A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids
A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids
The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).
10949-10954
Janouskovec, J
fbaa4a5d-872e-465b-b2c3-bb35df455cc6
Horák, A
19e25b00-8d93-43c7-970d-090db26262a0
Oborník, M
2f082ea3-20ab-4cdf-b931-be97d5b3156e
Lukes, J
4fe15ca8-205c-4a69-8e67-464947ea25ed
Keeling, PJ
fd51c2ef-1daa-442d-b186-71001aa7ca7d
1 June 2010
Janouskovec, J
fbaa4a5d-872e-465b-b2c3-bb35df455cc6
Horák, A
19e25b00-8d93-43c7-970d-090db26262a0
Oborník, M
2f082ea3-20ab-4cdf-b931-be97d5b3156e
Lukes, J
4fe15ca8-205c-4a69-8e67-464947ea25ed
Keeling, PJ
fd51c2ef-1daa-442d-b186-71001aa7ca7d
Janouskovec, J, Horák, A, Oborník, M, Lukes, J and Keeling, PJ
(2010)
A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
Proceedings of the National Academy of Sciences of the United States of America, 107 (24), .
(doi:10.1073/pnas.1003335107).
Abstract
The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).
This record has no associated files available for download.
More information
Published date: 1 June 2010
Identifiers
Local EPrints ID: 458245
URI: http://eprints.soton.ac.uk/id/eprint/458245
ISSN: 0027-8424
PURE UUID: e210c08f-f973-4572-b8cb-52609f6d3ca9
Catalogue record
Date deposited: 04 Jul 2022 16:39
Last modified: 17 Mar 2024 04:11
Export record
Altmetrics
Contributors
Author:
J Janouskovec
Author:
A Horák
Author:
M Oborník
Author:
J Lukes
Author:
PJ Keeling
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics