y,z) atom I, using a finite

difference method which can be calculated as,

p_ E[R;+A:/2] — E[R; — Ay/2]

™ , (3.10)

where A, represents a small step in the principle axis. The total magnitude of the force
on atom I is therefore calculated as,

FP| = B[P P F DY E Y B (3.11)

A separate total energy calculation is required for each move in the principle axis,
meaning 6 single point calculations are required to obtain |FfP|. Therefore, for each
test system, we will select a probe atom for comparison rather than testing the forces

for every atomic centre.

This approach enables a comparison with the implemented analytical force terms within
the implicit solvent model. Tests are performed for a variety of systems, including phe-
nol, the phenoxy anion, and the PF¢~ anion. This set of test systems will test the robust-
ness of the implicit solvent force calculations for a range of charged and uncharged sys-
tems. Further validation is performed for the implementation of the electrolyte model
within ONETEP, and for whether additional force terms must be implemented to ob-

tain accurate analytical forces.

3.2.3 Electrolyte Model in ONETEP

In electrochemical simulations, the solvent environment contains a finite concentration
of the electrolyte. Atomic representations of the electrolyte suffer many of the prob-
lems of the explicit solvent approach, including the requirement for large numbers of

configurations to achieve statistically significant results [127]. Furthermore, very large
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simulation cells are required to represent the diffuse concentration of electrolyte in the
Stern layer, further increasing computational expense. Much like the implicit solvent,
mean field approaches such as the Poisson-Boltzmann model provide a statistically av-
eraged representation of the electrolyte charge density. As a result, significantly more
tractable calculations for interfaces including electrolyte can be performed without ex-
tending the size of the simulation cell

Within the electrolyte model, the representation of the charge in the Poisson-Boltzmann
model is divided into the quantum system in continuum solvent and the electrolyte

ions in an ideal solution [110],
npp(r) = neoro (1) + Zz ci(r (3.12)

where z; is the charge and ¢;(r) is the local concentration of the ion of the electrolyte
i=1,.,p.

Overall, this transforms the Poisson equation in solvent (Equation 2.67) into the Poisson-
Boltzmann equation, which must be solved to include the charge of the Boltzmann ions,

V - (€(r)Vsorn (1)) = —4mngy,(r) — V- (e(r)Vpp(r)) = —47(ng01 (1) + EzlcZ

(3.13)
As the number of particles varies in the simulation cell, the total energy must be de-
scribed using a grand canonical ensemble (Q[ny, (¥, {c;i}, ppp(r)]), which is obtained
as a Legendre transformation of the Helmholtz free energy, A [128]. Overall, this is
expressed as,

Qnsoro(x), {ci}, ¢pp(r)] = Elntsoro(r)] = TS[fi] + Quns[n15010(x), {ci}, pa(1)] + Qs [A, V],
(3.14)
where the first term is the total energy at 0 K, the second is the electronic entropy de-
termined from a Fermi-Dirac smearing scheme (Equation 2.36), the third is the mean
tield free energy functional which accounts for the energetics of the electrolyte, and
the fourth which is the non-mean field energy (which is equivalent to AG;,0;). The en-
ergy minimisation of Q[ng,,(r), {c;}, ppp(r)] is obtained using a three loop scheme, in
terms of ionic concentration ({c;(r)}), the density kernel (K*f), and the set of NGWFs
(|¢a(r))). A more detailed account of these terms is given by Dziedzic et al. [127].

However, analytical force terms have not been derived for the grand canonical en-
ergy expression. Although energy minimisation performed in terms of concentration
should, in theory, eliminate the implicit dependence of ionic concentration with changes
in atomic position, tests must still be performed to ensure that no additional analytical

force terms are required in order to perform geometry optimisations.
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In force tests carried out for the electrolyte model, calculations were performed in open
boundary conditions, with an LiPFg electrolyte at a concentration of 1 M unless other-
wise specified. To calculate accurate forces, energy minimisation was performed using
850 eV kinetic energy cut-off (a value justified by increasing the kinetic energy until
meV accuracy was achieved), and the Ensemble DFT [83] module of ONETEP. PAW

pseudopotentials were used to represent the core states.

3.3 Results

3.3.1 Comparison of Soft Sphere and Parameterizing SASA+SAV

TABLE 3.1: Comparison between the SASA and SASA+SAV models in the soft sphere
model (f = 1.201) for AG,,, between the ONETEP’s implicit solvent and experimental
data of the Minnesota Solvation Database. Performed for 13 molecule test set.

Cavity Method Parameterization Technique  « r MaxError RMSE MAE
kImol~!  kJmol™! kJ mol™!

Soft Sphere Opt a - SASA+SAV 0.808 0.91 20.47 5.52 4.22

Opt a - SASA 0.344 0.89 23.03 6.14 4.94

Disrep « - SASA 0.281 0.90 17.98 7.15 6.01

Charge Cavity Opt a - SASA+SAV 0.730 0.86 28.16 6.73 4.84

Opt a - SASA 0.211 0.88 26.94 6.38 4.86

Disrep « - SASA 0.281 0.86 33.24 8.71 6.87

Figure 3.1 shows the parameterization of the soft sphere cavity model in terms of AGy,,
and AG;y through the cavity scaling factor f and the nonpolar scaling factor, . Over
the range of f, we obtain a minimum error of AG,,; = 3.57 k] mol~! with respect to
NWChem with f = 1.208. The work of Fisicaro et al. [123] shows that the variation of
AG, around the minimising value of f (f = 1.201) is nonparabolic, where the varia-
tion of AG,, is much larger for smaller values of f. This arises due to the interaction
of the dielectric with the larger electron density closer to the atomic centre. Therefore,

a higher order polynomial (3" or 4" order) is required to produce an accurate fit.

Due to the low computational cost of evaluating «, we parameterize the nonpolar term
using the entire 274 molecule test set, and sweep over small intervals of « (0.01). In
contrast to the AG, term, AGy,, is calculated by a set of linear additive terms. As
such, the fit appears to be more linear around the minimum. For the soft sphere cavity
SASA+SAV non-polar term, the minimum MAE is achieved with a = 0.808. Forgoing
the procedure for parameterizing AG,,; for the isodensity model and simply using the
default cavity parameters (o9 = 0.00035e A~3 and B = 1.3), we find that the optimum «
values are marginally different with respect to the soft sphere model, indicating that the
values of AGy,, surface area and volume of the soft sphere approach are comparable

to the electron density-based cavity model.
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FIGURE 3.1: Parameterization of AGy, with a 13 molecule test set compared to
COMSO-MSD of NWChem with variations of the soft sphere scaling factor, f fit to
a fourth order polynomial (left), and the parameterization of AG,,, with respect to «
compared to the Minnesota Solvation Database (right).
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FIGURE 3.2: Comparison of AG,,;, between the original SASA model (f = 1.201,a =
0.281 ) (left) and the SASA+SAV models in the soft sphere model (f = 1.201, « = 0.808)
(right) for AG,, between the ONETEP’s implicit solvent and experimental data of
the Minnesota Solvation Database. Performed for full 274 molecule test set. Errors

with respect to the mean signed error are shown to one standard deviation (SASA:
—4.08 £ 5.88 k] mol ! and SASA+SAV: —0.49 + 5.54 k] mol1).

Comparing the errors across the 274 molecule test set with the original implementation

of the nonpolar term (SASA, where x = 0.281 corresponds to the dispersion-repulsion

corrected van der Waals” non-polar term) to the parameterized SASA+SAV model, we

find that the latter model provides moderate improvements in accuracy (Table 3.1). In

the soft sphere model, parameterizing a in the SASA+SAV model yields lower errors
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with respect to the experimental test set by 1.8 k] mol~! compared to the original imple-
mentation, but only provides a slight improvement in correlation. However, there are
a number of outliers between AG,,;, = —30 to —20 k] mol~! not present in the original
SASA approach. We obtain a MAE for the parameterized SASA model (1.1 k] mol 1),

but there is a marginal decrease in correlation.

Evaluating the parameterization of AGy,, for the charge cavity based approach, we ob-
serve a larger improvement in the MAE for the parameterized « SASA and SASA+SAV
models. However, the SASA approach shows better performance in terms of correla-
tion, maximum error and the RMSE. From this, we can infer that the slight change in
topology between the soft sphere and charge-based cavities leads to the surface area
alone being a better descriptor for the latter cavity model.

3.3.2 Implicit Solvent Model Force Tests

Figure 3.3 shows the difference between the analytical forces and the exact finite dif-
ference forces. Here, we tested the oxygen atom of the neutral phenol and phenoxy
anion species and the P atom of [PFs] . In our tests, ||F/P| — |F/*"|| < 0.001 Ha Bohr !
is considered an acceptable degree of error, as it is significantly below the threshold
used for geometry optimization calculations of |F|y,x < 0.003 Ha Bohr~!. The error in
vacuum versus analytical forces is less than 0.0005 Ha Bohr ! for all measured systems,
which acts as a further reasonable bound for the force error. Across all systems tested,
we measure significantly higher force errors where the electron density-based dielectric

cavity is kept fixed from a converged vacuum calculation. In contrast, the force errors

SC Cavity
0.006 A .
B SC Cavity+Electrolyte

- Fixed Cavity
_lé 0.005 1 B Fixed Cavity+Electrolyte
;
£ 0.004 -
oy 0.003 A
I
2_ 0.002 A
=2

0.001 A

0.000 J T I . m—

Phenol Phenoxy PF6

FIGURE 3.3: Errors in the analytical forces compared to the finite difference forces
described by Equation 3.10. Forces calculated for the O atom of phenol and phenoxy
anion, and P of [PFs|~
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TABLE 3.2: Variation in force error with low and high concentrations of [PF¢]~ for
charged and uncharged species.

[[EFP] = [F/"[[ / Ha Bohr !

Bulk KPF.6 Phenol O Atom Phenoxy O Atom
Concentration
Fixed Cavity — 1M 0.0069 0.0018
Fixed Cavity — 6M 0.0023 0.0020
SC Cavity - 1M 0.0003 0.0009
SC Cavity - 6M 0.0007 0.0009

associated with the self-consistent cavity method are significantly smaller. This is ex-
plained by the satisfaction of the Hellman-Feynman principle, where the self-consistent
cavity method implicitly minimises the energy with respect to the cavity function (i.e.
0E/0e(r) = 0). In contrast, leaving the dielectric cavity fixed introduces a large degree
of error associated with 0E/de(r), meaning this term must be computed explicitly to
obtain accurate forces. This further implies that, for the soft sphere cavity model, one
would expect force errors on the scale of the fixed cavity, as the electronic energy is
similarly not minimised with respect to the dielectric cavity function.

We further remark that the force errors for the oxygen atom of the negatively charged
phenoxy anion are significantly larger than those for the neutral phenol. As charged
species are significantly more polarised by the dielectric, we expect charged species to
deviate further from the 6E/de(r) = 0, leading to larger errors in the analytical forces

which do not take this term into account.

The electrolyte model does not appear to introduce a large degree of error to the analyt-
ical forces, with ||FfP| — |F/*|| being of equal magnitude to the corresponding cavity
scheme. This holds for both charged and neutral species. We have further tested this for
higher electrolyte concentrations (1 M vs 6 M KPF) with the oxygen atom of the phenol
and the phenoxy anion (Table 3.2). This ensures that this effect is not an artefact of us-
ing a dilute electrolyte with a weak response to the solute. Even at high concentrations,
the force error is well below the force tolerance used for geometry optimizations, and
is on the scale of the error for forces calculated in vacuum. The largest error, consistent
with Figure 3.3, occurs with the use of the fixed cavity for both species. Therefore, the
results presented show that the analytical forces can be used unmodified for systems

in the electrolyte, provided that the self-consistent cavity update scheme is used.

3.4 Chapter Summary

In this chapter, we have described a range of implementations for the implicit solvent
model of ONETEP which will enable us to perform both more flexible parameterization
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of the aqueous organic/metallic interface, and allow for the accurate calculation of the

AGypo; term.

Within the wider context of ONETEP’s solvent model, the soft sphere model provides
an accurate alternative to the isocontour approach. Furthermore, we found that by in-
troducing a dependency on the dielectric cavity volume to the AG,,;,,; term (SASA+SAV)
and parameterizing the original surface tension term <y, we obtain lower errors over-
all AGg,1, compared to the original SASA model. Therefore, we have demonstrated a
successful implementation of the soft sphere cavity model into ONETEP, which com-
pares favourably to the density-based cavity model, enabling its application to further
studies.

Furthermore, the finite difference force tests show that the fixed cavity dielectric leads
to significant force terms. In order to eliminate this spurious force error, ONETEP
would require the implementation of an analytical expression, or achieve energy min-
imisation with respect to the dielectric cavity through the SC cavity approach. Interest-
ingly, contrary to initial findings [114], self-consistent cavity calculations achieve con-
vergence without finer grid spacing. As a result, such calculations can be performed at
computational costs similar to those of the fixed cavity method.

The extra functionalities introduced in this chapter will be instrumental throughout
the rest of the work presented. They will be especially useful in Chapter 6, where the

ads

electron density dielectric model yields large errors in the calculations of AGZ7S .
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Chapter 4

Accelerating Ensemble DFT in
ONETEP

In Chapter 2, we recounted the underlying theory of DFT as applied to metallic systems
(see: Section 2.2.3). In practical calculations, particular care must be taken to ensure
calculations are performed in an efficient and timely manner. Throughout this work,
we calculate the ground state energies and geometries for large metallic systems, which
require large amounts of computational resources. Therefore, the numerical procedures
used to minimise the electronic energy should be designed with efficiency in mind. This
is achieved by minimising the number of iterations in the self-consistent field scheme,

and the computational cost of each iteration is kept small.

The original implementation of Ensemble DFT (EDFT) [83] is based on the two-loop
scheme of Marzari et al. [136]. This approach is a robust and variational method to min-
imise the total energy of metallic systems. However, as we demonstrate in this chapter,
the linear order of convergence leads to slow convergence within the inner loop of
ONETERP. This is especially apparent for larger systems, where even with many itera-
tions, the inner loop often fails to achieve convergence. Furthermore, as a line search
routine included in the original implementation, the polynomial fit must be populated
with at least two total energy values to find the best step size. The required total energy
evaluations and diagonalisations are in themselves computationally expensive proce-
dures. Therefore, the trade-off in computational effort for accuracy should be evaluated

to ensure that the EDFT scheme avoids unnecessary resource-intensive subroutines.
Several approaches have been attempted to address these issues. In the following chap-

ter, we will recount the two most successful outcomes of these studies:

1. The application of Pulay Mixing algorithms to replace the previously used damped

fixed point algorithm.



4.1. Background 56

2. Replacing the line search algorithm used to determine an optimum step size for
each inner loop step with a user determined step size.

This account will outline the underlying numerical methods used in the old and new
EDFT implementations in ONETEDP, the relevant shortcomings of each approach, and
the improvements in computational efficiency achieved with these new implementa-

tions.

4.1 Background

4.1.1 Self-Consistent Field Approaches

In the general iterative framework, the density output by the solution to the Kohn-

Sham eigenvalue problem is known as the Kohn-Sham map,
K[n'™"(r)] = n°“(r), (4.1)

which is used to define the Hartree and exchange-correlation potentials of the next
iteration. Section 2.2.2 describes the Kohn-Sham formulation of DFT, where Equations
2.28,2.33 and 2.34 are the Kohn-Sham equations. The goal of DFT is to find the optimal
solution to these equations, which is defined by the potential V" and density n'"(r)
which minimises the Kohn-Sham functional (equation 2.30). Self-consistency is said to
be achieved when Vo = Vi" and n°“(r) = n'(r), where both the potential and the
electron density are said to be in their respective ground states. This approach is known
as the self-consistent field, which arises from the early work by Hartree [137].

Outside of the minima, the density produced by the eigenvectors for a particular eigen-
value problem generates a different potential to that of the input density (i.e. n°(r) —
n'"(r) # 0). However, self-consistency is said to be achieved when the solution to the
eigenvalue problem generates the same density and potential to their corresponding in-
puts. When this condition is not satisfied, we define this difference between the input

and output densities as the residual,
R[n™(r)] = n®(r) — n'(r). (4.2)

Self-consistency can be achieved through a variety of techniques. The most simple of
these is the fixed-point approach shown in Figure 4.1. This is formally defined as,

' (r) = ) (1) + Rlny'(1)], (4.3)

where p is an index that defines the iteration step. Here, an initial density gener-

ates a potential for which one successively solves the Kohn-Sham eigenvalue problem
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Intialise ¥ (r) and ny'(r)

Construct Hamiltonian: PI;” = T[n;”] + VH[n;,”] + Vxc [n;,”]

Solve Eigenvalue Problem H |},) = €4S [¢l)

Construct Density: n9 (r) = 1, Funl (1) 2

Construct Residual: R[(n;,”(r)] = n"(r) — n;”(r)

Construct New Density: n  (r) = ny'(r) + R[(n ()]

Extract nZ’H (r)

TE/Commutator below threshold?

Converged!

FIGURE 4.1: The fixed-point update scheme for achieving the self-consistent solution
to the Kohn-Sham energy functional.

with the input potential V. The resultant eigenfunctions §(r) generate a new den-
sity K[n'(r)], which then defines a new potential, V°* for which we must solve again
the eigenvalue problem until self-consistency is achieved. However, outside of trivial
cases, this approach is insufficient to perform stable minimisations of the Kohn-Sham
equations.

p

out

This can be justified by considering the output density n/,,(r) sufficiently close to
the ground state density, no(r) [138, 139]. Defining the corresponding potentials as
V[niy(r)] and V[ng(r)], the deviation between the ground state and the output density

is expressed as 01,y (r) = 1oy (r) — no(r). When dn,,(r) is small, we can linearise this
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expression (i.e., taking the Taylor expansion to the first order around ¢ (r)) such that

(snout( ) ménfn(r)/ (4'4)

m

where the derivative can be further expanded by the chain rule to include the depen-
dence of V(n! (r)) on the densities and vice versa,

(Snout(r> §nout(r) 5VZ(I')
on? (r) (SViZ(r) onf (1)

mn

(4.5)

These equations can be better understood as a response function [82], e(r,t’), where for
a potential V7 (r) = V] (r) + Vi (r) [139],

sV (x) onf (x 2
/dl/ np(r ) :I_/drl/< 1 - 4 aEXC y )XO,
nl,(x) sV (r) |t —1"|  ong,(r)ong, (r'")
(4.6)
where the terms of the integral corresponds to the coulomb and exchange correlation

kernels respectively. The linear response of the density is described by the dielectric
susceptibility matrix, xo defined by the relation,

(Snout (1‘)
Vi) 47

X0 =

In order to describe an ideal step within the iterative scheme, an exact expression of
e(r,r') ! for the system under study would be required. This would effectively cancel
the linear response induced by the change of density at iteration i, therefore allowing
convergence to be achieved within a single step,

no(r) = np+1(r) =nl (r) +e(r, r/)_lR[n;" (r)]. (4.8)

However, e(r,r') ! is both highly system dependent and expensive to calculate [139].
As such, this term is represented by an approximate ansatz of (r,r') ~!, which we will
describe as ]!, or the inverse Jacobian in the language of Newton algorithms. We
can therefore describe the ideal construction of J~! as one that is fully equivalent to
e(r,v) 1,

I=c¢(r,)e(r,t) P ~e(r )] L. (4.9)

In iterative schemes, ] ~! should be constructed such that successive residuals approach
0 in a finite number of steps (that is, R[n?!(r)] < R[nP(r)]). The fixed point iteration
scheme simply represents the ansatz Jacobian as J~! = I. However, it can be shown
that the eigenvalues v; of €(r,r’') are always positive and greater than 1 [82, 139]. As
a result, the value of J~! = I within the tixed-point framework necessarily leads to
divergent iteration. This means minimisation cannot be achieved outside the simplest

systems, and rationalises why the self-consistent field problem cannot be solved within
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a single step.

However, we can improve this scheme by building a value of J~! that better reflects
e(r,¥') L. This is most simply achieved by expressing J ! as a scalar value applied to
R[n(r)]. This scheme is known as the damped fixed-point or linear mixing, which
reduces the size of the iterative step through a scalar prefactor, A.
1
n?(x) = ! (r) + AR[1 (1)), (4.10)
where A < 1. A value of A which guarantees a minimising step can be expressed by

considering the maximum eigenvalue of e(r, ') [82],

P (4.11)
max(’y/-)

This approach necessarily improves the robustness of the SCF algorithm by ensuring
max(y;) < 1. As this method does not modify or introduce approximations to the form
of the linear response interaction, this approach is also globally convergent for an ap-
propriate value of A [139]. However, the eigenspectra of e(r,r') change with the size
and species composition of the system. As the difference between max(v;) and min(~;)
increases, the rate of convergence for energy levels associated with min(A;) decreases.
Because of this, for insulators with a fixed band gap, the number of iterations increases
by order N with system size. The rate of convergence for metals worsens due to di-
vergences in the eigenspectra of e(r,t'). Annett et al. and Woods et al. give a more
complete discussion of these divergences [82, 139]. Therefore, on top of the N3 compu-
tational cost of operations in DFT, we must perform more iterative steps to minimise
the energy. This leads to more expensive calculations, which we will demonstrate in

the results section.

This is further exacerbated by the linear order of convergence in the linear mixing ap-
proach [139, 140]. For a sequence of iteratively improved densities n”!(r), the rate of
convergence in linear mixing is described by the relation:
+1

e (1) = 10(1)] < gy, (r) = no(x)], (4.12)
where ¢ < 1. According to this inequality, 77! (r) will only be smaller than n”(r) by a
constant value. Depending on the complexity of the problem involved and the distance
from the stationary point, many iterations would be required to achieve convergence
with this approach. Improved rates of convergence can be achieved with superlinear
type algorithms, where convergence is instead described as,

bt (1) — no(x)| < tylnb, (1) — no(r)], (4.13)

out out
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where t is such that t*T! < . Over an infinite number of iterations, this results in a

convergence towards 0,
p+1
: |n0ut (1‘) — 7’10(1')’ =0. (414)

P [11g () — o (1))

Superlinear algorithms, therefore, achieve convergence appreciably faster than linear
algorithms, as each iteration produces a smaller error with respect to the ground state

density than the previous.

To improve the rate of convergence, one requires iterative techniques which both in-
crease the order of convergence, and reduce the ill-conditioning inherent in the Kohn-
Sham problem. This can be achieved by considering superlinear convergent meth-
ods, such as the quasi-Newton class of iterative schemes, which include the Broyden
scheme. We can further improve convergence by using multisecant methods, which
use a weighted history of iterations to generate the density of the next iteration [139].
The most successful and well-known in the computational chemistry community is the

Pulay mixing method [141].

4.1.2 Pulay Mixing

The Pulay mixing algorithm (also known as Direct Inversion of the Iterative Subspace)
is a quasi-Newton iterative scheme with superlinearly convergent characteristics. Quasi-
Newton techniques are characterised by the following expression in the framework of
iteratively improving charge densities,

nPt(r) = nf(r) + ]’;1R[ni”(r)], (4.15)
where J~! is the inverse Hessian defined as

+1
5n7"+1(r) ~ ngut — nfut (416)
5np(r) nz"jnJrl - nzpn

I:

However, the Newton method has two drawbacks: firstly, the Jacobian (J) must be
computed, updated and stored at each iteration and secondly, the Jacobian must be
inverted. Although the Broyden class of methods can circumvent the latter problem
by updating the J~! directly, this large matrix must still be stored and is difficult to
compute. Later developed Pulay [141, 142] schemes avoid these issues by implicitly
calculating the inverse Jacobian using a mixed history of residual vectors. This method
attempts to construct an optimal residual, R[n?(r)], by using a linear combination of
previous residuals, accelerating convergence compared to the simple linear mixing ap-

proach. In the Pulay method, the optimal residual is defined by,

m

Rin\ ()= Y ¢R[,(r)] (4.17)
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subject to the Lagrangian constraint,

Yy =1 (4.18)

j=p—m+1

The Pulay method obtains the optimal coefficients ¢; by minimising the Frobenius norm
of the residual history. This is achieved by solving the following system of linear equa-
tions,

Bi1 B By 1 €1 0

By1 B By 1 2 0
=1 .. (4.19)

Bm1 Bmz . Bmm 1 Cm 0

1 1 1 0 v 1

wherein Bj, = <R[nfn(r)] ‘R[nfnk(r)]>, with the braket notation indicating the inner
product of the error vectors and v the Lagrangian multiplier enforcing the constraint of
equation 4.18. The overall update of the 1;,(r) is then expressed as,

m

nr) = Y [einl, (1) + R[] (4.20)
j=m—p+1

4.2 Direct minimisation Approaches

4.2.1 Marzari and Freysoldt Ensemble DFT

Self-consistent field approaches such as density mixing [143] are the mainstay of many
plane wave DFT codes. Pulay mixing schemes and appropriate models, which screen
long range perturbations such as Kerker preconditioning [144], make these approaches
comparatively robust. However, the preconditioning approach presupposes the physics
of the system under study. For example, the Kerker preconditioner is parameterized for
homogeneous metallic systems, and is less efficient for inhomogeneous systems which
include conducting and insulating species [145]. An analysis performed with an array
of systems shows that the most robust self-consistent approach tested (Pulay mixing
with Kerker preconditioning) achieves convergence in 84% of 54 test cases [139]. How-
ever, to avoid the effects of ill-conditioning, one must either develop more sophisticated
preconditioning schemes [145] or use direct minimisation approaches [136, 146].

Direct minimisation algorithms are a more robust, universal alternative to self-consistent
field methods. One such algorithm is the Ensemble DFT method, implemented as
the two-loop minimisation scheme of Marzari et al. [136], or the simultaneous update
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scheme of Freysoldt et al. [146]. In essence, the Marzari scheme directly minimises the
Kohn-Sham orbitals through a conjugate gradient scheme for the outer loop, while the
inner loop iteratively improves the occupation numbers for the associated orbitals. This
approach is advantageous over the conjugate gradient scheme of Fiirthmuller et al. [81]
in that it decouples the optimization of occupancies from the orbitals by reformulating
the Helmholtz free energy functional (Equation 2.36) as,

AT {gi}] = r{rkir}lA[T; {yi}, {fij}], (4.21)

where f;; are the occupancies of the eigenstates. This scheme performs a minimisation
of the occupancy matrix, which includes the terms for the unitary transformation of
the orbitals within the iterative improvement of the occupancies. This was achieved by
calculating the implicit derivative of the Helmholtz free with respect to the change in
occupancy, which reduces to zero under the minimisation conditions (% ;ﬂ{ 11/1 , Where

%fz_’"} = 0). Therefore, this approach removes the implicit dependency of A[T;{¢;}]

on f;; in accordance with the Hellman-Feynman theorem [102]. As a result, only the
dA{p;}

explicit derivative of % must be calculated.
Furthermore, one must consider the unitary transformations which map ; into the
occupied subspace, which is required to obtain a diagonalised Hamiltonian [81]. In
systems with fractional occupancy, the original Helmholtz free energy operator, which
treats the occupancy matrix as diagonal, is no longer invariant to unitary rotations in
the occupied subspace [147, 148], expressed as,

i) — Z Uji| ;). (4.22)

Therefore schemes must be applied which variationally decrease the energy accord-
ing to the dependency based on Uj;. The Marzari scheme circumvents this issue by

expanding the occupancy matrix to include the unitary transformations,
fii = )_ U fely;, (4.23)
k

while simultaneously applying the same transformation to the orbitals according to
Equation 4.12. The ill-conditioned variations due to subspace rotations are treated im-
plicitly by the minimisation of the free energy functional with respect to the occupan-
cies. As a result, this method drastically improves the convergence for systems with

small band gaps.

The Freysoldt scheme uses the same principle as the Marzari approach, but instead
of minimising the Helmholtz free energy with respect to the f;j, a pseudo-Hamiltonian
(H;,j) constructed from f;; and Uy is used instead, producing a new projected Helmholtz
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free energy functional of,

A[T] = g}in A[T; {y:}, {Hij}], (4.24)
sy
where explicit gradient terms are derived for A with respect to H;; and ;, and both
quantities are updated simultaneously. As expressed by Aarons et al. [149], minimising
the energy directly via. the orbital energy improves the ill-conditioning of the Marzari
scheme, where the occupancies f; — 0 map to a large range of orbital energies.

4.2.2 ONETEP Implementation of EDFT

Ruiz-Serrano et al. [83] implemented EDFT into ONETED, utilizing elements of both
the Marzari and the Freysoldt approaches - taking the two loop minimisation scheme
of Marzari, but performing the minimisation of A with respect to H;; instead of f;;.
The two-loop minimisation matches well with the scheme already implemented within
ONETEP [91], while using the Hamiltonian as the iterate avoids the ill-conditioning
of fij mentioned in the previous section. However, the expressions from the plane
wave DFT formulation of EDFT must be redefined in terms of the localised NGWF
framework of ONETEP.

The Helmholtz free energy functional in terms of the NGWFs and the M expansion
coefficients is expressed as,

AlT:1¢a)}] = rin AT {Hup} {140 1] (4.25)

where the Hamiltonian H,g is defined in terms of the NGWFs |¢y),

N
Hyp = (@] H |9p) = Say ) (M €M) Ssp. (4.26)
1

Within this minimisation scheme, the inner loop iteratively improves H,g with a fixed
set of NGWFs until convergence is achieved, then the NGWFs are improved using
a conjugate gradient scheme. As the improvements implemented in this work only
involve the inner loop, we will exclude the outer loop from this discussion for the sake
of brevity. For a more detailed description of the whole scheme, see reference [83].

The inner loop of EDFT is structured as follows. An initial density, n(r,r’) (Equation
2.53) is used to construct the potential and exchange-correlation components of H 5 8
The Hamiltonian is then diagonalised according to the eigenvalue problem,

HI MPP = S, gMF el (4.27)
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The resulting eigenvalues €/

are then tested for degeneracy and reorthonormalised
according to the Lowdin orthonormalisation scheme [150]. The returned values of M*;”
and €/ allow for the construction of the smeared occupancies determined by the Fermi-

Dirac distribution, )
P_yp -
fi(el) = <1+e><p [el kB;f ]D - (4.28)

In turn, the entropy term for the minimisation of the free energy functional may be

calculated as,

P = —ke ) [ff Inff + (1= fI)In1 - fF]. (4.29)
The density kernel with fractional occupancies is given by,

K =Y M m) e, (430)
p

The diagonalised Hamiltonian at step p (H? p) is then used to generate the next Hamil-
tonian at step p + 1 by building the res1dua1

R[H];] = A}, — H},, (4.31)
A}y = Hj; + AR[H}], (4.32)

where the value of A is an optimal trial step constructed through a line search routine.
This is calculated by sweeping through a range of A values between [0, 1] and evalu-
ating the Helmholtz free energy functional obtained from each value of A. Including
the energy at A = 0, the step size that results in the optimal free energy is obtained
via. a polynomial fit. Typically, only two trial steps and a quadratic fit are required
to find the best value of A. The convergence is then measured according to the toler-
ance thresholds of the change in free energy (< 10~® Ha per atom) and the commutator
[HY ; !, K*(r)] (10-% Ha). Otherwise, the scheme is repeated from Equation 4.27 until

convergence is achieved.

This scheme can be recognised as the simple damped fixed-point iteration approach
discussed in Section 4.1.1, except that the Hamiltonian is used as the iterate instead
of the charge density n(r). Although this approach is robust, many of the flaws de-
scribed in the linear mixing regime appear in this algorithm. Particularly for metallic
systems where the minimisation scheme is ill-conditioned, large numbers of iterations
are required to achieve convergence. As we will show in Section 4.4 with large metallic
systems, the number of iterations required to achieve convergence increase dramati-
cally with system size. This is undesirable, as individual steps not only become more
costly due to the intrinsic expense of computing the densities and energies for a larger

system, but must also perform more steps to obtain convergence.

Furthermore, although the line search routine guarantees safe steps along the search
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direction (if they are available) by calculating the optimal A, this approach introduces
large computational costs. Each point generated for the trial A involves costly calcula-
tions of the free energy, where at least two total energy evaluations are required to pro-
duce the quadratic fit, and a third to perform the optimal step according to Equation
4.32. Evaluations of A[T;{Hg},{|¢x)}] involve many costly computations, such as
the calculation of the density and evaluations of the Hartree and exchange-correlation
potentials. For the system sizes used in this work, where the N° scaling dense matrix
diagonalisation is relatively cheap, these density and potential calculations form the
majority of computational effort. Therefore, the computational cost of each inner loop
iteration is dramatically increased in exchange for a marginal improvement in accuracy
- in regimes where A fluctuates by < 10% between iterations, this approach does not

result in increased accuracy.

By addressing the two issues described above, the remainder of this chapter outlines
the improvements made to the EDFT implementation within ONETEP. First, instead
of a damped linear mixing approach, a Pulay mixing algorithm was implemented, re-
placing the density with H,z as iteration (see Sections 4.2.1 and 4.1.2). Secondly, we
have tested replacing the line search algorithm with a simple fixed step size (A) ap-
proach. In this case, the user specifies an approximate A value that sufficiently de-
creases A[T;{H,p},{|¢a)}] at each step. Although conceptually simple, we demon-
strate that this approach significantly reduces computational costs by reducing the
number of energy evaluations at each step, while minimally impacting overall accu-
racy. However, this also relaxes the variational nature of the original implementation,
meaning that uphill energy steps may appear if a poor step size is selected. Therefore,
we have also implemented a safety measure where the line-search routine is performed
if successive energy increases are calculated in each inner loop iteration. From obser-
vations, the step size value of the first 1-3 iterations is significantly larger than that of
later steps. As such, the line search routine is maintained for the first 2 steps before
proceeding with the user input value of A. Combined with the Pulay mixing approach,
which displays superlinear convergent behaviour, convergence of the inner loop can
be performed up to three times faster than the original implementation for large sys-
tems. As a result, this scheme is capable of achieving significantly tighter convergence

thresholds with a reasonable number of iterations.

4.2.3 Hamiltonian Pulay Mixing in ONETEP

Originally, Pulay mixing in ONETEP was implemented using K*f as the iterate. This
approach was implemented in ONETEP [104] in the form of kernel mixing for insu-
lators. The authors made attempts to extend this framework to metals as part of this
work by including smeared occupancies. However, this approach was numerically

unstable, even with the implementation of a real-space Kerker preconditioner [144,
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151]. Ruiz-Serrano speculated this instability results from breaking the aufbau principle,
which results from constructing the density kernel from a history of previous iterations
[149, 152]. Furthermore, since the density kernel is analogous to the unitary transfor-
mation of the fractional occupancy matrix described in the original Marzari scheme
(Equations 4.30 & 4.23), it inherits the same ill-conditioning problems associated with
mapping small occupancies onto a large span of eigenvalues. However, Hamiltonian
mixing not only circumvents the ill-conditioning of the occupancy-based density ker-
nel through the logic of the Freysoldt scheme [146], it also ensures that the occupancies
satisfy the ordering of eigenvalues in accordance to the aufbau principle. Therefore, we
will limit our discussion to the successful implementation of the Hamiltonian mixing
scheme. Much of the framework developed in the kernel mixing method [152] can be
transferred to the EDFT module, which means that implementation can be achieved

relatively easily.

The scheme is in principle very similar to that outlined in Section 4.2.2, except the resid-
ual R| 5/3] is constructed according to the Pulay mixing scheme of Section 4.1.2. The
scheme is summarised in Figure 4.2. In principle, this technique should produce step

directions that converge superlinearly towards the ground state.

The residual of Equation 4.31 from the previous number of steps, defined via. p —m +1,
where m defines the number of previous Hamiltonians used to form a system of linear

equations expressed as,

p

Rou[HJpl = ) o RIH], (439)
j=p—m+1
subject to the constraint,
p
Y, =1 (4.34)
j=p—m+1

This linear system of equations is solved according to the matrix shown in Equation
4.19. However, the inner product of the residuals By = <R[Hiﬂ] ‘R[Hﬁfﬁ]> must be
calculated such that the tensorial nature of the Hamiltonians are correctly accounted
for,
' k i QRk ' k

By = <R[Hiﬁ]’R[Haﬁ]> = tr[RISR*S] = R} ,SPTRY 5%, (4.35)
where the inner products are taken as the product between the covariant Hamiltonians
of the metric tensor $*#, where §*f = Soj1 [153]. Overall, this yields a rank-zero tensor.
From the resultant optimal residual vector, an optimal update step is performed ac-
cording to,

P . .
1
HY = ) [cjHl +AqR[H,l. (4.36)

j=p—m+1
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FIGURE 4.2: Proposed Pulay mixing scheme for the Hamiltonians for the inner loop
of the ONETEP Ensemble DFT scheme.

We note that the damping A step size between [0,1] is still required to obtain a min-
imising step along the search direction. Although the Pulay mixing method indirectly
provides an approximated inverse Jacobian J~!, which allows for superlinear conver-
gence, it is still subject to the ill-conditioning introduced by the response of long range
changes in density with respect to potential (Equation 4.6). Similar to the original im-
plementation with the damped fixed-point approach, one can perform a line search
along search direction (Zf: — AciR[H, ilﬁ)]) for A [0,1], but the fixed A approach can
also be utilised to reduce the number of energy evaluations performed at each step.
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FIGURE 4.3: A selection of small molecules which form a small test set used to validate
the Pulay mixing and fixed A appraoches.

4.3 Calculation Set-up

To provide an assessment of the speed-ups associated with both the fixed A approach
and the Pulay mixed Hamiltonians, we performed a set of comparisons for a range of
systems (both insulators and conductors) shown in Figure 4.3. The discussion is then
extended to a set of large metallic facets (Pt(111)) representative of the systems used
throughout the rest of this work (Figure 4.6). We will discuss these structures in the
body of the text. The convergence of structural and electronic properties for the Pt slab

(with respect to k-point sampling and number of Pt layers) are shown in Appendix C.

Calculations are performed in ONETEP with a 600 eV kinetic energy cutoff and a 9.0
ag NGWF cutoff radius for small systems and 850 eV and 12.0 ap for large Pt slabs.
These values were selected by increasing both the NGWF cut-off radius and kinetic
energy cut-off until meV accuracy was achieved. All calculations are performed with
the PBE functional [133]. The Pt structures are generated with an experimental FCC
lattice constant of 3.92 A [154]. The initial pseudoatomic orbitals defining the initial
NGWFs were constructed using the electronic structure corresponding to the au fbau

principle of each atomic species. PAW pseudopotentials are used for all systems.
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4.4 Results

4.4.1 Convergence Behaviour of Inner Loop for Pt3

First, it will be useful to analyse the inner convergence behaviour of a simple example
system within the first outer loop. In this case, we have used the original line search
technique, which calculates optimal A values through a polynomial fit. We also inves-
tigate how varying the history length (m of Equation 4.33) affects convergence. Figure

4.4 shows a range of convergence criteria for a Pt;3.

Considering the change in A[T; {Hys}, {|Px)}] per step, we see that the Pulay mixing
scheme satisfies the convergence criteria within 10-15 iterations. In contrast, the linear
mixing routine satisfies this criterion at iteration 25. This is also reflected in the commu-
tator, where Pulay mixing achieves convergence within the same window as the free
energy, but damped linear mixing fails to converge until iteration 45. Therefore, we can
infer that the Pulay mixing scheme converges more rapidly to a given threshold. This
allows the use of tighter convergence criteria, which can improve the overall precision
of calculated energies. In contrast to the damped fixed point approach, Pulay mixing
occasionally performs uphill energy steps, even when the optimal A value is found.
Although convergence is eventually attained after this step, this shows that the latter
minimisation method is not strictly variational, as is typical of residual minimisation

methods.

To better understand this instability, we can inspect the convergence behaviour of dif-
ferent Hamiltonian history lengths (m). Overall, we observe relatively little variation
between m = 3 and m = 10. However, the convergence with respect to the commutator
and the free energy are marginally more unstable for m = 10, as characterised by the
uphill energy step at iteration 8. This also occurs to a lesser degree for m = 5, but is
entirely eliminated for m = 3. Although convergence is achieved in spite of these up-
hill steps, in the case of m = 10, we note that more iterations are required to correct the
uphill step and satisfy the convergence criteria. In the wider discussion of Pulay mix-
ing methods, the solution to the system of linear equations can become ill-conditioned
[155], leading to stagnation in the iterative subspace of previous residuals [156]. The
use of shorter histories has been demonstrated to marginally improve the robustness
of the Pulay mixing routine [139]. Furthermore, more sophisticated approaches, such
as periodic Pulay mixing, have demonstrated that efficiency can be further improved
by flushing the Hamiltonian/density history within a set number of iterations [156].

Furthermore, the optimal A for the Pulay mixing results are significantly more variable
than linear mixing. Generally, the steps performed within the former scheme are larger,
while the latter continually switches between step sizes of A = 0.029 and A = 0.073.
Comparatively, the larger A values of Pulay mixing further enable accelerated conver-

gence, which results from the better conditioning caused by the approximated ]~
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FIGURE 4.4: The relevant convergence criteria for the inner loop for the first NGWF
iteration for the Pt;3 nanoparticle. From top left to bottom right: The logarithm for the

change in the free energy per atom, the logarithm of the commutator [Hlfgl, KeP(),

the total free energy and the optimal A value obtained through the line fitting routine,
The red horizontal lines represent the thresholds corresponding to convergence.

Beyond iteration 10 of the linear mixing plot, the order of convergence is linear with

respect to the total energy, where the order of convergence is calculated as,

]AP+1 . Aoo|

A A~ (4.37)

where A is approximated for a very tight convergence threshold for a Pulay mixing
scheme of m = 5. The values for this equation are shown in Figure 4.37. For iterations
beyond 10, t, ~ 0.85, where a fixed value of 0 < t, < 1 characterises linear con-
vergence. A similar analysis for Pulay mixing is nontrivial - the total energy changes
inconsistently from step to step, driven in part by the large variation in the optimal A
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FIGURE 4.5: Shows the convergence bevaviour for 20 iterations with the Pulay mixing

and linear mixing routines. The left plot shows the log of the free energy change per

step, and the right plot shows the relative size of each free energy step relative to the
last.

value. Furthermore, evaluating the algorithm in the limit of 7 — co (Where n = 80), the
machine errors intrinsic to computational methods dominates for energy differences of
~ 1 x 107! Ha. This leads to oscillations in the calculation of total free energy at t — co.
Overall, this means the order of convergence cannot be easily calculated in our analysis.
However, from Figure 4.37 we observe that the error in the free energy varies dramat-

ically from step to step, occasionally taking large steps towards the converged final
|A"+1*Aoo|
|A"— Ao
larger steps are observed than the linear mixing algorithm, as evidenced by both the
|A"+17A00|
|A"— A

energy. This occurs more often after an uphill step, where > 1. On average,

n+l__
values and the occasional large steps, where 1A~ A < 0.005.

overall lower AT An|

4.4.2 Convergence of Total Energy for Insulators and Conductors

As shown in section 4.4.1, the Pulay mixing scheme applied to Hamiltonians confers
numerical advantages over the linear mixing scheme within the inner loop. Next, we
considered the convergence behaviour for a set of single-point energy calculations,
which includes optimisation of the NGWFs in the outer loop. We also introduced the
fixed and optimised (line search derived) A approach, where for the former, a value of
A = 0.075 was used. The small test set includes a set of small conducting and insulating
species to ensure that the Pulay mixing scheme is capable of treating systems with large
as well as small band gaps. Further tests were performed with a Pt;30 nanoparticle
as a representation of inhomogeneous systems, with metallic and non-metallic com-
ponents. Calculations were performed on the IRIDIS 5 High Performance Computer
(HPC), using 1 node composed of 40 2.0 GHz Intel Skylake processors. The number of
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TABLE 4.1: Differences in calculation efficiency between the original implementation

of EDFT and the Pulay mixing routine for a mixture of small systems with large band

gaps and metallic systems with small band gaps. Calculated for the fixed A and line

search (optimised A) approach for Pulay mixing. The maximum number of inner loop
iterations set to 50.

Pulay Mixing Method System #Inner Loop  Total Energy = Calculation Time

Difference  Difference / Ha Difference
Fixed A Pty3 -174% 1.50E-06 -172%
Ni3 -86% -0.00014 -214%
H,O 18% -2.06E-08 -5%
Pt150 -153% -3.04E-06 -181%
H, 0% - -3%
CeHg 12% -1.08E-07 4%
Optimised A Pti3 -191% 1.50E-08 -91%
Niy32 -95% -0.00272 -72%
H,O 0.00% -2.06E-10 5%
Pt130 -138% -3.04E-08 -76%
H, 0% - 7%
CeHg -4% -1.08E-09 6%

OMP (Open Multi-Processing) threads was set to 10, with 4 MPI processes'. As shown
in Table 4.1, the optimised and fixed A with Pulay mixing achieves convergence with
significantly fewer overall inner loop iterations than linear mixing with optimised A
(i.e., the original implementation). This translates into significantly shorter calculation
times, especially when the A value is fixed. In spite of using an approximated A, which
moderately increases the number of inner loop iterations compared to using the opti-
mised A at every step, significantly reduced calculation times are obtained. For metals,
convergence is achieved up to three times faster than the original implementation. Fur-
thermore, the final energies are almost identical for most systems, indicating that the
Pulay mixing scheme converges to the same local minima of the original scheme. The
overall low variation in final energies shows that the convergence is robust for an ap-
propriately specified A. This means that the fixed-A method can be used to significantly
improve computational efficiency, without introducing large inaccuracies. However,
Nij3 shows a small variation in energy between the optimised and fixed A approaches.
This results from the greater number of NGWF steps taken in the former method, lead-
ing to convergence to another local minimum. It is possible that a tighter convergence
threshold for the outer loop would lead to greater alignment in the energies between
the tested methods.

Improvements in computational efficiency are less apparent for insulators, where we
observe either more modest decreases in calculation time or even slight increases. As
discussed in Section 4.1.1, the iterative steps for systems with large band gaps are bet-
ter conditioned compared to the metallic species with small band gaps. Therefore, the

1Except for HyO and H,, where the number of processes was set to 1, owing to the restriction in
ONETEP where the number of MPI processes cannot exceed the number of atoms within the system
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overall number of inner loops are significantly smaller in the original scheme, leaving
less room for improvement in the Pulay scheme. Furthermore, the value of A = 0.075,
which is appropriate for smaller metallic systems, may limit the step sizes for small in-
sulating molecules. We observe optimal step sizes of A > 0.5 with line search through-
out the calculation, meaning in practice, that benzene could achieve convergence faster
with larger step sizes. However, the overall total differences are again small for this
subset of systems, meaning the Pulay Mixing routine performs adequately for small

molecules.

4.4.3 Convergence of Total Energy Calculations for Large Pt(111) Slabs

Pt(6x6x5) Pt(10x8x5)

FIGURE 4.6: The Pt (6x6) and 10x8) super cells of the Pt(111) facet based on repetitions
of the (2x1) unit cell.

The Pulay mixing algorithm was then tested for larger metallic Pt slabs, which are rep-
resentative of the systems used throughout the rest of this work. For this, calculations
were performed on two orthogonal unit cells of Pt(111) facets constructed as (6 x6) and
(10x50) supercells (which are periodic repetitions of a primitive (2x1) unit cell) with
5 layers (Figure 4.6). These slabs are separated by 10 A of vacuum in the z-direction.
Calculations were performed on the IRIDIS 5 High Performance Computer (HPC), us-
ing 16 nodes composed of 40 2.0 GHz Intel Skylake processors. Each calculation uses
4 OMP threads, which translates to 160 MPI processes. We further show the perfor-
mance of the fixed A approximation compared to the line search optimised A values.
The fixed A values were selected from the average of the inner loop step values calcu-

lated through the line search routine after the first 5 steps were performed.

In Table 4.2, overall, the Pulay mixing method with a fixed value of A leads to consid-
erable savings in calculation time for large metallic systems. Compared to the initial
implementation of EDFT (Linear-opt), a factor of ~ 2 speed-up was achieved for both
the (6x6x5) and (10x8x5) slab calculations. However, we observe that Pulay mixing
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TABLE 4.2: Energy minimisation performed for a large metallic slabs, showing the
convergence behaviour for a range of properties. The total energy is expressed as
the average of the Helmholtz free energy and the total energy without the entropy
components to recover the approximate Total Energy at 0 K.
System SCF Method Time #Inner Loop # Outer Loop #FD Smearing Total Energy
/h Iterations Iterations ~ TE Evaluations / Ha
Pt(6x6x5) Linear - Opt A 2.90 208 8 630 —16106.66702
Linear - Fixed A 1.79 231 7 253 —16106.66691
Pulay - Opt A 2.65 139 7 562 —16106.66648
Pulay - Fixed A 1.30 132 7 156 —16106.66652
Pt(10x8x5)  Linear - Opt A 8.78 208 7 629 —35792.3217
Linear - Fixed A 6.29 260 9 251 —35792.22859
Linear -Opt A ?®  13.90 347 7 1046 —35792.32668
Linear - Fixed A ?  7.56 368 7 361 —35792.29476
Pulay - Opt A 8.26 134 7 594 —35792.32599
Pulay - Fixed A 4.68 162 8 199 —35792.32627

2 45 maximum inner loop steps. All other calculations performed with 25 maximum
inner loop steps.

calculations with the line search routine, despite achieving convergence with fewer in-
ner loop steps, is markedly slower than the linear mixing routine performed with fixed
A. This can be justified by considering the number of Fermi-Dirac smearing operations
performed, which reflects the number of total energy evaluations and diagonalisations
performed within the inner loop. For both systems, the number of energy evaluations
within the optimised A Pulay mixing are comparable to linear mixing with optimised
A, and significantly higher than all calculations performed with fixed A. This occurs
because, as observed for the inner loop of the simple Pt;3 system (Figure 4.4), A varies
significantly between each iteration. As a result, the line search routine must scan over
a larger number of A values when constructing the A vs. A curve, often performing 3
and up to 6 energy evaluations for the polynomial fitting. In contrast, A in the linear
mixing scheme shows far less variation past iteration 5. As a result, only two points
A vs. A (energy evaluations) are required to find the optimal value of A. On the con-
trary, the fixed A routines completely circumvent the difficulties in performing the line
search for Pulay mixing. Although we observe an overall increase in the number of
inner loop steps for Pulay fixed A vs. optimised A Pulay, the reduced number of total
energy/diagonalisation evaluations by avoiding the line search routine leads to consid-
erable savings in computational time. Furthermore, the Pulay mixing routine calculates
total energies within 0.0005 Ha of the linear mixing algorithms. These values are within
the error limits for the 2 x 10~® NGWF RMS gradient convergence criteria of ONETEP.
An exception to this is total energy for fixed-A linear mixing for Pt(10 x 8 x 5) with
25 maximum inner loop iterations, where the total energy is ~ 0.1 Ha higher than the
corresponding calculations performed with the Pulay mixing routines. The relatively
higher energies for the linear mixing routines are justified by considering the conver-
gence of the inner loop throughout the outer loop steps. For each NGWF iteration, the
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inner loop fails to achieve full convergence, especially for the first NGWF iterations
where the commutator is two orders of magnitude above the threshold of 5 x 10~ Ha.
Overall, this reduces the quality of the NGWF gradient required for updating the NG-
WFs in the outer loop. Although for later outer loop iterations the linear mixing routine
almost reaches the commutator convergence threshold, these calculations still perform
the maximum number of inner loop steps at each NGWF step without reaching con-

vergence.

In contrast, the Pulay mixing routine reliably achieves inner loop convergence for each
outer loop iteration. This ensures the calculation of accurate NGWF gradients through-
out the energy minimisation. The convergence of linear mixing can be marginally im-
proved by increasing the number of maximum inner loop iterations, but we note that
the total energy for fixed A linear mixing is still 7.9 k] mol~! higher than the other min-
imisation approaches shown. Although the increased number of maximum inner loop
iterations leads to overall lower energies, the time taken to perform the calculation in-
creases dramatically. This results from the relatively large steps taken in the first outer
loop NGWF iterations for the fixed Hamiltonians. Between successive outer loops, the
optimal Hamiltonians for the NGWFs at each iteration are significantly different from
each other. Although the Hamiltonian of the previous outer loop step is transferred to
the next, much of the computational effort required to converge the inner loop for one
set of NGWFs must be performed again for the next iteration. This is exacerbated by
the slow, linear type convergence of the linear mixing routine. However, this is less
problematic as we approach convergence for the outer loop, as the optimised Hamil-
tonians from NGWFs in each outer loop iteration are largely similar to one another,

therefore requiring fewer inner loop iterations to reach convergence.

4.5 Chapter Summary

In general, the Pulay mixing routine with a fixed A value provides significant advan-
tages over the initial implementation of EDFT in ONETEP. Furthermore, improved
rates of convergence are enabled by the estimated inverse Jacobian. This allows for
larger minimisation steps, controlled by the A step size, which significantly reduces the
number of iterations required to achieve convergence. Further computational effort
was saved by eschewing the line search routine to optimise A. Instead, a fixed, user
input approximation of A was used. Although this can increase the required number
of inner loop iterations, this option significantly reduces the overall number of costly
total energy evaluations and diagonalisations across the calculation. This was achieved
without a trade-off in terms of accuracy for the final energy, where the differences in the
Helmholtz free energy between the fixed and optimised A approaches were negligible
for small systems. Furthermore, for larger systems, the Pulay mixing routine leads to

increased accuracy by achieving convergence within a reasonable number of inner loop
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iterations. This contrasts with the linear mixing routine, where a large number of inner
loop steps must be specified to achieve convergence at each outer loop step. Although
linear mixing would eventually converge with a large enough number of inner loop
iterations, doing so dramatically increases the calculation time. Especially considering
much of the optimization work is lost between the initial NGWF updates, this makes
the initial outer loop steps incredibly computationally costly compared to the Pulay

mixing scheme.

The resulting speed-ups facilitated by the Pulay mixing algorithm increase the scope
of systems that may be studied. Not only can greater accuracy in energies and forces
be achieved by utilising tighter total energy thresholds, the greater efficiency of the
Pulay mixing algorithm allows studies which include both larger and greater num-
bers of systems. The implementations described here and in the preceding chapter are
particularly important in Chapter 6, where the AG,;; for a broad range of large metal-

lic/absorbate interfaces must be calculated for a number of coverages.
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Chapter 5

Parameterizing the Implicit Solvent
Model for Metallic Work Functions

In this chapter, we study how the implicit solvent method can be parameterized to
obtain the work function and potential of zero charge for the Pt(111) surface. Further-
more, by tuning dielectric cavity parameters, we explore how one can calculate the
enthalpies of adsorption for phenol on a solvated platinum surface with implicit sol-
vent models. The material in this chapter was published in the Journal of Chemical
Theory and Computation [157]:

G. Bramley, M. T. Nguyen, V. A. Glezakou, R. Rousseau and C. K. Skylaris, Journal of
Chemical Theory and Computation, 2020, 16, 2703-2715.

This work was performed in collaboration with our colleagues at the Pacific North-
west National Laboratory (PNNL): Dr. Roger Rousseau, Dr. Vassiliki-Alexandra Gleza-
kou, and Dr. Manh-Thuong Nguyen. Data pertaining to the AIMD simulations of the
Pt(111)/H,O were performed by Dr. Manh-Thuong Nguyen. Sections describing the
AIMD simulations carried out in CP2K were written by Dr. Nyugen. I have written all
other elements of the text. Post-processing of these frames to obtain the work function
and potential of zero change values was performed by myself in ONETEP. The above
authors contributed to the manuscript with corrections and ideas, and the project was

supervised by Prof. Chris-Kriton Skylaris.

51 Background

The study of metallic surfaces has garnered significant interest in the modern chemistry
and materials communities. Platinum catalysts have received especially close attention
given their important role in many emergent technologies such as the conversion of

crude bio-oils to transport fuels [18, 33] and the proton-exchange membrane fuel cells
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(PEMECs) [158]. In addition to empirical studies, computational simulations of these
systems can provide insight into the mechanisms and properties that underlie these
processes, guiding design improvements that increase both yields and turnover fre-
quencies [159]. However, reactivity and selectivity in these applications are strongly
influenced by the solvent environment [1, 45, 160], whether through site-blocking at
the catalytic surface [161], stabilization of polar transition states or the introduction of
side processes involving the solvent [162]. Given these complex effects, one can find
numerous examples where the solvent (usually aqueous) environment can either hin-
der or aid chemical/industrial processes. For example, the rate of hydrodeoxygenation
of ketones on MoQO3 catalysts markedly decreases at high H,O concentrations [161]. In
contrast, aqueous solvent activates the oxidation reaction of ethanol in Au nanopar-
ticles, where the initial O, dissociation step is more thermodynamically favoured by
increases in the binding energy of Au-O, and kinetically favoured by a reduction in the
activation energy [163]. Therefore, computationally efficient techniques must be de-
signed to capture the complex phenomena of solvation at the solvent/metal interface,
in order to accurately measure the energetics of adsorption which underlie heteroge-

neous catalytic processes.

A well-known effect of the aqueous environment on metallic surfaces is the reduction
of the work function [164], which increases the reductive strength of heterogeneous
catalysts [3, 165]. Using DFT simulations of the water monolayer / multilayer at the
surface of Pt (111) Tripkovic et al. [166] showed that solvent-induced changes in work
function can be decomposed into polarization and orientation contributions, as defined
in the model of potential zero charge (PZC) model of Trassati[167]. The orientation con-
tribution is the work function change produced by the net dipole moment of molecular
water, while the polarization contribution corresponds to the electric dipole moment in-
duced by charge transfer/Pauli repulsion [168] effects at the metallic/water interface.
However, static configurations fail to represent the dynamic nature of water. In reality,
the rotational freedom of solvent causes the overall dipole moment to evolve over time,
meaning no single water structure can represent the work function. Although the ex-
perimental potential of zero charge is measured as a macroscopic average over a large
system, computed values across small simulation cells require an ensemble average of
the work function from multiple configurations. Sakong et al. [2, 169] performed ab
initio molecular dynamics (AIMD) simulations of the water/Pt(111) interface, showing
that the mean work function decreases to 5.0 eV compared to the vacuum value of 5.6
eV, with a variance of approximately 0.23 eV. Further work by Le et al. [170] demon-
strated that for a range of metal/water interfaces, the majority of the change in the
work function is induced by the Pauli repulsion charge pushback (-1.3 eV for Pt), while
the net orientation of water provides only a small contribution across a 10 ps simulation
(~0.0-0.2 V).
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Although AIMD studies are able to reproduce the experimental electrochemical prop-
erties of the metallic interface, they are computationally costly. This is especially lim-
iting when considering techniques such as microkinetic modelling, where many (tens
to hundreds) elementary steps are used to calculate the global kinetics of a complex
reaction mechanism [171]. Additional concerns surround the ability of particular GGA
functionals (e.g. PBE, or other GGA methods) to model the structure of water and
solvent metal bond lengths [172].

In principle, continuum approaches can emulate the equilibrium properties of solven-
t/metal interfaces without extensive configurational sampling. Early work showed
that the Poisson-Boltzmann continuum model was able to capture the qualitative de-
crease in the work function [173]. However, the original parameterization of the den-
sity dependent self-consistent continuum solvation model underestimates the PZC as
well as the differential capacitance (DC) for metallic interfaces [173, 174]. Hormann
et al. [175] provided an alternative parameterization of the continuum solvent cav-
ity, where the cavity size was reduced to obtain the PZC of the Pt(111)/H,O interface
obtained with AIMD simulation. However, the computational PZC values from the
explicit solvent simulation include the orientational contribution of the work function
changes, which cannot be represented in the continuum model owing to the absence of
atomistic water. Consequently, the dielectric continuum can only induce work function
changes through the polarization contributions (i.e. electron density changes), which
can be over/underestimated depending on the dipole moment of the water layer and
the structure of the surface under study. Several publications have suggested including
a monolayer / multiple layers of explicit water combined with the dielectric contin-
uum (hybrid implicit/explicit methods) in order to better represent the solvent/metal
interface [176, 177]. Improvements are apparent for metal oxides, where strong interac-
tions between bonding centers and the atomistic aqueous phase constrain the rotational
dynamics of water, which creates a significant dipole moment, thereby introducing a
potential offset of up to 1 V to the work function [177]. However, the hybrid method
reintroduces the effect of the rotational dynamics of the solvent on the surface, which
significantly increases the configuration space that must be sampled to obtain the ad-
sorption enthalpies of adsorbates under aqueous conditions [55]. In contrast to metal
oxides, water at noble metal surfaces maintains orientational freedom at room temper-
ature, meaning the potential offset due to the overall dipole contribution is far smaller
(between -0.1 to 0.2 V) [170, 178]. However, as will be discussed later, this value can be
overestimated by up to 0.2 V, depending on the method used to measure the compu-
tational PZC due to the overestimation of the surface potential of water. We show that
PZC values for the Pt/continuum interface can be brought closer in line with the ex-
periment by parameterizing against the polarisation contribution to the atomistic work
function change. This is demonstrated by performing an AIMD simulation of the wa-
ter /Pt(111) interface and extracting the changes of the work function due to changes in

the electric dipole moment at the surface. This result is then used to reparameterize the
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dielectric cavity of the implicit solvent model, representing the work function changes
in the absence of orientation effects. We also highlight the quantitative improvements
provided by nonlocal van der Waals’ (vdW) functionals such as VV10 [179] for the PZC.
Furthermore, we compare the electronic structure changes of implicit and explicit in-
terfaces through electronic projected d-band density of states (PDOS) for the atoms of

the metallic surface.

A further point that we wish to address is the use of isodensity cavitation models,
which define the dielectric cavity along a specified isocontour of electronic charge. Al-
though these models require the optimization of relatively few parameters, we will
demonstrate that no single-value of the isodensity can simultaneously give accurate
solvation energies for small molecules and metallic work function changes. This is a
consequence of homogeneously applying the isodensity parameter across the whole
system, combined with the large deviations from the default cavity parameters neces-
sary to obtain accurate values of the PZC. [175] Such changes in the shape of the cavity
compromise the precision of the free energy of solvation A G, for species containing
light elements, since the default isodensity values are selected to minimise the error of
the changes in solvation energy for common organic molecules. However, cavitation
schemes such as the soft sphere radii of Fisicaro et al. [123] allow one to define separate
cavity radii for surface metal species and first-row elements. Using these capabilities,
we demonstrate for the first time the ability of the soft sphere model to capture simulta-
neously the aqueous enthalpy of adsorption of phenol on Pt(111), as well as the solvent

work function of the metallic surface.

5.2 Methodology

5.2.1 ONETEP Calculations

Calculations were performed with ONETEP [91], a linear-scaling DFT code. In ONETEP
simulations of metallic systems were carried out with the finite-temperature Kohn-
Sham DFT approach by Mermin [180] which is implemented as a variant of the En-
semble DFT method by Marzari [136], which has been reformulated for the localised
NGWEF framework of ONETEP [83].

The PBE [133] GGA exchange-correlation functional and the non-local vdW correction
including the functional rVV10 [179] were used throughout this work. The core states
were represented by Projected Augmented Waves (PAW) [98], obtained from the GBRV
pseudopotential library [181]. The valence states of the Pt atoms were represented us-
ing 12 NGWFs in spherical regions of radii 9.0 ap, with an electronic configuration of
5p®6s!5d°6p?, following the work by Verga et al. [182]. The psinc kinetic energy cut-off
was set to 850 eV for total energy calculations. Geometry relaxations were conducted
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with the BFGS algorithm [183], using a convergence threshold of 5x1072 E; a,' for
the maximum force. A Fermi-Dirac smearing width of 0.09 eV is used throughout for
electronic occupancies. For systems including explicit water, the slab type Coulomb
cut-off approach was used [135, 184, 185] to eliminate electrostatic interactions per-
pendicular to the slabs. The cutoff point is applied to both the electronic density and
the long-range tail of the local pseudopotentials, while the ion-ion Coulomb energy is
calculated through a quasi-2D Ewald summation. Projections of the Density of States
(DOS) are performed with an angular momentum resolved basis set of pseudoatomic
orbital (i.e., the basis functions of NGWFs used to initialise an ONETEP calculation)
[149]. Projection is performed up to the d angular momentum channel, and plots are

produced with 0.2 eV smearing.

Comparisons to previous benchmark properties for both the Pt fcc bulk and Pt(111)

surface in vacuum are provided in the Appendix C.

5.2.2 CP2K Calculations and ab initio Molecular Dynamics

CP2K [186] electronic structure calculations were conducted using the PBE GGA exchange-
correlation functional [133] corrected with D3-type van der Waals potentials [187] for
dispersion interactions. We employed the GPW hybrid basis set scheme [188] in which
the Gaussian basis sets of Double Zeta Valence Polarised (DZVP) (for the bulk Pt and
the surface of Pt without water) and (Triple Zeta Valence Polarised) TZVP (for a film of
water on Pt(111)) quality were used to expand the Kohn-Sham states and a plane wave

energy cut-off of 450 Ry was used for electrostatic calculations.

An AIMD simulation was conducted within the NVT ensemble, with the temperature
enforced with a velocity-rescaling thermostat [189]. We used modified masses (5 au for
H and 10 au for O) and a time step of 1 fs to integrate the equations of motion. We
used a frame of a system containing 64 Pt atoms and 52 water molecules, published in
a previous work [3]. The system was initially mixed with a 2 ps run at T=1000 K, and
subsequently cooled down to 330 K. This was followed by a production run of 24 ps, at
T =330 K. The temperature of 330 K avoids overstructuring of the water layer, which is
otherwise known to arise in simulations of liquid water using the PBE functional [190].
We should note that, due to the use of modified masses, which enables better sampling
on a shorter trajectory, the dynamics quantities considered do not correspond to the
actual correlation time of water at the Pt(111) surface. Rather, they serve as a measure
of the convergence of the calculations with respect to the characteristic time constant of
the system. Our use of CP2K was motivated by a desire to maintain consistency with
our previous simulations of the metal / water interfaces [3]. The resulting structures
were eventually used as explicit solvent systems to study the electronic structure and
calculate the work function. These calculations were performed in ONETED, allowing
for a consistent comparison between the explicit and implicit solvent models.
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5.2.3 Continuum Solvent Model

The continuum solvent model used in this work utilises the Poisson-Boltzmann method
formulated by Fattebert, Gygi, and Scherlis (FGS) [120-122] This was implemented
with additional dispersion and repulsion terms in ONETEP by Dziedzic et al. [114], pro-
viding quantitative improvement for the free energy of solvation for neutrals, anions,
and cations. Solutions to the Poisson-Boltzmann problem are obtained with the parallel
multigrid DL_MG library [110]. For a full explanation, please refer to Section 2.5.

At this stage of the project, we had not yet developed the full SASA+SAV scheme.
The following represents an older method for parameterizing the soft sphere model in
terms of the SASA-only. The parameters r; and A are determined using a similar error
minimisation procedure as outlined in the original soft-sphere scheme [123]. We use
the vdW radii by Alvarez [129], rygw, and multiply this set of radii by a scaling factor, f,
in order to uniformly increase/decrease the soft sphere radii (r; = fr,4w ). The scaling
value was varied from f = 1.0 to 1.4 to achieve a minimum mean absolute error (MAE)
for the free solvation, AGs,j,. This was performed over a set of 20 neutral molecules
containing a range of common functional groups, and results were compared to exper-
imental data obtained from the Minnesota Solvation Database [125]. The lowest MAE
(1.09 kcal mol~!) was attained for A = 0.5 with a scaling factor of f = 1.33.

To demonstrate the sensitivity of the work function of a Pt(111) surface to variations in
cavity size, the values of pg and r; (for Pt) were varied between 0.0035-0.04 e/ A3 and
3.90-5.20 ayp for each respective cavitation model. To ensure that solvent dielectric was
excluded from the inside of the Pt slab, we manually set € (r) to 1.0 from the bottom
layer to the top layer of the metallic slab.

5.2.4 Work Function Changes in Solvent

The work function of the bare and solvated metallic slabs can be expressed in terms of
absolute potentials (5.1) [176, 190]:

VM
oM =Uy =-"—+xM, (5.1)
€o
M|S VM S
oM = Uy = mAsp — o, (5.2)

where sAp ¢ is the Galvanic potential difference between the solvent and the metal,
M
K
e
charge of an electron, and x

is the standard potential of the electron in the metallic species, e is the elementary

5/M g the surface potential at the solvent/vacuum interface.

The inner (Galvanic) potential of the solvent and the metallic bulk (¢° and ¢M) are
taken as the average of the single particle electrostatic potential through the xy-plane
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FIGURE 5.1: The variation of the electrostatic potential averaged in the xy-plane (¢(z))
for a metallic slab interfaced with solvent and vacuum. ¢ and ¥ shows the inner po-
tential and outer potentials respectively. Two methods of calculating the PZC are: a)
the work function method, where the difference between the outer (Volta) potentials
of the solvent (1)°) and metallic surface (™) represents the work function change.
X is the surface potential of the indicated phase, and b) the Computational Stan-

dard Hydrogen Electrode method, where the Fermi level (Ef) is referenced to the
(i)

inner potential of water ¢¢’. The electrode is converted to the SHE scale by cou-
pling E F—gog) to the free energy of deprotonation for the hydronium cation calculated
in a pure water box, taking into account the zero-point energy of the H-OH,* bond
(Ap pAI(LZ)O+ — AEzp). Defects of the Periodic Boundary Condition between the two
cells are eliminated by subtracting the difference between the bulk electrostatic poten-

tials of water (AV).

for a selected section of the phase, while the outer (Volta) potential (—ept) represents
the single particle electrostatic potential averaged across a plane vacuum outside the
phase indicated by the superscript. The surface potential for either phase (shown as «),
X" therefore represents the work required to move a particle with elementary charge
through the interface between the measured phase and vacuum:

X" =9t =gt (5:3)

From this, the total change in the work function (Agr; = ¢M!° — M) can be expressed
as the change in the outer potential in the vacuum region of both phases:

M
Aot = MAsp + XM —X° =9 —95 = mAsy (5.4)

In addition to the surface potential of the solvent/vacuum interface XS, the solvent
layer introduces an additional potential step between the metal and the bulk of water
(MAs@). This represents the contribution to A¢y; from: a) electron density changes
produced by charge transfer or Pauli repulsion mechanisms at the surface; or b) The
intrinsic dipole of the solvent at the surface.16 According to the theory of Trasatti [167,
191], these two contributions give the total work function change,

A471501E = ¢Pt‘s - ¢Pt = A‘Ppol + A(Porient/ (55)

where A¢grient arises from the net dipole moment of the solvent at the metallic surface,
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and A¢, arises from changes of the electronic structure of the metallic surface. Adpol
was obtained by subtracting A¢orient from the total change in the work function. For
individual configurations of the AIMD simulation, Asient is calculated by performing
a separate single point calculation of the frozen water configuration isolated from the
metallic slab and taking the Volta potential difference between the vacuum regions
either side of the bulk water.

5.2.5 Calculating the Potential of Zero Charge

The potential of zero charge of a surface vs. the standard hydrogen electrode, Upzc (SHE)
is calculated by coupling the electrode under study;,

M (aq) + e (vac) = M~ (aq), (5.6)
to the redox half reaction of the proton,

H* (ag) +e~ (vac) — %Hz (g), (5.7)

To give the overall electrode reaction,

M~ (aq) +H™ (agq) — %Hz (¢) +M: (aq). (5.8)

In ab initio calculations, the overall potential of this equation can be calculated through:
a) the work function method or b) the Computational Standard Hydrogen Electrode
(CSHE).

In the work function method, Upzc (SHE) is calculated as the difference between the
absolute potentials of the two half equations (Equations 5.6 and 5.7) referenced against
vacuum [190],

Upzc (SHE) = Upys (abs) — Uy p, (abs), (5.9)

where,

]/lM

UM‘S(abs) = MASq) — 7 +X§alc’ (510)

and,

o _ 1.0
WS,y (abs) = 22— 210 Xexp: (5.11)
where Uy, . (abs) is the absolutely potential of the standard hydrogen electrode, taken
as the experimentally determined value of Trasatti [191], 4.44 V. U,y s(abs) is taken as
the work function of the metallic/water interface, and x>, and Xfxp are the ab initio

and experimentally determined surface potentials of water.
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In contrast, the CSHE approach [170, 190, 192] calculates Upzc (SHE) by directly com-
puting the free energy difference between the redox equations (Equations 5.6 and 5.7),
where Equation 5.6 is expressed as two steps,

H* (ag) — H" (g), (5.12)
H* (¢) +e (vac) — %Hz (g)- (5.13)

The electrode potential vs. the SHE is then calculated as,

elpyc = —Er —e(@h) — posy) + BopAly . — 155 — AEzp, (5.14)

where Er is the Fermi Level of the metallic slab and ¢, is the average electrostatic
(i) (w)

wat wat

potential of bulk water, with ¢, °, and ¢,,,, measured for a water box in the presence

of the metallic slab and a pure water box respectively (go(wz = 0). ADPASIZ)O+ (15.35

wa

eV) [192, 193] is the free energy of deprotonation of the hydronium cation calculated
via Free Energy Perturbation for the insertion of a proton into bulk water, y§;. (15.81

eV) [194] is the standard chemical potential of the H" ion, and AEzp (0.35 eV) [195]

is the zero-point energy of the H-OH," bond. e(q)g‘;l - (Pngt) is required to correct

the uncertainty in the potential reference (Hartree Potential Shift) of Ap pAgimin the

(w

metallic/water system relative to the measured value of AppA H3)o+' where
AopAfor = BorAfLp: + (@t = Pn): (5.15)

In terms of the redox equations, ADpA(w) . — u%’ — AEzp now corresponds to the
q H;0 Py p

change in free energy of Equations 5.12 and 5.13, and —Er — e(gogzz - (pg?ﬁ) corresponds
to the vertical ionisation energy of the metallic surface corrected for the Hartree Poten-

tial Shift.

To allow comparison of A¢y; and A,riens between the work function and the CSHE

Pt|S

methods, we can recover ¢**'1°> with the following expression:

¢S = (eUPyc + Ul 1, (abs)), (5.16)

which converts the potential vs. the SHE to the absolute potential scale. Furthermore,
we obtain Ay, by assuming that A¢y, is equal between the two methods and re-
adding its contribution to A¢y;.
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5.3 Results and Discussion

5.3.1 Explicit Solvent Work Function Changes

In order to correctly parameterize the work function changes of Pt(111) with the im-
plicit solvent model, we first obtained the value of A¢iy: in explicit solvent. This was
achieved by averaging 90 evenly spaced snapshots (sampled every 0.25 ps) from an
equilibrated 24 ps AIMD run performed at T = 330 K (Table 5.1). We analyzed the
molecular density and orientation dynamics of water molecules within the water lay-
ers to validate the convergence of our simulations (details provided in Appendix C).
Simulations were performed on a (6x6) orthogonal unit cell of Pt(111) with four layers.

The key difference between the work function and computational SHE methods is the
treatment of the surface potential, x°. It is assumed the two values of x° exactly cancel
(i.e., Xfal — X?xp = 0) in both experiment and the CSHE method. However, in the work
function method (Equations 5.9-5.11), the value of x° calculated implicitly in Upzc (abs)
(x3,.) and measured experimentally in UY,. /1, (abs) (ngp) no longer exactly match, as
x> . is determined by the dipole moment of the water/vacuum interface in the AIMD
simulation. Xfal . varies between 0.15-0.33 V in the literature [175, 196] whereas Xfxp is
measured between 0.13-0.14 V [167, 197]. Therefore in the work function method, the
contribution from A¢,rient to Ay can be overestimated by up to 0.3 V, which arises
through the additional contribution to A¢,ien from Xfal e ngp. In contrast, the CSHE
method removes the influence of x° by referencing the Fermi Level to the bulk electro-
static potential of water as opposed to the vacuum potential. This results in a lower
value of Upzc(SHE) for the CSHE method compared to the work function method
(0.21 V vs. 0.43 V for PBE), where A¢yient was +0.5 eV and +0.3 for the work func-
tion and CSHE methods respectively. We therefore draw a similar conclusion to Le et
al., where the contribution of A¢yienito Upzc is relatively small compared to Ao,

The value of U}, - calculated with the work function method coincides within 0.1 V
of previous studies using the same approach but is systematically larger than the com-
putational SHE value by up to 0.2 V for both PBE and rVV10. As each study is well
statistically sampled, this suggests a fundamental discrepancy between the methods
used to calculate Up,-.

In contrast, Ag,,, is independent of the reference used for the electronic energies, as
evidenced by the small quantitative differences between the two methods calculat-
ing Upzc(SHE). Furthermore, A¢,, exhibits a small variance (¢ = 0.01 eV) compared
to A (0 = 0.43 eV). This is a consequence of the rotational freedom of the wa-
ter molecules across the simulation, which drives the variation of A¢,sient, Whereas
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TABLE 5.1: Interface work function (WF) values, cpP 1S, where the values in this work
are obtained from an average of 90 snapshots from a 24 ps AIMD calculation. A¢yyt
is calculated relative to the work function of the system in vacuum found in each
respective work. The work function due to charge rearrangement, A¢, is measured
as the change in dipole due to the change in electron density between the vacuum
and solvent system. Uy, is calculated relative to the absolute SHE of Trasatti [167],

U ) i (abs) = 4.44 V. Errors are calculated as 95% confidence intervals.
2

(Ppt /eV (PPt|S /eV Afptot / eV Afporient / eV A(Ppol / eV Upzc /' V

WEF Method (rVV10) 5.83 500£0.13 -083+0.13 +049+003 —-1324+£0.03 0.56=+0.13

CSHE (rVV10) 583  4.80+0.08 -1.03+0.08 +029+0.08 -132+0.34 0.3640.08
WF Method? 551  4.9640.01 —0.55 0.7 ~1.25 0.52 4 0.01
CSHEP 5.8 4.7¢ ~1.1 0.2 -1.3 0.2

Expt. 5.9 0.34/0.33¢

a Sakong et al. [169] (Pt(6 x 6)/(H20)144), 298 K, RPBE+D3. ? Le et al. [170], 330 K,
PBE+D3. © Value obtaining by adding Uy, , Hz(abs) to calculated Upyc(SHE). 4 Cuesta
et al. [164], CO-adsorption technique. ¢ Gomez et al. [198], CO-adsorption technique.

A¢por largely varies as a result of distance of the Pt-H,O bonds as argued by Tripkovic
[166].

The interfacial layer and the bulk liquid exchange water molecules at a rate of once
every 0.25 ps, indicating these events are accessible on the 24 ps timescale of the cur-
rent simulation. On the other hand, water dipole orientation relaxation occurs on the
~10.7 ps timescale such that we are able to observe more than 2 relaxation events per
molecule during our simulation. This indicates that our current simulation accounts for
the critical timescale at which the metal /water interface structure changes and impacts
upon A¢.

The dynamics in CP2K were performed with the PBE functional with the Grimme D3
dispersion correction, while the snapshots were assessed with nonlocal and empirical
vdW correction schemes (i.e., the rVV10 functional). The empirical approach provides
no correction for the nonlocal density changes due to dispersion, meaning density de-
pendent properties (i.e., the work function) assessed with pure PBE and PBE+D3 would
be identical to one another for the same structure. However, including the rVV10 func-
tional demonstrates that the nonlocal vdW correction systematically increases the work
function and Upz(SHE) for the Pt(111) surface. However, the description of the struc-
ture and dynamics of water varies slightly between these two vdW corrections, partic-
ularly at the vacuum air interface [199]. The use of rVV10 as opposed to PBE+D3 for
the dynamics may, therefore, have some impact on the value of Ag,,;.,; calculated with
rVV10 unaccounted for in this work.
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FIGURE 5.2: Variation of A¢ with differing cavity parameters for a Pt(7x6x4) slab:

a) Isodensity of the FGS model and b) Scaling factor of the soft sphere model with

respect to the default Pt radius of 2.29 A. Line fitting is performed with a second degree
polynomial.

5.3.2 Implicit Solvent Work Function Changes

Previous studies show that water at the Pt surface forms a 5 A bi-layer with a small
orientational dipole at the PZC [170, 178]. Therefore, provided the contribution from
Aorient remains small, the continuum solvent approach can represent the overall work
function change in solvent with reasonable accuracy, with an error similar in scale to
AIMD studies. This section will outline the parameters required to reproduce the work
function changes of molecular water with the continuum model. This will be achieved

using two cavitation models outlined in the Methods section.

The default parameterization of the isodensity model reproduces the qualitative de-
crease in the work function (-0.16 eV). This is significantly smaller than the 1.23 eV
decrease calculated from the explicit solvent systems using PBE. However, by defining
the isodensity, po or the soft sphere radii such that the bulk dielectric is drawn closer
to the atomic centers, the work function decrease can be brought into closer agreement
with the explicit approach. This occurs through increased charge re-arrangement to-
wards the surface, which decreases the dipole moment of the metallic centres and the
diffuse electron region, resulting in greater reductions of the work function. Careful
tuning of the cavity parameters and polynomial fitting then obtain quantitative agree-
ment with the average work function of the explicit solvent systems (Figure 5.2 and
Table 5.2). We show that this is achieved with pg = 0.0024 eA~3 for the isodensity ap-
proach and a scaling factor of 0.87 for the soft sphere of Pt (corresponding to 1,y = 1.99
A) for PBE [175, 190].

Previous studies parameterized the cavity sizes against the PZC of AIMD simulations
using the work function method, yielding a PZC of 0.5 V vs. SHE for Pt(111) [2, 169].
Excluding the overestimated orientation effects decreases the calculated PZC, where
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TABLE 5.2: Default parameters of the isodensity and the soft sphere model cavity

model, and the values from a second-order polynomial fitting of the cavity parameters

for a Pt(7x 6 x4) slab (Figure 5.2) corresponding to the average electronic change in the

work function (A¢,, =-1.23 eV (PBE) / -1.32 eV (rVV10)) of the AIMD snapshots, for

an initial work function of 5.71 eV (PBE) and 5.91 eV (rVV10). The corresponding
values of the PZC are also presented against the absolute SHE scale.

Cavity Model Soft Sphere Scale (f) FGS (po) Upzc(SHE) /V

Default 1.33 0.00035 -
Re-fitted (PBE) 0.867 0.00237 0.04
Re-fitted (rVV10) 0.872 0.00213 0.15
Hormann et al.[175] - - 0.52
Expt.[164] - - 0.29

results obtained with rVV10 result in greater quantitative agreement with experiment
(Table 5.2). Furthermore, the use of a larger slab to parameterize these results leads to
an upward shift of 0.1 eV relative to the explicit solvent results.

We note that by using this parameterization scheme, the value of Upzc (SHE) for the
dielectric interface should be offset by approximately -0.2 to -0.3 V from experimen-
t/CSHE and up to -0.5 V with respect to the work function method, depending on the
calculated value of A@,ient [175]. Although one can represent the orientation contribu-
tion by including an explicit layer at the metallic surface, one would require dynamic

sampling to obtain an accurate value of x>, , which would correctly cancel Xfxp.

5.3.3 Dispersion Including Functionals and the Work Function

The PBE GGA functional systematically underestimates the vacuum work function
compared to the experimental measurements (5.7 vs. 6.0 eV for Pt(111)). However,
the dispersion including functional rVV10 systematically increases the work function
of the Pt(111) slab in vacuum, bringing the value more in line with experimental LEED
studies [200]. By analyzing the change in electron density Ap(r) for a simple Pt surface,
as shown in Figure 5.3, we observe that the rVV10 functional redistributes charge to-
wards the vacuum. This increases the surface dipole, which in turn increases the work
function. In vacuum, the work function of the Pt(7x6x4) surface increases from 5.7
eV to 5.9 eV, similar to observations made by Patra et al. [201]. Values of Upzc (SHE)
obtained with the PBE functional for the implicit solvent interface are significantly un-
derestimated with respect to experiment (0.0 vs. 0.3 V). However, Figure 5.3 shows that
the work function changes induced by the implicit solvent for PBE and rVV10 closely
align. As a result, the inclusion of van der Waals interactions functional increases the
calculated values of Upzc (SHE) by approximately 0.2 V, thereby improving agreement
with experiment. Furthermore, meta-GGAs in conjunction with the rVV10 correction
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FIGURE 5.3: Electron density difference profile between the rVV10 and PBE function-

als for the Pt(111) surface (taken from a single snapshot from the 24 ps AIMD simula-

tion). Blue regions represent electronic charge accumulation and red charge depletion.

First layer of the Pt atoms is taken as z = 0. The green line represents the [111] plane at
the vacuum interface.

lead to greater quantitative increases in the work function [201], therefore we antici-
pate that functionals such as SCAN+rVV10 would further improve the description of
the diffuse electron region.

5.3.4 Energetics of Adsorption for Phenol on Pt(111)

The key advantage of the soft sphere model over the isodensity model is ability to
define the cavity size for individual atoms. The importance of this is highlighted when
considering the free energies of solvation of simple molecules on the metallic surface.
Without considering the entropy of adsorption, this parameterization of the implicit
solvent model provides a simple route for obtaining semi-quantative AH.

As shown in Table 5.3, increasing po values lead to worsening errors for the solvation
enthalpy AH;,, of phenol. We note that AH,,, is calculated as AGs,, in ONETEP,
which includes both cavitation and dispersion repulsion contributions [135]. These
terms contain a significant portion of the solvation enthalpy which cannot be trivially
separated from the relatively small entropy contribution. Therefore, these terms are in-
cluded and calculated values are quoted as AH,, for ease of comparison with exper-
imental enthalpy values. This ambiguity is resovled in Chapter 6, where we explicitly
consider the entropy changes for the constituent elementary steps of adsorption. Con-
sidering that the isodensity values are parameterized to minimise the solvation free

energy error for neutral, cationic and anionic species, it is unsurprising that deviations
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TABLE 5.3: Solvation enthalpy AH,,, for phenol and Pt(111) with the isodensity and
soft sphere models, with the refitted cavity parameters obtained in Section 3.4. All
obtained with the rVV10 functional.

Cavity Model AHgy1, Phenol  AHgg, Pt(111) (per atom)
/ k] mol~! / k] mol~!
Isodensity (Default) —-31.7 —0.24
Isodensity (Refitted) —206.6 —27.66
Soft Sphere (Default) —223 0.61
Soft Sphere (Refitted) —22.3 —16.90
Expt.? —28.9 —9.61°

2 Minnessota Solvation Database [125]. P Calculated using the energy of adhesion of
solid water to the Pt surface and the surface energy of water (See Appendix C).

from the default py value leads to worsening errors. As a consequence, accurate val-
ues of both solvation free energies and the metallic work function cannot be computed
with the isodensity model. In contrast, the soft sphere model radii can be separately
defined for metallic and organic species cavity functions, meaning these quantities can

be calculated simultaneously.

The lack of solvation free energy data for transition metal surfaces limits the compar-
isons that can be made with experiment. However, using a simple modification of the
bond additivity model [202], one can obtain an approximation of AHj,, for a single Pt
atom of Pt(111) (See Appendix C and Singh et al. [48]). This allows for qualitative assess-
ment of the refitted cavity parameters (Table 5.3). For Pt, the default cavity parameters
significantly underestimate the polarisation contribution to the solvation free energy.
As a result, in the soft sphere model, unfavorable cavitation/dispersion-repulsion ef-
fects (See Section 2.5) dominate over polarisation, leading to a positive AH,,, value. By
drawing the cavity closer to the metallic atoms, the effect of the dielectric continuum
is significantly increased. However, both cavitation methods oversolvate the surface
Pt atoms, where the refitted soft sphere parameter facilitates agreement to within 7 kJ
mol~!. The refitted isodensity parameter significantly overestimates the solvation en-
thalpy by 18 k] mol~?, despite yielding the same value of the work function as the soft
sphere model. This suggests that the topology of the cavity has significant effect on the
solvation energy changes. However, in the case of the soft sphere model, a compromise
cavity radius may be found to give adequate agreement with both solvation and work

function changes.

To demonstrate the flexibility of the soft sphere approach, we performed a series of
calculations to obtain the enthalpic changes for the adsorption of phenol on the Pt(111)
surface under aqueous and vacuum conditions (Figure 5.4). Enthalpy changes are com-
pared to the bond-additivity analysis conducted by Singh and Campbell [48] (Table 5.4).

Enthalpies of adsorption for phenol (AH/S) were significantly underestimated by the

ads

PBE functional (-122.88 k] mol~! vs. ~-200 k] mol~! [72]). This leads to qualitatively
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FIGURE 5.4: Thermodynamic cycle for the adsorption of phenol on a Pt(111) (6x6x4)

facet under implicit aqueous conditions and in vacuum. AH™! and AH!Y"~"" de-

scribes the enthalpy of solvation for the interacting and non-interacting metal /phenol
systems. Values found in Table 5.4.

incorrect outcomes, where the low Pt/phenol bond energy results in an endothermic
enthalpy for AH,4; 4esov- Calculations performed with rVV10 substantially improved
agreement with experimental values of AH?5¢ (-188.69 k] mol~! vs. ~-200.0 k] mol™1),
which in turn restores the correct exothermic enthalpy of AH 45 desoro-

We aim to compare computed values of AH /1 to values obtained through bond-additivity
analysis. To achieve this, AH s 405010 Was decomposed into enthalpy changes from three
sources: (1) adsorption of phenol to Pt(111) under aqueous conditions, —AH;’;IS” (2) de-
solvation of the occupied Pt atoms, —AH slab and (3) desolvation of one face of phenol,

AI_Iphenol desolv
desolv ’
— AHygsdesoto & —ANHES —AHS, — AHIY, (5.17)
slab phenol phenol+slab phenol+slab
where —AH3Y, —AH, ., = —AH), . (Table 5.4). Values of —AH,_ ;. were

obtained through two approximations. Similar to the explicit system, adsorbed phenol
and its dielectric cavity ‘displaces’ the implicit solvent from the metallic surface. As
phenol adsorbs planar to the Pt surface, the solvation energy lost for the metallic slab
can be approximated as a proportion of the metallic slab the dielectric cavity of phenol
occupies in the xy-plane multiplied by the total solvation of the metallic slab,

slap _Area of phenol cavity

—AH ~ x AHEP, 5.18
desolo™ ayeq o f Pt sur face solo (-18)
A further approximation can be made for AHE:;’;ZZ by considering the flat lying ad-

sorption geometry of the molecule with only one side facing the implicit solvent, there-

phenol __ 1 phenol
7 XAH

fore desolvation can be simplified as —AH],_;, ~ oy - Bond additivity analy-

sis calculated a ~57 kJ mol~! discrepancy between experimental values of AH?% and

derived values of AH/?. However, it has been suggested phenol adopts high local
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TABLE 5.4: Enthalpy changes outlined in Figure 5.4 for the adsorption of phenol to the
Pt(111) (6x6x4) facet under aqueous conditions. Calculations were performed with the

re-fitted cavity parameters obtained in Section 3.4 for both soft sphere and isodensity

phenol+slab
AI_Iclesolv

of the slab and phenol upon adsorption. AHZ;ZSU corresponds to the heat of adsorption
under aqueous conditions.

methods. shows the enthalpy change associated with the desolvation

Cavitation Model AHY  AHugsdesoly  AHRo o AR
kI mol~! k] mol~! kJ mol~! k] mol !
PBE (Isodensity) —12288  36.88 31736 28049
PBE (Soft Sphere) - 29.09 ~13403  —104.94
rVV10 (Isodensity) ~ —188.69 —4 ~318.38
rVV10 (Soft Sphere) - ~35.51 ~14142  —-176.93
Bond-Additivity Model ~ —200.0°  —21.05 ~1160  —148.4¢

@ Carey et al., SCAC 140 K [58]. b Akinola et al. [49]. © Singh et al. [48].

coverages on Pt(111) under aqueous conditions [203]. In vacuum, higher coverage
reduces adsorption strength from -200 k] mol~! to -142 k] mol~! [58], which sug-
gests the difference between AH/Y and AHYC results from coverage effects rather
than an intrinsic weakening of Pt/phenol bonding. As our calculations are performed
with low phenol coverage, one should expect AH/? to be approximately equal to
AHY¢. Calculations using the soft sphere model support these findings, where the
difference between AH” and AH"% is correspondingly small (+17.95 k] mol~! and
+11.76 k] mol~! for PBE and rVV10 respectively). In contrast, the same difference ob-
tained with isodensity cavitation is substantially larger (—157.60 k] mol~! (PBE) and
—129.70 k] mol~! (rVV10)), largely as a result of the overestimated value of AHgZZ;Z.
This is a consequence of readjusting the pg cavity parameter, which places the dielectric
too closely to the phenol molecule. The soft sphere model circumvents this by main-
taining the default cavity size of phenol, while using the newly parameterized cavity

radii for Pt from Section 3.4.

It should be noted that the soft sphere model overestimates the value of AH 55;72”51%
for both functionals and cavitation models. For the preferred model (rVV10 with soft
sphere), this leads to a misleading agreement with the high coverage experimental
value of AHgs gesorn (-35.51 kJmol~! vs. -21.0 k] mol~!), where one would expect a
significantly more negative enthalpy in accordance with observations of phenol under

low coverage. The likely source of this error is the oversolvation of the Pt(111) surface,
thenol+slab

desolv . The overestimated solvation

leading to a comparatively large value of A
energy for the Pt surface is moderately reduced when one considers that the implicit
solvent solvates a smaller surface area than the explicit solvent (corresponding to 7.5
Pt atoms in the soft sphere model as opposed to 9 Pt atoms for the phenol footprint in
the explicit model), which still results in a discrepancy of approximately 40 k] mol ™!
for AHS . Conversely, the use of the solvation free energy as opposed to the heat

of solvation reduces the solvation estimate of phenol compared to the bond additiv-

ity analysis (16 k] mol~! vs. 25 k] mol~! for AH;?;’;ZI). Error cancellation between
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AH 55:0721 and AH3", " reduces the error between the bond additivity analysis and the

rVV10 soft sphere model for AH" henoltslab 4 approximately 30 k] mol~!. To achieve

desolv

closer agreement with the experimental enthalpy values, further parameterization of
thenol+slab

the Pt cavity must be performed to align the values of AH),,_ ;.

. This emphasizes
a need within the catalysis community to find accurate values of free energy changes
of solvation for transition metal surfaces. Values of the work function change will also
need to be taken into consideration, as we anticipate that parameterizing to achieve
more accurate solvation enthalpies will lead to deviations from the ideal value of A,
obtained in Section 3.6. However, the scheme shown here provides an outline as to how
the implicit solvent model with the soft sphere cavitation method can be used to obtain

qualitative agreement with experimental enthalpy changes under aqueous conditions.

In the wider context of this work, the work function parameterization method acts as
a first guess for the cavity parameters used to calculate AH fzglsv. In order to obtain more
precise energetics of adsorption, it is necessary to minimise the errors of AG,,. This
will give a more accurate value of AH;ZE’;?)IU, which will in turn better capture AHZZISU

according to the Hess cycle.

5.3.5 Electronic Structure of the Metal/Solvent Interface

The previous section shows that the implicit solvent model can accurately represent the
work function changes for Pt(111) induced by solvent. However, this does not guar-
antee the electronic structure of the Pt(111)/H>O interface is accurately represented.
Figure 5.5 shows the density difference profiles Ap(z) averaged across the 90 selected
snapshots for both the implicit and explicit solvent models. Overall, implicit solvent
replicates the electron displacement of the explicit model, with depletion of electron
density from the diffuse region and an accumulation at the metallic surface. This corre-
sponds to the "pillow effect’ model of charge displacement, where the electron density
of the surficial metal atoms is repelled away from the adsorbate through a Pauli re-
pulsion mechanism. However, the implicit model does not completely capture certain
electronic features of the explicit molecular approach. Most notably, compared to the
explicit water layer, the implicit model shifts the peak appearing at ~ 3 A to 2 A into sin-
gle peak. This likely arises due to the absence of electron density from the H,O bi-layer,
meaning there is a smaller quantity of charge that can be displaced from the interface
region. Furthermore, the implicit solvent method fails to capture the charge accumu-
lation/depletion region in the subsurface region (-2 A to 0 A), while also removing
the double-peak character of the electron density change. Further differences are evi-
denced in Figure 5.6, which shows a yz-plane of the Pt/water interface. In the explicit
interface, two dominant bonding modes of water feature in the selected plane [204]: H-
up (y ~ 8.5 A) where bonding takes place through the oxygen lone-pair and; H-down
(y~46&13 A), where water and Pt form a 3-centre bond. In both bonding modes,
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FIGURE 5.5: Density difference profile, Ap(z), averaged across the 90 snapshots for
both the explicit and implicit solvent, with z = 0 taken as the first Pt layer.
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FIGURE 5.6: Charge density difference, Ap(r) across the yz-plane at x = 4.86 A, for a

selected snapshot of: a) the bare slab with implicit solvent and b) the slab with the

explicit solvent system. In these models, the first Pt layer is taken as z = 0. Red and

blue regions correspond to electron depletion/accumulation respectively. The green
line represents the [111] plane at the solvent interface.

chemisorption induces significant and complex pattern of charge re-arrangement. The
H-up arrangement results in a displacement of charge from the interface due to Pauli
repulsion between the oxygen lone pair and the metallic electron density [204]. Con-
versely, the H-down configuration results in charge accumulation between water and
Pt, which contrasts with the Pauli repulsion model of the Pt/H,0O interface. Previous
AIMD simulations show that the H-up configuration at the Pt(111) surface dominates
[178], which justifies the negative value of Ay

In contrast, the implicit solvent approach displaces the electronic density through a
simple charge polarisation mechanism. This results in homogenous charge displace-
ment towards the surface, with no re-hybridization of the surface states taking place

Ap(r)/le| A3
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FIGURE 5.7: Dielectric permittivity across an xy-slice of the Pt(111) surface for: a) the
soft sphere cavitation model and b) the isodensity model.

due to the absence of bonding interactions. These two modes of charge re-arrangement
lead to dissimilar electronic structure changes for the surface states of Pt. This is ev-
idenced by the density of states (DOS) plot of Figure 5.9, which shows the projected
d-states of the first layer of Pt atoms for both solvent models, as well as their DOS
differences compared to the Pt slab in vacuum. Both solvent models produce a similar
degree of distortion, but these induced changes are inconsistent across the d-band. This
is most prominent between -4 and -2 eV, where the molecular water induces an increase
in the DOS at the -3.4 eV peak and a slight depletion of the -2.6 eV peak, whereas the
continuum model reverses this observation. In addition, the implicit interface exhibits
larger changes in d-states close to the Fermi level, especially for the trough at -1 eV,
whereas the explicit interface has more pronounced distortions in the more negative
regions of the d-band. Furthermore, as discussed by Le et al. [170], interaction with
the Pt surface leads to significant broadening of the band states of water, while the va-
lence band penetrating the Fermi level of Pt is evidence of charge transfer across the
surface/solvent interface. Considering this and the charge density difference of Figure
5.9, the charge re-arrangement at the interface must arise through differing mechanisms
for implicit and explicit solvent. Both soft sphere and isodensity cavitation models can
replicate the overall charge displacement of the equilibrated AIMD simulation of the
Pt/(H>O) interface. The two cavitation models produce subtly different shapes of the
dielectric function (Figure 5.7), where the soft sphere approach produces a less planar
topology than the isodensity method.

The differences in the electronic structure induced by the soft sphere and isodensity
models are relatively minor. Figure 5.8 shows the d-projected DOS and DOS difference
plots of the two cavitation models. Here, we observed the two d-bands exhibit broadly
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FIGURE 5.8: a) Density of States (DOS) of the surface Pt atoms, projected into

the d-band, averaged across 90 AIMD snapshots for the Pt(4x4x4) in vacuum and

Pt(4x4x4)/continuum interface with the soft sphere and isodensity model. Energies

relative to the Fermi level, Er. b) Difference of the PDOS d-band with respect to the Pt
surface in vacuum.

similar changes between -2 to -6 eV, with slightly more pronounced changes near the
Fermi level. These changes likely arise from the different topologies of the dielectric

cavities, leading to differing electronic structure changes.

However, despite these differences in the electronic structure, the implicit solvent model
replicates the overall displacement of charge towards the metallic surface that we ob-
serve with the explicit solvent model, correctly replicating electrochemical properties.
This highlights the potential of the continuum solvent approach for further study in

both catalytic and electrochemical studies.

5.4 Chapter Summary

This chapter presents a comparison of the Poisson-Boltzmann continuum solvent model
and explicit solvent AIMD approaches for the Pt(111)/water interface.

We demonstrated a solute cavity parameterization method for the implicit solvent model
to obtain equilibrium solvent work function changes due to the electronic structure
changes of the AIMD simulations. Central to this method is the assumption that the
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FIGURE 5.9: a) Projected Density of States (PDOS) of the surface Pt atoms, projected

into the d-band, averaged across 90 AIMD snapshots for the explicit Pt(4x4x4)/H,0O

interface, vacuum Pt(4x4x4) and Pt(4x4x4)/continuum interface with the soft sphere

model. Energies relative to the Fermi level, Er. b) Difference of the PDOS d-band with
respect to the Pt surface in vacuum.

work function change arises mainly through electron re-arrangement at the Pt/H,O
interface (A¢po = -1.2 €V), while the net dipole of water at the interface makes a rel-
atively small contribution (A¢,sient= +0.3 €V). We also remarked on the use of disper-
sion including functionals in relation to the work function, where use of the rVV10
functional resulted in systematically higher values (0.2 eV), bringing computed values
closer to experimental values in vacuum compared to non-dispersion including GGA

functionals.

We further compared the ability of soft sphere and isodensity cavitation approaches
to obtain accurate solvation enthalpies for the phenol/Pt(111) adsorption process. As
the soft sphere model can parameterize the dielectric cavities of organic and metallic
species separately, one can capture the solvation energetics of phenol and the metallic
surface, as well as the work function of Pt in solvent. As a result, it was possible to
corroborate the observations of bond additivity approaches, which predict that the in-
troduction of solvent does not significantly alter the adsorption energy of phenol under

low coverage.

Additionally, we showed that the implicit solvent model was able to reproduce the
Pauli repulsion induced push-back of the explicit Pt/H,O interface. However, the pro-
jected DOS of the Pt surface showed that the continuum model produced dissimilar
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d-band distortions compared to molecular H,O. This was a consequence of the various
modes of water binding to the surface Pt, where overlap between the valence states
of water and the d-band result in charge transfer as well as van der Waals” repulsion.
Contrastingly, the continuum solvent resulted in a simpler homogenous pushback of
charge towards the surface, resulting in less pronounced changes across the d-band,

but producing larger changes closer to the Fermi level.

The work outlines a technique to obtain equilibrium properties of the electrochemical
interface using a computationally inexpensive continuum solvent model. An implicit
solvent model parameterized to obtain the work function correctly characterises the
electron density pushback from the diffuse regions to the metallic surface. However,
due to limitations of the implicit solvent model, the electronic structure changes in-
duced by bonding are not represented. We also showed the importance of separately
parameterizing the dielectric cavity for lighter elements and the heavier metallic atoms.
We further note that this scheme does not apply to surfaces which introduce a signif-
icant degree of orientational order to the explicit water layer, as the implicit solvent
cannot represent the intrinsic dipole of atomistic water. Further developments could
use this parameterization approach to construct a more general scheme for a range of
metallic surfaces, which will allow computationally efficient simulations of interfacial
processes for applications in areas such as electrocatalysis, energy storage, and materi-

als science.
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Chapter 6

Adsorption of Organic Compounds
to Pt(111)

This chapter provides a more detailed account of the implicit solvent model in its ap-
plication to adsorption processes. It is shown how the implicit solvent model can be
parameterized to obtain the free energy of solvation for the Pt(111) surface. Further-
more, simply computed statistical thermodynamic models are used to calculate the
entropy of adsorption of various organic molecules. Finally, the parameterized implicit
solvent model is used to obtain the aqueous free energy of adsorption for a range of
coverages and orientations of the organic adsorbates. The methods presented provide
a diagnostic toolset for evaluating adsorption free energies at low computational cost,
which can support the growing body of experimental data in the field of heterogeneous
catalysis. The material in this chapter was published in the Journal of Chemical Theory

and Computation [205]:

G. A. Bramley, M.-T. Nguyen, V.-A. Glezakou, R. Rousseau and C.-K. Skylaris, Journal
of Chemical Theory and Computation, 2022, DOI: 10.1021/acs. jctc. 1c00894.

This work was performed in collaboration with Dr. Roger Rousseau, Dr. Vassiliki-
Alexandra Glezakou, and Dr. Manh-Thuong Nguyen. Data pertaining to the MD sim-
ulations of Pt(111)/H,O were performed by Dr. Manh-Thuong Nguyen. The above
authors contributed to the manuscript with corrections and ideas, and the project was
supervised by Prof. Chris-Kriton Skylaris.

6.1 Background

Adsorption free energies (AG,ys) play an important role in determining the overall ther-
modynamics of heterogeneous catalytic processes. Competitive adsorption between
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different species dictates their relative coverages at the metallic surface, leading to re-
action bottlenecks if the thermodynamic equilibrium largely favours the adsorption of
one species over another [1, 60]. However, the enthalpic and entropic contributions to
the free energy are altered by the presence of solvent (AG:%?) [162]. For example, the ef-
fects of the solvent decrease AGZZIZSU of phenol on the surface of Pt(111) relative to AGY7¢
from —220 [58] to 29 k] mol~! [49]. This is a result of the AHZ;}IS” penalty of displac-

ing the aqueous solvent layer, which is reduced by AS*%/” gain from the desorption of
water into the liquid phase. Combined with further factors such as coverage [58, 206],
the accurate calculation of AG? requires understanding of the entropic and enthalpic

contributions to the constituent steps of the adsorption process.

In atomistic simulations, implicit solvent methods provide a computationally inexpen-
sive alternative to dynamic sampling techniques to calculate the free energy of solva-
tion (AGgry). In this method, the molecule is inserted into a cavity within a bulk dielec-
tric medium, where AG;,y, is calculated as a sum of: 1) polar contributions arising from
the electronic response to the dielectric medium (AGy,), and 2) non-polar contributions
such as cavitation and dispersion-repulsion interactions, usually approximated from
the shape and size of the cavity (AG,;;0) [13]. Many studies have been conducted to as-
sess the quantitative accuracy of implicit solvent techniques with respect to experiment
and explicit solvent simulations - particularly for proteins [207, 208], small molecules
[117, 123], and surfaces [209]. For large solute assays, the implicit solvent technique
provides solvation free energies with errors of approximately 13.4 k] mol~! (Gener-
alised Born/SASA) [117] to 2.3 k] mol~! (Poisson-Boltzmann Model) [123]. In protein
studies, publications also assess the structural accuracy of implicit solvent techniques,
where the continuum solvent approach can lead to structural errors [208], as well as
spurious bottlenecks in the potential energy landscape for protein folding simulations
[207]. In contrast, systematic quantitative studies for implicit solvation are rare for the
adsorption process on metallic surfaces [49, 56], which means that thorough theoretical
and experimental validation is required to perform predictive studies [210].

At the metallic surface, large errors of AG;,, occur with electron density isovalue based
dielectric cavity functions [157], which mainly arise from the use of a single charge
isocountour for species which require distinct cavity parameters (i.e., heavy metallic
and light organic atoms such as C, H, and O) [55, 157]. The optimal parameters for
the solvation of small hydrocarbons dramatically undersolvate Pt atoms at the (111)
facet, which require much smaller cavities to give accurate values of AG,,. This re-
sults in small AH*/ values compared to experimental binding enthalpies of aqueous
solvent to Pt (—0.24 k] mol~! [157] vs. —9.61 k] mol~! [67] per atom). Consequently,
anomalous values of AGS? arise, yielding either no improvements in the accuracy of
adsorption free energies over standard vacuum calculations [211] or increased stabil-
olv

isation of adsorption in solvent. In the case of phenol, this leads to AGS)? errors of
up to 200 k] mol~! for the implicit solvent model vs. Cyclic Voltammetry experiments
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[49]. However, this inaccuracy is alleviated by separate parameterization of the metallic
surface atoms and the organic adsorbates, leading to semi-qualitative agreement with
experimental values of AGS%? by decreasing the cavity size for the metallic atoms while
maintaining the cavity parameters for the organic adsorbates.

solv
ads ’

this study explores the ability of statistical mechanics-based models to calculate AS3%

In addition to constructing an implicit solvent model that accurately calculates AG

[212]. In the gas phase, the experiment has determined that the entropy of adsorbed

Sgas,O

species with strong lateral attractions (S}

3D gas entropy (81%2210) [12],

) follows a linear relationship with its ideal

0 ,0
S%z = 0'68<S§/LIIZI - Sgas,lD—trans)/ (6'1)

where S

gas1D—trans 18 the standard molar entropy of the translational gas phase entropy

in one dimension. As ngz’o is approximately 2/3 of S%Z}O, it is assumed that translation

on the z-axis is eliminated, but diffusion occurs freely on the xy-plane. This implies

gas,0
ads

as the free translator (FT) regime [213]. Compared to more sophisticated lateral trans-

that entropy can be calculated using 2D ideal gas models to approximate S (known
lational entropy expressions such as the Hindered Translator (HT) model, FT forms an
upper bound where all translational microstates in the xy-plane are equally accessible.
However, for flat potential energy, which surfaces allow facile diffusion, comparisons
of FT with Complete Potential Energetic Sampling (CPES) methods provide estimates
of ngz’o within 10 % error of full sampling techniques for a range of temperatures above
273 K [69]. To calculate the entropy of solvation, simple models using empirical prop-
erties based on SPT (Scaled Particle Theory) and the accentric factor model accurately
calculate the AS,,, of small molecules [212]. Using comparisons to experimental data,
this study will assess whether these simple geometric models based on statistical me-
chanics can provide approximate values for the entropy of solvation, and therefore the

solv
overall AS e A

The role of coverage effects on the AG*%Y” of small organics on metallic surfaces must
also be understood to assess the accuracy of the implicit solvent model [206]. Although
the decrease in adsorption enthalpy due to lateral repulsions between neighbouring
adsorbates is observed in vacuum [58, 206, 214], less is known about the impact of
coverage on a solvated surface. The experimental data fit to the Temkin isotherm
shows that AG:)” has a weak dependence on coverage, with only a small decrease
in 0 to 5 k] mol~! from zero to full coverage for various phenolic compounds on the
surface of Pt(111) [45, 49]. In contrast, AH7S decreases by 121 k] mol~! over the same
coverage range for phenol [58]. It has been proposed that phenol forms islands of high
coverage in solvent, even at low concentrations, which emulates the effect of saturation
coverage in vacuum. This can rationalise the seemingly low binding energies of phenol
at the Pt(111) surface in the aqueous phase, but this theory has not been confirmed [48].
As the implicit solvent simulates the energetics of solvation, this work of this chapter
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uses this computationally affordable method to assess the coverage dependencies in
the aqueous phase and to evaluate the local high coverage theory. In addition, differ-
ent orientations of the adsorbates at the Pt(111) surface were tested to determine which
geometries best match the experimental energetics of adsorption.

This study validates the approach of separately parameterizing the metallic surface
atoms by comparing our results obtained with a commonly used electron density-based
formulation of the implicit solvent model. Then, using the increasing quantity of ex-
perimental reference data for the aqueous adsorption free energies of organics on the
surface of Pt [45, 49] paired with data from the older literature [47], a quantitative anal-
ysis is performed for the AG9 values obtained with the implicit solvent model for
the Pt(111) surface. Validation of this new approach is achieved through comparisons
with experimental data obtained from CV for the hydrogen underpotential deposition
experiments [45, 49] and radiotracer experiments [47], which will allow for error esti-
mations of AG$}? in implicit solvent. Statistical mechanics approximations for the sol-
vation entropy [13, 212] are also used to facilitate further comparison with experiment.
Finally, the ability of the implicit solvent model to capture the coverage dependency of
AG®! was investigated. This was achieved by performing simulations over a range of

ads
coverages with implicit solvent comparing their trends with experiment.

6.2 Methodology

6.2.1 AD initio Simulations

Ab initio simulations were performed with the ONETEP [91] software package, which
performs linear-scaling DFT simulations using localised non-orthogonal generalised
Wannier functions (NGWFs) [215] with a basis of periodic sinc (psinc) functions. Sim-
ulations were performed using the Ensemble DFT (EDFT) method [136, 180], adapted
to the localised NGWF framework of ONETEP by Ruiz-Serrano et al. [83], and further
developed to include Pulay mixing of the Hamiltonians.

The optB88-vdW-DF1 functional is used throughout this work [216]. Core states are
represented by the Projector Augmented Waves (PAWs) [98] of the GBRV pseudopo-
tential library [181]. The valence shell of Pt is represented with 12 NGWFs with cutoff
radii of 12.0 49 and an electronic configuration of 5p%6s'54°6p". The psinc kinetic en-
ergy cut-off was set to 850 eV throughout. Geometry optimisations were performed
with a LBFGS algorithm [217], using the universal sparse preconditioner [106] with a
convergence threshold of |Fjmax < 3x1073 Ej, a, .

Using the example of a commonly used, conventional plane wave code of a charge
based implicit solvent model, comparison calculations for the electron density based
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dielectric cavity method were performed using the VASP Plane Wave DFT code pack-
age [81, 143, 218] with the VASPsol implicit solvent application [219, 220]. Single-point
energy calculations in VASP used the optimised geometries from ONETEP calculations.
PAW pseudopotentials [98, 101] were used to represent the core electrons. A kinetic en-
ergy cut-off of 450 eV was used. Energy minimisation was performed with the RMM-
DIIS procedure using Kerker preconditioning.

In light of the two different kinetic energy cut-offs for VASP and ONETED, it should
be noted that the cut-offs in each code are not completely analogous to each other.
Firstly, VASP considers the plane wave cut-off in a sphere in reciprocal space, whereas
ONETEP includes the plane waves in a cube. Secondly, ONETEP requires higher ki-
netic energy cut-offs than plane wave codes to achieve sufficient localisation of the
NGWFs [221]. In both cases, the kinetic energy was incrementally increased on a test

slab system until meV accuracy in total energy was achieved.

6=0.67 6=0.83

FIGURE 6.1: The coverages of phenol on the Pt(111) facet. All adsorbates horizontal
with respect to the surface.

The slab geometries used throughout are based on a four-layer orthogonal Pt(111) facet
with dimensions of (7 x 6), (8 x 8) or (10 x 8) where appropriate for the desired cover-
age. Coverage was also varied by increasing the number of adsorbates on the surface.
Figures 6.1 and 6.2 demonstrate the variation in coverage for the surface slabs under
study for phenol and cyclohexanol. Appendix D shows a similar scheme for furfural
and hydrogen geometries. Large simulations cells were necessary as ONETEP uses the
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FIGURE 6.2: The coverages of cyclohexanol on the Pt(111) facet. All adsorbates hori-
zontal with respect to the surface.

I'-point only for total energy calculations, meaning the unit cell in real space must be

large enough to sufficiently sample reciprocal space for a single k-point.

6.2.2 Implicit Solvation

Implicit solvent calculations were performed using ONETEP’s Poisson-Boltzmann (PB)
implicit solvent module [114], where solutions to the PB equation are calculated us-
ing the bespoke DL_.MG multigrid parallel solver [110]. The free energy of solvation
(AGg1p) is expressed as:

AGsory = AGpor + AGyypop (6.2)

where AG,, is the electronic response of the molecule to the bulk dielectric and AG,;,
is the nonpolar contribution composed of the cavitation free energy and dispersion-
repulsion contributions. AGy,, is calculated using a linear relationship between the
Surface Accessible Surface Area (SASA) and the Surface Accessible Volume (SAV):

AGppor = (% 7)S+pV (6.3)

where 7 is the surface tension of the solvent (0.07415 N m~!), p is the solvent pressure
(-0.00035 GPa) and « is an additional scaling factor used to improve the fit of AG,,, to
the experimental values of AGy,.
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The dielectric cavity is defined using the Soft Sphere atomic radii based cavity functions
of Fisicaro et al. [123]. In this model, the dielectric cavity is defined as:

ety {Ri}) = (0 — 1) {Hh (38,71 = R +1 64)

where ¢y is the bulk dielectric constant (78.65), and & is a set of continuous, atom cen-
tered distance-based functions defined between 0 and 1, expressed as:

i _ R — vdW
h({r;dW,A,f};Hr—RiH):;[1—|—erf(”f RIHA fr )] 6.5)

which is defined by parameters A (the smearing width of the dielectric cavity func-
tion), r; sw (the radius of the cavity of atom i taken from the vdW radius set of Alvarez
[129]), and f (the linear scaling factor), while taking ||r — R;|| as an argument (the dis-
tance between the position of point r and atom 7 (R;)). The scaling factor of f = 1.20 is
used to minimise the MAE of a test set of 20 neutral molecules with respect to exper-
imental values [125] (details about the ONETEP implementation can be found in the
method section of ref[157]). The scaling factor a« (Equation 6.3) was further parameter-
ized to minimise MAE with respect to the experimental AG;,;, of 271 neutral molecules
(x = 0.86). Pt uses a van der Waals radius of (2.29 A), and f is varied to match the
experimental values of AG,, of a single Pt atom of the (111) facet. We outline this pro-
cess in Section 6.2.5. We modelled this approach on our previous publication, where
f is varied to obtain the correct work function of Pt(111) in solvent, which provides
initial guidance in obtaining optimal values of AG;,, [157]. To prevent the erroneous
inclusion of dielectric within the metallic surface, a region within the simulation cell
is defined where €(r) = 1 from the top to bottom layer of the Pt slab. For the two
high coverage geometries (6 = 0.75 and 1.0) of cyclohexanol in vertical orientation, the
exclusion region is extended through the adsorbate to prevent the creation of dielec-
tric regions between the metallic slab and cyclohexanol. Total energy calculations in
solvent are performed using the relaxed geometries of the vacuum phase, as force cal-
culations for the soft sphere cavity model within our implicit solvent scheme are yet to
be implemented. However, for the organic adsorbates under study, the implicit solvent
leads only to minor geometric changes [222].

The charge-based implicit solvent model of VASPsol was used to compare against our
implementation of the Fisicaro method. Default settings for the H,O solvent were used.
In contrast to the soft sphere method, the charge based cavity in VASPsol method is
defined using the charge density, n(r):

e(n(r) =1+ ;erfc<h‘(”g(\%”c)) (eo _ 1), 6.6)

where similar to the soft sphere model, the complimentary error function defines a
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smoothly switching function between 0 and 1. 1. defines the charge isocontour of the
function where the complimentary error function is 0.5, and ¢ defines the width of the

switching function.

6.2.3 Calculation of AGZ;’IZSU

A B

»
AGg, (Mol +Pt) [ e )

AGZ AGZ5e™ AGZds
c De o
® o
— > om®
AG,,, (Pt/Mol)

FIGURE 6.3: The process of adsorption according to four difference reference states is

shown where A) The molecule and Pt(111) are isolated from one another in vacuum.

B) Both the molecule and Pt(111) are isolated from one another in the solvent phase. C)

The molecule is adsorbed onto the Pt(111) surface. D) The molecule is adsorbed onto

the Pt(111) surface in the aqueous phase, which releases a number of water molecules
into the aqueous phase relative to state B.

The free energy of adsorption in the vacuum phase (AGYY) is calculated as the differ-
ence in free energies between the adsorbed system in vacuum (M/Mol) and the isolated
metallic slab and molecule (M+Mol),

AG%? = G(M/MOZ(vac)) - (G<M(vac)) + G(MOZ(vac))r (6.7)

which corresponds to the change in free energy between states A and C in the Hess
cycle of Figure 6.3. Assuming that the overall entropy change for the M,y component
of the system is negligibly small, AS"%¢ is approximated solely through entropy changes
experienced by the molecule, and AH”¢ through the total energy differences 0 K from
the DFT calculations (equation 6.7). The entropy of the isolated molecule, S(Mol ()
can be decomposed into translational, rotational, and vibrational components [212],

S(MOI(WC)) — S%S,I3D — Sfﬂc’?’D 4 S;}ac,?)D + Szac,?;D. (6.8)
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55730 is small compared to the other components, so it is assumed Aszflaca’l‘;’D = 0. The
method for calculating the translational and rotational terms is shown in Appendix
A.1. Alternatively, S(Mol,,)) could be taken as the empirical standard state gas phase
entropy, but as solvation entropies in this study are calculated with analogous statistical
mechanical approximations, the same calculation of the entropy as that of the gas phase

is used for the sake of consistency.

The entropy of the molecule adsorbed on the metallic surface is approximated by using
the 2D ideal gas approximation such that,

S(M/ Mol (yye)) = Soart? = 57720 4 guaeab 4 guae2b, (6.9)

where 59D is 0, and the entropy components are derived in Appendix A. In this
approximation, it is assumed that the molecule can freely translate across the metal-
lic surface, but is constrained to the xy-plane. We further assume this holds at high
coverages, as noted by Campbell et al. [12]. We note that the lost degrees of rotational
freedom are potentially dependent on the binding mode of the molecule, especially in
cases where non-yaw rotations would result in desorption (eg. phenol on Pt with four
binding centres). This possibility will be explored in the results section.

Overall, AGJ’¢ is then calculated as,

A ng = (H(M/MOZ(WC)) - (H(M(vuc)) + H(MOl(vac)))) - T((S%?ZZD - S%g,l?jD)r
(6.10)

where S(M|y,) ) is assumed to be negligible.

Calculating the free energy of adsorption under aqueous conditions (AG:%¥) requires
further considerations. The implicit solvent calculates entropy components related to
solvation within AG;,j,, but the entropy of adsorption must be accounted for in a simi-
lar fashion to eq. 6.10. First, starting with the change of free energy from state B to D in
Figure 6.3,
MG = (H(M/Mol () = (H(Mone)) + H(Mol(gye))) (6.11)
+(AGsoro (M/ Mol) — (AGsoro (M) + AGsoro(Mol)))
~T(Shier =Skl )r
where the first three terms represent the enthalpy of adsorption for a single point en-
ergy calculation in the gas phase, and the following three terms represent the free en-
ergy changes of solvation calculated by the implicit solvent model, as expressed in
Equation 6.2. We assume the change in entropy due to solvation is included in AGgy,
therefore the change in entropy due to adsorption in the last two terms are equivalent
to the gas phase.
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6.2.4 Upper and Lower Bound Entropy of Adsorption (ASZZZZSU)

Furthermore, the change in adsorption entropy in solvent (AS%%/?) is approximated us-
ing the solvation entropy methods of Garza and the 2D ideal gas model. Using different

solv

approximations for AS,,, for the Pt(111) surface, an upper and lower bound for AS?%"

is established.

The entropy for the molecule in the solvent phase is calculated using the approach of
Garza [212], which adopts the ideal gas 3D equation to the entropy of solvation as,

solv,3D __ @solv,3D solv,3D solv,3D
SMol - SMol,t + SMol,r + SMol,c ’ (6'12)
where 5£°°?P is the cavitation entropy. A full derivation of terms is discussed in the
Appendix A.2.

The overall entropy of adsorption in the aqueous phase is expressed as,

DS = SHIEh — (S + S0, (619

where S?@Il}’ﬁi consists of the translational and rotational terms of S%S’ZZD , the AS,;, for
the metallic surface and adsorbate.

ASE = S0 — (SHla0 + S0) + ASY, + ASHL (619

where SRZIOZ;’SD is separated out into translational and rotational components, AS5JY _is
the change in entropy due to cavitation for the molecule, and AS5J” is the change in

solvation entropy for the metallic surface.

. SR‘}II”BD ), reasonable approxi-

As there is no experimental measurement of AS3}? (i.e
mations must be derived. Here, an upper and lower bound is proposed from simple
approximations based on the mobility of water at the Pt(111)/H,O interface. Akinola
et al. [49] propose a scheme using the ice-like bi-layer model for the aqueous metallic
interface [223, 224]. Therefore, the entropy of solvation is approximated as the entropy
of transition from the liquid to the solid phase, that is, the entropy of fusion of water
[74],

AS” = ASfyus = 0.72%251JK ' mol ! = 18.1JK ' mol ! (per Ptatom), (6.15)

where approximate the number of water molecules released upon adsorption by mul-
tiplying the cross-sectional area of the molecular binding interface (A,,) by the number
of H,O molecules per Pt atom (0.72 [225]). However, water retains a significant amount
of mobility at the Pt/H,O interface at 298 K on a ps time scale [226], meaning surface
waters are expected to be more disordered than HZO(S). Therefore, the entropy of fu-
sion approximation AS;,, is interpreted as an upper bound.
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In contrast, AS$Y can be approximated as the cavitation entropy (AS3}° = AS%‘,’E?
through the accentric factor method (Appendix A.2. In this method, it is assumed ad-
sorbed water retains the mobility of a weakly bound solvation shell (Equation A.20)
[212, 227]. The metal cavity volume dependent term (V) varies with the number of
slab layers, which leads to a nonphysical dependence of Sﬁ\‘,}lg on N. Therefore, we con-
sider the V) for a single layer of Pt(111) only and normalise by a factor of two so that
only one side of the slab is considered. However, the water on the surface of Pt (111) is
less mobile than surfaces with weaker adhesion enthalpies (eg graphene), indicated by
lower translational and rotational diffusion coefficients [226]. As a result, we infer that
the cavitation entropy calculated through the accentric cavity method is a lower bound
for the entropy of solvation of the Pt atom. Establishing the upper and lower bounds
establishes an expected range of AS$}” values for different coverages and adsorbate
orientations.

The packing factor of water (G(Rp, Rs), Equation A.18) is different for metallic and or-
ganic solutes. Consequently, Sj\‘/}l}’]’\%l?l . cannot be calculated directly and ASI? s taken
as the approximate volume of the cavity lost for the surface and molecule after ad-

sorption (Equation 6.12). For the metallic cavity, we multiply S53°

¢ per unit area by

the cross sectional area of the M /Mol binding region. We approximate the area as the
cross-sectional van der Waals’ area of the molecule at the binding interface, A,,. We cal-
culate the loss of S?\%Ul . upon adsorption as a proportion of the surface area lost by the
molecule upon adsorption of the metallic slab. Overall, we express gain of cavitation

entropy as,

A
ASTE = A’OSS SyeP, (6.16)
Mol
and A
ASE = Z Sl (6.17)

where A, is the cross-sectional area of the adsorbate on the metallic surface, A, the
cross-sectional area of the metallic slab, A, is the van der Waals’ surface area lost by
the molecule upon adsorption, and A,y is the total van der Waals’ surface area of the
molecule. All volumes and surface areas are calculated using the van der Waals’ radii
of Alvarez [129].

6.2.5 Approximating AG,,;, for Pt(111)

Parameterization of the implicit solvent model follows the method of our previous pub-
lication [157], where the cavity radius of Pt atoms for a four-layer (7x6) Pt(111) facet are
varied through a range of scale factors (f) from the default cavity radius of 2.29 A [129].
By performing a third order polynomial fit, we obtain a value matching the experimen-

tal AG;,j, of a single Pt atom at the surface. However, as there is no direct measurement
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of AGyg,py, for the Pt(111) surface we must approximate this value as a sum of measure-
ments of AH,;, and TASg,,,

AGsolv = AI_Isolv - TASsolv- (618)

AHg,;, was calculated as the difference between the bond energy of the solid Pt(111)/water
interface (E,qn pt/ HzO<s>) and the surface energy of solid water (y H0()7 renormalised to
the surface area of a single Pt site), which accounts for the heat released by water upon

reentry into the bulk,

AHSOZZ},Pt = Eﬂdh,Pt/HzO(s) - ’szo(S)‘ (6‘19)

As shown by Singh et al. [48], E,anpt/u,0 can be taken as the Pt-H>O bond energy,
where it is assumed Eudh’pt/Hzo<s) = Eudh,pt/Hzo(l). Egan,pt/m,0 is taken as 0.32 ] m~2 [67]
and vm,0,, as 0.102] m~2, from which we obtain the change of bonding energy per unit
area. Assuming a single Pt atom occupies 7.68 A (from a lattice constant of 3.92 A), it
can be approximated that E, g, pt/ HyO = 14.81 k] mol~! and the equivalent TH,0,,, for
Pt is 5.04 k] mol~!. Overall, this yields AHgo1ppr = —9.76 K] mol~! (per mol of Pt as
opposed to H,O released).

The contact angle of the solvent drop with respect to the surface plane (6c) also allows
access to AGqy for the Pt surface. This quantity can be measured experimentally and
theoretically via. molecular dynamics simulations [226]. The Young-Dupres equation
(Waan = ymo(cos (6c) + 1)) allows access to AGgyy, of the Pt(111) facet through the
relation proposed by Fisicaro et al. [123],

AGsolv

6.20
YH,O ( )

cos (0¢c) =
However, previous simulations have shown that a range of noble metal surfaces with
adhesion energies between 179-267 m] m~2 share the contact angle of 6c = 0 [226].
For highly hydrophilic surfaces, where AG;y, > Ym,0 in Equation 6.20, 6¢c no longer
differentiates between their solvation free energies. We therefore do not believe this
method is extendable to other noble metal surfaces, and limit our discussion to the

methods proposed earlier in this discussion.

ASg1, has not yet been measured experimentally for the Pt(111) surface. In Section
6.2.4, we propose two approximations for the entropy of water at the metallic aqueous
interface where: the upper bound ASy,; = ASg, (Where ASy, is the fusion entropy)
or a lower bound where AS,,, = ASR%ZﬁD (Equations 6.15 and 6.17). The entropy
value for the upper bound is AS,,;, = —5.41 k] mol~! and the lower bound is AS,;, =
—2.58 k] mol~! per surface Pt(111) atom.
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FIGURE 6.4: The change of AG,,, per Pt atom with respect to the vdW radius of
Todw = 229 A scaled between f = 0.8 to 0.975 of the (111) facet for a 4 layer (7x6)
supercell. Upper bound (UB) and lower bound (LB) entropy lines are shown.

Overall, this yields AG,,y, values of —4.35 k] mol~! and —7.18 k] mol~! for upper and
lower entropy bounds respectively, which we then used to parameterize the implicit
solvent model (Figure 6.4). Performing a third-order polynomial fit for the values of

AGs1, gives optimal values of f = 0.904 (lower bound entropy) and f = 0.936 (upper

vdW

bound entropy) for the r7*** of Pt. The scaling factor for organic van der Waals’ radii

are maintained at their optimal value of f = 1.201.

6.2.6 Calculation of AGZ;J;]; and AGZ’;@ o with Temkin Isotherm

The integral heat of adsorption measures the total heat released per molecule over a
range of coverages, where we define coverage 6 throughout this paper as,

_ Numo Num

0 ,
Num NIS\%I

(6.21)

where N,,,; is the number of adsorbed molecules, Ny is the number of surface metal
atoms and N37/, is the number of molecules required to achieve saturation coverage,
such that 0 = 1 at full coverage. Calorimetry and hydrogen UPD experiments measure
the differential forms of AH,459 and AG,4, ¢ [58], which take into account the varying
heat released with an infinitesimal change of coverage at 0. This extends to measure-
ments of thermodynamic properties calculated in solvent through the Temkin isotherm,
where the free energy is measured as a function of coverage via. varying concentrations
[47]. The following is a brief account of the method used by Chaudhary et al. [206] to
convert integral to differential heats of adsorption. The desorption energy represents
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the integral enthalpy of adsorption coverage 6,

E(M/Mol) — (E(M) + NE(Mol))
N ,

AHy o = 6.22)
where coverage is controlled by the size of the periodic supercell in the xy-plane and
and the number of adsorbates adsorbed to the facet. The differential heat/free energies
(AH ;J;fg) is represented by the change of heat/free energy with respect to the number
of molecules:
di 20

AHYT = <8N>M, (6.23)
where I  relates the surface site density and the number of surface sites occupied by the
adsorbate, and 2 is the surface area of the absorbate. Chaudhary et al. propose conver-
sions of integral to differential heats/free energies of adsorption [206], by expressing
the integral heat of adsorption (for a single molecule) in terms of the differential heat
of adsorption:

AHM = / Angfgde (6.24)

which when rearranged yields,

dA int
= AH! o+ —— (6.25)

U _ dQAH% 0
do

ads,0 — de

. int . . . . .
By measuring AH} , over varying coverages, we can obtain a linear relationship be-

tween the integral heat of adsorption and the coverage by means of Equation 6.22.
—AHIL g = —AHDL oo+ b9, (6.26)

where b is a constant which describes a linear dependence of AH™.  on coverage. This
is more readily recognised as the Temkin isotherm. This expression then allows the

evaluation of the differential heat of adsorption in Eq. 6.25,

d .
~SH = (g +16) + 6 5 (~BHi o +16) ) = ~AHLg-g + 206,

(6.27)

where db/d0 = 0. As a result, the values of the adsorption enthalpies obtained through
DEFT calculations can be compared to experimental data obtained with UPD or calorime-
try methods. Unless otherwise indicated, the heats and free energies calculated with

DEFT are described in terms of the differential heat of adsorption.
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6.3 Results and Discussion

6.3.1 Entropy of Adsorption from First Principles

Campbell’s Bond Additivity model treats the heats of adsorption of phenol to Pt(111)
in the aqueous environment with a simple bond breaking/bond formation approach
[48]. These calculations were enabled by recent experimental data, describing the bond
energy of the Pt/H,O interface, and enthalpies of adsorption and solvation for the

molecule.

Figure 6.5 shows the entropy of adsorption in the liquid phase with upper and lower
bounds compared to experimental values [47]. We include the effect of orientation,
placing compounds either in the horizontal orientations (with aromatic groups/aliphatic
chains parallel to the metallic surface), or vertical orientations (where co-ordination
takes place through the oxygen groups, with the aromatics/aliphatic groups perpen-

dicular to the metallic surface).

ASIY are larger in their horizontal than vertical geometries. The surface area footprint
of the horizontal geometries tends to be larger than that of the vertical geometries,
resulting in a greater amount of surface area lost upon adsorption. This corresponds
to the desorption of a greater number of HO molecules, making horizontal adsorption

more entropically favourable.

First addressing the aromatic compounds, compared to experiment, we note that the
vertical geometries drastically underestimate AS%?. This applies to the upper bound
entropy values, where errors of AS,4s 501, are between 117-155 ] K~! mol~! with respect
to experiment. In contrast, far better agreement is observed in the horizontal geom-
etry, where the experimental values lie close to the calculated upper entropy bound
(between 10-37 ] K~ mol~! error).

In contrast, the experimental values of AS$9? for butanol and valeric acid show the
greatest agreement with the vertical geometry model at the low coverage limit. This
contrasts to the binding mode of alcohol in the vacuum phase at low coverages, where
weak physisorption between the Pt surface and aliphatic chain leads to a horizon-
tal adsorption [228]. The values of ASZ‘;ZSU show a strong correlation with the size of
the molecule, varying between +93 ] “'mol~! for benzene and +198 J K~! mol~! for
naphtholic acid. Entropy gain increases because of the greater number of desorbed wa-
ters from the metallic surface and loss of co-ordinating waters from the cavity of the
molecule. This trend is also reflected in the experimental data. However, Akinola et al.
suggest that there are large errors for the experimental data presented, which we dis-
cuss in detail in Appendix D. With further experimental data, we believe that the model
presented in this study has the potential to provide geometric insights into the binding

of small organic molecules to the metallic surface with minimal computational cost.
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FIGURE 6.5: ASZ‘;ISU for adsorbates to the Pt(111) facet. Shown for the low cover-

ages (Single adsorbate to the Pt(7x6x5) surface). Left plots shows adsorbates where

the aliphatic chain/aromatic group are parallel to the metallic surface, and the right

where they are perpendicular and bound through the oxygen groups. Comparisons

performed between upper and lower approximate entropy bounds to experimental
values of FTIR experiments [47].

Similarly to the bond additivity model [48, 229], which predicts the values of AH
for the Pt(111) facet, the entropy models presented provide a low-cost qualitative ap-
proach to represent trends in adsorption entropy in the aqueous phase. By providing a
lower entropy bound, we show structural trends can be represented. Furthermore, by
combining this approach with bond additivity models for AH?'?, one can obtain ap-

proximate upper and lower bounds for the overall AGS’. As more experimental data
are gathered and the aqueous phase adsorption process is better understood, these

early models can be refined further to reduce their overall errors.

6.3.2 Comparison of Electron Density and Soft Sphere Cavity Models at
Low Coverages

Figure 6.6 shows the values of AG:S? obtained with the upper and lower entropy
bounds of AG;,;, compared to experimental data. To show the improvements yielded
by this approach, we also present results from the charge density dielectric cavity
model of VASP. The aromatic adsorbates were measured in their strongest binding ge-
ometries in vacuum, that is, with their hydrocarbon rings parallel with the Pt surface.
Cyclohexanol is measured in the horizontal orientation, and hydrogen measures the
dissociation process of (%HZ(g) — 0.5Hx). As previously discussed, the charge based
model parameterized to capture the AG,,, of molecules composed of light elements is
ill-suited to calculate the AG;,, of heavy/metallic atoms [157]. This is demonstrated

by the relatively higher errors observed for all molecules with respect to experiment.



6.3. Results and Discussion 116

—250 1
] B ONETEP UB
T ] ' ONETEP LB
g _200': B VASP CC
< ~150
8 ]
2‘.:.' —100 7
3 ]
@ —501 1
< 1 '
0
AN () AN o> Q
& & KL > &
5 S & A O
R O < N S
@ S
< ”)
F C
Adsorbate

FIGURE 6.6: Comparison of AGZZIZ';OL%.O% obtained using the soft sphere cavity model

(upper and lower entropy bounds) and the charge based dielectric cavity model of
VASP.

At the selected coverage (6 ~ 0.15 for all aromatic species, 8 = 0.05 for hydrogen
and 6 = 0.09 furfural and cyclohexanol) the correct qualitative trend of decreasing
AG%l compared to AG?% is observed using the reparameterized soft sphere model.
The upper and lower bound parameterization yields qualitatively accurate AG$5? val-
ues compared to experiment for cyclohexanol and hydrogen dissociation. However,
for aromatic compounds in their horizontal geometries, we observe errors on a scale of

100 k] mol~! compared to experiment.

However, as shown in Figure 6.7 for phenol, QM /MM simulations of Pt(111) adsorp-
tion with explicit water yield AG;ZZ’;OL%JS = —78 k] mol~! compared to AG;ZZ’;”:COJS =
—195 k] mol~! in the gas phase [10]. This relatively large decrease in adsorption free
energy is better aligned with the experimentally observed decreases in AGZ;S’,SQOZU. This is
driven by driven by larger predicted adhesion free energies (Ggap,pt/H,0(1) = —21.8 K] mol~!
per Pt atom [10]), compared to experimental values of Eqgp,pt/H,0(s) = —15.1 K] mol~!
[67] used in this work to calculate AG;,;, for Pt(111). As a result, the loss of water of is
further energetically disfavoured, reducing AGZZ’,SGOID. The magnitude of the observed
errors implies that there may be further effects not fully accounted for using the vac-

uum phase geometries at low coverages.

As coverage and orientation are known to have a dramatic effect on adsorption en-
thalpy in vacuum, we investigate the role of these effects in Section 6.3.3. Across each
simulation, the upper entropy bound provides the greatest decrease in AG%%¥ com-

pared to experiment. However, the overall difference between the upper and lower

bound is relatively small (10 k] mol~! for phenol). This error would increase at higher
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FIGURE 6.7: Comparison between methods of calculating AG”” 9 for phenol (hori-

zontal, § = 0.15) on Pt(111). Obtained using the soft sphere cavity model in ONETEP

(lower entropy bound) and the charge based dielectric cavity model of VASP. Also

compares experimental values of AG”/"** the gaseous and aqueous phase at 298 K

[45], and QM /MM simulations of phenol adsorption at § = 0.19 [10].

temperatures and larger adsorbates, but remains small for all the systems under study.
We will briefly discuss other possible factors contributing to errors. Firstly, each molecule
is adsorbed to their most stable adsorption site, when the overall adsorption energy is
closer to an average of several weaker adsorption sites [206]. This leads to an overes-
timate for AGY% of approximately 12 k] mol~! for phenol [206]. Secondly, the optB88-
vdW functional is known to overbind phenol molecules to the Pt(111) by approximately
11 k] mol~! at the zero coverage limit [214, 230]. Assuming that both effects are at
play in the implicit solvent calculation, this leads to an approximate overestimation of
~ 20 k] mol~!. Furthermore, we note that the definition of entropy is an approximation
based on the 2D ideal gas model. This assumes that the adsorbate is at temperatures
sufficiently high enough to achieve barrierless diffusion across the metallic surface. Al-
though the 2D ideal gas formulation appears to hold at temperatures of 150 K for simple
alcohols and alkanes, the strong binding between Pt(111) and aromatic molecules may
turther impede translational motion. Additionally, we approximate that the entropy of
adsorption is equivalent in vacuum and solvent, where the changes entropy due to re-
strictions of movement in solvent are accounted for solely through the implicit solvent
model. In theory, a portion of this entropy contributed should be accounted for by the
use of well parameterized implicit solvation model, but as an untested approximation,

this must still be considered as a source of error.

Under the definition of integral AG5? at low coverages, discrepancies of up to 100 k] mol !
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occur for the molecules under study. However, in all experimental data, AGZ;ISU be-
comes more exothermic relative to AGY7¢. We have shown that by reparameterizing
the cavity of the Pt atom while maintaining the optimised cavity parameters of the
organic adsorbate, the implicit solvent model correctly replicates this trend, but other
factors such as coverage, orientation and the definition of AG5” must be considered to

achieve meaningful experimental comparisons.

6.3.3 Temkin Isotherms of Implicit Solvent for Horizontal Geometries

Using increasing coverages by varying the cell size and number of adsorbates as shown
in the methodology, we investigated the change in adsorption free energy in solvent.

TABLE 6.1: Linear fits to the Temkin isotherm of organic adsorbates on the Pt(111)
surface according to AG"! , = —AG! \_  + b6. Implicit solvent values shown for the

lower bound entropy estimate. All values in k] mol ™~

Adsorbate AGIA) b (Vacuum) AGHIA™ AGHZ™ b (Solvent) AGH™
Hydrogen Atom —26 16 -20 -30 12 —18
Phenol —167 34 —133 —112 15 —98
Furfural (Flat) —159 36 —123 -99 17 —116
Cyclohexanol (Vertical) —26 —-14 —40 9 —18 -9

TABLE 6.2: The predicted AGZ;J;J; in vacuum in solvent compared to existing experi-
mental data. Calculated for 8 = 1. Implicit solvent values shown for the lower bound
entropy estimate. All values in k] mol 1.

diff, diff, diff,sol diff,sol
Adsorbate  AGRLEYT  AGEI™ (Expt) AGRL’  AGRLLT™ (Expt)

ads,0
Hydrogen Atom -5 —243/-17° —6 —20%/—15°
Phenol —98 - —82 —9[45]
Furfural —88 - —133 —26[49]
Cyclohexanol —54 - —-27 —17[45]

a Ab initio MD[1]. b Van’t Hoff [1].

In the vacuum phase, the Temkin isotherm (Equations 6.26 and 6.27) provides an accu-
rate model for the change in adsorption free energies with increasing coverage. Max-
imising the nearest-neighbour distance between each adsorbate yields good correlation
with the experimental heats of adsorption for phenol [206]. However, the change in ad-
sorption energies with respect to coverage is dramatically weaker in solvent than in
vacuum. This is demonstrated by the lower value of b (Equation 6.26). However, the
source of this change is unclear. Organic adsorbates are proposed to cluster in areas of
high local coverage, which means that in the local environment, AGZ;J;{;’WC is measured
at approximately saturation (6 = 1) regardless of the adsorbate concentration [45]. The
second possibility is that the solvent screens the repulsive interactions between adsor-
bates. In this case, adsorbates still maximize their nearest neighbour distance to avoid

lateral repulsions, but the effect is significantly weakened by the presence of solvent.
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To investigate the effect of coverage, we utilise the parameterized solvent model and
fit AG:;Z’;“C and AG;Zi’gif / to the Temkin isotherm (Figures 6.8 and 6.9). This will either
support or refute the assumption that adsorption proceeds as predicted in the vacuum
phase, and this will present better guidance for future study. The tabulated values of
the Temkin isotherm are shown in Tables 6.2 and 6.1.

The dissociation of H; in the vacuum phase (AGZ;J;];’i”f) compares favourably with the

results obtained from experiment, but underestimates the overall change in free energy
by 10 k] mol~! (Table 6.2). To meaningfully compare our results with experiment, we
note that the values of Yang et al. [1] were measured relative to the gaseous reference
state of Hy, while our results measure adsorption according to the reaction from state B
to D of Scheme 6.3. To align the experimental values to the solvated H; reference state,
we subtract the entropy of solvation for molecular hydrogen from the experimental
and ab initio MD values (AS,p,(3Ha) = —55] K~ mol 1 [231]).

In the experiment, the overall free energy change of adsorption in the aqueous phase
is 6 k] mol~! lower than that of the vacuum. This is reflected in the implicit solvent re-
sults, where AG;’;S’/SGOZU relative to AGZ;;%“C decreases by 5 k] mol ™! for the upper bound
of Pt(111) solvation entropy and 4 k] mol~! for the lower bound. Because b is larger in

vacuum than in solvent (Table 6.1), AGZ;Q;’S{U is very close in value despite AG;’;Z’,SQOIU

values consistently being lower than AG%’%“C. Given these small observed changes in
AG;ZZ’;”ZU, we propose the unfavourable dissociation of hydrogen on Pt(111) compared
to vacuum is largely driven by the insolubility of H, in water. AIMD techniques fur-
ther support this, showing that the presence of solvent had only a minor influence on
the energetics of the Pt-H bond (~ —2 k] mol~! [232]). However, we note the diffu-
sion coefficients of adsorbed H on the Pt(111) surface are lower in the aqueous phase
(Dyy =7 X 10~° cm? s~ ! in solvent and Dy, =33 X 10~° cm? s~! in vacuum), leading to
a further reduction of entropy upon adsorption [1]. This is also accompanied by a larger
decrease in the diffusion coefficient for H; in the first aqueous layer compared to the

gas phase (Dy, = 361 x 107° cm? s™! in vacuum and Dy, = 11 x 107° cm? s~}

in sol-
vent), suggesting that most of the entropy loss for Hj results from solvation. This ratio-
nalises the large pressures required to obtain partial coverages (10 atm yields 6 ~ 0.2)
in contrast to adsorption in the gas phase, where saturation coverage of H on Pt(111)
is achieved with 0.1 atm. However, without knowing the entropy of solvation of H;

within the experimental conditions of Yang et al. [1], quantitative analysis is limited.

However, for aromatic compounds in their horizontal geometry, we observe overesti-
mations of AGZ;Q;’SOIU and AG;’ZI?’SQDI “ observed at low coverages. Even at high coverages,
the AG%JZ;’SUZU for phenol and furfural is dramatically overestimated compared to the
experimental values (AGZ;Q;’S{U = —82 and —133 k] mol~! vs. —9 and —26 k] mol1).
However, we observe the orderings of adsorption energies are correct for the two ad-
sorbates. The observed overbinding for phenol relative to experiment is also observed

in the AH9 of the bond additivity model (approximately —70 vs. —19 k] mol~! [229]).
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FIGURE 6.10: Geometries of furfural on the Pt(111) facet. a) and c) represent the bird’s
eye view of § = 1.0 vertical orientation and 6 = 0.75 horizontal orientation coverages
respectively. b) and c) show the same geometries viewed from the side.

However, we have shown that, according to the Temkin model presented, increas-
ing coverages do not rationalise the overbinding observed in computationally derived
AGZ%’I’Q compared to experiment for the horizontal orientation. We will explore the ef-
fects of orientation in the following section as another source of error.

However, the implicit solvent correctly captures the weaker correlation of adsorption
free energies with respect to 6 (b = 35 in solvent, b = 72 in vacuum). This is reflected
in the experiment where b = 5 [45] and b = 72 [58] for solvent and vacuum respec-
tively. In implicit solvent, this is rationalised by screening for repulsive interactions
between the adsorbates [233]. However, the value of b obtained with the implicit sol-
vent method is significantly larger than experimental values for phenol. For furfural,
similar to phenol, we observe a significantly weaker correlation of AGZ;Q;’SOZU in solvent
(b = —17 and b = —5 for the lower bound and upper bound respectively) relative to

vacuum (b = 36) caused by dielectric screening.

6.4 Vertical Orientations

Implicit solvent models parameterized to obtain AG;,, for the Pt(111) surface yields
experimentally observed decrease of AGS9? relative to AGY*. However, the contin-
uum solvation model also yields large errors with respect to experiment. The implicit
solvent Temkin isotherm plots demonstrate coverage effects alone do not rationalise

the high AG9” compared to experiment. It is known the orientation of adsorbates are
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sensitive to a variety of conditions, such as adsorbate concentration [52], voltage [234]
and the species of electrolyte [53]. Therefore, we will also explore orientation effects
(i.e., vertical and horizontal geometries) which may correctly align experimental and

implicit solvent AGS9? values.

AGZZ’;”C for cyclohexanol is measured in the vertical orientation across a range of cov-
erages. AGZ;Z’;“C for cyclohexanol is significantly smaller than the aqueous free energy
of adsorption for phenol and furfural adsorbed horizontally. Especially in the lower
bound entropy, adsorption in solvent is predicted to be endothermic. These effects
result from the relatively weak binding of cyclohexanol to Pt (which is observed in vac-
uum), combined with the energetically unfavourable desolvation of the Pt surface and
-OH fragments. These observations are consistent with experimental findings, where
cyclohexanol in the measured concentration range (10~ — 1073 M) fails to achieve sat-
uration coverage, in contrast to other measured organic molecules [45]. The higher
value of AG;ZZ’;"L ‘| suggests that cyclohexanol is stable on the Pt surface at high local
coverages, as is theorised for phenol adsorption in the aqueous phase [48]. This is ratio-
nalised by the apparent attractive interactions between the cyclohexanol fragments and
the exclusion of the surface area of the dielectric cavity, which models the favourable

desolvation of the hydrophobic alkane fragment.

The negative value of b = —18 for the adsorption of cyclohexanol in solvent compared
to vacuum b = —14 is driven by the exclusion of the cavity surface area of the adsorbate
at higher coverages. In the vertical binding mode, desolvation of the fragment exposed
to the dielectric only occurs when the adsorbates are within proximity of each other. At
small distances, their dielectric cavities merge and the surface accessible surface area

decreases, meaning AG;’;’?I Y becomes more exothermic.

We note that in the limit of high local coverages, the Temkin isotherm model mea-
sured across the range of coverages shown here becomes a less useful comparison to
experiment. This is because, despite increasing the number of sites occupied with
higher concentrations in the experiment, the measured adsorption value of AG;’;Z’,SQOIU
reflects the higher coverage values. As a result, the energetics of adsorption lead to
AGS;J: {;’SOZU ~ AG;’;Z'/SGOZU. Following this rationale, we acquire semiquantitative agree-
ment with the experiment, where the calculated value of AG;’;’;’;‘)I” = —14 Kf mol ™!

compares favourably with the experimental value of AGZ;];{;’SOID — 17 kJ mol~! for cy-

clohexanol.
At saturation coverages of furfural (Table 6.3), AGZZ’Z"Z = —38 k] mol~! compared
favourably to experimental measurements of AG*"% = —17 k] mol~!. Relative to the

horizontal orientation, AG;'Z’S;L G is 71 K] mol ! weaker. Overall, the better agreement

with the experiment is calculated using vertical geometries of cyclohexanol and fur-
fural. However, this contradicts the predictions of the entropy model of Section 6.3.1,
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TABLE 6.3: Impact of orientation on values of AGZZSOZU to Pt(111) at saturation cov-

erage compared to experiment. Implicit solvent values shown for the lower bound
entropy estimate.

. int,solv . int,solv int,solv
Molecule Vertical AG,;7p—; Horizontal AG, ;75— Expt. AG

ads,0=1
k] mol~! k] mol~! k] mol~!
Furfural —38 —107 —26 [45]
Cyclohexanol —-14 - —17 [45]
Phenol - —102 —9 [45]

where for aromatic compounds, the experimental entropies of adsorption lie approxi-
mately between the upper and lower bound of the horizontal orientation. In contrast,
the upper bound of AS$% calculated using the vertical geometry underestimates AS5%
by approximately 50 k] mol~!.

Further studies using the Bond Additivity model measure similar overbinding of hor-
izontal phenol to the plane of Pt(111) (AH;ZZ’SOZU=—72 k] mol~! [229] vs. 438 k] mol~!
[49]). In contrast, as discussed in Section 6.3.2, QM /MM studies achieve better agree-
ment with experimental values of AG”/**' [10]. However, the weaker AG"/**"" is likely
a consequence of less favourable desolvation of the metallic surface, driven by larger
values of AG,,, for Pt(111) relative to experimental values. Therefore, we propose three

potential sources of error associated with the AGZ;ZS” calculations:

1. Inaccurate estimates of AG,, for the Pt(111) surface.
2. Improperly accounting for the orientation of the target adsorbate.

3. Not accounting for electrochemical effects induced in experiment.

For the first point, we emphasise the importance of accurate measurements of AG;,,
for the metallic surface. Alternatively, we must consider that computational simula-
tions and bond additivity approaches take place in the absence of applied potential
and electrolyte. As a result, the binding strength of aromatics could be weakened by
effects that are not reflected in implicit solvent approaches, AIMD simulations [3] or
bond additivity approaches [229] for uncharged systems. Simulations that include po-
tential and electrolyte effects are possible within the implicit solvent model of ONETEP
[127, 128], but are beyond the scope of this study. Owing to the discrepancies observed
in our calculations and in other bond additivity approaches across a range of coverages
and orientations, a wider breadth of studies are required to fully understand the ther-
modynamics of adsorption in the electrochemical environment. However, the method
presented shows that implicit solvents can obtain the correct qualitative trends of ad-

sorption in the aqueous phase.
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6.5 Conclusions

In this work, we have shown that inexpensive implicit solvent models can reproduce
experimental adsorption free energies for small organic molecules in solvent. Parame-
terization requires separate dielectric cavity definitions for the metallic surface, achieved
through the soft sphere model [123]. In contrast, isocontour charge density based cav-
ity models are unsuitable for this purpose, where calculations performed in VASPsol
drastically underestimate the free energy of adsorption of organics to Pt(111) in the
aqueous phase. Furthermore, we have shown that in the absence of direct experimen-
tal measurements of AG,,, for the surface, approximations of AHjy, and ASg,, yield
semiquantitative results for the overall AG,,. We find that simple approximations
based on the ice-like bilayer model [49] or the accentric cavity model [212] provide a
reasonable upper and bound for AS;,;,. However, a greater body of experimental data
is required to validate which bound better describes the entropy of solvation for the sur-
face. In this case, the difference between the upper and lower bound in the calculation
of AG$97 is small (~ 10 k] mol 1), but this error necessarily increases with temperature
and the surface area of the adsorbate. In the absence of experimental data, we predict
AHg,j, can be reasonably calculated through abinitio values of AH,;; of water to the
chosen interface and the water surface energy [48, 67]. If this is not available, we have
shown that the parameterizing against the change of work function in solvent may act
as a reasonable guess for AG;,, [157]. We predict that, provided the above quantities
are known, these methods can be extended to other metallic surfaces.

In addition, we have emphasised the importance of correctly accounting for coverage
effects when comparing to experimental data. We also present the utility of the en-
tropy approximation and overall values of AG55? in predicting structural information
for the Pt(111)/ Adsorbate interface in water. However, we note that a lack of atomistic
understanding of adsorption in the aqueous phase makes a facile comparison with ex-
periment difficult. Commonly in the literature, it is assumed that oxygenated aromatics
adsorb horizontally to the Pt(111) surface in the aqueous phase much like in the vac-
uum phase. However, we observe overbinding of approximately 100k] mol~! relative
to experimental values of AGS’'. We propose that significant weakening in the strength
of binding in experiment for aromatic compounds arise through either a change from a
horizontal to a vertical orientation, or applied potential / electrolyte effects not included
in bond additivity based approaches. Our findings also support the presence of high
local coverages of adsorbates at the aqueous Pt(111) interface [48], as shown by the rel-
atively high values of AG3}? predicted at saturation coverage for cyclohexanol. In an

area where experimental data is limited and difficult to measure, the proposed tech-

solv

s and

niques provide an inexpensive toolset for the validation and prediction of AG
ASI? on solvated metallic surfaces. However, more statistically significant validation
requires more empirical measurements for the aqueous entropy/free energy of adsorp-

tion.
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Chapter 7

Conclusions

7.1 Conclusions and Thesis Summary

The work in this thesis has focused primarily on the application of the implicit sol-
vent model to platinum surfaces, allowing us to obtain electrochemical properties and
model adsorption processes in the aqueous phase. In support of these studies, we have
also described the improvements made to the ONETEP code, where we have acceler-
ated the convergence of single-point energy calculations for metallic systems and in-
creased the flexibility of the dielectric cavity in the implicit solvent framework through
the soft sphere cavity model. Where possible, we have made detailed comparisons of
our calculated values to experiment, rooting our discussion to the frontiers of applied

heterogeneous catalysis.

We presented our implementation of the soft sphere cavity model, in conjunction with
a parameterization of the non-polar solvation free energy change in terms of the so-
lute surface area and volume (SASA+SAV). Through comparisons with a large assay
of AG;,, values obtained with through experiment and the original charge based cav-
ity model, we find that the soft sphere model provides accurate free energies of sol-
vation. Overall, we obtain a MAE ~ 4.0 k] mol~! with respect to the experimental
test set, which is comparable to the original implementation of the soft sphere solvent
model in BigDFT (4.68 k] mol~!) [123]. Furthermore, we find that the fully parameter-
ized SASA+SAV model leads to a modest improvement in the accuracy of 2 kJ mol~*
in the MAE compared to the original SASA model with a scaling factor designed to
account for the dispersion-repulsion for a set of long-chain alkanes. These implemen-
tations were critical in providing a flexibly parameterizable solvent model, which can
accurately account for the different optimal cavity radii required to calculate accurate

thermodynamic properties for heavy metallic species and light organic molecules.

Furthermore, we have validated the analytical forces obtained with the electrolyte model
of ONETEP by comparison with exact forces obtained through finite differences. We
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found that overall, there are negligible force errors associated with the implicit rep-
resentation of the electrolyte for a range of charged and uncharged systems. These
findings were strong even at very high electrolyte concentrations. We conclude that no
additional analytical force terms are required for geometry relaxation calculations us-
ing the electrolyte model. However, we found that the fixed cavity approach did lead to
significant force errors, due to the lack of convergence of the total energy with respect
to the dielectric cavity function. Fortunately, this error can be eliminated by updating
the dielectric cavity self-consistently, thus reducing the need for additional analytical
force terms to describe the implicit dependence of the cavity on changes in atomic po-
sitions. By ensuring that a method exists to accurately calculate forces, this validation
will enable future studies of charged surfaces in the electrochemical environment with

the electrolyte model.

Furthermore, we gave an account of our implementation of Pulay Hamiltonian mixing
for ONETEP in order to accelerate single-point energy calculations for large metallic
systems. Grounding our discussion in the language of numerical methods, we find that
the Helmholtz free energy converges significantly more quickly in the Pulay scheme
than the original damped fixed point approach. With the linear order of convergence
of the latter scheme, a large number of iterations are required to attain self-consistent
energies. In contrast, the Pulay mixing scheme generally performs much larger steps
towards converged energy, leading to convergence of the inner loop to within 10-25
inner loop iterations for metallic systems. Furthermore, by defining the step size A as
a fixed, user-specified constant instead of searching an optimal A value through the
original line search routine, we reduce the number of computationally intensive en-
ergy evaluations to one per each inner loop step. For large Pt(111) metallic slabs of
450 atoms, we observed up to three times speed-ups for the combined fixed A and Pu-
lay mixing compared to the original implementation of line search optimised A with
linear mixing. Overall, the greater efficiency conferred by the Pulay Mixing method
expands the scope of studies concerning metallic systems in ONETEDP, both increasing
the number and the size of systems that can be evaluated.

Using the implementation of the soft sphere cavity model, we demonstrated that the
implicit solvent approach can obtain the work function changes induced by water for
the Pt(111) surface. By parameterizing the dielectric cavity to match the induced dipole
changes of the metallic surface obtained from AIMD studies, we were able to replicate
the experimental potential of zero charge offset by the intrinsic dipole of water at the
metal/liquid interface. Closer analysis of the electronic structure reveals that the im-
plicit solvent approach replicates the charge displacement towards the metallic surface
observed in the explicit solvent approach but does not necessarily describe more com-
plex features of the electron density induced by Pt-OH, bonding. We also discussed the
role of nonlocal dispersion including functionals in calculating the work function for
metallic surfaces, and find that the improved description of the electron density with
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VV10 in the diffuse electron density region leads to better agreement with experimen-
tal values. We then evaluate the ability of the work function parameterization to obtain
adsorption enthalpies for phenol in the aqueous phase. Although this method obtains
a qualitative decrease of AG}? compared to AG%¢ observed in experiment [45, 47], the
work function based parameterization overestimates the AHj,, for the Pt(111) facet,

leading to overestimated changes of AH/" with respect to AHY%.

We then reconcile our implicit solvent approach with experimental studies of adsorp-
tion processes by performing an alternative parameterization of the dielectric cavity
in terms of the AG;,, of the Pt(111) surface. To support this work, we provide a sim-
ple method for evaluating the entropy of adsorption in the aqueous phase by deriving
a lower bound to the AS,,, of the Pt(111) surface based on the cavitation entropy of
solvation [212], paired with the upper bound based on the assumption that H,O takes
on the entropy of the solid phase upon adsorption [49]. Although the existing body
of experimental work best matches the upper bound, questions surround the accuracy
of much of this experimental data because of the effects of strong-binding electrolytes
and the errors of the Van’t Hoff plots resulting from the small range of equilibrium con-
stants over the temperature range measured [49]. Evaluating the AGS%” of the implicit
solvent model for a range of adsorbates, coverages, and orientations, we find that the
commonly assumed structure of aromatic adsorbates (parallel to the metallic surface)
leads to large overestimations of the free energy of aqueous adsorption (by approxi-
mately 50 k] mol~1). This finding is supported by AIMD studies, where the AG*% for
phenol is similarly more exothermic relative to experiment (-151 vs. -21 k] mol~! [3,
45]). In contrast, for furfural and cyclohexanol, the vertical orientations with respect to
the metallic surface yielded values of AG;Z? within 20 k] mol~! of experiment at high
coverages. Taking into account the various assumptions used in the construction of this
model, these values are well within the error tolerances. Furthermore, we show that
this model qualitatively reproduces the experimental findings of AGS%? for the disso-
ciative adsorption of H, on the Pt(111) surface in the aqueous phase. In our model, the
energetically disfavoured displacement of the dielectric by H, approximately captures
the energetic penalty of breaking the Pt-OH, bonding interaction. Combining these
techniques provides a useful set of diagnostic tools for materials discovery and experi-
mental work in heterogeneous catalysis studies, allowing access to structural informa-
tion at relatively low computational costs compared to explicit solvent approaches. We
further predict that this framework is readily extendable to larger ranges of adsorbates
and that, provided that approximations of AH,4s of H>O are available, it can be applied

to other metallic surfaces.

Overall, our work demonstrates the great utility of the implicit solvent model for both
electrochemical and heterogeneous catalytic applications. As long as accurate param-
eterizations are performed for the desired property, the continuum solvent approach
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can provide a range of properties pertaining to the metallic/liquid interface and ad-
sorption processes. We have furthermore implemented improvements to the existing
ONETEP code for both the solvent model and ensemble DFT, enabling more exten-
sive studies through the reduced computation costs introduced by Pulay mixing EDFT.
These developments have allowed the study of the implicit solvent model applied to
a range of adsorbates at the Pt(111) surface across a range of coverages. We show that
in conjunction with easily calculated statistical thermodynamic descriptions of the en-
tropy changes, the adsorption free energy at metallic surfaces in the aqueous phase can
be obtained with reasonable accuracy, while avoiding arduous dynamical simulations
associated with explicit water simulations. These studies allow access to structural
information for the adsorption process, suggesting the preferred vertical orientation of
organic molecules at the Pt(111) surface in the aqueous phase. We have therefore shown
that the multifaceted effects of water at the metallic interface can be represented with a
well-parameterized, computationally inexpensive continuum solvation model. In the
evolving field of heterogeneous catalysis, the readily extendable methods described
in this work will provide future insights into the processes occurring at the aqueous
metallic interface in addition to those presented. In the future, the insights provided by
this work has potential to guide the rational design of heterogeneous catalysts.

7.2 Future Work

Although the experimental work precisely describing the thermodynamics of adsorp-
tion in the aqueous phase is quickly evolving, the difficulty in obtaining structural in-
formation of adsorbates at the metallic interface in the aqueous phase obfuscates the
precise binding mechanisms between the surface and adsorbate. We have based com-
parisons of our models on existing experimental data, but acknowledge there are a
range of effects such as voltage and electrolyte concentration which may influence the
structure and binding energies in experiment. More complete validation of the meth-
ods described in this work can be made when the body of experimental data grows,
providing deeper insight into the predictions made by our model of adsorption in the

aqueous phase.

Furthermore, the work presented can act as a framework for simulations of charged
surfaces. With recent developments of the Poisson Boltzmann model in ONETEP [127]
and the implementation of grand canonical ensemble DFT [128], studies of adsorption
processes for charged interfaces in the presence of electrolyte can be performed. Such
studies will better match the electrochemical conditions used in many experimental
measurements [45] and the expanding field of elecrocatalysis, which allows for the con-
version of biomass derivatives at low temperatures [235]. Further developments made
with Electronic Decomposition Analysis (EDA) for metallic surfaces can furthermore
provide qualitative insight to the various bonding interactions between the adsorbates
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and the metallic surface for a range of coverages. Such a technique could elucidate the
specific role of charge transfer, adsorbate-adsorbate interactions and dipole changes in
observed changes in AH,;; experienced at different adsorbate concentrations [236].

However, the model as presented can be used to calculate the energetics of adsorp-
tion for a wider range of adsorbates. Furthermore, by calculating the adsorption free
energies of water on other noble metal surfaces, the AG;,, of alternative catalytic sys-
tems can be measured. This increased scope will indicate the comparative adsorption
free energies of different species, aiding the mechanistic understanding of heteroge-
neous catalytic processes. Further in the future, these techniques could be applied to
nanoparticles and their supports. This will give a more realistic model of the catalytic
environment by including the influence of supports on the binding energies of adsor-
bates [75, 182]. Our model will further improve this representation by accounting for
the energetics of solvation.
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Appendix A

Entropy Derivations

A.1 Entropy of Isolated Molecule

The overall entropy of an ideal gas is calculated as.
Svuc,3D _ Svac,3D + Svac,?)D (A 1)
Tt r . .

577 is calculated in terms of the translational partition function,

vac,3D
5770 = kln (q7"°P) + k + kT <aln(g£[)) , (A.2)
1%

where k is the Boltzmann constant and g; is calculated through the simple approxima-

tion for a molecule of mass m in a box of volume V:

e 27rmkT\ */?
q f3D:< " ) V. (A.3)

S7%¢ is calculated through the rotational partition function:

ol vac,3D
S,Z,MC’SD — kln (q;mc,?)D) + kT n (qr ) , (A4)
oT v
where 2P is the rotational partition function for a non-linear molecule using the

rigid rotor approximation:

013D 72 182 1kT\ 32 N
r - 0]’ h2 : ( 5)

where 0; is the rotational symmetry factor of the molecule and the inertia I is calculated

as the product of the diagonal elements of moment the intertia tensor I = (LI, Izz)l/ 3,
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A.2 Entropy of Adsorption

The standard entropy of an adsorbate is commonly described by the 2D lattice gas or
2D ideal gas approximations. The latter applies for molecules with sufficient thermal
energy to diffuse freely across the metallic surface (i.e., high temperatures), in addition
to having weak adsorbate-adsorbate interactions [12]. The lattice gas approximation is
used where the molecules are restricted to their respective sites on the metallic surface
[68].

In the ideal 2D gas approximation, we assume the molecule loses the translational de-
gree of freedom orthogonal to the metallic surface upon adsorption, where it is free to
diffuse across area, A:

ol vac,2D
§7*0 = kln (g:) +k + kT(n (ng )> : (A.6)
A
where g; is modified to:
q?ac,ZD _ <27TI:I;kT> A (A7)

The modification of S?“*? depends on the nature of the adsorbate and its environment
[12] [73]. Campbell approximates that approximately 1/3 of the rotational entropy is
lost overall for smaller organic molecules. As this reduction in entropy does not simply
correspond to a specific principal axis of rotation, we shall simply adopt:

§uae2D — 9 /3 4 §U4C, (A.8)

However, we will explore possible cases where further degrees of rotational freedom
are removed.

A.3 Entropy of Solvation

Garza [212] showed that the entropy of a solvated molecule (5°°/*3P) can be calculated
with only geometric shape parameters (cavity surface area, cavity volumes and van
der Waals’ radii) and simple physical constants. Similarly to the gas phase, 5°°/*3P is

partitioned into four components:

Ssolv,3D — S?}Olv,g)D + Siolv,ﬁ’)D + S]s/olv,?:D + S§OIDI3D, (A9)

solv,3D solv,3D
Su Se

where is taken as 0, and is the entropy of formation for the solvent cavity.

Sf"lv’w is calculated using the same Sakur-Tetrode expression (Equation A.2) and par-

tition functions (Equation A.3 as the 3D gas phase. However, the volume the molecule
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can move in is restricted to a cavity of V, by the surrounding aqueous medium. V, is
defined as a sum of the van der Waals’ volume of the molecule (V) and the volume of
free space per solvent molecule (V).

Ve=(W{> + Vi), (A.10)
where Vy,,, is defined as,
MS
Viree = —% — V. A1l
free NAP Sy ( )

where Vs is the van der Waals” volume of the solvent, p is the mass density of wa-
ter, N4 is Avogadro’s Number, and M, is the molecular weight of water. Additional
terms in the original work correct for the entropy contribution of the molecule "hop-
ping’ from one cavity to another, which is expressed as a scaling factor applied to the
volume. However, this value assumes unity for all molecules studied in this work and

is excluded for brevity.

5503D is calculated using the same rigid rotor, non-linear assumptions of the 3D gas

phase. However, additional terms are used to colrrect the translational entropy loss
caused by confining the radius of gyration to Vj,,. In this model, the volume the
rapidly rotating linear/spherically symmetric rotor can move within Vs (defined as a
sphere of radius 7,f() is reduced by a volume defined by its volume of gyration (r):

1 Nut
7’§ = N = Z(rk - rmezm)2~ (A12)
at k=1
§30103D s then expressed as,
1 vac,3D
§50193D —  In (2P 4 kT(a“(ng)> ST Vi) = SHT V), (A1D)
1%

where V, = 47tr3/3 is the volume of a sphere with a given r. The rotational partition
function is unmodified from the 3D gas phase case. Note that the partition function is

unmodified from the 3D gas phase case (eq. A.5).

553D can be expressed using arguments based on either Scaled Particle Theory or

an Acentric Factor Approximation. The former was found to be very sensitive to the
choice of scaled solvent radii Rs, where small differences in experimental values of
Rs resulted in significantly different values of 53", Therefore, the acentric factor

approximation is used in this work.

The acentric factor approximation calculates entropy of cavity formation by taking the
difference between the entropy of vaporization between a simple liquid (spherical and
nonpolar) and the real liquid [227]. The deviation of the real from the simple liquid
(i.e., deviations from the Principle of Corresponding States) is represented by the Pitzer
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accentric factor (w), which is measured as 0.344 for water.

ideal
AS;ﬁf;l — AS;‘;”; = —%w = —5.365wk, (A.14)
C

where 5.365 is derived from the enthalpy of vaporization of an ideal liquid under the
corresponding state theorem, AHy,p / T¢.

ASZ‘;’{Z contains contributions from rotational degrees of freedom which are absent from
the ideal liquid, which only represents changes in entropy arising from transitional
degree of freedom. Therefore, the entropy change of solvation due to $50103P must be

removed to recover the entropy of cavitation of a pure liquid,
AP — 5365wk — Si(T, Vyo—r,) + Si(T, Vi), (A.15)

where the latter two terms represent the change in rotational entropy of the solvent
relative to the gas phase (ASS%Y).

For a mixture of compounds, a further factor is introduced to account for the greater or
smaller number of coordinated solvent molecules due to the different shape and size of
the solute. This is approximated by G (R, Rs):

sgoloADmix — _ (5.365wk + ASS%")G (R, Rs), (A.16)

where G(Ryr, Rs) approximates the coordination of solvent molecules around the so-
lute, with G(Rx,Rx) = 1. This is approximated by assuming packing occurs for a box
shape, as opposed to a spherical set of cavities, i.e., G(Rym,Rs) = Apm/ As, where Ay is
the solvent accessible surface area (SASA) of compound X. Differences in curvature are
corrected by

¢x = Ax/ A%~ (A.17)

where AY* is the surface area of the minimum bounding box of the SASA. This results
in the simple approximation for packing spherical solvent molecules around the solute

surface,
( M S) 45 f ( )

A further correction to Equation A.16 is also required to account for the entropic penalty
of creating a cavity able to fit the solute into the ideal liquid of hard spheres. The cavity
entropy for the reference ideal liquid is then represented as,

S% = k“;;wln(l — Vsns), (A.19)

which yields the expression for the overall entropy of cavitation for the desired solute,

501080 = 80— (5.365wk + ASI%)G (R, Rs). (A.20)
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Appendix B

Multipole Corrections

B.1 Multipole Corrections

The plane wave approach inherently involves the use of periodic boundary conditions
(PBC). In order to model isolated molecules, the supercell technique was developed,
which involves adding large quantities of vacuum to the simulation cell in order to sep-
arate their periodic images. Although this method is adequate for neutral molecules,
charged systems and systems with significant multipoles require additional considera-
tions. Monopole and multipole moments decay in accordance to the power law, where
point charges decay with 7%1’ dipoles with r%z etc. Using the supercell method for sys-
tems with a net charge or significant dipoles require large volumes of vacuum to elim-
inate the electrostatic interactions between the system of the unite cell and its periodic
images. However, as traditional plane wave codes extend across the entire cell, adding
large quantities of vacuum is incredibly computationally costly. With respect to the
work herein, the supercell technique suffices for the neutral metallic surface, whereas
calculations performed for the surface/water interface involve significant dipoles de-

pending on the net orientation of the water layer.

Various dipole corrections such as the Coulomb cut-off (CC) [237], Continuum Screen-
ing Method [238] and Gaussian Counter Charge model [239] have been developed in
order to isolate the electrostatic interactions of the unit cell. In this work, we will limit
our discussion to the Coulomb cut-off and its implementation in ONETEP.

The Hartree potential of a system is defined as:

Vii(r) = / o n(r') (B.1)

r—r|’
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where n(r') describes the charge density of the system. Through convolution theory,
applying a Fourier transformation to this term yields the reciprocal space representa-
tion Vy:

Vi(G) = V(G)n(G), (B.2)

where V(G) = %T'z represents the Fourier transform of the Coloumb interaction.

While the above expressions are taken over all space (oo to —o0), the Coulomb cut-off
sets the Coulomb interaction between charges to zero beyond a specified radius. By
selecting an appropriate cut-off radius, Rc, one can retain the correct electrostatic in-
teractions of between charges in the unit cell, while eliminating spurious interactions
between the periodic images. In the original formulation of CC, the truncation is per-
formed in all directions as a sphere:

1 !/
VD (e ) = P for Re < |r—r|

. (B.3)
0 for Re > |[r—r |
Performing an analytic Fourier Transformation of V(r,r ) with modified boundaries

yields the following inverse space representation of the Coulomb interaction:

_ 1—cos(|G| = R)

V3D(G> |G|2

(B.4)

Another important component of the Coulomb cut-off is the appropriate choice of cut-
off radius and simulation cell length. These are selected to ensure two conditions are
met: 1) The correct electrostatic interactions are represented in the cell and 2) the in-
teraction between charges of the periodic image and the simulation cell are set to zero.
The first condition is satisfied by setting the cut-off distance equal to or greater than the
distance between any two non-zero charges. This is typically satistied by R¢ > V3Ll
The second condition requires that the distance between non-zero charges of the simu-
lation cell and the periodic image must be greater than or equal to the cut-off length. In
ONETEP, this is achieved by placing the unit cell inside a larger padded cell, in which
the charge density p(r) is set to 0. The second condition is satisfied when the total cell
length, Liota) = Leen + Lpad = Re + Leenr-

Although this approach is satisfactory for systems with no periodicity, additional con-
siderations must be made for the infinitely extended planes under study in this report.
For such systems, the Coulomb cut-off must only be applied in the out-of-plane direc-
tion, while retaining PBC in the xy-plane. Originally, this was implemented in ONETEP
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Periodic image = . Periodic image

Rcell

FIGURE B.1: Demonstrates the 2D-periodic Coulomb cut-off across the xz-plane. The

configuration shown satisfies the conditions of the Coulomb cut-off, Ly, = Lo +

Lyag > Rc + Leen, required to isolate the system from its periodic images. In the
padded regions, the electron density is set to 0.

from the formulation of Rozzi et al. [184], where the Coulomb interaction V3P (G) is re-

cast to the following expression:

4
VP(G,G:) = Gi; [1 + e—Gch'lZ' sin(G.R¢) — e CIR¢ cos |G| R¢) (B.5)

Where G| = \/m and G; represent the in-plane and out-of-plane reciprocal space
vectors respectively. This formulation requires additional expressions which handle the

singularities at

1) G” =0:

4
VP(Gy,G,) = GiZ[l — c0s(G:R¢) — G.Rsin(G.Rc)] (B.6)
z

and: 2) G = G; =0

V¥ (G, G.) = —27RE (B.7)

However, applying this implementation in our calculations resulted in unphysical elec-
trostatic potentials. Instead of the expected smooth electrostatic potentials, our systems
showed an oscillating electrostatic potential of 1 eV between every grid point in the
system. These instabilities arise from an erroneous step-like function in the Coulomb

interaction at z = R, resulting from equation B.6.
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Therefore, as part of our work, we altered the originally implemented formulation to

that proposed by Tribaulet et al. [185]. Their formulation requires R¢ = % This

corrects the Coulomb cut-off by considering G, as a multiple of %, where G, x R

becomes a multiple of 7r. This eliminates the sine term, yielding a new form of the

Coulomb interaction:

47
G.2

z

V(G G.) = =1 — e “I% cos(G:Rc)] (B.8)

This simplified expression eliminates the need to represent the singularity at G| = 0

with a separate equation.

A test to validate this implementation was performed for a small platinum supercell
slab system, for a quantity which is sensitive to the value of the electrostatic poten-
tial (the work function). This is performed using the calculation parameters outlined
in Chapter 5. For a (4x4) Pt system of 4 layers compared calculated with the Coulomb
cut-off and standard periodic boundary conditions. We further test the implementation
for a system with a significant dipole moment, i.e. a Pt(4x4x4) slab with a water bulk of
52 H,O molecules, which we compare to results obtained with the Gaussian Counter
Charge correction of Quantum Espresso [240], as implemented in the Environ module
[111]. These calculations are performed using identical parameters (PAW psuedopo-
tentials and PBE GGA functional) as their corresponding ONETEP calculations where
applicable, with a 330 Ryd kinetic energy cut-off.

Method Work Function / eV
QE - GCC 5.61
ONETEP - CC 5.66
ONETEP - Full PBC 5.48

TABLE B.1: Values of the work function for a Pt(4x4x4) cell in vacuum under different
boundary conditions.

Method Work Function / eV
QE - GCC 5.30
ONETEP - CC 5.25

ONETEP - Full PBC -
ONETEP - Old CC -

TABLE B.2: Values of the work function for a Pt(4x4x4)/52 H,O interface with different
methods of dipole interaction. Values cannot be obtained under PBC and the original
implementation of the Coulomb cut-off.

The work function is taken as the i = Er — Ey;c, where E,, represents the flat potential

far in the vacuum region. First, the simple validation for the system in vacuum (Table
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B.1) shows that the work function aligns well with the calculation in periodic boundary
conditions and the GCC multipole correction.

Next, tests are conducted to ensure that the CC correctly replicates the electrostatic po-
tential of an isolated system. This is performed using the average work function of 20
AIMD snapshots of Pt(4x4x4) slabs with a system of 52 water molecules (Equivalent to
those used in Chapter 5). This ensures that a range of dipole moments are accounted
for. Under standard periodic boundary conditions (Figure: B.1), the intrinsic dipoles
of each periodic image spuriously interact with one another, meaning the electrostatic
potential in the vacuum region shows an unphysical linear decay. Meanwhile, the elec-
trostatic potential in the original implementation of CC has such large quantities of

noise, no useful information can be extracted from the plot.

Contrastingly, the new implementation of CC gives the correct flat of electrostatic po-
tential in the vacuum region. This suggests that the coulombic interactions between
the periodic images have been correctly eliminated. Furthermore, the average work
function of the CC agrees closely with Quantum Espresso’s GCC, showing a small dis-
crepancy of only 0.05 eV (Table B.2).
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Appendix C

Parameterization of Vacuum Slab

C.1 Pt Vacuum Benchmarks

Ab initio methods provide a powerful computational tool to accurately simulate sur-
face properties. Several benchmark studies [202, 241, 242] using the periodic supercell
model have been conducted using a range of Density Functional Theory (DFT) meth-
ods. Such simulations are often done with the plane wave (PW) formalism for DFT
calculations, which allows one to calculate charge density, energies, and band struc-
tures through integration across the Brillouin zone (BZ) [243]. Sampling techniques
such as the Monkhorst-Pack scheme [87] allow for the efficient integration of the BZ
via a summation of special k-points evenly distributed throughout the first Brillouin
zone (1BZ) [87]. Typically, surface properties tend to be highly dependent on both the
thickness of the slab and sampling of the 1BZ. It is therefore important to test for con-
vergence by both sequentially increasing the number of layers of the surface slab and

increasing the density of k-point sampling.

Using standard PW methods, Singh-Miller et al. [202] and Da Silva et al. [242] demon-
strated that convergence of both the interlayer relaxation and work function occurs
with 6 layers for the Pt(111) surface to within 0.02 A and 0.01 eV respectively. However,
each study emphasizes care when calculating the surface energy. As these calculations
use the bulk properties as a reference, one can introduce errors through inconsistencies
in 1BZ sampling between the bulk and surface calculations [244]. However, one can
drastically reduce errors by using i) a sufficiently dense k-point mesh (typically around
30x30x30 or more) across both calculations or ii) the method outlined by Fiorentini and
Methfessel [244]; where the reference bulk energy is extracted from a set of successively
thicker surfaces as opposed to a single bulk calculation.
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FIGURE C.1: The Birch-Murnaghan fitting procedure is carried out for an 864 Pt atom

simulation cell. The quality of the basis is kept constant for each of the blue markers

and the number of psinc basis functions vary. Red markers show the psinc kinetic

energy cut off Ey is varied by approximately 10 eV to the nearest adjacent while the
number of psinc basis functions remains constant.

One can also achieve adequate reciprocal space sampling by increasing the size of the
simulation cell, which correspondingly reduces the volume of the 1BZ. For a suffi-
ciently large simulation cell, the variation across the 1BZ decreases such that only one
k-point (known as the I'-point at k=0) is required to achieve convergence with respect to
reciprocal space sampling. However, as the plane wave basis extends across the entire
simulation cell, the memory requirement of the calculation increases dramatically with
simulation cell size. This is especially punishing in slab supercell simulations, where
large volumes of vacuum must be included in the system to avoid self-interaction be-
tween adjacent periodic images. Santarossa et al. [241] demonstrated the equivalence
between the I'-point and the Monkhorst-Pack sampling scheme for Pt(111) and Pt(110).
Their study shows close agreement with the dense k-point approaches with (1x1) units
cells, provided the bulk and surfaces are constructed with upwards of (6x6) repeat-
ing units of Pt. The memory cost of vacuum was made more manageable using the
Gaussian Plane Wave (GPW) [188] basis approach as implemented in the CP2K code,
which represents the charge density of Gaussian basis functions through an auxiliary
plane wave basis set. The DFT formalism implemented in the linear-scaling DFT code,
ONETEP [91] presents another approach for reducing the vacuum cost. By representing
the plane waves as a set of highly localized periodic sinc (psinc) basis functions which
are used to expand atom-centered NGWFs strictly localized within spherical regions,

unnecessary computations are avoided in vacuum regions of the simulation cell.
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TABLE C.1: Bulk properties obtained with different DFT methods, all using the

PBE functional. PW approaches shown use a (1x1) unit cell of the fcc bulk with

(21x21x21) k-point sampling. Both ONETEP and the GPW calculations were per-
formed with I'-point only sampling, with a (6 x6x6) unit cell.

Calculation Method Bulk Modulus / GPa Lattice Constant / A

ONETEP (6 x6x 6 unit cell) 268 3.98
Plane Wave (1)? 246 3.99
GPW (6 x6x6 unit cell)° 270 3.97
Plane Wave (2)° 241 3.97
Experimental Valued 278 3.92
2 Singh-Miller et al. [202]. b Santarossa et al. [241]. © Da Silva et al. [242]. 9 Kittel et al.
[154].

C.2 Pt Bulk Properties

The bulk is constructed as a set of (6 x6x6) FCC unit cells containing 864 Pt atoms,
where the simulation cell volume is varied through a lattice constant of 3.75 to 4.09 A.
The Birch-Murnaghan equation of state9 is then used to obtain the equilibrium lattice
constant and bulk modulus. Variations in cell size require careful treatment to keep the
underlying basis set description as invariant as possible. One can either i) fix the basis
quality by keeping the kinetic energy cut-off E; constant, but increasing the number of
plane waves, as outlined by Skylaris et al. [245], or ii) fix the number of basis functions,

but varying the value of E;. Here we combine both approaches as shown in Figure C.1.

In ONETED, E; is inversely proportional to the square of the grid spacing of the un-
derlying psinc functions. In order to keep the value of E; constant, the psinc spacing
must also remain unchanged. This is done by varying the simulation cell size in dis-
crete multiples of the underlying grid spacing (0.258 A). An exception to this is the two
points highlighted in blue in Figure C.1. Here, instead of keeping the psinc spacing
constant and varying the number of grid points, we keep the number of grid points
constant and vary the E; by expanding the cell by a small amount (0.14 A3), with the
number of plane waves kept constant. This only leads to an increase in psinc spacing
of 0.0015 A (or E; ~10 eV). As we can see from Figure C.1, the method of varying Ej
produces far smaller fluctuations in total energy compared to the changes due to the
lattice parameter, so we will take also these points into account in our calculation of
the equilibrium lattice constant. The points shown in Figure C.1 correspond to lattice
constants of 3.75 A (with 87 grid points in each dimension), 3.90 A (91 grid points with
increased spacing), 3.92 A (91 grid points), 3.94 A (91 grid points with decreased spac-
ing), 4.01 A (93 grid points) and 4.09 A (95 grid points). These points were selected
as they are multiples of prime numbers and allow efficient FFTs for the calculation of
the Hartree potential. The points with 89 grid points (3.83 A) were not possible to use
as they lead to very slow calculations as they are not divisible to smaller numbers of
points for efficient FFTs.
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FIGURE C.2: Illustrates the (4x4) supercell of the Pt(111) facet with its underlying

(1x2) unit cell viewed through the z-axis (top panel, (111) facet) and its corresponding

view through the y-axis (bottom panel, (101) facet) showing two cells of N=2 and N=4
thickness.

Table C.1 shows the values of the lattice constant obtained via the Birch-Murnanghan
equation from our points in Figure C.1 compared to PBE calculations with other meth-
ods such as the GPW TI'-point only approach used by Santarossa et al. [241] and plane
wave approaches with k-point sampling. There is close agreement in the lattice con-
stants between ONETEP (3.98 A) and the other methods which produce values in the
range 3.97-3.99 A. We also quote the experimental value which is 3.92 A, where it is
well known that PBE overestimates this lattice constant [246]. The values of the bulk
modulus show a wider spread in the range 246-270 GPa with the PW results in the
range 241-246 GPa and ONETEP 268 GPa being very close to the value of GPW which
is 270 GPa and close to the experimental value of 278 GPa. The much closer agreement
with experiment of the GPW and ONETEP calculations may be an artefact of the use of
localized orbitals in these approaches.

C.3 Surface Calculations in Vacuum

Surface calculations were performed with the periodic supercell method with a slab
model. This approach emulates an infinitely extended metallic surface of a specified
thickness through a set of repeated unit cells. To avoid self-interaction, the periodic
images were separated by at least 20 A of vacuum in the z-direction. Surfaces were
constructed from sets of (1x2), orthorhombic unit cells for Pt(111) (as shown in Figure

C.2). In order to test convergence with respect to I'-point sampling, calculations were
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TABLE C.2: Energetic properties for the Pt(7x6xN) set of slabs, including the work
function and the surface energy, as calculated with the Fiorrentini method [244].

Species Vacuum ¢ / eV Surface Energy, o / eV A2

PH(7x6x2) 5.72 0.69
PH(7x6x3) 5.82 0.68
PH(7 x 6 x4) 5.70 0.66
PH(7x 6% 5) 5.71 0.68
Pt(7 x 6 x6) 5.64 0.68
PH7 X 6x7) 5.65 0.69
Pt(7x6x8) 5.64 0.68

PW? 5.69 0.65
Experiment  6.10 = 0.06" 0.96¢

*PW with 13-layer slab [202]. PUHV LEED [200]. “Kumikov et al. [247].

performed with a 5-layer slab with increasing numbers of unit cells in the x and y
directions (ie. (4x4), (5x6), (6x6), (7x6) and (8 x8). Energetic and structural properties
were also evaluated with respect to the number of layers in the slab in order to validate
our structures for use in solvation calculations. This was performed with the (7x6)

surface slab.

C.3.1 Work Function and Surface Energy

The work function (¢) represents the minimum energy required to remove an electron
from the metallic surface to a location in the vacuum where the variation of the electro-
static (Hartree) potential is no longer influenced by the charge density of the metallic
species. This work will follow the convention where ¢ is calculated as the difference
between the Fermi level Er and the plane-averaged electrostatic potential V' at a mid-
point in the vacuum region between the Pt slab and its adjacent periodic:

¢:Evac_EF/ (Cl)

where Ey, is calculated as an average of the electrostatic potential in the xy-plane 10 A

above the surface.

For slabs with N=2 to N=5, the value of the work function fluctuates between 5.82 to
5.70 eV (Table C.2). This implies finite size effects introduce significant errors to the
work function for N<6. However, the work function values for N>6 converge within
£0.1 eV of the thickest surface slab. Furthermore, our converged value of 5.64 & 0.1 eV
compares favourably to the value of 5.61 £ 0.1 eV for the GAPW approach2, and the
5.69 £ 0.05 eV value of the PW approach with multiple k-points [202].

The surface energy of a metallic facet is defined as the free energy per unit area relative

to the bulk for a particular crystal facet. In essence, this quantity describes the free
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energy of formation of a surface compared to the bulk crystal. The simplest way to
calculate surface energy, o, is through the expression:

1

7724

(Eiir —N Ebulk) (C2)

where Eg\[lr represents the total energy of the metallic surface of N Pt atoms, and Ej,x
represents the energy of a single Pt atom within the bulk. Due to the symmetry of the
slab, the surface energy per unit area can be obtained by a division of the total slab
surface area, 2A. As mentioned in the introduction, the accuracy of ¢ is limited by the
correspondence of k-point sampling of the surface and bulk calculations. The method
of Fiorrenttini et al. [244] circumvents this issue by obtaining Ej,; from as a linear
regression of Eé\[lr £ for a set of surface slabs of increasing numbers of layers Nj,,, but

with a constant number of constituent unit cells and k-points.

Applying this method to the Pt(7x6xN) surfaces, o converges to a value of 0.68 £ 0.01
eV/A? with 5 layers (Table C.2), where the value continues to fluctuate marginally for
the surface with 7 layers. These values are consistent with similar studies carried out
with other PW methods. For example, our values are especially compatible with the 13-
layer converged surface of Singh-Miller et al. [202], where agreement was found within
0.02eV/AZ

C.3.2 Interlayer Spacing

The interlayer spacing (or interlayer relaxation) describes the change in distance be-
tween each of the metallic layers relative to the unrelaxed surface (in the bulk posi-

tions):
d(@luxed o dunrel axed

o _ Y )
Adlj o = Jrelaxed x 100 % (C3)

where d;fl”xed is the distance between layers i and j and d}‘j”’d““d is taken as ag/\/3
(along the (111) direction of a FCC metal), where a, is the equilibrium bulk lattice con-
stant. Throughout the paper, a positive value of Ad;; % corresponds to an expansion
and a negative to a compression of the surface slab relative to the unrelaxed structure.

Previous benchmark studies by Singh-Miller et al. [202] using the PWSCF method [202]
found that the interlayer spacing for the first layer Pt(111) expands by ~1.0%, while the

second layer contracts ~0.5 % relative to the bulk value.

Although convergence with respect to the numbers of unit cells was achieved with
Pt(7 x6x5), the magnitude of Ad, % is smaller than Adp3 % for both of these surfaces.
This is quantitatively inconsistent with the results of previous benchmark studies, but
this is shown to be an artefact of finite size effects, as shown by the increasing the num-
ber of layers of the Pt(7 x6xN) slab from N=2 to N=9 (Table C.3). For slabs N < 6, the
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TABLE C.3: Interlayer spacing after full geometry relaxation for a set of increasingly

thicker Pt(111) slabs from 2 to 9 layers. These values are compared against I'-point

only calculations with GPW (Quickstep), and a PW (PWSCF) calculation with an (8 x8)
Monkhorst-Pack grid and 13 Pt layers.

Slab Dimensions Ady, /A Ados /A Adyp %  Adys %

Pt(7x6x2) 2.310 - 0.69
Pt(7 x6x3) 2.290 2.290 -0.18  -0.18
Pt(7 x6x4) 2.313 2.240 082  -2.36
Pt(7 x6x5) 2.304 2.274 0.43 -0.88
Pt(7 X 6% 6) 2.312 2.272 077  -0.97
Pt(7x6x7) 2.313 2.281 0.82  -0.58
Pt(7 x6x8) 2.314 2.284 0.86  -0.45
Pt(7x6x9) 2.317 2.280 0.99 -0.62
Pt(8x8x8)? 2.315 2.278 1.13 -0.49
PW 13-layers® - - 0.85 -0.56

a GPW [241].° Singh-Miller et al. [202].

interlayer spacing fluctuates significantly from the N=9, with Ady3 and Ad;, varying
by up to 0.032 A. Although the qualitative expansion of Adj, and contraction of Adys
are observed for N=4 to N=6, the magnitude of Ady3 % for these thicknesses are rela-
tively larger than Adaz % for N > 6. This is quantitatively inconsistent with interlayer
spacing changes for N=9 and the thickest slabs of the PW and GPW approaches, where
Ady3 % contractions are consistently 0.3-0.5% smaller than the expansions of the first

and second layer.

However, interlayer spacing changes converge with slab thicknesses N > [188], where
the maximum fluctuation in Adj, and Adys is small (0.003 A). Also, of note is the simi-
larity between our results and those of the GPW I'-point only approach. Here, we see
the differences for the Ad;» between the Pt(8 x 8 x8) and Pt(7 x 6 x9) surfaces are 0.001 A,
and 0.006 A for Adp;, respectively. We conclude that a surface slab such as Pt(7 x6x7)
with the I'-point approach is sufficiently large to provide geometric relaxation param-
eters comparable with a conventional calculation of a small cell with extensive k-point

sampling.

C.4 k-point Convergence of Pt(111)

We performed additional convergence tests with respect to Brillouin Zone sampling
by using increasingly large supercells in the xy-direction. Here, we demonstrate that
the value of the work function shows relatively small variation from Pt(4x4x5) to
Pt(8 x8x5), showing a difference of 0.03 eV between the smallest and the largest slabs
(Table C.4).

Conversely, the interlayer spacing is more sensitive to BZ sampling. Compared to the
converged Pt slab, the smaller systems (Pt(5x6) and Pt(6 x6)) exhibit a large contraction
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TABLE C.4: The convergence of the work function for slabs with increasing size in the
xy-plane to demonstrate convergence is achieved in the I'-point approximation.

Slab Dimension Work Function ¢ / eV

Pt(4x4x5) 5.65
Pt(5x6x5) 5.66
Pt(6x6x5) 5.66
Pt(7x 6 x5) 5.70
Pt(8 x8x5) 5.68

TABLE C.5: The convergence of interlayer spacing for a 5 layer Pt slab with increasing
size in the xy-plane to demonstrate convergence is achieved in the I'-point approxima-
tion.

Slab Dimensions Adiy /A Ady /A Adpp % Adx %

Pt(4x4x5) 2.330 2.291 1.63 —0.03
Pt(5x6x5) 2.297 2.244 0.21 —2.10
Pt(6x6x5) 2.292 2.252 -0.01 —-1.78
Pt(7x6x5) 2.304 2.274 0.43 —0.88
Pt(8x8x5) 2.302 2.263 0.42 —1.30
Pt(8x8x5)? 3.202 2.268 0.59 —0.93
PW 13-layers® - - 0.85 —0.56

a Santarossa et al. [241]. P Singh-Miller et al. [202].

of the second layer while the expansion of the first layer tends to be smaller (with the
exception of Pt(4 x4)). For slabs larger than Pt(7 x6), the geometry converges to within
0.01 A (Table C.5).
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Appendix D

Entropy and Free Energies of
Adsorption

D.1 Entropy of Adsorption Values Tabulated

Akinola et al. [59] propose two major potential sources of error associated the experi-
mental data of Table D.2. First is the use of the HCI electrolyte, where Cl~ is known to
bind to the Pt surface [47, 49, 248]. The co-adsorption of Cl~ to the surface is known
to disrupt the packing and orientation of interfacial water, which introduces an error
due to a dependence of the adsorbate binding energies on pH and voltage [249, 250].
Secondly, the Van’t Hoff linear regression covers a relatively small range of K,; values
(Between 1-2 over a range of 283-403 K), meaning the error of the linear fit is relatively
large [59]. The presence of these errors for AS3%? is supported by substantially lower
entropy values for studies performed with a weakly binding acetate buffer, which re-
duces the error due to electrolyte. For the adsorption of phenol on the Pt(100), Rh(111)
and Rh(100) surfaces, the ASZ‘;ZSU for Pt(100) is predicted to be +59 + 39 ] K~ mol~! rela-
tive to +188 JK~! mol~! of Bockris et al. for Pt(111) [46]. However, measurements with
the acetate buffer still predict a high entropy value for phenol on the Pt(111) facet, but
with a substantial error estimate (4174 & 64 ] K~! mol~!). Further evidence shows that
water on the Pt(100) and Pt(111) facets have similar dynamics and adhesion strength
[226], suggesting that increased ordering of water does not rationalise the large entropy
differences between the two facets. Deciding whether the upper or lower bounds better
physically reflects adsorption at the solvated Pt surface requires more data measured
with the acetate buffer. The large experimental errors associated with the with the Van’t
Hoff approach for weakly adsorbing species adds further ambiguity.
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TABLE D.1: Entropy of adsorption values in the gaseous and aqueous phase for

molecules adsorbed horizontally to the Pt(111) surface. Lower bound (LB) calculcated

by statistical mechanical arguments and accentric factor approximations of the cavita-

tion entropy. Upper bound (UB) calculated as the entropy of fusion for the approxi-

mate number of H,O molecules displaced based on the intersecting surface area of the
metallic surface and adsorbate. All values stated in J K~ mol~1.

Molecule ASY¢

ads

ASSPLB  ASSYUB  ASYY Expt. [47] #H,O Displaced

Benzoic Acid -141
Naphtholic Acid  -150

Naphthol -146
Phenol -135
Butanol -144

Valeric Acid -153

103
162
136
75
90
109

175
271
254
151
151
180

191
254
244
188
59
81

4.05
5.55
5.68
4.05
3.21
3.74

TABLE D.2: Entropy of adsorption values in the gaseous and aqueous phase for

molecules adsorbed vertically to the Pt(111) surface. Lower bound (LB) calculated

by statistical mechanical arguments and accentric factor approximations of the cavita-

tion entropy. Upper bound (UB) calculated as the entropy of fusion for the approxi-

mate number of HyO molecules displaced based on the intersecting surface area of the
metallic surface and adsorbate. All values stated in J K~! mol 1.

Molecule ASYC  ASSILB  ASPPUB  ASY Expt. [47] #H,0O Displaced
Benzoic Acid 141 57 74 191 1.29
Naphtholic Acid 150 89 115 254 1.92
Naphthol 146 68 89 244 1.63
Phenol 135 37 54 188 1.31
Butanol 144 49 68 59 1.50
Valeric Acid 153 66 90 81 1.82

D.2 Coverage Geometries

The slab geometries used through out are based on a four layer, orthogonal Pt(111) facet

with dimensions of (7 x 6), (8 x 8) or (10 x 8) where appropriate for the desired cover-

age. Coverage was also varied by increasing the number of adsorbates on the surface,

and is normalised to the saturation coverage of each compound. Large simulations cells

were necessary as ONETEP uses the I'-point only for total energy calculations, meaning

the unit cell in real space must be large enough to sufficiently sample reciprocal space

for a single k-point.
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6=0.05 6=0.25 6=0.5

6=0.75 6=0.83

FIGURE D.1: The coverages of hydrogen on the Pt(111) facet.

6=0.67 6=0.83

FIGURE D.2: The coverages of phenol on the Pt(111) facet. All adsorbates horizontal
with respect to the surface.
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.‘ O% @
TR

Upright Geometry

6=0.75 6=1.0

FIGURE D.3: The coverages of cyclohexanol on the Pt(111) facet. All adsorbates hori-
zontal with respect to the surface.

6=0.75

FIGURE D.4: The coverages of furfural on the Pt(111) facet. All adsorbates vertical
with respect to the surface.
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D.3 Entropy of Solvation and Adsorption Values

TABLE D.3: The translational (2% Equation A.2) and rotational (S2%*P Equation A.4) com-

Mol,t Mol,r

ponents of the standard 3D entropies of all measured molecules in vacuum (S%Z'ISD
Molecule m \% S%E’f’f oy I S%S’f? S%Z'f’j
/kg /m3 /J K~ mol~! /kg m?> /JK 'mol™' /JK!'mol!
Benzaldehyde 1.76E-25 3.99E-26 167 1 3.91E-45 121 288
Benzene 1.30E-25 3.99E-26 163 6 1.87E-45 97 260
Benzoic Acid 2.03E-25 3.99E-26 169 1 5.17E-45 124 293
Butanol 1.23E-25 3.99E-26 162 1 2.04E-45 113 275
Cyclohexanol  1.66E-25 3.99E-26 166 1 3.37E-45 119 285
Furfural 1.60E-25 3.99E-26 166 1 297E-45 117 283
H, 3.35E-27 3.99E-26 117 2 8.37E-48 38 156
Naphthoic Acid 2.86E-25 3.99E-26 173 1 1.11E-44 134 307
Phenol 1.56E-25 3.99E-26 165 1 297E-45 117 283
Naphthol 2.39E-25 3.99E-26 171 1 7.28E-45 129 299
Valeric Acid 1.70E-25 3.99E-26 166 1 4.27E-45 122 288
TABLE D.4: The translational (S%g’ftD Equation A.6) and rotational (SXZZ’I%P Equation A.8) com-
ponents of the standard 2D entropies of all measured molecules in solvent (S%E’ZZD ). The area
(A) is taken as the total area of the Pt(7 x6) metallic slab.
Molecule m A S%thD oy I SUM’ZZ’I%P S%Z’ZZD
/kg /m? /T K= mol~! /kgm2 /JK 'mol™! /JK ! mol™!

Benzaldehyde 1.76E-25 4.54E-19 87 1 293E-45 49 136
Benzene 1.30E-25 3.76E-19 83 6 1.49E-45 31 114
Benzoic Acid 2.03E-25 4.22E-19 88 1 8.01E-45 53 141
Butanol 1.23E-25 3.35E-19 81 1 4.34E-45 63 144
Cyclohexanol 1.66E-25 1.96E-19 80 1 2.72E-45 59 138
Furfural 1.60E-25 3.59E-19 84 1 2.01E-45 48 132
H; 1.67E-27 7.30E-20 66 - - 0 66
Naphthoic Acid 2.86E-25 5.76E-19 93 1 1.94E-44 57 150
Phenol 2.39E-25 5.84E-19 92 1 1.15E-44 55 146
Naphthol 1.56E-25 4.27E-19 86 1 2.83E-45 49 135
Valeric Acid 1.70E-25 4.00E-19 86 1 7.46E-45 67 153
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TABLE D.5: The translational (S39%3P A.2) and rotation (S32%°P A.13) components of the

Mol t Mol,r
standard 3D entropies of all measured molecules in solvent (S;%;;ﬁD )- Viree = 8.91E — 30m? for

the calculation of v, (Equation A.11).

Molecule Ve S;ZIOZ;”?D Te rq S;‘/}loz;’,fD
/m3 /] K ! mol! /m /m /] K ! mol!

Benzaldehyde  3.31E-28 127 4.29E-10 2.28E-10 98
Benzene 2.90E-28 122 4.11E-10 2.03E-10 76
Benzoic Acid  3.47E-28 129 4.36E-10 2.46E-10 99
Butanol 2.94E-28 121 4.12E-10 2.18E-10 90
Cyclohexanol  3.43E-28 127 4.34E-10 2.14E-10 98
Furfural 2.87E-28 125 4.09E-10 2.07E-10 96
H, 8.30E-29 66 2.71E-10 5.00E-11 29
Naphthoic Acid 4.41E-28 135 4.72E-10 3.04E-10 104
Phenol 4.02E-28 132 4.58E-10 2.75E-10 101
Naphthol 3.12E-28 125 4.21E-10 2.16E-10 95
Valeric Acid 3.35E-28 127 4.31E-10 2.28E-10 99

TABLE D.6: The cavity (S;‘/’Ilovl’iD Equation A.20) component of the standard 3D entropies of
v,3D

all measured molecules in solvent (Si&lol ) and the solvation entropy relative to the vacuum

phase (AS?&Z}’?’D). ¢s = 0.51 (Equation A.17), ASff’S’” = —1.13 x 1072)J K~ mol~! (Equation

A.13), and V5 = 2.1 x 10~%m?3. S;‘/}ZPD includes the entropy of bringing 1 atm of gas to 1M
solution AScpnc = —kIn (cf/ci) = —5320J K1 mol—L.

Molecule Vin Ap Abpox So Sc solesb ASYP
/m?3 /m? /m? /JK 'mol™! /JK!'mol™? /JK'mol™! /JK !mol!

Benzaldehyde 1.14E-28 1.32E-18 2.23E-18 —54 —81 117 —198
Benzene 9.41E-29 1.11E-18 1.93E-18 —45 —68 103 —157
Benzoic Acid 1.22E-28 1.41E-18 2.60E-18 —58 —89 112 —180
Butanol 9.57E-29 1.20E-18 2.10E-18 —46 71 114 —161
Cyclohexanol ~ 1.20E-28 1.38E-18 2.76E-18 —57 —90 107 —178
Furfural 9.26E-29 1.13E-18 1.93E-18 —44 —67 126 —157
H, 1.20E-29 2.54E-19 4.05E-19 —6 —11 58 —98
Naphthoic Acid 1.70E-28 1.85E-18 3.31E-18 —81 —121 92 —215
Naphthol 1.50E-28 1.64E-18 2.67E-18 72 —103 104 —196
Phenol 1.04E-28 1.22E-18 2.15E-18 —50 —76 118 —165
Valeric Acid 1.16E-28 1.39E-18 2.95E-18 —55 —90 108 —180

D.4 Free Energy of Adsorption Values

The free energies of adsorption, heats of adsorption and entropies of adsorption are

presented below for all coverages measured. Geometries are shown in Section S4. In

vac,2D
SMol,t

is calculated using an area corresponding to the cross-sectional area of the molecule at

the calculation of AG™/**'", the entropy of adsorption is taken as AS?%, where

the binding interface (A,y).
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TABLE D.7: The free energies and enthalpies of adsorption in vacuum and solvent for
hydrogen, normalised to a single hydrogen atom (0.5H, + Pt — Pt/ H).

Coverage ~AH"/ ASE AGvae AG;’;Z’SC’I LB AGM™ P UB
/kKfmol™!  /JK'mol™! /kJmol™' /kJmol™! /kJ] mol~!
1.00 —34 -39 —22 —18 —18
0.75 -37 -37 —26 -21 -21
0.50 —38 —36 -27 —-22 —24
0.25 —41 -39 -29 —25 —28
0.05 —44 —14 —40 =31 —38
TABLE D.8: The free energies and enthalpies of adsorption in vacuum and solvent for
phenol.
Coverage AH!/™ ASUee AGHEE NG LB AGHE™ UB
/kKfmol™'  /JK'mol™! /kIJmol™! /kJmol~! /kJ] mol~!
0.83 —185 —158 —138 —-99 —108
0.67 —187 —144 —144 —102 —109
0.42 —199 —152 —153 —106 —-113
0.33 —200 —150 —155 —106 —115
0.16 —234 —132 —195 —134 —151

TABLE D.9: The free energies and enthalpies of adsorption in vacuum and solvent for

furfural.
Coverage  AH!/™™ ASY AGIEe NGB AGTl B
/Kfmol™'  /JK'mol™! /kJmol™! /kJmol! /K] mol ™!
1.00 - Vertical -91 —153 —45 —36 -39
0.75 —177 —151 —132 —107 —113
0.50 —192 —147 —148 —120 —125
0.25 —-179 —142 —136 —87 -95
0.01 —205 —133 —165 —107 —122

TABLE D.10: The free energies and enthalpies of adsorption in vacuum and solvent
for cyclohexanol.

Coverage AR ASPac AGIEYE NGB AGHET UB
/Kfmol™' /JK'mol™' /kJmol™! /kJ mol™! /K] mol~!
1.00 —82 —144 —40 —14 —18
0.75 ~78 ~142 —36 0 -1
0.50 —68 —139 —27 7 3
0.25 ~72 —133 ~33 -1 —2
0.01 - Horizontal ~ —102 —125 —65 ~17 —40

TABLE D.11: The free energies and enthalpies of adsorption in vacuum and solvent
for two molecules for a single coverage.

Molecule Coverage AH;ZZ’WC ASYAE AG;’;Z'WC AG;’;S'S ol 1B AG;’;Z’SOIU UB
/kKfmol~! /JK'mol™! /kJmol™' /kJmol™! /K] mol~!
Benzaldehyde 0.16 —249 —153 —-203 —143 —-162

Benzene 0.16 —227 —146 —184 —141 —157
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