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Abstract 21 

Nitrogen fertilisation is vital for productive agriculture and efficient land use. However, globally, 22 
approximately 50% of the nitrogen we apply is lost to the environment causing inefficiencies, 23 
pollution, and greenhouse gas emissions. Rainfall and its effect on soil moisture are the major 24 
components controlling nitrogen losses in agriculture. Thus changing rainfall patterns could 25 
accelerate nitrogen inefficiencies. We used a mechanistic modelling platform to determine how 26 



precipitation-optimal nitrogen fertilisation timings and resulting crop nitrogen uptake have changed 27 
historically (1950-2020) and how they are predicted to change under the RCP8.5 climate scenario 28 
(2021-2069) in the South East of England. We found that historically, neither precipitation-optimal 29 
fertilisation timings nor resulting plant uptake changed significantly. However, there were large year-30 
to-year variations in both. In the 2030s, where it is projected to get wetter, precipitation-optimal 31 
fertilisation timings are predicted to be later in the season and the resulting plant uptake noticeably 32 
lower. After 2040 the precipitation-optimal uptakes are projected to increase with earlier 33 
precipitation-optimal timings closer to historical values, corresponding to the projected mean daily 34 
rainfall rates decreasing to the historical values in these growing seasons. It seemed the inter-annual 35 
variation in precipitation-optimal uptake is projected to increase. Ultimately, projected changes in 36 
precipitation patterns will affect nitrogen uptake and precipitation-optimal fertilisation timings. We 37 
argue that the use of bespoke fertilisation timings in each year can help recuperate the reduced N 38 
uptake due to changing precipitation. 39 

Synopsis: Future precipitation changes will affect crop nitrogen uptake; fertiliser application timings 40 
should adapt and stay flexible to maintain fertiliser efficiency. 41 

Keywords: nitrogen use efficiency, precipitation, modelling,  plant modelling 42 
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1 INTRODUCTION 45 

Insufficient levels of available soil nitrogen (N) is a major limiting factor for crop yields globally1. Soil 46 

replenishment of N occurs via a number of anthropogenic and natural processes2. While biotic N 47 

fixation, i.e. converting atmospheric N to plant-available species, is one major pathway for soil N 48 

replenishment, synthesized N fertilisers via the Haber-Bosch process3 are necessary to support the 49 

current global food demand. 50% of food production relies on synthesised fertilisers. However, their 50 

synthesis is energy intensive, requiring 1.2% of global primary energy production4. 51 



Besides N fertiliser production, fertiliser application can also contribute to environmental issues. 52 

Transformations between N species can result in the release of potent greenhouse gases such as 53 

nitrous oxide (N2O)5,6. N added to fields can be flushed through the soil to deeper sections and/or 54 

into the water table (i.e. ‘leaching’), thus becoming inaccessible to the crops and causing 55 

eutrophication7,8. Furthermore, N leached from fields into the groundwater has the potential to be 56 

denitrified into N2O in aquatic and marine environments9. Additionally, ammonium in the soil can be 57 

volatized and the  N released as ammonia gas; this can be significant (up to 60% of applied N) when 58 

the fertiliser isn’t incorporated into the soil and depends on temperature, soil texture, moisture and 59 

pH10,11. 60 

Soil moisture controls both N leaching and crop N uptake8,12-14. High rainfall rates flush N through the 61 

soil resulting in increased leaching. However, low soil moisture limits N mobility, resulting in poorer 62 

plant N uptake11,15,16. It remains unclear how precipitation patterns, soil type, crop and growth stage 63 

influence uptake. However, it is clear precipitation patterns are closely linked to Nitrogen Use 64 

Efficiency (NUE)17,18 defined in this paper as the ratio of N taken up by the crop to the amount of N 65 

applied, i.e., NUE = (Quantity of plant assimilated N)/(Quantity of N input into the system). 66 

Several studies have correlated cumulative rainfall with measures of N loss or plant N uptake13,17. In 67 

field trials in England, Powlson et al.16 found that N loss correlated positively with total rainfall 3 68 

weeks post fertilisation, which explained 55% of the variation. This indicated that in this region, 69 

more rainfall results in lower NUE provided water is not limiting for crop growth. In a mechanistic-70 

modelling study, McKay Fletcher et al.18 found that cumulative rainfall post-fertilisation explained 71 

40% of the variation in N loss by only varying precipitation patterns between simulations (i.e. soil 72 

type, root growth etc. were kept constant). The positive correlation between cumulative 73 

precipitation and N loses is only valid provided there is enough water to support healthy crop 74 

development. In fact, in drier regions, NUE increases with cumulative precipitation, likely due to 75 

increased N mobility and enhanced crop growth, until a certain amount, from which it decreases due 76 

to enhanced leaching17. 77 

Efforts to maximise N uptake focus on the Four Rs of fertiliser efficiency: ‘right source, right rate, 78 

right time, right place’19. However strategies depend on the individual farms, meteorological 79 

condition, crop and soil20. ‘Right time’ typically concerns timing the fertiliser application to ensure N 80 

is available when the crop demand is the highest21. Fertilisation timing in agriculture is often based 81 

on crop growth stage22,23. Typical guidance for nutrient management in the UK can be found in 82 

Roques, et al. 23. Wallace, et al. 24 found that delaying fertilisation until the end of tillering increased 83 

NUE except in very dry seasons where late fertilisation decreased NUE.  The physics based model of 84 



McKay Fletcher et al.18 mirrored these results, finding that reduced N-uptake in drier seasons with 85 

late application was due to low N mobility. Delaying fertiliser application beyond the onset of stem-86 

elongation in wheat can also decrease yields25, a feature which was also present in the model 87 

results18. There are few studies that specifically investigate precipitation-optimal fertiliser timings, 88 

defined here as application timings that achieve maximum crop N uptake with respect to the 89 

precipitation. Typically, fertiliser timings are based on growth stage in scientific experiments, the 90 

effect of rainfall is only mentioned to help explain anomalous results and not the primary control 91 

variable for fertilisation timing  (e.g. Dharmakeerthi, et al. 26 and references above). It is clear that 92 

better timing of N fertilisation with respect to rainfall patterns (known as precipitation-optimal 93 

timings in the current article) can improve NUE in addition to timing with respect to crop demand24. 94 

The former approach is the least studied but most volatile due to changing local climates but both 95 

play an import role in plant N uptake. 96 

The impact of climate change on N fertilisation is becoming increasingly studied due to the sensitive 97 

dependence on weather13.  Changing weather, specifically heavy rainfall events, can increase N 98 

leaching and denitrification resulting in increased N2O and N2 emission, and lower crop NUE and 99 

water pollution27. In response, farmers need to adapt to ensure profitable production (i.e. enough 100 

crop N uptake) while minimising adverse environmental impacts. Researchers have found moderate 101 

success in current approaches for mitigating N loss20. Interviews with maize farmers in mid-western 102 

USA revealed that they primarily responded to increased heavy rainfall events with increased 103 

fertiliser application28. Although this maintains production, it also increases pollution. To enable 104 

sustainable N farming strategies, it will be necessary to demonstrate the strategies maintain high 105 

yields, lower pollution and incentivise farmers with reductions in net fertiliser costs28. However, 106 

there are few studies that quantify the outcome of fertilisation strategies in a changing climate on N 107 

use efficiency or how optimal strategies may need to change.  108 

Here we studied precipitation-optimal N fertilisation timings through a number of historic and 109 

predicted growing seasons in the South East of England using a mathematical model. We considered 110 

modelled crops of maize on a silt loam soil sown in spring. We used historic daily rainfall data from 111 

1950-2020 and predicted daily rainfall data for 2021-2069 under the RCP8.5 climate scenario29. 112 

Precipitation-optimal split fertilisation timings (two fertilisation days per growing season) were 113 

determined for each year by monitoring every possible fertilisation day pair in the model and the 114 

resulting final modelled crop uptake. With this approach we addressed the following questions for 115 

the South East of England climate scenario: 116 

• Have precipitation-optimal fertilisation timings and corresponding NUE changed historically? 117 



• Are they projected to change? 118 

• Do precipitation metrics correlate with precipitation-optimal fertilisation times and/or NUE? 119 

By answering these questions we can inform how N fertilisation strategies may be adapted and 120 

demonstrate the positive economic and environmental impact, in terms of NUE, of adapting to 121 

mitigate the effects of changing precipitation patterns. Finally, we argue that advanced 122 

computational tools can become valuable as support tools for farmer/agronomist decision. 123 

2 METHODS 124 

2.1 PRECIPITATION DATA 125 

We simulated a growing season from the 1st of March to the 30th of June and used the precipitation 126 

data from the same period as an input to the model. Historic (1950-2020) daily precipitation data 127 

from the administrative region of South East of England was obtained from the Met Office using an 128 

average over weather stations in the region30. Additionally, predicted daily precipitation data (2021-129 

2069) for the same region under the RCP8.5 climate scenario was obtained from the UK Climate 130 

Projections User Interface (https://ukclimateprojections-ui.metoffice.gov.uk). The RCP8.5 climate 131 

scenario assumes a 3.2-5.4 °C increase in global mean surface temperatures averaged over years 132 

2081-2100 compared to the preindustrial averages from years 1850-1900.  The climate model used 133 

to predict the daily precipitation rates was HadGEM3-GC3.05 collected through the  UK Climate 134 

Projections User Interface31. The details of the configuration to access the data can be found in 135 

Williams, et al. 32. 136 

2.2 PRECIPITATION ANALYSIS 137 

 A number of precipitation metrics were used to infer how NUE and precipitation-optimal 138 

fertilisation timings may correlate with precipitation patterns. The mean daily precipitation rate for 139 

the growing season was calculated. When it was necessary to account for the large variations in 140 

precipitation from year-to-year and capture long time-scale changes, measurements and averages 141 

were taken over decades (inter-decadal analysis). When referring to a specific year we write it non-142 

plural, e.g. 2020, when referring to the decade we write it plural, e.g. 2020s. 143 

Precipitation variability is expected to increase, resulting in increased heavy rainfall events and 144 

droughts33. In the context of N fertilisation, a heavy rainfall event over one day or less can have a 145 

large impact on N leaching. To account for this we define a “heavy rainfall event” as days with high 146 

rainfall rates relative to a reference period27. The period 1950-1979 (March to June) is used as a 147 



reference period and the daily rainfall rate which marks the top one percentile in this reference 148 

period is calculated. A heavy rainfall event is then defined as any day which is equal to or above this 149 

top one percentile rainfall rate27. Since one day without any precipitation is common and has much 150 

less impact on soil moisture than a heavy rainfall event, defining lack of rainfall in the context of N 151 

fertilisation requires a longer time scale. A common approach to measure drought is the 152 

Standardized Precipitation Index (SPI)34. The SPI measures standard deviations from the mean over 153 

aggregated time-periods, typically 1,3,6,18,24 months depending on the context in which drought is 154 

defined. To calculate the SPI a probability density function (gamma distribution in this paper) is 155 

fitted to the aggregated rainfall data using the maximum-likelihood approach (find distribution-156 

parameters in which the data is most probable when drawn from that distribution). The fitted 157 

cumulative density function is then calculated and transformed to standardized normal cumulative 158 

density function to determine the SPI as standard deviations from the mean, see the SPI calculation 159 

in Figure 1 for a visual description of this index. SPI measurements of drought are thus relative to the 160 

region. Since precipitation-optimal fertilisation timings depend on changes in soil moisture, we 161 

chose the shortest viable time aggregation of one month for this study. Thus, 4 SPIs were given per 162 

growing season in the simulations. The classification of relative droughts using the SPI are: 0 ≥163 

	𝑆𝑃𝐼 > −1 mild drought, −1 > 𝑆𝑃𝐼 > −1.50 moderate drought, −1.5 ≥ 𝑆𝑃𝐼 > −2 severe drought, 164 

and 𝑆𝑃𝐼 ≤ 	−2 extreme drought34. For each decade, we calculate the percentage of months which 165 

are moderate drought and above or severe drought and above. SPI was calculated in Python3 166 

(Python Software Foundation, https://www.python.org/) using the standard_precip package 167 

(https://github.com/e-baumer/standard_precip).  168 

2.3 MODELLING 169 

The modelling framework follows that of McKay Fletcher, et al. 18. Here we summarise the approach 170 

and highlight important assumptions in the model that are required to interpret the results in the 171 

relevant context. We aim to simulate spring sown maize on a silt loam in the South East of England. 172 

Split fertilisation timings will then be varied for each year from 1950-2059.  The model couples the 173 

advection-diffusion reaction equation for N transport and the N cycle in soil to Richards’ equation for 174 

water flow in the soil. Importantly, the advective N transport is governed by the soil saturation 175 

profile to accurately capture the effect of soil moisture and precipitation on N dynamics. The crops 176 

are represented by a root length density function and a root depth function that evolves in time 177 

according to logistic root growth equations with parameters that match the growth of maize. The 178 

crops absorb the N species and water in soil. Growth stage dependent crop N uptake is not explicitly 179 

considered in the model as our emphasis is on precipitation pattern variation. However, N demand is 180 



a function of root length density which itself is a proxy for plant size. Thus, the growth stages happen 181 

at the same time each year. Figure S1 shows the performance of the model against the experimental 182 

data of Powlson, et al. 16  by correlating N leaching with cumulative rainfall 3 weeks post fertilisation. 183 

The model data in this figure uses daily rainfall rates drawn from a distribution which was fit to 184 

rainfall data in the South East of England. We refer the reader to McKay Fletcher, et al. 18 for a  full 185 

description of the model. It is important to note that the root depth and length density functions are 186 

independent of water and N uptake i.e. plant growth is never water or N limited. This might become 187 

relevant when interpreting the results regarding the drier years where water may be limiting. 188 

However, the region of study, the South East of England, is a temperate region and is rarely water 189 

limited for grain production. Additionally, gaseous losses of N (e.g. N2O, N2 and NH3) from the system 190 

are not explicitly included in the current version of the model. Typically only fractions of a percent of 191 

ammonium is transformed into nitrous oxide during denitrification in agriculture35. Although we 192 

judged this to have little effect on crop N uptake and omitted it from the model for parsimony, 193 

nitrous oxide is a potent greenhouse gas and should be included in future models considering 194 

greenhouse gas emissions. Ammonia volatilisation can contribute a significant amount of N loss from 195 

soil systems, however for ammonium nitrate, the fertiliser simulated in this study, losses are 196 

typically between 2-3% of the applied N which we judged to be small enough compared to leaching 197 

to omit from the model 11.  Therefore, N loses calculated by the model only include leaching and any 198 

link between N losses and NUE is an approximation. 199 

The experimental variables, namely the precipitation pattern and the two N fertilisation applications 200 

are boundary conditions on the soil surface for the Richards’ equation and the N advection-diffusion-201 

reaction equation, respectively. The applications of N fertiliser are modelled as pulses of ammonium 202 

nitrate at user controlled fertilisation times 𝑡! and 𝑡". The fertiliser is applied at a yearly rate 203 

equivalent to 144 kg ha-1 (a typical recommendation for maize to maximize yield and reduce 204 

leaching8), with one third being applied at 𝑡! and the remaining two thirds applied at 𝑡". One 205 

instance of the model refers to a specific growing season’s precipitation pattern and a fertilisation 206 

timing pair (𝑡!, 𝑡"), from the solution of the model the plant N uptake can be calculated by 207 

integrating the root uptake soil sink over space and time. The fertilisation timings are limited to the 208 

first 70 days of the growing season with 𝑡! ≤ 𝑡" ≤ 70 days. For each growing season (i.e. 209 

precipitation pattern) the fertilisation timing pair (𝑡!, 𝑡") that achieves the maximum crop N uptake 210 

is calculated by directly.  Specifically, the model is solved for every possible fertilisation timing pair 211 

with 1.2 day resolution in fertilisation timing, and the total N uptake is calculated. This results in data 212 

demonstrated in the heat map in Figure 1 for each year. The fertilisation timing pair that achieves 213 

the maximum plant N uptake relative to the growing season is referred to as the precipitation-214 



optimal timing and the associated N uptake is referred to as the maximum uptake. Each model 215 

instance was solved numerically using a finite element method in Comsol 5.3a (COMSOL AB, 216 

Stockholm, Sweden). 217 

2.4 MODELLING ANALYSIS 218 

To determine the precipitation-optimal timing for all growing seasons, 111,600 instances of the 219 

model were solved numerically. As with the precipitation analysis, the results are presented in both 220 

yearly and decadal groupings to determine both short and long time-scale trends.  The use of an 221 

exhaustive approach as opposed to an optimisation method enabled the calculation of fertilisation 222 

timing pairs in the growing season that achieve close-to-maximal N uptake relative to the growing 223 

season.  A fertilisation timing pair is said to be close-to-optimal if it achieves an N uptake within 5% 224 

of the precipitation-optimal timing in that growing season. A growing season with many close-to-225 

optimal timings is advantageous as fertilisation strategies can be less accurate and the farmer can 226 

choose when to fertilise based on other factors besides precipitation, e.g. growth stage.  227 

It is possible that close-to-optimal timings follow or pre-date timings that achieve low N uptakes. 228 

Ideally, close-to-optimal timings are surrounded by fertilisation timings that achieve relatively high 229 

uptakes so that the farmer has a buffer zone to fertilise in. We developed a metric to quantify this 230 

feature and determine how this has changed and is predicted to change: For a given a close-to-231 

optimal timing pair, (𝑡!∗, 𝑡"∗) in a particular growing season, denote the set of all timings within radius 232 

𝑟 days each side of (𝑡!∗, 𝑡"∗) by 𝑆$(𝑡!∗, 𝑡"∗). The ‘Stability’ of  (𝑡!∗, 𝑡"∗) is defined as the minimum uptake 233 

achieve by the fertilisation timing pairs in 𝑆$(𝑡!∗, 𝑡"∗) as a proportion of the uptake achieved by 234 

fertilising on (𝑡!∗, 𝑡"∗), see Figure 1 for a visual description of Stability. The ‘Stability’ of a growing 235 

season is then defined as the mean Stability over all close-to-optimal timings in the growing season. 236 

For example, a growing season with a Stability of 0.75 means that, on average, a farmer is 237 

guaranteed to get within 75% of the close-to-optimal timing if they miss the close-to-optimal timing 238 

by 𝑟 days either side. We present analysis of Stability with 𝑟 = 2.4 days. All analysis of the model 239 

results was computed in Python336. 240 



 
Figure 1: Explanation of modelling and processing of model outputs and rainfall data. Historic and projected rainfall data 
is an input to the mechanistic model. The model is solved for every possible split fertilisation timing and the results are 
analysed, including ‘Stability’, maximum uptake and optimal fertilisation timings. In addition, the rainfall data is 
analysed using a one-month aggregated standardised precipitation index, heavy rainfall events and means. 

3 RESULTS AND DISCUSSION 241 

3.1 PRECIPITATION HISTORY AND PROJECTIONS 242 

We found a large inter-annual variability in the mean daily rainfall rate, Figure 2a. From 1950-2021 243 

the rolling mean (width 11 years) hovered around 1.7 mm day-1. After 2021, the rolling mean is 244 

projected to monotonically increase until it reached a maximum in 2032, where the raw values are 245 

projected to reach 3.71 mm day-1. The rolling mean was then projected to decrease until 2045 and 246 

then hover around 1.9 mm day-1. From 1980s to 2010s the heavy rainfall days stayed close to 1%, 247 

suggesting there was little change from the reference years in this period, Figure 2b.  In the 2030s 248 

there was a steep jump to 3.1% of heavy rainfall days, after which the heavy rainfall events were 249 

projected to decrease back to the values of the 2020s. The number of moderate drought months 250 

from 1950s to 2020s stayed between 13% and 22%, Figure 2c. The 2020s, 2030s and 2040s were 251 

projected to have noticeably lower amounts of Moderate Drought months, Figure 2c, which is 252 

unsurprising given the projected high daily rainfall rates, Figure 2a. This analysis suggests that the 253 

growing season had consistently drier months historically, while in the future, under this climate 254 

scenario, we expect these months to be interrupted by more heavy rainfall events.  255 



 
Figure 2: Analysis of precipitation data within the growing seasons. a) Yearly mean March-June daily rainfall. The rolling 

mean with width 11 years is also shown in yellow.  b) Percentage of heavy days classified as heavy rainfall event in each 

decade. A heavy rainfall event is a day higher than the top percentile of daily rainfall rates from 1950-1979. c) 

Percentage of months in the decade moderate drought or worse decade, SPI≤-1.0. d) Percentage of months in the 

decade severe drought or worse decade, SPI≤-1.5. 

 256 

3.2 A COMPUTATIONAL HISTORY AND PROJECTION OF NITROGEN UPTAKE AND PRECIPITATION 257 

OPTIMAL FERTILISATION TIMINGS. 258 

Nitrogen uptake 259 

The year on year maximum modelled N uptake is shown in Figure 3a. All ‘N uptake’ results from this 260 

point onwards are modelled values. For historic years (1950 to 2020) the model predicted the 261 

maximum N uptake to be around 204 kg N ha-1 (see the rolling mean in Figure 3a). However, there 262 

was large inter-annual variability. For example, in 1951 the maximum N uptake was 191.4 kg N ha-1. 263 

In the following year this increased by 12% to 213.8 kg N ha-1. The rolling mean of N uptake started 264 

decreasing towards the end of the 2010s, where in 2030 it is predicted to reach a minimum of 190.0 265 

kg N ha-1, with some specific years reaching lows of 169.1 kg N ha-1 (2030). This corresponds to 266 

increased mean projected rainfall and increased percentage of heavy rainfall events in the same 267 

period, Figure 2a and b. After 2034 the rolling mean is predicted to increase rapidly until 2043 to 268 



reach values similar to the historical maximum uptake , which aligns with the mean projected rainfall 269 

rate decreasing in this period, Figure 2a. However, from 2053 to 2069 the rolling means of maximum 270 

N uptakes are predicted to fall below that of the historical data. In the projected years the inter-271 

annual variability in maximum uptake can be larger than the historical variability. For example, in 272 

2030 the maximum uptake was 169.1 kg N ha-1 which increases by 25.6% to 212.4 kg N ha-1 in 2031. 273 

The maximum-uptake over all of the years is predicted to be in 2051, achieving 226.35 kg ha-1. The 274 

model predicted crop N uptakes are consistent with field trial measurements for maize. Ciampitti 275 

and Vyn 37 found that mean N uptake for maize over a number of varieties and fertilisation 276 

quantities was 152 kg N ha-1 with a maximum and minimum of 387 and 33 kg N ha-1 respectively. Our 277 

model predicted mean N uptake over all fertilisation timings ranged from 158-163 kg N ha-1, Figure 278 

S2. 279 

Figure 3b illustrates a decadal analysis and considers the median over all close-to-optimal uptakes in 280 

each decade. This approach monitored and predicted longer time scale changes. Additionally, 281 

median values over close-to-optimal (N uptakes within 5% of the maximum) values are reported to 282 

account for the fact that the true maximum is unlikely to be achieved in practice. Historically, there 283 

were only small changes from decade to decade. However, in the projected wetter decades of 2020s 284 

and 2030s the median close-to-optimal uptake is predicted to drop dramatically before reaching the 285 

historical values again in the 2040s-2060s.  286 

 
Figure 3: Modelled maximum nitrogen uptakes based on historical and projected climate data. a) Maximum nitrogen 

uptake possible in each year from 1950 to 2069. The rolling mean with a windows size of 11 years is also shown in red. b) 

Median of all close-to-optimal uptakes in each decade.  A close-to-optimal uptake is a plant nitrogen uptake within 5% 

of the maximum in its growing season.  

 287 

Fertilisation timings 288 



The median close-to-optimal first and second fertilisation timings year-on-year can be seen in Figure 289 

4a. As with the maximum N uptakes, there was large inter-annual variability both in the historic and 290 

the projected years. For example, in 1982 the precipitation-optimal first fertilisation day was 12 days 291 

after germination while in 1983 it was day 35. Additionally, there seemed to be more inter-annual 292 

variability in the second fertilisation day than the first, which could be explained by the fact that 293 

twice as much fertiliser was applied in the second day. The rolling mean of the two fertiliser 294 

application timings were positively correlated (Pearson r = 0.86), e.g. when one was later the other 295 

was also later. In general the same was true for the raw data, but the correlation was not as strong 296 

(Pearson r = 0.66), showing that different alterations in fertilisation timings were required for each 297 

application during certain years. From 2015 the rolling mean for both timings is predicted to be 298 

increasingly later until 2030. For the first application, the rolling mean was predicted to be the latest 299 

around 2030, but the raw values are not predicted to exceed the historic values.  After 2030, the 300 

rolling mean for both timings is predicted to become earlier and comparable to historic values. This 301 

corresponds with projected high rainfall followed by low rainfall in the same period, Figure 2a.  302 

There was little change in Stability year-on-year (see the rolling mean in Figure 4b). Stability can 303 

vary, with some years being as low as 0.76 and some as high as 0.94, however, this feature of 304 

precipitation-optimal fertilisation timings has not, nor is it expected to, change significantly.  305 

Decadal analysis for precipitation-optimal fertilisation timings shows that, based on projected 306 

rainfall, by the 2030s the timings will be significantly later than the historic timings, with the median 307 

optimal second application predicted to be at day 43 compared to around day 26 historically; see 308 

Figure 4c. Figure 4c also displays the number of close-to-optimal fertilisation day pairs per growing 309 

season in each decade, which varies decade to decade. The 1960s only had 8 close-to-optimal 310 

fertilisation day pairs per growing season while the 2030s (the wettest decade according to 311 

projections) had 22. Ideally, there would be many close-to-optimal fertilisation day pairs per growing 312 

season so the farmer has many chances to time their fertilisation successfully. Although the 2030s 313 

are predicted to have the most close-to-optimal fertilisation day pairs per growing season, the 2030s 314 

also had the lowest max uptake, 178.9 kg N ha-1, Figure 3b. This means the 2030s is predicted to 315 

have many chances to achieve a low maximum uptake relative to other decades.  316 



 
Figure 4:  A history and projection of precipitation-optimal fertilisation timings and their Stability. a) Yearly analysis of 

the median close-to-optimal first and second fertilisation timings. The rolling mean with a window size of 11 years is also 

shown. b) The yearly Stability with a 2.4 day window. Note, a growing season with a Stability of 0.75 means that, on 

average, a farmer will get within 75% of the close-to-optimal timing if they miss the close-to-optimal timing by 2.4 days 

either side.  The rolling mean with a window size of 11 years is also shown. c) Decadal analysis of median precipitation-

optimal fertilisation days and number of close-to-optimal fertilisation day-pairs per season. A close-to-optimal 

fertilisation day-pair is defined as those fertilisation day pairs which achieve a nitrogen uptake within 5% of the 

maximum of that growing season. The median close-to-optimal first and second fertilisation days and close-to-optimal 

uptake are taken over all close-to-optimal fertilisation day pairs in that decade or year.  

 317 

3.3 PRECIPITATION METRICS VERSUS MAXIMUM NITROGEN UPTAKE AND PRECIPITATION-318 

OPTIMAL FERTILISATION TIMINGS 319 

Since projected precipitation patterns were speculative, correlations between precipitation metrics 320 

and maximum N uptakes or precipitation-optimal fertilisation timings can help guide fertilisation 321 

strategies in an uncertain future climate. We found that the mean daily rainfall rate correlated 322 

negatively with maximum N uptake, Figure 5a. However, the best fit line y = −0.065x + 1.52 had 323 

an R value of only	0.35. Mean daily rainfall rates between 1.15 and 2.35 mm day-1 could achieve the 324 

highest maximum N uptakes, although rates above 2.15 mm day-1 could also result in low maximum 325 



N uptakes. Mean daily rainfall rates above 2.85 mm day-1 always had low maximum N uptake. The 326 

mean (one month aggregated) SPI of the growing season explained less of the variance in maximum 327 

N uptake than mean daily rainfall rate, Figure 5b. However, a mean SPI above 0.75 consistently 328 

resulted in low uptakes, while a mean SPI between -0.75 and 0.65 could result in high uptakes. Mean 329 

daily rainfall rate correlated positively with both the first and second precipitation-optimal 330 

fertilisation timings, Figure 5c. The best fit line for the precipitation-optimal second application 331 

timing y = 10.91x + 7.26 had a more positive correlation and higher R value (0.56) than the best fit 332 

line for the first fertilisation day y = 6.66x + 2.19 (R=0.39). This is because the second application 333 

contained twice as much fertiliser as the first, suggesting that the greater amount of fertiliser 334 

applied the greater dependence of precipitation-optimal timing on precipitation. Similar to the 335 

maximum N uptake, mean SPI showed a similar trend, but it explains less variation than mean daily 336 

rainfall rate for precipitation-optimal fertilisation timings, Figure 5d. 337 

 
Figure 5: Correlations of yearly precipitation metrics with maximum nitrogen (N) uptake and precipitation-optimal 

fertilisation days. a) Maximum N uptake vs mean daily rainfall rate in the growing season (March-June), each dot is an 

individual year. The best fit line is described by 𝑦 = −0.065𝑥 + 1.52 and explains 35% of the variance. b) Maximum N 

uptake vs mean standardized precipitation index (SPI) in the growing season. The one month aggregated SPI is 

calculated for each of the 4 months in the growing season and the mean is taken for each year. The best fit line is 

described by 𝑦 = −0.061𝑥 + 1.40 and explains 22% of the variation. c) Median close-to-optimal first and second 

fertilisation day vs mean daily rainfall rate. A fertilisation day is close-to-optimal if it achieves an N uptake within 5% of 

the maximum in that year. The first fertilisation day best fit line (blue) is described by 𝑦 = 6.66𝑥 + 2.19 and explains 



39% of the variance. The second fertilisation day best fine line (red) is described by 𝑦 = 10.91𝑥 + 7.26 and explains 56% 

of the variance. d) Median close-to-optimal first and second fertilisation day vs mean SPI. The fist fertilisation day best fit 

line (blue) is described by 𝑦 = 7.57𝑥 + 15.01 and explains 35% of the variance. The second fertilisation day best fit line 

(red) is described by 𝑦 = 11.82𝑥 +28.33 and explains 46% of the variance. 

3.4 DISCUSSION 338 
Recently the dependence of N leaching on soil moisture/precipitation has been in the spotlight due 339 

to changing local precipitation patterns13,28,38. Researchers have pointed out the importance of 340 

demonstrating both the environmental and economic benefit of adapting fertilisation strategies to 341 

changing precipitation patterns28. However, to our knowledge there have been no attempts to 342 

directly quantify how changing precipitation patterns might affect crop N uptake or how fertilisation 343 

strategies may need to change in future to ensure high NUE in arable farming. Here we used a well-344 

established mechanistic soil physical modelling approach39,40 to study the effect of precipitation 345 

patterns on precipitation-optimal split fertilisation timings to maximise plant N uptake. Importantly, 346 

N dynamics was coupled to water movement in the soil so the effect of precipitation could be 347 

studied directly. As a case study, we modelled maize grown in spring on silt loam in the South East of 348 

England, thus our results would likely change given a different soil texture or crop type. By using 349 

historic and projected (RCP 8.5) precipitation data in the model we could determine how the 350 

precipitation-optimal timings and maximum uptakes have changed and might change in the future 351 

for these conditions. 352 

Historically, the mean daily rainfall in the South East of England had little change in the rolling mean. 353 

There was, however, large inter-annual variability which was more pronounced for projected years. 354 

From 2021 the rainfall is projected to increase until reaching a peak in the 2030, Figure 2a. This was 355 

projected to be accompanied by more heavy rainfall events and less severe droughts, Figure 2. These 356 

predictions are in agreement with previous studies regarding precipitation in temperate regions such 357 

as the South East of England. A warmer climate will accelerate the global water cycle which is 358 

thought to increase extreme precipitation events, i.e, more heavy rainfall events, but less rainy 359 

days41. However, this is not the case for regions in the subtropics where precipitation is expected to 360 

decrease due to climate change42. Thus, our results are only relevant to the region reported and 361 

future studies should consider other climates with contrasting predicted future precipitation 362 

patterns. To apply the same approach to drier regions, where climate change is expected to have a 363 

big impact on NUE and water use efficiency43, it would be important to include additional 364 

mechanisms in the model. In particular, the root growth model should be extended to include water 365 

and nitrogen limited growth. The assumption of water- and nitrogen-independent growth was valid 366 



for arable fields in the South East of England where crops are rarely water or nitrogen deficient. 367 

However, in drier regions crops may produce less biomass due to water deficiency and therefore 368 

have lower N demand which will affect N uptake and leaching. In the drier cases it would be 369 

important control fertilisation amount as well as timing to account for the possibility of low 370 

biomass43,44. Additionally, water scarcity would affect the nitrogen cycle in the soil and soil 371 

saturation dependent reaction rates may need to be included to accurately capture this45. 372 

Only one realisation of the climate model was used in the simulations. However, the behaviour of 373 

the climate realisation used in this study was representative of the ensemble average of multiple 374 

climate realisations, but the particular variability may not be exactly representative of all possible 375 

future trends. Our approach still provides a more realistic example of fluctuations in rainfall patterns 376 

that could be expected and how these fluctuations will impact N acquisition by crops in these 377 

conditions. We also note that the RCP 8.5 climate scenario (business as usual) is hopefully not the 378 

guaranteed scenario. However, this is expected to be the scenario that most perturbs trends that 379 

follow from the historic data set. This scenario is also currently serving as the basis for global 380 

policies29. As such, the selection of the RCP 8.5 projection is likely to be a useful representation of 381 

the projected precipitation trends used in this study. 382 

The historic inter-annual variability in N uptake increased in the projected years, Figure 3a. However, 383 

only the wettest decade of the 2030s was projected to have notably lower maximum N uptake on 384 

the decadal scale (Figure 3b). This result has severe implications for NUE, as crop yields in this period 385 

are not expected to grow well under the current application strategy. Historically, practitioners have 386 

compensated for this by applying more fertiliser in response to reduction in crop yields28,38. While 387 

this might be a necessary strategy to sustain production for this decade, there will likely be 388 

enhanced N leaching and increased N2O emissions in this period. Furthermore, our predictions 389 

suggest that maintaining a compensatory strategy past this decadal dip would be suboptimal, as 390 

precipitation rates are expected to reduce back to their pre 2030s trends. As such, our model results 391 

can help inform strategies for insuring practitioners during suboptimal times.  392 

Both precipitation-optimal fertilisation timings were predicted to become noticeably later in the 393 

2030s, Figure 4c. In addition, there were predicted to be more close-to-optimal fertilisation day pairs 394 

in the 2030s, Figure 4c. It seems that if the weather is wetter, maximum N uptake is reduced, 395 

precipitation-optimal fertilisation timings become later and the number of close-to-optimal 396 

fertilisation day pairs per growing season increases, Figure 4. However, this only means there are 397 

predicted to be more days to achieve this lower maximum, Figure 3. This is confirmed by correlating 398 

precipitation metrics with precipitation-optimal timings and maximum N uptakes and is true for 399 



many wet growing seasons, Figure 5, not just those in the 2030s. This is attributed to the wetter 400 

years having increased chance of leaching46, thus fertilising later gives the roots as long as possible to 401 

establish before fertiliser application to intercept the N18.  However, applying fertiliser too late 402 

means there is less time in the growing season for the crop to take up and utilise the applied N18,24. 403 

The precipitation-optimal timings for wet years find the balance between mitigating leaching and 404 

ensuring enough time for crop uptake. The driest years did not have the highest maximum N 405 

uptakes, Figure 5a, but were higher than the wettest years. This is attributed to low mobility of N 406 

with low soil moisture limiting crop uptake18. To account for the low mobility, the precipitation-407 

optimal fertilisation timings in dry years are predicted to be earlier than wetter years Figure 5c; in 408 

these years there was predicted to be less risk of leaching.  However, the model did not account for 409 

reduced root growth in very dry conditions, thus the maximum uptake for the driest years (if they 410 

were water limited) may be an over estimate.  411 

The current model assumes constant temperature and does not account for the effect of global 412 

warming in order to carefully study the effect of changing precipitation; a scenario relevant to South 413 

East England. However, changing temperature would alter important processes in the model, 414 

including evaporation, root growth47 and transpiration, and N transformation rates in soil38 which 415 

may ultimately affect the results. Including these processes would introduce many additional 416 

unknown parameters introducing further uncertainty to the model. Furthermore, changing 417 

precipitation is thought to have a larger impact than temperature on controlling crop N uptake in 418 

temperate regions13 which was why precipitation was the initial study for our model14. However, 419 

temperature can strongly affect gaseous N loses. Ammonia volatilization increased 3-fold when the 420 

temperature increased from 25 to 45˚C in a lab experiment48. Thus, future models should certainly 421 

consider gaseous N losses when modelling the effect of warming on crop N uptake. However, 422 

temperature increases are unlikely to be this extreme in the South East of England.   Temperature 423 

and precipitation act in tandem to affect cropping systems and both need to be studied to fully 424 

understand the impact of climate change on NUE.  The model assumptions regarding temperature 425 

should be reconsidered in future modelling studies to refine the current predictions, expand them to 426 

include a wider geographical area, and have holistic understanding of the effect of climate change 427 

on worldwide crop N uptake. 428 

Mean daily rainfall rate explained more of the variation in maximum N uptakes and precipitation-429 

optimal fertilisation timings than the mean one-month aggregated SPI, Figure 5. This suggests that N 430 

fertilisation is more sensitive to short time-scale variations in precipitation. SPI is judged to be a poor 431 

indicator of N uptake compared to mean daily rainfall rate. While SPI provides a more intuitive 432 

presentation of precipitation patterns (i.e.  relative drought, flood), it obscures the detail required to 433 



capture precipitation-optimal fertilisation. Additionally, since the calculation of SPI requires fitting a 434 

distribution to the local precipitation data, the correlations may not generalise to other regions. The 435 

full detail in the rainfall pattern was used directly as a boundary condition for the model output, and, 436 

although more complicated, may be required to predict NUE.  437 

Our analysis assumes farmers find precipitation-optimal or close-to-optimal fertilisation day pairs for 438 

each growing season. In fact, most timings achieve poor N uptakes in each decade (Figure S2) and 439 

finding the timings that achieve high uptakes is not a trivial task. If in the future farmers decided to 440 

use the mean precipitation-optimal timings based on historic data, on average they would achieve 441 

87.7% of the potential maximum uptake in the projected years (but the potential maxima are 442 

projected to be lower in the future). By comparison, the same strategy in the historic years would 443 

achieve 89.3% of the potential maximum on average. Thus, not only are the precipitation-optimal N 444 

uptakes projected to decrease due to increased precipitation in the future, but timing fertilisations 445 

based on the status-quo will further increase N losses. There is little an individual farmer can do to 446 

directly stop climate change, but by adapting N fertilisation timings for each year based on crop 447 

growth stage23 and precipitation they could recuperate some of the reduced N uptake caused by 448 

changing precipitation. This adaptation would also reduce the quantity of N fertiliser required to 449 

produce high yields, as well as reducing leaching and greenhouse gas emissions which would help 450 

mitigate the climate impact of agriculture.  Currently, there is no decision support tool available to 451 

guide farmers on when to fertilise based on the forecasted weather. Ideally, field trial data would be 452 

used to create such a tool but the model data presented in this paper provides the starting point to 453 

create tools that can use the past and forecasted weather to guide farmers with a good time to 454 

fertilise49.  455 

To conclude, simulation results show that there has been little change in crop N uptake or 456 

precipitation-optimal fertilisation timings historically due to changing precipitation patterns. 457 

However, there has been notable variation year-to-year. In the 2030s, simulations project N uptake 458 

to reduce and precipitation-optimal timings to become later in the season in response to wetter 459 

weather and, in particular, increased occurrence of heavy rainfall events. In addition, the year-to-460 

year variation in crop N uptake increases due to climate change. Fertilisation strategies should stay 461 

flexible since simulations project optimal-fertilisation timings to become earlier and N uptake to 462 

reduce in the 2040s to figures similar to the historic in response to a reduction in precipitation. 463 



4 ACKNOWLEDGEMENTS 464 

D.M.F., S.R. and T.R. are funded by BBSRC SARIC BB/P004180/1. T.R. is also funded by ERC 465 

Consolidator grant 646809 (Data Intensive Modelling of the Rhizosphere Processes), BBSRC SARISA 466 

BB/L025620/1. D.L.J. and D.R.C. are supported by BBSRC SARIC BB/P004539/1 and the UK-China 467 

Virtual Joint Centre for Agricultural Nitrogen (CINAg, BB/N013468/1), which is jointly supported by 468 

the Newton Fund, via UK BBSRC and NERC, and the Chinese Ministry of Science and Technology. CP 469 

and KW are funded by European Research Council Consolidator grant 646809 (Data Intensive 470 

Modelling of the Rhizosphere Processes). 471 

The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated 472 

support services at the University of Southampton, in the completion of this work. 473 

5 SUPPORTING INFORMATION 474 

Supplementary file with two additional figures is available online to provide extra information on 475 
model-data comparison and further uptake rates presented for decadal analysis. 476 

6 REFERENCES 477 

1 Zhao, D., Reddy, K. R., Kakani, V. G. & Reddy, V. Nitrogen deficiency effects on plant growth, 478 
leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal 479 
of Agronomy 22, 391-403 (2005). 480 

2 Bouwman, A., Van Drecht, G. & Van der Hoek, K. Global and regional surface nitrogen 481 
balances in intensive agricultural production systems for the period 1 ¼—2¼3¼. Pedosphere 482 
15, 137-155 (2005). 483 

3 Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of 484 
ammonia synthesis changed the world. Nature Geoscience 1, 636-639 (2008). 485 

4 Bicer, Y., Dincer, I., Vezina, G. & Raso, F. Impact assessment and environmental evaluation of 486 
various ammonia production processes. Environmental management 59, 842-855 (2017). 487 

5 Seitzinger, S. et al. Denitrification across landscapes and waterscapes: a synthesis. Ecological 488 
applications 16, 2064-2090 (2006). 489 

6 Butterbach-Bahl, K. & Dannenmann, M. Denitrification and associated soil N2O emissions 490 
due to agricultural activities in a changing climate. Current Opinion in Environmental 491 
Sustainability 3, 389-395 (2011). 492 

7 Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. 493 
Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20130116 (2013). 494 

8 Goulding, K. Nitrate leaching from arable and horticultural land. Soil use and management 495 
16, 145-151 (2000). 496 

9 Xiao, Q. et al. Surface nitrous oxide concentrations and fluxes from water bodies of the 497 
agricultural watershed in Eastern China. Environmental pollution 251, 185-192 (2019). 498 

10 Nelson, D. W. Gaseous losses of nitrogen other than through denitrification. Nitrogen in 499 
agricultural soils 22, 327-363 (1982). 500 



11 Cameron, K., Di, H. J. & Moir, J. Nitrogen losses from the soil/plant system: a review. Annals 501 
of applied biology 162, 145-173 (2013). 502 

12 Dobbie, K. & Smith, K. The effects of temperature, water-filled pore space and land use on 503 
N2O emissions from an imperfectly drained gleysol. European Journal of Soil Science 52, 667-504 
673 (2001). 505 

13 Bowles, T. M. et al. Addressing agricultural nitrogen losses in a changing climate. Nature 506 
Sustainability 1, 399-408 (2018). 507 

14 Greaver, T. et al. Key ecological responses to nitrogen are altered by climate change. Nature 508 
Climate Change 6, 836-843 (2016). 509 

15 Gauer, L., Grant, C., Bailey, L. & Gehl, D. Effects of nitrogen fertilization on grain protein 510 
content, nitrogen uptake, and nitrogen use efficiency of six spring wheat (Triticum aestivum 511 
L.) cultivars, in relation to estimated moisture supply. Canadian Journal of Plant Science 72, 512 
235-241 (1992). 513 

16 Powlson, D., Hart, P., Poulton, P., Johnston, A. & Jenkinson, D. Influence of soil type, crop 514 
management and weather on the recovery of 15 N-labelled fertilizer applied to winter wheat 515 
in spring. The Journal of Agricultural Science 118, 83-100 (1992). 516 

17 Li, Y. et al. Determining effects of water and nitrogen input on maize (Zea mays) yield, water-517 
and nitrogen-use efficiency: A global synthesis. Scientific reports 10, 1-12 (2020). 518 

18 McKay Fletcher, D. et al. Precipitation-optimised targeting of nitrogen fertilisers in a model 519 
maize cropping system. Science of The Total Environment 756, 144051 (2021). 520 

19 Snyder, C., Davidson, E., Smith, P. & Venterea, R. Agriculture: sustainable crop and animal 521 
production to help mitigate nitrous oxide emissions. Current Opinion in Environmental 522 
Sustainability 9, 46-54 (2014). 523 

20 Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51-59 (2015). 524 
21 Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential 525 

resource. Annual review of environment and resources 34, 97-125 (2009). 526 
22 Harris, R. H., Armstrong, R. D., Wallace, A. J. & Belyaeva, O. N. Delaying nitrogen fertiliser 527 

application improves wheat 15 N recovery from high rainfall cropping soils in south eastern 528 
Australia. Nutrient Cycling in Agroecosystems 106, 113-128 (2016). 529 

23 Roques, S. et al. RB209 review and revision: WP4 cereals and oilseeds. AHDB Research 530 
Review Number 3110149017 (2016). 531 

24 Wallace, A. J., Armstrong, R. D., Grace, P. R., Scheer, C. & Partington, D. L. Nitrogen use 532 
efficiency of 15 N urea applied to wheat based on fertiliser timing and use of inhibitors. 533 
Nutrient Cycling in Agroecosystems 116, 41-56 (2020). 534 

25 Fischer, R., Howe, G. & Ibrahim, Z. Irrigated spring wheat and timing and amount of nitrogen 535 
fertilizer. I. Grain yield and protein content. Field Crops Research 33, 37-56 (1993). 536 

26 Dharmakeerthi, R., Kay, B. & Beauchamp, E. Spatial variability of in-season nitrogen uptake 537 
by corn across a variable landscape as affected by management. Agronomy Journal 98, 255-538 
264 (2006). 539 

27 Karl, T. R., Melillo, J. M., Peterson, T. C. & Hassol, S. J. Global climate change impacts in the 540 
United States.  (Cambridge University Press, 2009). 541 

28 Houser, M. & Stuart, D. An accelerating treadmill and an overlooked contradiction in 542 
industrial agriculture: Climate change and nitrogen fertilizer. Journal of Agrarian Change 20, 543 
215-237 (2020). 544 

29 Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8. 5 tracks cumulative CO2 emissions. 545 
Proceedings of the National Academy of Sciences 117, 19656-19657 (2020). 546 

30 Alexander, L. V. & Jones, P. D. Updated precipitation series for the UK and discussion of 547 
recent extremes. Atmospheric science letters 1, 142-150 (2000). 548 

31 Williams, K. et al. The Met Office global coupled model 3.0 and 3.1 (GC3. 0 and GC3. 1) 549 
configurations. Journal of Advances in Modeling Earth Systems 10, 357-380 (2018). 550 



32 Williams, K. et al.   Regional Simulations; Spatial Representation: Administrative; Temporal 551 
average: Daily; Time period: Daily; Instance r001i1p00000  (UK Climate Projections User 552 
Interface 553 

2020). 554 
33 Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation 555 

variability increases in a warmer climate. Scientific reports 7, 1-9 (2017). 556 
34 Lloyd-Hughes, B. & Saunders, M. A. A drought climatology for Europe. International Journal 557 

of Climatology: A Journal of the Royal Meteorological Society 22, 1571-1592 (2002). 558 
35 Farquharson, R. Nitrification rates and associated nitrous oxide emissions from agricultural 559 

soils–a synopsis. Soil Research 54, 469-480 (2016). 560 
36 VanRossum, G. & Drake, F. L. The python language reference.  (Python Software Foundation 561 
Amsterdam, Netherlands, 2010). http://docs.python.org/ref/ref.html 562 

37 Ciampitti, I. A. & Vyn, T. J. Physiological perspectives of changes over time in maize yield 563 
dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops 564 
Research 133, 48-67 (2012). 565 

38 Ballard, T. C., Sinha, E. & Michalak, A. M. Long-term changes in precipitation and 566 
temperature have already impacted nitrogen loading. Environmental science & technology 567 
53, 5080-5090 (2019). 568 

39 Barber, S. A. Soil nutrient bioavailability: a mechanistic approach.  (John Wiley & Sons, 1995). 569 
40 Richards, L. Soil-water conduction of liquids in porous mediums. Physics 1, 318-333 (1931). 570 
41 Stocker, T. Climate change 2013: the physical science basis: Working Group I contribution to 571 

the Fifth assessment report of the Intergovernmental Panel on Climate Change.  953-1028 572 
(Cambridge university press, 2014). 573 

42 Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation 574 
perspective. Current Climate Change Reports 4, 301-312 (2018). 575 

43 Ullah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A. & Datta, A. Improving water use 576 
efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought 577 
stress: A review. Advances in agronomy 156, 109-157 (2019). 578 

44 Naser, M. A., Khosla, R., Longchamps, L. & Dahal, S. Characterizing Variation in Nitrogen Use 579 
Efficiency in Wheat Genotypes Using Proximal Canopy Sensing for Sustainable Wheat 580 
Production. Agronomy 10, 773 (2020). 581 

45 Tan, X., Shao, D. & Gu, W. Effects of temperature and soil moisture on gross nitrification and 582 
denitrification rates of a Chinese lowland paddy field soil. Paddy and Water Environment 16, 583 
687-698 (2018). 584 

46 Stout, W., Fales, S., Muller, L., Schnabel, R. & Weaver, S. Water quality implications of nitrate 585 
leaching from intensively grazed pasture swards in the northeast US. Agriculture, ecosystems 586 
& environment 77, 203-210 (2000). 587 

47 Kaspar, T. & Bland, W. L. Soil temperature and root growth. Soil Science 154, 290-290 (1992). 588 
48 He, Z., Alva, A., Calvert, D. & Banks, D. Ammonia volatilization from different fertilizer 589 

sources and effects of temperature and soil pH1. Soil science 164, 750-758 (1999). 590 
49 Rose, D. C. et al. Decision support tools for agriculture: Towards effective design and 591 

delivery. Agricultural systems 149, 165-174 (2016). 592 

 593 

 594 


