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The efficient use of resources is a crucial problem of our time. Besides the constraints of efficient

usage of scarce resources, in real-world problems the ubiquitous constraint of uncertainty further

affects the use or distribution of most resources. Solution approaches are problem-dependent

and have various benefits and difficulties. In this work we examine these benefits and difficulties

in two different settings of uncertainty, both with their own benefits and difficulties. Moreover,

we address the two problems using different techniques applicable to other settings.

In the first problem the uncertainty is with respect to the resource itself. In the well-studied

problem of fair multi-agent resource allocation it is generally assumed that the quantity of each

resource is known a priori. However, in many real-world problems, such as the production

of renewable energy which is typically weather-dependent, the exact amount of each resource

may not be known at the time of decision making. This work investigates the fair division of a

homogeneous, divisible resource where the available amount is given by a probability distribution.

Specifically, the notion of ex-ante envy-freeness, where, in expectation, agents weakly prefer their

allocation over every other agent’s allocation is considered. This work shows how uncertainty

changes the relationship of fairness and efficiency, how the solution space is affected, how difficult

the problem becomes, and gives algorithms for the case of two agents with utility function that

are linear up to a maximal value. This is achieved by showing how in expectation a higher

efficiency can be attained; the worst case might still affect the results; and that the problem

is strongly NP-hard. Additionally, we provide two variants of a greedy algorithm for the case

of two agents. One variant is optimal for the case of uniform probability distributions over the

events. For the case of arbitrary probability distributions, we show that this problems is also

NP-hard. Accordingly, we address the possibility of approximation. We show that one variant

is not able to approximate all instances. Nevertheless, we show empirically that for realistic

instances both variants of the algorithm can approximate the optimal solution. Hence the work

lays the foundation for further research into homogeneous resources under uncertainty.

In the second problem, the uncertainty comes from the behaviour of an agent and this behaviour

is countered by random strategies. In full-knowledge multi-robot adversarial patrolling, a group

of robots have to detect an adversary who knows the robots’ strategy. The adversary can easily

take advantage of any deterministic patrolling strategy, which necessitates the employment of

a randomised strategy. Previous algorithms have to be repeated to calculate the solution for

different instances and lack insight into the strategy space. In comparison, this work shows how



iv

enumerative combinatorics can be used to provide the closed formulae of the probabilities of

detecting the adversary. Hence, it facilitates characterising optimal random defence strategies in

comparison to formerly used iterative black-box models. We provide the probability functions

for four cases based on open and closed polylines using two different robot movement patterns.

Moreover, we show how analysing the structure of the strategy space can further reduce the

runtime. Hence, the work introduces a new technique into adversarial patrolling that can be

used to improve runtime and foster further research.

In conclusion, the work provides progress in two established research areas, and highlights the

potential and importance of the consideration of the effects of uncertainty. Foremost, including

uncertainty opens up research which is more attuned to real-world problems. Additionally,

addressing these problems, including with novel approaches, allows finding (computationally)

more efficient solutions.
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api ∶ [m] → [0,1] The function determining the size of a piece for an allocation by pieces

Φ ∶ [n] ×Ω→ [m] The mapping determining in which event the agents’ pieces are allocated

xv
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for an allocation by pieces

Chapter 3 - Two Agents Linear Satiable Utility Functions

aji (ω) The allocation of agent i in event ω restricted to the saturation

amount of agent j, i.e. aji (ω) = min{ai(ω), qj}, for all events ω ∈ Ω

EF (i, k) The envy-freeness of agent i ∈ [n] with respect to agent k ∈ [n]
kAω The indifferent amount in ω for allocation ALM The set of all linear satiable utility function

Ω1,Ω
opt
1 The events preferentially given to the second agent for the allocation

produced by GreedyTake-Amt and the optimal allocation, respectively

Ω2,Ω
opt
2 The events preferentially given to the first agent for the allocation

produced by GreedyTake-Amt and the optimal allocation, respectively

ΩF1 ,Ω
F
2 The flip set of Ω1/Ωopt2 and Ω2/Ωopt1 , respectively

qi The saturation amount of agent i

ui The maximal value of agent i

Chapter 4

C(i, j) The entry of Catalan’s triangle [79] determined by i, j ∈ N
dist(j, j′) The distance between segment j and j′ (depends on the underlying graph)

dist The distance to a specified j segment, i.e. dist ∶= dist(1, j), in the case of

a circle

Pr(j′, j, t, d) The probability that a robot in segment j′ detects the adversary

in segment j within t steps on a polyline with d segments.

PW The probability of a robot walking path ω, i.e. PW = PW (ω) where ω is

clear from the context



Acronyms

AMT GreedyTake-Amt

ES Equal Share

EXP GreedyTake-Exp

PMF Probability Mass Function

PoEF Price of Envy-Freeness

RR Research Requirement
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Chapter 1

Introduction

Every day we encounter countless situations in which we have to make complex decisions without

having all the relevant information [57, 64]. This lack of information or uncertainty is a prevalent

feature of many real-world problems. Some problems have limited consequences like, ‘is a coat

required because it will rain later?’, ‘will the next dice roll be favourable to win the game?’

or ‘will the journey to work take longer today because the roads are congested?’. Others have

more serious consequences like ‘how much does a potential buyer of a car value the car?’ or ‘are

burglars going to break into someone’s house?’. Finally, some problems affect wider circles and

have a much higher impact like ‘will particular shares increase or decrease?’ or ‘who will win the

next election?’. As can be seen, uncertainty comes from different sources. Two common sources

are the environment, (e.g. the weather) and the behaviour of other people (e.g. their opinions

or values) [1, 36, 60, 64]. Both of these require different strategies to deal with or mitigate the

effects of uncertainty in order to make effective decisions. In this thesis we explore the different

aspects of taking uncertainty into consideration in decision making settings, and examine the

benefits and difficulties in two example settings. We choose these examples since they deal with

fundamentally different aspects of uncertainty, and the tools to address these have applications

in many other settings.

In the first setting, a group of neighbours want to contribute to the efforts to save the environment

by communally sharing electricity from a photovoltaic system fairly among themselves. This is

closely linked to the development of a smarter energy grid which is less centralised and better

able to shift and react to demands. The decentralised energy production requires an increase and

adoption of renewable energy systems, and local energy markets [56]. Specifically, this problem

focuses on the local component of such a system, i.e. a local energy exchange in comparison to

an exchange via the wider grid. Moreover, local electricity markets are more communal which

increases the prominence of considerations like fairness [55]. More generally, this is the problem

of dividing a homogeneous resource in a fair manner. Hence, besides the allocation of electricity

this problem has a wide range of applications such as the division of estate, storage space,

bandwidth or processing time [36, 63, 82] and the techniques we discuss in this thesis can be

applied to other important areas including emission permits for greenhouse gases [5], fair load

shedding [62], and uncertain computational resources [9, 45].

1



2 Chapter 1 Introduction

With regards to the specific setting, the neighbours are faced with two immediate problems. The

first one is about allocating energy in a fair manner. There are many ways to define fairness, but

a common approach is to ensure that no participant would prefer another participant’s allocation

over their own. This is a common fairness notion called envy-freeness. The second problem is

that energy generation from renewable energy sources is less reliable and predictable than that

from conventional sources like fossil and nuclear fuels. In comparison to those, the photovoltaic

system will not always produce enough energy to satisfy the needs of all neighbours [52, 80].

In response to the uncertainty we could decide on the allocation at production time or ex-post.

However, an ex-post envy-free allocation often necessitates that everyone gets the same amount

of energy, irrespective of valuations [36]. The reason is that for a homogeneous resource only

the amount is of importance and as long as an agent is not satisfied a higher allocation is always

better. Moreover, an ex-post allocation gives the neighbours no opportunity to plan ahead and

arrange shifting their activity or buy electricity in advance from the market as a possible reaction

to shortcomings. Another approach is to take the worst-case assumption [65]. Although, this

is an appropriate approach for emergency situations it might not be very efficient if the actual

amount of energy is substantially different from this worst case. Instead we utilise that there

are accurate methods of predicting the production of renewable energies [48], e.g. possible solar

energy output based on weather forecasts. This allows us to decide on the allocation beforehand

or ex-ante conditional on the actually produced amount. As we will show in this thesis, an

allocation conditional on the available amounts allows for a more flexible approach to fairness

which we refer to as ex-ante envy-freeness. Therefore, the overall aim for this problem is to

ensure a sensible (i.e. efficient) allocation whilst also meeting this fairness condition.

In the second setting, a defender is trying to use a number of robots to defend a perimeter or

fence against an adversary trying pass the perimeter or fence; a setting known as multi-robot

adversarial patrolling. This problem is well established and has numerous security applications

including crime prevention [6], stopping piracy [61], defending critical infrastructure [61], and

protecting animals, natural reserves or the environment [14]. In these settings robots have the

benefit of providing a cheaper and mobile addition to assist humans in monitoring vast open

areas as well as being more reliable [1, 6, 67].

In this setting, the defender is confronted with uncertainty over the location where the adversary

tries to pass the perimeter or fence. Ultimately, taking the defender’s point of view, we lack

the knowledge of the adversary’s reasoning for choosing a location neither do we know the

adversary’s capabilities. This knowledge of the adversary’s reasoning and capabilities is an

important issue of adversarial patrolling which forms the basis of determining the right strategy,

and further informs on the possibility to detect penetration attempts in general. Addressing

this, we contribute to the investigation on what is possible against the strongest adversary and

take the frequently considered assumption that the adversary has learned, e.g. via observation,

the robots’ strategies. However, to have a chance of detecting such a so called full-knowledge

adversary we have to resort to random strategies [1, 68]. Hence, the goal is to find an optimal

random strategy which is one that minimises the risk of the adversary successfully passing the

perimeter or fence.

Regarding the environment, polylines represent a real-world setting and, at the same time, allow

the calculation of optimal strategies in polynomial time. Polyline graphs, where the vertices of
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the graph form either a line (open polyline) or a circle (closed polyline), model the real-world

environment of patrolling either a fence or a perimeter, respectively[1, 68]. In this polyline

model the robots walk on the vertices of the graph and the adversary attacks one vertex. For

the random walk strategies informing the walk of the robot, an often considered sub-class are

those where the next step of a robot depends only on the position of the robot and not on any

previous locations. Those strategies are said to satisfy the Markov property and are also called

memoryless. The significance of this setting is that it performs well in comparison to longer

histories [1, 68]. Moreover, in comparison to the usual intractable problems of security settings

in general, and patrolling in particular, the considered setting allows tractable results [1, 44, 74].

However, the current approach to determine optimal strategies has an unnecessary runtime

which also hinders further improvement. In more detail, the current algorithms to determine an

optimal strategy use Markov chain modelling to determine the probability functions that express

the possible strategies [1, 73, 74, 78]. Subsequently, this system of equations can be solved for

an optimal solution [1]. However, the black box approach where the system of equations is only

used internally and the algorithm simply returns an optimal random strategy has two drawbacks.

First, the algorithm has to be repeated for every instance of the setting. Second, without knowing

the functions we cannot analyse them to improve the process even further. This is despite the

facts that polyline instances differ only in length and that paths on them can be described

concisely. Therefore, the overall aim for this problem is to determine the probability functions

analytically to reduce runtime and utilise them to further improve the calculation process.

In summary, this thesis addresses finding good or optimal solutions efficiently in the presence

of uncertainty for the two highlighted problems: uncertain resource allocation and adversarial

patrolling. Both are concerned with managing uncertainty and both show how uncertainty can

be beneficial. Namely, in the resource allocation problem, using the exogenous probabilities of

events allows overcoming inefficiency, and in the patrolling problem, random strategies allow the

possibility of detecting the adversary. Finally, while different, the two problems are connected

by more than merely the existence of uncertainty. Both problems consider entities that act on

their own or on instruction. Additionally, in both cases a resource is at the centre of the problem

(the electricity and the robots). Fundamentally, both will be addressed within the design and

analysis of algorithms as formal procedures to solve mathematically modelled problems mostly

within theoretical computer science. With regards to the entities (including neighbours, people,

parties, etc.), all problems are considered in a computational context. This means that the

interest in the resource or the use thereof by the entities are considered to be represented by

autonomous software agents. These agents acting on behalf of entities are considered the main

actors in this context. Henceforth, in this thesis the term agent/s is used to refer to all entities

that act for themselves or on behalf thereof.

1.1 Research Requirements

Implicitly, the preceding introduction of the two problems highlights three research require-

ments which are pursued for both problems. These requirements are: integrating and managing
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uncertainty appropriate to the setting, achieving high efficiency, and exploring computational

efficiency and providing efficient algorithms.

Research Requirements 1. Integrated Uncertainty Uncertainty is a prevalent constraint

of real-world problems. Nevertheless, when considering problems it is frequently assumed that

either there is no uncertainty or it is limited to a specific case, e.g. the worst case. However,

under these assumptions even the best solutions can be far of the actually best solutions. Hence,

uncertainty has to be included in any realistic consideration of problems. We do this by including

it in the formal problem models as well as designing algorithms that are informed by uncertainty

and manage or use it.

Research Requirements 2. Efficient Results Having ensured that uncertainty is consid-

ered, the overall aim is to design algorithms that find solutions with high efficiency or maintain

the level of efficiency of algorithms by others. This efficiency is expressed in terms of math-

ematical optimisation functions. Any solution that attains the highest optimisation function

value, subject to constraints, is called an optimal solution. Both of the problems have their own

constraints that limit the achievable efficiency.

Research Requirements 3. Computationally Tractable While finding optimal solutions

is important for practical use it is crucial to find solutions as quick as possible using as little

storage as necessary. Sometimes that means designing algorithms with a short runtime. In

other cases, the problem is provably hard to solve, e.g. NP-complete, and we relax the problem

in favour of finding solutions in polynomial time. Two relaxations considered here are either

sacrificing generality or optimality for computational efficiency. This is achieved by restricting

the problem to a specific sub-problem that can be solved efficiently or by calculating solutions

that are feasible and guarantee a fraction of the optimal efficiency.

1.2 Research Challenges

The introduced research requirements, while broad, provide a frame for the challenges of the

two problems of multi-agent resource allocation and adversarial patrolling. Set within their

own research areas both problems have their own research challenges which, nevertheless, can

be linked back to at least one of the research requirements. Where we do not mention them

explicitly they are referenced by their respective number with the challenges’ titles. We next

present the research challenges of both problems in turn.

Problem Domain A. Establish and Provide Algorithms for Fair Alloca-
tion of Homogeneous Resources with Uncertain Availability

The multi-agent resource allocation problem fits into the area of fair division [19]. While it covers

all homogeneous resources, electricity shows the importance of the research well since tackling

climate change needs continuous development of the energy sector. Moreover, the example of

electricity allocation helps us to highlight the problems we are facing.

Research Challenge A.1. Model Resource Uncertainty (Research Requirements: 1, 2)

The first requirement is to find the right modelling of uncertainty in order to allow comparing
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ex-ante against ex-post allocations. The need for that and the potential to achieve better results

(Research Requirement 2) is clearly highlighted by the photovoltaic example. Moreover, while the

literature on fair division of resources is extensive and contains models that include uncertainty

(see Section 2.3 in Chapter 2), the research in the area mainly focuses on the allocation of

bundles of items or heterogeneous resources [19, 31]. These allocations are altogether different

from dividing homogeneous resources.

Research Challenge A.2. Establish Ex-Ante Envy-Freeness (Research Requirement: 1)

After having modelled uncertainty, we can use this to define ex-ante envy-freeness. This concept

is more flexible yet closely related to the common notion of (ex-post) envy-freeness [13, 19, 26,

38]. We will show that this is a meaningful measure that allows useful results beyond egalitarian

solutions and thus opens up more research.

Together, Research Challenge A.1 and A.2 seek to establish this work as the first that considers

fairness distribution of homogeneous resources when the amount of available resource is ex-ante

uncertain.

Research Challenge A.3. Establish the Difference Between the Ex-Post and the

Ex-Ante Settings (Research Requirements: 1, 2) One of the purposes of ex-ante envy-

freeness is to allow more flexibility in comparison to ex-post envy-freeness and consequently to

achieve more efficiency (Research Requirement 2); herein, efficiency is the sum of valuations,

also called utilities, of individual agents’ own allocation. However, the ex-ante setting changes

the dynamic of the problem in comparison to ex-post. Hence, to better understand where the

space of allocations provides flexibility and where not, it is necessary to address the similarities

and differences between the ex-ante and ex-post efficiency and fairness constraint efficiency. This

includes considering the worst case of fairness constraint efficiency.

Research Challenge A.4. Determine the Computational Complexity (Research Re-

quirement: 3) Irrespective of the worst case, the increased flexibility of ex-ante envy-freeness

increase the number of possible allocations. Among those allocations, we are interested in com-

puting efficient allocations (see next research challenge), especially, which surpass the ex-post

setting. Therefore, as a precursor to determining procedures that produce allocations with high

efficiency, we have to determine which cases are computationally intractable.

Research Challenge A.5. Design Algorithms that Produce Computationally Efficient

Solutions (Research Requirements: 2, 3) Having intractability results allows us to pursue the

ultimate goal which is to determine algorithms which produce efficient and fair solutions with

acceptable computational efficiency. In tractable settings we intend to present algorithms that

achieve optimality. However, where complexity does not allow this in polynomial time, we seek

polynomially calculable solutions via relaxations as specified in Research Requirement 3.

Problem Domain B. Improving Results for Full-Knowledge Multi-Robot
Adversarial Patrolling

In comparison to the previous problem, the adversarial patrolling problem, including the uncer-

tainty, has already been addressed in other works [1, 73, 74, 78]. Hence, the challenges under the
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focus of the research requirements are on improving upon the previous approach. As outlined

above in the introduction, finding an optimal strategy is a two-step process. In the first step the

probability functions that describe the random strategies are determined. The main challenge is

to improve the runtime of this step. Following the first step, the probability functions are used

to determine an optimal strategy. This step is not only affected by improvements to the first

step but the improvement of this second step is also a part of our work.

Research Challenge B.1. Uphold Efficiency (Research Requirements: 2, 3) First off, any

improvement to the procedure of finding a strategy has to produce an optimal strategy. While

we mainly aim to reduce the runtime, this does not justify producing worse results than those

produced by the currently used algorithms.

Research Challenge B.2. Reduce Computational Requirements of the First Step

(Research Requirement: 3) Our main challenge for this problem is to completely remove the

computational requirements of the first step and present analytical expressions. For that we

rely on the fact that on a polyline every vertex has at most two adjacent vertices and therefore

only two directions exists. This allows concise description of all paths. Moreover, since different

polyline instances differ only in length, the resulting expressions are valid for all instances.

Consequently, finding an optimal strategy would only require to determine the optimal strategy

based on the probability functions, i.e. the second step of the procedure, and remove the runtime

of the first step altogether.

Research Challenge B.3. Use Insight to Reduce Computational Requirements of

the Second Step (Research Requirement: 3) Finally, the analytical expressions allow us to

gain insight into the strategies which the previous black-box algorithms did not allow. We want

to use this insight to reduce the runtime of the second step as well. There is no guarantee of an

analytical expression for the solution to the probability functions. However, solving the system

of equations depends on the number of equations. Hence, we shall investigate the structure of

the strategy space to reduce the number of equations.

1.3 Research Contribution

Addressing the research challenges (see Section 1.2) of the two problems (see Section 1.2) the

work in this thesis provides the following contributions.

Problem Domain A The focus is particular on efficiency (Research Challenge A.5) and fairness

(Research Challenge A.2) with respect to the uncertainty (Research Challenge A.1). In

more detail, it is shown that:

A.I. Ex-ante allocations are ex-ante efficient if and only if the allocations are ex-post

efficient. This means that efficient allocations can be calculated easily for reasonable

utility functions (Research Challenge A.5).
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A.II. Ex-post envy-free allocations are also ex-ante envy-free. However, the opposite is not

necessarily true. There are settings where ex-ante envy-free allocations can achieve a

higher ex-ante efficiency than ex-post envy-free allocations (Research Challenge A.3).

A.III. The social welfare of the ex-ante efficient allocation under ex-ante envy-freeness can

be substantially smaller than the welfare of the (unconstrained) ex-ante efficient allo-

cation (Research Challenge A.5). To be precise, the price of envy-freeness has a lower

bound of Ω(n) which is asymptotically tight for concave utility functions.

A.IV. The problem of maximising the ex-ante social welfare (Research Challenge A.5) under

ex-ante envy-freeness (Research Challenge A.2) is strongly NP-hard even for contin-

uous and concave utility functions, and uniform probabilities (Research Challenge

A.4).

A.V. For two agents with satiable utility functions and events with uniform probabilities,

the problem becomes polynomially solvable (Research Challenge A.4 and A.5).

A.VI. For two agents with satiable utility functions and events with non-uniform probabili-

ties, the problem is NP-hard (Research Challenge A.4).

A.VII. For two agents with satiable utility functions and events with non-uniform probabili-

ties, two variants of a greedy algorithm perform empirically well (Research Challenge

A.5).

Problem Domain B The focus in this thesis is on the optimal random walk strategy of one

robot on a circular or line graph and the probability of detecting a full-knowledge adversary

with known penetration time (the time required for the adversary to successfully pass the

perimeter or fence) under the Markov property. The work presents a novel approach to

model all possible paths of a robot’s random strategy as lattice paths.

B.I. For four different settings resulting from two movement patterns on open/closed poly-

lines, lattice path modelling is used to describe the number of possible paths the robot

can walk for a given number of steps (Research Challenge B.2).

B.II. From this, analytic expressions for the probabilities of detecting the adversary in the

vertices of the graph are presented (Research Challenge B.2).

B.III. This removes the previously necessary step of calculating the functions including its

time and space complexity from the overall procedure (Research Challenge B.2).

B.IV. Finally, connections between the segments and the penetration time, and the resulting

probabilities are highlighted (Research Challenge B.3).

B.IV.a) For the case of a robot that can walk clockwise or anticlockwise on a perimeter

(closed polyline) we divide the probability functions into three sets. We then

show that two out of three sets can be excluded when solving the system for an

optimal strategy (Research Challenge B.3 and B.2).

B.IV.b) For the same case, it is shown empirically that the optimal solution can be ob-

tained by finding the intersection of only two probability functions. This reduces

the runtime from linear to constant (Research Challenge B.3 and B.2).

For Problem Domain A on the allocation of resources with uncertain availability, the results

of Contributions A.I. to A.IV. have been published at the 19th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2020).
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Jan Buermann, Enrico H. Gerding, and Baharak Rastegari. 2020. Fair Allocation of
Resources with Uncertain Availability. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New Zealand,
May 9-13, 2020, IFAAMAS, 9 pages.

Moreover, for Problem Domain B on adversarial patrolling, the results of Contribution B.I., one

setting of Contribution B.II., Contribution B.III. and Contribution B.IV.b) have been published

at the 29th International Joint Conference on Artificial Intelligence (IJCAI 2020).

Jan Buermann and Jie Zhang. 2020. Multi-Robot Adversarial Patrolling Strategies via
Lattice Paths. In Proc. of the 29th International Joint Conference on Artificial Intel-
ligence (IJCAI 2020), Yokohama, Japan, July 11-17, IJCAI, 7 pages.

1.4 Thesis Structure

The rest of the thesis is structured as follows:

� Chapter 2 provides the necessary background and places this research into the wider re-

search areas. The background addresses the relevant methodologies including social choice,

lattice paths and optimisation.

� In Chapter 3 the resource allocation problem (Problem Domain A) is addressed, and re-

search and results are presented. This includes, the presentation of a model for the problem

as well as formal statements of Contributions A.I. to A.VII. and proofs.

� In Chapter 4 the adversarial patrolling problem (Problem Domain B) is considered. The

chapter introduces the modelling and presents the formal statements of Contributions B.I.

to B.IV. and proofs thereof.

� Chapter 5 concludes the work by summarising the results and linking them back to the

challenges. Additionally, the chapter presents directions for future research.



Chapter 2

Background and Related Work

Since the two problems of resource allocation and adversarial patrolling are within distinct re-

search fields, we place them into their wider context separately. We show how the research

challenges (see Section 1.2) fit into those fields in Sections 2.3 and 2.4 for the resource allocation

problem and adversarial patrolling problem, respectively. Prior to this, we provide a brief back-

ground on computational social choice (Section 2.1) and optimisation (Section 2.2). These two

sections provide a brief overview and further references to aid the subsequent literature reviews.

2.1 Computational Social Choice

We give a brief introduction into the main concepts used in computational social choice. A more

detailed introduction can be found in ‘Handbook of Computational Social Choice’ by Brandt

et al. [19]. Our introduction in this section provides additional background and context for the

resource allocation problem. Specific definitions for the resource allocation problem within the

methodology of computational social choice are in the respective chapter (see Chapter 3).

Computational social choice extends a research area called social choice by applying formal

computer science methods like algorithm design, algorithm analysis and complexity to social

choice problems. These problems are mainly concerned with determining collective decisions,

including, but not limited to, problems like the resource allocation problem discussed in this

thesis [19, 54]. Social choice is an increasingly interdisciplinary field with foundations in economic

research. Much more recent, computational social choice has gained momentum in the beginning

of this century and while there is no clear seminal work that forms the beginning of social choice,

it was established as a field within computer science in the early 2000s [19].

In the methodology of computational social choice we consider problems in a mathematical

framework with axioms and conclusions. Every problem has a number of agents interested in a

collective decision, e.g. whom to elect into an office or how a resources should be divided. The

agents have preferences that affect the decision. One manifestation of this is that every agent

has a preference relation ⪯ over possible outcomes. This is an ordering of the possible outcomes

where A ≻i B indicates that agent i prefers outcome A over outcome B. For example, in an

election an agent prefers candidates in a specific order and A ≻i B indicates that agent i prefers

9
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candidate A over candidate B. Otherwise, preferences often take the form of a valuation or utility

function ui(o) ∶ O → R assigning, for an agent i, the value ui(o) to outcome o out of all outcomes

O. For example, when dividing a resource, an agent’s utility function reflects the agent’s value

for every possible amount of the resource allocated to them. Finally, the outcome to a social

choice problem is calculated by a social choice function f that maps from the preferences of the

agents to an outcome. If we imagine a voting setting, the social choice function f ∶ (⪯i)i∈[n] ↦ o

determines a winner o; if we imagine a resource allocation problem, the social choice function

f ∶ (ui)i∈[n] ↦ o determines the allocation o of resources to the agents.

2.2 Mathematical Optimisation

Secondly, we briefly introduce mathematical optimisation. The reason for this is that, like

algorithm design generally, multi-agent or social choice problems require finding the best pos-

sible outcome subject to constraints. This makes mathematical optimisation or mathematical

programming a possible tool for finding a solution. Moreover, it is a commonly used tool in algo-

rithm design. However, mathematical optimisation is far too extensive to give a comprehensive

overview here. Hence, we intend to give a brief overview of general concepts and important no-

tions. For a more extensive introductions, see e.g. ‘Introduction to Mathematical Optimization’

by R. C. Robinson [29].

A mathematical program consists of functions and variables the describe a problem. A solution to

the problem are values for the n ∈ N variables x ∈ Rn which maximise or minimise, depending on

the problem, an objective function and satisfy the constraints. The objective function f ∶ x→ R
determines the value of any solution. The m ∈ N constraints restrict the possible solutions.

Each constraints i ∈ [m] is a functions over the variables gi ∶ x → R limited to a value yi ∈
R. Optimisation Problem 1 is the notation of a mathematical program as used in this thesis.

The first line (Line 2.1) shows the objective function and if the aim is maximisation (max) or

minimisation (min). Any other line (Line 2.2 in this instance) shows the constraints.

Optimisation Problem 1 A general maximisation problem.

max f(x) (2.1)

s.t. gi(x) ≤ yi ∀i ∈ [m] (2.2)

Based on the type of functions involved in the problem, optimisation problems can be classified

into different groups. These types include linear programming and convex programming in which

case the involved functions are linear or satisfy convexity, respectively. Linear programming is

a very important tool and problems in this category can be solved in polynomial time. Convex

optimisation is a broader class but many problems in this class can still be solved in polynomial

time.

While there are different ways for finding optimal solutions we want to highlight one here in par-

ticular. These are the Karush-Kuhn-Tucker conditions which are well-known first order derivative
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tests. For non-linear higher order programming these conditions are, under certain conditions,

necessary and sufficient for optimal solutions. For a formal definition of these see Robinson [29].

Finally, a further important class of optimisation problems are integer programming problems.

These problems are characterised by having at least one of the variables x being limited to integer

values. Solving these problems is generally NP-complete even if the variables are restricted to

be binary, i.e. zero or one.

2.3 Fair Allocation of Resources

Our resource allocation problem is firstly related to the area of fair division including its sub-

fields of indivisible items [77], cake cutting [66, 70], and estate or land division [63]. Moreover,

we have motivated our model by the requirements and constraints of local energy markets with

renewable energy sources but this model can also be applied to other important areas including

emission permits for greenhouse gases [5], fair load shedding [62], and uncertain computational

resources [9, 45]. We are going to focus here on the closely related works and areas.

Fair division is foremost divided along two dimensions: divisible resources against indivisible

items; and homogeneous against heterogeneous resources. The first one describes if the resource

itself (or in case of several resources, any of them) is worth only in its entirety (like a football)

or can be arbitrarily split (like a cake). For the second dimension, every part of a homogeneous

resource has the same value (e.g. marginal utility for energy), whereas different parts of a

heterogeneous resource can have different values (e.g. different contents of a cake, cream versus

a cherry). We consider these problem areas to highlight parallels, how they inform our research

and contrast non-applicable approaches.

2.3.1 Indivisible Resources and Relaxed Envy-Freeness

Starting with the area of indivisible goods, this is an extensive field of ongoing work that re-

quires solutions different to divisible resources but which highlights the importance to consider

reasonable relaxations of envy-freeness. Indivisible items require that all allocations assign whole

items [77]. This means that techniques in this area cannot apply continuous solutions possible in

divisible resources. Hence, those techniques cannot bring the efficiency improvements we seek.

Moreover, having to assign whole items also means that envy-free allocations do not have to

exist, and determining their existence is already hard [19]. This has lead to the definition of

fairness measures that relax envy-freeness [12, 13]. Budish [22] started a line of research with

an envy-freeness relaxation where certain items can be ignored when determining envy-freeness.

This simple modification where for each agent’s envy-freeness any one item can be ignored is a

notion that already guarantees the existence of allocations satisfying it [22].

Though not applicable to a homogeneous resource, this encourages our relaxation of envy-freeness

to overcome the lack of meaningful allocations in order to increase efficiency. In comparison

to indivisible items, in our case of divisible homogeneous resources envy-freeness is attainable

and there is a trivial solution. However, clearly this is not always a desirable outcome since

it diminishes efficiency. Hence, similar to indivisible items envy-freeness might be too harsh
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of a condition. Realising this, Feige and Tennenholtz [36] showed how to use a relaxation of

fairness that holds in expectation to improve the ex-ante social welfare. However, in contrast to

our consideration of envy-freeness, their fairness criterion adapts the concept of proportionality.

Moreover, their mechanisms are uniform lotteries over equally sized allocations of the same

resource amount, while in our setting the probability distribution is given exogenously and

the events signify different amounts of available resource. Furthermore, in contrast to their

lotteries, we use deterministic (conditional) allocations to improve ex-ante social welfare under

ex-ante envy-freeness. Besides Feige and Tennenholtz’s work, there are other works on divisible

goods, where these usually consider several divisible items [19, 47, 63] or auction the divisible

resource [46, 50]. Both are distinctly different to our setting.

Focusing on exogenous probabilities and fairness in these settings, Gajdos and Tallon [39] study

the relationship of ex-ante and ex-post envy-freeness under ex-ante efficiency when agents have

different perceptions of availability. They focus on two very simple cases where the amount of

resource is equal for all events. They show that, for their setting, ex-ante optimal allocations are

included in ex-post optimal ones and that ex-post envy-free allocations are a subset of ex-ante

envy-free solutions. In contrast, we show that ex-post and ex-ante efficiency are the same when

we do not require envy-freeness, and quantify the degradation of ex-ante efficiency from ex-ante

envy-freeness as well as the complexity of calculating ex-ante envy-free efficient allocations.

This degradation as a consequence of requiring fairness is a worst case which is important to

identify. We use the price of envy-freeness to quantify the loss in social welfare of envy-free

allocations. The measure was introduced by Bertsimas et al. [18] for resource allocation problems.

Furthermore, it has been used to quantify the degradation of efficiency in cake cutting by, for

example, Aumann and Dombb [8], and Caragianniset al. [25].

2.3.2 Heterogeneous Resources and Complexity

The other large area of fair division, cake cutting, cannot represent our setting because of the

structure of utilities, but its hardness results are more similar on a technical level. In cake

cutting the resource is one connected heterogeneous resources (often the unit interval in one [19]

or several dimensions [63, 70]). Thus, the utility functions are dependent on the exact location

in the interval [19] and assigning a different interval of equal size might increase or decrease the

utility. This is already the case for cake cutting with linear utility functions as Bei et al. [17]

consider. Their functions would value the left side of the resource more than the right side of the

resource or vice versa. This structure of the cake cutting problem persists even when multiple

cakes [71] or multidimensional cakes [70] are considered.

The difference in resource space also means that the algorithmic approaches differ. Cake cutting

is focused on the number of cuts, the way of cutting the resource, and then allocating the ‘slices’

to the agents [11]. This is the case even for piecewise uniform utility functions as considered by

Chen et al. [26]. Their procedure first performs a cutting step and then an allocation step. These

algorithms are fundamentally different to our problem where any bit of the resource principally

has the same value to the agents.

Nevertheless, complexity results in cake cutting are more in line with our work given a more

diverse allocation space. In cake cutting fairness in conjunction with efficiency is hard to achieve.



Chapter 2 Background and Related Work 13

Bei et al. [17] consider the fairness measure of proportionality which ordinarily means that each

agent gets at least one n-th of their utility of the entire cake. They show that, under proportion-

ality, efficiency is NP-hard to approximate for general piecewise constant utility functions. Their

proof is based on the principal idea of giving the agents very specific parts of the resource and

adjusting the agents’ utility accordingly. However, their construction relies on the heterogeneity

of the resource which is not applicable to our case of homogeneous resources.

2.3.3 Similarities to Scheduling and Packing Problems

Finally, for completeness we want to mention that the problem appears similar to scheduling and

packing problems; however, the solution approaches applied in these two areas are not applicable.

Firstly, in scheduling, especially with divisible tasks, jobs have to be assigned to machines which

are similar to the event’s resources being assigned to agents [28, 37, 41, 58]. However, the setting

differs in a number of points. Beginning with classic scheduling, this setting considers indivisible

jobs [20] and is thus closer to indivisible goods. Besides this, among those works that consider

the cost (negative valuation) of jobs, scheduling does not consider the breadth of valuations

we allow. A common approach is a cost matrix summarising the cost for each job-machine

combinations. Such a cost matrix is for example used by Fiat and Levavi [37], who consider

envy-freeness among the machines. Moreover, even for the case of fractional or divisible tasks

as in the works of Christodoulou et al. [28] or Dereniowski and Kubiak [32], respectively, costs

are scaled linearly. However, this differs to our setting where agents can value the resource non-

linearly. Moreover, we allow utility functions that have a maximal value which is incompatible

with scheduling models where jobs have to be completed in full.

Secondly, our resource allocation problem is also close to packing problems which often consider

indivisible items, equal sized containers and do not consider fairness for individual agents. Pack-

ing problems are mostly variants of the knapsack and the bin packing problem [81]. However,

the goal of packing problems to reduce the number of containers to pack all items is incompatible

with our problem. Equally are the fixed size containers incompatible with our utility functions.

Fixed size containers would correspond to a cap on resource for every agent which would reduce

the impact of having different events. Additionally, even for the less frequently considered case

of divisible items [51] these incompatibilities do not change.

Irrespective of these observations, packing problems are usually not considered in an agent

context and, if they consider fairness, have very different fairness measure. For example, the

fairness measure of Shachnai and Tamir [72] requires only that at least a certainty number of

items from each item type is chosen and the fairness measure of Azar et al. [10] only requires that

items cannot be rejected if they can be packed. Equally different, the log based α-fair utility [7]

recently considered by Diakonikolas et al. [33] is independent of the parties and more closely

related to proportionality.

2.4 Adversarial Patrolling

Multi-robot patrolling is an area of ongoing research with substantial attention in the past

decade [43]. The area’s four main modelling dimensions are: the environment, the type of
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adversary, the objective or evaluation, and the approach or method. In terms of the overall

goal, the area is divided between regular patrolling and adversarial patrolling [43]. In regular

patrolling the aims are to optimise a frequency related goal; for example, minimising travel time

or maximising the visits to important points [34]. Yet, the aim of adversarial patrolling is to

defend against an attacker, by detecting [15] or handling [74] his or her penetration attempts.

Generally, approaches from regular patrolling are not applicable to adversarial patrolling. The

adversarial model is mostly concerned about the adversary’s knowledge about the robot’s strat-

egy. This ranges from the adversary having no information on the robots behaviour (random

strategies) over being able to learn the robot’s behaviour to having full knowledge of the robot’s

behaviour [2, 15, 43]. For example, the learning adversary in the work of Sak et al. [68] collects

information on the robot’s visits and uses this data to predict safe attack times. In comparison,

we assume that the adversary has full knowledge of the defenders’ strategy which can also be

interpreted as the adversary has had enough time to learn the strategy. It is well established that

a full-knowledge adversary can only be caught or detected using random strategies [1]. Which

also implies that a strategy that optimises frequency goals is insufficient to ensure detecting or

catching a full-knowledge adversary.

The environment in patrolling settings are generally assumed to be discrete [14] or the underlying

continuous environment is discretised. For example, Elmaliach et al. [34] consider a 2D environ-

ment which is divided into cells. Similarly, the vertices in Sea et al. [69] represent coordinates

in a plane. Discrete environments might be general graphs [15, 27], which represent important

points, or polylines [1, 35], which represent defending a perimeter or fence. Important for our

work, Agmon et al. [1] show that any continuous fence or perimeter can be represented as a

graph with vertices that represent sections of equal travel time. Hence, any result for discrete

polylines can be applied to cover continuous environments as well.

Multi-robot adversarial patrolling also overlaps with the game-theoretic area of security games [15,

74]. This area is dominated by Stackelberg games [74]. In our case the defender is the leader that

commits to a strategy first and then the attacker responds with a penetration attempt. However,

determining optimal strategies on general graphs and in game-theoretic models is mostly either

NP-hard [44] or, while not proven, due to non-linear constrains and the application of non-linear

optimisation, assumed to be NP-hard [74]. For example, Chevaleyre [27] and Basilico et al. [15]

prove that, in their respective cases, determining the leader’s optimal strategy is NP-hard. Con-

sequentially, a great number of works use experimental evaluation of heuristics [15, 16, 27, 30, 35,

43, 69]. These approximate heuristic approaches are in contrast to our work of finding specific

optimal solutions in polynomial time for specific graphs and movement patterns.

A more closely related game is the patrolling game introduced by Alpern et al. [4] which, nonethe-

less, has a different focus and considers different strategies. They assume the defender (patroller)

and attacker are playing a zero-sum game (a setting were if one side wins and the other side

looses) which, similar to our work, is played on a graph and the attacker takes a specified number

of steps to attack one of the vertices. In comparison to our work, their aim is to determine or

establish a bound on the value of the game which is the probability that the attacker is inter-

cepted. Moreover, in contrast to our assumption of a full-knowledge adversary, they consider

different strategies of the attacker, including uniform probability over the vertices as well as

strategies that consider vertices based on specific features of the graph or the walk of the robots.
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Start point

Endpoint

Figure 2.1: Examples of a Z2 lattice and two lattice paths. Both paths start in (0,0) and
end in (12,6). Moreover, both paths use only horizontal and vertical unit steps. The two
diagonal lines represent path restrictions. The lower right dotted line might be a line paths
are not allowed to touch or cross. The diagonal line to the left might be line a path has to

touch. For example, the dashed line touches the line twice.

More recently, Alpern et al. [3] determined a patrolling strategy for the patrolling game on a

line graph and a penetration time of 2 time steps. Their setting is different to ours in the types

of strategies and the knowledge of the adversary. Their defender chooses randomisation over all

paths, where we consider memoryless walks, and their attacker chooses a strategy first, whereas

in our case the defender sets a strategy first and the attacker knows that strategy.

The work most closely related to our work is the works of Agmon et al. [1] and subsequent pa-

pers [73, 74, 78] addressing different aspects like coordinated attacks [73], sequential attacks [74]

and deception [78]. Their general aim is to find optimal polynomial-time patrolling strategies

(maximising the minimal probability of the adversary being detected) for specific graphs and spe-

cific goals. They use algorithmic approaches, mainly the construction and evaluation of Markov

transition matrices, to find the probabilities of the robots detecting the adversary [1] or the

number of paths [74]. In contrast, we give explicit terms and functions for the number of paths

and the probability of detecting the adversary which removes the necessity for the respective

algorithms.

We do this by utilising lattice paths from within the area of combinatorics. A lattice path is

a path along points in an Euclidean space (see also Figure 2.1). Lattice path problems aim to

count the number of paths given a start and end point, the allowed step directions, coordinates

restricting the paths, and further path features. Lattice paths have been studied for a long

time and are, despite apparent simplicity, powerful. Moreover, they have application to many

problems including physical systems, encoding, probability and statistics [49]. We will formally

define lattice paths for our case in the respective chapter (see Chapter 4).

2.5 Summary

We have highlighted research related to our two problems including what previous research has

not addressed. In conclusion, we summarise the unaddressed points and link them back to the

research requirements. Beginning with the resource allocation problem (Problem Domain A),
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it is clear that research on homogeneous resources is lacking attention with more focus in the

area of fair division on heterogeneous divisible and indivisible items. Additionally, the research

area is lacking consideration of uncertainty. However, homogeneous items deserve attention and

uncertainty should be considered (Research Requirement A.1). So far solutions to the fair divi-

sion of homogeneous resources is limited to equal share solutions which do not provide a lot of

efficiency. This is the first reason homogeneous resources deserve attention (Research Require-

ment A.5). In order to progress in pursuing these two goals it is sensible to mirror the research

on indivisible items and relax envy-freeness. Similar to Feige and Tennenholtz’s [36] relaxation

of proportionality the relaxation of envy-freeness has to be appropriate for our setting and take

the uncertainty into consideration (Research Requirement A.2). Additionally, our work has to

extend beyond a modelling perspective since related areas do not readily provide algorithms to

solve this new problem (Research Requirement A.5). Finally, as with any new modelling of a

problem we have to establish the difference to previous models (Research Requirements A.3) and

determine the computational requirements (Research Requirements A.4).

The previous research of the adversarial patrolling problem (Problem Domain B) is lacking in

computational efficiency. This is directly because of the approach of using Markov chains. First

of all, the approach has a significant runtime, even for simple graphs. This should be reduced

(Research Requirement B.2). Moreover, the black box nature of the Markov chain approach does

not allow us to gain structural insights into the random strategy solution space. Gaining struc-

tural insights would make it easier to investigate the random strategies and help to improve the

overall process in terms of runtime (Research Requirement B.3). However, improving the run-

time and understanding cannot come at the cost of optimality as provided by Agmon et al.’s [1]

approach. Hence, the optimality has to be uphold by our approach (Research Requirement B.1).



Chapter 3

Fair Allocation of Resources with

Uncertain Availability

In this chapter we address Problem A (see Section 1.2), i.e. the allocation of resources with

uncertain availability, and present our contributions as presented in Section 1.3. Specifically,

we argue that considering ex-ante envy-freeness provides more flexibility and results in better

solutions in terms of social welfare compared to ex-post envy-freeness. We start by introducing

the formal model in Section 3.1. Afterwards, we illustrate the social welfare benefits of ex-

ante envy-freeness in a numerical example for the introductory setting of neighbours sharing a

photovoltaic system in Section 3.2. While the potential benefit of the setting are highlighted in

the example, in the worst case the ex-ante envy-freeness might not allow better allocations than

the ex-post envy-freeness. This degradation is measured by the price of envy-freeness and we

discuss this result and other smaller contributions that highlight similarities between the ex-ante

and ex-post case in Section 3.3. Following this, we show that the problem of maximising ex-ante

social welfare under ex-ante envy-freeness is NP-hard (see Section 3.4). Considering this hardness

and the instances for which this already holds, we turn to the case of two agents in pursuit of

Research Challenge A.5 in Section 3.5. For this case we show that depending on the probability

distribution over the events, uniform or arbitrary, the problem is optimally solvable in polynomial

time or is also NP-hard, respectively. For both settings (uniform or arbitrary probabilities) we

devise a greedy algorithm in Section 3.5.3. This algorithm produces different allocations based

on the ordering of the events. An ordering by amounts gives us the optimal solution in the

case of uniform event probabilities (see Section 3.5.4). For arbitrary probability distributions

over the events the same ordering as well as the ordering by expected amounts provide different

empirical (see Section 3.5.7) performance guarantees. Theoretically, ordering by the expected

amount might not approximate an optimal allocation but ordering by the amount indicates to

guarantee a better approximation (see Section 3.5.5.2).

17
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3.1 Preliminaries

There are n ∈ N agents which are interested in a resource whose actual amount is uncertain.

For the available amount there are m possible outcomes Ω = {ω1, . . . , ωm} with ωi ∈ [0,1] for all

i ∈ [m]. Each outcome ω ∈ Ω has an associated probability f(ω) with f(ω) > 0 and∑ω∈Ω f(ω) = 1.

This defines a Bernoulli probability measure µ on the space Ω which we define for completeness

but to which we will not refer back to. Note that despite considering only events of one outcome

we use the term event in this chapter when referring to the result of the random experiment.

The allocation of the resource to the agents is represented by the vector A = (a1, a2, . . . , an)
where the allocation to an agent i is a function ai ∶ Ω → [0,1]. An allocation A is valid if it

satisfies these two validity constraints: positivity that implies ai(ω) ≥ 0 for all i ∈ [n] and ω ∈ Ω,

and respecting the available amount, i.e. ∑i∈[n] ai(ω) ≤ ω for all ω ∈ Ω. It is important to notice

that allocation functions are conditional on the events. Let F ⊂ [0,1]Ω be the set of all valid

allocation functions and let Λ = Fn be the set of all valid allocations.

An agent i ∈ [n] values the amount of received resource according to a monotonically increasing

utility function vi ∶ [0,1] → R which satisfies non-negativity (v(x) ≥ 0 ∀x ∈ [0,1]) and no

valuation for zero (v(0) = 0). The monotonicity reflects free disposal. Let Θ ⊂ R[0,1] be the

set of all valid utility functions. Additionally, let Vi ∶ F → R denote an agent i’s expected

utility. Given an agent’s allocation function their expected utility of an allocation is equal to

the expected utility of the allocation function. That is, Vi(aj) ∶= ∑ω∈Ω vi(aj(ω))f(ω) for any

i, j ∈ [n]. We note here, we deliberately do not scale utilities into the range [0,1] to allow agents

being weighted differently. Moreover, the fact that we do not normalise is not the source of the

price of envy-freeness or the hardness since we can always assume to have events with smaller

amounts and adjust the utility functions accordingly.

Allocations are measured in terms of ex-ante social welfare and require ex-ante envy-freeness,

both notations naturally extend their ex-post definitions. Ex-ante social welfare, W (A) ∶=
∑i∈[n] Vi(ai), measures the sum of expected utilities. This is in contrast to ex-post social welfare

∑i∈[n] vi(ai(ω)) which measures the sum of utilities with respect to one event ω ∈ Ω. Ex-ante

envy-freeness requires that every agent i weakly prefers their own allocation, in terms of ex-

pected utility, over every other agent j’s allocation, i.e. Vi(ai) ≥ Vi(aj) with i, j ∈ [n]. Again in

contrast, ex-post envy-freeness requires preference in terms of utilities, i.e. vi(ai(ω)) ≥ vi(aj(ω))
for all i, j ∈ [n]. Overall, the goal is, given the agents’ utility functions, to find a valid ex-ante

envy-free allocation A such that A maximises ex-ante social welfare. We note that, henceforth,

any reference to envy-freeness or social welfare without preposition refers to the respective ex-

ante notion. Furthermore, an allocation which maximises social welfare is called efficient and

an allocation that maximises social welfare under envy-freeness is called optimal.

Finally, the price of envy-freeness is defined as the ratio maxθ∈Θ
W (AE(θ))
W (AEF (θ)) where AE is an

unrestricted (i.e. without considering envy-freeness) ex-ante efficient allocation and AEF is an

optimal (,i.e. ex-ante envy-free and efficient) allocation. The price of envy-freeness expresses

the degradation of efficiency due to the enforcement of ex-ante envy-freeness and a higher value

indicates a higher efficiency loss.
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(A) The agents’ utility
functions in the example.
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(D) An ex-ante but not
ex-post envy-free alloca-

tion.

Figure 3.1: The allocations of the example. In each case, the bars are the two events, ω1

and ω2 with an available amount of 0.2kWh and 0.4kWh, respectively. The patterns and
numbers inside the events refer to the allocations to the agents. The diagonal lines indicate

an allocation to agent 1 and the dots indicate an allocation to agent 2.

3.2 Example - Renewable Energy Setting

Before we present our results and contributions we start with illustrating the potential social

welfare benefits of ex-ante envy-freeness. Using our motivational renewable energy example from

the introduction, consider a setting where two agents share a photovoltaic system. Both would

like to know how much electricity they can expect for the next day so that they can plan ahead

and would be able to acquire further electricity from other sources if necessary. The weather

forecast for the next day states the weather as one of two events; event ω1 is that the day is cloudy

which occurs with a probability of 2/3, whereas event ω2 is that the day is sunny which occurs

with a probability of 1/3. Based on these weather predictions, the photovoltaic system produces

an amount of 0.2kWh and 0.4kWh of energy, respectively. The two agents are interested in

electricity and value it according to the utility functions v1(x) = 5
0.3

⋅ x for 0 ≤ x < 0.3, v1(x) = 5

for x ≥ 0.3, and v2(x) = 1
0.2

⋅ x for 0 ≤ x < 0.2 and v2(x) = 1 for x ≥ 0.2 (see Figure 3.1A).

The objective is to find an allocation. We present three different allocations: the social welfare

maximising allocation, the ex-post envy-free allocation and an ex-ante but not ex-post envy-free

allocation. In all three allocations, the next day the agents get deterministically the allocation

associated with the occurring event (the actual weather).

In the social welfare maximising allocation, agent 1 would get everything in the first event and

0.3kWh in the second, while agent 2 gets the remaining 0.1kWh (see Figure 3.1B), resulting in

an expected social welfare of 4 1
18

:

f(ω1) ⋅ v1(0.2) + f(ω2) ⋅ v1(0.3) + f(ω1) ⋅ v2(0) + f(ω2) ⋅ v2(0.1)
= 2

3
⋅ 5

0.3
⋅ 0.2 + 1

3
⋅ 5

0.3
⋅ 0.3 + 2

3
⋅ 1

0.2
⋅ 0 + 1

3
⋅ 1

0.2
⋅ 0.1 = 4

1

18
.

In contrast, giving equal amounts to both agents in both cases (see Figure 3.1C) achieves an

expected social welfare of 2 8
9
:

f(ω1) ⋅ v1(0.1) + f(ω2) ⋅ v1(0.2) + f(ω1) ⋅ v2(0.1) + f(ω2) ⋅ v2(0.2)
= 2

3
⋅ 5

0.3
⋅ 0.1 + 1

3
⋅ 5

0.3
⋅ 0.2 + 2

3
⋅ 1

0.2
⋅ 0.1 + 1

3
⋅ 1

0.2
⋅ 0.2 = 2

8

9
.

Since this allocation gives both agents the same in both events, it is both ex-ante and ex-post

envy-free. Now, consider the allocation where the first agent gets 0.075kWh in the first event
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and 0.3kWh in the second event, and the second agent gets the remaining energy each time

(see Figure 3.1D). For the first event agent 1 values their and the other agent’s allocation at

v1(0.075) = 5
0.3

⋅ 0.075 = 5
4
= 1 1

4
and v1(0.125) = 5

0.3
⋅ 0.125 = 25

12
= 2 1

12
respectively. For the

second event, agent 2 values their and the other agent’s allocation at v2(0.1) = 1
0.2

⋅ 0.1 = 1
2

and

v2(0.3) = 1
0.2

⋅0.2 = 1. Hence, the allocation for neither event is ex-post envy-free. In comparison,

considering expected utilities, agent 1 is ex-ante envy free since they value their own and the

other agent’s allocation at 2 1
2

and 1 17
18

, respectively:

2

3
⋅ v1(0.075) + 1

3
⋅ v1(0.3) = 2

3
⋅ 5

4
+ 1

3
⋅ 5

0.3
⋅ 0.3 = 2

1

2
2

3
⋅ v1(0.125) + 1

3
⋅ v1(0.1) = 2

3
⋅ 25

12
+ 1

3
⋅ 5

0.3
⋅ 0.1 = 1

17

18

Similarly, agent 2 is ex-ante envy-free since they value their own allocation as well as the other

agent’s allocation both at 7
12

:

2

3
⋅ v2(0.125) + 1

3
⋅ v2(0.1) = 2

3
⋅ 1

0.2
⋅ 0.125 + 1

3
⋅ 1

2
= 7

12
2

3
⋅ v2(0.075) + 1

3
⋅ v2(0.3) = 2

3
⋅ 1

0.2
⋅ 0.075 + 1

3
⋅ 1 = 7

12

Hence, the allocation is ex-ante envy-free and has with 30
12
+ 7

12
= 3 1

12
an ex-ante social welfare

higher than that of the ex-post envy-free allocation.

The example highlights how the allocation illustrated in Figure 3.1D utilises the fact that the

allocation can vary between the events. This allows increased ex-ante social welfare in comparison

to the allocation illustrated in Figure 3.1C.

3.3 Ex-Post vs. Ex-Ante Settings

Adding to the example in the previous section, we present a number of smaller results to high-

light how the ex-post and ex-ante efficient and envy-free allocations are related. Moreover, we

show how, in the worst case (under linear utility functions), ex-ante allocations have the same

degradation of efficiency as ex-post giving all agents the same allocation.

3.3.1 Efficient Allocation

We begin by focusing on the efficiency of unconstrained allocations, i.e. when we do not demand

the constraint of ex-ante envy-freeness. We show that any unconstrained efficient allocation

is also ex-post efficient and vice versa. Hence, this gives us a reference point for the price of

envy-freeness and also for any future approximation.

Lemma 3.1. An allocation is ex-ante efficient if and only if the allocation is ex-post efficient

for every ω ∈ Ω.

Proof. By linearity of expectation, ex-post efficiency implies ex-ante efficiency. For the reverse,

we assume for contradiction that an allocation A is ex-ante efficient but not ex-post efficient
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for a number of events Ψ ⊆ Ω. Using A and an allocation Ae = (ae1, . . . , aen) that is ex-post

efficient for every ω ∈ Ψ, i.e. ∑i∈[n] vi(aei (ω)) > ∑i∈[n] vi(ai(ω)), we create allocation A′ with

a′i(ω) = ai(ω) if ω ∉ Ψ and a′i(ω) = aei (ω) if ω ∈ Ψ. The efficiency of Ae for all ω ∈ Ψ and the

linearity of expectation imply that A′ has a higher social welfare than A. Hence, A cannot be

ex-ante efficient.

The construction of Lemma 3.1 shows that we can create an ex-ante efficient allocation by using

the ex-post efficient allocations for every event. This calculation for one event can be represented

as an optimisation problem with the ex-ante social welfare as the optimisation function and two

linear constraints which require that the allocation does not exceed the available amount and that

the allocation is not negative for any agent. Hence, we have that, for concave utility functions,

the optimisation function is concave and the problem can be solved in polynomial [21]. Since

there are m events we can find the entire allocation in polynomial time.

Simultaneously, this means that there is no difference between unconstrained ex-ante and ex-post

efficiency. This appears negative since no ex-ante efficiency improvement is possible. However,

since allocations under ex-post envy-freeness can be very inefficient this does not affect our work.

Moreover, the result also means that when measuring the social welfare improvements under ex-

ante envy-freeness in comparison to the unconstrained efficiency we have to consider only one

reference value.

3.3.2 Envy-Free Allocation

In contrast to unconstrained efficiency, ex-ante envy-free allocations can vary significantly from

ex-post envy-free allocations (see also the example in Section 3.2). Nevertheless, we first establish

that an ex-ante envy-free allocation always exists. The ex-ante envy-free allocation that always

exist is the equal share allocation, which allocates everything equally to all agents in all events.

Formally:

Definition 3.2 (Equal Share Allocation). The equal share allocation AES is the allocation with

ai(ω) = ω
n

for all i ∈ [n] and ω ∈ Ω.

In order to establish that this allocation is envy-free we prove that, for envy-free allocations, the

set of ex-post allocations is a subset of the set of ex-ante allocations.

Lemma 3.3. If an allocation function is ex-post envy-free for every ω ∈ Ω, it is also ex-ante

envy-free.

Proof. Let A ∈ Λ be a valid allocation satisfying the lemmas statement, i.e. vi(ai(ω)) ≥ vi(aj(ω))
for all i, j ∈ [n] and ω ∈ Ω. Then, Vi(ai) = ∑ω∈Ω vi(ai(ω))f(ω) ≥ ∑i∈[n]∑ω∈Ω vi(aj(ω))f(ω) =
Vi(aj) for all i, j ∈ [n].
Note, the opposite is not necessarily true and this is exactly why it is possible to find allocations

with increased ex-ante social welfare. Additionally, since the equal share allocation is trivially

ex-post envy-free, it is also ex-ante envy-free by Lemma 3.3.

Corollary 3.4. The equal share allocation is ex-ante envy-free.
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3.3.3 Price of Envy-freeness

We next consider the extent to which both efficiency and envy-freeness can be achieved. Specif-

ically, we show in Theorem 3.8 that, without restricting the utility functions, the price of envy-

freeness is at least in the order of the number of agents. This follows since, in the case of linear

and non-equal utility functions, the most efficient solution is to give everything to one agent

(see Lemma 3.6), and that, under ex-ante envy-freeness, it is not possible to achieve a higher

efficiency than the equal share allocation (see Lemma 3.7). Finally, we show that the bound is

asymptotically tight for concave utility functions (see Theorem 3.9).

For this section, we assume all utility functions are linear of the form vi(x) = ci ⋅ x with ci ∈ R+

for i ∈ [n]. We only consider linear functions with y-intercepts equal to zero since otherwise

the utility functions would violate the no valuation for zero assumption (see Section 3.1). In

this case of linear utility functions an ex-ante efficient allocation, which we call maximal slope

allocation, gives everything to an agent with the highest slope. The ex-ante social welfare of this

allocation is the product of the maximal slope and the expected amount.

Definition 3.5 (Maximal Slope Allocation). A maximal slope allocation is the allocation where

an agent j ∈ arg maxi∈[n]{ci} gets all of the resource.

It is straightforward to see that this achieves the highest social welfare. For completeness, the

proof is in the appendix (see Section A.1).

Lemma 3.6. A maximal slope allocation is efficient and has an ex-ante social welfare of cj ⋅E[X]
for j ∈ arg maxi∈[n]{ci}.

In comparison, for linear functions, the maximal possible social welfare under envy-freeness is

achieved by the equal share allocation and is a function of the average of the slopes of all agents.

This demonstrates that there is an inherent trade-off between social welfare and envy-freeness.

Lemma 3.7. No ex-ante envy-free allocation can have more ex-ante social welfare than meani∈[n]{ci} ⋅E[X] which is matched by the equal share allocation (where mean is the arithmetic mean,

see Nomenclature for definition).

Proof. The key point is that, under linearity of the utilities, ex-ante envy-freeness implies that

the expected allocations are the same, i.e. E[ai] = E[aj] for all i, j ∈ [n]. Hence, the ex-ante social

welfare is determined by the allocations and the average slope, i.e. W (A) = n⋅meani∈[n]{ci}⋅E[ak]
for any k ∈ [n]. Then, since every allocation is limited by the available amount, we have that

n ⋅ E[ak] ≤ E[X] which implies the claimed limit on the achievable ex-ante social welfare. It is

straightforward to show that this is matched by the equal share allocation (see Section A.1 in

the appendix for the details).

Finally, we construct an instance for the price of envy-freeness.

Theorem 3.8. The division of a homogeneous resource has a price of envy-freeness of Ω(n).

Proof. Let X be arbitrary but have at least one event with positive amount and probability.

Let the utility function of the first agent be v1(x) = 2x and the remaining utility functions
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vi(x) = 1
n−1

⋅ x for i ∈ {2, . . . , n}. Then, the ratio of the unconstrained efficient allocation to the

envy-free allocation is, by Lemma 3.6 and 3.7, (c1 ⋅E[X])/(meani∈[n]{ci} ⋅E[X]) = 2/3 ⋅n which

implies the claim.

For arbitrary utility functions the upper bound can be unbounded. For example, similar to

the instance of Theorem 3.8 within a group of agents with low utilities could be one agent

with an arbitrarily high utility for getting entire events. Additionally, this agent might have

an arbitrarily low utility for any fraction of the events. Hence, in comparison to the theorem,

the agent with the high utility does not contribute any utility to the equal share allocation and

therefore the difference between the two allocations can be arbitrarily bad. However, for the

realistic assumption of concave utility functions the bound is asymptotically tight.

Theorem 3.9. For concave utility functions, the division of a homogeneous resource has a price

of envy-freeness of at most n.

This follows from the monotonicity of the utility functions and the fact that concavity limits the

utility of each event by n times the equal share allocation (see Section A.1 in the appendix for

the detailed proof).

Theorem 3.8 and Theorem 3.9 show that, in the worst case, the degradation of social welfare

under ex-ante envy-freeness is unfortunately as bad as under ex-post envy-freeness. Nevertheless,

these results are based on a setting where all agents have linear utilities. As the example in

Section 3.2 shows even simple piecewise linear utility functions are not restricted to requiring

that resources are equally shared under ex-ante envy-freeness and therefore circumvent this worst

case. Interestingly, the results hold irrespective of the probability distribution.

3.4 Complexity

The results from the previous section show that, for linear utility functions, equal share already

attains maximum possible efficiency. However, the example in Section 3.2 shows that, if the

utility function is not linear for all agents, there are allocations with higher ex-ante social welfare.

Hence, the question we answer in this section is: how difficult would it be to find more efficient

allocations in general? To this end, we show that the problem of maximising ex-ante social

welfare under ex-ante envy-freeness is strongly NP-hard. In order to prove this, we consider the

decision version of our problem which we call decision version of uncertain amount fair division

(D-UAFD).

Definition 3.10 (Decision Version of Uncertain Amount Fair Division (D-UAFD)).

Instance: ⟨X, (vi)i∈[n],B⟩ where X ∶ Ω → [0,1] with finite Ω ⊊ [0,1] is a discrete random

variable, (vi)i∈[n] with vi ∈ Θ are utility functions and B ∈ R is a bound.

Problem: Does there exist a valid allocation A = (ai)i∈[n] ∈ Fn such that Vi(ai) ≥ Vi(aj) for

all i, j ∈ [n] and W (A) ≥ B.

Θ, F , Vi and W (A) are defined as in the preliminaries.
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This problem is strongly NP-complete as stated by the following theorem. We prove the theorem

formally at the end of this section after presenting the construction and a number of supporting

definitions and statements.

Theorem 3.11. D-UAFD is strongly NP-complete.

Before we proceed to the formal proof, we introduce necessary definitions and lemmas. In brief,

the proof is by reduction from the 3-partition problem, that is known to be NP-complete in the

strong sense [40].

Definition 3.12 (3-Partition Problem).

Instance: ⟨S,B⟩, where S ⊂ N is a finite multiset of 3m elements s1 . . . s3m and B ∈ Z+ is a

bound such that B/4 < si < B/2 ∀i ∈ [3m] and ∑i∈[3m] si =mB.

Problem: Can S be partitioned into m disjoint subsets

S1, . . . , Sm such that ∑x∈Si x = B for all i ∈ [m].
(Notice that the item size requirement implies that each subset must contain exactly 3 elements.)

We reduce a given instance of the 3-partition problem to an instance of our fair division problem

which we call envy partition instance. In short, we scale the 3-partition instance down and

transform it into an instance of D-UAFT where the sets are the events and the 3-partition

elements are the agents. To achieve this, the agents’ utility functions are chosen so that the

opposing goals of envy-freeness and efficiency require that every agent gets allocated exactly the

amount specified by the corresponding 3-partition element in a single event. Therefore, allocating

this amount to an agent corresponds to choosing a set for the corresponding 3-partition element.

Additionally, to address that every event has to have a different amount, we slightly increase the

size of the events and add additional agents who desire exactly these amounts.

Definition 3.13 (Envy Partition Instance). An envy partition instance ⟨X, (vi)i∈[n],B′⟩ is an

instance of D-UAFD constructed given a 3-partition instance ⟨S,B⟩ in the following way. We

assume without loss of generality that the 3-partition elements are ordered in a non-decreasing

way, i.e. s1 ≤ s2 ≤ . . . ≤ s3m.

Firstly, there are 4m agents in total; i.e. n = 4m. The agents m + 1, . . . ,4m correspond to the

elements of the 3-partition instance. The remaining m agents correspond to both the partitioning

subsets of the 3-partition instance and the events as defined for this instance. In particular, let

s′i ∶= si/(mB) for all i ∈ [3m], let ε be chosen such that 0 < ε < 2/(m2B(m + 1)), and let Z ∶= ∑mi=1 i ⋅ ε.
Then the utility functions are defined as follows.

vi(x) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 0

i ⋅ x if 0 < x ≤ ŝi
i ⋅ ŝi if x > ŝi

with ŝi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
i ⋅ ε if i ≤m
s′i−m if m + 1 ≤ i ≤ 4m
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for i ∈ [4m]. We refer to ŝi as agent i’s saturation amount since any bigger amount has no

additional value to the agent. In other words Note that the ŝi are weakly increasing in i.

The second step is the construction of the random variable X. The set of events consists of

m elements which are of size 1
m

plus an additional small and increasing offset. Formally, Ω ={ω1, . . . , ωm} = { 1
m
+ ε, 1

m
+ 2 ⋅ ε, . . . , 1

m
+m ⋅ ε}. Additionally, our random variable is uniformly

distributed, i.e. has the probability mass function f(ω) = 1
∣Ω∣ = 1

m
for all ω ∈ Ω. Note that

∑ω∈Ω ω = 1 +Z = ∑i∈[4m] ŝi.

Finally, let the bound B′ be defined as B′ ∶= 1
m
⋅ ∑3m

i=1 i ⋅ s′i + ε
6
(2m2 + 3m + 1) + 1.

This construction can be done in polynomial time, the constructed instance is of polynomial

size, and the constructed values are polynomial in the values of the 3-partition instance.

Given the constructed envy partition instance, we first show that an allocation A achieves the

required social welfare B′ and satisfies ex-ante envy-freeness only if it allocates to each agent,

except maybe agent 1, their own saturation amount in exactly one event and zero in all other

events; that is, ai(ω′) = ŝi for one ω′ ∈ Ω and ai(ω) = 0 for all ω ∈ Ω/{ω′}. We then show that

such an allocation, satisfying envy-freeness and having social welfare of at least B′, exists if and

only if a 3-partition exists.

Intuitively, to maximise social welfare we need to give the agents with higher index larger allo-

cations, as they have higher utility, but we cannot allocate too much to them as the agents with

lower index would envy them.

For the purpose of our proof, we introduce a new representation of an allocation which we call

allocation by pieces. In this representation, we allocate up to the entire amount of resource over

all events ∑ω∈Ω ω = 1 + Z to agents as pieces, independent of the events. Each agent receives m

pieces. We then map events to pieces.

Definition 3.14 (Allocation by Pieces). An allocation by pieces consists of functions api ∶ [m] →[0,1] for each agent i ∈ [4m] such that 0 ≤ api (j) ≤ ŝi, ∀j ∈ [m] and ∑i∈[n]∑j∈[m] a
p
i (j) ≤ 1 + Z,

and a function Φ ∶ [n] ×Ω→ [m] where Φ(i, ω) ≠ Φ(i, ω′), ∀i ∈ [n], ∀ω ≠ ω′ ∈ Ω.

Social welfare and envy-freeness for api ’s are defined as in the preliminaries. Furthermore, an

allocation by pieces is valid if api (Φ(i, ω)) is valid ∀i ∈ [n],∀ω ∈ Ω, where validity is defined as in

the preliminaries. Given api ’s and given a Φ, we say that Φ is valid if all api (Φ(i, ω)) are valid.

We will show that taking any allocation by pieces and modifying it so that the pieces for a given

agent i are reduced to a number of pieces of size ŝi and maximum one piece of size less than

ŝi (see Definition 3.16) does not change the social welfare (see Lemma 3.17). Furthermore, if

the api are ex-ante envy-free and a valid Φ exists then the api (Φ(i, ω)) are ex-ante envy-free (see

Lemma 3.18).

Note that an agent’s utility in any given event does not increase after reaching their saturation

amount. Therefore, reducing their own allocation to their saturation amount and changing

nothing else maintains the social welfare and envy-freeness.

Observation 3.15. It suffices to consider allocations A with ai(ω) ≤ ŝi for all i ∈ [n].
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From now on we only consider allocations in which all agents receive in each event at most their

own saturation amount.

Any allocation A = (a1, . . . , an) is equivalent to the allocation by pieces Ap with api (j) = ai(ωj)
and Φ(i, ωj) = j. Considering the whole amount of the allocation, we can observe that the pieces

can be reduced to a number of pieces allocating exactly the saturation amount and at most one

piece with less than the saturation amount. This means that we can create a new allocation by

pieces which allocates to each agent the same total amount as in A. We denote this allocation

as total amount allocation.

Definition 3.16 (Total Amount Allocation). An agent i’s allocation can be represented as a

total amount allocation Ai = ni ⋅ ŝi + di with 0 ≤ di < ŝi. This corresponds to the allocation in

pieces api (j) = ŝi for j ∈ [ni] with ni ∈ ([m] ∪ {0}) and api (ni + 1) = di.
Given an allocation by pieces, a total amount allocation can be created in a stepwise manner.

For example, assume that agent i has two pieces (1,2) below their saturation amount and that

their allocation under 1 is weakly less than their allocation under 2; i.e. api (1) ≤ api (2) < ŝi. Then

it is possible to reduce the allocation by d ∶= min{api (2), ŝi−api (1)} in piece 2 (ap
′
i (2) ∶= ap′i (2)+d)

and increase it in piece 1 (ap
′
i (1) ∶= ap′i (1) + d).

We remark again that we ignore Φ here. Generally, a valid Φ does not have to exist for all

total amount allocations. However, the aim is to show that for any allocation to achieve a social

welfare of B′, any agent i’s allocation has to be exactly ŝi in one event and zero in all other

events. This is independent of the choice of the event in which the agent gets their saturation

amount. In this respect, the total amount allocation is suitable since its social welfare is the

same as the social welfare of the allocation it is based on, and if the original allocation is ex-ante

envy-free and a valid Φ exists, then the allocation (api (Φ(i, ω)))i∈[n],ω∈Ω is also ex-ante envy-free.

The social welfare is unaffected since the utility functions are linear.

Lemma 3.17. The ex-ante social welfare of an allocation and its representing total amount

allocation are equivalent.

It is straightforward to see that shifting allocation from smaller events to bigger events can

transform an allocation to a total amount representation. The details of the technical proof are

in the appendix (see Section A.2.2)

The envy-freeness of (api (Φ(i, ω)))i∈[n],ω∈Ω can be argued with the shifts to create a total amount

allocation. An agent i is indifferent between the allocation before and after a shift since they

receive the same amount in total and all events are equally likely. Every other agent j’s expected

utility of agent i’s allocation after the shift is weakly less than before the shift, since it is the

same amount but all expected utilities are subject to agent j’s saturation amount. Hence, the

difference in the ex-ante envy-freeness inequalities can only increase (for details see Section A.2.2

in the appendix).

Lemma 3.18. If the api are ex-ante envy-free then the total amount allocation is ex-ante envy-

free. Moreover, if the api are ex-ante envy-free and a valid Φ exists then (ai(Φ(i, ω)))i∈[n],ω∈Ω is

ex-ante envy-free.
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The following lemmata are used in the shifting procedure in the proof of Theorem 3.11. If any

shift based on the following lemmata ends in an allocation for which a valid Φ exists then by

Lemma 3.18 we have reached an envy-free allocation.

To begin with, shifting allocation to agents with a higher index increases social welfare based on

the order of the agents (see Section A.2.3 in the appendix for details).

Lemma 3.19. Fixing an allocation A and an agent 1 ≤ k < 4m, if all agents i where i < k have a

total amount allocation of Ai = ŝi and agent k’s total amount allocation is Ak > ŝk, then shifting

allocation to create allocation A′ such that any excess is shifted to the next agent, i.e. A′
k = ŝk

and A′
k+1 = Ak+1 +Ak − ŝk, increases social welfare.

Moreover, envy-freeness stipulates that, if an agent receives less than their saturation amount,

then all agents of higher index also receive less than their saturation amounts (see Section A.2.3

in the appendix for details).

Lemma 3.20. For two agents i, k ∈ [4m] with i > k, if agent k has a total amount allocation

of less than, or equal to, their saturation amount, i.e. Ak ≤ ŝk, then the same must be true for

agent i, i.e. Ai ≤ ŝi. The same holds for the strict case, i.e. if Ak < ŝk then Ai < ŝi.
Further, envy-freeness imposes the following conditions on Φ.

Lemma 3.21. If for an envy-free allocation every agent has an allocation of once their saturation

amount then the agents 2, . . . ,4m have to have their saturation amount in exactly one event or

piece.

Proof. If the allocation of ŝi for i ∈ [n]/{1} is in one event, the expected utility of agent 1 for the

allocation of agent i will be ŝ1 (the remainder ŝi− ŝ1 is of no value to agent 1). By contradiction,

if ŝi is split between two or more events, then agent 1 will receive additional expected utility from

ŝi− ŝ1 and hence their expected utility for agent i’s allocation will be more than ŝ1, implying that

agent 1 envies agent i’s allocation. Hence, the allocation of agent i has to be in one event.

Finally, we are able to prove the main theorem.

Proof of Theorem 3.11. It is easy to see that given an allocation, we can calculate the social

welfare and verify the envy-freeness in polynomial time. Therefore D-UAFD is in NP. To prove

NP-completeness, we show that the constructed envy partition instance (see Definition 3.13) is

a yes-instance if and only if the given 3-partition instance is a yes-instance.

First, consider the case where there is a valid partition S1, . . . , Sm for the 3-partition instance.

Consider the allocation A where for si ∈ Sj agent i+m is allocated ŝi+m in ωj for all i ∈ [3m] and

for i ∈ [m] agent i gets assigned ŝi in ωi. Recall that ŝi+m = s′i = si
mB

for all i ∈ [3m], and ŝi = i ⋅ ε
for all i ∈ [m]. It is thus easy to verify that allocation A is valid as ∑si∈Sj s′i = ∑si∈Sj si

mB
= 1
m

.

The expected utility for an agent i ∈ [n] with respect to their own allocation is Vi(ai) = i
m
⋅ ŝi,

and their expected utility with respect to the allocation of agent j ∈ [n] is Vi(aj) = i
m
⋅ ŝi if

j > i and Vi(aj) = i
m
⋅ ŝj ≤ i

m
⋅ ŝi if i > j. Hence, A is ex-ante envy-free. Furthermore, the sum

of the expected utilities is ∑i∈[n] Vi(ai) = 1
m

(∑3m
i=1(i +m) ⋅ s′i +∑mi=1 i

2 ⋅ ε) = B′, which concludes

this case.
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Now, consider the case where there is an envy-free allocation A with social welfare at least B′ for

the constructed envy partition instance. By Observation 3.15, we can assume that every agent

receives in every event at most their saturation amount. Therefore, A can be represented as

an allocation by pieces (Definition 3.14), and thus has a total amount allocation representation(A1, . . . ,A4m) (Definition 3.16) that has the same ex-ante social welfare as A (by Lemma 3.17)

and is ex-ante envy-free (by Lemma 3.18). This gives us a framework in which we show that,

independent of Φ, to achieve B′ every agent, except maybe agent 1, has to get their saturation

amount exactly once; i.e. ai(ω′) = ŝi for one ω′ ∈ Ω and ai(ω) = 0 for all ω ∈ Ω ∖ {ω′}, for all

agents i, 2 ≤ i ≤ 4m.

Starting from the total amount allocation (A1, . . . ,A4m) and considering agents one by one in

increasing order of indices, we construct another allocation A′ using the following procedure. If

the current agent i is agent 4m or has a total amount allocation Ai < ŝi, we stop. If the current

agent i has a total amount allocation Ai > ŝi the additional amount (Ai − ŝi) is shifted to the

next agent.

If the procedure reaches agent 4m and no amount has been shifted, then for each agent i < 4m

we have that Ai = ŝi and, by Lemma 3.20, we have that A4m ≤ ŝ4m. An allocation where every

agent is allocated exactly their saturation amount has social welfare of B′. Thus, if A4m < ŝ4m

then W (A) < B′ which contradicts our assumption. If A4m = ŝ4m then, by Lemma 3.21, every

agent in A, except maybe agent 1, is allocated theit saturation amount exactly once in one event.

If the procedure reaches agent 4m and any amount has been shifted during the procedure, then

by Lemma 3.19, W (A′) > W (A). Furthermore, each agent i < 4m is allocated exactly their

saturation amount in A′ and the total amount of resource available stipulates that agent 4m is

allocated at most their saturation amount. An allocation where every agent is allocated exactly

their saturation amount has social welfare of B′. Therefore W (A′) ≤ B′, and hence W (A) < B′

which contradicts our assumption.

If the procedure stops at an agent i < 4m, then we have that (1) every agent j < i is allocated

exactly their saturation amount in A′, and (2) since Ai < ŝi then, by Lemma 3.20, for each agent

j ≥ i we have that Aj < ŝj and hence each such agent is allocated less than their saturation

amount in A′. An allocation where every agent is allocated exactly their saturation amount

has social welfare of B′. Therefore W (A′) < B′. By Lemma 3.19, W (A′) ≥ W (A), and hence

W (A) < B′ which contradicts our assumption. Hence we can conclude that either each agent,

except maybe agent 1, is allocated their saturation amount exactly once, or W (A) < B′ which

is a contradiction.

So far we have established that allocation A is equivalent to the allocation by pieces Ap where

api (1) = ŝi and api (j) = 0 for j ∈ ([m]/{1}), for all i ∈ [4m]∖{1}. In the remainder of the proof we

show that a valid Φ exists only if there exists a 3-partition and, moreover, that agent 1 receives

their saturation amount exactly once in A as well. Since by assumption A is valid, a valid Φ must

exist and thus a 3-partition exists and, moreover, every agent receives their saturation amount

exactly once in A.

For easier presentation, we multiply saturation amounts and the amount of events by mB which

results in saturation amounts of agents m + 1 . . .4m to be equal to 3-partition elements, which

are all integers, and the amount of resource in each event j ∈ [m] to be equal to B +B ⋅m ⋅ j ⋅ ε.
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Recall that integer B denotes the size of each set. Furthermore, by the choice of ε, B ⋅m ⋅ j ⋅ε < 1

for all j ∈ [m].
We now investigate what must hold for a valid Φ to exist. We first claim that each agent i

with 2 ≤ i ≤ m must be assigned to event i. If that were not the case, then there must be an

event j ∈ [m] with a remaining unallocated amount of less than B. Hence, since no event has

an amount of B + 1 or more, this implies that we have a total amount of less than mB that we

can assign to agents m + 1 . . .4m. But then these agents’ saturation amounts add up to mB so

it impossible to have these agents assigned. A similar argument holds if agent 1 is not assigned

to event 1, and hence we conclude that each agent i ∈ [m] is assigned to event i. Therefore, the

remaining amount in each event is exactly B. We have that the saturation amounts of agents

m+ 1 . . .4m are equal to their corresponding 3-partition elements, hence the existence of a valid

Φ implies that there exists a 3-partition, which can be directly derived from Φ.

Therefore, the envy partition instance is a yes-instance if and only if the 3-partition instance is

a yes-instance. Finally, since the envy partition instance can be constructed in polynomial time

and is of polynomial size this concludes the strong completeness (for details see Lemma A.3 and

Lemma A.4 in Section A.2.1).

3.5 Two Agents Linear Satiable Utility Functions

Following the two negative results we use the insights of those to decide the limit of the number

of agents in order to investigate the effects of the probability distribution over the events and

provide algorithms. We further use the instances of the negative results to decide what utility

functions to consider. Firstly, we used an instance with linear utility functions to prove the price

of envy-freeness (Theorem 3.8) and, secondly, we used an instance with utility functions that

are linear up to a point and then constant to prove the NP-hardness (Theorem 3.11). Moreover,

the hardness instance uses only uniform probabilities. Hence, the distribution plays less of a

role and the distribution and the utility functions cannot be further relaxed. Additionally, the

complexity proof highlights that the complexity is based on the number of agents. Therefore,

taking all these points together, we relax the number of agents and consider two agents with

utilities that are linear up to a maximal value. Accordingly, unless explicitly stated otherwise,

n = 2 for the rest of this section. This allows us to explore the algorithmic possibilities for two

agents and the influence of the probability distribution.

We begin examining the setting by defining the utility functions which are linear up to a maximal

value (see Section 3.5.1). This includes how previous definitions of expected utility and ex-ante

envy-freeness can be simplified as a consequence. Following on, we establish that for this 2 agent

setting, similar to the case of linear utilities, specific settings do not allow allocations with more

social welfare than that provided by equal share (See Section 3.5.2). Hence, we simultaneously

declare to focus on the instances where we can gain ex-ante social welfare under ex-ante envy-

freeness (see Assumption 3.29 and Assumption 3.31). We proceed by presenting our positive and

negative results separately, considering those instances with uniform and arbitrary probability

distributions over the events. In Section 3.5.3, we discuss the algorithm which provides the op-

timal and approximate results. This is followed by the result that for uniform probabilities over
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the events the algorithm indeed produces an optimal allocation (see Section 3.5.4). The con-

trasting result that for arbitrary probability distributions the problem is NP-hard is presented in

Section 3.5.5.1. Following the hardness result, we discuss the approximation guarantees (see Sec-

tion 3.5.5.2). The counter-intuitive result that, when events are ordered by the expected amount,

the algorithm cannot approximate the optimal solution is demonstrated in Section 3.5.5.2. For

the other ordering by amount only, we show in Section 3.5.5.2 that the algorithm’s allocation

structurally cannot be too different to an optimal allocation. We conclude by comparing the

two orderings empirically in Section 3.5.7, demonstrating that both perform well on ‘average’

instances. This comparison relies on the difference to the maximal achievable ex-ante envy-free

allocation, determined via our integer programming problem (see Section 3.5.6).

3.5.1 Preliminaries

We begin with the definitions of the utility functions which are linear up to a maximal value.

These functions, referred to as linear satiable utilities, are determined by a saturation amount q

and a maximal value u.

Definition 3.22 (Linear Satiable Utilities). A linear satiable utility v ∶ [0,1] → R+ is determined

by the tuple (q, u) and is defined as

v(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
u
q
⋅ x if x ≤ q

u else
.

The set of all linear satiable utility functions is denoted by LM = {(q, u)∣q ∈ [0,1], u ∈ R+}.

Besides limiting the amount that is valuable to an agent, the agent’s saturation amount also

limits the amount up to which an agent might desire another agent’s allocation. Hence, for

brevity, we denote an agent i’s allocation limited by any other agent j’s saturation amount by

aji .

Definition 3.23 (Saturation Amount Limited Utility Function). For any allocation A and any

event ω let aji (ω) denote the allocation function ai of agent i limited by the saturation amount

qj of agent j. More precisely, let aji (ω) ∶= min{ai(ω), qj}.

The linearity and the saturation amount of the linear satiable utilities allow us to rewrite the

expected utility as well as the equations representing envy-freeness. For these utility functions

the expected utility simplifies mostly to the sum of allocated amount subject to the saturation

amount.

Observation 3.24. The utility for agent i ∈ [n] with (ui, qi) ∈ ([0,1],R+) is

Vi(a) = ui
qi
⋅ ∑
ω∈Ω

min{a(ω), qi}f(ω).

This observation shows that the expected utility separates into the allocated amount and a factor

of the fraction of saturation amount qi and maximal value ui. This means that the envy-freeness

depends solely on the difference, subject to the saturation amount, of the allocated amounts of
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any agent and any another agent. Particularly, that means that envy-freeness is independent of

the maximal values.

Observation 3.25. The envy-freeness of agent i ∈ [n] with respect to agent k ∈ [n] is represented

by the equation

EF (i, k) ∶= ∑
ω∈Ω

(min{ai(ω), qi} −min{ak(ω), qi}) f(ω) ≥ 0.

3.5.2 Assumptions on Agent’s Utility and Saturation Amounts

The setting in the example in Section 3.2 allows for a more efficient allocation than equal

share whilst maintaining ex-ante envy-freeness. However, certain combinations of the satura-

tion amount and maximal value still do not allow more social welfare than what equal share

admits. As the following lemma shows, this is the case for four combinations of maximal values,

saturation amounts and sizes of the events.

Lemma 3.26. If one of the following four cases is satisfied then the ex-ante social welfare of

equal share is maximal considering ex-ante envy-free allocations:

1. q1 = q2 or 2. u2 ≥ u1 and q1 > q2 or 3.
u1

q1
= u2

q2

or 4. ω ≥ 2 ⋅min{q1, q2} for all ω ∈ Ω

Case 2 obviously also applies when changing the order of the agents.

Before we prove this lemma, we adjust equal share to cover the edge cases where events are

significantly bigger than the smaller saturation amount of the two agents.

Definition 3.27 ((Adjusted) Equal Share Allocation). The (adjusted) equal share allocation is

the allocation where for all ω ∈ Ω

ai(ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω
2

if ω < 2 ⋅ qi
qi otherwise

and aj(ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω
2

if ω < 2 ⋅ qi
min{ω − ai(ω), qj} otherwise

where i = arg min
k∈[2]

{qk} and j ∈ [2]/{i} holds.

For the rest of this section this definition supersedes equal share (see Definition 3.2) and any

reference of equal share refers to the adjusted equal share allocation.

Additionally, we want to observe that the conclusion of Observation 3.15 also applies here. We

capture this in the following observation.

Observation 3.28. It suffices to consider allocations A with ai(ω) ≤ qi for all i ∈ [n].
Using preceding definition of equal share and the observation, we prove the lemma on the cases

that can be excluded.
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Proof of Lemma 3.26. The statement can be verified by considering the envy-freeness constraint

for linear satiable utilities (see Observation 3.25). We start with the case where q1 = q2. Since

we assume no more resource is allocated than an agent would value (see Observation 3.28),

we can remove the references to the saturation amount from the envy-freeness: EF (i, k) =
∑
ω∈Ω

(ai(ω) − ak(ω)) f(ω) ≥ 0. Since this equations holds in both directions, ∑
ω∈Ω

ai(ω) ⋅ f(ω) ≥
∑
ω∈Ω

ak(ω) ⋅ f(ω) and ∑
ω∈Ω

ak(ω) ⋅ f(ω) ≥ ∑
ω∈Ω

ai(ω) ⋅ f(ω), we can see that the allocated amount

has to be the same. Hence, any allocation is just a version of equal share.

For the second case, i.e. if u2 > u1 and q1 > q2 holds, we can observe that envy-freeness implies

that any expected amount given to agent 2 has to be also given to agent 1 since agent 1’s

saturation amount is higher. Moreover, since an allocation to agent 2 has more value we should

give agent 2 as much allocation as possible. Both of these observations together mean again that

any optimal allocation has the same value as equal share.

For the third case, i.e. u1

q1
= u2

q2
, it is easy to see that the social welfare is just the total amount

multiplied by one of the two marginal utility fractions:

V1(a1) + V2(a2) = u1

q1
⋅ (∑
ω∈Ω

(a1(ω) + a2(ω))f(ω)) .
Hence, any two allocations which allocate all available resource that can be allocated (i.e. where

for every event ω ∈ Ω we have a1(ω) + a1(ω) = min{ω, q1 + q2}) have the same value. This

especially includes all ex-ante envy-free allocations including equal share.

Finally, in the last case, to allocate all available resource we have to allocate at least q2 to the

agent with the higher saturation amount. However, that means that the other agent has to have

an allocation of q2 in every event as well. This, again, is the equal share allocation.

As a consequence of this lemma, we consider only instances for which allocations with a higher

ex-ante social welfare than the respective equal share allocation exist.

Assumption 3.29. Based on Lemma 3.26, if we can gain more ex-ante social welfare, one agent

has a higher saturation amount and this agent’s maximal value has to be higher than that of the

other agent. Without loss of generality, we assume that it is agent 1 who satisfies this. Hence,

we assume q1 > q2 and u1 > u2. Moreover, we assume that there is at least one event ω ∈ Ω which

is less than 2 ⋅ q2.

For the rest of this work we consider only settings as specified by Assumption 3.29. Nevertheless,

Case 3. of Lemma 3.26 still allows two different settings. The settings are that either the first

agent’s marginal utility is greater than the second agent’s marginal utility, i.e. u1

q1
> u2

q2
, or the

second agent’s marginal utility is greater than the first agent’s marginal utility, i.e. u2

q2
> u1

q1
. Of

these two cases the former case is more interesting and is the focus of the rest of this section.

In the latter case, where the second agent contributes marginally more to the social welfare,

an optimal allocation can be computed straightforwardly. We prove this fact in the following

lemma that gives a sample of the general approaches used to solve the case where the first agent’s

marginal utility is bigger.

Lemma 3.30. In the context of Assumption 3.29 if u2

q2
> u1

q1
then the optimal allocation can be

found in polynomial time.
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Proof. We start with a procedure to compute an allocation which we show is optimal. The

procedure starts with setting the allocation of agent 2 to be as much as possible in all events,

i.e. a2(ω) = min{ω, q2}. Agent 1 gets as much as available or desired of the remaining resource

a1(ω) = min{ω − a2(ω), q1}. Following this, we modify the allocation to be envy-free. If agent

1 is not envy-free we shift resource from agent 2 to agent 1 beginning with the largest event

until agent 1 is not envious any more, i.e. EF (1,2) = 0. Agent 2 has to be envy-free since their

saturation amount is smaller than agent 1’s saturation amount, and we give agent 1 only so

much to not be envious any more. The claim is that this allocation is optimal.

It is clear that any allocation where agent 2 has an allocation of less than the amount of this

allocation must have less social welfare. The reason is that any shift of ε from agent 2 to agent

1 decreases the social welfare of an allocation, i.e. −εu2

q2
+ εu1

q1
< 0. Hence, the social welfare has

to be smaller.

Moreover, there cannot be an allocation with more social welfare. The created allocation gives

allocation preferentially to agent 2. At the end of the procedure agent 2 has as much as their

saturation amount in every event or agent 1 has just enough to be not envious any more. It

is clear that the if agent 2 has as much as their saturation amount in every, such an allocation

cannot be improved. Similarly, if agent 1 has just enough to be not envious any more, any

allocation given to agent 2 would make agent 1 not envy-free since their saturation amount is

bigger than that of agent 2. Hence, such an allocation could not be improved. Consequentially,

the allocation is optimal.

Finally, the procedure to get this allocation can be computed in polynomial time. Firstly, the

procedure considers every event at most once. At some point the procedure might considers an

event where setting a1 = min{ω, q1} and a2 = min{ω − a1(ω), q2} would result in agent 1 being

strictly not envy-free, i.e. EF (1,2) > 0. In this case we have to solve a set of linear equations to

get the allocation of this event which results in the entire allocation being exactly envy-free, i.e.

EF (1,2) = 0. This can also be done in polynomial time which means the whole procedure can

be done in polynomial time.

Having resolved this setting we focus on the setting where the first agent’s marginal utility is

bigger.

Assumption 3.31. Based on Lemma 3.30 a setting where agent 2’s utility is marginally bigger

can be solved optimally in polynomial time. Hence, we assume that agent 1’s utility is marginally

bigger, i.e. u1

q1
> u2

q2
.

In this case, allocating as much allocation as possible to the first agent maximises social welfare.

However, agent 2 has to be still ex-ante envy-free. To achieve these two requirements (maximise

agent 1’s allocated amount and have agent 2 envy-free), we seek allocations which give agent 2

as little allocation as possible while still being envy-free. We refer to the fact that agent 2 has

only as much allocation as necessary as just envy-free.

Definition 3.32 (Just Envy-Free). An agent i is just ex-ante envy-free if the expected utility

of their own allocation is equal to the expected utility of the other agents j’s allocation, i.e.

Vi(ai) = Vi(aj) or EF (i, j) = 0.
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In the following two lemmata we show that having agent 2 just envy-free is sufficient to show

that an allocation is valid and envy-free and that, in an optimal allocation, agent 2 has to be

just envy-free.

Lemma 3.33. If agent 2 is just ex-ante envy-free then agent 1 is ex-ante envy-free.

Proof. The claim of the statement (i.e. EF (1,2) ≥ 0) is implied in the following way:

∑
ω∈Ω

min{a1(ω), q1}f(ω) (∗)≥ ∑
ω∈Ω

min{a1(ω), q2}f(ω)
(∗∗)= ∑

ω∈Ω
min{a2(ω), q2}f(ω) (∗∗∗)= ∑

ω∈Ω
min{a2(ω), q1}f(ω).

In this chain of inequalities, the first sum is the allocated amount to agent 1. Since agent 2’s

saturation amount is smaller than agent 1’s saturation amount (q1 ≥ q2) the amount allocated to

agent 1 cannot be smaller than agent 2’s perception of this allocated amount (Inequality (∗)).
Moreover, by just envy-freeness (EF (2,1) = 0) agent 2’s perception of agent 1’s allocation has

to be equal to the allocated amount of agent 2 (Equality (∗∗)). Finally, since q1 ≥ q2 and we do

not allocate more than necessary (Observation 3.28) agent 1’s perception of agent 2’s allocated

amount has to be the same (Equality (∗ ∗ ∗)). Altogether, this implies EF (1,2) ≥ 0.

Lemma 3.34. In an optimal allocation agent 2 is just ex-ante envy-free.

Proof. We assume for contradiction that in an optimal allocation agent 2 is more than just envy-

free, i.e. V2(a2) > V2(a1). In this case we choose an event ω ∈ Ω where agent 2 has a positive

allocation and agent 1 has an allocation of less than q1. Such an event has to exist since if no

such event exists the two agents have to have the same amount allocated and V2(a2) cannot be

greater than V2(a1). Taking any of the allocation in ω from agent 2 to give to agent 1 increases

the allocation of agent 1 and since agent 2 was more than envy-free we can do this without agent

2 becoming envious. Consequently, since agent 1 has a higher marginal utility of the transferred

allocation this also increases the social welfare. Hence, the allocation cannot be optimal which

is a contradiction.

3.5.3 Algorithm

In order to calculate the optimal allocation for uniform distributions and to approximate the

optimal allocation for arbitrary distributions, we devise one general algorithm. The procedure

of the algorithm depends on the order of the events and we define two orderings that give us two

variants of the algorithm (for ordering by amount see Definition 3.37 and Algorithm 2 in Sec-

tion 3.5.4, for ordering by expected amount see Definition 3.57 and Algorithm 3 in Section 3.5.5).

Based on this order, the algorithm allocates ‘bigger’ events preferentially to agent 1 and allocates

‘smaller’ events preferentially to agent 2 so that agent 2 is just envy-free. To cover both variants

and all cases, we describe the algorithm in general for any ordering and arbitrary probability

distributions.

The algorithm called GreedyTake is formally presented in Algorithm 1 and works as follows.

Initially, agent 1 receives as much allocation as possible in every event and agent 2 receives the
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remaining amount (line 1 and 2). Clearly, in this allocation, agent 2 would be envious. In order

to rectify this, the second step (line 3 - 8) is to find the event such that giving agent 2 as much

as possible in all events up to this event would make agent 2 not envious. Hence, the index of

the current event j is moved, starting with the smallest (depending on the ordering) event (line

3, note that the first event is event 1), in increasing order (line 5) until agent 2 is not envious

any more (line 4). In every step of this loop agent 2 gets allocated as much resource as possible

in the current event (line 6), and agent 1 gets the remaining amount of the available amount

(line 7). After the event j that makes agent 2 no longer envious is identified, that event has to

be split to make agent 2 just envy-free (line 9 - 17). Due to the importance of this event for later

arguments, we name this event the split event

Definition 3.35 (Split Event). For any run of Algorithm 1 the event j which is fixed by line 9

is called split event and denoted as j∗.

The split could be achieved by increasing agent 2’s allocation in event j until agent 2 is just

envy-free. However, the algorithm determines this point (either line 13 or 15) using three values

depending on the allocation in all other events, the amount of ωj∗ and the saturation amount of

agent 2. The first value represents agent 2’s envy without event j∗ (A, line 9). The second value

reflects the available amount that affects agent 2’s utility based on agent 2’s saturation amount

(B, line 10). Lastly, the third value indicates if agent 2 is satisfied before agent 1 gets more than

agent 2’s saturation amount (C, line 11).

The two possible cases covered by the if in line 12 depend on the allocation to agent 1 with

respect to agent 2’s saturation amount. If agent 2 is satisfied by a split in which agent 1 gets

less than agent 2’s saturation amount (line 12), then agent 2 can get essentially half of the

amount that is available (subject to agent 2’s saturation amount, value B) and the amount

required to rectify the difference in allocation (value A). However, if the split means that agent

1’s allocation increases beyond agent 2’s saturation amount, then agent 2’s allocation is agent

2’s adjusted saturation amount (line 15). Finally, agent 1 gets the remaining resource in event

j (line 17).

Informally, it is clear that a split to achieve just envy-freeness for agent 2 is possible. Agent 2 is

envious when agent 1 gets as much resource as possible in the split event. On the other hand,

agent 2 is envy-free when agent 2 gets as much resource as possible in the split event. Hence,

there has to be a split to achieve just envy-freeness. Proving this statement requires us just to

consider all possible cases and to show that line 13 and 15 are determining an allocation that is

ex-ante envy-free. The proof is omitted here and can be found in the appendix (see Section A.3).

Lemma 3.36. An allocation determined by GreedyTake is valid and ex-ante envy-free.

3.5.4 Uniform Probability Distributions

The first case we are considering is the case of uniform probability distributions. As stated in the

introduction of this section (see Section 3.5), an allocation determined by GreedyTake when

events are ordered by their amount is optimal. In what follows, we formally define this ordering,

referring to it as amount ordering, and the respective variant of the algorithm, and then prove

the optimality claim.
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Algorithm 1 GreedyTake
Algorithm that prefers agent 1 and tries to make agent 2 non envious.

Input: (ui, qi)i∈[2], Ω
1: a1(ω) = min{ω, q1} ∀ω ∈ Ω
2: a2(ω) = min{ω − a1(ω)q2} ∀ω ∈ Ω
3: j = 0
4: while ∑

ω∈Ω
v2(a2(ω)) ⋅ f(ω) < ∑

ω∈Ω
v2(a1(ω)) ⋅ f(ω) do

5: j = j + 1
6: a2(ωj) = min{ωj , q2}
7: a1(ωj) = min{ωj − a2(ωj), q1}
8: end while
9: A = ∑

j′∈[m]/{j}
a2

1(ωj′) ⋅ f(ωj′) − ∑
j′∈[m]/{j}

a2(ωj′) ⋅ f(ωj′)
10: B = (min{ωj , q2} +min{ωj −min{ωj , q2}, q2}) ⋅ f(ωj)
11: C = (q2 −min{ωj −min{ωj , q2}, q2}) ⋅ f(ωj)
12: if ∑

ω∈Ω/{ωj}
a2(ω) ⋅ f(ω) +min{ωj , q2} ⋅ f(ωj) −C ≤ ∑

ω∈Ω/{ωj}
a2

1(ω) ⋅ f(ω) + q2 ⋅ f(ωj) then

13: a2(ωj) = A+B
2⋅f(ωj)

14: else
15: a2(ωj) = A

f(ωj) + q2

16: end if
17: a1(ωj) = min{ωj − a2(ωj), q1}
Definition 3.37 (Amount Ordering). The amount ordering sorts the events increasing with

respect to ω for ω ∈ Ω.

Accordingly, we define Algorithm 2 to refer to the variant of GreedyTake that processes the

events ordered by the amount ordering as GreedyTake-Amt.

Algorithm 2 GreedyTake-Amt
Variant of GreedyTake (Algorithm 1) that uses the amount ordering (see Definition 3.37).

Input: (ui, qi)i∈[2], Ω
1: Sort Ω increasing by ω for ω ∈ Ω
2: GreedyTake((ui, qi)i∈[2], Ω)

To prove the optimality of the allocation determined by the algorithm denoted ALG, our main

argument, which we prove in Theorem 3.39, is that any optimal allocation OPT can be trans-

formed into an allocation like ALG. The algorithm’s allocation is characterised by the split event

and the events that are smaller (preferentially given to agent 2) and the events that are bigger

(preferentially given to agent 1). The proof argues how the structure of an optimal allocation can

be transformed into the structure of the algorithm’s allocation. To demonstrate this, the proof

relies on the fact that, once we know that all events bigger than the split event are allocated in

the same way, we can immediately see that the ex-ante social welfare is the same. We prove this

in the following supporting lemma.

Lemma 3.38. If an optimal allocation OPT has the same allocation as the allocation of Algo-

rithm 2 in all events j whose index is greater than the split event j > j∗ then the two allocations

have the same ex-ante social-welfare.
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ω ω′

1
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switch

(A) In the switch step the allocation of agent 1 is
switched between the two events.

q2

ω ω′
1

2

1

2adjust

(B) In the adjust step the allocation of agent 2 is ad-
justed such that the overall allocation is valid again.

Figure 3.2: Example of the switch/adjust procedure used in Theorem 3.39 with the left event
ω ∈ Ωl and the right event ω′ ∈ Ωr. 3.2A and 3.2B indicate the switch and the adjust step,

respectively.

Proof. We prove this claim by contradiction, i.e. we assume that there is an optimal allocation

OPT whose allocation in the events j with j > j∗ is the same as the algorithm’s allocation but

the optimal allocation has more ex-ante social welfare.

We know from the procedure of the algorithm that, if agent 2 gets everything possible from event

1 to j∗ − 1, then this is still not enough for agent 2 to be envy-free. Moreover, by the order of

the events, this gives the least amount of events with the smallest opportunity for agent 1 to

have allocation greater than agent 2’s saturation amount to agent 2. Hence, we can conclude

that agent 2 needs at least this amount to be envy-free.

If agent 2 does not have this amount allocated in the events 1 to j∗ −1 then some of it has to be

allocated in the split event j∗ (otherwise agent 2 would not be envy-free). In this case, we shift

the allocation of OPT so that agent 2 gets allocated everything possible in the events 1 to j∗−1.

Following this shift, the only difference of the two allocations is the split event j∗. However, the

algorithm gives as much as possible to agent 1. Hence, if the allocation of OPT in j∗ after the

shift would be different to the algorithm’s allocation, then OPT has to have less social welfare

than the allocation of the algorithm. Therefore, the allocations have to have the same ex-ante

social welfare.

Using this utility lemma, we are able to prove that the allocation ALG produced by Algorithm 1

is an optimal allocation.

Theorem 3.39. For uniform probability distributions over the events the allocation ALG of

GreedyTake-AMT is optimal.

Proof. Similar to the previous lemma, we prove this statement by assuming the opposite and

using an exchange argument where we shift the optimal allocation to become the allocation of

the algorithm. Formally, we assume that there is an optimal allocation OPT which has a higher

ex-ante social welfare than the allocation of the algorithm ALG.

Before we begin, we separate the set of events in two sets based on the order and the split

event. Let the set of all events smaller than the split event, called left events, be denoted as

Ωl = {ω1, . . . , ωj∗−1}, and the set of all events greater than the split event, called right events,

be denoted as Ωr = {ωj∗+1, . . . , ωm}. We change the optimal allocation by exchanging allocation

from left to right using the following two-stage switch/adjust procedure (see also Figure 3.2).
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For the switch/adjust procedure, we assume there is a left event ω where agent 1’s allocation is

greater than agent 2’s saturation amount, i.e. ω ∈ Ωl ∪{j∗} with a1(ω) > q2, and a right event ω′

where agent 1’s allocation is less than agent 2’s saturation amount, i.e. ω′ ∈ Ωr with a1(ω′) < q2.

In the first step, the switch step, we switch agent 1’ allocation of the two events, i.e. we set

a′1(ω) = a1(ω′) and a′1(ω′) = a1(ω). In the second step, the adjust step, we shift the allocation

for agent 2 from ω′ to ω so that the allocation is valid again.

We can prove that this adjust step has to be possible by assuming the opposite, that the allocation

of agent 2 in event ω′ is big and cannot be shifted to event ω, i.e. a1(ω) − a1(ω′) > q2 − a2(ω).
However, this, together with the order of the events, implies that the allocation has allocated

resource with no value. In detail, the assumption is equivalent to q2 + a1(ω′) < a1(ω) + a2(ω)
and the order of events means that a1(ω) + a2(ω) ≤ a1(ω′) + a2(ω′). Together, we have that

the allocation of agent 2 in the right event before the procedure is a2(ω′) > q2. However, this

contradicts our observation that there is no reason to allocate resource which give no further

value (see Observation 3.15).

Now, we use this switch/adjust procedure to change the optimal allocation towards the allocation

of the algorithm. If Ωr of the optimal allocation is different to ALG and it is possible to shift

allocation for agent 1 from Ωl ∪ {j∗} to Ωr we perform the procedure. It is clear that this does

not affect the social welfare.

After a number of applications of the switch/adjust procedure there will be no remaining left

event and/or no remaining right event that satisfies our conditions for the procedure. At this

point we try to shift allocation for agent 1 to the right events and for agent 2 to the left events.

We do this if there is a right event where agent 1 has an allocation of at least agent 2’s saturation

amount but less than agent 1’s saturation amount, and a left event where agent 2 has less than

their saturation amount. If agent 1’s allocation in the left event is bigger than agent 2’s saturation

amount, this is a shift that does not change social welfare or envy-freeness. If agent 1’s allocation

in the left event is at most agent 2’s saturation amount we can decrease agent 2’s allocation since

shifting allocation for agent 1 decreases agent 2’s expected utility of agent 1’s allocation. Hence,

we can maintain envy-freeness while increasing social welfare.

After the shifting of allocation, if the allocation in Ωr of the changed OPT is the same as ALG,

then the ex-ante social welfare has to be the same by Lemma 3.38. In contrast, we assume the

changed OPT allocation is still different to ALG in Ωr but we cannot switch and adjust or shift

any more resource. Since we have no events left to perform a switch/adjust or a shift and the

events are in increasing order, agent 1 has to have less allocation beyond agent 2’s saturation

amount. Consequentially, agent 2 has to have more allocation in OPT than in ALG. This

implies that the ex-ante social welfare of OPT is smaller than the one of ALG. This is clearly

contradicting the optimality of OPT . Hence, ALG has to be optimal.

3.5.5 Non-Uniform Probability Distributions

In comparison to the case of uniform probability distributions, for arbitrary probability distri-

butions the problem becomes NP-hard even for the linear satiable utility functions. We prove

this claim in the following section by a reduction from a version of the partition problem and

subsequently present an approximation algorithm.
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3.5.5.1 Complexity

Similar to the previous complexity proof, we consider the respective decision version of the

problem to prove the complexity.

Definition 3.40 (Decision Version of Two Player Uncertain Amount Fair Division

(D-2-UAFD)).

Instance: ⟨X,v1, v2,B⟩ where X ∶ Ω → [0,1] with finite Ω ⊊ [0,1] is a discrete random

variable, v1 ∈ Θ and v2 ∈ Θ are utility functions and B ∈ R is a bound.

Problem: Does there exist a valid allocation A = (a1, a2) ∈ F2 such that Vi(ai) ≥ Vi(aj) for

all i, j ∈ [2] and W (A) ≥ B.

Θ, F , Vi and W (A) are defined as in the preliminaries.

This version of the problem is NP-complete. Similar to before, we formally prove the theorem

after the construction and supporting statements at the end of this section.

Theorem 3.41. D-2-UAFD is NP-complete.

We prove the complexity by reduction from a version of the partition problem. The only differ-

ence to the partition problem is that we assume that no two elements have the same amount.

Definition 3.42 (Distinct Partition Problem).

Instance: ⟨S⟩, where S ⊂ N is a finite set without duplicates.

Problem: Is there a subset S′ ⊂ S such that ∑
s∈S′

s = ∑
s∈S/S′

s.

This minor difference does not change the complexity but makes the reduction and complexity

proof less complicated.

Corollary 3.43. The distinct partition problem is NP-complete.

Proof. For the proof we refer to the proof of the complexity of the partition problem in ‘Com-

puters and Intractability’ [40, Theorem 3.5]. Their proof is via a reduction from 3-dimensional

matching (3DM) which uses binary representations of the 3DM instance for the elements of S.

Hence, all elements are distinct as we have in the distinct partition problem.

Based on a distinct partition problem instance we create an instance of D-2-UAFD called two

player envy partition instance. Briefly, for each element of the partition problem, we create one

event whose amount as well as probability is determined by the element. Moreover, we have

two agents representing the subsets that the elements have to be divided into. One agent values

the resource higher and requires more resource and should therefore get as much resource as

possible for efficiency. The second agent requires strictly less than any of the events but because

of envy-freeness has to get half of the elements allocated.
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ω0

Ω1

1
3

1
3

1
3

Probability

Amount 1
2

Figure 3.3: Illustration of the two player envy partition instance (see Definition 3.44 and the
split of the partition allocation (see Definition 3.45). The elements of Ω1 are bigger than 0.5.
The elements of Ω1 are not ordered by size in this illustration but rather represent the two
halves of a possible partition. The wavy pattern indicates the different sizes due to the offset
on top of 0.5 given by the respective s. The probability of the events in Ω1 are chosen to add
up to 2

3
which means one half (i.e. a partition) is 1

3
. ω0 is smaller than 0.5 but of the same

value as the blue outlined area. The vertical lines indicate an allocation to agent 2 and the
dots indicate an allocation to agent 1. Agent 2 perceives the green and the blue area of agent

1.

Definition 3.44 (Two Player Envy Partition Instance). A two player envy partition instance⟨X,v1, v2,B⟩ is an instance of D-2-UAFD constructed given a distinct partition problem instance⟨S⟩ in the following way (see also Figure 3.3).

Firstly, we number the partition elements S = s1, . . . , sm from 1 to m ∶= ∣S∣ where the order can

be arbitrary. We use those elements and the constant

b > max

⎧⎪⎪⎨⎪⎪⎩2,∑
s∈S

s2 ⋅ s−1
min ⋅ (∑

s∈S
s)−1⎫⎪⎪⎬⎪⎪⎭

to define the events. Every event’s amount is made up of a base amount of 0.5 and a partition

amount that is relative to the normalised size of the partition element, depending on b. The

probability of the events is chosen such that the probability of all these m events sum up to 2
3

and the individual event’s probability is relative to the respective normalised element.

ωi = 0.5 + si
b ⋅ ∑
s∈S

s
, Pr(ωi) = 2

3
⋅ si∑
s∈S

s
, i ∈ [m]

In addition to these events, we define one more event which occurs with probability 1
3

and whose

expected amount is half of the sum of the expected partition amounts (blue area in Figure 3.3).

ω0 = ∑
s∈S

s2

b ⋅ ( ∑
S∈S

s)2
, P r(ω0) = 1

3

Concluding the events’ definition, let Ω1 ∶= {ω1, . . . , ωm} and Ω ∶= Ω1 ∪ {ω0}.

For the agents, we have one agent who wants as much resource as possible. Their utility v1 is

defined by the saturation amount q1 = 1 and maximal value u1 = 2. The other agent is happy

with the base amount. Their utility v2 is defined by saturation amount q2 = 0.5 and maximal

value u2 = 0.5.
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Finally, the bound B is set to B ∶= 1
2
+ 5

3b
⋅ ∑
S
s2 ⋅ ( ∑

s∈S
s)−2

.

It is straightforward to see that the instance is valid and can be computed in polynomial time.

We prove the fact that an allocation for this instance can achieve B if and only if a partition

exists in several steps. In particular, if there is a partition we can use it to separate the events of

the two player partition instance into two halves for the two agents as illustrated in Figure 3.3.

An allocation based on this split is ex-ante envy-free and achieves B. For the case that no

partition exists we show in four steps that no allocation can achieve an ex-ante social welfare

of B. Firstly, agent 1 needs a minimal amount for the allocation to achieve B. Secondly, agent

2 needs a minimal amount to be ex-ante envy-free. Thirdly, for agent 2 to have the minimal

amount, agent 1’s allocation has to have specific structural properties. That is, the allocation to

agent 1 should have as many events where agent 1 gets all of the resource as possible. Finally,

the previous three statements together show that if there is no partition, any allocation must

have ex-ante social welfare of less than B.

A Partition Instance We begin with considering the case that there is a partition. In this

case, we can split the events in Ω1 in two halves based on the expected amounts. The following

definition describes this more formally:

Definition 3.45 (Partition Allocation). Let ⟨S⟩ have a partition and let S′ be the set of indices

of this partition. Then, the partition allocation A is defined as follows:

a1(ωi) = ωi, ∀i ∈ S′; a1(ωi) = ωi − 0.5, ∀i ∈ S/S′; a1(ω0) = 0

a2(ωi) = 0, ∀i ∈ S′; a2(ωi) = 0.5, ∀i ∈ S/S′; a2(ω0) = ω0

This partition is ex-ante envy-free since the second agent has, based on the expected amount,

half of the events in Ω1 to compensate for the other half plus the event ω0 to compensate for the

amount above the base amount in the events allocated to agent 2.

Lemma 3.46. The partition allocation is ex-ante envy-free.

Proof. It is obvious from the definition of the partition allocation (see Definition 3.45) that agent

1 has more allocation than agent 2 and therefore cannot be envious.

Agent 2’s allocation is 0.5 in half of the events in Ω1 and their allocation in ω0 is the entire

amount. Moreover, since agent 2 has a saturation amount of 0.5 they value the events in Ω1

fully allocated to agent 1 only up to the amount of 0.5 (see green box in Figure 3.3). Furthermore,

by construction (see Definition 3.44), ω0 has exactly the same expected amount as the expected

amount of agent 1’s allocation in the events in Ω1 where agent 2 has an allocation of 0.5 (see

blue box in Figure 3.3). Hence, agent 2’s utility of agent 1’s allocation is the same as agent 2’s

own utility, which means agent 2 is not envious.

By design the allocation also achieves the welfare bound.

Lemma 3.47. The partition allocation has an ex-ante social welfare of B.
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Proof. To show this we can simply calculate the agent’s expected utilities for the partition

allocation.

The first agent’s expected utility, denoted as U1, is half of the base amount of Ω1 (see green box

in Figure 3.3) plus the entire partition amount (ω − 0.5 in all events ω ∈ Ω1), i.e.

U1 ∶= 1

2
⋅ ∑
i∈[m]

1

2
⋅ 2

3
⋅ si∑
s∈S

s
+ 2

3b
⋅ ∑S s

2

( ∑
s∈S

s)2
.

The second agent’s expected utility, denoted as U2, is the other half of the base amount of Ω1

(see vertical lined area in Figure 3.3) and event ω0, i.e.

U2 ∶= 1

3b
⋅ ∑S s

2

( ∑
s∈S

s)2
+ 1

2
⋅ ∑
i∈[m]

1

2
⋅ 2

3
⋅ si∑
s∈S

s

Summing-up both of these expected utilities yields exactly the social welfare bound (remember

m = ∣S∣), i.e.

V1(a1) + V2(a2) = 2 ⋅U1 +U2

= ∑
i∈[m]

1

2
⋅ 2

3
⋅ si∑
s∈S

s
+ 4

3b
⋅ ∑S s

2

( ∑
s∈S

s)2
+ 1

3b
⋅ ∑S s

2

( ∑
s∈S

s)2
+ 1

2
⋅ ∑
i∈[m]

1

2
⋅ 2

3
⋅ si∑
s∈S

s

= 1

3
+ 5

3b
⋅ ∑S s

2

( ∑
s∈S

s)2
+ 1

6
= 3

6
+ 5

3b
⋅ ∑
S

s2 ⋅ (∑
s∈S

s)−2 = B

Minimal Allocation Agent 1 Having established the case where a partition exists, we

consider the case where no partition exists. As introduced above, we perform this in four steps.

The first step establishes a minimal amount of resource agent 1 requires for any allocation to

achieve bound B. Since agent 1 has a higher marginal utility this agents contributes more to

the social welfare. Consequentially, to achieve the social welfare bound agent 1’s allocation has

to be at least half of the expected partition amount (the amount above 0.5, see Definition 3.44).

We state this more precisely in the following lemma:

Lemma 3.48. Agent 1’s allocation of the partition amount has to satisfy

∑
ω∈Ω

∣a1(ω) − 0.5∣ ⋅ f(ω) ≥ 1

3
⋅ ∑
s∈S

s2 ⋅ b−1 ⋅ (∑
S∈S

s)−2

for an allocation’s ex-ante social welfare to achieve at least B.

Proof. For contradiction, we consider an allocation A for which the opposite holds and show

that A’s social welfare is less than B.
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We start with considering the amount both agents have to have so that agent 2 is still envy-free.

Since the partition amount of every event is beyond the saturation amount of agent 2 only, the

base amount (part of the events that is less than 0.5) of the allocation has to be divided in half

so that agent 2 is not envious. Hence, both agents’ allocation has to contain half of the available

amount minus the partition amount allocated to agent 1. We denote this amount with C.

C ∶= ∑
i∈[m]

⎛⎜⎝0.5 + si
b ⋅ ∑
s∈S

s

⎞⎟⎠ ⋅
2

3
⋅ si∑
s∈S

s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Base amount in Ω1

+ ∑
s∈S

s2

3 ⋅ b ⋅ ( ∑
S∈S

s)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ω0

− ∑
ω∈Ω

∣a1(ω) − 0.5∣ ⋅ f(ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Partition amount in Ω1

Using this the ex-ante social welfare can be expressed as follows.

W (A) = 2 ⋅ [1

2
⋅C + ∑

ω∈Ω
∣a1(ω) − 0.5∣ ⋅ f(ω)] + 1

2
⋅C

= 3

2
⋅ ∑
i∈[m]

⎛⎜⎝0.5 + si
b ⋅ ∑
s∈S

s

⎞⎟⎠ ⋅
2

3
⋅ si∑
s∈S

s
+ 1

2
⋅ ∑
ω∈Ω

∣a1(ω) − 0.5∣ ⋅ f(ω) + 3

2
⋅ ∑

s∈S
s2

3 ⋅ b ⋅ ( ∑
S∈S

s)2

= 1

2
+ 3

2
⋅ ∑
i∈[m]

s2
i ⋅ b−1 ⋅ (∑

s∈S
s)2 + 1

2
⋅ ∑
ω∈Ω

∣a1(ω) − 0.5∣ ⋅ f(ω)

If we then apply the upper bound assumption on the partition amount of agent 1’s allocation

(opposite of the lemma’s statement) we can bound the allocation A’s maximal social welfare as

follows.

W (A) < 1

2
+ 3

2
⋅ ∑
i∈[m]

s2
i ⋅ b−1 ⋅ (∑

s∈S
s)2 + 1

2
⋅ 1

3
⋅ ∑
s∈S

s2 ⋅ b−1 ⋅ (∑
S∈S

s)−2

= 1

2
+ 5

3
⋅ ∑
i∈[m]

s2
i ⋅ b−1 ⋅ (∑

s∈S
s)2 = B

However, this is a contradiction the assumption that A has at least a social welfare of B.

Minimal Allocation Agent 2 Having established the minimal amount agent 1 requires for

an allocation to achieve B, the immediate follow-up question is how much allocation has to be

given to the second agent so that the allocation is envy-free. This required amount is half of the

expected base amount.

Before we prove this, we make two observations about any allocation in this setting which

simplifies the proof of the claimed minimal amount. Both observations are based on the fact

that agent 1 can get more allocation than agent 2 by maximising the partition amount allocated

to agent 1 since this amount is more than agent 2’s saturation amount. The first observation

is that it cannot be beneficial for agent 1 to have a non zero allocation in event ω0 since it is

smaller than agent 2’s saturation amount.

Observation 3.49. Agent 1 cannot gain any utility in ω0 which is beyond agent 2’s utility since

ω0 is smaller than the base amount ω0 < 1
2

.
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The second observation considers how the aim to maximise the partition amount in agent 1’s

allocation affects the structure of the allocation. More precisely, the partition amount in agent

1’s allocation can be increased by having agent 2’s allocation distributed over less events.

Observation 3.50. Condensing Agent 2’s allocation allows for an increased allocation for agent

1. If we have a2(ω′) < 0.5 for at most one event ω′ ∈ Ω and for all other events ω ∈ Ω1/{ω′} we

have a2(ω) ∈ {0,0.5} then agent 1 can have more full events, i.e. a1(ω) = ω, which allows agent

1 to have more allocation than agent 2.

Finally, we can use these two observations in the proof for the claimed minimal allocation to

agent 2, which is formally stated in the following.

Lemma 3.51. The allocation to agent 2 has a lower bound of ∑
ω∈Ω1

a2(ω)f(ω) ≥ 1
6

for agent 2

to be ex-ante envy-free.

Proof. We assume for the sake of contradiction that ∑
ω
a2(ω)f(ω) < 1

6
and claim that even if we

assume the statements of above observations, agents 2 is still envious.

1. ω0 is allocated to agent 2, i.e. a2(ω0) = ω0 (see Observation 3.49)

2. Agent 2’s allocation is condensed, i.e. a2(ω′) < 0.5 for at most one ω′ ∈ Ω and for all other

events ω ∈ Ω1/{ω′} it holds that a2(ω) ∈ {0,0.5} (see Observation 3.50)

We start with observing that since the allocation to agent 2 is less than 1
6

and the allocation is

condensed, we know that the allocation to agent 1 must contains at least half of the expected

amount in Ω1 as well as the partition amount in the other events. More precisely,

V2(a1) = ∑
ω∈Ω1

a2(ω) ⋅ f(ω) ≥ 1

2
⋅ ∑
i∈[m]

1

2
⋅ 2

3
⋅ si∑
s∈S

s
+ 1

3b
⋅ ∑S s

2

( ∑
s∈S

s)2
= 1

6
+ 1

3b
⋅ ∑S s

2

( ∑
s∈S

s)2
.

In comparison, agent 2’s allocation contains ω0 and, as assumed, is strictly less than 1
6

in Ω1.

Hence, agent 2’s expected utility is

V2(a2) = v2(ω0) ⋅ f(ω0) + ∑
ω∈Ω1

v2(a2(Ω1)) ⋅ f(ω) < 1

3b
⋅ ∑S s

2

( ∑
s∈S

s)2
+ 1

6
.

However, both of the equations together clearly imply V2(a2) < V2(a1), which contradicts ex-ante

envy-freeness and therefore our assumption.

Structure Allocation Agent 1 The two lemmata of the previous two sections give us

a minimal amount of allocation for both agents. The last step before we are able to prove

the complexity claim of the theorem is that we can combine the two lemmata to prove that

the allocation of agent 1 has to be somewhat condensed. In other words, agent 1 cannot have

allocation above agent 2’s saturation amount in too many events. This is expressed more precisely

in the following lemma. In words, the claim is that the sum of the expected amount of events
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where agent 1 has an allocation beyond the base amount (0.5), can only be half the expected

amount of Ω1.

Lemma 3.52. The allocation to agent 1 has to satisfy ∑
ω∈Ω,

a1(ω)>0.5

a1(ω) ⋅ f(ω) ≤ 1
6

.

Proof. Again, for contradiction we assume the opposite, i.e. agent 1 has more than 1
6

in events

where agent 1’s allocation is greater than 0.5.

Let Ω̂1 be the set of events where the first agent has more than the base amount, i.e. Ω̂1 ∶={ω∣a1(ω) > 0.5, ω ∈ Ω}/{ω′}. Since half of the expected base amount of Ω1 is 1
6

(∑ω∈Ω1
0.5 ⋅f(ω) =

1
6
), there has to be at least one more event ω′ ∈ Ω̂1 that extends agent 1’s allocation to have

more than halve the expected base amount of Ω1.

Simultaneously, we assume that agent 2 has 0.5 in all events not part of agent 1’s allocation,

i.e. a1(ω) = 0.5 for all ω ∈ Ω1/Ω̂1. Since agent 2 has exactly the expected utility of 0.5 in those

events and since there is at least one ω′, agent 2’s utility of those events has to be less than 1
6
.

However, by Lemma 3.51 agent 2 requires at lest 1
6
. Hence, we have to assume that the events

in Ω̂1 are not all full events, i.e. there exist ω ∈ Ω̂1 with a1(ω) < ω. On top, we assume ω′ is

the smallest event. This can only decreases the amount agent 2 requires to be envy-free and is

therefore a valid assumption.

However, even making these assumption does not allow us to compensate for the missing allo-

cation to agent 2 so that agent 2 is ex-ante envy-free, even if all of the partition amount in Ω̂1

is allocated to agent 2. The reason is that by the choice of b the expected partition amount is

less than the expected base amount. Starting with expected base amount we have

1

2
⋅ 2

3
⋅ smin∑
s∈S

s

⋅ bb> 1

3
⋅ smin∑
s∈S

s
⋅ ∑

s∈S
s2

b ⋅ smin ⋅ ∑
s∈S

s
= 1

3
⋅ ∑

s∈S
s2

b ⋅ ( ∑
s∈S

s)2
.

Hence, agent 2 cannot have the required allocation of 1
6

(see Lemma 3.51), which is a contradic-

tion to our assumption.

Complexity Proof Finally, we can use above statements to show that there has to be a

partition for any allocation to achieve the bound B which lets us proof the overall theorem.

Proof of Theorem 3.41. If there is a partition (the partition instance is a yes-instance) then by

Lemma 3.46 and 3.47 the partition allocation (Definition 3.45) shows that the two-player envy

partition (see Definition 3.44) instance is a yes-instance.

Contrarily, we consider any allocation without a partition (the partition instance is a no-

instance). Then, we require by Lemma 3.51 that agent 2 has to have half of the expected

base amount (0.5 of the events in Ω1) and by Lemma 3.52 we require that agent 1 has to have

half of the expected base amount through events where agent 1’s allocation is more than the

base amount. However, if there is no partition there is no way to split the events in two halves in

accordance with these two requirements. Hence, it is impossible to satisfy both at the same time.
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Consequentially, agent 1 has to have less allocation so that agent 2 is ex-ante envy-free. There-

fore, by Lemma 3.48 the allocation has to have ex-ante social welfare of less than B. Overall,

this means the two-player envy partition instance a no-instance.

3.5.5.2 Approximation

Clearly the hardness proven in Theorem 3.41 has the common algorithmic consequences. In

comparison to the optimisation formulation of the n agent problem we present below in Sec-

tion 3.5.6 (which gives us an algorithm that is helpful for small instances), we are interested in

what the possibility under polynomial runtime is. Investigating this, as stated in Section 3.5.3,

we look at two different variants of GreedyTake determined by the ordering of events. The

first variant is the same one we used in the uniform case (see Section 3.5.4) and the second

variant is one where we sort the events by the expected amount. Initially it appears that taking

the expectation of the events into consideration should lead to better results. Unfortunately, it

turns out that theoretically we cannot guarantee an approximation when we sort by expected

amounts. For the case where we sort by just the amount, we show that the algorithm’s allocation

is structurally close to an optimal allocation we specify. We consider the results for these two

algorithm variants in this order: first for the sorting by the expected amount and second for the

sorting by just the amount.

Before we present these results, we present a framework in which an approximation for this

problem can hold and which is in line with maximising social welfare. This is necessary since we

allow arbitrary utilities which means approximation guarantees expressed in social welfare can be

arbitrarily bad as we show in the following Lemma 3.55. Instead of considering approximation

ratios in terms of social welfare, we consider the approximation in terms of the amount of

allocation to the first agent which exceeds the second agent’s saturation amount. Since this

allocation does not affect the envy-freeness of the second agent we refer to this amount as (agent

2) indifferent amount.

Definition 3.53 ((Agent 2) Indifferent Allocation). For an allocation A, we denote as agent 2

indifferent or simply indifferent the resource amount kAω ∶= max(a1(ω) − q2,0) for all ω ∈ Ω. If

the allocation A is clear from context we write kω instead of kAω .

We prove that maximising the indifferent allocation is in line with maximising social welfare in

Lemma 3.56.

Definition 3.54 (Indifferent Amount Framework). The indifferent amount framework considers

maximising the amount of the indifferent allocation as a proxy for maximising social welfare.

Prior to proving that the indifferent amount framework is aligned with maximising social welfare,

we prove that an approximation ratio expressed in social welfare can be arbitrarily bad for any

approximation algorithm. Informally, let us assume that in an optimal allocation one of the

two agents has more resource than the other. Since an approximation algorithm is not optimal

the difference in the allocation between the two agents has to be smaller in comparison to the

optimal algorithm. The utility of this difference is crucial for the approximation ratio. However

small the difference is, increasing the difference between the utility of the agents could increase

the social welfare arbitrarily. We show this formally in the following lemma:
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Lemma 3.55. The approximation ratio in terms of social welfare can be arbitrarily bad.

Proof. For i ∈ {1,2} let aopti be an optimal allocation function and ai be the allocation function

of an approximation algorithm. Due to our assumption that the optimal allocation OPT has

more social welfare, agent 1 has to have more allocation (see also Assumption 3.29 and Assump-

tion 3.31). Moreover, this allocation can only be indifferent allocation and it has to be smaller

for the algorithm’s allocation ALG. We denote this difference ∑ω∈Ω koptω −∑ω∈Ω kω with k. Ad-

ditionally, we assume that agent 2 is also just envy-free in the approximation algorithm (see also

Lemma 3.34) which can only be beneficial for the approximation algorithm. Consequentially, if

the entire amount that can be allocated is allocated, the amount k has to be equally distributed

to both agents with none of it being part of the indifferent allocation. Hence, the difference

between the social welfare of ALG and the social welfare of OPT is as follows:

ALG = OPT − u1

q1
⋅ k + u1

q1
⋅ 1

2
⋅ k + u2

q2
⋅ 1

2
⋅ k

= OPT + k ⋅ (−u1

q1
+ 1

2
⋅ u1

q1
+ 1

2
⋅ u2

q2
)

= OPT + 1

2
⋅ k ⋅ (−u1

q1
+ u2

q2
) .

Considering the last expression, since agent 1’s marginal utility is greater than agent 2’s marginal

utility we have that the −u1

q1
+ u2

q2
has to be negative. Moreover, this difference increases as the

difference between the two agent’s utilities also increases. Consequentially, the ratio of the

algorithm and the optimal allocation increases. Hence, the approximation ratio continues to

decrease with an increase of agent 1’s utility.

In contrast, the next lemma shows that expressing the approximation ratio in terms of the

indifferent amount is sensible because it is in line with maximising social welfare.

Lemma 3.56. Maximising social welfare is equivalent to maximising the indifferent amount.

Proof. We assume for contradiction that the opposite is true. For that, let A be an allocation

that maximises social welfare and A′ be an allocation that maximises the indifferent amount.

Hence, we have W (A′) <W (A).
We show that the difference between the allocations depends only on the indifferent amount.

For that, we firstly express the total allocation R in terms of the allocation to the first agent.

By Lemma 3.34 agent 2’s allocation is the same as agent 1’s allocation without the indifferent

amount. By the same arguments, agent 2 has to be just envy-free in the allocation that maximises

the indifferent amount. Hence, we have that

R ∶= ∑
ω∈Ω

a2(ω)f(ω) + ∑
ω∈Ω

a1(ω)f(ω) = 2 ⋅ ∑
ω∈Ω

a1(ω)f(ω) − ∑
ω∈Ω

kωf(ω) (3.1)

holds. The same holds for A′ with k′ω.

Using these equations we can express the social welfare of A′ in terms of the total allocation and

the indifferent amount. This gives us the following:



48 Chapter 3 Fair Allocation of Resources with Uncertain Availability

W (A′) = u1

q1
∑
ω∈Ω

(a′1(ω) − k′ω)f(ω) + u2

q2
∑
ω∈Ω

(a′2(ω))f(ω) + u1

q1
∑
ω∈Ω

k′ωf(ω)
(∗)= (u1

q1
+ u2

q2
) ∑
ω∈Ω

(a′1(ω) − k′ω)f(ω) + u1

q1
∑
ω∈Ω

k′ωf(ω)
(∗∗)= (u1

q1
+ u2

q2
) R

2
− (u1

q1
+ u2

q2
) ∑ω∈Ωk

′
ωf(ω)
2

+ u1

q1
∑
ω∈Ω

k′ωf(ω)
= (u1

q1
+ u2

q2
) R

2
+ (u1

q1
− u2

q2
) ∑ω∈Ωk

′
ωf(ω)
2

(3.2)

In this we used the fact that the allocation to agent 2 is the allocation to agent 1 without the

indifferent amount in Equality (∗) and we used Equations (3.1) in Equality (∗∗) by substituting

∑
ω∈Ω

a′1(ω)f(ω) − ∑
ω∈Ω

k′ωf(ω) with R
2
− ∑
ω∈Ω

k′ωf(ω)

2
.

We rewrite the social welfare of A in the same way:

W (A) = (u1

q1
+ u2

q2
) R

2
+ (u1

q1
− u2

q2
) ∑ω∈Ωkωf(ω)

2
. (3.3)

From Equation (3.2) and (3.3) we can see that the difference in social welfare between A and A′

depends on the indifferent amount as present in the second term.

Considering the difference between Equation (3.2) and (3.3), we chose A′ to maximise the indif-

ferent amount which means ∑ω∈Ω k′ωf(ω) ≥ ∑ω∈Ω kωf(ω). Hence, it is easy to see that the social

welfare of A′ is at least that of A.

W (A′) −W (A) = (u1

q1
− u2

q2
) ∑ω∈Ωk

′
ωf(ω)
2

− (u1

q1
− u2

q2
) ∑ω∈Ωkωf(ω)

2
≥ 0

However, this contradicts our assumption that A′ does not maximise social welfare.

Expected Amount Using the indifferent amount framework (see Definition 3.54), we start

with the case of sorting events by ω ⋅ f(ω) which we call the expected amount ordering.

Definition 3.57 (Expected Amount Ordering). The expected amount ordering sorts the event

increasing with respect to ω ⋅ f(ω) for ω ∈ Ω.

Correspondingly, we define Algorithm 3 to refer to the variant of GreedyTake that processes

the events ordered by the expected amount ordering as GreedyTake-Exp.

As we introduced in the Section 3.5.5.2, it seems reasonable to assume that taking the prob-

abilities into consideration is better than just considering the amount of the events. However,

using this ordering can actually produce worse results. We show this by considering the instance

depicted in Figure 3.4. In the following theorem, we show that GreedyTake-Exp does not

allocate the only event in this instance with the possibility of an indifferent amount to agent 1.

Consequentially, the approximation is arbitrarily bad.
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Algorithm 3 GreedyTake-Exp
Variant of GreedyTake (Algorithm 1) that uses the expected amount ordering (see Defini-
tion 3.57).

Input: (ui, qi)i∈[2], Ω
1: Sort Ω increasing by ω ⋅ f(ω) for ω ∈ Ω
2: GreedyTake((ui, qi)i∈[2], Ω)

q2

q2 + ε

ω1
p

ω2,i
1−p
n

2

1

1

2

(A) The allocation produced by GreedyTake-Exp
(Algorithm 3). Agent 2 gets allocated the full satu-

ration amount in event ω1.

q2

q2 + ε

ω1
p

ω2,i
1−p
n

1 1

2

(B) An optimal allocation for this instance. In com-
parison to the algorithm, event ω1 is fully allocated

to the first agent.

Figure 3.4: The instance that shows that the expected amount ordering (GreedyTake-Exp)
cannot approximate the indifferent amount (see Theorem 3.58). The instance has n+ 1 events
ω1 and (ω2,i)i∈[n]. Event ω1 has a probability of p and an amount of q2 + ε. All events ω2,i

for i ∈ [n] have a probability of 1−p
n

and an amount of q2. 3.4A and 3.4B show the allocations
for the algorithm and the optimal solution, respectively. The wavy line indicates that the

allocation of the events (ω2,i)i∈[n] depends on the choice of q1, q2, p and ε.

Theorem 3.58. GreedyTake-Exp (see Algorithm 3) may not approximate the indifferent

amount.

Proof. In order to prove the statement, we construct an instance for any number of events

and any saturation amounts (subject to Assumption 3.29 and Assumption 3.31) and show that

Algorithm 3 cannot approximate the indifferent amount for this instance. In this proof we assume

for brevity that we can have several events of the same amount. The results are not affected by

this since the events can easily be replaced by a number of events with slightly different amounts.

Our instance has one event ω1 of size q2 + ε with 0 < ε < q2 and n events (ω2,i)i∈[n] of size q2.

We fix the events’ probabilities so that the expected amount of event ω1 is less than that of any

of the other events. In that case the algorithm will allocate q2 in ω1 to agent 2 which means

that agent 1’s indifferent allocation will be zero (see Figure 3.4A). In comparison, the optimal

allocation can allocate the whole of event ω1 to agent 1 which means agent 1 has a non zero

indifferent amount (see Figure 3.4B). For the majority of the proof we show that the allocations

exists as depicted and the claim follows straightforward from that.

In more detail, let event ω1 have a probability of p and all other events ω2,i with i ∈ [n] have a

probability of 1−p
n

. In order to have event ω1 the first event in the expected amount ordering it

must hold that p ⋅ ω1 < 1−p
n
⋅ ω2,i for all i ∈ [n]. With ω1 = q2 + ε and ω2,i = q2 for all i ∈ [n]. This
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implies that the value of p should satisfy

p = p ⋅ q2 + ε + q2
n

q2 + ε + q2
n

< 1 − p
n

⋅ q2 ⋅ 1

q2 + ε + q2
n

+ p ⋅ q2
n

q2 + ε + q2
n

= q2(n + 1) ⋅ q2 + n ⋅ ε (3.4)

The next step is to consider the allocations in both cases. While ω1 is allocated as described

and depicted in Figure 3.4, for the remaining events we have to allocate their total amount of

∑i∈[n] 1−p
n
⋅ q2 = (1 − p) ⋅ q2 so that agent 2 is not envious.

In the case of the algorithm this means we have to find x ∈ [0,1] such that the allocation to

agent 2 equals to the allocation of agent 1 (restricted to q2), i.e.

p ⋅ q2 + (1 − p) ⋅ x ⋅ q2 = p ⋅ ε + (1 − p) ⋅ (1 − x) ⋅ q2. (3.5)

Using this equation (in the second step) we get that the value of x can be determined as follows.

x = x ⋅ 2 ⋅ (1 − p) ⋅ q2 + p ⋅ q2 − p ⋅ q2

2 ⋅ (1 − p) ⋅ q2

(3.5)= p ⋅ ε + (1 − p) ⋅ (1 − x) ⋅ q2 + x ⋅ (1 − p) ⋅ q2 − p ⋅ q2

2 ⋅ (1 − p) ⋅ q2

= p ⋅ ε + (1 − p) ⋅ q2 − x ⋅ (1 − p) ⋅ q2 + x ⋅ (1 − p) ⋅ q2 − p ⋅ q2

2 ⋅ (1 − p) ⋅ q2

= p ⋅ (ε − q2) + (1 − p) ⋅ q2

2 ⋅ (1 − p) ⋅ q2
(3.6)

We are not interested in the precise value of x but that there exists a possible allocation. Since

x has to be at least 0 is has to hold that

p = p ⋅ 2 ⋅ q2 − ε − q2
p
+ q2

p

2 ⋅ q2 − ε = p ⋅ (q2 − ε) − q2 ⋅ (1 − p) + q2

2 ⋅ q2 − ε ≤ q2

2 ⋅ q2 − ε (3.7)

where the inequality is implied by −x ≤ 0 (see Equation (3.6)).

Simultaneously, since x can be at most 1, Equation (3.6) implies that p ⋅ (ε − q2) + (1 − p) ⋅ q2 ≤
2 ⋅ (1 − p) ⋅ q2 which means p has to satisfy

p = p ⋅ ε − 2 ⋅ q2 + 2 ⋅ q2 + 2 ⋅ q2
p
− 2 ⋅ q2

p

ε

= p ⋅ (ε − q2) + (1 − p) ⋅ q2 − 2 ⋅ (1 − p) ⋅ q2 + q2

ε

≤ 2 ⋅ (1 − p) ⋅ q2 − 2 ⋅ (1 − p) ⋅ q2 + q2

ε= q2

ε
. (3.8)

However, neither equation restricts our choice of p further. Considering that q2 is greater than

ε, Equation (3.7) has to be smaller than Equation (3.8) and Equation (3.7) is clearly bigger than

Equation (3.4) since n ≥ 1.
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Considering the optimal allocation we similarly have to determine y ∈ [0,1] such that agent 2 is

envy-free, i.e. (1 − p) ⋅ y ⋅ q2 = p ⋅ q2 + (1 − p) ⋅ (1 − y) ⋅ q2. This implies

y = y ⋅ 2 ⋅ (1 − p) ⋅ q2

2 ⋅ (1 − p) ⋅ q2

(∗)= p ⋅ q2 + (1 − p) ⋅ (1 − y) ⋅ q2 + (1 − p) ⋅ y ⋅ q2

2 ⋅ (1 − p) ⋅ q2

= p ⋅ q2 + (1 − p) ⋅ q2 − (1 − p) ⋅ y ⋅ q2 + (1 − p) ⋅ y ⋅ q2

2 ⋅ (1 − p) ⋅ q2

= 1

2 ⋅ (1 − p) , (3.9)

where we use the envy-freeness equality in Equality (∗). Again, we are only interested in the

fact that there is a possible allocation.

It is easy to see that the expression in Equation (3.9) is positive for p < 1. For the case of y ≤ 1

using −1 ≥ −2 ⋅ (1 − p) we have

p = 1 − 2 ⋅ (1 − p)
2

≤ 1 − 1

2
= 1

2
.

However, as in the previous case, this does not restrict our choice of p further since the denomi-

nator of Equation (3.4) is greater than 2 ⋅ q2 for n ≥ 1 which clearly means that the equation is

smaller than 1
2
.

Altogether, if we choose p to satisfy Equation (3.4) we have that the optimal allocation has an

indifferent amount of ε and the allocation of GreedyTake-Exp has no indifferent allocation.

This means that this algorithm cannot approximate the indifferent amount.

Actual Amount Unfortunately, as demonstrated in Theorem 3.58, taking the event’s prob-

abilities into consideration does not allow us to provide an approximation ratio in general. The

proof relies on the fact that the sorting by expected amount might place events with indiffer-

ent amounts before events without indifferent amounts. This characteristic of sorting by the

expected amount cannot occur if we simply order the events by their amount. Therefore, we

conjecture that GreedyTake-Amt which sort the events by their amount ω (see Algorithm 2

and Definition 3.37) can approximate the optimal solution. While we do not provide an approx-

imation ratio, we prove that the structural difference between the algorithm allocation and the

optimal allocation is limited.

In particular, we show that, in the same way that the split event of the algorithm partitions

the events into two sets, there is an optimal allocation that has two sets of events and a split

event. We then consider those events that are classified differently by the optimal solution and

the algorithm. For these event sets we show that switching events simply between these two

sets cannot change the indifferent amount. Which indicates that the approximation ratio is

dependent on the split event and how far it allows to shift allocation.

In more detail, we begin with the partitioning of the events for optimal allocations and the algo-

rithm. Starting with GreedyTake-Amt, it separates the events into events smaller and bigger

than the split event j∗ (see Definition 3.35) For the smaller events the resource is preferentially
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given to agent 2. For the bigger events the resource is preferentially given to agent 1. Formally,

we call this an algorithm induced partition of Ω.

Definition 3.59 ((Algorithm) Induced Ω Partition). Let Aamt be an allocation obtained by

running GreedyTake-Amt and j∗ the respective split event. Then Ω1 ∶= {ω∣ω < ωj∗ , ω ∈ Ω}
and Ω2 ∶= {ω∣ω > ωj∗ , ω ∈ Ω}.

Similarly, there is an optimal allocation with two sets of events differentiated by if the events

are preferentially given to the first or the second agent. We show this in the following lemma.

Lemma 3.60. There is an optimal allocation Aopt with Ωopt1 ∶= {ω∣aopt2 (ω) = q2 ∨ aopt2 (ω) = ω},

Ωopt2 ∶= {ω∣aopt1 (ω) = q1∨aopt1 (ω) = ω} and at most one event ωj∗opt with aopt1 (ωj∗opt) < min{q2, ωj∗opt}
and aopt2 (ωj∗opt) < min{q2, ωj∗opt}.

Proof. The main argument is that if there is more than one event ω′ ∈ Ω (with aopt1 (ω′) <
min{q2, ω

′} and aopt2 (ω′) < min{q2, ω
′}), then we can shift allocation to get an allocation of the

same social welfare with one less of such events.

Let us assume that there are at least two such events ω′, ω′′ ∈ Ω. We have two options: either

increase or decrease agent 1’s allocation in the first event. The allocation of agent 2 is shifted

accordingly taking the probabilities into consideration. Considering both options and continuing

to shift means that at some point either ω′ or ω′′ has to satisfy the conditions of Ωopt1 or Ωopt2 .

Hence, we have removed at least one of the events not satisfying Ωopt1 or Ωopt2 . Continuing this

procedure means that at most one event, denoted by ωj∗opt , can remain.

As a reminder, we are interested in the events that differ between the allocation of Definition 3.59

and Lemma 3.60. We denote those events that differ between Ω1 and Ωopt1 as well as Ω2 and

Ωopt2 as flip events. The split event of the algorithm ωj∗ may be a flip event in either Ωopt1 or

Ωopt2 .

Definition 3.61 (Flip Sets). For the events that are in Ω1 in the algorithm’s allocation Aamt

and in Ωopt2 in the optimal allocation Aopt we define the flip set ΩF1 :

ΩF1 ∶= {ω∣ω ∈ Ω1 ∪ {ωj∗}, ω ∈ Ωopt2 }.
Similarly, for the events that are in Ω2 in the algorithm’s allocation Aamt and in Ωopt1 in the

optimal allocation Aopt we define the flip set ΩF2 :

ΩF2 ∶= {ω∣ω ∈ Ω2 ∪ {ωj∗}, ω ∈ Ωopt1 }.
Informally, these two sets are the events where, in comparison to the algorithm’s allocation, the

optimal allocation gains indifferent amount (events in ΩF1 ) and the events where the optimal

allocation loses indifferent amount (events in ΩF2 ). We show in Lemma 3.65 that these flips are

limited in the sense that without considering flip events, the events in ΩF2 are not sufficient as

compensation to maintain envy-freeness for the events in ΩF1 . Before we prove these results, we

provide a technical lemma and two observations on the events in the flip sets to aid the proof.

We start with considering the size of the events involved in the flip sets. Since we are maximising

the indifferent amount there is no benefit for allocating an event that is smaller than the second
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agent’s saturation amount q2 to agent 1 when it was given to agent 2 in the algorithm’s allocation.

Hence, we can observe that events which can increase the optimal allocations value over the

algorithm’s allocation have to be bigger than the second agent’s saturation amount q2.

Observation 3.62. For all events ω ∈ ΩF1 it holds that they are bigger than the second agent’s

saturation amount, i.e. ω > q2.

Additionally, events cannot be too big if they have an impact on the flips. If events are bigger

than both saturation amounts, their allocation cannot be changed without reducing the overall

allocated amount. Hence, the allocation in these events is always the same.

Observation 3.63. All events in the flip sets ω ∈ ΩF1 ∪ΩF2 have to be smaller than the sum of

saturation amounts, i.e. ω < q1 + q2.

Lastly, before the proof of Lemma 3.65, we provide a technical lemma that gives us the option

to combine a set of events into a pseudo event which represents the sum of the events in the set.

This allows us to be more succinct in Lemma 3.65.

Lemma 3.64. For a subset of events Ω̂ ⊂ Ω which satisfy ai(ω) = min{ω, qi} and aj(ω) =
min{max{ω − qi,0}, qj} with i ∈ [2] and j ∈ [2]/{i} for all ω ∈ Ω̂, there is a pseudo event ω̂ with

amount and probability

ω̂ =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
ω∈Ω̂

ωf(ω)

∑
ω∈Ω̂

f(ω) if ω ≤ qi ∀ω ∈ Ω̂

qi
⎛⎝
∑
ω∈Ω̂

min{max{ω−qi,0},qj}f(ω)

∑
ω∈Ω̂

min{ω,qi}f(ω) + 1
⎞⎠ else

and

f(ω̂) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑
ω∈Ω̂

f(ω) if ω ≤ qi ∀ω ∈ Ω̂

∑
ω∈Ω̂

min{ω,qi}f(ω)

qi
else

,

respectively, that can represent the events of the subset. The allocation to agent i and agent j in

the subset of events is equivalent to the allocation

ai(ω̂) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω̂ if ω ≤ qi ∀ω ∈ Ω̂

qi else
and aj(ω̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ω ≤ qi ∀ω ∈ Ω̂

ω̂ − qi else
,

in the pseudo event. respectively.

Proof. We consider the two cases of ω ≤ qi for all ω ∈ Ω̂ and ω > qi for at least one ω ∈ Ω̂

individually. The first case is that all event are smaller than the saturation amount of agent i,

i.e. ω ≤ qi for all ω ∈ Ω̂.

It is straightforward to see that agent i has the same expected allocation in the events in the

subset and in the pseudo event:

ai(ω̂) = ω̂f(ω̂) =
∑
ω∈Ω̂

ωf(ω)
∑
ω∈Ω̂

f(ω) ⋅ ∑
ω∈Ω̂

f(ω) = ∑
ω∈Ω̂

ωf(ω).
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The other agent has no allocation which means there is nothing to show.

The other case is that at least one ω ∈ Ω̂ is bigger than agent i’s saturation amount, i.e. ω > qi.
In this case it is easy to see that ω̂ is greater than qi. Hence, we show that the expected

amount and the expected allocated amount of the pseudo events is the same as the expected

amount and expected allocated amount of the sum of events in the subset of events, respectively.

Multiplying the pseudo event’s amount with the pseudo event’s probability yields the equivalence

to the expected amount of all events.

ω̂f(ω̂) = qi ∑ω∈Ω̂ min{max{ω − qi,0}, qj}f(ω) + qi ∑
ω∈Ω̂

min{ω, qi}f(ω)
∑
ω∈Ω̂

min{ω, qi}f(ω)
∑
ω∈Ω̂

min{ω, qi}f(ω)
qi

= ∑
ω∈Ω̂

min{max{ω − qi,0}, qj}f(ω) + ∑
ω∈Ω̂

min{ω, qi}f(ω)
= ∑
ω∈Ω̂

min{ω, qi + qj}f(ω).

Showing the equivalence in allocation we start with agent j.

aj(ω̂)f(ω̂)
= (ω̂ − qi)f(ω̂)
= ⎛⎜⎜⎝

qi ∑
ω∈Ω̂

min{max{ω − qi,0}, qj}f(ω) + qi ∑
ω∈Ω̂

min{ω, qi}f(ω)
∑
ω∈Ω̂

min{ω, qi}f(ω) − qi⎞⎟⎟⎠
∑
ω∈Ω̂

min{ω, qi}f(ω)
qi

= ∑
ω∈Ω̂

min{max{ω − qi,0}, qj}f(ω) + ∑
ω∈Ω̂

min{ω, qi}f(ω) − ∑
ω∈Ω̂

min{ω, qi}f(ω)
= ∑
ω∈Ω̂

min{max{ω − qi,0}, qj}f(ω)

Similarly, the equivalence in allocation holds for agent i.

ai(ω̂)f(ω̂) = qif(ω̂) = qi
∑
ω∈Ω̂

min{ω, qi}f(ω)
qi

= ∑
ω∈Ω̂

min{ω, qi}f(ω)
Hence, for both cases the expected amount and allocation is the same.

Finally, we prove the limitation on the extent of exchanges via the flip sets which lessens the

quantity of possible changes between the algorithm’s allocation and the optimal allocation.

Lemma 3.65. In order to increase ex-ante social welfare while maintaining ex-ante envy-freeness

the flip sets cannot simply be subsets of Ω1 and Ω2.

Proof. We prove this by contradiction and therefore assume the opposite which means that there

are flip sets ΩF1 ⊂ Ω1 and ΩF2 ⊂ Ω2 which can be flipped while maintaining envy-freeness and

increasing social welfare. For succinctness, we use Lemma 3.64 to transform this setting into

flipping two pseudo events. We refer to the pseudo events and their probabilities as ω1 with

f1 = f(ω1) for the events in ΩF1 and ω2 with f2 = f(ω2) for the events in ΩF2 .
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We show the result by considering the just envy-freeness of agent 2 after the flip and the change

in the indifferent amount and show that the combination of the two cannot be greater than zero.

We start with considering just envy-freeness of agent 2 before and after a flip. The allocation

of the algorithm is just envy-free (see Algorithm 1 and Section 3.5.3) and by Lemma 3.34 the

optimal allocation is just envy-free. Moreover, by Observation 3.62 all events are bigger than the

second agent’s saturation amount q2 and by Observation 3.63 smaller than the sum of saturation

amounts q1 + q2. Hence, the changes in the flip events have to maintain the just envy-freeness

which means the following equation has to hold.

− q2f1 +max{ω1 − q1,0}f1 + (q2 −max{ω2 − q1,0})f2

= −q2f2 +min{ω2 − q2, q2}f2 + (q2 −min{ω1 − q2, q2})f1

In detail, the changes are as follows. Flipping ω1 means agent 2 might retain some allocation if ω1

is big enough in comparison to agent 1’s saturation amount q1 but otherwise loses its allocation,

i.e. agent 2 looses max{ω1 − q1,0} − q2. In comparison, agent 1 from the perspective of agent 2

gains the difference of the maximal perceivable amount (saturation amount q2) and what agent

1 had allocated before, i.e. q2 − min{ω1 − q2, q2}. On the other hand, flipping ω2 means agent

2 gains allocation minus their allocation before if the event was big in comparison to agent 2’s

allocation, i.e. q2 −max{ω2 − q1,0}. In comparison, agent 1 loses the amount allocated to agent

2 but retains as much as possible from the rest, i.e. min{ω2 − q2, q2} − q2.

We can rearrange this equation to get a dependency between the probabilities of the two pseudo

events f1 and f2.

− q2f1 +max{ω1 − q1,0}f1 + (q2 −max{ω2 − q1,0})f2

= −q2f2 +min{ω2 − q2, q2}f2 + (q2 −min{ω1 − q2, q2})f1

⇔ (2q2 −min{ω2 − q2, q2} −max{ω2 − q1,0})f2

= (2q2 −min{ω1 − q2, q2} −max{ω1 − q1,0})f1

⇔ f1 = 2q2 −min{ω2 − q2, q2} −max{ω2 − q1,0}
2q2 −min{ω1 − q2, q2} −max{ω1 − q1,0}f2 (3.10)

The denominator has to be bigger than zero since the other two terms cannot add up to 2q2. The

term min{ω2 − q2, q2} is at most q2. Moreover, if max{ω1 − q1,0} would be bigger than q2 that

would mean the first event ω1 has an amount of at least the sum of saturation amounts. Hence,

the second event ω2 would have to be bigger than the sum of saturation amount. However,

according to Observation 3.63 that would not work since such events cannot be flipped.

Following our observation on the probabilities from the envy-freeness, we consider how much

the indifferent amount would change from the flips. Flipping an event in ΩF2 means that agent

1 loses (min{ω2, q1} − q2)f2 indifferent amount and retains max{ω2 − 2q2,0}f2 in the case that

event ω2 is big, i.e. ω2 > 2q2. In comparison, flipping an event in ΩF1 means that agent 1

gains (min{ω1, q1} − q2)f1 indifferent amount but might have had already max{ω1 − 2q2,0}f1

in the case that event ω1 is big, i.e. ω1 > 2q2. Hence, the change in indifferent amount is−(min{ω2, q1} − q2)f2 +max{ω2 − 2q2,0}f2 +min{ω1 − q2, q2}f1 −max{ω1 − 2q2,0}f1.
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Applying Equation (3.10) and rearranging the equation yields the following equation for the

change in indifferent amount.

− (min{ω2, q1} − q2)f2 +max{ω2 − 2q2,0}f2

+ (min{ω1, q1} − q2)f1 −max{ω1 − 2q2,0}f1

= f2(−min{ω2, q1} + q2 +max{ω2 − 2q2,0})
+ (min{ω1, q1} − q2 −max{ω1 − 2q2,0})2q2 −min{ω2 − q2, q2} −max{ω2 − q1,0}

2q2 −min{ω1 − q2, q2} −max{ω1 − q1,0}f2

= f2(((−min{ω2, q1} + q2 +max{ω2 − 2q2,0})(2q2 −min{ω1 − q2, q2} −max{ω1 − q1,0})
+ (min{ω1, q1} − q2 −max{ω1 − 2q2,0})(2q2 −min{ω2 − q2, q2} −max{ω2 − q1,0}))
⋅ (2q2 −min{ω1 − q2, q2} −max{ω1 − q1,0})−1) (3.11)

We use Equation (3.11) to show that no improvement is possible by showing that the equation

is at most zero. The value depends on the sizes of the events and saturation amounts expressed

in the minimum and maximum functions. Which means the value of the equation is determined

by the following four inequalities:

(a) ω1 − q2 < q2

(b) ω2 − q2 < q2

(c) ω2 − q1 < 0

(d) ω1 − q1 < 0

Every inequality can be either true or false resulting in one or the other value of a minimum or

maximum function. In total there are 16 combinations based on if (a) - (d) are true or false.

However, not all combinations are possible. We observe 4 implications among those inequalities

from the fact that the second event is bigger than the first (ω2 > ω1) which allow us to determine

which are the possible combinations.

� Not (a) implies the strict version of not (b): ω2 − q2 > ω1 − q2 ≥ q2

� (b) implies (a): ω1 − q2 < ω2 − q2 < q2

� (c) implies (d): ω1 − q1 < ω2 − q1 < 0

� Not (d) implies the strict version of not (c): ω2 − q1 > ω1 − q1 ≥ 0

Considering all 16 combinations with these four implications gives us the following 9 combinations

where (⋅) means the inequality is true and ¬(⋅) means the inequality is false.

1. (a)(b)(c)(d)
2. (a)(b)¬(c)(d)
3. (a)(b)¬(c)¬(d)
4. (a)¬(b)(c)(d)

5. (a)¬(b)¬(c)¬(d)
6. (a)¬(b)¬(c)(d)
7. ¬(a)¬(b)(c)(d)
8. ¬(a)¬(b)¬(c)¬(d)
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9. ¬(a)¬(b)¬(c)(d)

We consider the nine cases one after the other. Most of the cases only require to determine the

value of the minimum and maximum functions and rearrange Equation (3.11). We focus on the

following term of the equation which determines if the equation is negative, positive or zero.

G ∶= (−min{ω2, q1} + q2 +max{ω2 − 2q2,0})(2q2 −min{ω1 − q2, q2} −max{ω1 − q1,0})
+ (min{ω1, q1} − q2 −max{ω1 − 2q2,0})(2q2 −min{ω2 − q2, q2} −max{ω2 − q1,0})

Case 1.

The first case is (a)(b)(c)(d) which means the inequalities are as follows: ω1−q2 < q2, ω2−q2 < q2,

ω2 − q1 < 0 and ω1 − q1 < 0. Applying this to G yields:

G = (−ω2 + q2 + 0)(2q2 − ω1 + q2 − 0) + (ω1 − q2 − 0)(2q2 − ω2 + q2 − 0)
= (−ω2 + q2)(3q2 − ω1) + (ω1 − q2)(3q2 − ω2)
= −3ω2q2 + ω1ω2 + 3q2

2 − ω1q2 + 3ω1q2 − ω1ω2 − 3q2
2 + ω2q2

= −3ω2q2 − ω1q2 + 3ω1q2 + ω2q2

= 2q2(−ω2 + ω1).
The last expression clearly indicates that G has to be negative since ω2 is bigger than ω1.

Case 2.

The second case is (a)(b)¬(c)(d) which means the inequalities are as follows: ω1 − q2 < q2,

ω2 − q2 < q2, ω2 − q1 ≥ 0 and ω1 − q1 < 0. Applying this to G yields:

G = (−1 + q2 + 0)(2q2 − ω1 + q2 − 0) + (ω1 − q2 + 0)(2q2 − ω2 + q2 − ω2 + q1)
= (−q1 + q2)(3q2 − ω1) + (ω1 − q2)(3q2 + q1 − 2ω2)
= −3q1q2 + ω1q1 + 3q2

2 − ω1q2

+ 3ω1q2 + ω1q1 − 2ω1ω2 − 3q2
2 − q1q2 + 2ω2q2

= −4q1q2 + 2ω1q1 + 2ω1q2 − 2ω1ω2 + 2ω2q2

= 2(q2(ω1 + ω2 − 2q1) + ω1(q1 − ω2))
Since (d) implies that ω1 is smaller than q1 we can upper bound this further.

G < 2(q2(q1 + ω2 − 2q1) + ω1(q1 − ω2))
= 2((ω2 − q1)(q2 − ω1))

This has to be negative since (c) is false which means ω2 has to be at least of size q1 and ω1 is

bigger than q2 (see Observation 3.62).
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Case 3.

The third case is (a)(b)¬(c)¬(d) which means the inequalities are as follows: ω1 − q2 < q2,

ω2 − q2 < q2, ω2 − q1 > 0 and ω1 − q1 ≥ 0. Applying this to G yields:

G = (−q1 + q2 + 0)(2q2 − ω1 + q2 − ω1 + q1) + (q1 − q2 − 0)(2q2 − ω2 + q2 − ω2 + q1)
= (−q1 + q2)(3q2 + q1 − 2ω1) + (q1 − q2)(3q2 + q1 − 2ω2)
= −3q1q2 − q2

1 + 2ω1q1 + 3q2
2 + q1q2 − 2ω1q2

+ 3q1q2 + q2
1 − 2ω2q1 − 3q2

2 − q1q2 + 2ω2q2

= 2(q1(ω1 − ω2) + q2(ω2 − ω1))
= 2((ω1 − ω2)(q1 − q2))

The expression has to be negative since one of the factors is negative and the other is positive.

Since ω1 is less than ω2 the left factor is negative, i.e. ω1 −ω2 < 0, and since q1 is bigger than q2

the second factor has to be positive, i.e. q1 − q2 > 0.

Case 4.

The fourth case is (a)¬(b)(c)(d) which means the inequalities are as follows: ω1 − q2 < q2,

ω2 − q2 ≥ q2, ω2 − q1 < 0 and ω1 − q1 < 0. Applying this to G yields:

G = (−ω2 + q2 + ω2 − 2q2)(2q2 − ω1 + q2 − 0) + (ω1 − q2 + 0)(2q2 − q2)
= −q2(3q2 − ω1) + (ω1 − q2)q2

= q2(2ω1 − 4q2)
= 2q2(ω1 − 2q2)

The expression has to be negative since by inequality (a) we have that ω1 is less than 2q2.

Case 5.

The fifth case is (a)¬(b)¬(c)¬(d) which means the inequalities are as follows: ω1 − q2 < q2,

ω2 − q2 > q2, ω2 − q1 > 0 and ω1 − q1 ≥ 0. Applying this to G yields:

G = (−q1 + q2 + ω2 − 2q2)(2q2 − ω1 + q2 − ω1 + q1) + (q1 − q2 − 0)(2q2 − q2 − ω2 + q1)
= (ω2 − q1 − q2)(3q2 − 2ω1 + q1) + (q1 − q2)(q1 + q2 − ω2)
= (q1 + q2 − ω2)(q1 − q2 − 3q2 + 2ω1 − q1)
= 2(q1 + q2 − ω2)(ω1 − 2q2)

The expression has to be negative since one of the factors is negative and the other is positive.

The left factor is positive since ω2 is less than the sum of saturation amounts, i.e. q1+q2−ω2 > 0.

In comparison, the second factor has to be negative since by inequality (a) we have that ω1 is

less than twice the second agent’s saturation amount, i.e. ω1 − 2q2 < 0.
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Case 6.

The sixth case is (a)¬(b)¬(c)(d) which means the inequalities are as follows: ω1 − q2 < q2,

ω2 − q2 ≥ q2, ω2 − q1 ≥ 0 and ω1 − q1 < 0. Applying this to G yields:

G = (−q1 + q2 + ω2 − 2q2)(2q2 − ω1 + q2) + (ω1 − q2 − 0)(2q2 − q2 − ω2 + q1)
= (ω2 − q1 − q2)(3q2 − ω1) + (ω1 − q2)(q1 + q2 − ω2)
= (q1 + q2 − ω2)(−3q2 + ω1 + ω1 − q2)
= 2(q1 + q2 − ω2)(ω1 − 2q2)

This expression is the same as the one of case 5 and the same relevant inequalities hold which

means this expression is negative as well.

Case 7.

The seventh case is ¬(a)¬(b)(c)(d) which means the inequalities are as follows: ω1 − q2 ≥ q2,

ω2 − q2 ≥ q2, ω2 − q1 < 0 and ω1 − q1 < 0. Applying this to G yields:

G = (−ω1 + q2 + ω2 − 2q2)(2q2 − q2 − 0) + (ω1 − q2 − ω1 + 2q2)(2q2 − q2 − 0)
= −q2

2 + q2
2

Clearly, this case allows no change in the indifferent amount.

Case 8.

The eighth case is ¬(a)¬(b)¬(c)¬(d) which means the inequalities are as follows: ω1 − q2 ≥ q2,

ω2 − q2 ≥ q2, ω2 − q1 > 0 and ω1 − q1 ≥ 0. Applying this to G yields:

G = (−q1 + q2 + ω2 − 2q2)(2q2 − q2 − ω1 + q1) + (q1 − q2 − ω1 + 2q2)(2q2 − q2 − ω2 + q1)
= (ω2 − q1 − q2)(q1 + q2 − ω1) + (q1 + q2 − ω1)(q1 + q2 − ω2)
= (ω2 − q1 − q2)(q1 + q2 − ω1 − q1 − q2 + ω2)
= (ω2 − q1 − q2)(ω2 − ω1)

The expression has to be negative since one of the factors is negative and the other is positive.

The first term has to be negative since by Observation 3.63 the amount of ω2 has to be less than

the sum of saturation amounts. The second term has to be positive since ω2 is bigger than ω1.

Case 9.
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The ninth case is ¬(a)¬(b)¬(c)(d) which means the inequalities are as follows: ω1 − q2 > q2,

ω2 − q2 ≥ q2, ω2 − q1 ≥ 0 and ω1 − q1 < 0. Applying this to G yields:

G = (−q1 + q2 + ω2 − 2q2)(2q2 − q2 − 0) + (ω1 − q2 − ω1 + 2q2)(2q2 − q2 − ω2 + q1)
= (ω2 − q1 − q2)q2 + q2(q1 + q2 − ω2)
= q2(ω2 − ω2 − q1 + q1 − q2 + q2)

Like case 7, this case allows no change in the indifferent amount.

Altogether, in seven cases G is negative and in two cases G is zero. This clearly shows that

flipping just events in Ω1 and Ω2 at best does not affect the indifferent amount and at worst

decreases it, which contradicts our assumption.

Lemma 3.65 indicates that the difference in allocation hinges on the allocation in the split event

which is determined by the structure of the instance. Based on this we conjecture that the

approximation ratio of GreedyTake-AMT is generally better than that of GreedyTake-

EXP.

3.5.6 An Optimal Algorithm

Following on from the theoretical considerations of the algorithm variants in the previous section,

we first devise the integer programming problem that we use to calculate the optimal allocation

in order to compare the two algorithm variants empirically in Section 3.5.7. In general, it is

straightforward to represent the problem in this work as an optimisation problem. However, de-

pending on the utility functions, the problem may be non-linear and non-concave. Nevertheless,

in the setting of linear satiable utility functions we can rewrite the expected utility functions and

envy-freeness constraint with minima functions. In turn, these can be transformed into a series

of constraints to reformulate the optimisation problem into an integer programming problem to

calculate the optimal envy-free solution.

In more detail, the initial optimisation problem with decision variables xij , indicating the allo-

cation of agent i ∈ [n] in event j ∈ [m], can be formulated as shown in Optimisation Problem 2.

Optimisation Problem 2

max ∑
i∈[n]

ui
qi
⋅ ∑
j∈[m]

Pr(ωj) ⋅min{xij , qi} (3.12)

s.t. ∑
i∈[n]

xij ≤ ωj ∀j ∈ [m] (3.13)

∑
j∈[m]

Pr(ωj) (min{xij , qi} −min{xkj , qi}) f(ω) ≥ 0 ∀i ∈ [n], k ∈ [n] (3.14)

xij ≥ 0 ∀i ∈ [n], j ∈ [m] (3.15)

Here, the optimisation function (Equation (3.12)) is the social welfare rewritten using Obser-

vation 3.24. Constraint (3.13) limits the allocation xij for agent i ∈ [n] in event j ∈ [m] to
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the available amount. Constraint (3.14) is the envy-freeness constraint rewritten using Observa-

tion 3.25. Finally, Constraint (3.15) ensures that only positive allocations are attained.

In this formulation, neither the optimisation function nor the envy-freeness constraint appear

linear. However, in the following series of replacements we replace those with linear constraints

and integer variables.

Firstly, by Observation 3.28, allocating more to an agent than their saturation amount does not

increase the value. Furthermore, it can only negatively affect envy-freeness since the agents’ util-

ities do not increase but another agent might be envious of the increased amount. Consequently,

we can replace one of the minimum functions in the optimisation problem.

Lemma 3.66. The expression min{xij , qi} can be replaced with xij and constraint xij ≤ qi for

all i ∈ [n] and j ∈ [m].
The other minimum in the envy-freeness equation, i.e. min{xkj , qi}, cannot be replaced that

easily. Hence, we apply linearisation techniques and replace the minimum function with three

more types of variables and a number of constraints. An overview of linearisation techniques

can be found in the work by Liberti [53].

In more detail, firstly, we substitute the minimum function min{xkj , qi} with a variable xikj .

Secondly, we use a second integer variable yikj to ensure that the substitution is valid.

Lemma 3.67. The equation xikj = min{xkj , qi} for all i, k ∈ [n], j ∈ [m] holds for constraints

qi ⋅ yikj ≤ xikj ≤ qi and xkj ⋅ (1 − yikj) ≤ xikj ≤ xkj with yikj ∈ {0,1}.

The general idea behind the technique is as follows: for the equation to hold, the variable xikj
has to be smaller than both values in the minimum; yet at the same time it also has to be greater

than one of the two, i.e. be exactly of that value. By setting yikj to one or zero we can tighten

one or the other constraint to be of the minimal value. Considering the four cases of the two

possible values of the minimum and the two possible values of yikj , one can see that yikj can only

be chosen so that the equation xikj = min{xkj , qi} holds.

However, the constraint xkj ⋅ (1 − yikj) ≤ xikj still contains a non-linear expression in the form

of a product. We replace that product xkj ⋅ yikj with a new variable zikj which yields constraint

xikj ≥ xkj − zikj and further constraints.

Lemma 3.68. The equation zikj = xkj ⋅ yikj for all i, k ∈ [n], j ∈ [m] holds for constraints 0 ≤
zikj ≤ xkj and xkj + yikj − 1 ≤ zikj ≤ yikj.
The main observations for this linearisation are that xkj ∈ [0,1] and that yikj is binary. This

implies that zikj has to be smaller than both factors. Furthermore, the constraint xkj + yikj − 1 is

either xkj or non-positive and therefore assures that the result holds.

Finally, replacing the minimum functions with the variables and constraints from the Lem-

mata 3.66, 3.67 and 3.68 yields an integer linear programming problem.

We can verify this by observing that all of the resulting constraints are linear and we have

continuous variables xkj , x
i
kj and zikj as well as the binary variables yikj . The full linear integer

problem can easily be obtained by applying the linearisations to Optimisation Problem 2. For

completeness, the linear integer problem version can be found in the appendix (see Section A.4)
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3.5.7 Experimental Comparison of GreedyTake Variants

Theorem 3.58 showed that, counter-intuitively, we have no social welfare guarantee in general

when sorting by the expected amount, whereas Lemmata 3.60 and 3.65 show that sorting by

the amount produces allocations that are structurally similar to the optimal allocation. That

raises the questions whether the instance of Theorem 3.58 is a degenerate special case and if the

amount ordering is actually better than the expected amount ordering in general. We addressed

these questions empirically with a number of different experiments with different amounts and

probabilities of the events. These experiments show that, in most cases, GreedyTake-Amt

achieves better results. However, GreedyTake-Exp performs almost as good and, as we show

below, in some cases even better.

3.5.7.1 Setting

For every experiment we generate the events, the saturation amounts and the utilities. In brief,

we set the events’ amounts and probabilities as well as the saturation amounts systematically

and generate the utilities randomly. We then repeat each setting 50 times to achieve statisti-

cal significance. Considering these parts in turn we start with the events generation. Instead

of generating events randomly, we generate amounts and probabilities individually in order to

systematically cover different cases. For every instance we choose a combination of an amount

generation function and a probability mass function (PMF) to generate the amount and proba-

bility of all events. More precisely, for an event i ∈ [1,m], where m is the number of events, we

use the value of the amount and probability function at i for the amount and probability, respec-

tively. For generating the amounts we use three different types of functions: linear, root, and

one-term polynomial. For the probability, we use the PMF of the Beta-binomial distribution.

An overview of the used function can be found in Table 3.1.

In more detail, for the amount generation we considered two different approaches: one where all

events are almost equal in size and one where the amount increases from very small to maximal

amount. The former case is represented by an almost horizontal function where ωi = 0.001 ⋅ i + b
with some b ∈ [0,1). We refer to this as near horizontal. For the latter case we consider a

linear mapping as well as the root and the exponentiation of the events’ index (see Figure 3.5B).

The linear function is a simple base case (see solid line Figure 3.5B). The root (see dotted line

Figure 3.5B) represents the situation where we have a relatively small number of smaller events

and more larger events. Finally, the exponentiation (see dashed line Figure 3.5B), denoted as

power, represents the situation where we have a larger number of smaller events and a few bigger

events. The power and the root function represent situations where we have a lot or only a few

of events with shortfall, respectively.

For the probability generation, we use the PMF of the Beta-binomial distribution. This distri-

bution gives us the option to adjust the centre of the probability to our needs. We use this to

cover three important situations (see Figure 3.5A): a high probability on the events with smaller

amounts (solid line), a high probability on the events with bigger amounts (dotted line) and a

higher probability on the events in the middle (dashed line).

With regards to the saturation amounts and utility of the agents, for every combination of

amount and probability, we set the saturation amount of the first agent to 0.9 and for the second
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agent we choose a saturation amount of 0.1, 0.3, 0.5 and 0.7. The maximal values of the agents

are randomly chosen according to Assumption 3.29. Finally, we run experiments for 2 to 15

events. Overall this results in 1176 different instances which, as mentioned, are run 50 times

giving us a total of 58800 experiments. We use 50 runs since statistical measures are already

stable, as we have determined by performing larger runs of up to 200.

Events

Probability

(A) Plot of the functions to generate the probabilities
of the events: beta decrease (solid line), beta Gauß

(dashed line) and beta increase (dotted line).

Events

Amount

(B) Plot of the functions to generate the amount of the
events: linear (solid line), power (dashed line) and root

(dotted line).

Figure 3.5: Plots of the functions to generate the events shown in Table 3.1, except the near
horizontal linear amount function.

Events Part Name Function Parameter values

Amount

Linear ωi = 1
m
⋅ i -

Power ωi = ( i
m
)10 -

Root ωi = ( i
m
) 1

10 -
Near Horizontal b ωi = 0.001 ⋅ i + b -

Probability
Beta decrease

Pr(ωi) = (m
i
)B(i+α,m−i+β)

B(α,β)

α = 1, β = 3.5
Beta Gauß α = 10, β = 10

Beta increase α = 3.5, β = 1

Table 3.1: Overview of the functions used to generate the events’ amount and probability.

3.5.7.2 Experimental Results

We measure the performance of the two variants and, for comparison, of equal share (ES) in

relation to the maximal achievable expected social welfare, as determined by our linear integer

problem (see Section 3.5.6). Hence, the social welfare is presented in relation to the optimal

value which is set to 1. For brevity, we refer to GreedyTake-Amt with AMT (see Algorithm 2

in Section 3.5.4), to GreedyTake-Exp with EXP (see Algorithm 3 in Section 3.5.5.2) and to

equal share with ES in this Section.

Overall, both variants of the algorithm perform well (see Table 3.2). The two variants, AMT and

EXP, achieve an average social welfare of 0.998 (standard deviation 0.005) and 0.995 (standard

deviation 0.011), respectively. This is in comparison to ES with a lower average of 0.889 and a

much higher standard deviation of 0.147. Looking at individual experiments, the two algorithms

are never worse than ES. Moreover, at least one of the two variants is better than ES in 85%

of experiments. Additionally, the two variants achieve maximal social welfare frequently: EXP

achieves maximal social welfare in 48.3% of experiments whereas AMT performs better and

achieves this in 57% of experiments. In comparison, ES achieves maximal social welfare in only

8.9% of experiments.



64 Chapter 3 Fair Allocation of Resources with Uncertain Availability

(A) Box plots for AMT, EXP and ES for the homoge-
neous experiments.

(B) Box plots for only AMT and EXP for the homo-
geneous experiments.

(C) Box plots for AMT, EXP and ES for the diverse
experiments.

(D) Box plots for only AMT and EXP for the diverse
experiments.

Figure 3.6: Box plots for the performance of equal share (ES), GreedyTake-AMT (AMT)
and GreedyTake-AMT (EXP) in the homogeneous and diverse experiments.

In order to highlight the performance difference between AMT and EXP, we have divided our

experiments into two sets. The first set, labelled diverse, contains all instances where we use

the linear, the root and the power function for the amount. The second set, labelled homoge-

neous, contains all instances where we use the near horizontal linear function. Considering the

performance of the algorithms in these sets, more diversity means that the two variants and ES

achieve maximal social welfare less often with AMT in 53.37%, EXP in 37.7% and ES in 4.17%

of experiments. In contrast to the homogeneous case where they achieve maximal social welfare

in 59.67% for AMT, 56.4% for EXP and 12.5% for ES of experiments. Otherwise, on average,

the two variants are still close to maximal social welfare (see Table 3.2). Moreover, the variants

perform similarly in comparison to ES (see Table 3.3). This includes having a much smaller

dispersion than ES (Figures 3.6A and 3.6C).

Comparing the two algorithms to each other (see also Table 3.3), EXP performs better in the

homogeneous set than in the diverse set. In the diverse set, AMT performs better than EXP in a

third of the experiments and the opposite only holds for a small number of experiments (3.97%).

Additionally, the dispersion is visibly bigger (see Figure 3.6B) However, the gap is smaller in the
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ES AMT EXP

Set min Mean SD min Mean SD min Mean SD
Overall 0.581 0.889 0.147 0.961 0.998 0.005 0.931 0.995 0.011
Diverse 0.581 0.897 0.138 0.969 0.999 0.003 0.969 0.994 0.013

Homogeneous 0.599 0.882 0.152 0.961 0.997 0.006 0.96 0.996 0.008

Table 3.2: Overview of the minimum (min), mean and standard deviation (SD) of percentage
of social welfare of equal share (ES), GreedyTake-AMT (AMT) and GreedyTake-AMT
(EXP). The social welfare is as a fraction of the maximal achievable ex-ante social welfare, i.e.

W (OPT ) ≡ 1.

homogeneous experiments where AMT is less often better than EXP (18.15%) and EXP is more

often better (10.42%). Moreover, the dispersion is similar (see Figure 3.6D). Nevertheless, con-

sidering the maximal difference in performance over all experiments the social welfare difference

is less than 0.05 (see maximal difference column in Table 3.3). This is substantially better than

ES which is outperformed by AMT and EXP by up to 0.401 and 0.419 in the homogeneous and

diverse set, respectively.

Experiment A B A > B maxA −B
Diverse

AMT & EXP ES 86% 0.419
AMT EXP 33.33% 0.069
EXP AMT 3.97% 0.026

Homogeneous
AMT & EXP ES 84% 0.401

AMT EXP 18.15% 0.037
EXP AMT 10.42% 0.021

Table 3.3: Comparison of the performance of the two algorithm variants with equal share
and with each other. The percentage indicates in what percentage of cases one variant (or the
respective ordering) performs better than equal share or the other variant. maxA−B indicates
the maximal difference in social welfare over all experiments of the category (experiment) and
the respective comparison (A and B). (The social welfare is as a fraction of the maximal

achievable ex-ante social welfare, i.e. W (OPT ) ≡ 1.)

Finally, besides the separation into homogeneous and diverse experiments, there is no further

clear indicator whereby EXP outperforms AMT. Figures 3.7 and 3.8 separate the experiments

further by the function which was used for the amount and probability generation. These provide

interesting insights about ES. Specifically, Figures 3.7A, 3.7C and 3.8C indicate that the bigger

the difference between the first and the second agents saturation amount, the lower the social

welfare of ES is. However, there is no significant difference between AMT and EXP considering

these characteristics. These figures highlight that AMT and EXP perform very similarly.

3.6 Conclusion

The presented results provide our contribution to the research area of fair division of homo-

geneous resources (Problem A). We consider a fair division variant where the amount of a

homogeneous resource is uncertain which is reflected by a random variable over a finite set of

discrete events. We establish this problem as a promising research area by presenting the results

summarised in the research contributions (see Section1.3) which cover our research challenges

(see Section 1.2). We highlight differences and similarities of ex-ante envy-freeness to ex-post
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(A) Linear amount function. (B) Power amount function. (C) Root amount function.

Figure 3.7: Performance of ES (orange to red colours), AMT (blue colours) and EXP (green
colours) for the set of diverse experiments. The hue of the colours indicate the second agents
saturation amount from the lightest indicating 0.1 to the darkest indicting 0.7 (this especially
means that there is no continuous and consecutive data on the x-axis). The arrows’ heads
direction indicates the probability distribution. Pointing to the left indicates beta decrease,
pointing to the top indicates beta Gauß and pointing to the right indicates beta increase
(see Table 3.1). Finally, the experiments are separated into three sets based on the amount
functions: (A) shows the experiments for the linear function, (B) shows the experiments for

the power function and (C) shows the experiments for the root function.

envy-freeness, especially that in the worst case the price of envy-freeness is tightly linear in the

number of agents. While ex-ante envy-freeness offers opportunities for improvement, optimising

efficiency under ex-ante envy-freeness (i.e. determining optimal allocations) is NP-hard for any

number of agents. Considering this result and in pursuit of Research Challenge A.5, as well as to

investigate the effects of uncertainty, we consider the settings of two agents. For uniform proba-

bilities over the events the problem of finding optimal allocations is solvable in polynomial time.

In contrast, for arbitrary probabilities over the events, the problem is also NP-hard. Nevertheless,

we provide two variants of a polynomial greedy algorithm whose allocations outperform equal

share allocations. The first version does not have a guaranteed theoretical approximation but

is empirically close to the second version and outperforms it on a smaller number of instances.

The second version is structurally close to a specific optimal allocation and performs empirically

well.
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(A) Near horizontal amount func-
tion y-intercept b = 0.5.

(B) Near horizontal amount func-
tion y-intercept b = 0.6.

(C) Near horizontal amount func-
tion y-intercept b = 0.7.

(D) Near horizontal amount func-
tion y-intercept b = 0.8.

Figure 3.8: Performance of ES (orange to red colours), AMT (blue colours) and EXP (green
colours) for the set of diverse experiments. The hue of the colours indicate the second agents
saturation amount from the lightest indicating 0.1 to the darkest indicting 0.7 (this especially
means that there is no continuous and consecutive data on the x-axis). The arrows’ heads
direction indicates the probability distribution. Pointing to the left indicates beta decrease,
pointing to the top indicates beta Gauß and pointing to the right indicates beta increase (see
Table 3.1). Finally, the experiments are separated into four sets based on the near horizontal
amount function’s y-intercept b: (A), (B), (C) and (D) show experiments for value 0.5, 0.6,

0.7 and 0.8, respectively.





Chapter 4

Single Robot Adversarial

Patrolling Against a

Full-Knowledge Adversary on a

Perimeter

In this chapter we address Problem B (see Section 1.2), i.e. improving the runtime for full-

knowledge multi-robot adversarial patrolling on polylines. We start by introducing the formal

model in Section 4.1. This includes the graphs, the movement types and the random process of

the robots’ strategies. In total we have four settings from the combination of the two variants

of polylines (open and closed) and two types of the robot’s movements (determined by if the

robot has to turn around to change direction or not). We use one of the settings to explain our

approach (see Section 4.2). This includes the characteristics that influence the different paths

the robots can walk and, the important novelty, how this can be translated into lattice path

characteristics (see Section 4.2.5). Using the lattice path representation, we count the number of

paths. This immediately allows us to explicitly state the probability of detecting the adversary

in different vertices of the polyline. Following this, we consider the other three settings (see

Section 4.3). We focus for each of the three settings on the difference to the first settings.

Hence, we limit the presentation to statements that are additionally required for the respective

setting or the differences in modelling of the respective case. Section 4.2.5 as well as Section 4.3

focus on the first step of determining the optimal probabilities and therefore conclude with the

respective probability functions. In contrast, in the last section (see Section 4.4 we focus on the

second step and the (calculation of the) optimal strategies. The presented results in this section

are theoretical and empirical insights into the first setting. In the first part (see Section 4.4.1)

we show how the system of equations can be reduced based on the reachability of different parts

of the graph. In the second part (see Section 4.4.2) we present experimental results on the

probabilities and the algorithm’s runtime. Additionally, we present empirically patterns of the

optimal strategies which also indicates further runtime reductions.

69
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Figure 4.1: The polyline graph with d segments. The dashed line indicates the edge that
is present in the circle (perimeter) but not in the line (fence), i.e. the perimeter is a cyclic
setting whereas the fence is a setting with defined ends. The guard with the shield represents
the robot positioned in segment 1 and the person in the jacket and the knit cap with the sword

represents the adversary penetrating in segment j.

4.1 Preliminaries

We are considering multi-robot patrolling in a discrete environment assuming discrete time. In

this settings k homogeneous robots shall be used to detect penetration attempts on a polyline

with d ∈ N vertices, called segments, by a full-knowledge adversary. In this a penetration attempt

is the presence of an adversary at a target segment 1 ≤ j ≤ d with the intent of passing the

perimeter or fence. The adversary is detected if a robot reaches the targeted segment within the

t time steps. The polyline can be open or closed to represent a perimeter or a fence, respectively

(see Figure 4.1) [1].

1. Perimeter / Circle: A closed polyline.

2. Fence / Line: An open polyline.

The polyline restricts the robot’s movement to two directions: clockwise and anticlockwise, or

right and left. We differentiate two movement types based on if the robot can freely move into

either adjacent segment at any moment, or if it needs to turn around first [1].

1. Omnidirectional: The omnidirectional movement allows a robot to freely walk into either

adjacent segment in one time step. On the circle this is the next segment in either the

clockwise or anticlockwise direction and on the line the segment to the left or the right of

the current segment (see Figure 4.2).

2. Directional: The robot has a direction pointing along the axis of the polyline in on or

the other direction. The robot can walk into the segment ahead of the current segment in
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. . . v − 1 v v + 1 . . .

. . . v − 1 v v + 1 . . .

. . . v − 1 v v + 1 . . .

p

1 time step

1 − p
1 time steps

Figure 4.2: The movement of the robot (represented by the guard with shield) in the omni-
directional case. If the robot is in a segment v then with probability p it moves into segment
v − 1 to the left in the next time step and with probability 1− p it moves into segment v + 1 to

the right in the next time step.

. . . v v + 1 . . .

. . . v v + 1 . . .

. . . v v + 1 . . .

p
1 time step

1 − p
τ time steps

Figure 4.3: The movement of the robot (represented by the guard with shield) in the di-
rectional case. If the robot is in a segment v then with probability p it moves into segment
v + 1 to the right in the next time step and with probability 1− p it turns around and stays in
segment v. Turning around takes τ time steps. The case where the robot faces left and would

walk ahead into segment v − 1 is analogues.

one time step but needs to turn around to change direction which takes τ ≥ 1 time steps

(see Figure 4.3).

As stated in the introduction, since the adversary has full knowledge of the robots’ strategy,

the robot has to act randomly. Hence, in line with the fact that there are two movement

possibilities, e.g. clockwise and anticlockwise, and since we are considering memoryless strategies,

a random strategy’s walk of a robot is a Bernoulli process. In every round the robot does, for

both movement types, one of the two possibilities with probability p and the other action with

probability 1 − p. We aim to determine the optimal value of p that maximises the probability

of detecting the adversary. However, since the adversary has full knowledge they will choose

the segment j with the lowest probability of the robot reaching it in time. Thus, to optimise

p we need to maximise the probability of the segment with minimal probability of a robot

detecting the adversary, i.e. we seek p ∈ arg maxp′∈[0,1] minj∈[d] Pr(j′, j, t, d) where Pr(j′j, t, d) is

the probability that a robot in segment j′ detects the adversary in segment j within the t time

steps on a graph of d segments, i.e. the robot reaches segment j from j′ within the t time steps.

This is also referred to as minmax approach [1].

The probability depends on the paths the robots can walk. In general, a path is a sequence

of consecutive segments representing the robots clockwise, anticlockwise, left, right, forward or

turn movements.
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Definition 4.1 (Path, Right/Clockwise Step, Left/Anticlockwise Step). A path of length l is a

sequence of consecutive segments, i.e. a vector (s1, s2, . . . , sl) ∈ [d]l where every pair of segments(si, si+1) for 1 ≤ i < l are neighbours in the graph. For a path a step to the right/clockwise step

or a step to the left/anticlockwise step is a tuple (si−1, si) where the second segment is right

of/next to in clockwise direction or left of/next to in anticlockwise direction of the first segment,

respectively.

Since the random walk is a Bernoulli process, describing the probability of one path is straight-

forward. The outcome set Ω consists of all paths from a start segment (the current location

of the robot) with a length at most t and the probability measure PW is the obvious Bernoulli

process measure.

Definition 4.2 (Probability of a Path). The probability of a path ω ∈ Ω is PW (ω) = pY ⋅ (1−p)X
where X and Y are the number of actions depending on the movement type.

Detecting the adversary means that within the penetration time t there is a time step in which the

robot is in the segment where the adversary penetrates. This means, if the adversary penetrates

segment j ∈ [d] and the robot walks a path that contains j, the robot will detect the adversary.

Hence, we can define the probability measure of detecting the adversary Pr(j′, j, t, d) as the

probability of reaching the adversary:

Pr(j′j, t, d) ∶= P ({ω∣ω ∈ Ω ∧ j ∈ ω}) = ∑
ω∈Ω∶j∈ω

PW (ω).

4.2 Omnidirectional Movement in the Circle

We use the case of omnidirectional movement in the circle to introduce the general modelling.

This encompasses the different types of paths, how the lattice path problem, based on the

different types of paths, looks like and how this is combined to determine the probability of

reaching the adversary. For the rest of this section we consider one robot and a segment j as

the specified target. Without loss of generality the robot is placed in segment 1. This can be

done since the segment numbering is arbitrary and we can always shift the segments for several

robots according to their position.

The probability of detecting the adversary depends on the possible paths and the probability of

one path PW = pY ⋅ (1 − p)X where X is the number of clockwise steps and Y is the number of

anticlockwise steps. We determine the valid paths and their number in five steps. Firstly, we

limit the range of the penetration time t. This is necessary since for short penetration times the

adversary can always penetrate successfully while for large t the robots can always detect the

adversary. Secondly, the symmetry of the circle means that we only have to consider reaching a

segment in one direction and the other directions follow similarly. Thirdly, by the definition of

detection we only need to consider paths that end in j and are of maximal length t. Fourthly,

we determine the freedom that leads to the different possible paths. Finally, the major part is

modelling the different paths as lattice paths and counting them. Altogether, this gives us the

probabilities of the robot reaching the different segments.
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. . . d − 2 d − 1 d 1 2 3 4 . . .

Figure 4.4: Example of a path and its mirrored path. The solid path starts in segment 1 and
the target segment is segment 4. Transforming every step from this path into a step in the
opposite direction results in the dashed path. This path starts in 1 and the target segment is

segment d − (4 − 2) = d − 2 as stated by Lemma 4.6.

4.2.1 Penetration Time Range

Firstly, the problem makes sense only for a certain range of t. If the adversary requires a long

penetration time, the robot can always detect the penetration; if the adversary requires only a

short penetration time, the adversary can always avoid the robot using its full knowledge. We

only sketch the proof since the result is analogous to Agmon et al. [1].

Lemma 4.3. The penetration time for the omnidirectional robot defending a circle is ⌊d/2⌋ ≤ t ≤
d − 2.

Proof Sketch. For small t, i.e. t < ⌊d/2⌋ the robot cannot reach the adversary in segment ⌊d/2⌋ + 1

in either direction.

Contrarily, for large t, i.e. t ≥ d−1, the robot can always deterministically walk around the circle

and reach every segment in d − 2 steps and thus detect the adversary.

4.2.2 Path Symmetry

Secondly, by virtue of a circle, for every path reaching some segment in clockwise direction there

is a path that mirrors it, i.e. switches clockwise and anticlockwise steps, and therefore reaches

the segment with the same distance to the robot’s location in anticlockwise direction. More

formally presented in the following definition, we call the latter path the mirrored path of the

former path.

Definition 4.4 (Mirrored Path). For a path u of length l let (s1, . . . , sl−1) be a sequence of

clockwise and anticlockwise steps, i.e. si ∈ {clockwise, anticlockwise} for i ∈ [l − 1]. The path

u’s mirrored path is the path whose clockwise and anticlockwise step sequence is (s′1, . . . , s′l−1)
with s′i ∈ {clockwise, anticlockwise} and s′i = clockwise if and only if si = anticlockwise for all

i ∈ [l − 1].
From this definition it is obvious that the number of clockwise and anticlockwise steps is the

other way around in the mirrored path.
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Observation 4.5. For a path with X clockwise steps and Y anticlockwise steps, the mirrored

path has Y clockwise steps and X anticlockwise steps.

This symmetry means that, a set of paths and the set of their mirrored paths has to have the

same cardinality.

Lemma 4.6. Moving from right into segment j ∈ {2, . . . , ⌈d/2⌉} is mirrored by moving from the

left into d − (j − 2) ∈ {⌈d/2⌉ + 1, . . . , d} and vice versa.

Proof. Let P be the set of all paths that start in segment 1 and end in segment j ∈ {2, . . . , ⌈d/2⌉}
which was entered in clockwise direction. Overall, these paths all walk j − 1 = X − Y steps in

clockwise direction. However, every path in P has a mirrored path which walks X − Y steps in

anticlockwise into segment d − (X − Y − 1) = d − (j − 2). The opposite follows similarly.

Consequently, we can focus on one direction and the other direction follows. We focus on in the

next sections until (inclusive) Section 4.2.6 on the clockwise direction.

4.2.3 Restriction of Necessary Paths

Thirdly, we restrict the number of paths we have to consider since any path passing j is covered

by a path that ends in j. More specifically, any path of length t passing through j is a path that

detects the adversary (see Section 4.1). Additionally, we can divide all paths into sets of paths

which share a common prefix, i.e. the path from 1 to the first occurrence of j. Let ω′ be such a

prefix that ends in j and has length ` ≤ t. Then the probability that the robot walks any path of

length t with this prefix is PW (ω′) ⋅ ∑t−`i=0 p
i(1 − p)t−`. The sum of the suffixes is one which also

makes sense from the probability argument that they are the space of all possible paths of length

t − `. By that the probability of the set of paths with the common prefix ω′ is equivalent to the

probabilities of the prefix. Hence, we can conclude that we only need to consider the prefixes

(paths ending in j).

Observation 4.7. It suffices to consider the subset of paths which end in segment j, without

having passed it before, and which are at most of length t.

Therefore, we have to count all valid paths of length up to t that reach the specified segment j.

4.2.4 Freedom of Movement

Fourthly, the constraints of considering paths of maximal length t that end in j mean that the

robot has the freedom to walk a number of steps equivalent to the difference of t and the steps

necessary to reaching segment j, i.e. the distance (see Figure 4.5). As a preparation for modelling

the robot’s paths as lattice paths we partition this set of all paths which end in segment j into

several sets of lattice paths based on the number of additional steps.

In more detail, the robot can walk up to t steps. Within these t steps the robot needs to reach

j at a distance of dist ∶= dist(1, j). This distance is j − 1 for the clockwise direction and d− j + 1
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. . . d − 1 d 1 2 3 4 5 . . .

(A) In the direct path each step of the robot is towards the target segment.

. . . d − 1 d 1 2 3 4 5 . . .

(B) Besides the direct path, the robot can perform further steps which results in alternate paths. The depicted
path is one possibility with 10 extra steps. It can be observed that the direct steps are still present (steps in red),

and that all other steps come in pairs (other colours than red).

Figure 4.5: Example of the freedom of movement for a path where a robot is in segment 1,
the target segment is segment 5 and we assume a clockwise direction. The two figures show

the direct path (Figure A) and a path with extra steps (Figure B).

for the anticlockwise direction. By Lemma 4.3 the robot can reach every segment within t so

we assume that t ≥ dist. Hence, since the robot needs dist moves to reach j we have t − dist
additional moves. Considering the direct path as the starting point, we observe that any step

away from j has to be countered by a step towards j at some point.

Observation 4.8. The robot may walk up to ⌊(t − dist)/2⌋ away from j which has to be countered

by the same number of moves towards j.

We note here that towards and away depend on the direction. For the clockwise direction steps

towards segment j are clockwise steps and steps away from j are anticlockwise steps. For the

anticlockwise direction it is the other way around.

Based on Observation 4.8 and 4.7 for every length t − dist + 2i with i ∈ {0,1, . . . ⌊dist/2⌋} we have

a different amount of steps and their placement determines the robot’s path.

4.2.5 Modelling as Lattice Paths

Finally, after our initial observations on which paths have to be considered, we use lattice paths

to model and determine the number of paths within one partition as presented in Section 4.2.4.

The overall result: the number of paths for fixed d, j and i is as stated in the following theorem.

Since the number matches an entry of Catalan’s triangle [79] we use this as a notation for the

number.

Theorem 4.9. The number of paths of exactly length dist+2i is C(dist−1+ i, i) with C(n, k) ∶=(n+k
k

) − (n+k
k−1

).
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Figure 4.6: The lattice that represents the movement pattern for the case of reaching the
target segment in clockwise direction. The x-axis are steps in clockwise direction and the
y-axis are steps in anticlockwise direction. The start is the bottom left corner and the finish is
the top right corner. The disk (filled circle) and the circle are the end points of the valid and
the invalid paths, respectively. The thicker grey line is a valid path, whereas the solid black
path is an illegal path that touches the line y = x−dist. The dashed path shows how reflecting

every move after the first touch of the path and the line leads to the circle.

In order to establish this number we define the lattice path setting (see Figure 4.6) as follows.

The robot’s initial position corresponds to (0,0), the bottom left corner. Starting there, we allow

the following lattice paths.

Definition 4.10 (Lattice Path). A lattice path is a sequence of horizontal and vertical unit steps

beginning at (0,0) and ending in a specified point.

The horizontal direction represents movement towards the target (clockwise for reaching the

target segment in clockwise direction) and the vertical direction represents movement away from

the target (anticlockwise for reaching the target segment in clockwise direction). Hence, the

point (x, y) ∈ Z2 corresponds to the robot being in segment y − x + d + 1 if x < y or else segment

x − y + 1 (for the anticlockwise direction it is the other way round). The fact that we consider

only paths that end in j is incorporated by considering only paths that do not cross the line

y = x − dist.
Finally, while paths that end in j after dist+2i steps correspond to paths that end in (dist+ i, i),
for technical reasons, we will consider paths to coordinate (dist − 1 + i, i). The number of paths

is not affected by this. Logically, every path that ends in j after dist+ 2i steps must end in j − 1

after dist − 1 + i steps. Graphically, considering Figure 4.6, the only way to reach (dist + i, i) is

by going through (dist − 1 + i, i).

4.2.6 Counting the Lattice Paths

The described lattice path setting allows us to show that the number of lattice paths from (0,0)
to (dist−1+ i, i) amounts to the number of paths stated in Theorem 4.9. We do this by counting
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all lattice paths from the origin to the end point and subtract all paths that touch or cross the

line y = x − dist.
Lemma 4.11. The number of lattice paths from (0,0) to (dist − 1 + i, i) not crossing line y =
x − dist is C(dist − 1 + i, i).

Proof. The number of unrestricted lattice paths, not restricted by a line, from (0,0) to (a, b) is(a+b
b
) (see Theorem 10.3.1 in Lattice Path Enumeration [49]).

For the restricted paths, we can use the general ballot theorem [42] or André’s reflection prin-

ciple [49] to count these. According to the reflection principle, we can change any path that

touches or crosses the line so that horizontal steps become vertical steps and vice versa which

reflects the endpoint of these paths to (dist + i, i − 1) (see Figure 4.6). Hence, the total number

of paths, using above binomial coefficient for the legal and illegal paths, is

(dist − 1 + 2i

i
) − (dist − 1 + 2i

i − 1
) = dist

i
(dist − 1 + 2i

i − 1
)

which is C(dist − 1 + i, i).
The number of the robot’s paths follows immediately.

Proof of Theorem 4.9. By the correspondence between the robot’s paths and the lattice paths

(see Section 4.2.5), Lemma 4.11 directly implies the claim.

4.2.7 Probability of Detecting the Adversary

Finally, having the number of paths, we can immediately state the probability that a robot in

segment 1 reaches segment j in at most t steps given the Bernoulli parameter p.

Theorem 4.12. The probability of an omnidirectional robot detecting an adversary in segment

j of a perimeter of size d is

Pr(1, j, t, d) = ⌊ t−d+j−1
2 ⌋∑
i=0

C(d − j + i, i) ⋅ pd+i−j+1 ⋅ (1 − p)i

+ ⌊ t−j+1
2

⌋∑
i=0

C(j − 2 + i, i) ⋅ pi ⋅ (1 − p)i+j−1

Proof. The probability function follows by combining the statements in this section. Firstly,

Observation 4.5 and Lemma 4.6 imply that the results hold for both directions. As stated in

Section 4.2.4 by the Observations 4.7 and 4.8 we can sum over all prefixes to get all paths.

Finally, Theorem 4.9 gives the number of paths and Definition 4.2 gives the probability of a

single path.
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4.3 Remaining Settings

In the previous section we presented the general modelling technique and how to count the

number of paths. The probability in the other three settings can be found similarly by counting

lattice paths with different features. Due to the similarities we focus on the important differences.

We present the modelling and the probabilities for the cases of the directional movement in the

circle and the omnidirectional movement on the line. For the directional movement on the line

we simply present the probability since no further ideas or approaches besides those from the

other three cases are required.

4.3.1 Directional Movement in the Circle

For the directional movement we have a path probability of PW = pX ⋅(1−p)Y where, in this case,

X is the number of steps and Y is the number of turns. Like before, the robot needs dist moves

to reach j. However, in comparison to the previous case, X and Y do not directly correspond

to the clockwise and anticlockwise steps which means we need a different approach for counting

the paths. Moreover, we separate the additional moves into three different types. The first type

are additional steps which are, similar to the previous case, steps besides those required to reach

(A) Examples of a change in di-
rection. The path changes direc-

tion upwards (red step).

(B) Examples of a path without
a change in direction. The path

simply continues.

. . . v − 1 v . . .

(C) Examples of a step forwards with-
out change in direction.

. . . v − 1 v . . .

(D) Example of a turn. After reaching
segment v the robot changes direction

and continues in the new direction.

. . . v − 1 v . . .

(E) Examples of a spin. In segment v−1
the robot changes direction twice before

continuing in the original direction.

Figure 4.7: Illustrations of robot paths and lattice paths with and without directional
changes. Figures (A) and (B) are parts of lattice paths. Figures (C), (D) and (E) show
robot paths on the graph. At the top are the segments of the polyline. The robot’s movement
is indicated by the arrows on the grey lines under the segments. The arrowheads on the grey
lines represent the positioning of the robot as well as the direction the robot is facing, and
the lines are the connecting steps of the robot. These images show how turns and steps can
be modelled using lattice paths but spins have to be considered separately. A simple walk in
one direction like in Figure (C) would be simply a lattice path that does not change direction
as in Figure (B). Similarly, the turn shown in Figure (D) can be represented as a turn in a
lattice path as shown in Figure (A). However, a spin in the robot’s path as in Figure (E)
would appear in the lattice path in the same way as the path without any directional changes

like in Figure (B).
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the target segment. The other two movement types are two kinds of changes in direction called

turn and spin, separated for technical reasons.

Definition 4.13 (Turn / Spin). A turn is a change of direction followed by a step into the new

direction (see Figure 4.7D) and a spin are two consecutive changes of direction (see Figure 4.7E).

As before the majority of the results are concerned with the number of paths for one combination

of direction, target segment and amount of additional moves. Overall, we will prove that one

combination represented in the following lemma has the number of paths stated in the preceding

definition. We prove the lemma towards the end of the segment just before the statement of the

probability functions for this setting.

Definition 4.14 (CDMC). Let the number CDMC be defined as follows:

CDMC(dist, k, i,m)
= (dist + 2k + i −m − 1

i −m ) ⋅ ((dist − 1 + k
m

)( k
m

) − (dist + k
m

)(k − 1

m
))

Lemma 4.15. The number of paths from (0,0) to (dist−1+k, k) with 2i turns and spins, from

which 2m are turns, 2k additional steps, and not crossing line y = x−dist is CDMC(dist, k, i,m).

In more detail, similar to the omnidirectional case we have t−dist time for the robot to perform

movements other than reaching the target. Firstly, like in the previous setting, all of them come

in pairs again as moving or turning away from the target has to be reversed at some point (see

also Section 4.2.4 and Observation 4.8.

Observation 4.16. Every additional movement of the robot (extra steps, turns and spins) has

to be countered by the same but opposite movement type at some point.

We determine the result of Lemma 4.15 in three steps. Firstly, we establish the number of

additional moves, turns and spins. Secondly, we count the number of paths given the number of

turns and additional steps. Thirdly, we factor in the number of ways for the robot to perform

spins on the paths. The separation of turns and spins is necessary since turns can be represented

in the lattice as presented in Section 4.2.5. Similar to additional steps, turns can be represented

in the lattice since they are followed by a step (see Figure 4.7). This is not the case for spins

which can happen at any point in the path. Nevertheless, since a spin can be performed at

any point of a path they can be factored in after considering the additional steps and turns.

Moreover, we assume the initial direction is clockwise which means that reaching a segment in

anticlockwise direction needs an additional change in direction.

Beginning with the number of additional moves, since a turn takes τ steps the robot can perform

at most ⌊ (t−dist)
(2⋅τ) ⌋ many changes in direction. Similar to the previous case (see Section 4.2.4), the

robot may perform any fixed number of these i ∈ {0,1, . . . , ⌊ (t−dist)
(2⋅τ) ⌋}, considering the different

types of paths.

Of these i turns and spins, we denote the number of pairs of turns with m. This number must

be within the range of all changes of direction, i.e. in the range from 0 to min{i, ⌊ (t−dist)
(2⋅τ+2) ⌋},

where the additional 2 comes from the accompanying steps. Consequently, a set number of turns
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EN

NE

Figure 4.8: A EN- and NE-turn on a lattice path. The shown part of a lattice path contains
both types of turns. As indicated, the first turn is an EN-turn where a horizontal step is
followed by a vertical step. This is followed by a NE-turn where a vertical step is followed by

a horizontal step.

implies a fixed number of i −m spins. Finally, the remaining moves can be used for additional

steps k ∈ {m,⋯, ⌊ (t−dist−2i)
2

⌋} where we require the 2m steps after a turn.

Altogether, this gives us a setting where we can count the paths for fixed i, m and k. In the

second step, we use the lattice as above (see Section 4.2.5) to count the number of paths given

additional steps k and turns m. Turns can be represented as a feature of the lattice paths since

they appear as either a north east turn or a east north turn (see Figure 4.8).

Definition 4.17 (NE-turn / EN-turn). A point on a lattice path is a north east turn (NE-turn)

if it is the end point of a vertical step and the starting point of a horizontal step. Similarly, a

point on a lattice path is a east north turn (EN-turn) if it is the end point of a horizontal step

and the starting point of a vertical step.

We count the number of turn pairs m by the number of NE-turns since those represent the total

number of turns.

Lemma 4.18. A robot’s path with 2m turns is a lattice path with m NE-turns.

Proof. With two exceptions every turn of the robot shows up as a NE-turn or an EN-turn (see

the thick grey path in Figure 4.6 with two turns of either type). The exceptions are walking

vertically from (0,0) which is a turn of direction (equivalent to EN-turn) and walking vertically

into the target segment. The latter of walking into the target segment is not possible in our

setting (compare Observation 4.7). Consequently, the paths with m NE-turns represent all path

with 2m turns.

Counting paths with a specified number of NE-turns can be performed by observing the fact

that the positions of the NE-turns determine a lattice path [49]. Placing them onto the possible(x, y) coordinates yields the following lemma. This is a special case of Equation 10.120 in Section

10.14 of Lattice Path Enumeration [49]).

Lemma 4.19. The number of paths from (0,0) to (a, b) with ` NE-turns is

(a
`
)(b
`
).

In the third step we factor in the spins which can be performed in every segment along a path.

Hence, we can include them by distributing them along the path. This amounts to distributing
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the i−m spins over the dist−1+2k+1 positions. This can be seen as counting the combinations of

putting indistinguishable balls into distinguishable boxes. This number is an elementary result

in enumerative combinatorics (see e.g. Enumerative Combinatorics [76]).

Lemma 4.20. The number of ways n indistinguishable balls can be put into m distinguishable

boxes, allowing multiple balls per box, is (m+n−1
n

).

Finally, we prove Lemma 4.15 by combining these results.

Proof of Lemma 4.15. We count the number of paths for 2k additional steps, 2i turns and spins

and 2m turns. The term is comprised of two factors: 1) the number of paths given turns and

additional steps, 2) the ways to include the spins.

Firstly, by Lemma 4.18 we can count the number of path given the number of steps and turns

by counting all lattice paths with m NE-turns. The number of all of these paths is given by

Lemma 4.19 since we have paths from (0,0) to (dist − 1 + k, k). As in Lemma 4.11 we get the

number of all legal path by subtracting the number of lattice paths that cross the line from the

number of all paths using the reflection principle.

Secondly, we have to include the spins to get the overall result. We achieve this by multiplying

the number of paths, given turns and spins, by the number of possibilities of distributing the

i−m spins over the paths of length dist− 1+ 2k + 1. This number is given by Lemma 4.20. The

product of the two factors gives us the overall result.

Finally, the probability functions are simply a combination of i, m and k similar to Theorem 4.12.

Theorem 4.21. The probability of a directional robot detecting an adversary in segment j on a

perimeter of size d is

Pr(1, j, t, d) = ⌊ t−d+j−2
2⋅τ ⌋∑
i=0

min{i,⌊ t−d+j−2
2⋅τ ⌋}∑

m=0

⌊ t−d+j−2−2i
2 ⌋∑

k=m
CDMC(d − j + 1, k, i,m)

⋅ pd−j+2k+2m+1 ⋅ (1 − p)2m+2(i−m)+1

+ ⌊ t−j
2⋅τ ⌋∑
i=0

min{i,⌊ t−j2⋅τ ⌋}∑
m=0

⌊ t−j−2i
2

⌋∑
k=m

CDMC(j − 1, k, i,m)
⋅ pj−1+2k+2m ⋅ (1 − p)2m+2(i−m)

Proof. For both directions, i, m and k determine the number of changes in direction, the number

of pairs of turns, and the number of pairs of additional steps, respectively. This depends on the

distance which is, as before, different for the two cases of reaching the target segment in clockwise

and anticlockwise direction. Also as before, all possible combinations result in different numbers

of paths. Hence, considering all combinations for both directions yields the sums.

For both directions we have to determine for a given i, m and k combination what is the

probability of the path. As a reminder, p is determined by the number of steps and 1 − p the

number of changes in direction. Hence, we have to add up the respective numbers of those per

case. For both cases, the steps are determined by the distance, the pairs of additional steps and
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Away
from
target
segment

Towards
target
segment

⋮ ⋮ ⋮

⋯
⋯
⋰
⋯
⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯
⋯

⋯
⋯

⋮ ⋮⋰i

dist(j′, j) − 1 i 1

y = x − dist(j′, j)y = x + dist(j′, 1)

Figure 4.9: The lattice for the omnidirectional case on the line. In general the grid is like
the one in Figure 4.6. As in the previous case, the line y = x − dist(j′, j) is to exclude paths
that enter the target segment j prior to having exhausted the additional steps. Additionally,
the setting on the line graph has a second line y = x − dist(j′,1) which represents the end of
the line/fence. In comparison to the y = x − dist(j′, j) restricting line, a path may touch the
y = x − dist(j′,1) line, like in the case of the thicker grey line, but cannot cross it. The black

path is a valid path that touches neither line.

the pairs of steps after a turn. Therefore, we have j − 1+ 2k + 2m = j + 2k + 2m for the clockwise

case and d − j + 1 + 2k + 2m = d − j + 2k + 2m + 1 for the anticlockwise case. For the changes

in direction these are determined by the pairs of turns and the pairs of spins. Hence, we have

d−j+1+2k+2m = d−j+2k+2m for the clockwise case and d−j+1+2k+2m = d−j+2k+2m+1 for

the anticlockwise case, which requires an additional change in direction under the assumption

that the robot starts clockwise.

Finally, Lemma 4.15 gives the number of lattice path for a given case representing the number

of path the robot can walk.

4.3.2 Omnidirectional Movement on the Line

In comparison to the circle, the previous symmetry does not hold any more because of the line’s

defined ends. This also affects the probabilities of paths since the robot has to turn around

at the end of the line with probability 1. In general, the movement is now split into X right

steps with probability (1 − p), Y left steps with probability p and Z steps turning around in

the end segments, implying the probability measure PW (ω) = pY ⋅ (1 − p)X ⋅ 1Z . This is not

reflected in the lattice described in Section 4.2.5 since in the circle the robot had no restrictions,

except the available steps, for walking away. Hence, the crucial part of this setting is to reflect

the restrictions of the robot’s path by restrictions of the lattice paths. This can be done by

introducing a second line in the lattice path representation which represents the end of the line

graph (see Figure 4.9).

Before we address this, we also have to consider that we do not have the same symmetry as

before. Furthermore, we cannot assume a fixed initial position of the robot as before and have

to consider all pairs of segments. Fortunately, we have a different symmetry in this setting and
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we still only need to consider paths that end in the target segment (see also Section 4.7 and

Observation 4.7). This means that the robot can only reach one end of the line, and every

setting where the target segment is left of the initial segment is similar to a setting where the

target is left of the initial segment and the distance to end and the target segment are the same.

Lemma 4.22. The number of paths from segment j′ to segment j with j′ < j is the same as the

number of paths from a segment d− dist(1, j′) to segment d− dist(1, j) with dist(j′, j) ∶= ∣j − j′∣.
This allows us to concentrate on the case where the initial segment j′ is left of the target segment

j, i.e. j′ < j. In order to count the number of paths we have to adjust the lattice positions and

add, as we mentioned in the beginning of this section, another line.

In more detail, in principal the lattice is the same as in the setting on the circle (see Section 4.2.5,

Figure 4.6). However, point (0,0) corresponds to j′. As before, the line y = x − dist(j′, j)
represents segment j that cannot be entered prematurely. Additionally, the line y = x+dist(j′,1)
represents the end of the line.

Again, as before any path can have i ∈ {0,1, . . . , ⌊ (t−dist(j′,j))
2

⌋} additional moves. The difference

is that since reaching the end of the line changes the probability, we have to consider not only

paths of a certain freedom of movement but how often a path reaches the end of the line. More

precisely, we have to determine the number of paths given that the end is reached k times,

i.e. the number of lattice path that touch (not intersect) the introduced line y = x + dist(j′,1)
exactly k times. The range of k is limited by the distances and the penetration time 0 ≤ k ≤⌊ (t−dist(1,j′)−dist(1,j))

2
⌋.

We can count the number of paths reaching the line k times by adapting a bijection used by

Spivey [75]. We describe a bijection between the lattice paths that touch the line k times and

the lattice paths that touch the line once.

Lemma 4.23. There is an explicit bijection between paths from (0,0) to (a, b) touching the line

y = x + s exactly k times and paths from (0,0) to (a, b − k) touching the line exactly once.

Proof. We can transform a path from the first group to a path in the second group by taking

any path from the first group and removing, beginning with the last touch, any vertical step

that ends on the line until only one touch is left (see Figure 4.10).

For the reverse we take any path from the second group. We start from the last point where the

path touches or intersects y = x + s − 1 and add into the path one vertical step. We repeat this

until the path ends in (a, b). This procedure will always produce a path in the first group since

at least one touch is guaranteed, by the one touch of line y = x + s, and shifting the path up by

one vertical step results in an intersection of the path and y = x + s − 1. By always choosing the

last touch or intersection this procedure reverses the mapping.

Hence, we can split all paths into a path from the origin to a point on the line and a path from

that point to the changed target point. Moreover, summing up over all possible midpoints gives

us the total number of paths. We state this formally in the following lemma.
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y = x + s
(a, b)1

2

3

(A) A path in the first group. The path starts at (0,0),
ends in (a, b) and touches the line 4 times. The num-
bered circles indicate the order with which the touches

are processed in the bijection.

y = x + s
(a, b)

y = x + s − 1

(a, b − 3)

(B) A path in the second group. The path starts at
(0,0), ends in (a, b − 3) and touches the line once. The

diamond indicates the touch of the line y = x + s − 1

Figure 4.10: Illustration of the bijection of Lemma 4.23. The bijection takes a path from the
first group and removes, beginning with the last touch (touch 1 in Figure A), one vertical step
at the intersection of the path and the line. This results in the path illustrated in Figure A.
For the reverse, the vertical steps are added back in. The diamond in Figure A indicates how
the path touching before at 3 (Figure A) is now touching the line y = x + s − 1. Adding in a
vertical step restores touch 3 and results in a new touch of the path with the line y = x+s−1 (at
the oval). Repeating this process until the path ends in (a, b) again completes the bijection.

Lemma 4.24. The number of paths from (0,0) to (a, b) touching the line y = x + s exactly k

times is

b−k−s∑
m=0

∣(0,0) → (m,m + s)∣ ⋅ ∣(m,m + s) → (a, b − k)∣,
where ∣(u, v) → (x, y)∣ denotes the number of paths from (u, v) to (x, y).

Proof. By Lemma 4.23 for any path touching the line k times there is a path touching it once

in the first touch point. Hence, if we sum up the paths over every possible point on the line we

get the total number of paths.

The entire number of lattice paths can be obtained by counting the number of paths between

the two lines. For ease of notation we denote this number with DOML.

Definition 4.25 (DOML). Let the number DOML be defined as follows:

DOML(a, b, c, d, e, g)
= ⌊(e−g+1)/2⌋∑̀

=1

4
e−g+2

(2 ⋅ cos ( π`
e−g+2

))c+d−a−b ⋅ sin (π`(a−b+e+1)
e−g+2

) ⋅ sin (π`(c−d+e+1)
e−g+2

)
That this number is the number of paths between two lines can be obtained using standard

lattice path results. The following Lemma is Theorem 10.3.4 in Lattice Path Enumeration [49]).



Chapter 4 Single Robot Adversarial Patrolling Against a Full-Knowledge Adversary on a
Perimeter 85

Lemma 4.26. The number of paths from (a, b) to (c, d) staying below the line y = x + e and

above the line y = x + g is DOML(a, b, c, d, e, g).

Consequentially, we can use DOML to refine the expression in Lemma 4.24 stating the number

of paths touching the line k times. We denote this with COML.

Definition 4.27 (COML). Let the number COML be defined as follows:

COML(j, j′, ĵ, i, k)
= i−k−∣ĵ−j′∣∑

m=0

DOML(0,0,m,m − ∣ĵ − j′∣, ∣ĵ − j′∣,−∣j − j′∣)
⋅DOML(m,m − ∣ĵ − j′∣, ∣j − j′∣ + i − 1, i − k, ∣ĵ − j′∣,−∣j − j′∣)

Since the lattice paths represent the robot’s paths we can use this to formally state the number

of paths for the robot.

Lemma 4.28. There are COML(j, j′, ĵ, i, k) paths for a robot in segment j′ walking to segment

j which reaches segment ĵ exactly k times using i additional steps.

Proof. The results follows from observing how the robot’s path fit into Lemma 4.26. Firstly, the

robot has to reach j and use all additional steps. Hence, the lattice has to reflect that and the

end of the paths (a, b) has to be (∣j − j′∣ + i− 1, i). Additionally, any path of the robot is limited

by the distance to the end of the line, i.e. e = ∣ĵ − j′∣, and the distance to the target segment, i.e.

g = −∣j − j′∣.
Finally, again, combining these results yields the probability functions.

Theorem 4.29. The probability of an omnidirectional robot in segment j′ detecting an adversary

in segment j on a line of size d is

Pr(j′, j, t, d) = ⌊ t−∣j−j
′ ∣

2 ⌋

∑
i=0

⌊ t−∣1−j
′ ∣−∣1−j∣
2 ⌋

∑
k=0

COML(j, j′,1, i, k) ⋅ pi ⋅ (1 − p)∣j−j′∣+i+k
if segment j′ is left of segment j and

Pr(j′, j, t, d) = ⌊ t−∣j−j
′ ∣

2 ⌋

∑
i=0

⌊ t−∣1−j
′ ∣−∣1−j∣
2 ⌋

∑
k=0

COML(j, j′, d, i, k) ⋅ p∣j−j′∣+i+k ⋅ (1 − p)i
if segment j′ is right of segment j.

Proof. It is clear that the two cases of the robot being left or right of the target are symmetric

(see also Lemma 4.22). Hence, we focus on the case where the robot is left of the target segment.

The sets of possible paths are all combinations of additional steps and how often the robot

reaches the end of the line. All of these cases are covered by the two sums. For the probabilities,

the number of left steps (exponent of p) is one step of every additional step pair, i.e. i. The

number of right steps (exponent of 1 − p) is given by the distance between the start and the
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target segment, one step of every additional step pair and one step for every instance of reaching

the end of the fence, i.e. ∣j − j′∣ + i + k.

Finally, COML(⋅) as specified in Definition 4.27 is the number of paths for the cases as established

by Lemma 4.28.

4.3.3 Directional Movement on the Line

The probability functions in the case of the robot with directional sensors and the associated

movement defending the fence can be determined using the ideas and approaches of the other

three cases. Since there are no new results required but merely the application of above we

simply state the results here.

Similar to the previous case, we denote the number of lattice paths between two lines with

DDML.

Definition 4.30 (DDML). Let the number DDML be defined as follows:

DDML(a, b, c, d, e, g, `)
= ∑
k∈Z

((c−a−k(e−g)
`+k )(d−b+k(e−g)

`−k ) − (c−b−k(e−g)+g−1
`+k )(d−a+k(e−g)−g+1

`−k ))
That this number describes the number of lattice paths between two lines is again an estab-

lished result in lattice path literature. The following Lemma is Theorem 10.14.3 in Lattice Path

Enumeration [49]).

Lemma 4.31. Let a + t ≥ b ≥ a + s and c + t ≥ d ≥ c + s. The number of all paths from (a, b) to(c, d) staying weakly below the line y = x+ t (,i.e. may touch the line but not cross it) and above

the line y = x + s with exactly ` NE-turns is given by DDML(a, b, c, d, e, g, `).

Also similar to the other settings we denote the resulting formula for the number of robot paths

with CDML.

Definition 4.32 (CDML). Let the number CDML be defined as follows:

CDML(j, j′, ĵ, i, k, `)
= (∣j − j′∣ + 2k + i −m − 1

i −m )
⋅ i−k−∣ĵ−j′∣∑

m=0

`∑
r=0

DDML(0,0,m,m + s, e, g, r)
⋅DDML(m,m + s, a, b − k, e, g, ` − r)

This expression is similar to the one in the other settings above and the proof is omitted since

it is similar to the one of Lemma 4.28.

Lemma 4.33. The number of paths from initial segment j′ to segment j with the respective end

segment ĵ ∈ {1, d}, i and k is CDML(j, j′, ĵ, i, k, `)
Finally, this lets us express the probability functions for this case.
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Figure 4.11: The probabilities of the robot reaching the segments for p ranging from 0 to 1
in a circle with 8 segments (d = 8) and a penetration time of 6 (t = 6).

Theorem 4.34. The probability of a directional robot in segment j′ detecting an adversary in

segment j on a line of size d is

Pr(j′, j, t, d) = ⌊ t−δ−∣j−j
′ ∣

2τ ⌋

∑
i=0

⌊ t−δ−∣1−j
′ ∣−∣1−j∣−2
2 ⌋

∑
k=0

min{i,⌊ t−δ−∣j−j
′ ∣

2⋅τ ⌋}

∑
m=0

⌊ t−δ−∣j−j
′ ∣−2i

2 ⌋

∑
`=m

CDML(j, j′, ĵ, i, k, `) ⋅ p∣j−j′∣+2k+2m ⋅ (1 − p)2m+2(i−m)+δ

where δ is 1 if the robot is facing towards j and 0 if the robot is facing towards the end of the

line segment, ĵ ∈ {1, d} is then end segment, i.e. ĵ is 1 if j′ is left of segment j and d if segment

j′ is right of segment j.

The theorem follows from reasoning similar to Theorem 4.21 and Theorem 4.29.

4.4 Examples

In this section we illustrate on the example of the omnidirectional robot on the circle (see

Section 4.2) that our approach allows to gain further insight in the relationship between the

optimal p and different values of d, t. Moreover, we illustrate the runtime of both steps to

highlight the runtime previously required and the remaining necessary runtime.

Before we consider the calculation and give notes on the implementation, the analytic probability

functions allow us to show an example of the resulting curves. Figure 4.11 illustrates, depending

on p, the 7 probabilities of an omnidirectional robot reaching the segments 2 − 8 from segment

1 in a circle with 8 segments and a penetration time of 6. Two different groups of segments are

apparent from the figure. The first group are the segments 2 and 8 where the penetration time

does not allow the robot to reach the segment from both directions (clockwise and anticlockwise).

Hence, over the range of p, the curves decrease or increase for reaching segment 2 clockwise or

segment 8 anticlockwise, respectively. All the other segments make the second group, consisting

of segments that are reachable from both directions. The graph also shows three local maxima
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(A) The segment types indicated on the circle. Seg-
ments that satisfy the condition for R segments are
green and segments that satisfy the condition for L
segments are red. C segments are those segments
where both conditions are true at the same time,

which is indicated by both colours.
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(B) An example of the plots of the probability func-
tions of the segments of the different segment types
for d = 10 and t = 6. Pr(1,2,6,10) and P (1,3,6) are
an examples of R segments, P (1,9,6) and P (1,10,6)
are an examples of L segments, and P (1,6,6) is an

example of a C segment.

Figure 4.12: An illustration of the location and the probability functions of the segment
types of Definition 4.35.

on the lower envelope, one in the centre at p = 0.5 and two equidistant to 0.5 near 0.225 and

0.775. The general observations of this small example appear to hold for all values of d and t.

We show that this grouping is the same for any circle and penetration time in the next section.

4.4.1 Segment Types/Reducing the Search Space

As stated in the introduction, finding the optimal probability is a two step process where in

the first step we determine the probability functions and in the second step we solve the system

of equations for an optimal parameter. In this sense Theorem 4.12 solves the problem of the

first step. Hence, these can be used for the second step to determine an optimal parameter. As

stated by Agmon et al. [1] this means determining the maximum of the lower envelope of the

Pr(1, j, t, d) for 1 ≤ j ≤ d. Moreover, they state that the maximum has to be a local maximum

or an intersection of two functions. However, in comparison to Agmon et al. [1] the closed

representations of the probabilities provided by Theorem 4.12 allows us to examine the functions

and make observations regarding the lower envelope.

In this section we use this to show how the search space can be reduced by excluding a number of

functions which are above the lower envelope and can be excluded in calculating the intersections

and roots. These are the probability functions of reaching the segments immediately left and

right of segment one. The amount of these segments depends on the value of t.

The intuitive reason why we can omit these functions from the analysis is that the robot can

only reach them in one direction and the two segments furthest away in both directions have the

smallest chance of being reached. Hence, only the probability of these two segments can affect

the lower envelope, and all other segments closer to segment 1 can be ignored. This can be seen

in Figure 4.12B where the probability of the segments further away from segment 1 (segment 3
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and 9) is smaller than the probability of the segments closer to segment 1 (segment 2 and 10,

respectively).

More precisely, these are the segments where only one of the two sums of Pr(1, j, t, d) is non-zero.

This results in three types of functions (see Figure 4.12B) where, depending on p, the probability

function increases, decreases or first decreases and then increases again. The first two types are

the segments which are only reachable from one directions and the third type are the segments

reachable from both directions. We denote these three types of segments with R, L and C.

Definition 4.35 (R/L/C Segment). The segments are divided into three types called R, L and

C segments. The type of a segment j is determined by if it satisfies just inequality j ≤ d− t, just

inequality j ≥ t + 2 or both inequalities (see Figure 4.12A). More formally, a segment j belongs

to the segment type as follows:

R Segments satisfy j ≤ d − t,
L Segments satisfy j ≥ t + 2,

C Segments satisfy d − t + 1 ≤ j ≤ t + 1.

Using this definition we can formally state our claim that we can exclude all but one segment,

and therefore their probability functions, from each of the L and R segments.

Theorem 4.36. In each of the two types of L and R segments the segment adjacent to a

C segment has a lower probability than any other segment of the same type. More precisely,

Pr(1, j, t, d) < Pr(1, j′, t, d) for segments

� j = d − t and j′ < d − t for R segments or

� j = t + 2 and j′ > t + 2 for L segments.

Before we prove this fact we prove, for completion, that the definition describes three distinct

groups of segments.

Lemma 4.37. The segment types are mutually exclusive.

Proof. It is easy to see that type C segments are separate from type R and L.

For R and L segments, if they were overlapping that would mean that t < d
2

which is not possible

due to the observation of Lemma 4.3. Hence, R and L segments are distinct.

Following this, we prove the theorem that one segment from each of the types L and R has lower

probability then the remaining segments of the respective type

Proof of Theorem 4.36. Like in previous statements, by symmetry (see Section 4.2.2) we can

focus on one case and the other one follows similarly. Hence, we focus on the case of L segments

and, for sake of contradiction, assume the opposite of the claim is true, i.e.

Pr(1, t + 2, t, d) ≥ Pr(1, j, t, d) (4.1)
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with j ∈ {t + 3, . . . , d}.

To begin, we can rewrite this equation. The left hand side is equivalent to

pd−j+1 ⋅ pj−t−2 ⋅ ⎛⎜⎝
⌊ 2t−d+1

2
⌋∑

i=1

C(d − t + i − 2, i) ⋅ pi ⋅ (1 − p)i +C(d − t − 2,0)⎞⎟⎠
and the right hand side is equivalent to

pd−j+1 ⋅ ⌊
t−d+j−1

2 ⌋∑
i=1

C(d − j + i, i) ⋅ pi ⋅ (1 − p)i +C(d − j,0).
This means we can express the inequality (Equation (4.1)) as a bound on the probability of the

robot walking the distance between the two segments.

pj−t−2 ≥
⌊ t−d+j−1

2 ⌋∑
i=1

C(d − j + i, i) ⋅ pi ⋅ (1 − p)i + 1

⌊ 2t−d+1
2

⌋∑
i=1

C(d − t + i − 2, i) ⋅ pi ⋅ (1 − p)i + 1

(4.2)

In order to come to a contradiction, we show that this fraction has to be larger than 1. We can

prove this by considering the difference in magnitude of the numerator and the denominator using

two observations. Firstly, j ≥ t + 2 implies that the numerator has more terms since t − d + j − 1

is strictly greater than 2t − d + 1

Secondly, the binomial coefficient factors are also bigger. To show this, we firstly introduce some

notation for brevity. We denote the distance between the two segments with k ∶= j − t − 2. We

can use this to define three products which express the difference of the binomials in the sums

in the numerator and the denominator : α ∶= k∏̀
=1
(d − j + 2i − k + `), β ∶= k∏̀

=1
(d − j + i − k + `) and

γ ∶= k∏̀
=1
(d − j + i − k + ` + 1).

If we consider the factor C(d − j + i, i) in the numerator, we can express this as

α( (d − j + 2i − k)!
i!(d − j + i − k)! ⋅ 1

β
− (d − j + 2i − k)!(i − 1)!(d − j + i − k + 1)! ⋅ 1

γ
) .

Considering the terms of β and γ it is clear that β is strictly smaller than γ. This means that we

can bound 1
γ

with 1
β

and therefore the whole factor is greater than α
β
⋅C(d− t+ i−2, i). Similarly,

the value of α is at least as much as the value of β which means the whole term is at least as

big as the factor in the denominator C(d − t + i − 2, i).
Therefore, since there are more terms in the numerator and the factors in the numerator are

bigger, the numerator of the fraction in Equation (4.2) has to be bigger than the denominator.

This especially means that the right hand side of Equation (4.2) is bigger than 1 which contradicts

the fact that the left hand side can be at most 1. Therefore, the claim must be true which

concludes the proof.
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Figure 4.13: The optimal p for a circle of size d = 34 for all possible penetration times t
(17 ≤ t ≤ 32). The solid and the dashed line show the one or two optimal p values.

Consequentially, as it suffices to consider the segments of type C as well as segment d−t and t+2.

Depending on t this might mean that significantly less than all d2 pairs have to be considered.

Proposition 4.38. The probability functions for 2t − d + 3 segments have to be considered for

finding an optimal p.

Proof. By Theorem 4.36 of all L and R segments, only segment d−t and t+2 can affect the lower

envelope. Hence, we can exclude all the other segments of these two types. From the L segments

we can exclude all d − t − 2 segments from segment t + 3 to segment d. Similarly, from the R

segments we can exclude all d − t − 1 segments from segment 2 to segment d − t − 1. Subtracting

these two from the total number of d segments yields the claim.

4.4.2 Experimental Results

Lastly, we empirically show that the runtime of finding optimal strategies based on our proba-

bility functions is a fraction of the runtime which would be additionally needed for the Markov

chain approach as well as giving a few insights into the optimal strategies and detection proba-

bilities. In order to calculate the optimal strategies and detection probabilities we implemented

an algorithm, similar to FindP of Agmon et al. [1], in Python using Mathematica for efficient

and accurate root-finding. The algorithm takes into consideration their results that the optimal

value is a local maximum or an intersection of two functions on the lower envelope of the prob-

ability functions and that robots need to be synchronised and placed equidistant for optimality.
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Figure 4.14: The probabilities of the robot detecting the adversary depending on the number
of segments (d). The three curves show the probability for one, two or three robots patrolling

a circle of up to 50 segments and a penetration time of 2
3
⋅ d.
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Figure 4.15: The runtime in hours for
determining the probability functions for
a robot with omnidirectional movement

using the Markov chain approach.
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Figure 4.16: The runtime to calculate
an optimal p for a robot with omnidirec-

tional movement.

Additionally we note here two further specifications on the probability functions presented above

which we require for the calculation. Firstly, a careful consideration of the functions shows that

there are two edge cases at p = 1 and p = 0 which are, in general, mathematically not defined.

However, for all edge cases it makes sense to define them to be the limit of the function which

is always well defined in our case. Secondly, the functions are for one robot in segment 1 so for

the case of multiple robots the respective functions have to be shifted for the different robots

accordingly.

To compare the runtime of FindP using our explicit probability function we implemented the

Markov chain approach algorithm FindFunc as described by Agmon et al. [1]. The execution

of FindFunc provides the same probability functions as our explicit probability functions. We

have used the execution time of FindFunc to set the remaining runtime of FindP into context.

Previously the runtime for finding an optimal strategy would be the runtime of both algorithms.

The runtimes were calculated by running the algorithms on the Iridis 5 Compute Cluster at the

University of Southampton. Each execution of the respective algorithms ran on one core of an

Intel Xeon E5-2670 processor situated in a node with 192 GB of DDR4 memory.

To give an overview of the runtime we have calculated the runtime for four different values of

the penetration time t for increasing values of d on the circle with an omnidirectional robot. For
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each d we ran the algorithms for the smallest possible value of ⌊d
2
⌋, the biggest possible value of

d − 2, the middle value of ⌊d
2
⌋ + ⌊d−2−⌊ d2 ⌋+1

2
⌋ as well as the average over all t values.

While the runtime of FindFunc is not as smooth as that of FindP it is clear that the runtime

of FindP is several orders of magnitude smaller. The runtime of FindFunc as depicted in

Figure 4.15, despite a number of outliers, increases polynomially where the rate of increase

appears to diverge slowly. The average runtime reaches 44:09 hours and the minimum runtime

is 21:33 hours at d = 50. In comparison, the runtime of FindP, as shown in Figure 4.16, is in

the range of minutes rather than hours. For d = 100 the smallest t requires a time of 24 seconds

and the middle t a time of 1:24. The maximal value of t clearly rises orders of magnitudes faster

but is still only at 7:27 minutes at d = 100. Moreover, the runtime for the average value of t is

closer to the runtime of the middle value of t and has a runtime of only 2.25 at d = 100.

Clearly, the runtime for smaller values of t benefits from the results of Section 4.4.1 resulting in

runtimes that increase slower in comparison to the runtime at the maximal value of t. Moreover,

another improvement factor for all values of t is that the runtime benefits from the fact that

we can calculate the first and second derivative of the probability functions beforehand and

thus those do not have to be calculated during the run. Altogether, by not having to execute

FindFunc the runtime saving is in the range of several hours and the calculation of an optimal

p can be done significantly faster.

Regarding optimal strategies and the probability of detection, we observe in Figure 4.14 that

the highest possible probability of detecting the adversary is 0.5 and the probability decreases

exponentially for increasing d. This is in line with previous research. For further insights,

Figure 4.13 visualises a general pattern that the optimal p exhibits for all d and increasing t.

An analysis of a larger range of d values up to 150 shows that for every d for increasing t there

are either one or two optimal p values which tends towards 0.5 until d − 2 − ⌊ d
11

⌋. At this point

the two values diverge and tend towards 0 and 1. For smaller t values, every other optimal p,

beginning with ⌊d
2
⌋, is 0.5. This suggests that for smaller penetration times the randomness

is important whereas for relatively large t the best value tends towards the robot mostly walk

in one direction. Moreover, in conjunction with the observations on the lower envelope in the

beginning of Section 4.4 this indicates that only two probability functions have to be considered.

4.5 Conclusions

The presented results provide our contribution (see Section1.3) to the research area of deter-

mining optimal random strategies for multi-robot adversarial patrolling (Problem B). We pro-

vide results that address the research challenges (see Section 1.2) for closed and open polylines

(perimeter and fence, respectively) with two different movement patterns. We show how lat-

tice path techniques can be used to model and determine the number of possible paths and

the probability of detecting the adversary for optimal random multi-robot adversarial patrolling

strategies on a perimeter or a fence with two different movement patterns. The probabilities

were previously determined using Markov chain based black box algorithms [1]. Our approach

does not only reduce the runtime of the first step (determine the probability functions) but the

analytic system of probability functions allows us to make observations allowing us to further
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improve the runtime of the second step (determining optimal strategies based on the probability

functions). Using the example of an omnidirectional robot on the circle, we use the system

of equations to show that two out of three sets of equations can be disregarded in the second

step. Moreover, we empirically show the runtime reduction in hours and illustrate empirically

an underlying structure of the probability functions and the change of the optimal parameter

depending on the penetration time.



Chapter 5

Conclusions and Future Work

We explore two agent problems both with their own challenges within the common constraint

of uncertainty. Specifically, we introduce the problem of distributing an uncertain homogeneous

divisible resource among agents and we improve the runtime for multi-robot adversarial patrolling

on polylines. We conclude this work with our contribution to the respective fields by linking

our results back to the challenges stated in the introduction (see Section 1.2 in Chapter 1). We

finish by highlighting interesting research that logically follows from our work or that has been

opened up by our work.

5.1 Conclusions

The first problem we consider is a fair division variant where the amount of a homogeneous

resource is uncertain. This uncertainty is reflected by a random variable over a finite set of

discrete events. We show that, while the problem of optimising unconstrained efficiency can be

solved in polynomial time for concave and other reasonable utility functions (Contribution A.I.),

this is no longer the case if ex-ante envy-freeness is required (Contribution A.II.). In this case,

an ex-ante envy-free allocation always exists but may have a significantly worse social welfare

than the ex-ante efficient allocation (Research Challenge A.3). More specifically, the price of

envy-freeness is tightly bounded by n for concave utility functions, where n is the number of

agents (Contribution A.III.). Principally, we show that the problem of finding an ex-ante efficient

allocation under ex-ante envy-freeness is strongly NP-hard, even under simple continuous utility

functions and with uniform probability over the events (Contribution A.IV.). We devise an

integer program for the optimal ex-ante envy-free solution for linear satiable utilities. Since the

complexity depends on the number of agents, we focus on the case of two agents with linear

satiable utility functions, in line with Research Challenge A.5 and Research Requirement 3. For

the case of uniform probability distributions over the events, we devise a greedy algorithm that

calculates an optimal solution in polynomial time (Contribution A.V.). This cannot be achieved

for arbitrary probability distributions over the events since we show that this case is NP-hard as

well (Contribution A.VI.). However, we show that the greedy algorithm sorting the events by

their amount can be used to attain solutions that are structurally close to an optimal solution.

Contrary to intuition, taking the probability distribution into consideration in the algorithm

95
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does not allow any general approximation guarantee. Nevertheless, we show empirically that

both version of the algorithm perform well on average problem instances (Contribution A.VII.

and Research Challenge A.5).

The second problem is multi-robot adversarial patrolling on closed and open polylines (perimeter

and fence, respectively). Considering two different movement types on both graph types, we

determine analytic forms for the probability of detecting the adversary (Contribution B.II.) We

achieve this by using lattice path techniques to model and determine the number of possible paths

a robot can walk (Contribution B.I.) Overall, this removes any runtime and space requirement

that was previously required to determine the probabilities (Contribution B.III.) [1]. Hence, to

determine optimal strategies we are only required to solve the system of equations given by the

probability functions. Moreover, we illustrate an underlying structure of the probability functions

and the change of the optimal parameter depending on the penetration time. For the closed

polyline and robots that can freely walk left and right, we use the insights available from the

analytic probability functions to improve the runtime of solving the system of equations. Firstly,

we show that a significant number of probability functions can be ignored (Contribution B.IV.a)).

Secondly, we use the analytic functions to show empirically that only two functions have to be

considered, reducing the runtime to a constant runtime (Contribution B.IV.b)).

Together, the two problems highlight the difficulties and benefits of uncertainty. The allocation

problem shows how taking uncertainty into consideration yields an interesting problem in an area

of limited research consideration. Nevertheless, it clearly also highlights the difficulty of finding

efficient solutions in settings of uncertainty. The patrolling problem shows how uncertainty

can be used to find efficient strategies against an adversary. Our contributions highlights how

some solutions are better at considering this uncertainty which contributes to finding improved

solutions.

5.2 Future Work

Both problems highlight the importance of considering the uncertainty of problems as well as

significant points when researching problems with uncertainty. Integrating uncertainty enriches

the research and models problems closer to the real world. While difficult and with its own

challenges it also opens possibilities to improve results. More problems should be considered

under uncertainty. In addition to this general outlook, we conclude with more specific future

research that follows on from this work.

The setting of allocating uncertain resources presented in this thesis invites various directions

for future work. Firstly, we have provided algorithms for the case of two agents. These are not

directly transferable to the general case of any number of agents. However, the increased hetero-

geneity of more agents has, as already seen in the case of linear satiable utilities (in comparison

to the linear utilities case), the potential for further increases in social welfare [19]. Hence, our

NP-hardness result for this case calls for a polynomial-time algorithm that approximates effi-

ciency under ex-ante envy-freeness better than equal share. Secondly, we focused on linear and

linear satiable utility. It would be interesting to investigate the possibilities and restrictions in

other restricted classes of utility functions like piecewise linear utility functions. Thirdly, we
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have assumed that the utilities are known. While this makes sense in certain settings, it would

be of interest to examine the strategic case where agents can misrepresent their utilities.

Likewise, the adversarial patrolling problem provides further directions. Specific to the investi-

gated setting, we have observed empirically for instances up to 150 segments that the runtime

can be reduced to a constant one. We conjecture that this is the case for all instances. While high

degree polynomials allow no general algebraic solution [59], it would be interesting to analyse

further patterns like monotonicity of local maxima to prove this conjecture. Moreover, it would

be interesting to apply the technique of lattice path modelling to other structures and longer

histories. More generally, these techniques have the potential to simplify the calculation, and

gain further insight, of all similar scenarios [73, 74].
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Chapter A

Fair Allocation of Resources with

Uncertain Availability

A.1 Price of Envy-freeness

We prove Lemma 3.6 by considering the optimisation problem representing the problem of max-

imising ex-ante social welfare (see Optimisation Problem 3) and showing that the maximal slope

allocation satisfies the KKT conditions.

Optimisation Problem 3 Find the optimal resource allocation for utility functions (vi,ω)i∈[n] ∈Fn with n ∈ N for an amount of resource of ω ∈ R.

max ∑
i∈[n]

vi(xi) (1)

s.t. ∑
i∈[n]

xi ≤ ω (2)

xi ≥ 0 ∀i ∈ [n] (3)

Lemma A.1. A maximal slope allocation is efficient and has an ex-ante social welfare of cj ⋅E[X]
for j ∈ arg maxi∈[n]{ci}.

Proof. We will prove that a maximal slope allocation satisfies the KKT conditions for Problem 3.

For that, let ω ∈ Ω be arbitrary but fixed, f(x) ∶= ∑i∈[n] vi(xi), g(x) ∶= ∑i∈[n] xi and hi(x) ∶= −xi
for all i ∈ [n]. Further, let (λ,µi, . . . , µn) be the KKT multiplier for g and hi, respectively.

We assume without loss of generality that the slope of agent 1’s utility is maximal among the

slopes of all agent’s utilities, i.e. 1 ∈ arg maxi∈[n]{ci}, and thus x1 = ω. Then it is clear that

the other agents cannot get any resource or in other words from Condition 2 it must hold that

xi = 0 for all i ∈ [n]/{1}. Based on that, the complementary slackness for h1 gives us µ1 = 0 since

h1(x1) = −ω.

107



108 Appendix A A Fair Allocation of Resources with Uncertain Availability

If we look at the stationarity condition we must have 0n = Df(x) − λ ⋅Dg(x) − ∑i µi ⋅Dhi(x) =(c1, . . . , cn) − λ ⋅ (1, . . . ,1) − (−µ1, . . . ,−µn). This implies λ = c1 and thus µi = c1 − ci for all

i ∈ [n]/{1}. Since xi = 0 and µi = c1 − ci this satisfies complementary slackness for hi for

all i ∈ [n]/{1}. Further, we have for g that λ(ω − g(x)) = c1(ω − ω) = 0 which therefore also

satisfies complementary slackness. Finally, if we look at all KKT multiplier (λ,µi, . . . , µn) =(c1,0, c1 − c2, . . . , c1 − cn) they must be at least zero since c1 is of maximal slope and hence the

solution is a maximiser.

We can conclude the overall efficiency from Lemma 3.1.

For the social welfare let A be the allocation with aj(ω) = ω and ai(ω) = 0 for all i ∈ [n]/{1}
which is valid by definition. Then, a simple manipulation gives us the following. W (A) =
∑i∈[n]∑ω∈Ω vi(ai(ω))f(ω) = ∑ω∈Ω cj ⋅ ω ⋅ f(ω) = cj ⋅E[X]
On the other hand we have that equal share provides maximal social welfare under ex-ante envy-

freeness. We show in this addition to the proof of Lemma 3.7 that the maximal achievable social

welfare is indeed reached by the equal share allocation.

Lemma A.2. No ex-ante envy-free allocation can have more ex-ante social welfare than meani∈[n]{ci} ⋅E[X] which is matched by the equal share allocation (where mean is the arithmetic mean,

see Nomenclature for definition).

Addition to Proof of Lemma 3.7. Let AES be the equal share allocation, i.e. ai(ω) = ω
n

for all

i ∈ N. Similar to before, a rearrangement of the social welfare formula gives us the claim.

W (A) = ∑i∈[n] ∑
ω∈Ω

ci ⋅ ωn ⋅ f(ω) = ∑i∈[n] cin ⋅ ∑ω∈Ω ω ⋅ f(ω) = meani∈[n]{ci} ⋅E[X]
Theorem 3.9. For concave utility functions, the division of a homogeneous resource has a price

of envy-freeness of at most n.

Proof. Let i ∈ [n] be arbitrary but fixed. We use concavity to bound the difference between the

ex-ante efficient allocation without the restriction of ex-ante envy-freeness AE = (ai)i∈[n] and

the equal share solution AES as a lower bound on the ex-ante efficient solution under ex-ante

envy-freeness. Starting with the unrestricted allocation AE , like any allocation this allocation is

bound by the utility of the event amounts by the monotonicity of the utility functions: W (AE) =
∑i∈[n]∑ω∈Ω vi(ai(ω))f(ω) ≤ ∑i∈[n]∑ω∈Ω vi(ω)f(ω).
However, by concavity any utility of an event’s amount is bound by n times the amount of

equally sharing this event.

vi(ω) = n ⋅ ((1 − 1

n
) ⋅ vi(0) + 1

n
⋅ vi(ω))

≤ n ⋅ (vi ((1 − 1

n
) ⋅ 0 + 1

n
⋅ ω))

= n ⋅ vi (ω
n
)

Hence, using this we can further bound AE as W (AE) ≤ ∑i∈[n]∑ω∈Ω n ⋅vi (ωn) f(ω). Finally, this

is the same as n times the equal share allocations’ social welfare, i.e. n ⋅W (AES), which is what

we claimed.
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A.2 Complexity

A.2.1 Time and Size of Construction

The following two lemmata prove that the complexity proof of the problem of maximising ex-ante

social welfare under ex-ante envy-freeness for any number of agents (see Section 3.4) preserves the

strong NP-completeness of 3-Partition. Firstly, the envy partition instance (see Definition 3.13)

can be constructed in polynomial time from a 3-partition problem instance (see Definition 3.12).

Lemma A.3. An envy partition instance can be constructed in polynomial time.

Proof. The agent’s utility functions can be represented by two values. For that, we have to

calculate the values of the 4m saturation amounts which depend on the summation of the 3m

3-partition elements y. Hence, for every utility function a constant number of multiplication

or division with the 3-partition elements are necessary. Furthermore, a value for ε has to be

chosen where the bound depends on m and y and there are m events. Therefore, the values of

both of them can be calculated in a constant number of operations. Additionally, the random

variable is uniform distributed and has therefore only one division. Altogether, the calculation

is polynomial in the 3-partition instance.

Secondly, the size of the instance is not polynomially of comparable size and the maximal value

is polynomially bound.

Lemma A.4. The length of an envy partition instance is polynomially not smaller than the

respective 3-partition instance and the maximal value is polynomially bound by the maximal

value and the length of the 3-partition instance.

Proof. The construction has m events and 4m utility functions which are polynomial in the

3m values of 3-partition. Therefore, the instance is not smaller than the 3-partition instance.

Furthermore, the biggest value is 4m ⋅ ŝ4m which can be expressed as a polynomial of the 3m

values and the biggest integer of 3-partition s4m. Hence, the value is polynomial bounded by

the 3-partition instance and maximal value.

A.2.2 Equivalence and Representation

The following four lemmata are the technical formulations and proofs of the statements or ideas

mentioned in Section 3.4 which showing the equivalence of representations.

The proof that allocations can be represented as total amount representations (Lemma 3.17)

uses the following shift of allocation.

Definition A.5 (Total Amount Representation Shift). A total amount representation shift from

allocation A to A′ takes an agent i ∈ [4m] who has two events where the allocation is below the

saturation amount, i.e. 0 < ai(ω̄) < ŝi and 0 < ai(ω̃) < ŝi, and shifts the allocation from one event

to the other. Without loss of generality ai(ω̄) ≥ ai(ω̃). For the construction of A′ there are two

mutually exclusive cases:



110 Appendix A A Fair Allocation of Resources with Uncertain Availability

1. In the first case, the sum of both allocated amounts greater than the saturation amount,

i.e. ai(ω̃) + ai(ω̄) > ŝi. In this case we construct the new allocation by setting a′i(ω̄) = ŝi
and a′i(ω̃) = ai(ω̃) − (ŝi − ai(ω̄)).

2. The second case is the negate of the first and we construct the allocation by setting a′i(ω̄) =
ai(ω̄) + ai(ω̃) and a′i(ω̃) = 0.

Using this we can prove Lemma 3.17.

Lemma A.6. The ex-ante social welfare of an allocation and its representing total amount

allocation are equivalent.

Proof. We prove the claim by showing that a single total amount representation shift (see Defi-

nition A.5) preserves utilities and therefore expected utility and ex-ante social welfare.

The shift does not change the utility in the first case since,

1

m
⋅ ∑
ω∈Ω

vi(a′i(ω)) = 1

m
⋅ ∑
ω∈Ω/{ω̄,ω̄}

vi(ai(ω)) + vi(a′i(ω̄)) + vi(a′i(ω̃))
= 1

m
⋅ ∑
ω∈Ω/{ω̄,ω̄}

vi(ai(ω)) + vi(ai(ω̄)) + vi(ai(ω̃))
= 1

m
⋅ ∑
ω∈Ω

vi(ai(ω)).
Neither does it change the utility in the second case since,

1

m
⋅ ∑
ω∈Ω

vi(a′i(ω)) = 1

m
⋅ ∑
ω∈Ω/{ω̄,ω̄}

vi(ai(ω)) + vi(a′i(ω̄)) + vi(a′i(ω̃))
= 1

m
⋅ ∑
ω∈Ω/{ω̄,ω̄}

vi(ai(ω)) + vi(ai(ω̄) + ai(ω̃)) + vi(0)
= 1

m
⋅ ∑
ω∈Ω/{ω̄,ω̄}

vi(ai(ω)) + i ⋅ ai(ω̄) + i ⋅ ai(ω̃) + 0

= 1

m
⋅ ∑
ω∈Ω

vi(ai(ω)).
Hence, one shift preserves ex-ante social welfare and if no further shift is possible the allocation

must be in total amount representation.

Besides preserving social welfare a total amount representation shift also has to preserve envy-

freeness as stated by Lemma 3.18.

Lemma A.7. If the api are ex-ante envy-free then the total amount allocation is ex-ante envy-

free. Moreover, if the api are ex-ante envy-free and a valid Φ exists then (ai(Φ(i, ω)))i∈[n],ω∈Ω is

ex-ante envy-free.

Proof. In order to prove the necessity of the envy-freeness we assume for sake of contradiction

that the total amount representation is not ex-ante envy-free. However, before we use that, we

first show that the utility of agent i’s allocation measured by another agent j decreases by a

total amount representation shift (see Definition A.5). This means that the difference in the
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ex-ante envy-free allocations increases by considering the total amount representation. We will

show that this is true for both cases.

1. For the first case we consider two sub-cases

a) ŝj ≥ ai(ω̃) − (ŝi − ai(ω̄)),
b) ŝj < ai(ω̃) − (ŝi − ai(ω̄)),

based on the value of the saturation amount of agent j with respect to the value of the

shift.

1.a) If the saturation amount of agent j is at least of that value, i.e. ŝj ≥ ai(ω̃) − (ŝi − ai(ω̄)),
then the following holds.

∑
ω∈Ω

vj(a′i(ω))
= ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + vj(a′i(ω̄)) + vj(a′i(ω̃))
= ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + j ⋅ ŝji + j ⋅ ai(ω̃) − j(ŝj − ai(ω̄))
Then, by definition we know that ŝji ≤ ŝj and adding a zero gives us j ⋅ ŝji ≤ j ⋅ai(ω̄)+ j(ŝj −
ai(ω̄)). Using this gives us:

∑
ω∈Ω

vj(a′i(ω)) ≤ ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + j ⋅ ai(ω̄) + j ⋅ ai(ω̃)
+ j(ŝj − ai(ω̄)) − j(ŝj − ai(ω̄))

= ∑
ω∈Ω

vj(ai(ω)).
1.b) Contrarily, if the opposite would hold, i.e. ŝj < ai(ω̃)− (ŝi −ai(ω̄)), then we know that the

saturation amount of agent j is less than the one of agent i:

ŝj < ai(ω̃) − (ŝi − ai(ω̄)) ≤ 2 ⋅ ŝi − ŝi = ŝi.
Hence, ŝj is smaller than the allocation of agent i in both events and for both allocations

A and A′ which means agent j values them the same:

∑
ω∈Ω

vj(a′i(ω)) = ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + vj(a′i(ω̄)) + vj(a′i(ω̃))
= ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + j ⋅ ŝj + j ⋅ ŝj
= ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + j ⋅ ai(ω̄) + j ⋅ ai(ω̃)
= ∑
ω∈Ω

vj(ai(ω)).
2. For the second case agent j has at most the same value from the combined allocation in

comparison to the initial one. Again, this means that the utility can only decrease from
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the perspective of agent j. In the following more formally.

∑
ω∈Ω

vj(a′i(ω)) = ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + vj(a′i(ω̄)) + vj(a′i(ω̃))
= ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + vj(ai(ω̄) + ai(ω̃)) + vj(0)
≤ ∑
ω∈Ω/{ω̄,ω̄}

vj(ai(ω)) + j ⋅ ai(ω̄) + j ⋅ ai(ω̃) + 0

= ∑
ω∈Ω

vj(ai(ω))
Now, we can use this and the assumption V ′

i (Ai) < V ′
i (Aj) to show that ex-ante envy-freeness

must be violated. For the ex-ante envy-freeness of agent i we have

1

m
⋅ ∑
ω∈Ω

vi(ai(ω)) = 1

m
⋅ ∑
ω∈Ω

i ⋅ ai(ω) = 1

m
⋅ (ni ⋅ i ⋅ ŝi + i ⋅ di) = V ′

i (Ai)
< V ′

i (Aj) = 1

m
⋅ (nj ⋅ i ⋅ ŝij + i ⋅ dij) ≤ 1

m
⋅ ∑
ω∈Ω

i ⋅ aij(ω) = 1

m
⋅ ∑
ω∈Ω

vi(aj(ω)),
where the second inequality comes from above arguments that the shifting can only reduce the

utility which means that under the total amount representation the utility cannot be higher.

This clearly contradicts the assumption and the claim follows.

A.2.3 Transformation of Allocations

The following four lemmata are the technical formulations and proofs of the statements or ideas

mentioned in Section 3.4 which are required for the shifting procedure.

Lemma 3.19 states that shifting allocation to agents with a higher index can only increase social

welfare.

Lemma A.8. Fixing an allocation A and an agent 1 ≤ k < 4m, if all agents i where i < k have a

total amount allocation of Ai = ŝi and agent k’s total amount allocation is Ak > ŝk, then shifting

allocation to create allocation A′ such that any excess is shifted to the next agent, i.e. A′
k = ŝk

and A′
k+1 = Ak+1 +Ak − ŝk, increases social welfare.

Proof. We consider an arbitrary but fixed agent k ∈ [4m − 1]. The allocation of the statement

means that we have Ak = nk ⋅ ŝk + dk and Ak+1 = nk+1 ⋅ ŝk+1 + dk+1. Then shifting allocation

from agent k to agent k + 1 accordingly means that agent k + 1 has an allocation of A′
k+1 =

nk+1 ⋅ ŝk+1 + dk+1 + (nk − 1) ⋅ ŝk + dk. Since agent k + 1 has at least the same saturation amount

as agent k but a higher utility means that this shift increases social welfare. Mostly rearranging
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the ex-ante social welfare equation shows exactly that in the following.

W (A′)
=W (A) − k ⋅ (nk ⋅ ŝk + dk) + k ⋅ ŝk + (k + 1) ⋅ (nk − 1) ⋅ ŝk + (k + 1) ⋅ dk
=W (A) − k ⋅ (nk ⋅ ŝk + dk) + k ⋅ ŝk

+ (k + 1)nk ⋅ ŝk + (k + 1) ⋅ dk − (k + 1) ⋅ ŝk
=W (A) + nk ⋅ ŝk + dk − ŝk
>W (A) + ŝk − ŝk
=W (A)

The following lemma is supplementary for Lemma 3.20 and states that the amount of times

agents can have his or her saturation amount allocated, decreases with increasing saturation

amount. This comes from envy-freeness since every time an agent of higher saturation amount

has an allocation in some event, so must all the agents of lower saturation amounts.

Lemma A.9. The number of saturation amounts in the context of the total amount represen-

tation decreases with increasing agent index, i.e. n1 ≥ n2 ≥ . . . ≥ n4m

Proof. We prove this by contradiction by assuming that there are two agents i, j ∈ [4m] with

j < i for which this does not apply, i.e. ni ≥ nj+1. Then, using envy-freeness and the assumption,

ni ≥ nj + 1⇔ ni − nj ≥ 1, the value of dj can be lower bound by the saturation amount:

dj = nj ⋅ ŝj + dj − nj ⋅ ŝj = ∑
ω∈Ω

vj(aj(ω)) − nj ⋅ ŝj ≥ ∑
ω∈Ω

vj(ai(ω)) − nj ⋅ ŝj
= ni ⋅ ŝj + dji − nj ⋅ ŝj = ŝj ⋅ (ni − nj) + dji ≥ ŝj + dji ≥ ŝj .

This would mean that the allocation has one saturation amount more which contradicts the

amount of allocation of agent j. Hence, the claim is true for agents i and j and therefore for all

agents.

More general, the same is true for the entire allocation in the total amount allocation.

Lemma A.10. For two agents i, k ∈ [4m] with i > k, if agent k has a total amount allocation

of less than, or equal to, their saturation amount, i.e. Ak ≤ ŝk, then the same must be true for

agent i, i.e. Ai ≤ ŝi. The same holds for the strict case, i.e. if Ak < ŝk then Ai < ŝi.
Proof. We consider this in two cases based on if the allocation for agent k is exactly the allocation

amount or less than that.

1. Ak = ŝk or nk = 1

2. Ak = dk or nk = 0
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In the first case, we know by Lemma A.9 that the allocation of agent i has to satisfy ni ≤ 1. If

it is smaller the claim follows immediately since 0 ≤ di < ŝi. If ni = 1 would hold and we assume

for contradiction that agent i has a higher allocation, i.e. di > 0 then we would have

ŝk = m
k
⋅ ( 1

m
⋅ vk(ŝk)) ≥ m

k
⋅ ( 1

m
⋅ (vk(ŝi) + vk(di))) = ŝk + dki > ŝk.

This is clearly a contradiction to what Lemma A.9 implied.

In the second case, Lemma A.9 implies nj = 0 which again immediately gives the claim since

0 ≤ dj < ŝj .
Altogether, the second claim with the strict inequality follows from the second case and the first

claim follows from both cases.

A.3 Correctness of Algorithm for Two Agents Linear Sa-

tiable Utility Functions

We show in this section that the algorithm GreedyTake (Algorithm 1) is correct for arbitrary

probability distributions, i.e. we show that the allocation produced by the algorithm is valid and

ex-ante envy-free (Lemma 3.36).

Lemma A.11. An allocation determined by GreedyTake is valid and ex-ante envy-free.

Proof. We prove this statement essentially by showing that, for all possible cases defined by the

algorithm (especially line 4 and line 12), agent 2 is just envy-free which implies by Lemma 3.33

that both agents are ex-ante envy-free. Before we start we observe that the allocation in line 2

and 3 as well as 6 and 7 respects the available amount. Hence, we can focus on the validity of

the allocation of event ωj∗ and the envy-freeness.

The algorithm has two different possible allocations (line 13 and 15) which are determined by

the if statement in line 12. For both cases we show the validity and the just envy-freeness of

agent 2. The envy-freeness of agent 1 follows (Lemma 3.33). Moreover, since agent 1 gets the

remaining amount of event ωj∗ we can focus on the validity of the allocation to agent 2.

Before we consider the first case we observe that since the loop ended at j∗ we have that

min{ωj∗ , q2} ⋅ f(ωj∗) ≥ A +min{ωj∗ −min{ωj∗ , q2}, q2} ⋅ f(ωj∗), (4)

which is simply the fact that agent 2 is envy-free (the opposite of the loops statement) rewritten

using A (agent 2’s envy without the split event).

We start with the case that the if statement in line 12 is true, i.e. agent 2’ allocation is set

according to line 13. Using Equation (4) the allocation from line 13 can be bound as

A +B
2 ⋅ f(ωj∗) = A +min{ωj∗ , q2} ⋅ f(ωj∗) +min{ωj∗ −min{ωj∗ , q2}, q2} ⋅ f(ωj∗)

2 ⋅ f(ωj∗)
Eq. (4)≤ 2 ⋅min{ωj∗ , q2} ⋅ f(ωj∗)

2 ⋅ f(ωj∗) ,
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which means the allocation is valid, i.e.

A +B
2 ⋅ f(ωj∗) ≤ min{ωj∗ , q2}. (5)

For the envy-freeness, we start with the easier case that the while loop ended with an equality of

the equation in line 4. In this case Equation (4) becomes an equality which in turn means that

Equation (5) is an equality, i.e. A+B
2⋅f(ωj∗)

= min{ωj∗ , q2}. Hence, the allocation of line 13 does not

change the allocation (compare to line 6) which implies that agent 2 is just envy-free.

Contrarily, if the equation in line 4 is an inequality, i.e. Equation (4) and (5) are strict, we

consider agent 2’s utility of the allocations of the two agents, subject to agent 2’s saturation

amount. Since, agent 2’s marginal utility (u2

q2
) is applied to both sides we can restrict ourselves

to consider the allocated ex-ante amount. The ex-ante amount of agent 2’s own allocation is

∑
ω∈Ω/{ωj∗}

a2(ω) ⋅ f(ω) + A +B
2 ⋅ f(ωj∗) ⋅ f(ωj∗)

=
∑

ω∈Ω/{ωj∗}
a2(ω) ⋅ f(ω) + ∑

ω∈Ω/{ωj∗}
a2

1(ω) ⋅ f(ω) +B
2

+
∑

ω∈Ω/{ωj∗}
a2

1(ω) ⋅ f(ω) − ∑
ω∈Ω/{ωj∗}

a2
1(ω) ⋅ f(ω)

2

= ∑
ω∈Ω/{ωj∗}

a2
1(ω) ⋅ f(ω) + −A +B

2 ⋅ f(ωj∗) ⋅ f(ωj∗),
and agent 2’s ex-ante amount of agent 1’s allocation is

∑
ω∈Ω/{ωj∗}

a2
1(ω) ⋅ f(ω) +min{ωj∗ − A +B

2 ⋅ f(ωj∗) , q2} ⋅ f(ωj∗).
Hence, we have to show that

min{ωj∗ − A +B
2 ⋅ f(ωj∗) , q2} = −A +B

2 ⋅ f(ωj∗) . (6)

This follows from the fact that the amount of ωj∗ and by that the amount of B is limited.

We prove this by considering the value of B and a bound on B implied by this case. In more

detail, the amount of B is bounded by the inequality of the if statement (line 12). Rewriting the

expression in line 12 using A and B yields

B − q2 ⋅ f(ωj∗) ≤ A + q2 ⋅ f(ωj∗) (7)

which implies that −A+B
2⋅f(ωj∗)

≤ q2. Hence, B can be bounded as

B

f(ωj∗) = −A +B
2 ⋅ f(ωj∗) + A +B

2 ⋅ f(ωj∗) < 2q2 (8)
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where the second part comes from the strict version of Equation (5). Additionally, we can observe

the general value of B (see line 10).

B

f(ωj∗) = min{ωj∗ , q2} +min{ωj∗ −min{ωj∗ , q2}}, q2} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2q2 if ωj∗ ≥ 2q2

ωj∗ otherwise
(9)

Hence, considering Equation (8) it must hold that B = ωj∗ ⋅f(ωj∗) which means that for the first

expression in the minimum in Equation (6) the quality of Equation (6) holds, i.e. ωj∗ − A+B
2⋅f(ωj∗)

=
B

f(ωj∗)
− A+B

2⋅f(ωj∗)
= −A+B

2⋅f(ωj∗)
. Moreover, since we observed that −A+B

2⋅f(ωj∗)
is smaller than or equal to

q2 the whole claim of Equation (6) and therefore the just envy-freeness claim of agent 2 follows.

Following the first case we assume for the second case that the if statement (line 12) is false or

B − q2 ⋅ f(ωj∗) > A + q2 ⋅ f(ωj∗) (10)

(opposite of Equations 7). In this case the allocation to agent 2 is a2(ωj∗) = A
f(ωj∗)

+q2 (line 15).

The validity follows immediately from Equation (10) and the possible values of B (Equation

(9)). Equation (10) is equivalent to A < B − 2q2 ⋅ f(ωj∗) and by Equation (9) we know that

B ≤ 2q2 ⋅ f(ωj∗). Hence, the two equations imply A < 0 which means A
f(ωj∗)

+ q2 ≤ q2.

Regarding envy-freeness, the ex-ante amount of the second agent equals to

∑
ω∈Ω/{ωj∗}

a2(ω) ⋅ f(ω) + ( A

f(ωj∗) + q2) ⋅ f(ωj∗)
= ∑
ω∈Ω/{ωj∗}

a2(ω) ⋅ f(ω) + ∑
ω∈Ω/{ωj∗}

a2
1(ω) ⋅ f(ω) − ∑

ω∈Ω/{ωj∗}
a2(ω) ⋅ f(ω) + q2 ⋅ f(ωj∗)

= ∑
ω∈Ω/{ωj∗}

a2
1(ω) ⋅ f(ω) + q2 ⋅ f(ωj∗).

In comparison, the ex-ante amount of agent 1 subject to agent 2’s saturation amount is

∑
ω∈Ω/{ωj∗}

a2
1(ω) ⋅ f(ω) +min{ωj − A

f(ωj∗) − q2, q2} ⋅ f(ωj∗).
Hence, we have to prove that min{ωj − A

f(ωj∗)
− q2, q2} = q2.

This equality follows from the possible values of B and the if statement equation (Equation

(10)). In more detail, Equation (9) implies ωj∗ ≥ B
f(ωj∗)

and Equation (10) implies − A
f(ωj∗)

− q2 >− B
f(ωj∗)

+ q2 which together imply ωj∗ − A
f(ωj∗)

− q2 > q2. This means the minimum is q2 and the

equality holds. Therefore, agent 2 is just envy-free which concludes this case as well.

Finally, for both cases, agent 1 is ex-ante envy-free by Lemma 3.33 which informally fits since

the algorithm favours this agent.
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A.4 Optimal Algorithm’s Linear Optimisation Problem

Optimisation Problem 4 is the normal from linearised version of the optimal algorithm pre-

sented in Section 3.5.6. As a reminder xij is the amount allocated to agent i in event j and

we maximise ex-ante social welfare (Objective Function (11)). The original constraints are Con-

straint (12), ensuring that any allocation is restricted to the available amount, the envy-freeness

(Constraint (13)) and the positivity of any allocation (Constraint (23)). The linearisation is

achieved using Lemmata 3.66, 3.67 and 3.68. Considering them in turn, Lemma 3.66 introduces

Constraint (21) to remove one minimum function. Lemma 3.67 introduces two new variables

(xikj and yikj) and 5 constraints to linearise the other minimum function. Firstly, the variable

yikj is set to be binary in Constraint (22). Secondly, the first set of inequalities in the lemma are

Constraint (14) and Constraint (16). Lastly, the second set of inequalities are Constraint (15)

and Constraint (17). Finally, Lemma 3.68 introduces one variable (zikj) and 4 constraints to

linearise the product introduced in one of the constraints of Lemma 3.67. The first inequalities

in the lemma are Constraint (19) and Constraint (24). The second inequalities in the lemma are

Constraint (20) and Constraint (18).

Optimisation Problem 4

max ∑
i∈[n]

∑
j∈[m]

Pr(ωj) ⋅ ui
qi
⋅ xij (11)

s.t. ∑
i∈[n]

xij ≤ ωj ∀j ∈ [m] (12)

∑
j∈[m]

Pr(ωj) ⋅ (xikj − xij) ≤ 0 ∀i ∈ [n], k ∈ [n] (13)

xikj − qi ≤ 0 ∀i ∈ [n], k ∈ [n], j ∈ [m] (14)

xikj − xkj ≤ 0 ∀i ∈ [n], k ∈ [n], j ∈ [m] (15)

− xikj + qi ⋅ yikj ≤ 0 ∀i ∈ [n], k ∈ [n], j ∈ [m] (16)

xkj − zikj − xikj ≤ 0 ∀i ∈ [n], k ∈ [n], j ∈ [m] (17)

zikj − yikj ≤ 0 ∀i ∈ [n], k ∈ [n], j ∈ [m] (18)

zikj − xkj ≤ 0 ∀i ∈ [n], k ∈ [n], j ∈ [m] (19)

xkj + yikj − zikj ≤ 1 ∀i ∈ [n], k ∈ [n], j ∈ [m] (20)

xij − qi ≤ 0 ∀i ∈ [n], j ∈ [m] (21)

yikj ∈ {0,1} ∀i ∈ [n], k ∈ [n], j ∈ [m] (22)

xij ≥ 0 ∀i ∈ [n], j ∈ [m] (23)

zikj ≥ 0 ∀i ∈ [n], k ∈ [n], j ∈ [m] (24)
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