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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
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Doctor of Philosophy 

INVESTIGATION OF NON-LINEAR PHENOMENA IN 
ROTOR-DAMPER ASSEMBLIES 

by John Edward Hugh Sykes 

The research, sponsored by Rolls Royce pic and the SERC, has involved a 
three bearing rigid motor assembly incorporating flexible, spring supports 
and unsealed squeeze-film dampers. A range of practical assemblies 
involving, at first, one and then two squeeze-film dampers with different 
static misalignments were studied. Non-linear jump phenomena and subharmonic 
resonances have been demonstrated both experimentally and theoretically 
for a range of rotor unbalance. The effects of varying oil supply have 
been demonstrated. 

Theoretical investigation has modelled the unsealed squeeze-film damper 
with the Short Bearing approximation, providing a variable film extent 
with, for the most part, an absolute zero cavitation level. The equations 
of motion were solved by applying a Runge-Kutta method and resulting 
discrete time series have been used for frequency analysis. The practical 
use of analytical linear approximation has been assessed. 

Frequency analysis of the experimental and theoretical vibration signals 
has led to the construction of waterfall diagrams which present the 
variations in the spectral content of the vibration throughout the speed 
range. Spectral analysis has indicated the effects of misalignment on 
the nature and severity of subsynchronous resonances and jump phenomena. 
In particular, the development of strong subharmonic resonance due to 
the introduction of static eccentricity to a squeeze-film damper is 
demonstrated. Also, the distribution of rotor weight between squeeze-
film dampers with differing supports has been shown to have a marked 
effect on the assembly's vibration response, particularly with respect 
to any jump phenomena that are excited. 

The research has demonstrated that it is possible for the vibration 
signatures of similar rotor-bearing assemblies to be strongly contrasting 
due to different accumulations of tolerances during manufacture, fitting 
and operation. The practical implications are discussed. 

Methods of linearisation are discussed so that the non-linear 
characteristics of the squeeze-film damper might be rapidly estimated 
with reasonable accuracy. Such techniques should prove to be valuable 
in extending the capabilities of existing design analysis software which 
is currently employed to predict the vibration characteristics of 
complex turbomachinery assemblies. 
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Chapter 1 INTRODUCTION 

1.1 The Squeeze-Film Damper (SFD) 

Aero-engines exhibit low structural damping which is 

compensated for by the inclusion of fluid film dampers 

within the rotor-bearing assemblies. The squeeze-film 

damper, or SFD, is a fluid film bearing designed to 

attenuate resonant rotor vibrations in turbomachinery. 

The SFD (Fig 1.1) is similar in operation to a fluid film 

journal bearing except for the essential difference that 

the SFD journal does not rotate relative to the housing. 

The SFD fluid film forces are generated by the squeeze 

and wedge action of the non-rotating journal as it 

vibrates within the housing. The rotation of the shaft is 

taken up by a rolling element bearing between the SFD 

journal and the rotor. 

The SFD, in practice, develops both damping and stiffness 

force contributions in response to rotor unbalance and 

rotational speed. If the SFD is considered to execute 

circular, centred eccentricity orbits then the 

theoretical analysis is simplified and, with atmospheric 

fluid supply pressure assumed, it is possible to identify 

separate damping and stiffness film forces analytically. 

Thus, within the SFD, the damping force, P2, (Fig 1.1) 

acts to dampen the motion between the journal and the 

bearing housing. When an uncavitated fluid completely 

occupies the SFD clearance a 2K Film is said to exist. 

This film produces a particular value of damping force, 

dependent on the eccentricity vector of the journal with 

respect to the bearing housing and its relative motion. 

This 2K film does not develop a stiffness force. In the 



instance when the clearance is occupied by 180* of 

uncavitated fluid, the other 180° being fully cavitated, 

then the TC film damping force (P2) is half the value of 

the equivalent 2TC film damping force and a stiffness 

force (labelled PI, Fig 1.1) is also developed by the SFD 

at right angles to the damping force. These damping and 

stiffness forces are detailed in Table 1.1 (The tables 

are to be found between the Figures and Appendix 

sections). 

Theoretical analyses using film models other than the 2tc 

and Tt films or, for non-circular or uncentralised 

eccentricity orbits develop forces PI and P2 (Fig 1.1) 

which each contain damping and stiffness contributions. 

The influence of fluid inertia may be significant in 

cases where the Gap Reynolds Number, R« is greater than 

unity and its value can be determined from the equation; 

Ro = w.c2/v, where w = rotational speed, 

c = radial clearance, 

and V = kinematic viscosity. 

The Reynolds Number is the ratio of inertial to viscous 

forces and the effect of fluid inertia can be described 

as adding mass to the journal. 

1-2 Current Rotor-Bearing Assembly Design 

The rotor bearing assemblies of modern aero-engines 

exhibit complicated vibrations. The degree of mass 

unbalance in a rotor is a primary source of vibration. A 

degree of rotor unbalance, within prescribed tolerances. 



is present in the assembly initially and this can vary 

during service with a resulting increase in vibration. To 

improve engine efficiency some modern designs comprise of 

upto three rotors, sharing the same rotational axis. A 

long rotor (carrying low pressure turbine and compressor 

blading) is housed, or nested, inside a shorter, hollow 

rotor for medium pressure application which, in turn, is 

similarly nested inside a shorter rotor carrying high 

pressure blading. These rotors can all rotate at 

different speeds and in differing directions. 

An aero-engine gas turbine rotor is often designed with 

a three rolling-element bearing arrangement (providing 

one thrust and three transverse, or radial, locations). 

As well as the two end bearing locations a bearing 

location between these two ends, near to the compressor, 

is often required to raise the first flexural mode 

frequency of rotor-bearing vibration and to help react 

the gyroscopic forces generated by the intake fan. 

1.3 The Squeeze-Film Damper Applied to 

Turbomachinery 

Two schools of thought exist in the design of SFDs to 

attenuate rotor vibration. Prominent aero-engine 

manufacturers in the USA tend towards implementing the 

SFD in a parallel damper and spring vibration isolation 

device, attempting to tune the lower bounce modes. In 

this instance the aim is to maintain the SFD statically 

centralised. 

UK counterparts have successfully applied designs simply 

interposing the SFD between the rotor and the existing 



support pedestal stiffness and, in the absence of any 

bearing misalignment, the static SFD position is with the 

journal fully eccentric under the rotor weight. In this 

instance there is no intention to alter the design's 

natural frequencies but only to provide damping to the 

response. 

Both of these design concepts suffer from the inability 

to control bearing alignments with three bearing 

assemblies. Such misalignments have been suggested as a 

possible exacerbation of certain non-linear phenomena 

arising during engine tests. 

1.4 The Squeeze-Film Damper Response 

The desirable response that a rotor assembly employing 

centralised SFDs is designed to exhibit over the required 

speed range is similar to the linear damped second order 

system response (see Fig 1.2). Most of the assembly's 

damping is provided by the SFDs. Thus as speed increases 

the vibration amplitude increases upto a maximum, close 

to the system's first natural frequency, and then 

decreases asymptotically to a valuedetermined by the 

unbalance at higher speeds until the operating speed is 

attained. The phase response (the phase angle between the 

displacement and the unbalance force) of an uncavitated 

and centralized SFD exhibiting circular orbits varies 

between 0° and 180°. At low speeds the phase is close to 

0' and the rotor displacement is almost in phase with the 

unbalance force. The phase passes through 90° at the 

natural frequency and the rotor continues to invert 

towards 180° (full inversion) at higher speeds. 



This desirable second order response is not always 

displayed over the speed range by the assembly because of 

the presence of jump phenomena (see Fig 1.3) and other 

system non-linearities. Jump phenomena can occur in the 

vibration of rotor-bearing assemblies as very sudden or 

sharp changes in the level of vibration within the 

system. This jump may be up (an increase in vibration) or 

down (a decrease in vibration). The jump is possible 

because of the presence of cavitation which dictates two 

stable vibration levels at any rotor speed within a 

specific speed range. Within this bistable region, 'B' in 

Fig 1.3, jumps may take place between the two stable 

vibration levels. 

The bistable speed range and the two possible levels of 

vibration are both of interest in this study. 

Theoretical research predicts the presence of the 

bistable region and it is of interest to note whether the 

experimentally observed jumps occur within this predicted 

range. 

With the presence of jumps the phase response also 

deviates from a desired second order response by 

revealing a delayed rotor inversion beyond the natural 

frequency. A jump down can cause a phase jump (sudden 

inversion) as well as a drop in amplitude. 



Chapter 2 LITERATURE REVIEW 

2.1 Background 

2.1.1 Hydrodynamic Lubrication 

Osbourne Reynolds' classic paper of 1886 [1] heralded the 

birth of the subject of Hydrodynamic Lubrication. A good 

account of the history of tribology, marking the first 

centenary of Reynolds' paper [1], is given by Dowson [2]. 

Dowson [2] discussed early experimental work including 

studies of olive oil by Beauchamp Tower and described how 

Reynolds followed this with his own work and developed 

hydrodynamic theory from the Navier-Stokes equations of 

fluid motion. The Reynolds Equation was a result of this 

theoretical study and governs pressure generation in a 

fluid-film with neglect of inertial and gravitational 

effects and assuming an iso-viscous and incompressible 

fluid. 

Dowson [2] mentioned squeeze-films and the need for 

continued analysis before the design of components 

utilising squeeze-film hydrodynamic effects can be 

optimised. Pinkus and Sternlicht [33 have provided the 

subject of Hydrodynamic Lubrication with a text referred 

to by numerous researchers in which the various types of 

squeeze-film effects and dynamic loading are studied. 

Vance [4] provides the only text known to the author 

which deals comprehensively with the subject of rotor-

bearing dynamics. Fluid film bearings are utilised 

extensively in modern assemblies. A good introduction to 

the hydrodynamics of journal bearings and SFD's is 

provided and the strong influence that fluid film 

6 



bearings have on practical rotordynamics is made clear. 

This relatively brief text is supported by extensive 

reference to technical publications arising from Vance's 

lengthy experience in the field of rotordynamics. 

2.1.2 Non-Linear Vibration 

Useful background to vibration of rotor-bearing 

assemblies incorporating SFDs exists in many Mechanical 

Vibration texts. Of particular note are those texts that 

begin to consider the non-linear properties of some 

vibration phenomena which can be related to the non-

linear response of SFD's within assemblies. 

Den Hartog [5] considered the amplitude response when 

variable elasticity is a system element. Jump phenomena 

(associated with a bistable region within the frequency 

response of a system) arising from non-linear elasticity, 

or stiffness, is introduced. Timoshenko, Young and Weaver 

[6] also discussed variable elasticity and indicated the 

theoretical possibility of two separate bistable regions. 

The theoretical and experimental presence of a second 

bistable region, or upper branch at higher frequency 

ratios in the response of SFDs has been noted within an 

assembly incorporating a SFD by Simandiri and Hahn [7]. 

Tse, Morse and Hinkle [8] and Magnus [9] introduce their 

readers to some traditional concepts and techniques 

involved with non-linear vibration as a progression from 

linear approximations of real systems. The phase plane 

trajectory presentation, jump phenomena and subharmonic 

resonances are embraced in each of the two texts. 

Stoker [10] and Blaquiere [11] and many other workers 

have provided texts where the basic tools of non-linear 



system mathematical analysis are presented. 

A wealth of published papers exists on the subject of 

non-linear vibration, the majority of which involve 

mathematical solution of approximate models. Some of the 

mathematical treatments yield results which provide 

interesting comparisons with the non-linear phenomena 

exhibited by SFD's. Simple non-linear equations, such as 

Buffing's equation [11], 

x" + u.x' + x3 = F.cos(w.t) , 

yield solutions exhibiting jump phenomena and 

subharmonic, ultraharmonic and subultra harmonic 

resonances. The presence of regions of chaos, determined 

by so-called strange attractors, were first reported by 

Ueda [12]. Since then much academic effort has been 

expended in mathematical identification of the chaotic 

behaviour in such systems. Szemplinska-Stupnicka [13] 

used the principle of harmonic balance to demonstrate 

that an unsymmetric non-linearity gives rise to period 

doubling bifurcation about a subharmonic resonance at 

half the forcing frequency. This lack of symmetry can be 

represented by the Duffing Equation, above, with the 

addition of a time invariant forcing term, Fo as shown 

below 

x" + u.x' + X® = Fo + F.cos(w.t) . 

In comparison, it was shown [13] that symmetric non-

linearity, represented by the Duffing Equation, led to 

similar bifurcation about a subharmonic resonance at one 

third the forcing frequency. For the same forcing 

frequency, the subharmonic resonance solutions are 

accompanied by the other bistable solutions exhibiting 

high amplitude synchronous components and lower amplitude 
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integer harmonics. 

Nayfeh [14] identified limits on the excitation amplitude 

required to generate subharmonic resonances in the 

response of a system involving quadratic and cubic non-

linearities. The equation studied was one resulting from 

modelling the subharmonic response of gas bubbles, 

immersed in liquids, to a harmonic acoustic field. It has 

been shown that cavitating liquids emit subharmonic 

peaks. For subharmonic resonance to be assured, the 

excitation amplitude must be above a certain threshold 

level. Subharmonic resonance is possible, but not 

assured, for excitation below this threshold level down 

to a lower excitation threshold, below which subharmonic 

resonance is impossible. 

Plaut and Hsieh [15] studied the subharmonic, synchronous 

and superharmonic response of a single degree-of-freedom 

system with weak quadratic and cubic non-linearities, a 

time delay in damping and parametric excitation. In some 

instances, increases in the time delay parameter cause 

increases in regions of synchronous bistable response of 

such systems. 

2.1,3 Spectral Analysis 

Fast fourier transform, or FFT, spectral analysis of 

vibration response is very useful in rotor-bearing 

assembly investigations. The presence of non-linear 

phenomena such as subharmonic resonance, combination 

frequencies and jump phenomena can be detected within 

frequency spectra of assembly vibrations. Newland [16] 

presents a range of theoretical techniques and Randall 

[17] described how one might use Bruel and Kj aer 
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equipment in frequency analysis. 

Tomlinson [18] gives an example of how spectral analysis 

has been used to study a non-linear system's response. 

The presence of a non-linear combination resonance or 

frequency in the response of a structural beam is clearly 

illustrated by both experimental and theoretical 

waterfall diagrams and contour plots. 

2.1.4 The Application of Squeeze-Film Dampers 

Oil film journal bearings contribute damping to a system 

and can help to attenuate rotor vibration- However, they 

exhibit a stability threshold dependent on the natural 

frequency of the assembly. Broadly speaking, if the rotor 

is rotating at about twice the system natural frequency. 

then a self excited fluid whiFr can take place in the 

bearing. This 'half speed whirl', also known as 'oil 

whip' [4], is an instability which displays a subharmonic 

response which continues at approximately the same 

frequency as speed is increased further. This vibration 

is theoretically unstable, predicting metal-to-metal 

contact between journal and housing, and Mitchell, Holmes 

and Byrne [19] demonstrated experimentally that the orbit 

attains some finite size, probably due to supply pressure 

and groove effects. On the other hand, the squeeze-film 

damper, or SFD, has no theoretical stability limit 

because the SFD journal does not provide a force in the 

direction of rotor spin. This apparent absence of a 

maximum stable speed is one of the primary reasons for 

the popularity of the SFD, over the journal bearing, as a 

means of introducing damping into a rotor-bearing system 

with inherently low material damping. 

Cooper [20] noted the ability of a SFD to attenuate 
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resonant rotor-bearing assembly vibration levels in 

preference to mechanical vibration restriction. The work 

presented was of a qualitative nature and centred around 

attenuation of resonant rotor orbits due to unbalance 

prior to inversion by means of mechanical stops, journal 

bearings or SFDs. If inversion at low speeds, during run-

up, could be achieved successfully for large unbalances 

then relatively low vibration levels at the operating 

speed would still result. The effect of applying 

mechanical contact with the rotor inverted was to 

immediately change the phase angle between deflection and 

unbalance. Contact at speeds just higher than the 

inversion speed tended to return the rotor to the non-

inverted state. Such behaviour was often random. When a 

hydrodynamic journal bearing was applied to the system 

then inversion was improved. However, smooth operation at 

higher speeds was limited by the onset of oil whirl. With 

a SFD fitted to the system, resonance peaks disappeared 

and rotor inversion took place at low speeds. Oil supply 

pressure dictated the inversion speed and bistable 

operation, with resonance sometimes continuing above the 

critical speed. Theoretical analysis, utilising the 

Reynolds Equation indicated that an oil supply pressure 

increase resulted in a fall in the radial SFD film force 

component and an increase in the tangential component. 

This had the effect of increasing the SFD damping 

capacity and increasing the phase angle, encouraging 

inversion. 

Kulina, Mullen, Natesh and Saltzman [21] demonstrated the 

ability of a parallel SFD and squirrel cage combination 

applied to a rolling element bearing in a multistage 

compressor to eliminate a critical speed problem. Simple 

linear analysis demonstrated the benefits of tuning the 

first critical below the operating range and providing 

the optimum damping to remove resonance peaks. The 

11 



difficulty of determining the level of damping present 

within a practical assembly was noted. Experimental 

tests on a rig were used to design a combination 

providing slightly overdamped conditions. Non-dimensional 

scaling was used successfully to apply the desirable 

experimental conditions to a compressor design. 

Holmes [22] discussed the application of a SFD and 

support spring in both a parallel and series combination, 

citing the example of an automobile gas turbine engine. 

The parallel SFD and spring support combination is useful 

as a vibration isolator where the first assembly natural 

frequency is designed as a rigid rotor bounce mode and 

the SFD is statically centralised. This encourages 

circular centred orbits within the damper which is useful 

at the design stage as the theory for such hydrodynamic 

conditions can be considerably simplified. If oil supply 

pressure to the SFD is high enough then the minimum oil 

film pressure can be maintained above that required for 

cavitation. The presence of oil film cavitation leads to 

undesirable non-linear phenomena which affects the 

vibration response. Jump phenomena (sudden changes in 

vibration amplitude at particular rotor speeds) and 

subsynchronous resonance (due to oil film non-linearity) 

can become undesirable response features. This 

arrangement can be used to tune a dominant rigid body 

bounce mode with a well damped resonance at a rotor speed 

safely lower than the operating speed. The assembly would 

then operate at running speed with the rotor response 

inverted relative to the unbalance force vector and with 

a transmissibility lower than unity provided jump 

phenomena had been avoided (or if a jump down had 

occurred on run up) and no strong subsynchronous 

resonance was excited. 

The application of a SFD element in series with a spring 
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support constitutes a flexibly supported SFD housing. No 

attempt is made to reduce the natural frequencies in this 

instance. No centring exists in the SFD and the rotor 

load is subsequently carried by the oil film. Circular 

centred orbits might be assumed for speeds close to 

critical speeds (for a sufficiently high unbalance force 

with respect to the static rotor load) when simple theory 

could be applied to estimate resonant amplitudes. Also 

quasi-linear (amplitude or force dependent) coefficients 

might be employed to provide alternative predictions, as 

discussed by Holmes and Dogan [23]. Theory shows that an 

uncavitated, or 2K film has no static load carrying 

capability. Cavitation does occur in this SFD arrangement 

in practice and negative pressure spikes (when oil film 

pressure falls below absolute zero pressure for a very 

short time, prior to cavitation) can result in tensile 

film stresses. Large orbits should be avoided; also 

orbits with sudden changes in rotor motion lead to sudden 

changes in transmitted force-

Dede and Holmes [24] studied the experimental and 

theoretical performance of engine journal bearings and 

squeeze-film bearings. Numerical time marching methods 

such as Runge-Kutta and predictor-corrector were 

discussed for solution of the Reynolds' equation. Complex 

engine load cycles lead to complicated journal bearing 

orbit loci and transmitted force response. Further 

complication arises when the differences in effective 

individual masses acting at each bearing along the crank 

shaft are analysed. The dynamic film pressure variation 

and rotor centre displacement orbits within a squeeze-

film bearing were also studied. Sensitivity of rotor 

centre orbit to assumed negative pressure curtailment was 

demonstrated theoretically. 

SFD's have been successfully employed within design 
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modifications made to prototype rotordynamic equipment 

with the objective of reducing large vibrations to 

contractually acceptable levels. Malanoski [25] discussed 

nine case histories where subsynchronous and synchronous 

vibrations have been successfully attenuated with 

modifications incorporating custom designed damping 

assemblies. A large compressor exhibited strong 

subsynchronous response arising from aerodynamic forcing 

of a flexible shaft even though the shaft was supported 

by a tilting-pad bearing (selected because of the lack of 

cross coupling within its oil film therefore lending a 

degree of stability). Application of a parallel SFD and 

spring combination (as discussed by Holmes [22]) to the 

housing of the tilting-pad bearing successfully reduced 

the vibration. 

Ehrich and ChiIds [26] discussed the increasing tendency 

for modern turbomachinery to exhibit instability within 

the design speed range. Modern plant is lighter, runs at 

higher speeds and higher energy and power density levels 

and employs tighter clearances for increased efficiency. 

Instability associated with forward (and, on occasion, 

reverse) subsynchronous rotor whirl generated from 

tangential forcing was discussed. The SFD was cited as a 

popular method of introducing additional damping to an 

unstable system with the aim of rendering the design 

speed range stable throughout. 

The addition of damping to control turbomachinery 

vibrations requires a knowledge of the position of nodes 

for the range of modes of interest. Obviously, damping 

must be provided remote from rotor nodes. However, the 

addition of external damping will affect the mode shapes 

and the precise amount of damping supplied by a 

modification is not easy to identify, particularly with 

non-linear elements such as SFDs. Adaptive rotor 
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vibration control has been proposed on occasion. In the 

few instances where the economics and practical 

limitations would permit, such measures as adaptive 

electromagnetic bearings governed by a control law have 

been expounded. Firoozian and Stanway [27] discuss a 

possible application of state variable feedback control 

of rotor vibration for a limited number of modes. A clear 

limitation that was identified was the possible 

destabilizing influence of higher modes of vibration, not 

taken into account by the state variable controller, on 

the closed loop system. Although filtering of the higher 

modes is a possible stabilising measure, it is clear 

that such a system must be tailor made for each 

application. 

Burrows, Sahinkaya and Turkay [28] demonstrated that the 

vibration performance of a SFD within a light flexible 

rotor-bearing system can be enhanced by adaptively 

controlling the SFD supply pressure. From a knowledge of 

the system frequency response over the operating speed 

range a form of adaptive supply pressure control 

(stepping between a low and a high pressure level) would 

be applied to attenuate vibration at resonant speeds. 

This represents a relatively cheap and simple means of 

bearing control and was considered best implemented if 

the adaptive SFD can be located at a dominant anti-node. 

The electromagnetic bearing would facilitate a more 

comprehensive control scheme but introduces greater cost 

and complexity. ̂  

SFD elements employed in aero-engines to dampen the 

vibration arising from unbalance forcing not only have to 

combat the consistent unbalance arising from production 

tolerances and assembly distortions developing during 

service but also face the possibility of an extreme 

unbalance condition in the event of a catastrophic 
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incident such as blade loss. SFD design performance 

directed towards minimizing the consistent effects of 

relatively low unbalance forcing would be degraded if the 

SFD were also designed to successfully react to a sudden, 

large increase in forcing (due to blade loss or a 

comparable event). Generally, the higher the maximum 

unbalance a SFD is designed to cope with the greater the 

radial clearance within the SFD. Fleming [29] suggested 

the use of a 'Dual Clearance' SFD to provide optimised 

damping for both normal and abnormal unbalance levels. 

The dual clearance SFD is comprised of two SFD elements 

in series. One clearance is designed to perform well 

under normal, consistent unbalance and the other, larger 

clearance is designed to cope with extreme unbalance for 

a relatively short period. The larger clearance is 

prevented from acting with normal unbalance conditions by 

a parallel shear pin arrangement. The shear pins fail 

when the loading reaches a predetermined level, thus 

allowing the squeeze-film action to take place. If the 

engine is successfully shut down the shear pins can be 

replaced during engine repairs. 

This dual clearance design is quite attractive when the 

shear pin arrangement prevents the larger clearance from 

acting at all while still efficiently activating it in 

the event of a predetermined overload. 

2.2 The Theoretical Study of Squeeze-Film Dampers 

& Experimental Comparisons 

The Navier Stokes equations are the starting point for 

the study of the fluid pressure distribution within the 

SFD. The Reynolds equation, derived from the Navier 
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Stokes equations, makes assumptions about the dominant 

forces (as already described in 2.1). White [30] 

discussed squeeze film hydrodynamics, reducing the Navier 

Stokes Equations to the Reynolds Equation. The analysis 

clearly demonstrated the application of the equation to 

squeeze film effects rather than to contemporary journal 

bearing applications. For circular centred orbits the 

instability of the intermediate solution of the three 

solutions available in so called bistable operation was 

demonstrated using the Routh Hurwitz Stability Criterion. 

Pinkus and Sternlicht [3] have provided a widely used 

text covering the basic differential equations and a 

thorough range of the various analyses which lead to 

practical bearing designs. Squeeze film effects are 

discussed alongside dynamic loading and the emphasis of 

the text is directed towards bearings with rotation 

between journal and housing. 

The Reynolds Equation has been and continues to be 

regularly applied to studying the hydrodynamic 

performance of the SFD. Booker [31] provided a table of 

the journal bearing integral arising from the Reynolds 

Equation in order that workers may be spared the task of 

repeating such evaluations. 

Inertial effects within SFD elements are neglected in 

many instances, particularly with a journal carrying 

substantial rotor weight. Ramli, Ellis and Roberts [32] 

suggest that inertial forces are significant due to a 

general increase in the bearing or gap Reynolds Number 

over recent years. The Reynolds Number, being the ratio 

of fluid inertia forces to fluid viscous forces, 

indicates the relative significance of inertial effects 

when it has a value in excess of unity. The paper 

discusses the prediction of inertial coefficients for 
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SFDs of particular land width to diameter, (1/Dj ratios 

using a perturbation technique. Smith [33] published a 

general pressure differential equation for the inertial 

effects, similar to the two dimensional Reynolds 

Equation, which Ramli et al [32] solved using an 

iteration employing a finite difference approximation for 

the differentials. Results for inertial coefficients for 

short bearings and long bearings are given for different 

methods of solution and compared with the asymptotic 

results for (1/D) tending to zero (the Short Bearing 

Approximation) and to infinity (the Long Bearing 

Approximation). It was concluded that a simple solution 

for inertial coefficients, which required little 

computation was possible. 

Roberts, Holmes and Mason [34] incorporated inertial 

forces within a theoretical linearized theory by 

introducing 'acceleration' coefficients associated with a 

'hydrodynamic mass'. A least squares parametric 

identification technique was applied to discrete 

experimental time series. The resulting SFD damping and 

stiffness coefficient estimates converged after 

sufficient iteration and, correspondingly, the predicted 

state variable variation with time coincided with 

experimentally measured response. If coefficient 

iteration is limited to the damping term then convergence 

is degraded over a similar number of iterations. 

Limitations with this technique include the assumption of 

linear independence between the velocity and acceleration 

and the absence of 'memory' effects (which typically 

arise in cavitated films). Experimental free-decay tests 

with full film conditions for a range of parallel spring 

(beam) stiffness, static eccentricity and initial 

displacement provided data from which, with a knowledge 

of undamped natural frequencies and effective masses the 

various parameters could be identified. The Short Bearing 
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theoretical radial and transverse damping coefficients 

were generally lower than those identified from 

experiment. Experimental damping coefficient variation 

with static eccentricity was however similar to Short 

Bearing results. Experimentally determined inertial 

coefficients were generally an order of magnitude higher 

than those predicted by the theory. 

The Short Bearing Approximation has been popularly 

applied to those unsealed SFDs employed in aero-engine 

rotor-bearing assemblies which have a small (1/D) ratio. 

The approximation assumes fluid flow within the SFD to be 

dominant in the axial direction and Mohan and Hahn [35] 

assumed this to be valid for (1/D) < 0.25 referring to 

[33 and others for justification of this figure. Mohan 

and Hahn indicated that at that time (1974) there was a 

lack of design data for SFDs. Dowson [2] made a similar 

suggestion about squeeze-film elements as a whole in 

1986. 

f 
The paper [35] indicated the pitfall that improper SFD 

design can lead to transmissibilities rising above unity 

in some instances. Mohan and Hahn examined a two bearing 

SFD arrangement with a centrally preloaded rotor and 

employed the Capriz [36] expressions for a it, or 180" 

film. Distinction was made between three modes of 

response, namely inverted, whirl and chaotic vibrations. 

The effects and interaction of bearing geometry, fluid 

viscosity and rotor unbalance were discussed with 

reference to the effects on transmissibility and, in 

turn, on the implications on rolling element bearing 

life. The region of SFD operation within which linear 

theory may be usefully applied was identified. A design 

example was presented using the theory discussed. 

Gunter, Barrett and Allaire [37] applied the Short 
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Bearing Approximation to the Reynolds Equation in their 

theoretical analysis. Using polar coordinates, they 

integrated the pressure expression in closed form 

assuming circular centred orbits. This assumption leads 

to a tangential force due to damping and a radial force 

due to stiffness within the fluid film. The effect of 

reducing these forces by a factor of four when a circular 

central supply groove is introduced was outlined. The 

desirable aspects of including a parallel retaining 

spring and undesirable cavitation effects were discussed. 

Practical application of this theory was developed for a 

two-spool jet engine. When cavitation occurs, it was 

demonstrated that SFD stiffness increases at a greater 

rate than damping as eccentricity increases. A non-linear 

transient analysis produced a rotor orbit time history 

and the effects of unbalance on maximum film pressures, 

transmissibility and the possibility of nonsynchronous 

whirl were Indicated. Indications of SFD overload due to 

experimental observation of jump phenomena were 

presented. A range of conclusions was given including the 

possibilities for valid application of linearized 

coefficients (which are relatively constant for 

eccentricities below 0.4), for desirable phase between 

eccentricity and unbalance at operating speed and for the 

identification of bifurcation. 

Feder, Bansal and Blanco [38] also studied the SFD forces 

resulting from circular centred orbits but used the Long 

Bearing Approximation to simulate the effect of end seals 

on discharge pressure. Variation of fluid extent was 

studied between the n film and the 2n film. Linear 

superposition of inlet and cavitation pressures was 

assumed theoretically. A circular centred orbit size and 

speed was stipulated in experimental tests. The radial 

(or stiffness) and tangential (or damping) force 

coefficients (known as Tondl coefficients) were evaluated 
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and compared with the test values derived from a digital 

test data reduction procedure. The coefficient 

normalization and pressure superposition were justified 

by the agreement between theoretical and experimental 

results. It was also demonstrated experimentally that 

radial force decreased (indicated by increasing 

eccentricity) as inlet pressure was increased upto the 

point where a full, 2K film was achieved. 

The theoretical analysis of more general SFD theory often 

takes the form of a numerical integration of the film 

pressures to obtain SFD forces which are in turn involved 

in equations of motion whose solution is solved over some 

defined period of time by a powerful numerical method 

such as the Runge-Kutta method. Numerous texts covering 

numerical methods exist. Carnahan, Luther and Wilkes [39] 

presented an extensive range of numerical methods 

applicable to the solution of practical dynamic systems. 

Bert and Stricklin [40] compared the ability of six 

different numerical integration methods to generate the 

transient solutions to linear damped, non-linear 

conservative and non-linear non-conservative equations of 

motion for one degree of freedom. Two explicit methods, 

namely the central difference and Runge-Kutta methods and 

four implicit methods, namely the Houbolt, Newmark, 

Wilson Theta and Harmonic Acceleration methods were 

analysed. Comparing the accuracy of the peak values alone 

the explicit methods were the most efficient algorithms, 

with the the central difference method the best overall. 

High order methods with variable step and sometimes 

variable order have been successfully applied to SFD 

research. 

Holmes [41] investigated the load-carrying capability of 

SFDs employing the Runge-Kutta-Merson method to perform 

the time history solution of the dynamic equations. The 
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SFD was shown to be unable to support a static force 

alone in the absence of an additional dynamic force. 

Dynamic force capacity arising from tangential and, or 

radial velocities was demonstrated. Chaotic solution of 

the equations of motion was shown to result when the SFD 

parameter, 0 was too low, where 

B = m.R.13/(m.w.c®) , 

M = oil viscosity, 

R = mean radius, 

1 = land width, 

m = rotor mass per land, 

c = radial clearance and 

w = rotational frequency. 

The onset of chaotic behaviour of the SFD is relevant to 

the relatively recent studies into the occurrence of 

chaos in non-linear systems [12]. 

Humes and Holmes [42] employed the Runge-Kutta-Merson 

method to solve the same dynamic equations as presented 

in a preceding paper [41], but used the Booker integral 

table [31] to evaluate the it and 2n film SFD forces and 

introduced a parameter, "b" which determined the extent 

of subatmospheric film pressures. Adjustment of "b" 

allowed film force variation between a TT and a 2TC film, 

ie; 

P = P * + b(P2tt - PT.) 

where P = resultant film force, 

Pre = Tt film force and 

PSTC = 2K film force. 

Craven and Holmes [43] discussed the numerical solution 
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of the equations of motion of a reciprocating engine 

crankshaft utilising a Short Bearing approximation for 

bearing forces. A fast numerical method involving the 

trapezium rule and Newton iteration proved to be between 

five and ten times faster than the Runge-Kutta method. 

This was primarily due to the complex bearing load cycles 

requiring very small Runge-Kutta time steps for adequate 

accuracy. In comparison the unbalance excitation 

experienced by SFDs in turbomachinery is very simple and 

the time step size is primarily affected by the squeeze-

film force non-linearities. 

Guilhen, Berthier and Ferraris [44] employed the Runge-

Kutta-Gill, Adams-Moulton and Newmark methods to study 

the instability of second order rotor-bearing systems 

whose matrices are non-symmetric due to gyroscopic 

effects and hydrodynamic bearing properties. All three 

methods provided satisfactory numerical convergence. The 

Newmark method was also used to produce the steady state 

response. Low daumping caused lengthy transients which 

sometimes required prohibitive computation times before a 

steady state solution was reached. 

Greenhill and Nelson [45] presented a secant root finding 

algorithm for application to rigid or flexible rotor, 

multiple SFD assemblies modelled with closed form SFD 

stiffness and damping expressions arising from the 

assumption of circular centred orbits. The algorithm 

iterated using a functional relationship between a 

proposed eccentricity ratio and the calculated unbalance 

response and it was sensitive to the increase in non-

linear behaviour at higher eccentricity ratios. 

Applications of this method which were presented include 

a rigid rotor, single centralised, tt film SFD system 

whose bistable response at sufficiently high unbalance 

factors was clearly demonstrated by the results from the 
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algorithm. Also flexible rotor, multiple SFD analysis was 

presented, culminating in a twenty element model with 

nine discrete masses, three SFDs and a total of eighty 

four degrees of freedom. Convergence problems were 

discussed and practical explanation for such 

shortcomings was provided. 

Taylor and Kumar [46] also used the assumption of 

circular, centred and synchronous SFD orbits. The Short 

Bearing (Ocvirk) solution employing standard integrals 

[31] was applied to a rigid rotor, single parallel SFD 

and spring combination. The steady state theoretical 

solutions from a non-iterative technique were presented. 

The bistable amplitude, transmissibility and power 

dissipation characteristics of the response were produced 

for a range of unbalance and different SFD parameters. 

The power dissipation arising from the tangential film 

force components and its sensitivity to increases in 

unbalance was demonstrated. Such information would be 

useful in designing oil cooling equipment and studying 

the power requirements for starting up the machine. The 

discussion of this paper [46], by Hahn highlights the 

advantage of transient studies in studying solution 

stability. 

The forces generated by SFD elements are non-linear for 

all but highly idealised situations. However, the SFD is 

often part of a practical assembly which can be modelled 

successfully employing linear theory which demands 

relatively small amounts of computation. If a non-linear 

SFD model is incorporated into a large linear model of 

the whole assembly then the effort required to achieve a 

solution becomes computationally exhaustive. The 

techniques applied to the linearization of journal 

bearing film force predictions can be readily adapted to 

the SFD application. Much research has been directed 
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towards achieving a satisfactory linear model for the SFD 

in order to maintain overall computational efficiency. 

Holmes [47] extended the earlier work carried out by 

himself and other workers investigating the linear 

modelling of SFD film forces. A range of linear, quasi-

linear and non-linear models employing the Short Bearing 

Approximation were examined. In this instance the SFD 

formed part of a vibration isolator, with a parallel 

retaining spring exhibiting a range of static 

eccentricity. Linear damping was studied by observing the 

effect of small perturbations of the journal centre 

(about a static equilibrium position) on the uncavitated 

film forces. Linear damping coefficients were then 

developed which depended on a static eccentricity 

determined from a knowledge of the rotor weight and the 

parallel spring stiffness. Displacement dependent, or 

quasi-linear coefficients were developed whose effect was 

adjusted at each step of a dynamic analysis. A feature of 

a linear analysis had been the inability of the 

coefficients to curb journal displacements to the degree 

exhibited by the more accurate quasi-linear analysis. 

Holmes and Sykes [48] rapidly estimated the sizes and 

dispositions of large vibrations resulting from the 

combined action of rotating and static forces in rotor 

assemblies incorporating oil-film journal bearings and 

SFDs. Correspondence between the velocity and 

displacement coefficients for journal centre perturbation 

from a static equilibrium position and from a steady 

state orbit was demonstrated. 

Holmes and Dogan [23] applied quasi-linear coefficients 

to a model comprising a flexible pedestal in series with 

a SFD supporting a rigid rotor. The effective damping and 

stiffness coefficients were derived from tabulated data 
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for a range of dynamic force. A mean static journal 

position and synchronous amplitudes in the horizontal and 

vertical directions were evaluated for each set of SFD 

governing parameters. Comparisons between the SFD 

displacement orbits of a number of quasi-linear and non-

linear computations indicated the potential of such a 

method to improve the modelling of SFD operation in 

rotor-bearing assemblies by using computationally 

efficient linear analysis techniques. 

Burrows, Sahinkaya and Kucuk [49] modelled SFD oil-film 

forces using estimated linear coefficients derived from 

application of a least-squares optimisation technique to 

the Reynolds Equation. The paper discussed the ability of 

analytical bearing coefficients to provide adequate 

linearized approximations of SFD film forces. The 

arrangement studied was a parallel SFD and retainer 

spring assembly exhibiting varying degrees of static 

eccentricity and attitude. It was concluded that linear 

coefficients provide adequate predictions only when 

running at low speeds with a small unbalance, whereas the 

least-squares estimates are applicable to a range of 

operating conditions, such as resonant conditions. 

Stanway, Burrows and Holmes [50] carried out discrete-

time modelling of the SFD. For a parallel SFD and 

retaining spring combination experimental PRBS (pseudo-

random binary sequence) perturbation was applied to the 

SFD journal within its static housing for a range of 

static journal eccentricities. The input PRBS was 

provided by an electromagnetic shaker and measured 

together with the journal amplitude response. From these 

the frequency characteristics of the assembly were 

derived. The oil pressure was maintained at a level 

capable of providing a full film. The damping 

coefficients only were sought and results from experiment 
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were compared with those from the Short Bearing theory. 

With PRBS displacements less than ten per cent of the 

clearance, the linearization technique was appropriate. 

The introduction of cavitation leads to cross coupling 

effects and subsequent research has examined this in 

detail. 

Stanway, Firoozian and Mottershead [51] applied a time 

domain filtering algorithm to the displacement response 

to single frequency excitation. A similar arrangement was 

employed as in previous research [50] with an unsealed 

SFD. Direct and cross damping coefficients for a it film 

SFD model were compared with experimental estimates for 

the uncoupled and coupled cases. The damping coefficients 

estimated from experiment were generally lower than 

those predicted by the tc film. The frequency response 

functions from identified models and FFT analysis of 

experimental data were also compared with results from 

the Tt film theory. 

Szeri, Raimondi and Giron-Duarte [52] derived linear 

force coefficients for SFDs. Analysis used the full 

Navier-Stokes equations and simplified the complicated 

expressions by an order of magnitude analysis. The 

inertial contributions to the film forces were discussed. 

With a 2TC film the magnitude of the inertial 

coefficients varied linearly with the Reynolds Number. 

Conclusions drawn include the importance of inertial 

effects in SFDs with large clearance, high speed and low 

viscosity, that is when the gap Reynolds Number, R® is 

greater than unity. 

Chen and Xu [53] employed harmonic balance to estimate 

equivalent Fourier displacement coefficients for a rotor 

supported in a SFD without centralisation. SFD orbits 

demonstrating subharmonic rotor motion were derived from 
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synchronous and non-synchronous Fourier coefficients and 

compared with the response obtained from Runge-Kutta 

solutions. Two cases were presented with only light 

static loading with respect to the dynamic unbalance 

force. Xu [54] applied harmonic balance to the 

synchronous response of simple rigid and flexible rotor 

assemblies. Again the harmonic balance results compared 

well with Runge-Kutta solutions for the limited results 

presented. Simple analysis of bistable operation was 

presented but no results around natural frequencies were 

discussed. 

Feng and Hahn [55] compared theoretical results from 

incompressible lubricant models (cavitation at absolute 

zero pressure and at ambient pressure) and from 

homogeneous compressible film models with experimental 

results from a vertical axis SFD and parallel spring 

assembly. The compressible film model of Hayward [56] 

gave a higher viscosity for a cavitated film than for an 

uncavitated film whereas the Isbin model [57] gave the 

reverse. Thus the Hayward model compared quite well with 

the zero cut-off incompressible model and the Isbin with 

the ti film model. Application of the Routh stability 

criterion revealed that, in agreement with 

incompressible models, the compressible models only 

predict instability for the intermediate of the three 

solutions at each speed within the bistable region. Over 

the narrow range of bearing parameter, the Hayward model 

compared best with experimental results and the zero 

pressure cut-off was shown to give nearly as good a 

comparison. 

Feng and Hahn [58] provide so-called jump maps indicating 

the regions of bistable operation for ranges of SFD 

bearing parameter, speed and unbalance. The effect of 

increased inlet pressure in suppressing jumps was also 
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noted. The test rig used was an idealised vertical axis, 

single SFD configuration with a parallel retaining 

spring. Experiment and theory lacked correlation 

throughout and it is considered that little confidence 

can be placed in the use of the jump maps for design. 

Quantitative data regarding SFD bistable operation should 

only be applied when similarity between SFD designs is 

maintained and the configuration of the SFD within rotor-

bearing assembly is also comparable. 

Nikolajsen and Holmes [59] demonstrated experimentally 

the effectiveness of SFDs as vibration isolators within a 

flexible rotor-bearing system involving gyroscopic 

effects from rotor mounted discs. Oil film journal 

bearings were in series with the SFDs. The use of 

Belleville washers as linear springs enabled easy 

variation of support stiffness which is not possible with 

a squirrel-cage arrangement. Linear theory was utilised 

and response predictions, when compared with experimental 

responses proved to be reasonable. Larger values of SFD 

damping resulted in well defined instability threshold 

speeds both theoretically and experimentally. Lower 

damping produced stable responses with the onset of non-

synchronous whirling at speeds between two and three 

times the first critical speed. A second whirl region 

would appear at higher speeds. With increasing oil 

viscosity firstly the second and then the first whirl 

regions would be eliminated. Such non-linear vibrations 

clearly impair the system performance. 

Dyer and Reason [60] investigated experimentally the 

generation of tensile stresses in a journal bearing oil 

film. A maximum tensile stress of 740 kN/m^ was recorded. 

Generation of tensile stresses was shown to be prevalent 

but sporadic in nature over a number of journal cycles 

when, if tensile stresses were not developed then the 
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minimum pressure would be similar to the oil vapour 

pressure over a finite angular region. Factors inhibiting 

tensile stress development by encouraging cavitation 

include bearing surface finish, the presence of dissolved 

gas, successive fluid tensioning, fluid particulate 

content and fluid viscosity. The generation of tensile 

stress can be greatly enhanced by squeeze film effects, 

as in SFDs, and is dependent on the rate of divergence 

between the bearing surfaces, such that no tensile stress 

is developed above a critical eccentricity ratio, 

€ < O R I T ) = D / c , 

where 'D' is the critical rate of bearing surface 

divergence (in m/rad). It was also noted that bearing 

surface damage could be caused by tensile stress in 

addition to well recognised cavitation effects. 

Walton, Walowit, Zorzi and Schrand [61] presented 

experimental photographic evidence demonstrating the 

development and behaviour of cavitation within SFDs with 

groove feed/drain and hole feed/drain facilities. Typical 

aircraft gas turbine SFD designs were employed with 

speeds upto 20 000 rpm. The grooved SFD provided evidence 

supporting the popular assumption that fluid flow is 

predominantly axial. Also an increase in the oil supply 

pressure was shown to increase the minimum speed at which 

cavitation begins. However, contrary to popular 

assumption was the observation that significant flow 

reversal and evidence of cavitation within the groove 

takes place. Cavitation within a grooved SFD was stable 

and repetitive whereas, the hole feed/drain SFD 

demonstrated a less repeatable cavitation pattern and 

indicated the need for comprehensive analysis. In general 

the need for the implementation of more complicated and 

more accurate boundary conditions within analyses is 
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required if progress is to be made with the application 

of existing methods. 

Zeidan and Vance [62] studied the cavitation taking place 

in a controlled orbit SFD with high speed motion pictures 

and piezoelectric pressure transducers. Five regimes of 

SFD operation were identified through a speed range upto 

5 000 rpm and with an eccentricity of 0.45. The 

inadequacy of the popular rt film approximation was 

illustrated. Air ingress through serrated piston rings, 

sealing the SFD, reduced the negative pressure amplitude 

and inhibited vapour cavitation. Although detrimental to 

damping, the air bubbles can reduce the potential of 

bearing surface damage due to vapour cavitation. Pressure 

generation within the supply groove was identified due to 

axial flow from the SFD land into the groove. 

Botman and Samaha [63] studied experimentally the 

behaviour of supercritical rotors mounted vertically 

within a bearing arrangement incorporating SFDs. Rotor 

speeds of upto 55 000 c/min were achieved by applying a 

multiplane, multispeed balancing technique employing the 

least squares method. Rotor response was, generally, 

dominated by a bistable region around the first critical 

speed with subharmonic resonance featuring at higher 

speeds still. The effect of reducing the SFD clearance, 

without increasing the oil supply pressure, was to 

degrade the response by introducing rotor instability at 

very high speeds. A higher supply pressure, with the 

smaller clearance, eliminated the-instability. It was 

concluded that bistable operation is more important than 

subharmonic resonance, although both are deleterious to 

rotor operation. The critical speeds showed some 

dependence on rotor unbalance and linear transfer matrix 

(critical speed) and unbalance response results were 

compared with experiment. 
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Cookson, Feng and Kossa [64] studied the effect of 

Journal misalignment on SFD film forces. The oil film 

pressure profile is affected by axial and angular 

misaligning couples. SFD film force analysis was carried 

out employing the Simpson integration of the SFD film 

pressures with 72 circumferential and 20 axial divisions 

per land and was considered accurate for pressure 

resolution. It was concluded that significant increases 

in transmissibility can arise from journal misalignment 

and, for the case presented, a maximum misalignment slope 

of 0.0005 radians was required for such effects to be 

negligible. 

Holmes and Dede [65] demonstrated the nonlinear 

characteristics of rotor response resulting from the 

complicated unbalance generated by two rotors. (Practical 

aero-engine assemblies comprise upto three nested rotors 

mounted in SFD bearing arrangements.) One rotor was 

coupled to the SFD housing and the other was coupled to 

the journal. The rotors could rotate at differing speeds 

and in the same or different directions. The SFD 

experimental response illustrated bistable operation and 

subharmonic resonance. Spectral analysis demonstrated the 

subharmonic frequencies and also indicated the presence 

of combination frequencies. Combination frequencies 

resulted from both the addition and subtraction of the 

rotor speeds. The non-linear characteristics borne out in 

experimental results were demonstrated by theoretical 

analysis. Nayfeh [66] demonstrated that a single degree-

of-freedom system involving quadratic and cubic non-

linearities, when excited by two frequencies, produced a 

response containing combination tones very similar to 

those demonstrated by Holmes and Dede [65]. 

Sideband frequencies may also be present in the rotor-
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bearing response. Neilson and Barr [67] demonstrated the 

sideband generation using a bearing support with a 

discontinuous stiffness characteristic. A squirrel cage 

support acted alone upto a particular radial displacement 

after which housing contact with a snubber ring caused a 

second, stiffer squirrel cage to provide additional 

bearing housing support through the snubber ring. The 

radial clearance between the bearing housing and the 

snubber ring was of similar dimensions to an aero-engine 

SFD. It was found that the sideband spectral spacing 

corresponded to the frequency of contact between the 

housing and snubber. Thus the sidebands are combination 

frequencies. Jumps down with increasing speed were 

generated as the speed passed through and beyond the two 

dominant natural frequencies. Earlier studies by Black 

[68] on the effect of contact between a whirling rotor 

and a stator had also demonstrated various jump phenomena 

for conditions of synchronous rotor whirl. Also 

counterwhirl with rolling or slip at the contact was 

studied. It was concluded that, dependent upon the rotor 

and stator damping, there is a minimum angle of friction 

below which counterwhirl is impossible. 

2.3 Assessment of Previous Work and Direction for 

Current Research 

Although published work generally shows an appreciation 

of the significance of SFD nonlinear phenomena it has not 

pursued the analysis of phenomena observed in the 

responses of practical rotor-bearing assemblies to assess 

the influence of pertinent rotordynamic elements such as 

SFD misalignment and support conditions. Rather, previous 

research has tended to simplify the problem. This has led 
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to a good understanding of the response of the single, 

centralised, it film SFD configuration in particular. 

Deviations from this design have received very little 

attention, considering the extent to which practical 

considerations deprive the assembly of accurate SFD 

alignment. 

The results from research published to date into the non-

linear phenomena associated with SFDs have all been 

directed to idealised test facilities for ease of 

modelling. The range of phenomena reported has been 

limited. Simandiri and Hahn [7] present one occurrence of 

jump phenomena in a range of experimental studies 

supporting their theoretical modelling [69] in which a 

range of jump phenomena are presented and a comprehensive 

range of 'design' data is discussed. The range of 

validity [7] is discussed quite well except that the 

experimental SFD sealing conditions are not detailed. 

Quantitative results should only be applied to SFDs with 

similar geometries, including the supply groove depth and 

discharge paths. Similar criticism can be levelled at the 

range of validity of the 'design' data presented by Feng 

and Hahn [58]. All of the results are for the 

idealisation of statically centralised SFDs. The validity 

of this assumption, even though it may be a design aim of 

those companies employing such bearing assemblies, 

becomes less valid when the practical build up of 

manufacturing tolerances and in-service assembly 

distortions cause the static SFD set up to become 

eccentric. 

White [30] provides an early and extensive study into 

SFDs which demonstrated jump phenomena with a vertically 

mounted rigid rotor. In practice, such a configuration is 

rarely found in turbomachinery. White was unable to draw 
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useful conclusions apart from the fact that jumps 

occurred at well defined speeds, dependent on the SFD 

parameters. 

Gunter et al [37] provide very limited experimental 

evidence of jump phenomena and the idealised condition of 

a static central SFD is assumed, enabling simplified 

theoretical modelling. It is noted with interest that, 

where provided, the SFD sealing appears to be carried out 

by 0-rings. It should be emphasised that the dynamic 

characteristics of 0-rings vary non-linearly with a range 

of parameters and is particularly sensitive to 

temperature and amplitude variations as discussed by 

Smalley, Darlow and Mehta [70]. Xu [71] studies jump 

phenomena as part of the transient analysis of flexible 

rotor-bearing assemblies. 

The published research generally presents a large amount 

of information regarding the ideal operation of SFDs and, 

in the pursuit of quantitative experimental correlation, 

test rigs have been designed to control such variables as 

SFD misalignment. When considering the practical 

application of SFDs it is necessary to appreciate such 

desirable ideal design configurations. However, the 

accurate control of SFD alignment within current aero-

engine assemblies is not possible, particularly when the 

engine is of a modular build. Therefore, an understanding 

of how SFD misalignment and its interaction with other 

variables, such as SFD housing support flexibility, is 

also required at the design stage if the potential for 

non-linear phenomena is to be appreciated prior to 

commissioning. It is clear that useful research would 

involve a study of those SFD variables of practical 

significance which have not been appreciated by current 

published work. 
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No published research (known to the author) studies the 

effect of rotor-bearing alignments on the presence of 

jump phenomena and subharmonic resonance. The preloading 

of flexible bearing supports, such as squirrel cages, and 

the consequent SFD static eccentric conditions determine 

the severity of the non-linear response generated in 

practical situations. Simply, for a given unbalance and 

other dynamic variables, operation of a SFD, supported 

concentrically by a parallel squirrel—cage arrangement, 

may satisfactorily attenuate transmitted rotor forces. 

However, if the same arrangement had a static SFD 

eccentricity then the SFD forces generated would be 

significantly more non-linear and could well introduce 

undesirable non-linear phenomena into the running speed 

range. 

A broad understanding of the qualitative effects of 

misalignment would be highly instructive at the design 

analysis stage. The influence of individual components 

within a full assembly would be very difficult to assess 

unless the assembly is built up in stages from a 

relatively simple assembly whose components can be 

assessed progressively. 
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Chapter 3 RESEARCH OBJECTIVES 

The lack of previous research into the influence of 

manufacturing assembly tolerances and SFD support 

considerations on non-linear phenomena called for a broad 

investigation into these parameters. Broad objectives 

were proposed which, it was considered, could be achieved 

within the time limit of the Research Grant. The research 

objectives were as follows: 

To reproduce non-linear phenomena within the 

experimental response of a rotor-bearing assembly 

test rig for a range of configurations (Table 3.1). 

Primary consideration was to be given to the 

experimental simulation of jump phenomena, as 

observed in actual aero-engine tests. Previous 

reported experimental occurrences were limited. The 

objective of the research forming this thesis was to 

establish, as far as possible, a comprehensive range 

of results demonstrating non-linear jumps. 

Another primary engine vibration problem, namely 

subsynchronous resonance was also to be a significant 

non-linear response embraced by the investigation. 

The configurations (Table 3.1) were chosen to promote 

a comprehensive illustration of the influence of 

individual rotordynamic components upon the overall 

response. Thus the configurations would initially 

comprise of a single SFD and proceed to involve two 

SFDs where each damper experienced a range of static 

set-up conditions. 
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The choice of configurations was made to enable the 

study of as wide a range of practical assemblies as 

the time allowed. The configuration chronology was 

designed to facilitate the appreciation of each 

dynamic element's contribution to the overall 

assembly response; the final assembly was to 

demonstrate the essential features of the sponsor's 

design concept. 

Rig configuration la (Table 3.1) would involve one 

SFD, SFDl part way along the rotor, its housing 

rigidly supported to ground, and flexible support, 

kg at the bearing further towards the free rotor end. 

This would permit two degrees of freedom (DOF), 
namely the horizontal and vertical displacement of 

the rotor relative to ground. SFDl would be centrally 

positioned with no static eccentricity. Configuration 

lb would introduce static eccentricity to SFDl thus 

increasing the effective rotor weight that SFDl 

carried. 

Rig Configuration 2a would introduce the action of 

SFD2 between the flexibility, kz and the rotor. There 

would now be four DOF, namely the horizontal and 

vertical rotor and SFD2 housing displacements 

relative to ground. Configuration 2a would 

maintain SFDl in a statically centralised condition 

and the SFD2 journal would carry the rotor weight so 

that it was fully eccentric, Eoz equal to 1.0, due to 

gravity in the static condition. The effect of 

introducing a static eccentricity to SFDl would then 

be studied. By further increasing this static 

eccentricity, Eoi to 1.0 and centralising SFD2, 

configuration 2b would be achieved. 
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By introducing the flexible support, ki between the 

SFDl housing and ground the rig would now exhibit six 

DOF, that is the horizontal and vertical rotor, SFD2 

housing and SFDl housing displacements relative to 

ground. With all three bearings statically aligned, 

the rotor weight would dictate configuration 3a, with 

both Eoi and Eos equal to 1.0. Then configuration 3b 

could be achieved from configuration 3a by 

centralising SFDl, illustrating off-loading of SFDl 

due to misalignment of its housing. 

The rotor-bearing assemblies were to be modelled 

theoretically to assess the capability of numerical 

predictions to reproduce non-linear phenomena. A 

general model of the SFD, allowing variations in 

cavitation and supply pressures, was to be applied to 

the rig model and analysed using numerical 

integration. Simpler analysis of models using 

analytical non-linear SFD film forces and linear 

damping approximations was to be used to provide 

additional information. 

Theoretical and experimental results were to be 

analysed and presented, for the most part as rotor 

centre orbits, frequency response graphs and 

waterfall diagrams. These popular forms are in 

keeping with general rotordynamic practice. 

The physical mechanisms which promote non-linear 

phenomena in practical assemblies were to be sought. 

Broad guidelines for improving the vibration response 

of subsequent rotor-bearing assembly designs arising 

from the results were to be identified, if possible. 
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Chapter 4 THEORETICAL ANALYSIS OF 

ROTOR-BEARING ASSEMBLIES 

The non-linear analysis assumed the following; 

1. The Reynolds Equation and the Short Bearing 

approximation applied. 

2. The rotor remained rigid. 

3. The flexible SFD housing support bars contributed a 

constant, linear radial stiffness to the system. 

4. Rotor gyroscopic forces were relatively 

insignificant. 

The first assumption implied that the Gap Reynolds number 

was less than unity and that the SFD land length to mean 

radius ratio, (1/R) was small. 

4.1 Squeeze-Film Damper Film Forces 

The Short Bearing Approximation to the Reynolds Equation 

was applied to the SFD models as the axial lengths were 

short in comparison with the SFD radii, see Appendix 1. 
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The dynamic pressure generated at any point in a SFD can 

be derived as discussed in Appendix 2 and is given by; 

P(0,z) = 6(1/R)2(e'.COS0 + e.a'.sin0)(z2 - 0.25) 

(1 + €.COS0)^ 

+ Psup(0.5 - z) . 

....{4.1} 

where 2 = 0 at the mid-land position, 

z = -0.5 at the land supply edge and 

z = 0.5 at the land discharge edge. 

Now, referring to Fig 1.1, the forces are derived by 

integration of the pressure equation, 

PI = - M . W ( C / R ) 2 . R . 1 

P2 = - p.w(c/R)2.R.l 

01 % _ 

P(0,z).cos0.dz.d0 

02 -% 

01 % _ 

P{0,z).sin0.dz.d0 

02 

{4.2} 

The effect of cavitation on the force is realised by 

assigning the pressure, P(0,z) to the cavitation pressure 

if the value of P(0,z) falls below the cavitation 

pressure. 
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4.2 Equations of Motion 

The rotor-bearing assembly with two SFDs can be modelled 

as a dynamic system with the following equations, by 

taking moments about the pivot bearing. Referring to 

diagrams of the mathematical models of the experimental 

rig configurations in Figs 4.1, 4.2 and 4.3 (shown 

schematically in Table 3.1) the equations of motion are; 

Configurations la,b 

yzd/b) = a.Pc.sin(w.t) - b(k2(b/f )€i.ci.sin(ai)) 

- f(Plx.sin(ax) + P2i.cos(ax)) 

- m.g.d 

xzd/b) = a.Pc.cos(w. t) - b(k2(b/f )ei.cx.cos(ai)) 

- f(Plx.cos(ax) - P2x.sin(ax)) 

{4 3} 

Configurations 2a,b and 3a,b 

ysd/b) = a.Pc.sin(w.t) - b(Pl2.sin(a2) + P22.cos(a2)) 

- f(Plx.sin(ax) + P2x.cos(ax)) 

- m.g.d 

X2(I/b) = a-Pc.cos(w.t) - b{Pl2.cos(a2) - P22.sin(a2)) 

- f(Plx.cos{ax) - P2x.sin(ax)) 

{4.4} 

These equations describe the rotor motion at the SFD2 

journal in a cartesian (x,y) coordinate system. A 

comprehensive form of these equations of motion can be 
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written, non-dimensionally, as 

Configurations la,b 

yz" - Qc2.sin(w.t) - (k2.ei.sin(ai))(ci/cz)(b/f) 

- (ci/c2)(b/f)(Pli.sin(ai) + P2i.cos(ai)) - Qs 

X2" = Qc2.cos(w.t) - (E2.ei.cos(ai))(ci/c2)(b/f) 

- (ci/c2)(b/f)(Pli.cos(ai) - P2i.sin(ai)) 

{4.5} 

Configurations 2a,b and 3a,b 

yz" = Qc2.sin(w.t) - (Fl2.sin(a2) + P22.cos(a2)) 

- (ci/c2)(b/f)(Pli.sin(ai) + P2i.cos(ax)) - Qs 

xz" = Qc2.oos(w.t) - (Pis.008(02) - P22.sin(a2)) 

- (ci/c2)(b/f)(Pli.cos(ax) - P2i.sin(ai)) 

{4.6} 

where PI,22 = PI,22.b2/(I.C2.w2) 

P^,2l = Pl,2l.f2/(I.0l.w2) 

and y2",X2" = yz,xz/(cz.v^) 

Variation in the SFD static misalignment conditions is 
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achieved by employing the term 5. Thus, converting the 

cartesian rotor motion at SFD2 relative to ground to the 

SFDl polar motion for configurations 2a,b; 

eyi = Z.ya - Eoi + 6 €yi' = Z.ya' 

exi = Z.X2 exi' = Z.xa' 

€1 = ( exi2 + €yi2 )l/2 

ai = tan-i(€yi/exi ) 

€i' = ( exi.exi' + €yi.€yi' ) / €i 

ai' = ( €xi.€yi' - eyi.exi' ) / ei2 

where Z = (f.cz/b.ci) 

{4.7} 

It has been shown [72] that the SFD housing mass of the 

test facility for a series SFD and spring configuration 

has little influence on the rotor dynamics. Thus, 

neglecting the SFD2 housing mass the force prevailing in 

the spring, kz must equal and oppose the resultant SFD2 

film force. Therefore, we can conclude that for 

configurations 2a,b and 3a,b that the following equations 

apply 
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kz(yz - €2.sin(a2)) = Plg.sinfaz) + P22.cos(a2) 

k2(X2 - €2.008(02)) = Pl2.cos(a2) - P22.sin(a2) 

{4.8} 

and, similarly, for Configurations 3a,b only 

ki(yi - 6i.sin(ai)) = Pli.sin(ai) + P2i.cos(ai) 

ki(xi - ei.cos(ai)) = Pli.cos(ai) - P2i.sin(ai) 

{4.9} 

where xi = X2 (02/01)(fA>) 

yi = y2(c2/ci)(f/b) 

4.3 The 2TC Film and it Film Squeeze-Film Damper 

Models 

The 2% or full squeeze-film is unoavitated. The tc or half 

squeeze-film model consists of a 180® cavitation zone of 

full damper land width with the rest of the clearance 

full of fluid. Where atmospheric pressure is considered 

as a zero gauge pressure datum, both of these solutions 

assume zero supply pressure and zero outlet pressure. The 

2Tt film implies significant tensile stress whereas the it 

film solution assumes cavitation occurring where the 

fluid pressure falls below atmospheric pressure (14.7 psi 

absolute). 

45 



The purpose of assuming either a 2TC film or TT film is 

that these two simplified solutions of the Short Bearing 

Approximation give simple expressions for the stiffness 

and damping forces PI, P2 generated by the squeeze-film, 

see Table 1.1 and Appendix 3. When these two forces are 

substituted into the equations of motion ({4.3}), 

equations {4.9} are derived by non-dimensionalising. 

Equations {4.10} are expressions for the phase between 

the unbalance force and the attitude of the journal, 

(w.t - ai), Fig 4.1. 

2rt Film; Qoi2(w/wn)4(l - €2)3/62 = (1 - e2)3{i _ 

(w/Wn)2}2 + Al2 _ (w/Wn)2 

{4.9a} 

It Film; Qoi2(w/wn)4(l - e2)3/e2 = (i _ e2)3{l -

( W / W n ) 2 } 2 + A l 2 ( w / W n ) 2 { l / 4 + 4.€2/(^(1 _ 

e2))} + 4.6(1 - e 2 ) A x ( w / W n . ) { l - (W/Wn)2}/TC 

{4.9b} 

2n Film; tan(w.t - ax) = Ai.kiO-®/{(ki - 1)(1 - e2)i.S} 

{4.10a} 

Tc Film; tan(w. t - al) = Ai. kxO • ®/C2{2. Ai. ki^ - ®. e/( (1 

£2)2) + (ki - 1)(1 - €2)1.8}] 

{4.10b} 

Where ki = (wn/w)2 
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4.4 Computation Techniques 

Computation was carried out using the Fortran 77 high 

level programming language, compiled and executed by-

Version 3 of VS Fortran implemented on the University of 

Southampton Computing Service's IBM 3090 mainframe 

computer. Vectorisation of the code was employed during 

compilation in order to optimise the computational speed 

where applicable. 

Two different numerical techniques were required to solve 

the system behaviour using the simple 2K or tt film 

models and the general Short Bearing model, as described 

below. 

4.4.1 2Tt Film and it Film Computation 

The 2K and TC film equations {4.9} were solved for 

eccentricity ratio, €, and phase, (w.t - a), (the other 

parameters being known) using a relatively simple 

iteration technique. 

4.4.2 General Short Bearing Solution 

Computation 

The computation employed to obtain predictions using the 

general Short Bearing solution involves the use of two 

numerical methods, Simpson's Integration for the SFD 

pressure field and a Runge-Kutta method applied to the 

system's differential equations. 
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The computation technique took the form of the generation 

of the system's response to an initial set of parameters, 

the unbalance, rotor speed and SFD pressure conditions 

having been stipulated. 

Each degree of freedom (DOF) within the model had three 

associated variables, namely displacement, velocity and 

acceleration. The initial set of system displacement and 

velocity values were used to calculate the mesh, or 

array, of SFD pressures. Integration of these pressures, 

over the clearance area, using Simpson's method yielded 

an estimate of the film forces developed by the SFD. An 

acceptable pressure resolution was obtained with eleven 

points along the land width and thirty seven points 

around the damper circumference and these dimensions were 

used as the pressure array dimensions. The Reynold's 

equation assumes that, because the film thickness is 

very small, there is a negligible pressure variation over 

the film thickness. This meant that the forces 

experienced by the journal and housing were assumed to be 

identical. 

The film force estimates were incorporated in the 

equations of motion and the system's acceleration vectors 

were calculated. Acceleration and velocity vectors were 

used by the Runge-Kutta-Merson algorithm to predict the 

velocity and displacement vectors, respectively, forward 

in time. The results were checked against an acceptable 

error band. If the error was very small then the time 

step was increased and if the error was large then the 

time step was reduced. When the results had a calculated 

error within the band then these results were accepted. 

In this way the time history developed through the 

transient response and the steady state response was 

determined. The variable time step helped the numerical 

method to traverse the required non-dimensional time 
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range efficiently. 

Rig configuration la, involving two DOFs, used initial 

eccentricity values of the smallest eccentricity ratio 

solution from the TC film model. Also, the value of €i' 

was set to 0.1 and ai' was set to the rotor speed. The 

steady state solution was evaluated for a non-dimensional 

time of upto 250 radians (over 40 rotor revolutions). 

The initial values for configuration lb were experienced 

guesses. If no steady state orbit solution was 

forthcoming after a non-dimensional time of 150 radians 

then the last calculated displacement and velocity values 

were submitted as a new set of initial values. 

Configurations 2a,b each constituted a four degree of 

freedom (DOF) model and initial values were estimated 

from an understanding of the static conditions and after 

some preliminary computation. Where there was doubt 

whether the transient had decayed, the integration was 

continued to 250 radians. 

The results of prime interest, to date, have been the 

displacement orbit size and the phase between unbalance 

force and displacement. These were compared with the 

experimentally observed rig behaviour. 

4.4.3 Frequency Analysis 

To carry out a theoretical frequency content study of the 

assembly vibration response a discrete vibration time 

series had to be generated. The discrete time series was 

derived from numerical time history results using the 

Runge-Kutta-Merson method. The sampled time interval, in 

seconds, had to be set at a constant value, depending on 
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the FFT requirements. For comparison with the 

experimental results, this time series had to be 

generated after the transient response had decayed, 

leaving a steady-state response. 

A Radix-2 Fast Fourier Transform (FFT) algorithm, as 

discussed in [16], was programmed, initially, to 

manipulate a 2048 or 2052 element discrete time series 

into a single or averaged 1024 element positive frequency 

spectrum, respectively. This method allowed the frequency 

content of the experimental results to be compared with 

the frequency content of the theoretical results by means 

of individual spectra and by constructing equivalent 

waterfall diagrams using GINO graphical plotting 

routines. 

Initially the discrete time series was obtained from the 

Runge-Kutta-Merson by stepping non-dimensional time (w.t) 

by the series time interval. If the error was such that 

the time step had to be reduced, then the time step was 

halved. If the error was still too large then the time 

step was halved again, and so on. When the error dictated 

that the time step be increased then the time step was 

doubled until it was equal to the time series interval. 

In this way the time step was always some integer 

proportion of the series interval. This first method was 

used to obtain spectra with a 0.2 Hz resolution, directly 

comparable with the experimental results. However, the 

storage required (even for the spectra of one SFD) and 

the CPU time required to generate discrete time series in 

excess of five seconds duration was prohibitive. 

A more efficient means of deriving the spectral content 

of time histories was developed which did not interfere 

with the original Runge-Kutta-Merson algorithm. During 

the integration a check was kept on the time so that, if 
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the time became greater than the next time value required 

in the series, then the Runge-Kutta time and step size 

were stored and the time was set to the value required by 

the series. The values of the dynamic parameters were 

then calculated at that time. Then the stored time and 

step size were reinstituted and the Runge-Kutta-Merson 

was allowed to proceed normally again until the 

subsequent series time value was exceeded. In this way an 

accurate discrete time series was obtained without 

degrading the efficiency of the numerical integration. 

Five frequency resolutions were programmed (0.2, 0.25, 

0.5, 1.0 and 7.0 Hz), still maintaining a simple FFT 

application. 

Results employing a 1.0 Hz resolution (requiring a 512 

element discrete time series) sufficed and typically 45 

minutes to one hour of CPU time was required to generate 

the spectra for a waterfall diagram, compared with about 

four hours for 0.2 Hz resolution. . 
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Chapter 5 THEORETICAL RESULTS 

In order to appreciate the theoretical prediction of non-

linear jump phenomena and subsynchronous resonances the 

following provides some simplified analysis. To 

demonstrate the development of jump phenomena in the 

response of a system with a non-linear spring 

characteristic consider the undamped equation of motion, 

m.x + f(x) = Pocosfwt) 

{5.1} 

where f(x) is a non-linear hardening spring force given 

by the force versus maximum displacement curve of Fig 

5.1. If it is assumed for the purposes of this 

illustration that the response, x(t) is sinusoidal and 

synchronous and of the form 

x(t) = xocos(wt) 

{5.2} 

then, at the point of maximum displacement, it can be 

shown that 

f(xo) = Pc + mw^xo 

{5.3} 

The amplitude of the forced vibration, xo can be found 

using Fig 5.1. The point of intersection of the spring 

characteristic curve, f(xo) with the straight line of 

ordinate intercept, Pc and gradient tan-^(mw2) gives the 

maximum amplitude, xo at the particular frequency, w and 

this straight line represents the right hand side of 
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equation {5.3}. For simplification, assuming that the 

forcing, Pc is independent of frequency then the straight 

line (Pc + mw2) intersects the ordinate at the same 

point, Po for any frequency. The corresponding response 

curve can be constructed, Fig 5.2. 

The points marked Ai, As, etc in Fig 5.2 correspond to 

the similarly labelled points in Fig 5.1. Thus the 

minimum jump frequency corresponds to points As, Bs and 

Cs where Bs and Cs are coincident. In this undamped case 

the upper branch, points A and C, continues indefinitely. 

This demonstration of a hardening response is considered 

more fully by Den Hartog [5]. 

The forcing due to unbalance increases with speed and the 

non-linear response with damping is of the form of Fig 

1.3. In this instance the amplitude is zero when the 

rotor is stationary and tends to an asymptote at high 

speeds. The response could be constructed from Fig 5.1 by 

observing the variation of unbalance, Pc with rotor 

speed. 

The theoretical possibility of half engine orders, 

1/2 EO, can be simply assessed by considering a non-

linear stiffness (k + $x) and that the system satisfies 

the differential equation; 

m.x + (k + $.x)x = Ps + Pc.cos(wt) 

{5.4} 

Assuming that a possible solution is of the form 

X = A.cos(wt/2), 
then 

A(k - mw2/4)cos(wt/2) + @A2/2 + {#A2cos(wt)}/2 
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= Ps •+• Pecos (wt) 

and this equation is satisfied for 

A = f(2Ps/$) , 

A = f(2Po/$) and 

w = 2f(k/m) 

{5.5} 

The first two conditions of equations {5.5} imply Ps = 

Po, which happens to be conducive to rattle within a SFD 

since the static force, Ps is just neutralised by the 

dynamic force, Pc. The third condition indicates that a 

response, x at the system natural frequency is possible 

if the rotor speed is twice that natural frequency. 

Furthermore, if the non-linear stiffness is considered to 

have the form (k + $ix + $2x2) then the theoretical 

possibility of response at both 1/2 EO and 3/2 EO can be 

shown. 

5.1 The 2% Film and k Film Model Predictions 

The amplitude and phase using the 2n and it film solutions 
for configuration la, say depend only upon the values of 

w/wn, Ai and Qcs. The value attributed to the SFDl "A" 

parameter, Ai can be debated. The traditional algebraic 

expression for Ax, given in the nomenclature, is for the 

two land SFD where the lands are assumed to be completely 

uncoupled by the circular circumferential oil supply 

groove and the oil within the groove is considered to 
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generate negligible film forces of its own. If the lands 

are considered fully coupled then the net effect is that 

Ai takes on a value four times that given by the 

traditional two land expression. This is because Ai is 

proportional to land width cubed and inversely 

proportional to the square root of the product of the 

mass and stiffness. When compared with the traditional 

two land model, the single land of double length carries 

twice the rotor weight and experiences twice the support 

stiffness per land. 

In practice, it is expected that, although the SFD design 

traditionally implies the two land assumption, the 

effective Ai will lie between the two extremes. For this 

reason two values of Ai, namely 0.02132 and 0.08528 were 

studied as these two extremes. 

Firstly with the assumption of two uncoupled SFD lands, 

the predictions of the 2n film solutions in Fig 5.3 

indicate responses which resemble that of a second order 

system. As the frequency ratio, w/wn increases from zero, 

the eccentricity ratio increases until it is a maximum at 

approximately the first natural frequency, that is w/wn 

equals 1.0, after which it falls off asymptotically. With 

increasing unbalance factor, Qoz, amplitude rises. 

The 2TC film phase solution passes through 90®, that is 

rotor inversion takes place, at a w/wn value of about 1.0 

from zero at low speeds towards a 180® asymptote at high 

speeds. The effect of increasing unbalance, Qcz, is to 

reduce the gradient that the phase takes through 90° 

degrees, indicating an increase in damping at high 

eccentricities. 

Because the contribution from the SFD is only one of 

damping for a 2rc film then, apart from the resonance 

55 



region around rotor inversion, the response is governed 

primarily by the stiffness, ki. Then the only effect of 

increasing the SFD parameter, Ai, is to reduce the 

resonance peak and the phase inversion gradient, Fig 5.4. 

However, with a TC film the SFD generates non-linear 

stiffness and damping forces. 

The TC film results in Fig 5.5 indicate the presence of a 

bistable region at speeds above a frequency ratio of one 

due to the nonlinear hardening effect of the increasing 

stiffness of the SFD with amplitude. For low unbalance, 

that is Qo2 equals 0.245 the bistable region extends 

between frequency ratios of about 1.12 and 1.33. As 

unbalance increases the minimum jump frequency increases. 

The higher unbalance ratios shown have bistable behaviour 

extending past frequency ratios of 2.5. The eccentricity 

ratios are similar to the 2ft film solutions apart from 

the bistable, or jump regions. 

The Tt film phase response shows that, in order to produce 

an inverted mode of operation, a jump down in amplitude 

with increasing speed is required above the natural 

frequency. After inversion the it film solutions are very 

similar to the corresponding 2n film solutions because, 

with the smaller orbit, the SFD stiffness is much smaller 

and, with the phase inverted, the stiffness, ki dominates 

the response. 

If the lands are now assumed coupled, with Ai set at 

0.08528, Fig 5.6 shows that the rt film results indicate a 
rise in the minimum jump frequency and a reduction in the 

maximum jump frequency. Thus the bistable region is 

reduced and if the value of Ai is increased still 

further, then for the lowest value of Qcs studied here 

(0.245, Fig 5.6), a bistable region may not be predicted. 

The TC film minimum jump frequency does not vary 
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significantly with the unbalance factor, Qcz and SFDl 

damping parameter, Ai for the range of parameters 

pertinent to this research, Fig 5.7. Only when Qcs is 

above about 1.0 does the increase in minimum jump 

frequency with increasing values of Ai become 

significant. 

5.2 General Short Bearing Model Predictions 

The general short bearing model SFD parameters were 

identical to those of the TC film model apart from the 

stipulation of a cavitation pressure and a positive oil 

supply pressure. 

The theoretical rotor centre orbits which will be 

presented in this research represent the steady state 

responses at SFDl and/or SFD2 (accomplished after a 

minimum of twenty four and a maximum of forty rotor 

revolutions from similar Initial conditions) for exactly 

two rotor revolutions. 

It was often difficult, particularly with configuration 

2b to obtain both stable solutions where bistable regions 

are encountered. In some cases, experienced attempts with 

different transients and reductions in the permissible 

error did not yield both bistable solutions. This was 

because, for the two possible solutions, the initial 

dynamic conditions which would lead to the 'evasive' 

solution were not straight forward and attempted guesses 

were unsuccessful. Although experience might lead to the 

belief that a second stable solution was present, the 

lack of success in achieving the second solution might 

question such faith. However, the results to date 
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provide a reasonable complement of bistable solutions. 

The waterfall diagrams presented consist of linear, 

vertical (y) amplitude FFT spectra for comparison with 

the experimental spectral data. Practical constraints on 

computing time governed the extent of the study. 

Attention was given to the case with unbalance, Qas equal 

to 0.611 as this unbalance illustrated most non-linear 

phenomena. 

5.2.1 Configuration la 

The TT and 2K film models (equations {4.9} and {4.10}) 

assume that the rotor weight can be excluded from the 

model because the rotor is supported centrally within the 

SFD by the parallel linear stiffness. However, this 

assumption is not valid when a non-linear element is in 

parallel with the linear support stiffness. This 

assumption is strictly valid when the rotor axis is 

vertical and then, with the parallel support undeflected, 

all bearing housings are aligned. In practice the 

weight of the horizontal rotor deflects the support 

stiffness and to centralise the SFD, the SFD housing is 

offset from its aligned condition in the direction of 

gravity. 

The rotor centre orbits when unbalance, Qos is 0.733 were 

produced with both the rotor weight omitted and included 

(the static centralisation of SFDl being maintained). 

Fig 5.8. In this instance, it is clear that there is very 

little difference between these two sets of orbits. The 

combined unbalance and rotor weight forcing vectors in 

conjunction with the non-linearities generated by the 

centralised SFDl still give rise to a relatively simple 

response. The orbits indicate that a jump occurred 
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between frequency ratios, w/wn of 1.02 and 1.57. All 

subsequent computation was carried out with the rotor 

weight effect included. 

The response curves, Figs 5.9, 5.10 display similarities 

with the TC film responses, Fig 5.5. Bistable regions are 

indicated by a jump at the minimum jump frequency for all 

but the lowest unbalance, Qos at 0.245. At the lowest 

unbalance the response is similar to that of a 2tc film, 

Fig 5.3. The effect of the supply pressure, Psup 

variations, in the range 2 to 24 psi, on model response 

is very small. Figs 5.9 and 5.10, respectively. The 

minimum jump frequency ratio ranges from 1.26 to 1.56 for 

Qc2 values from 0.490 to 0.733, respectively. 

Increasing the damper factor, Ai from 0.02132 (Fig 5.9) 

to 0.08528 (Fig 5.11) has the effect of eliminating the 

bistable regions which give rise to the jump phenomena. 

These results are similar to the 2tc film results. 

Fig 5.4. 

The waterfall diagram. Fig 5.12 shows the dominant 

synchronous activity and the presence of a low amplitude 

subsynchronous response at the natural frequency, wn. A 

jump is clearly demonstrated in the synchronous response 

between 37 Hz and 41 Hz rotor speeds (1.14 and 1.27 

w/Wn). 

The simple tc film and 2tc film model responses compare 

favourably with the general Short Bearing model responses 

with and without the jump phenomena, respectively. This 

is due to the relatively simple nature of configuration 

la, where the static centralisation of SFDl employing a 

linear spring, ks in parallel encourages circular centred 

orbits which lead to a hardening response around the 

first rigid body mode at high unbalance, introducing 

59 



bistable operation. 

Subsequent model configurations, employing the general 

Short Bearing Approximation do not retain the features of 

the Tt and 2 it film assumptions due to static 

eccentricities within the dampers. It will therefore be 

instructive to observe whether such static eccentricities 

encourage or discourage jump phenomena. 

5.2.2 Configuration lb 

Eccentricity Ratio, Eoi = 0.8 

Fig 5.13 gives the rotor centre orbits with a static 

eccentricity, Eoi of 0.8 which restricts the orbit 

position to the lower part of the clearance. A jump down 

is clearly indicated between rotor speeds of 45 Hz and 51 

Hz. A strong nonsynchronous component is indicated in the 

non-circular orbit at 73 Hz rotor speed. 

The response curves, Fig 5.14 demonstrate the effect of 

static eccentricity further dampening the resonance due 

to the increase in the film forces generated by non-

concentric journal motion. Here, the interaction between 

the squeeze-film, with respect to cavitation, and the 

resultant forcing arising from the rotor weight and 

unbalance gives rise to undesirable non-linear phenomena. 

The rise in amplitude, after jump down on run up, above 

frequency ratios, w/wn. of about 1.80 for the two 

intermediate unablances (Qcs of 0.611 and 0.490) is due 

to the subsynchronous activity noted in the orbits, 

Fig 5.13. 

Fig 5.14 shows that jump phenomena are predicted for all 
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but the lowest unbalance (Qcz of 0.245). Bistable 

operation is detected for the highest unbalance, Q02 

equal to 0.733, but the eccentricity ratio, €1 persists 

at a value of about 0.95 for all speeds above w/wn of 

1.0. 

The waterfall diagram. Fig 5.15, highlights the spectral 

activity with Qcs equal to 0.611 and indicates that the 

subsynchronous response at high speed prevails as a half 

engine order (1/2 EC). The effect of static eccentricity 

is to enable the apparent natural frequency to increase 

in proportion to the rotor speed. Therefore, a strong 

response results at a 1/2 EO, degrading the vibration 

response within the operating speed range in addition to 

the jump phenomena. The split into two apparent natural 

frequencies around 1/2 EO may be due to the asymmetry in 

SFDl. Higher engine orders will also be noted. 

Eccentricity Ratio, Eoi = 0.4 

The response with Eoi reduced to 0.4, Fig 5.16, is 

slightly less severe than with Eoi set to 0.8. This is 

because the rise in amplitude of the lower of the 

bistable solutions was restricted to higher unbalances. 

With Qc2 at 0.490 the amplitude of the lower of the 

bistable solutions falls gradually with increasing speed, 

which suggests that subsynchronous activity does not 

develop at high speeds in this instance. 

5.2.3 Configuration 2a With SFDl Statically 

Concentric 

Rotor centre orbits for a Qcs of 0.611 and Psup of 2 psi 

are given for SFDl and SFD2 in Figs 5.17a,b, 

respectively- At the lowest speed studied, w/wn equal to 
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0.46, there is a large vertical supersynchronous 

oscillation in the SFDl orbit. Fig 5.17a. A jump down 

between 39 Hz and 51 Hz is clear. At higher speeds still, 

some double loops develop, indicating the presence of 

subsynchronous response. 

The SFD2 orbits. Fig 5.17b are strongly restricted to the 

lower part of the SFD clearance, under the influence of 

the rotor weight. The jump, described above in Fig 5.17a, 

is also clear in the SFD2 orbits although the 

nonsynchronous activities at high speed are less 

discernible due to the small orbit size. 

The response obtained over the unbalance range studied 

for SFDl and SFD2 with Psup again set to 2 psi is given 

in Figs 5.18a and 5.18b, respectively. Bistable regions 

are predicted for all but the smallest unbalance, Qca 

equal to 0.245. The jump characteristics are similar to 

those predicted for configuration la. The SFD2 phase 

varies significantly throughout the vibration orbits and 

is not presented. Figs 5.19a and 5.19b present the 

response for SFDl and SFD2, respectively with Psup set to 

15 psi. Bistable operation is also indicated for 

unbalances, Qo2 of 0.490 and higher. 

Fig 5.20 gives the waterfall diagrams for SFDl and SFD2. 

A jump down between a high amplitude at 41 Hz and a low 

amplitude at 45 Hz is clear in both SFDs. The 

synchronous, lEO response is dominant throughout apart 

from one exception in SFDl at 17 Hz where the small 

synchronous response was overshadowed by a strong 2E0 

resonance close to the first bounce frequency of 32.4 Hz. 

SFDl exhibits some response at higher integer engine 

orders but not as much as is shown by SFD2. 

Subsynchronous resonance develops at speeds above 49 Hz 
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and remains close to the first bounce frequency as speed 

increases. This subsynchronous response, whilst clear in 

the response of SFDl, is of a very low amplitude in SFD2, 

due to the low synchronous response. 

5.2.4 Configuration 2a With SFDl Statically 

Eccentric 

The static eccentricity in SFDl, Eoi was set to a value 

of 0.5. Figs 5-21a,b present the rotor centre orbits 

within the clearance circle for SFDl and SFD2, 

respectively with Qos equal to 0.611 and a Psup of 2 pel. 

Fig 5.21a indicates that the SFDl orbit at low speeds (15 

Hz or w/wrv equal to 0.463) is elliptical, with the major 

axis almost vertical indicating a supersynchronous 

oscillation at a frequency slightly greater than twice 

the running speed. This is similar to the result already 

discussed (Fig 5.17a) and the introduction of static 

eccentricity, Eoi reduces the vertical journal excursions 

(Fig 5.21a). Increasing in speed, Fig 5.21a also shows 

the strong synchronous resonance above the first bounce 

frequency (w/wn equal to 1.20) and a smaller, inverted 

orbit after a jump down (when w/wn is equal to 1.51). At 

rotor speeds of twice the first bounce frequency (w/wn 

equal to 2.01) some subsynchronous resonance, 1/2 EO at 

the first bounce frequency is clear, superimposed on the 

dominant synchronous response. With w/wn equal to 2-5 the 

orbit indicates a dominant 1/2 EO response. 

Fig 5.21b indicates that throughout the speed range the 

SFD2 journal is restricted to orbits dominated by the 

static weight of the rotor, positioned low in the 

vertical plane. However, the jump down is still indicated 

as in Fig 5.21a, between 39 Hz and 49 Hz rotor speed (or 

w/wn equal to 1.2 and 1.51). 
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Figs 5.22a,b give the predicted amplitude responses for 

SFDl and SFD2, respectively, each with a Psup of 2 psi. 

There is little useful information in the varying phase 

for both SFDs and so the x and y direction orbit size 

eccentricity ratios are presented. Bistable operation is 

predicted for frequency ratios above about 1.5. The lower 

of the two bistable solutions increases significantly 

above a frequency ratio of 1.9, dropping again when w/wn 

has a value of 2.5. This illustrates the development of 

subsynchronous vibration. 

Fig 5.23 presents the waterfall diagrams for SFDl and 

SFD2 with Eoi equal to 0.5. A jump between 53 Hz and 

57 Hz is predicted in both SFDl and SFD2. The jump is 

noticable in the synchronous lEO and higher engine 

orders. At speeds above this jump, a 1/2 EO subharmonic 

resonance develops which dominates the synchronous 

component at speeds above 61 Hz. 

It should be noted that the 73 Hz spectrum has no 

subsynchronous component but does have a strong 

synchronous component. Fig 5.23. This represents the non-

inverted bistable solution at this speed. Attempts were 

made to obtain the inverted solution for 73 Hz by 

applying different initial conditions, but due to some 

numerical sensitivity the non-inverted orbit remained. 

5.2.5 Configurat ion 2b 

With SFDl now supporting the rotor weight and SFD2 

centralised in the static condition, rotor centre orbits 

for a QC2 of 0.611 and Psup of 2 psi are given for SFDl 

and SFD2 in Figs 5.24a,b, respectively. At all speeds 

except the highest, the SFDl orbit. Fig 5.24a was 
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severely restricted to the bottom of the clearance 

circle. A jump up occurs between w/wn equal to 2.01 and 

2.50, when the SFDl orbit was circular and encompassing 

about 98% of the clearance. It should be noted that no 

change in the cavitation pressure had been imposed. 

The SFD2 orbits of Fig 5.24b are strongly influenced by 

the SFDl orbit shapes and orientation. The jump, 

described above in Fig 5.24a, is also clear in the SFD2 

orbits. Some horizontal 'figure-of-eight' motions are 

discernible which suggests a dominant horizontal forcing, 

[47]. 

The response obtained over the unbalance range studied 

for SFDl and SFD2 with Psup set to 2 psi is given in Figs 

5.25a,b, respectively. Bistable operation, with jumps up 

as speed is increased, is indicated for all but the 

lowest unbalance. A jump up from a low amplitude at w/wn 

equal to 1.64 to a high amplitude at w/wn equal to 1.76 

occurs for the highest unbalance, Qos equal to 0.733. The 

jump is clearest in the SFDl response, Fig 5.25a, but 

also evident in the SFD2 response. Fig 5.25b. The x 

component of eccentricity ratio, or horizontal amplitude 

peaks close to the unity frequency ratio for all but the 

lowest unbalance, Qca equal to 0.245. 

Figs 5.26a,b give the amplitude response for SFDl and 

SFD2, respectively with Psup set to 15 psi. The results 

are similar to those for 2 psi. Figs 5.25a,b. A jump 

occurs between w/wn equal to 1.76 and 1.88. Also the rise 

in the x component of eccentricity ratio for Qc2 equal to 

0.611 above w/wn equal to two is damped by the increase 

in Psup to 15 psi. Bistable operation with Qca as low as 

0.611 is predicted. 

Fig 5.27 gives the waterfall diagrams for SFDl and SFD2 
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for Qc2 equal to 0.611 and indicates that most of the 

spectral activity is contained within the synchronous 

frequencies, lEO and higher integer engine orders. A jump 

between rotor speeds of 77 and 81 Hz is clear in the SFDl 

waterfall diagram but not in that of SFD2. 

5.2.6 Configurations 3a and 3b 

Extensive attempts were made to carry out the numerical 

integration required to achieve the steady state 

responses to unbalance. However the computation of 

solutions for configurations 3a and 3b proved to be 

impractical due to the excessive CPU time that it took to 

traverse transient responses. 

66 



Chapter 6. THE EXPERIMENTAL ROTOR-BEARING FACILITY 

To create a realistic test rig a three-bearing rigid 

rotor assembly incorporating the essential vibrational 

features of a small aero-engine was developed and Plates 

1 and 2 give two elevated views of the rig. The test rig, 

also shown in Fig 6.1 was used to investigate the 

operation of the SFDs, 1, at two of its three rolling-

element bearings, 2. The self alignment capability of the 

bearing, 3, constituted a pivot about which an 

antisymmetric, or conical mode of vibration occurred when 

the rotor, 4, was acted upon by a force arising from 

rotation of the unbalance mass, 5. Flexible bars, 6, 

simulated pedestal flexibility and were mounted into 

heavy foundation blocks, 7, which represented ground, or 

the engine casing. Note that with the full assembly. Fig 

6,1, the central SFD housing was not connected in any way 

to the foundation block on its right. Comparisons between 

different rig configurations (Table 3.1) allowed the 

influence of individual assembly components and in-

service assembly misalignment conditions to be analysed. 

Relevant dimensions are given in Appendix 1. 

6.1 Rig Configurations 

As previously outlined in Chapter 3 and summarised in 

Table 3.1, the range of configurations to be studied were 

drawn up to cover as wide a range of practical assemblies 

as possible. The practical considerations in achieving 

these configurations are discussed below. 
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Rig configuration la involves one midspan damper, SFDl 

with the four parallel housing bars forming a flexible 

bearing support, kg at the bearing further towards the 

free rotor end. (Note that the left hand block, Fig 6.1, 

and the bars, ki, were not incorporated in the assembly 

until configuration 3a.) The two degrees of freedom (EOF) 

in this assembly are the horizontal and vertical 

displacement of the rotor relative to ground. SFDl is 

centrally positioned with no static eccentricity, which 

encourages circular, centred vibration orbits. To achieve 

configuration la, the SFDl housing is centralised using 

shim and 'clock gauges' to measure the journal position 

relative to the housing whilst ensuring that the bars, ks 

remain deflected under the rotor weight. When 

centralised, the SFDl housing is bolted directly to the 

foundation block to the right of SFDl, Fig 6.1, which 

also houses the bars, kz. Configuration lb involves 

unbolting the SFDl housing from the foundation block and 

raising it vertically so that the effect of a static 

eccentricity is introduced before re-fastening it to the 

block. The static eccentricity increases the effective 

rotor weight carried by the squeeze-film of SFDl. 

Rig Configuration 2a introduces the action of SFD2 

between the parallel bars, ka and the rotor. The 

corresponding four DOF of the rig are now the horizontal 

and vertical rotor and SFD2 housing displacements 

relative to ground. Configuration 2a maintains SFDl in a 

statically centralised condition, by aligning the housing 

using the same method as for configuration la except that 

now the SFD2 journal carries the rotor weight so that it 

is fully eccentric due to gravity in the static 

condition. Some eccentricity in SFDl, namely Eoi equal to 

0.5, was also studied. As with configuration lb, this was 

achieved by raising the SFDl housing. By raising the SFDl 
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housing further still the rotor weight was taken up by 

SFDl and the bars, kg, were relieved. The SFDl housing 

was raised until SFD2 was statically centralised before 

SFDl was bolted to the block, constituting configuration 

2b. 

Introducing the bars, ki to support the SFDl housing 

flexibly to ground, via the left hand foundation block. 

Fig 6.1, increases the assembly complexity further. The 

rig now exhibits six DOF with the horizontal and vertical 

rotor, SFD2 housing and SFDl housing displacements 

relative to ground. With the rotor supported centrally in 

the SFD2 housing by a jack, the SFDl housing is aligned 

centrally by adjusting the thickness of the shim between 

the foundation block supporting the bars, ki and its 

baseplate. In this way all three bearings are aligned. 

Then the rotor is lowered so that it is fully eccentric 

in SFD2 and finally it is fully eccentric in SFDl. Rotor 

weight is thus carried by the housings of both SFDl and 

SFD2. This assembly constitutes configuration 3a. 

Configuration 3b is achieved from configuration 3a by 

lowering the SFDl housing until the rotor is centralised 

within SFDl. This is done by reducing the thickness of 

the shim from between the foundation block supporting 

the bars, ki and its baseplate. 

6.2 Squeeze-Film Damper Geometry 

Constant SFDl and SFD2 geometries were employed 

throughout the study. The SFDs consisted of two similar 

unsealed lands separated by a central circumferential 

supply groove in the housings which promoted an even 

circumferential supply reservoir, as illustrated in Fig 
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6.2. The grooves were supplied by three equispaced ports 

with pressurised oil. Geometry details include number of 

lands, damper radial clearance, c, ratio of land width to 

radial clearance, (1/c), and ratio of land width to mean 

damper radius, (1/R). Reference should be made to 

Appendix 1 for these parameter values. 

The depth of the oil supply groove, which is positioned 

mid-way between the two lands is of interest. A shallow 

groove can contribute some damping to the system itself. 

On the other hand, a deep groove, although its reservoir 

action may contribute very little in the way of damping, 

may introduce some undesirable turbulent oil flow 

conditions. 

The initial groove depth was 0.5 mm in each SFD. These 

grooves were deepened to 2.0 mm to observe some change in 

the effective damping upon the response to unbalance by 

further encouraging jump phenomena. It is considered that 

this groove modification did not significantly change the 

character of the oil entering the damper clearance. 

Results for configuration la are for SFDl with both a 

0.5 mm or a 2mm deep oil supply groove. In this way, 

comparisons are afforded using the two groove depths. 

Results for configurations 2 and 3 are for 2.0 mm deep 

grooves in both SFDl and SFD2. 

6.3 Instrumentation and its Calibration 

A variety of instrumentation was utilised to demonstrate 

the experimental rig behaviour (see Fig 6.3 and Plate 3) 

and details of the equipment are given in Appendix 4, 
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The instrumentation provided electrical signals from 

which the rotor-bearing response to unbalance could be 

analysed. These signals were recorded on half inch 

magnetic tape using a seven channel tape recorder. The 

parameters of interest are as listed below. 

Eoifiii Displacement 

The position of the rigid rotor, relative to ground, was 

detected using two capacitance transducers positioned to 

observe the horizontal, x, and vertical, y, 

displacements. A power amplifier system was used to power 

the transducers and to amplify their output signals. 

Configurations 2a,b required the rotor position relative 

to SFD2 housing to be measured for which a second pair of 

transducers was used. Plate 4 shows the free (right hand, 

Fig 6-1) end of the rotor with the probes mounted to 

ground and the SFD2 housing. A third pair of transducers 

were mounted to ground to measure the SFDl housing 

displacements relative to ground for configurations 3a 

and 3b and the probes can be seen in Plate 1. 

The transducers detect the rotor vibration from the 

variations in the size of the gap between a polished 

portion of the rotor surface (close to the free rotor 

end) and the transducer faces. This gap variation results 

in capacitance fluctuations and an electrical vibration 

signal is produced. 

The capacitance transducers were calibrated remote from 

the rig using static displacements (from slip gauges and 

a purpose built screw gauge micrometer calibration jig) 

over the range of gaps that would be experienced on the 

rig. A linear relationship between gap size (and, hence, 

rotor displacement) and the transducer amplified output 

71 



voltage was observed. Fig 6.4 gives the calibration for 

the six transducers used on the rig. 

In order to maintain a constant dielectric constant, the 

capacitance gaps between the probe heads and the target 

surface, such as the rotor, had to be kept free from oil. 

This was achieved, during the experiment, by employing 

oil thrower discs on the rotor and various sealing 

devices. In addition, it was found necessary during 

configurations 2a (and subsequently) to employ small jets 

of air to blow between the probe head and the rotor to 

remove traces of oil that had leaked into the probe area 

from the SFD2 discharge. 

Rotor Speed 

The rotor speed was measured using a photoelectric diode 

which admitted light from an area on the rotor of which 

one half, or 180* was black and the other was white. As 

the rotor rotated the diode detected an approximately 

square wave light fluctuation of the same frequency as 

the rotor speed, converted this into an electrical output 

which was displayed as a speed reading (Hz) upon input to 

a counter. The counter provided an amplified square wave 

(TTL) speed output for recording. Rotor speed was 

indicated to the nearest whole Hertz (to maintain a rapid 

speed update) and this was verified by the synchronous 

vibration component identified during spectral analysis. 

Ehaaa 

The phase angle between the unbalance force and the rotor 

displacement was detected using the amplified square wave 

speed signal (which was in phase with the unbalance mass 

placed on the rotor) and the amplified rotor y 

displacement signal. These two signals were input to a 
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phase meter to obtain the phase angle. The maximum phase 

error, neglecting electronic inaccuracies, was estimated 

at ± 1.0*. 

SED Oil Supply Pre.a.a.ur.e. 

The static pressure of the oil supplied to the SFDs was 

monitored using a dial gauge on each of the three oil 

supply lines (120® equispaced around the housings). 

Pressure could be read quite easily to within ± 0.25 psi 

and the gauges were found to be accurate within this 

tolerance when compared with a calibrated air supply 

pressure. 

A minor shortcoming arose when the rig was modified from 

configuration lb to configuration 2a in that the maximum 

oil supply pressure that the existing pump and motor 

arrangement could deliver fell from 24 psi to 15 psi. 

This was due to the addition of SFD2 which effectively 

doubled the oil flow demand. However it was considered 

that this did not affect the ability to provide a full 2n 
film of oil in each SFD, when required. 

The supply pressure available was determined by the 

maximum flowrate afforded by the existing supply pump and 

motor configuration. It is interesting that the 

theoretical maximum flow through SFDl alone with a 24 psi 

supply pressure is almost identical to the flow through 

SFDl and SFD2 together with a 15 psi supply pressure. 

This is discussed in Appendix 5. 

Ereaiiency Analysis 

A spectrum analyser was employed to carry out a spectral 

analysis of the experimental vibration signals. This 

allowed jump phenomena, combination frequencies and 
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subharmonic resonances to be observed within the 

frequency range analysed by studying individual spectra 

and by the compilation of spectra as waterfall diagrams. 

SED Oil YiacQSlty. Calibration 

The oil used in the rig was Shell Calibration Fluid 'C. 

Samples of this oil were taken from the rig's oil tank 

and the viscosity was determined for a number of 

temperatures covering the range of temperatures measured 

before and after experimental data recording. A 

Brookfield viscometer was used and Fig 6.5 shows the 

calibration. 

An alcohol thermometer was used before and after 

recording experimental data to measure the temperature of 

the oil being discharged from the SFD. It was estimated 

that during the experiment the oil had an average dynamic 

viscosity of 6.0 cP. 

6.4 Static Natural Frequencies 

The static natural frequencies of the rig were determined 

by carrying out an impulse test with the rotor 

stationary. The impulse was provided by a soft hammer 

which smartly struck the flexibly mounted bearing housing 

a number of times. The spectrum analyser captured the 

transient responses from the amplified displacement probe 

signals, generating the spectra from which the natural 

frequencies were determined. 

The essential elements determining the static natural 

frequencies for configurations la through to 2b were the 
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rotor and the flexible bars, kg. The SFD2 clearance was 

packed with shim to lock it and this assembly 

demonstrated a lowest natural frequency at 32.4 Hz, in 

both the horizontal (x) and the vertical (y) directions. 

Fig 6.6a. This lowest natural frequency is for a bounce 

mode with the rotor rigid. Higher natural frequencies 

were 200 Hz or more. 

Configurations 3a and 3b involved both sets of flexible 

bars, ki and kz, supporting the rotor. The clearances of 

SFDl and SFD2 were packed with shim and the transient 

responses indicated a first bounce mode frequency in the 

horizontal, x direction of 34.8 Hz and in the vertical, y 

direction of 36.8 Hz, Fig 6.6b. This indicated a degree 

of anisotropy. 

The natural frequencies of the SFD housings alone on 

their flexible support bars were determined. A response 

at 64.0 Hz, with some harmonics, was recorded with the 

SFDl housing supported by the flexible bars, ki, Fig 

6.7a. The natural frequency of the SFD2 housing with its 

support, ks was observed at 89.2 Hz, with some harmonics, 

Fig 6.7b. 

6-5 Rig Motor & Pump Frequency Contributions 

The rotor-bearing assembly was serviced by a drive motor 

and two motor-pump units to supply and retrieve oil. 

These units had their own vibration characteristics which 

the rotor-bearing assembly response was guarded against 

by appropriate precautionary measures. However, these 

measures (a very solid assembly foundation and flexible 

drive coupling) still allowed some vibration from the 

auxiliary equipment to be transmitted into the rotor-
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bearing assembly. 

To identify this auxiliary equipment rig vibration 

contamination tests were carried out with the auxiliary 

equipment running and the rotor stationary. The rotor 

vibration developed by the oil motor-pump units alone 

(Fig 6.8a) and with the drive motor (on standby) in 

addition (Fig 6.8b) show that low levels of vibration at 

25 Hz (and harmonics, probably due to electrical mains) 

and at 32.4 Hz (rig first bounce mode) are present along 

with other noise. 

6.6 Experimental Investigations 

The experimental test rig was used to record and examine 

the responses of the range of configurations of the three 

bearing assembly (Table 3.1) to mass imbalance. Non-

linear phenomena were sought over a range of rotor speed 

(w/wn = 0.46 to 2.5), mass unbalance (Qcz = 0.25 to 

0.73), oil supply pressure (Psup = 2.0 to 24.0 pel) and 

appropriate static eccentricities (Box and Eoz =0.0 to 

1.0). These parameter ranges were established following 

an initial theoretical study of the TT and 2TE Film 

solutions and after commissioning of the experimental 

rig revealed the presence of jump phenomena. 

Up to four mass unbalances were used to excite the rig 

response: 

25 gram, equivalent to Qcz = 0.245 , 

50 gram, equivalent to Qcz = 0.490 , 

62.5 gram, equivalent to Qaz = 0.611 and 

75 gram, equivalent to Qcz = 0.733 . 

The recording of experimental signals was carried out 
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with the rotor speed constant. Thus the steady state 

response of the system at each particular speed was 

recorded. This was to eliminate any rotor acceleration 

effects and enable accurate construction of waterfall 

diagrams from experimental vibration frequency spectra. 

To study the range of configurations for various 

unbalances and supply pressures, in excess of 1400 steady 

state responses were recorded from a total of 59 runs 

(averaging 24 speeds per run). 

The tests were analysed by studying the SFD orbit 

magnitudes and the phase angles between SFD eccentricity 

vectors and the unbalance. The rotor speed was 

represented as a frequency ratio, by dividing by the 

first bounce mode frequency of configuration la, namely 

32.4 Hz. Rotor displacements relative to ground and 

relative to the SFD2 housing were sampled by a spectrum 

analyser, utilising the Manning time window. 
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Chapter 7. EXPERIMENTAL RESULTS & THEIR COMPARISON 

WITH THEORETICAL PREDICTIONS 

Experiments were carried out to determine whether or not 

jump phenomena, as predicted by the theoretical TC film 

and general Short Bearing approximations, could be 

reproduced experimentally. In particular, the nature of 

the jump phenomena and the occurrence of the 

subsynchronous resonances demonstrated theoretically are 

to be compared with the experimental observations of such 

non-linear phenomena. 

7.1 Rig Configuration la 

7.1.1 Shallow Oil Supply Groove 

With the SFDl journal statically centred in the bearing 

housing the resulting vibration orbits were almost 

circular about the housing centre. For the highest 

unbalance, Qcz equal to 0.733, supply pressure, Psup set 

at 2 psi and at a rotor speed of 55 Hz (w/wn = 1.70), 

SFDl exhibited a circular orbit encompassing about 40% of 

the clearance and the orbit size rose gradually for 

decreasing speeds down to 45 Hz, Fig 7.1. The orbit 

suddenly jumped up in size whilst running down between 

rotor speeds of 45 Hz and 43 Hz. The large orbit at 43 Hz 

displayed a 'three-lobe' profile which was traced back to 

a 0.04mm three jaw chuck machining distortion of the SFDl 

journal. Large orbits persisted through the first bounce 

mode frequency, 32.4 Hz, and fell off as speed was 
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further decreased, encompassing only about one tenth of 

the clearance at 17 Hz. 

Fig 7.2 gives the amplitude and phase responses of SFDl 

to a range of unbalance for the 'shallow' groove, 0.5 mm 

deep, again with supply pressure, Psup equal to 2 psi. 

The jump is clear with the highest unbalance, Qc2 equal 

to 0.733, The lower unbalances demonstrated 'smooth' 

amplitude responses, peaking around the first bounce 

mode, (w/wn. = 1). 

The jump was observed with the highest unbalance mass 

(Qo2 = 0.733) only. The jump occurred at frequency 

ratios, w/wn equal to 1.36, 1.30 and 1.33 with oil 

supply pressures, Psup of 2, 4 and 6 psi, respectively. 

The jump down with Psup set at 6 psi, Fig 7.3 was 

observed from recordings made with increasing rotor 

speed. Lower values of Psup required the rotor to be 

accelerated quickly from a low speed and vibration level 

past the minimum jump frequency, to a low stable 

vibration (at w/wn of about 1.6). Then, starting with a 

low vibration level at high speed it was possible to 

observe a jump up as speed was decreased. This jump up 

occurred at the lowest speed of the bistable region, the 

minimum jump frequency. (A slow acceleration at the lower 

oil pressures had resulted in the vibration rising to 

very high levels above 32.4 Hz, ie w/wn equal to unity, 

which persisted at high speeds without a jump down.) 

The phase between the rotor displacement and the 

unbalance force (Fig 7.3) shows that the rotor inverted 

in a way similar to that of a second order system for low 

unbalance factors (Qcs = 0.245 & 0.490). The highest 

unbalance used (Qca = 0.733), producing jumps in rotor 

displacement, or eccentricity, gave a phase response 

which indicated that the rotor did not follow a smooth or 
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continuous inversion path. As the oil supply pressure was 

increased from 2 psi, Fig 7.2, to 6 psi. Fig 7.3, the 

size of the phase jump decreased for unbalance, Qca of 

0.733 (see also Table 7.1). 

It is of interest to note that with a Psup of 6 psi and a 

Qc2 of 0.733 (Fig 7.3) the phase is greater than 90* 

between w/wn values of 1.02 and 1.20 (being a maximum of 

108° when w/wn is 1.14). This higher pressure encourages 

inversion but this trend reverses at higher speed, 

reducing the phase until sudden inversion, or jump occurs 

when w/wn is 1.33. The most likely cause of this is that 

an increase in supply pressure would tend to increase the 

speed at which cavitation becomes significant. With 

sufficient cavitation the hardening response raises the 

effective natural frequency which causes the phase to 

remain below 90", delaying inversion. 

Increasing oil supply pressure to SFDl from 2 to 6 psi 

had the effect of reducing the dynamic eccentricity 

ratios for any particular unbalance. Also, at high speed 

and a Qoa of 0.733, the phase increased with decreasing 

oil pressure, indicating a more complete inversion. It is 

clear that the damping in the system was increased with 

increasing oil supply pressure. As rotor speed was 

increased and with a Qoz of 0.733, a high amplitude 

response persisted above a frequency ratio of unity even 

when the oil supply pressure, Psup was raised to 25 psi. 

The experimental orbits, Fig 7.1, with a shallow groove 

in SFDl, compare well in general shape and disposition 

with the theoretical results. Fig 5.8. The orbits are 

fairly circular and concentric. At this unbalance, Qca 

equal to 0.733, an experimental jump up on run down was 

demonstrated between frequency ratios, w/wn of 1.39 and 

1.33, Fig 7.2, compared with a theoretical jump at the 
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minimum jump frequency at a w/wn of about 1.51 in the 

theoretical results. Fig 5.9. The experimental orbits 

demonstrated slightly more system damping than was 

implied in the predictions, but all the essential 

features were reproduced. 

7.1.2 Deep Oil Supply Groove 

The SFD oil supply groove depth was increased from 0.5 mm 

to 2.0 mm. Fig 7.4 gives the experimental responses for 

the deep-grooved SFD using two different supply 

pressures. An intermediate unbalance, namely Qoz equal to 

0.611 was also employed in order to further investigate 

the possibility of jump phenomena. A jump was 

demonstrated with Qoz as low as 0.490, when Psup was 

2 psi. Therefore, at this level of unbalance, a reduction 

in damping due to deepening the supply groove was evident 

from the increase in resonant amplitude and the 

introduction of a jump in the response. 

After the SFDl groove depth was increased experiments 

with rig configuration la indicated that, even with the 

lowest SFDl oil supply pressure studied, 2 psi, bistable 

operation was only achieved for unbalances, Qcz of 0.490 

and above. Fig 7.4. The minimum jump frequencies observed 

in the experimental and theoretical results are 

summarised in Table 7.4. The predicted jump frequencies 

from the general solution of the short bearing 

approximation were, on average, 15 % higher than the 

experimental frequencies. The minimum jump frequencies 

predicted by the half, or rt film model, although still 

higher than the experimental minimum jump frequencies, 

were closer to them, being, on average 10 % higher. This 

is possibly due to variation in the experimental minimum 

film pressure below the value of absolute zero adopted by 
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the model. Film tension spikes of short duration have 

been noted experimentally [72]. 

The Tt film theory (Figs 5.5 and 5.6) suggests that a 

bistable region existed for the full range of unbalance 

studied (Qos values from 0.245 to 0.733), whereas the 2K 
film theory (Figs 5.3 and 5.4) indicates no bistable 

regions for the same set of parameters. The unsimplified 

Short Bearing predictions, modelling film extent between 

the 2K and Tt film models, indicates bistable regions for 

unbalance factors, Qcz above and including 0.490 with Ai 

set to 0.02132, Figs 5.9 and 5.10. With Ai increased to 

0.08528 no bistable regions existed, Fig 5.11. The extent 

of the experimental bistable operation was observed with 

QO2 as low as 0.490 with the deep supply groove but only 

at the highest unbalance, Qoz equal to 0.733, with the 

shallow supply groove. This suggests that the effective 

experimental Ai value was between 0.02132 and 0.08528, 

namely the two land and one land assumption, 

respectively. With the deep supply groove and the 

highest unbalance, Qoz equal to 0.733, inversion was not 

possible, even with a high rotor speed acceleration and 

so the minimum jump frequency in this instance was not 

observed. 

Predicted responses indicate that a supply pressure 

variation from 2 to 6 psi had a negligible effect on the 

vibration amplitude, Figs 5.9 and 5.10. Increases in the 

experimental pressure caused the apparent damping in the 

responses to increase slightly. Figs 7.2 and 7.3. The 

effect of varying supply pressure on the film forces 

developed by the unsimplified Short Bearing model are 

illustrated in Table 7.7. It is clear that the effect of 

increasing supply pressure whilst keeping cavitation 

constant is to reduce the radial force component, PI and 

increase the tangential component, P2. Therefore, the 
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model behaves as expected, reducing the extent of film 

cavitation either by an increase in supply pressure or by 

a decrease in the cavitation pressure, although an 

increase in supply pressure does not noticeably effect 

the predicted frequency response. 

Employing a supply pressure of 2 psi, the experimental 

waterfall diagrams, with linear, voltage amplitude, show 

that a jump was detectable in the synchronous or first 

engine order, lEO, and second engine order, 2E0, 

Fig 7.5. The logarithmic scale (lower diagram) 

highlighted the lower amplitude activity. When a jump up 

was imminent on run down there was a rise in the 

amplitude of a broad band of frequencies at the point 

when the jump occurred. Also, subsynchronous activity was 

low and generally independent of speed, around the 

32.4 Hz natural frequency, Wn. 

The theoretical waterfall diagram. Fig 5.12, compares 

well with the experimental. The response is dominated in 

both the experimental and theoretical cases by the 

synchronous response. The theoretical waterfall diagram 

indicates a very low amplitude harmonic response at 2E0, 

whereas the experimental has a slightly higher 2E0 

response. Fig 7.5. This is probably attributable to 

practical tolerances within the test rig, that is, slight 

misalignment and geometric tolerances might contribute to 

exciting the low amplitude harmonic components observed 

in the experimental diagram. The subsynchronous activity 

is of low amplitude in both the theoretical and 

experimental responses, occurring at about 32.4 Hz (wn) 

and remaining constant with increasing speed. 

The experiments and predictions for configuration la have 

both demonstrated how jump phenomena can develop due to 

the non-linear stiffening properties of the SFD when the 
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rotor unbalance is suitably high. The effect of deepening 

the oil supply groove was to reduce the level of 

unbalance at which jump phenomena become a feature. The 

occurrence of experimental jump phenomena indicates that, 

from comparisons with predictions, the value of the 

bearing parameter, Ai lies between the two (or separate) 

land assumption (Ai = 0.02132) and the single (or 

coupled) land assumption (Ai = 0.08528). The 

nonsynchronous response of both the experiment and theory 

agreed, predicting low level subsynchronous resonance at 

the first bounce mode frequency. 

Since the purpose of the research was to investigate non-

linear phenomena and jumps were more easily promoted by 

the deep-grove SFD, this was retained for the rest of the 

experiments. 

7.2 Rig Configuration lb 

Static eccentricity was introduced in the negative y 

direction to the journal, that is in the same direction 

as gravity and this encouraged uncentralised non-circular 

orbits. The static eccentricity did not restrict the 

occurrence of jump phenomena. Experiments showed that 

high dynamic eccentricities and non-inverted response 

arising from an unbalance factor, Qcs, of 0.733 were 

still significant features with static eccentricities, 

Eoi, of 0.4 and 0.8. The orbit magnitude in the y 

direction was employed as it illustrates bistable 

operation well. 
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static Eccentricity, Eoi = 0.8 

Fig 7.6 shows the experimental rotor centre orbits for 

the deep groove SFDl with static eccentricity, Eoi set to 

0.8, Qc2 equal to 0.490 and Psup set at 2 psi. A jump 

down on run up is clear between w/wn of 1.27 and 1.33. A 

strong non-synchronous response is clear at w/Wn equal to 

2.253. The frequency response. Fig 7.7 shows that, with 

Qc2 equal to 0.490 and Psup at 2 psi, the amplitude 

rose quite steeply through the bounce mode (w/wn =1) 

until the jump down, as already observed in the orbits, 

took place. 

The experimental rotor centre orbits. Fig 7.6, compare 

well with the theoretical predictions. Fig 5.13. A jump 

down is clear in both cases, occurring at w/wn equal to 

about 1.30 experimentally (Fig 7.7) and 1.45 

theoretically (Fig 5.14). A strong subsynchronous 

response, illustrated by a "double loop", is illustrated 

at high speeds both in the rig response and in the 

predictions. 

Fig 7.7 demonstrates that for a higher unbalance, Qcz 

equal to 0.611, an experimental jump up on run up 

occurred at w/wn of about 1.05 followed by a steady 

increase in amplitude upto a w/wn of 1.76, above which 

the vibration levels were considered potentially 

destructive. Even with a supply pressure, Psup of 20 psi, 

the experimental response at this level of unbalance 

would not invert to a lower level past the unity 

frequency ratio. No jumps or any other significant non-

linear phenomena occurred with Qos below 0.490, the 

response simply displayed a well damped amplitude with 

inversion taking place around the natural frequency. The 

steep rise in experimental amplitude above the unity 

frequency ratio was not reproduced precisely in the 
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theoretical response where the amplitude rose to a high 

level before the unity frequency ratio. 

Fig 7.8 shows a range of responses with various SFD 

parameters, Ai where increasing the Ai value clearly 

increases the effective damping. The precise value of Ai 

is doubtful, as discussed earlier, and it is possible 

that in this instance the forms of the experimental 

results, as shown in Fig 7.7, are due to a steady 

reduction in the effective value of Ai with increasing 

speed. It is possible that the value of Ai is reduced by 

variations in the fluid such as cavitation bubbles being 

drawn into the positive pressure region. This would 

reduce the damping capacity of the SFD and could occur 

without the average cavitation pressure in the negative 

pressure region rising. Alternatively, variation of the 

stipulated theoretical cavitation pressure, Pmin, Fig 7.9 

shows that the response is very similar for various 

values of Pmin, except that as Pmin is reduced the 

minimum jump frequency is reduced. Thus, it is probable 

that the form of the experimental responses was due to a 

variation in the effective Ai value. 

The experimental waterfall diagrams. Fig 7.10, with a 

Qc2 of 0.490. for the response of SFDl show a strong jump 

down with increase in speed. Strong 1/2 EO subsynchronous 

resonance which dominated the synchronous amplitude, was 

also demonstrated, the orbit of which is presented in 

Fig 7.6 (w/wn 2.253). The effect of SFDl static 

eccentricity, Eoi equal to 0.8, on the experimental 

spectral response is to increase the harmonic content of 

the waterfall diagram. Fig 7.10, with 2 EO, 3 EO and 4 EO 

spectral components in evidence, particularly at a speed 

equal to the bounce mode frequency, 32.4 Hz. The 

theoretical waterfall diagram. Fig 5.15, also shows this 

effect with harmonics upto the 4 EO frequency at rotor 
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speeds around the first bounce mode frequency. Also, at 

higher rotor speeds, a 1/2 EO subsynchronus response is 

shown in both the theoretical and experimental waterfall 

diagrams, accompanied by a weak response at the 3/2 EO 

and 5/2 EO. The sharp increase in the subsynchronous 

resonance after about 69 Hz rotor speed is clear in both 

the theoretical and experimental diagrams. The 

theoretical 1/2 EO and 3/2 EO responses appear to 

bifurcate, or split at 77 Hz and 81 Hz rotor speed. This 

feature was not present in this experimental case but was 

observed in other cases. 

St&t JLC EcG&ntriG ity, Eoi — 0.4 

With static eccentricity, Eoi at 0.4, the SFDl responses 

demonstrated jumps down on run up with Qoz as low as, 

0.490, Fig 7.7, as they did with Eoi equal to 0.8. Also, 

an increase in amplitude at higher speeds indicates the 

onset of subsynchronous activity with this unbalance. 

Even with supply pressure, Psup raised to 20 psi the 

effect of static eccentricity, Eoi was to prevent the 

inversion of the response for the higher unbalance, Qcz 

equal to 0.611, The amplitude continued to rise with 

increasing speed until the vibration level was considered 

unsafe. 

The comparison of the experimental results for Eoi equal 

to 0.4 with the theoretical predictions shows similar 

features as does the comparison for the larger static 

eccentricity, Eoi equal to 0.8. A jump up with run down, 

at a minimum jump frequency is predicted. Fig 5.16. 

However, as speed is reduced further, the high amplitude 

falls off more quickly in the experimental results than 

is predicted, again perhaps due to a change in the 
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effective value of Ax, as described above. 

7.3 Rig Configuration 2a With SFDl Statically 

Concentric 

As can be seen from Table 3.1, configuration 2a 

incorporates two SFDs, each of which would have a likely 

effect on the overall response. The central preloading of 

SFDl, stipulating zero static eccentricity, encouraged 

circular journal orbits there. The experimental response 

to various unbalance factors indicated that the static 

load acting on SFD2 was large enough to prevent 

appreciable lift from its fully eccentric position. Thus 

the flexible bars (kz) deflected appreciably to conform 

with the rotor vibration, as observed in the SFDl orbit. 

Figs 7.11a,b show the journal centre orbits within the 

clearance circle (radius c) for SFDl and SFD2, 

respectively during run down for a Q02 of 0.611 and oil 

supply pressure, Psup of 2 psi. A jump up between rotor 

speeds of 41 Hz and 39 Hz (or w/wn of 1.27 and 1.20, 

respectively) was recorded, although the latter only is 

shown as an orbit in Figs 7.11a,b. 

Figs 7.12a,b give the amplitude and phase responses for 

SFDl and SFD2 each with Psup set at 2 psi. Jumps up, at 

the minimum jump frequency, were clearly indicated during 

run down in both the amplitudes of SFDl and SFD2 and in 

the phase of SFDl. The jump phenomenon was exhibited over 

a range of unbalance parameter, Q02 from 0.490 to 0.733. 

The SFD2 phase vs speed relationship varied due to the 

highly non-linear effect of the damper and provided no 

useful information. 
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Figs 7.13a,b present the responses for SFDl and SFD2, 

respectively, with Psup set at 15 psi. Only the highest 

unbalance, Qcs equal to 0.733 resulted in a jump up 

during run down. Lower unbalances produced responses 

without bistable characteristics. Tables 7.2 and 7.3 

summarise the experimentally observed jumps for SFDl and 

SFD2, respectively. 

Figs 7.14a,b present the waterfall diagrams for rotor 

(that is, SFD journal) displacements relative to SFDl and 

SFD2 housings, respectively. As expected from the orbits 

and vibration amplitudes discussed above, a much lower 

frequency response is indicated within SFD2 than in SFDl. 

With a logarithmic scale it was clear that when a jump up 

was imminent on run down there was a clear rise in the 

amplitude of a broad band of frequencies at the point 

when the jump occurred and this has already been noted in 

configuration la. Fig 7.15 indicates the change in broad 

band frequency response with bistable operation (Qoa 

equal to 0.733) and without bistable operation (Qcz equal 

to 0.245) for SFDl. The frequency analysis of 

configuration 2a responses indicated that subsynchronous 

response at rotor speeds equal to and greater than about 

65 Hz, that is twice the first natural frequency, was 

dominant in the first bounce mode. Fig 7.14a. This 

response was still overshadowed by large synchronous 

components, as is indicated from the shape of the rotor 

centre orbits of Fig 7.11a. At 65 Hz rotor speed the 

response at 32.4 Hz represented a 1/2 EO subharmonic. 

A good qualitative agreement of non-linear 

characteristics exists between the prediction and 

experimental observation of bistable operation at low SFD 

supply pressure. Figs 5.18 and 7.12, respectively. At a 

higher SFD supply pressure then the experiment, Fig 7.13, 

indicates bistable operation for the highest unbalance 
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studied, Qcs equal to 0.733, while the lower unbalances 

demonstrated a damped resonance. However, theoretical 

predictions for the higher supply pressure were similar 

to those for the lower pressure. The lack of influence of 

supply pressure on the predictions has already been noted 

in configuration la (refer to section 7.1.2). The 

experimental minimum jump frequencies and their 

theoretical counterparts are presented in Table 7.5. The 

theoretical minimum jump frequencies, as before (section 

7.1), were predicted higher than those observed 

experimentally. It is possible that this was due to 

differences between the experimental and theoretical 

cavitation conditions. For example, as the rotor speed 

was reduced the effective experimental cavitation might 

have been less than predicted by the model's absolute 

zero (-14.7 psi gauge) cut-off thus delaying the jump up, 

in a similar way to that indicated in Fig 7.9. 

The predicted orbits, Fig 5.17, compare well in general 

shape and disposition within the SFDl and SFD2 clearances 

with the experimental orbits, Fig 7.11, except at the 

lowest speed of 15 Hz, or w/wn equal to 0.463. The large 

vertical supersynchronous oscillation predicted at this 

speed was identified as a response at the bounce mode of 

32.4 Hz in the waterfall diagram of Fig 5.20, along with 

a lower amplitude synchronous response. The experimental 

synchronous amplitude at this speed was similarly low. 

Fig 7.14a, and, although evident, the response at 32.4 Hz 

(wn) was lower still, suggesting that the experimental 

system damping is higher than the theoretical. 

At speeds below the first bounce mode it is possible to 

excite the bounce mode experimentally so that it 

overshadows the synchronous response if the system 

damping is sufficiently low. Fig 7.16. Another point 

worth noting is that the predicted response at Wn might 
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have been a persistent transient and might have died away 

if the numerical integration was continued further still. 

Fig 7.17 gives the predicted orbits at 15 Hz rotor speed 

when the single land assumption is applied, that is Ai 

and As are increased to 0.08528 and 0.16040, 

respectively. This increase in damping from the two land 

assumption reduces the supersynchronous response 

substantially. 

A response at 32.4 Hz for a 15 Hz rotor speed 

approximates a second harmonic, 2E0. The large vertical 

response predicted in this instance is interesting 

because it is not predicted from theoretical 

considerations for configuration la. Fig 5.12, where the 

response is dominated by the synchronous response with 

only a low response at the first bounce frequency. In 

configuration la, the rotor at the SFD2 location 

experiences a restoring force from the support bars (kg) 
which is in phase with the deflection. The only 

difference between the configurations la and 2a is that 

configuration 2a introduces SFD2 whose journal carries 

significant rotor weight so that, at low rotor speeds, 

little lift is apparent and the orbits are very small. 

However, SFD2 affects both the phase and amplitude of the 

force acting on the rotor and it is possible that, as a 

result of having both dampers active, the non-symmetric 

forcing in the vertical direction provided by the rotor 

weight and unbalance excites the first bounce mode, 

whereas the horizontal response, driven by the symmetric 

horizontal unbalance force vector, is less affected. 

Over the rest of the speed range the predicted waterfall 

diagram revealed the presence of low amplitude 

subsynchronous resonance at the bounce mode frequency, 

wn, and jumps in the harmonic components, similar to 

those present in the experimental results. 
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7.4 Rig Configuration 2a With SFDl Statically 

Eccentric 

The experimental response with SFDl static eccentricity, 

Eox equal to 0.5 was studied for an unbalance, Qc2 of 

0.611 and with Psup set to 2 psi. Figs 7.18a,b and 

7.19a,b give some rotor centre orbits and the amplitude 

response over the speed range for SFDl and SFD2, 

respectively. When the responses are compared with those 

for Eoi equal to zero (Figs 7.11a,b and 7.12a,b) there is 

one significant difference, namely that the response of 

SFDl, Fig 7.18a indicates the presence of a strong 

subsynchronous response at high rotor speeds. As speed 

was decreased, a jump up occurred between frequency 

ratios, w/wn of 1.57 and 1.51 (51 and 49 Hz, 

respectively). Fig 7.19a. The response of SFD2, Figs 

7.18b and 7.19b, demonstrates the jump phenomenon clearly 

at the same speeds as for SFD2. However, the 

subsynchronous response at high speeds, although clear in 

the experimental SFDl orbits is^as clear in the SFD2 

orbits possibly due to the smaller orbit size. 

The experimental and theoretical orbits, Figs 7.18 and 

5.21, respectively, both illustrate strong nonsynchronous 

vibrations at w/wn of 2.5 and the jump up on run down 

from a "double loop" SFDl orbit to a very large centred 

SFDl orbit. The general comparison of orbit size and 

disposition between experiment and predictions is good. 

The theoretical response demonstrated bistable operation 

at all speeds above w/wn of about 1.3, with the lower 

solution clearly rising above w/wn of about 1.90 due to 

the increase in subsynchronous activity. A similar rise 

in the experimental results was less pronounced in the 

frequency response. Fig 7.19, but significant in the 
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orbits and waterfall diagrams (Fig 7.20). The 

experimental bistable region was indicated at speeds 

above w/wn of about 1.5. 

Thus, when static eccentricity, Eoi was introduced to 

configuration 2a then, at speeds between 65 and 81 Hz the 

subsynchronous response was of 1/2 EO. That is, the 

dominant subsynchronous component's frequency increased 

proportional to speed. Also, the experimental waterfall 

diagram. Fig 7.20, shows that at 81 Hz rotor speed (w/wn 

= 2.5) this 1/2 EO had increased dramatically in 

amplitude and for SFDl was comparable with the 

synchronous component. In SFD2 the 1/2 EO was dominant 

over the synchronous vibration. The 3/2 EO and 5/2 EO 

components were also significant in this situation. 

The experimental spectral information clearly illustrates 

the jump up on run down in the synchronous and harmonic 

responses and a similar jump up on run down (at the 

minimum jump frequency) is clear in the synchronous and 

harmonic responses of the predicted waterfall diagram, 

Fig 5.23. 

The predicted response indicates significant response at 

2 EO at low speeds, coinciding with the first bounce mode 

(32.4 Hz). This is similar to the predictions for 

configuration 2a with SFDl statically concentric, Fig 

7.14, but with SFDl statically eccentric this response at 

the first bounce mode is reduced in amplitude, probably 

due to the increase in damping of the uncentred journal 

motion in that instance. At higher speeds, before the 

jump up on run down, the theory ajnd the experiment both 

indicate very strong 1/2 EO components, accompanied by 

3/2 EO and 5/2 EO responses, particularly in the SFD2 

response. It should be noted that at 73 Hz rotor speed 

(marked by an asterisk) the spectrum is for the non-
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inverted solution. Fig 5.23. The inverted, lower 

amplitude solution was sought at all speeds above the 

minimum jump frequency. However, at 73 Hz rotor speed, 

numerical sensitivities prevented this solution from 

being marched out for long enough to obtain the full 

discrete time series required by the FFT algorithm. 

Initially the method would begin to converge to the lower 

solution, but then the numerical response would suddenly 

switch to converge to the larger solution and this 

feature was consistent for a range of initial conditions. 

7.5 Rig Configuration 2b 

Configuration 2b involved the raising of the SPDl housing 

so that it took the rotor weight and unloaded the 

support, ks and centralised SFD2. 

The experimental response of the rig to various unbalance 

factors indicated that the static load acting on SFDl 

restricted its journal movement to orbits close to its 

fully eccentric position at speeds upto a critical speed. 

During run up, a jump up in orbit size took place at the 

critical speed, when unbalance was sufficiently high. The 

central positioning of SFD2 to give zero static 

eccentricity, did not encourage circular journal orbits 

there; instead the SFD2 journal motion was heavily 

influenced by the shape of the SFDl orbits. Figs 7.21a,b 

show the journal centre orbits within the clearance 

circle (radius c) for SFDl and SFD2, respectively for a 

Qg2 of 0.611 and Psup set at 2 psi. A jump up between 

w/wn of 1.57 and 2.01 (51 and 65 Hz, respectively) is 

clearly demonstrated. 
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Figs 7.22a,b give the amplitude responses over the rotor 

speed range for SFDl and SFD2 with Psup set at 2 pel . 
Jump phenomena were exhibited over a range of Qca from 

0.490 to 0.733. On run down a jump down would occur at a 

lower speed than that at which a jump up occurred on run 

up and this demonstrated a hysteresis of about 4 Hz rotor 

speed. 

Figs 7.23a,b give the amplitude responses over the rotor 

speed range for SFDl and SFD2 with Psup set at 15 psi. 

Jump phenomena were still exhibited over a range of Qcz 

from 0.490 to 0.733 but with Qca equal to 0.490 a jump 

was only discernible in the y eccentricity of SFDl. 

Hysteresis in the jump speeds between run up and run down 

was evident within these results, also. 

The experimental and theoretical orbits. Figs 7.21 and 

5.24, respectively, compare well, demonstrating a 

relatively low amplitude response on run up followed by a 

strong jump up at high speed. The experimental jump 

occurs earlier in the speed range than its predicted 

counterpart". For a low supply pressure, Psup equal to 2 

psi and with Qoz equal to 0.733 the experimental 

response. Fig 7.22 indicates a jump up at w/wn of about 

1.54, and the theory. Fig 5.25, predicts a jump up at 

w/wri of about 1.70. With Qcs equal to 0.490 the 

experimental jump up occurs at w/wn of about 1.98 which 

compares with the corresponding prediction at w/wn of 

about 2.07. These results are summarised in Table 7.6. 

The theory predicted maximum jump frequencies slightly 

higher than those observed experimentally by an average 

of about 5 % with respect to the experimental 

frequencies. 

The experimental results demonstrated a clear hysteresis; 

jump up on run up took place at a higher speed than jump 
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down on run down. With Psup set at 2 psl, the rotor 

speed hysteresis was about 4 Hz and increased to about 6 

Hz when Psup was set at 15 psi. Such hysteresis was not 

present in the theoretical results. The theoretical 

bistable regions above these maximum jump frequencies 

were observed to persist well above the speed range 

relevant to this study. The experimental hysteresis might 

be due to a change in the SFD parameters so that, with 

one particular set of parameters, a jump up on run up 

occurs at a specific speed and this might be accompanied 

by a change in one or more parameter values (such as 

cavitation pressure) which persists on run down causing 

the jump down to occur at a lower speed. This point will 

be given further consideration later. 

The effect of increasing supply pressure in the 

experiment and theoretical predictions compares well; 

both indicated that with Psup at 15 psi the jump up would 

only occur for the two highest unbalances (Qos equal to 

0.611 and 0.733) whereas with Psup equal to 2 psi the 

jump up would be possible for unbalances down to and 

including Qos equal to 0.490. 

Fig 7.24 presents experimental waterfall diagrams for 

SFDl and SFD2. A strong jump down with decreasing speed 

is present with Qcs equal to 0.611, also shown in 

Figs 7.21 and 7.22. This is clear in the synchronous and 

higher integer engine orders. Some subsynchronous 

activity is also clear with this scaling. 

Configuration 2b displayed some 1/2 EO, 3/2 EO and 5/2 EO 

nonsynchronous components in the experimental response. 

Fig 7.24. This became noticable at rotor speeds around 

the first bounce frequency. The amplitude of these half 

integer engine orders was never large enough to dominate 

the synchronous component. The theoretical waterfall 
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diagram, Fig 5.27, compares well with the experiment, 

predicting the jump up with increasing speed and the 

absence of any significant subsynchronous resonances. 

7.6 Rig Configuration 3a 

Configuration 3a involved the flexible supporting of both 

SFDl and SFD2 with support bars, ki and kg, respectively. 
Both SFDs were fully eccentric in the static case. 

As expected, the inclusion of ki, flexibly supporting 

SFDl's housing, had the effect of raising the static 

natural frequency of the assembled test rig (with SFDl 

and SFD2 clearances shimmed) to an average of about 36 Hz 

(see section 6.5).. However, the frequency ratio, w/wn, 

was maintained with wn equal to 32.4 Hz for ©as® of 

comparison. 

For this configuration both SFDs were loaded statically 

to an eccentricity ratio of unity (refer to section 6.1). 

Figs 7.25a,b and c show the experimental orbits of SFDl, 

SFD2 and rotor relative to ground at SFD2 (RRG2) with Qca 

0.611 and Psup at 2 psi. The orbits of SFDl, Fig 7.25a, 

are generally restricted to the bottom of the clearance 

circle and the greatest orbit size, at w/wn 0.957 after a 

jump up, was about half the clearance. After jump down, 

some non-synchronous activity was discernible at w/Wn 

equal to 1.142. For SFD2, Fig 7.25b demonstrates a 

similar response to SFDl but exhibits larger orbits. RRG2 

orbits also show the jump up and down and subharmonic 

resonance, Fig 7.25c. 

The SFDl orbit amplitudes were generally very low, as 
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shown in the amplitude ratios of Fig 7.26a, only rising, 

above a value of about 0.1 around resonance. However, the 

SFD2 amplitudes were significantly larger, particularly 

around the peak amplitudes occurring around the jump up 

on run up, just above a w/wn of about 0.9 for the two 

highest unbalances, Qcs equal to 0.733 and 0.611. For the 

highest unbalance, Qcs equal to 0.733, the vibration 

after the jump up was considered excessively high and 

rotor speeds were not increased further. The rotor 

amplitudes relative to ground at SFD2, RRG2, exceeded the 

range of the capacitance displacement transducer, at the 

peak amplitudes, rising above 2.0 mm (peak to peak). 

Fig 7.260. 

Raising the supply pressure, Psup to 14 psi (the maximum 

available for the configuration), restricted the jump 

phenomena to the highest unbalance, Qoz equal to 0.733, 

Pigs 7.27a,b and c. The maximum rotor displacement, RRG2 

was about 1.7 mm. 

The spectral contents of the SFD2 and RRG2 'y' direction 

signals are given in the waterfall diagrams of 

Figs 7.28a,b, respectively and clearly demonstrate the 

peak amplitudes in 1 EG, 2 EG, 3 EG and 4 EG at a rotor 

speed of about 31 Hz. Also, non-synchronous activity 

(1/2 EG, 3/2 EG, etc) around the first bounce mode static 

frequency of 36 Hz is significant when Qcz is 0.490. 

7.7 Rig Configuration 3b 

Configuration 3b was similar to configuration 3a except 

that the journal of SFDl was centralised in the static 

case. The response of configuration 3b was similar to 
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that of configuration 3a. Static centralisation of SFDl 

generally increased the SFDl orbit sizes and centralised 

them. Fig 7.29a. The effect on the SFD2 and RRG2 orbits 

was to eliminate the subsynchronous activity at w/wn 

equal to 1.14, Figs 7.29b,c, respectively. 

The amplitude responses demonstrated that the jump 

phenomena were still observable for an unbalance, Qcs of 

0.611 but not for Qcz of 0.490, Figs 7.30a,b, and c. 

Fig 7.31 demonstrates the absence of significant 

subsynchronous activity in configuration 3b. 

7.8 Discussion 

The experimental and theoretical results demonstrated 

similar ranges of non-linear phenomena. The comparison of 

the occurrence of such phenomena for each configuration 

is good. The significant practical effects of 

misalignment and SFD support were comprehensively borne 

out in the theoretical results, giving an appreciation of 

the range of vibration characteristics that are to be 

expected from rigid rotor-damper assemblies. The range of 

non-linear phenomena observed in configurations la 

through to 3b are summarised in Table 7.8. 

The quantitative discrepancy between the results of the 

general Short Bearing theory and experiment is generally 

related to two factors. Firstly, the experiment 

displayed a more damped response than does the 

traditional theoretical representation of the SFD having 

two independent lands, for the range of unbalance 

presented. Alternatively, if the lands are considered 
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coupled so that the SFD parameters, Ai and Aa are 

increased, the predictions exhibit a more damped response 

with a significant reduction in the occurrence of non-

linear phenomena than observed from the experiments. The 

experiments thus lie between the two extremes. 

Variations in the film conditions may alter the effective 

experimental SFD bearing parameters, Ai and As. For 

instance. White [30] observed cavitation extending around 

the damper annulus (throughout the positive pressure 

region) and bubbles collecting at the mid land position. 

This cavitation effectively reduced the capacity of the 

SFD by creating two half width lands separated by a 

circumferential cavitation region, in the same way that a 

central groove can decouple two lands to a certain 

extent. It is clear that the effective damping capacity 

of the SFD is reduced if cavitation occurs in a positive 

pressure region. Therefore cavitation variations can 

cause the effective experimental 'A' values to change. 

The only damping allowed for in the theoretical rig model 

was provided by the SFDs. The experimental rig itself 

might have experienced additional damping from sources 

other than the SFDs. Considering the experimental 

facility, internal material damping from the rotor would 

be negligible due to its rigidity over the operating 

speed range. Internal damping from the SFD housing 

support bars, which did deflect appreciably would be 

present. However, the analysis of the static natural 

frequencies of the support bars with and without the 

rotor assembled indicated very low damping following a 

soft hammer impulse. A typical logarithmic decrement of 

below about 0.07 indicated a maximum damping ratio, with 

respect to critical damping, of the order of 0.01. Rotor 

windage and other secondary effects were considered 

insignificant and so attention was directed to the 
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possibility of the two land SFD model underestimating the 

damping. 

Secondly, although setting the cavitation pressure, Pmin 

to absolute zero has been shown to be generally 

applicable, there are instances when the experimental 

response can only be simulated by a change in the 

cavitation pressure. 

The principal assumptions associated with the two land 

SFD model which can be questioned are: 

- With the Short Bearing approximation applied, it was 

assumed that inertial effects were low. Calculations 

for the Gap Reynold Number, R# associated with the 

range of operation of the test rig indicated that R# 

varied between about 1.0 and 10.0. It would appear that 

such values may be significant. However, when the 

weight of the rotor is considered, it is clear that any 

added mass effects from the oil film, which weighs some 

twenty thousand times less than the rotor, would be 

negligible, even at high speeds. 

- The dual land SFD was assumed to operate with the 

central circumferential oil supply groove decoupling 

the pressure distributions within each land and 

contributing negligible dynamic pressure itself. 

Experiments, although initially carried out using a 

circumferential supply groove depth, G equal to 0.5 mm, 

were continued using a deep supply groove, with G equal 

to 2.0 mm. Although the results with a deep grooved SFD 

did indicate a reduction in damping from the shallow 

groove results, the experimental rig still demonstrated 

more damping than the two land theory predicted. 
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As an alternative theoretical assumption to the two 

land SFD model, the circumferential supply groove was 

assumed to couple the dynamic pressure profile between 

the lands. Some predictions were obtained using the 

appropriately higher value of damper parameter, Ai 

equal to 0.08528. Fig 5.11 shows the predictions for 

configuration la with a range of unbalance and supply 

pressure, Psup set at 2 psi. No bistable operation is 

indicated and the resulting response curves are similar 

to the 2K film predictions. Fig 5.3, although clearly 

less damped. Therefore the experimental results. Figs 

7.2 and 7.4, indicate that the appropriate damping 

developed by SFDl fell between the values indicated by 

the coupled and uncoupled land assumptions, Ai equal to 

0.08528 and 0.02132, respectively. 

The SFD model simulated the cavitation as a single 

rupture or bubble, when the dynamic pressure fell 

below an assumed minimum, or cut-off pressure. This 

introduced inaccuracies because the practical situation 

does not produce such a condition. Instead, the 

cavitation almost certainly consisted of a large number 

of vapour and gaseous cavitation bubbles of varying 

size, possibly concentrated around the region of 

minimum pressure with gaseous cavitation extending 

around the full clearance, throughout the positive 

pressure region (refer to [30], [61] and [62]). 

However, the added complication of a compressible film 

model has been shown to produce only marginal 

improvements in the comparison with experimental 

results, [55]. 

It is possible that further improvement between the 

quantitative correlation of experimental and 

theoretical results will result if, at each speed, the 

approximate experimental cavitation pressure is 
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calculated from one or more pressure recordings made at 

the SFD housing surfaces. The approximate variation of 

cavitation pressure over the speed range for each case 

could then be used within the variable film extent 

model [72]. Thus, the resulting predictions may agree 

with the experiment more closely. 

This technique is generally limited to laboratory 

conditions where the such pressure measurements are 

relatively easy. Identifying a specific cavitation 

pressure from a pressure signal displayed on an 

oscilloscope screen was hampered in the present work by 

instrumentation problems. The adoption of absolute zero 

as a reasonably applicable cavitation pressure has been 

successful in producing a good comparison with other 

models [58] and experimental recordings [72] indicate 

that it is the most appropriate average value to 

employ. 
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Chapter 8 PRACTICAL IMPLICATIONS ARISING FROM THE 

RESEARCH 

Non-linear phenomena attract significant academic 

attention and a lot of research has been and continues to 

be carried out in the area of non-linear analysis. This 

attention is commendable since the practical consequences 

arising from the occurrence of some non-linear phenomena 

are severe. For instance, the dramatic destruction of the 

Tacoma Narrows suspension bridge was caused by non-linear 

aeroelastic excitation [73]. The occurrence of non-linear 

phenomena in aero-engine vibration responses can also 

have significant consequences, particularly during the 

development of a new or modified design. 

The present research has demonstrated the ability of a 

range of rotor-bearing assemblies, incorporating unsealed 

SFDs, to exhibit a number of undesirable non-linear 

phenomena. Jump phenomena can lead to high transmitted 

forces and sudden changes in engine vibration. Non-

synchronous response causes fluctuating rotor stresses in 

flexible shafts. It also leads to subharmonic resonances, 

sometimes larger than the resonances developed by 

unbalance. 

It should be remembered when considering the difficulties 

which SFDs can introduce to the rotordynamics of an aero-

engine, that, despite their drawbacks, SFDs have provided 

a very cost effective means of introducing damping to 

rotor assemblies, thus improving the vibration 

characteristics of modern assemblies for all but a 

relatively small number of troubled designs. It was the 

unpredictability and severity of jumps and subsynchronous 
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resonances which led to the sponsorship of the present 

research. 

8.1 The Effect of Manufacturing Tolerances on 

Assembly Vibration Response 

Aero-engine assemblies employ one or more SFDs per 

rotor, each within a bearing pedestal characterised by a 

certain stiffness. A degree of misalignment in three-

bearing assemblies is inevitable due to the stack up of 

tolerances, and the effects of high speed manoeuvres of 

military aircraft may serve to further affect the bearing 

alignments. 

Most assemblies employ sealed SFDs to improve damping 

capacity and strong jump phenomena are not always a 

problem. However, there have been many reported instances 

and results emanating from this research indicate the 

physical mechanisms which promote such phenomena. 

Holmes and Dogan's work [23] indicated that a jump up on 

run up can exist when a rotor is supported by a rigidly 

housed SFD and high vibration amplitudes can prevent 

higher speeds being attained. The same SFD, when mounted 

flexibly can respond without a jump up but non-

synchronous rotor centre orbits can be introduced at 

speeds around the assembly's new natural frequency. Low 

vibration levels can, however, be achieved at speeds 

above this natural frequency. 

Based on the present research, assemblies with a single 

SFD, centred by a flexible rotor support, are likely to 

exhibit jumps only when the unbalance is relatively high, 
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probably outside acceptable contractual limits. These 

jumps are analogous to the classical non-linear hardening 

spring response and arise from the stiffness property of 

a cavitated squeeze-film which increases with speed. On 

the other hand, the same assemblies with the SFD 

statically off-centred are likely to demonstrate that low 

unbalance, possibly within contractual limits, can excite 

jumps and strong subharmonic resonance. 

Some assemblies incorporate two SFDs with very different 

housing supports, for example, one rigidly housed and the 

other flexibly housed. With the former statically centred 

and the latter carrying the rotor weight the response is 

likely to be governed by the former, the latter having 

little influence. Jump phenomena will occur around the 

first bounce mode frequency if unbalance is sufficiently 

large. At high speed, after jump down, satisfactory 

operation should be possible with low amplitude 

subsynchronous activity around the bounce mode frequency. 

Raising the housing of the rigidly-supported SFD is 

likely to result in subharmonic resonance possibly 

dominating the synchronous response and degrading the 

operating speed range. 

By raising the rigidly mounted SFD housing further still, 

until it carries the static rotor weight and such that 

the flexibly supported SFD is centred, safe operation can 

only be guaranteed upto a certain speed, at which a 

strong jump up can be expected. On running down, the 

vibration will jump down at a lower speed. A static 

eccentricity applied to the flexibly-supported SFD may 

alleviate the jump or increase the speed at which it 

takes place due to some of the rotor weight being 

supported dynamically by this flexibly supported SFD. 

The flexible supporting of both SFDs with similar support 
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stiffnesses should give rise to desirable operation for 

all but a small speed range around the first bounce mode. 
It may be that jumps and subharmonic resonance at these 

speeds could be eliminated by additional damping from SFD 

sealing without degrading the rest of the speed range. 

Centralising one of the SFDs has the effect of reducing 

the subharmonic resonance at speeds around the first 

bounce mode. 

The presence of half engine order subharmonic resonance 

dominating the synchronous response at speeds well above 

the bounce frequency would suggest that one of the SFDs 

was not supported flexibly enough and was neither fully 

eccentric, nor concentric in its housing. If, in another 

case, strong jumps up on acceleration were encountered at 

speeds well above the bounce mode, then it might be 

caused by a SFD housing support being too rigid for it to 

safely carry the rotor weight. Improvements might be 

achieved by off-loading the 'rigidly' housed SFD, 

softening its support or both. 

8.2 The Effect of Squeeze-Film Damper Support 

Flexibility on Assembly Vibration Response 

Assembly vibration response depends jointly on the extent 

of misalignment and bearing housing support flexibility 

and these were discussed above. However, it is 

instructive to note from section 8.1 that the flexible 

supporting of a SFD in a two bearing assembly can 

alleviate a potential jump up which would occur at high 

speed, above the first bounce mode and probably within 

the operating range. It should be remembered that the 
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introduction of support flexibility may not be desirable 

due to the need to restrict rotating component 

displacements to ensure good blade tip and gland sealing 

to maintain efficiency, for example. 

The vibration response of a three bearing assembly 

incorporating more than one SFD with contrasting support 

flexibilities is critically dependent upon the degree of 

misalignment within the assembly. Any rigidly supported 

SFDs should be statically centralised so as to exhibit 

circular centred orbits (refer to section 8.1). Even 

relatively small static eccentricities within rigidly 

supported SFDs can lead to strong subsynchronous 

resonance at high speed and with a rigidly supported SFD 

carrying substantial static load, jumps up at high speed 

are possible. If such an arrangement is employed then, if 

the clearance of the rigidly housed SFD were enlarged 

(with respect to traditional designs), the static 

centralisation with respect to the manufacturing 

tolerances could be improved and the nonlinearities 

leading to undesirable phenomena curtailed. The negative 

aspect of such an action would be the noticable reduction 

in damping provided by a SFD of similar width and 

diameter but increased clearance. On the other hand, this 

reduction in damping may not be detrimental if the 

original design provided more than the critical damping 

for the assembly. It should be noted that estimating the 

effective linear damping introduced by SFDs to an 

assembly is difficult, with the range of uncertainty 

possibly encompassing both under and over-critical 

situations. It is often difficult, therefore, to optimise 

the amount of damping introduced to the assembly. 

It is quite clear from experimental results that with 

more than one SFD the flexible supporting of each SFD 

housing, although increasing the maximum rotor excursions 
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causes the vibration response above the first bounce mode 

to be of low amplitude. The vibration response is also 

less susceptible to changes in misalignment. 

8.3 The Application of Squeeze-Film Damper 

Performance Parameters 

In designing a SFD for vibration isolation within a 

rotor-bearing assembly, a quantitative assessment of the 

SFD damping capacity is required. Traditionally either 

the speed dependent parameter, 'Q' or speed independent 

parameter, 'A' have been utilised. In general 

0 = wR(l/c)3/mw 

and A = itB/kO-s = tcuRC 1/c )3/(km)Q - s 

where k = (wn/w)2 

and where the mass, m is that assembly mass carried by 

the SFD, per land. 

If we consider the radial clearance between the journal 

and the bottom of the circumferential oil supply groove, 

then an equivalent parameter can be attributed to the 

groove to consider the contribution of the groove to the 

overall SFD performance. This parameter, T will be 

defined as; 

T = 0.5{(Gw/(G + c))/(l/c)}3 

and gives a measure of the performance of the central 

circumferential groove compared to the performance of a 
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two land SFD. 

With a 0.5 mm deep groove the theoretical groove 

contribution to the SFDl capacity, T equals 0.09% of the 

two land capacity, T is reduced to 0.006% for a groove 

depth of 2.0 mm. Hence it is quite clear that the 

contribution of the groove to the overall capacity of the 

SFDl is negligible. The situation is similar for SFD2. 

The 'two land' approach considers that the two lands, 

separated by the supply groove, contribute independently 

to the damping capacity of the SFD and assumes that the 

groove decouples the lands' pressure distributions. 

Another approach is to consider a 'one land assumption, 

ie that the groove might not be acting as a supply 

reservoir but provides coupling of the two lands 

pressure distributions. If the SFD is considered as a 

single land then the values of A and 0 are quadrupled 

over the 'two land' assumption, as described previously 

(section 5.1). 

The experimental effects of deepening the SFD supply 

groove have been demonstrated in configuration la to 

reduce the damping capacity of the SFD to some degree. 

The effect of groove depth on response has been shown to 

be significant, especially for particular unbalance 

values where the groove deepening has given rise to jump 

phenomena where previously the response was continuous 

over the speed range, being similar to that of a 2K film 

model. In general the response of the experimental test 

facility indicates that the effective A and 0 parameter 

values lie between the 'two land' and 'one land 

assumptions. 

In practice the value of parameter A, for instance can 

vary considerably due to changes in viscosity arising 
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from temperature fluctuations. Temperature rises of only 

2"C were typical during a run-up and run-down of the test 

rig. Industrial units would experience significant 

temperature variation and so the need to assess the 

possible range of SFD performance parameters such as A 

and 0 is obvious. 

The effective viscosity of a bubbly oil is different from 

that of the same oil when uncavitated. In practice the 

cavitation consists of a mass of bubbles whose number, 

size and distribution depend upon a range of parameters, 

such as rotor speed, viscosity and journal/housing 

surface roughness. Such cavitation has been approximated 

[55] by employing homogeneous compressible fluid models. 

Some suggest that cavitation reduces the effective 

dynamic viscosity [57] whereas others suggest the 

opposite [56]. 

Therefore, in practice the effective 'A' value can vary 

over the speed range. During the design of an assembly it 

is impractical to account for detailed variations in the 

'A' or '0' parameters, however an appreciation of the 

physical parameters which affect them should be assessed 

so that approximate ranges for the values of 'A' or '0' 

can be established. 

Ill 
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Chapter 9 NON-LINEAR PHENOMENA 

The principal non-linear phenomena observed in the 

present research can be categorised as being jump 

phenomena and nonsynchronous response. Subharmonic 

resonance is a particular form of nonsynchronous 

response, occurring at a natural frequency of the system 

and excited by forcing occurring at an integer multiple 

of the natural frequency. 

9.1 Jump Phenomena 

The jump up with decreasing speed or jump down with 

increasing speed above the first bounce mode frequency 

corresponds to the classical non-linear 'hardening 

spring' response. The difference in the two speeds is the 

effective range of the bistable region. Fig 1.3. Equally, 

a jump up with increasing speed might be attributed to a 

non-linear 'softening spring' effect. 

In terms of non-linear analysis, the synchronous jump 

phenomenon is a simple fold catastrophe. A good physical 

analogy is the jump characteristic of the load-deflection 

behaviour of a shallow tied arch as described by Thompson 

[73]. Consider the simple it film model of configuration 

la (a parallel SFD and spring combination); starting from 

rest (w/wn at zero) then the system's response to 

unbalance can be described by a phase diagram which 

consists of one stable phase trajectory or periodic 

attractor with all numerical or physical transient 
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starting conditions being attracted to the single 

trajectory, Fig 9.1a (shown as a circle A on the 

unsealed phase diagram for simplicity). The arrowed lines 

approaching circle A indicate paths of attraction that a 

transient might undergo before reaching the periodic 

trajectory. 

At the minimum jump frequency, as indicated in Fig 1.3, 

then two periodic attractors, one nested inside the other 

will appear. Fig 9.1b. The smaller of the attractors 

(labelled B in Fig 9.1b) represents the inverted solution 

whilst the larger trajectory represents the non-inverted 

solution. Any deviation away from the lower of the 

solutions will result in the system coming to rest at the 

higher solution. At higher rotor speeds, ie within the 

bistable region, the two stable solutions are accompanied 

by an unstable solution known as a separatrix, labelled 

S, Fig 9.1c. As its name implies, the separatrix 

separates the two nested periodic attractors and, 

depending upon the starting point of a numerical or 

practical transient, it will determine which of the two 

stable solutions are achieved. At the maximum speed 

within the bistable region, the separatrix will disappear 

and two stable trajectories exist, as at the minimum jump 

frequency. However, in this instance any deviation from 

the larger solution will result in inversion to the lower 

solution, Fig 9.Id. At speeds above the bistable region 

only one solution exists and the phase diagram will only 

consist of a single attractor, as in Fig 9.1a, but the 

attractor label would be B in this instance in keeping 

with the notation of Figs 9.1b,c and d. 

The jump phenomenon between circular centred orbits is 

relatively simple to appreciate. Also, in statically 

loaded SFDs, the large 'non-inverted' orbit is not 

dissimilar to that occurring in the simple it film 
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hardening response. The smaller orbit can be of 

complicated shape and can contain significant non-

synchronous components. 

A jump up and subsequent jump down can occur when a SFD 

is aligned between the fully eccentric and concentric 

conditions. On run up a jump up is initiated and is 

probably due to a softening property of the oil film 

whereas the subsequent jump down relates to a hardening 

of the film properties. It is interesting to note that 

Reif [74] demonstrated that solutions of the Duffing 

equation including the effect of static deflection, of 

the form; 

y" + k.y + ks.yG - Qs = Qc.cos(wt) , 

where ka is very much less than k, 

gave a harmonic response involving a jump up at frequency 

ratios above unity followed by a jump down with 

increasing speed. Reif [74] attributed this response to 

the presence of the static load, Qs which is analogous to 

the misaligning of a SFD. Possible explanations for such 

a jump up on run up have been presented earlier (section 

7.2), namely that the apparent softening characteristic 

could be induced by a change in the cavitation conditions 

of the SFDs, or a change in the effective SFD parameter, 

'A'. 

There is experimental evidence [72] that sudden venting 

of the SFD from atmosphere changes the effective 

cavitation conditions, and could promote the jump up with 

increasing speed. Oil-film pressure measurements taken 

for configuration 2b indicated that the minimum pressure 

rose after jump up on run up from about absolute zero 

pressure to about atmospheric pressure. A limited 
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hysteresis in the rotor speeds, of about 4 Hz at most, 

was noted between the jump up on run up and the jump down 

on run down. 

9.2 The Influence of Cavitation Pressures on Jump 

Phenomena In Uncentralised Squeeze-Film Dampers 

To study the 'softening spring' effect further, consider 

a rotor supported by one SFD which is rigidly supported. 

Fig 9.2. The rotor weight will guarantee fully eccentric 

static SFD conditions, similar to an arrangement 

previously studied, [72]. When unbalance forces are small 

the high squeeze-film forces produced around the fully 

eccentric condition, in conjunction with the rotor 

weight, successfully restrain the SFD journal motion. 

However, with increasing speed, the unbalance force might 

become large enough to cause the journal motion to 

execute the upper part of its orbit towards the clearance 

centre. This might reduce the restraint on the journal 

during its movement remote from the fully eccentric 

position to an extent that a sudden jump up in orbit size 

takes place. 

Fig 9.3 gives two theoretical orbits for different 

cavitation pressures (Pmin of -14.7 and 0.0 psi), all 

other conditions being the same. A sudden change in 

cavitation pressure could arise from atmospheric venting 

and result in a jump in the orbit from a small non-

circular response (-14.7 psi) to a large, full clearance 

orbit (0.0 psi). The amplitude responses for a range of 

Pmin from 0.0 psi (high cavitation extent) to -45.0 psi 

(low cavitation extent) is given in Fig 9.4. A consistent 

decrease in the jump speed with increasing cavitation 
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extent is illustrated. With cavitation occurring below 

atmospheric pressure, 0.0 psi there is no distinct jump 

as such but a sharp increase in the amplitude slope. 

Fig 9.5 shows the predicted response for conditions of 

film rupture at absolute zero pressure on run up followed 

by atmospheric cavitation after jump up. There is a 

distinct hysteresis between the jump up on run up and the 

jump down on run down. This response thus has the 

characteristics of a softening spring and mimics the 

response of configuration 2b. The indications are 

therefore that the stiffly supported SFD has a dominating 

influence on the response of the complete assembly. 

9.3 The Development of Subharmonic Resonance 

Significant subharmonic resonances of half engine order 

have been demonstrated both experimentally and 

theoretically during the research study. Non-synchronous 

activity at 3/2 EO, 5/2 EO and 7/2 EO accompanied these 

subharmonics. 

A statically centred SFD in configurations la and 2a gave 

rise to weak subsynchronous resonance at the static 

natural frequency. Figs 5.12 and 5.20. Static 

eccentricity applied to the same SFD increased its non-

linearity and excited strong half engine order 

subharmonics, this time corresponding to the dynamic 

natural frequency, determined by the stiffnesses of both 

the static components and the SFD's, Figs 5.15 and 5.23. 

The development of subharmonic resonances within the 

responses of non-linear dynamic systems has been 
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researched extensively. The Duffing equation has been 

instrumental in explaining the period doubling 

bifurcation associated with the onset of subharmonic 

resonance. Stoker [10] states that subharmonic response 

is produced because of bifurcation from the harmonic 

component. 

The excitation force for the rotor-bearing assembly 

consists of a rotating unbalance vector and a static 

rotor weight vector. This unsymmetric forcing is similar 

to the forcing applied to Duffing's Equation by 

Szemplinska-Stupnicka [13], namely 

x" + h.x + x3 = Qs + Qc.cos(w.t) 

A consistent characteristic of the subharmonic resonances 

studied has been that, in comparison with the synchronous 

response (and other integer EO's), the subharmonics do 

not stand out as sharp amplitude spikes above the noise 

level of the autopower spectra. The peak subharmonic 

amplitudes are sandwiched between gradually decreasing 

spectral activity, as shown in Fig 9.6e and the 

experimental spectrum of Fig 9.7. This observation 

suggests that period doubling bifurcation between DC and 

rotor angular frequency (Fig 9.6a to e) is responsible 

for the gradual rise to the subharmonic peak of the 1/2 

EO, as discussed in [13]. Thus, the full solution has the 

form; 

x(t) - Ac + Ai.cos(w.t) + Ai/2.cos(w.t/2 + 0). 

Szemplinska-Stupnicka [13] identifies, in conjunction 

with such bifurcation, transitions to chaotic motion 

within small frequency regions. The chaotic motion takes 

the form of irregular fluctuation of the subharmonic 

prior to decay. Fluctuation of the vibration orbits 
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exhibiting 1/2 EO vibration components have been noted 

experimentally for specific speeds and are possibly 

practical examples of the existence of chaotic attractors 

within the rotor-bearing responses. 

It would be interesting to note the harmonic order of 

subharmonic resonances observed in a vertical rotor 

assembly, when the rotor weight excitation is removed and 

the forcing is symmetric as in the equation; 

x" + h.x' + x3 = Qc.cos(w.t) 

From this equation the resulting subharmonic motion has 

been demonstrated at a 1/3 EO, [13]. 

It is also interesting to note that introducing the 

static eccentricity of SFDl in configurations lb and 2a 

gave rise to an increase in the strength of the 1/2 EO 

response so that, in some instances, it dominated the 

synchronous response. Fig 9.7 shows that not only does 

the response at 1/2 EO, 3/2 EO, etc accompany an increase 

in Eoi from zero to half, but that all 1/2 EO, 1 EO, 

3/2 EO, 2 EO, etc show signs of period doubling 

bifurcation. 
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Chapter 10 THE ABILITY OF LINEAR ANALYSIS TO PREDICT 

EXPERIMENTAL RESULTS 

A simple linear analysis of a system representing a two 

SFD rotor-bearing assembly is now presented to establish 

the usefulness of such approximate modelling in 

estimating the synchronous experimental responses. 

10.1 Linear Analysis 

Linear analysis requires a small fraction of the 

computational effort required for non-linear analysis. It 

is instructive to ascertain the extent to which linear 

analysis can predict the synchronous trends demonstrated 

by the experiment. 

Analysis of the simple three DOF system, Fig 10.1 gives a 

linear response where the mass, m̂ ^ represents a rigid 

rotor. The linear dampers, bi^ and bs^ represent the 

damping contribution of two SFDs and the flexibilities, 

Ki^ and can be representative of the stiffness 

contributions of two SFDs or can represent SFD 

centralising springs, or bearing housing supports. 

Referring to Fig 10.1, omitting the superscript (for 

simplicity) and observing Newton's Second Law; 

Po.sin(w.t) = m.X + Ki(X - xi) + bi(X - xi) + KzCX - xz) 

+ b2(X - xs) 

{ 1 0 . 1 } 
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Ki(X - xi) + bi(X - xi) = ki.xi 

{ 1 0 . 2 } 

K2(X - x2) + b2(X - X2) = ks.xs 

{10.3} 

Assume solutions of the form X = X.sin(w.t - 0) 

XI = xi.sin(w.t - 0i) 

X2 = X2.sin(w.t - 02) 

{10.4} 

By differentiating {10.4} with respect to time and 

substituting into {10.1}, {10.2} and {10.3} then 

If sin(w.t) = 1 then cos(w-t) = 0, therefore we can write 

Pc = X[{Ki + K2 - m.w2}cos0 + {bi + b2}w.sin03 

- xi[Ki.cos0i + bi.w.sin0i] - X2CK2.COS02 

+ b2.w.sin02] 

{10.5} 

k i . x i . c o s 0 i = K i ( X . c o s 0 - X 1 . C O 8 0 1 ) + b i . w ( X . s i n 0 -

x i . s i n 0 i ) 

{10.6} 

k 2 . X 2 . c o s 0 2 = K 2 ( X . C O S 0 - X 2 . C O S 0 2 ) + b 2 . w ( X . s i n 0 -

X 2 . s i n 0 2 ) 

{10.7} 

Also, if sin(w.t) = 0 then cos(w.t) = 1, therefore we can 

write 
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0 = X[{- Ki - Ka + m.w2}sin0 + {bi + b 2 } w . c o s 0 ] 

+ xi[Ki.sin0i - bi.w.cos0i] + xsCKz.sin^a 

- b 2 . W . C O S 0 2 ] 

{ 1 0 . 8 } 

- k i . x i . s i n 0 i = K i ( - X . s i n 0 + x i . s i n 0 i ) + b i . w ( X . c o s 0 

- X 1 . C O S 0 X ) 

{10.9} 

- k 2 . X 2 . s i n 0 2 = K 2 ( - X . s i n 0 + X 2 - s i n 0 2 ) + b 2 . w ( X . c o s 0 

- X 2 . C O S 0 2 ) 

{10.10} 

Equations {10.5} through to {10.10} can be non-

dimensionalised and written in matrix form; 

[ P o ] = [ K ] . [ X ] 

{10-11} 

where [Po] = (Po 0 0 0 0 0)"̂  

[ X ] = ( X . C O S 0 X . s i n 0 xi.cos0i xi.sin0i 

X 2 . C O S 0 2 X 2 . 8 i n 0 2 ) T 
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and 

[K] El E2 -E3 -E4 -E5 -E6 

E2 -El -E4 E3 -E6 E5 

E3 E4 -E7 -E4 0 0 

E4 -E3 -E4 E7 0 0 

E5 E6 0 0 -E8 -E6 

E6 -E5 0 0 -E6 E8 

where Wn = /[(ki + kz )/in] , 

El = (Ki + K2)/(ki + kz) - (W/Wn)2 , 

E2 = (bi + bz) (w/wn)/V"[m(ki + kz)] , 

E3 = Ki/(ki + kz) 

E4 = bi(w/wn)/f[m(ki + kz)] , 

E5 = Kz/fki + kz) , 

E6 = b 2 ( w / w n ) / f [ m ( k i + k z ) ] , 

E7 = (Ki + ki)/(ki + kz) and 

E8 = (Kz + kz)/(ki + kz) . 

Therefore, the matrix, [X] can be solved from 

[X] = [K]-i.[Po] 
{10.12} 
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10 .2 Rig Similarity 

The response of the rig , Fig 10.2, can be derived from 

the simple model. Fig 10.1, by assigning appropriate 

dynamic parameters. Thus the following table dictates the 

similarity between the rig model of Fig 10.2 and the 

simplified model of Fig 10.1. 

Fig 10.1 Fig 10.2 

ML M 

XL X(d/b) 

XlL xi{d/f) 

XgL X2(d/b) 

PoL Po(a/d) 

biL bi(f/d)2 

bgL b2(b/d)2 

KlL kl(f/d)2 

KgL k2(b/d)2 

The range of rig configurations. Table 3.1, that were 

researched was reproduced by 'locking out' or 'removing' 

the appropriate stiffnesses and dampers by assigning 

appropriately large or small parameter values, 

respectively. 

10.3 Linear Predictions 

The parameter values indicated in the results. Figs 10.3 

to 10.8 refer to the simple rig model of Fig 10.1. Fig 
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10.3 gives the linear responses for configuration 3a, 

that is bi and bs are assumed to be similar when both 

SFDl and SFD2 are fully eccentric in the static 

condition. A resonance peak is observed only for over-

critical damping and for all values of damping the 

amplitude in SFD2 was greater than that in SFDl. 

To approximate configuration 3b the values of bi were set 

at 20% of the values of bz to represent the reduced 

damping by centring SFDl. Fig 10.4 gives the linear 

responses for configuration 3b and it can be seen that 

the amplitude of SFDl is greater than that of SFD2 for 

over-critical damping. 

The linear approximation to configuration 2a, Fig 10.5 

with bi at 20% the value of bs, indicates that the motion 

of SFDl is greater than that of SFD2 for over-critical 

damping. The maximum SFDl amplitude occurs for a high 

value of damping and takes the form of a distinct 

resonance peak close to w/wn equal to one and when the 

damping factor B equals 3.464. 

Fig 10.6 provides the linear response for configuration 

2b with bi and bz set to the same value to simulate the 

horizontal situation. This is because, even with SFDl 

fully eccentric in the static condition, the effective 

horizontal clearance is still about 0.99ci. Fig 10.7 

approximates the vertical condition with hz set at 20% 

of bi. There is no longer any distinct resonance peak 

around the natural frequency (w/wn =1). In Fig 10.6 the 

displacement of SFDl is lower than that for SFD2 for all 

under-critical damping. With over-critical damping, B 

equal to 4.436, then the amplitude of SFDl rises 

gradually with speed. The SFD2 amplitude also rises with 

speed but peaks at about w/wn equal to 1.2. The 

horizontal response. Fig 10.6 is generally greater than 
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the vertical response, Fig 10.7 due to the static 

conditions with SFDl fully eccentric (in the vertical 

direction). Fig 10.8 indicates the response for 

configurations la,b and demonstrates a distinct peak 

amplitude at the natural frequency for under-critical 

damping. 

Considering the phase responses for configurations 3a and 

3b, , the rotor relative to ground (RRG2) response 

illustrates a second order response, whilst the SFDl and 

SFD2 responses are third order. With configurations 2a 

and 2b, the SFDl response is the rotor response relative 

to ground and is second order whilst the SFD2, still 

interposed between the rotor and a linear spring, 

maintains a third order response. Finally, configurations 

la and lb illustrate a simple second order system. 

10.4 Comparison Between Linear and Experimental 

Results 

The linear analysis was carried out to observe how well a 

linear model would approximate the non-linear synchronous 

response of the experimental test rig with the exception 

of the non-linear jump phenomena. The simple rig model of 

Fig 10.1 generated the linear responses for 

configuration 3a. A resonance peak is observed only for 

over-critical linear damping and for all values of 

damping the amplitude in SFD2 was greater than that in 

SFDl, Fig 10.3, and this trend was observed 

experimentally, Figs 7.22 and 7.23. 

Fig 10-4 gives the linear responses for configuration 3b 
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and it can be seen that the amplitude of SFDl is greater 

than that of SFD2 for over-critical damping. Experiment, 

Fig 7.26, does show the SFDl orbits to be larger than 

those of SFD2, except where non-linear jumps occur. 

The linear approximation to configuration 2a indicates 

that the motion of SFDl is greater than that of SFD2 for 

over-critical damping. Fig 10.5. It is interesting that 

the maximum SFDl amplitude takes the form of a distinct 

resonance peak close to w/wn. equal to unity and when B 

equals 3.464. The experimental results. Figs 7.12 and 

7.13, also indicate a resonance peak (accompanied by a 

jump, or non-linear hardening). The experiment also 

indicated that the SFDl phase response passed through 

90°, the point of inversion, at about w/wn equal to 0.9 

and this was the case for the linear analysis with B 

equal to 3-464, Fig 10.5. 

Figs 10.6 and 10.7 provide linear responses for 

comparison with configuration 2b horizontal (x) and 

vertical (y) results, respectively, Figs 7.22 and 7.23. 

There is no longer any distinct resonance peak around the 

natural frequency (w/wn equal to unity). The displacement 

of SFDl is lower than that for SFD2 for all under-

critical damping. With over-critical damping, B equal to 

4.436, then the amplitude of SFDl rises gradually with 

speed. The SFD2 amplitude also rises with speed but peaks 

at about w/wn equal to 1.2. These trends for 

supercritical damping are similar to the experimental 

responses. 

Fig 10.8 indicates the response for configurations la,b 

and demonstrates a distinct peak amplitude at the natural 

frequency for under-critical damping. If the increase in 

SFDl static eccentricity is compared with an increase in 

damping then the linear effect of reducing the peak 
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amplitude is similar to the experimental responses, 

Figs 7.2, 7.3. 7.4 and 7.7. 

The linear analysis has demonstrated that, with the 

exclusion of non-linear jumps and non-synchronous 

activity, the relative dynamic response of two SFDs can 

be observed. It can be concluded that the best agreement 

between the experimental and linear results occurs for 

damping ratios, B, of the order of 10i (between 1.0 and 

10) for configurations 2 and 3. It is consistent with the 

experimental rig being over-critically damped, which 

indicates significant damping contributions provided by 

the two unsealed SFDs. In configurations la,b, with only 

SFDl active, then the response appears under-critically 

damped. 
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Chapter 11 RAPID ESTIMATION OF THE SQUEEZE-FILM 

DAMPER NON-LINEAR RESPONSE 

In order to be able to reproduce the non-linear SFD 

vibration characteristics afforded by the Short Bearing 

Approximation in a linear form and to improve the speed 

of computation of the response over the Runge-Kutta 

method, techniques for linearising the SFD response have 

to be reported in the literature. 

Dogan [72] investigated a quasi-linear method which 

involved the use of stored stiffness and damping 

coefficients for a range of dynamic and static forces. 

The fundamental damping and stiffness coefficients were 

derived from a Fourier analysis of Runge-Kutta results. A 

tabulation of coefficients was required over a range of 

the dynamic force for each value of the static force to 

be considered . Then, using these SFD coefficients and a 

linear rotordynamic model, an iteration on the dynamic 

force was carried out to converge to a solution of the 

response. The most significant amount of computation was 

required to produce the stored coefficient tables. 

Alternative methods of note include the secant root 

finding algorithm researched by Greenhill and Nelson [45] 

who assumed circular centred orbits. This iterative 

technique enabled analysis of intershaft SFDs and other 

complicated SFD applications with a linear model of 

flexible multi-shaft systems. In order to appreciate the 

application of the uncentralised SFD, with and without 

parallel support stiffness, the method of orbit 

perturbation was studied. 
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11.1 Orbit Perturbation 

Orbit perturbation is a method where linearised 

coefficients are rapidly calculated from the perturbation 

of the squeeze-film damper (SFD) journal from a circular 

orbit. This technique has been applied by Holmes and 

Sykes, Appendix 6, to journal bearings and SFDs for large 

amplitude vibrations. The following is a summary of the 

application to the SFD. 

To observe the perturbation of a journal from its 

circular orbit, it is convenient to work in a rotating 

coordinate system, 's' and 'r'. Fig 11.1. Referring to 

Fig 11.1, the effect of a static load, W on the SFD 

journal can be analysed. 6Pr' and 5P«' are the 

incremental oil-film forces, defined as 

6Pr' = — arr.r — brr.r — ar®.S — br#.8 

5Pe' = - aae.s - bee.8 - asr.r - ber.r 

{11.1} , 

k is the parallel spring stiffness and €o is the 

eccentricity ratio determining the radius of the circular 

journal orbit within the clearance, c. From Fig 11.1, 

m[ s - s.w2 + 2.r.w ] = - (a## + k)s - b##.8 - aer.r 

- bmr.r - W.cos(wt) 
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mC r - r.w2 - 2.s.w ] = - (arr + k)r - brr.r - a**.8 

- brs.s - W.sin(wt) 

{ 1 1 . 2 } 

Equations {11.2} can be solved for their particular 

integrals and substituting r = y.sin(wt) + x.cos(wt) 

gives the following 

y = W (ai.ci + bi.w.di)/(ai2 + w2.bi2) 

X = W (ai.dx - bi.w.ci)/(ai2 + w^.bx^) 

{11.3} 

Where 

ai = brr.ba#.w2 - (as® + k - 2.m.w2)(arr + k -

2.m.w2) - (ber + 2.m.w)(brm - 2.m.w)w2 + 

aer. az"# 

bl = — bem(arr + k — 2.in.w2) — brr(a#e + k — 2.m.w2) 

+ ara(bar + 2.in.w) + a#r(brm — 2.in.w) 

Cl = w.brm + asm + k - 4.m.w2 

di = w.bs0 — ar« 

{11.4} 

The values of x and y, equations {11.3}, locate the 

centre of the circular journal orbit within the clearance 

circle and can be non-dimensionalised so that 
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y = y/c 

X = x/c. 

The linear coefficients arr, brr, etc, equations {11.4}, 

are functions of eo and €o is a function of the dynamic 

force provided by unbalance and the SFD parameters. 

Consider the response due to unbalance; Fig 11.2 

represents the SFD journal within its housing with the 

unbalance force, Pc indicated. The orbit amplitude 

depends upon Pc, the film forces, PI and P2 and the 

spring force, k.c.eo. The equations of motion for 

concentric motion can be written as, 

Po.cosCwt - a) - Pi - k.c.eo = - m.c.eo.w^ 

Po.sin(wt - a) - P2 = 0 

{11.5} 

For a half cavitated, or TE film, the forces PI and P2 are 

given in Table 1.1 where, in this instance, e in Table 

1.1 is replaced by so. 

When the expressions for PI and P2 are substituted into 

equation {11.5} then, after some manipulation, the TC film 

response is given by 

Qc2 = [G2.6o2/(l - €o2)3][nz/4 + 4.eo2/(l - eo2)] 

+ eo2(k - 1)2 + 4.Go3.G(k - 1)/(1 - eoZ)^ 

{11.6} 
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where 6 = A(k)0-®/Tt 

It should be noted that equation {11.6} is similar to 

equation {4.9b} which was used to model the test rig 

response using a TE film model for circular centred 

orbits. 

Although the assumptions made concerning the cavitation 

zone. Appendix 6, are not generally applicable in 

practice, such film forces provide a demanding test of 

this linear treatment. Further still, if the case where k 

is assumed to be zero is analysed then the squeeze-film 

non-linearities will dominate the calculations. It has 

been shown, Appendix 6, that equations {11.4} can be 

reduced to give 

ai = - (ass - 2.m.w2)(arr + asa) 

bl = (ars/w) (arr- + aae) 

CI = 2.a## - 4.m.w2 

di = — 2. ar-s 
{11.7} 

where 

arr = 2.m.w2.0.€o(1 + Go2)/(l - €o^)^ 

ass = m.w2.{3. eo/( 1 - €o^)^ 

and ara = - m.w2.0.-n:/4( 1 - €o2)i-6 

Fig 11.3 gives the SFD journal centre orbits within the 

clearance circle obtained using the Runge—Kutta—Merson 
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method employing the full non-linear film forces and 

compares those orbits with ones obtained using the orbit 

perturbation method for a tc film. The governing factors 

are W, Qc and W/0. Where the weight factor, W is large 

compared with the damper parameter, 0 then the comparison 

between the non-linear orbits and the linear estimations 

is good for higher unbalances, Qc. 

Figs 11.3a,b provide the comparison between non-linear 

and linear orbits with 57/0 equal to 0.5 and 0 equal to 

0.4. Good comparisons exist for all unbalance factors, Qc 

down to 0.4. When W/0 is kept the same, but 0 is 

increased to 2.0, Figs 11.3c,d, then a good comparison is 

afforded only for unbalance factors, Qo as low as 1.5. 

This value of unbalance is also the lowest unbalance at 

which comparisons are good for 0 and W set to 1.0, 

Figs 11.3e,f. In general, if the orbit circumscribes the 

clearance centre then the comparison is good. 

The limitations of the rapid linear estimation are that 

the solutions are generally valid above a certain, 

unbalance. This unbalance is only low enough for 

practical design purposes when 0 is reasonably low and 

the ratio of W to 0 is low also. These limitations 

restrict the use of such a method to lightly loaded SFDs. 

However, if the SFD design is to incorporate a parallel 

support spring, k then this will reduce the effect of the 

weight by supporting the journal within the clearance, 

rather than journal lift being completely relied upon 

from the film forces. In this instance, the rapid orbit 

perturbation method produces a good comparison with the 

non-linear orbits at low unbalances as well as at high 

unbalances. Figs 11.4a,b show the non-linear and linear 

orbits for the same parameter values as Figs 11.3e,f with 

the addition of a parallel support such that k is equal 
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to 2.0. That is the journal would take up a static 

vertical eccentricity ratio of one half. The comparisons 

are very good for a large range of unbalance. 

In conclusion, this technique has significant limitations 

if it is to be applied to the design of SFDs without 

parallel spring supports. The relatively low levels of 

unbalance of interest in practice for smooth running 

would generally be lower than the unbalances which give a 

good linear estimation. Some unbalances, such as those 

associated with turbine blade loss, may be high enough to 

give a good estimation. The orbit perturbation method 

would be most useful where parallel support stiffness is 

applied and the applicability of the method could be 

assessed at the extremes of the governing parameter 

ranges. 

An alternative method of linearisation, namely harmonic 

balance has been applied widely in non-linear analysis 

[75]. The method is introduced and its general features 

are discussed below. 

11.2 The Harmonic Balance Method 

This method enables a full non-linear SFD model to be 

approximated by linear Fourier coefficients. Applied 

generally the method is capable of deriving quasi-linear 

stiffness and damping coefficients for as full a Fourier 

Series as is required. Thus, as well as the synchronous 

response, the non-synchronous response of an assembly 

might be investigated. 

The non-linear horizontal, or x displacement can be 
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written as a Fourier Series in the form: 

J 

x(t) = Ao + 2 (Aj.cos(jwt/N) + .sin(jwt/N)) 

(j = i) 

{ 1 1 . 8 } 

and similarly in the vertical, or y direction. J is the 

total number of equally spaced frequencies of interest 

and Aj and Bj are the linear Fourier displacement 

coefficients. N is an integer which is smaller than J and 

AN and BN are the synchronous components of the 

displacement response. The non-linear force can also be 

approximated using linear coefficients such that 

J 

fx(t) = fo + k.x + c.x + 2 (aj.cos(jwt/N) + bj.sin(Jwt/N)) 

{11.9} 

where fo is a static force, k is a synchronous stiffness 

coefficient, c is a synchronous damping coefficient and 

aj and bj are nonsynchronous force coefficients. 

Therefore, providing that a non-linear force function, fx 

can be described and integrated with respect to (w.t), a 

set of linear force coefficients can be derived from a 

set of initial amplitude coefficient estimates and an 

iteration process can be used to generate a revised set 

of amplitude coefficients. The iteration is repeated 

until convergence is achieved and the process is 

illustrated by the flow diagram of Fig 11.5. The method 

and, in particular the numerical convergence stability is 

discussed further in Appendix 7. 
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Chapter 12 CONCLUSIONS 

The experimental facility has demonstrated a range of 

non-linear phenomena within its vibration responses 

associated with aero-engine assemblies. Both the results 

from experimental tests and the theoretical treatment 

have illustrated the dependence of the type and severity 

of the jump phenomena and the rotor speeds at which they 

occur upon the SFD misalignment and support conditions. 

The following detailed conclusions are derived from the 

results of the research programme: 

- Jump phenomena and strong subsynchronous resonances are 

the most dangerous vibration characteristics arising 

from the application of squeeze-film dampers, SFDs. 

Their occurrence, for any given assembly, depends upon 

the level of unbalance. As with any vibration problem, 

influencing the source of vibration, in this instance 

by reducing rotor unbalance, is the best remedy. 

- The level of unbalance at which jump phenomena become a 

significant feature of the response depends primarily 

on the level of bearing misalignment. 

- Where an assembly employs more than one SFD with 

contrasting housing support flexibilities, then the 

rotor weight should be distributed so that the more 

rigidly supported SFD carries as little weight as 

possible in order to avoid non-linear phenomena within 

the vibration response. The potential for severe 

occurrences of non-linear vibration phenomena in such 

an assembly is reduced by minimising the static 
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eccentricity of the more rigidly housed damper. 

The ability of an increased oil supply pressure (within 

a range typical of an aero-engine) to eliminate 

experimental non-linear phenomena displayed by an 

unsealed SFD is generally minimal. In a few instances 

increases in supply pressure did remove jump phenomena 

at a particular unbalance level. 

Theoretical application of the Short Bearing 

Approximation of the Reynolds Equation to squeeze-film 

dampers has demonstrated the ability to predict jump 

phenomena and non-synchronous resonances. The Short 

Bearing model allowed a variable film extent by virtue 

of the provision of specific cavitation pressures. A 

cavitation pressure of absolute zero (-14.7 psi gauge) 

was generally used throughout the modelling of the 

experimental rig response. 

Reservations concerning the modelling of the SFD's 

central circumferential oil supply groove as a constant 

pressure reservoir have been discussed. The true 

experimental value for SFD damping capacity appears to 

lie between the traditional assumption that the damper 

can be modelled as having two separate lands and the 

assumption that the damper acts as a single, double 

width land. The traditional assumption underestimates 

the damping demonstrated by the experimental responses. 

The application of the fourth order Runge-Kutta-Merson 

numerical integration method to the solution of the 

non-linear equations of motion was appropriate for the 

rig configurations involving two and four degrees of 

freedom (DOF). However, the integration was 

impractically slow for the more complex rig assemblies, 

involving six DOF. 
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A good complement of bistable solutions from the non-

linear equations was achieved after careful selection 

of initial conditions for the numerical integration. In 

a very small number of instances, at particular speeds, 

only one bistable solution was found, even after 

attempts with a range of initial conditions. 

The use of a constant cavitation pressure (namely 

absolute zero) during modelling allows a comprehensive 

range of phenomena to be reproduced. Some particular 

detailed aspects of the experimental responses require 

changes in the cavitation pressure. For example the 

hysteresis associated with a softening spring response 

has been modelled by referring to experimental pressure 

recordings to approximate sudden changes in the 

cavitation conditions. 

The experimentally observed jump phenomena and 

subsynchronous resonances and the corresponding non-

linear theoretical predictions compared well, both 

being influenced by changes in the rig assembly 

configurations in a similar fashion. 

A simple linear analysis can illustrate the synchronous 

response of an assembly in the absence of non-linear 

phenomena. However, the potential for non-linear 

phenomena to occur within aero-engine assemblies 

incorporating SFDs degrades the usefulness of such 

analysis for design simulation purposes. In addition to 

a linear analysis of the whole assembly, a simplified 

model of the rotor-bearing assembly should be analysed 

experimentally and/or with non-linear theoretical 

techniques to observe the potential for significant 

non-linear phenomena. 
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The results have provided an insight into the mechanisms 

of SFD phenomena and the practical implications arising 

from these findings have been discussed. Bearing 

misalignments of a few hundredths of a millimetre and 

excessive weight carried by the more rigidly housed 

bearings can lead to sudden occurrences of jump phenomena 

and subharmonic resonance. 

A linear analytical treatment of the theoretical rig 

model has indicated the experimental synchronous trends 

and suggested that the effective damping provided by the 

SFDs during experiment, in the absence of non-linear 

phenomena, was over-critical for configurations 2 and 3, 

but was under-critical for configuration 1. 

The modelling of the non-linear SFD response is dominated 

by two conflicting factors; modelling accuracy and the 

speed of computation. On the one hand the full non-linear 

analysis is accurate but involves long computations. On 

the other hand a simplified linear analysis is very quick 

but provides reasonable results only for simple 

assemblies. Therefore, a method of linearising the SFD 

response which is able to mimic the non-linearities of 

the SFD would compromise these two conflicting 

parameters. The research into the orbit perturbation 

method indicates that accurate results are forthcoming 

for SFDs with parallel spring supports, or for lightly 

loaded SFDs. Other existing methods, such as harmonic 

balance and least squares methods, can be applied to the 

linearisation of the SFD response. 

It is interesting that the jump phenomena and 

subsynchronous resonances demonstrated by a simple non-

linear equation, the Duffing Equation, display the same 

characteristics as the experimental SFD response and 

corresponding short bearing predictions. 
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Chapter 13 RECOMMENDED FURTHER RESEARCH 

It is possible to make a number of recommendations for 

future research. There are four areas where further 

research has the potential for providing significant 

results. The first three areas are immediately practical 

in their objectives, whereas the fourth area would be 

regarded as theoretical research which did not aim to 

satisfy any specific practical engineering application 

but might well lead to a better understanding of the 

modelling of the squeeze-film damper. 

Firstly, bearing in mind that the presence of jump 

phenomena and strong subsynchronous resonances represent 

the two most undesirable vibration characteristics of 

SFDs, there is obvious scope for studying these phenomena 

further. It would be instructive to consider the effects 

of rotor flexibility on the occurrence of such phenomena. 

Although military gas turbine rotor-bearing assemblies 

involve relatively stiff rotors, that is they operate 

below the first flexural mode of vibration, civil 

assemblies operate with their rotors displaying a 

significant degree of flexibility. Both an experimental 

and theoretical approach would be required. However, 

difficulties in computing solutions for a multi-DOF 

flexible rotor model incorporating non-linear SFD 

modelling may be encountered. Numerical integration may 

be impractically slow. A technique such as the secant 

root finding algorithm adopted by Greenhill and Nelson 

[45] for flexible rotor models might be applied in this 

instance. However, modelling might be restricted by 

assumptions such as the approximation of circular centred 

orbits. 

140 



Secondly, the use of end seals with SFDs is widespread as 

this reduces the oil flow discharged from the ends of a 

SFD and raises the effective damping provided by the SFD. 

End seals were not studied in the present research 

because it was considered that end seals would discourage 

the occurrence of jumps and subsynchronous resonances if 

the SFD damping was too high. Following on from the 

present research, it would be useful to observe the 

effects of end seals on reducing the occurrence of non-

linear phenomena. Preliminary work has been carried out 

[78] and the indications are that seals remove jumps from 

the response if supported by a high supply pressure. 

Thirdly, the area which would benefit the design of 

rotor-bearing assemblies incorporating SFDs most 

significantly is the provision of the computer code for a 

SFD linearisation algorithm. Such an algorithm should be 

capable of providing reasonably accurate estimates of the 

non-linear response arising from the SFDs within a linear 

rotor-bearing model. The convergence of such a method 

should be relatively fast and accurate when compared with 

numerical integration of the full non-linear solution. 

Harmonic balance is one method which might be 

instrumental in achieving a useful linearised SFD model. 

The numerical stability of this method is discussed in 

Appendix 7. It may be possible to develop a stable 

iteration algorithm which can be applied to rotor-bearing 

models with many degrees of freedom and incorporating 

more than one SFD. Once the stability of this technique 

is mastered and the accuracy assessed, it may be applied 

with an existing linear analysis suite. The benefit of 

the Harmonic Balance method over other methods includes 

the ability of the method to involve non-analytical SFD 

film force models and the method does not require either 

large stores of data or the non-linear computation 

141 



required to generate such data. Also, the Fourier 

analysis within the Harmonic Balance method can also be 

augmented to involve more than the synchronous response 

to search for the possibilities of subsynchronous 

resonance and other nonsynchronous activity. 

The first three proposals have clear practical 

engineering objectives. Finally, considering the 

similarities between the non-linear phenomena illustrated 

by the Short Bearing model of the SFD and the Duffing 

equation, it would be illustrative to apply traditional 

mathematical non-linear analysis techniques to SFD 

modelling. Particularly for bistable operation, the use 

of the phase plane to map out the transient response 

from a numerical integration would illustrate how, 

depending upon initial conditions, the computation 

converges to one solution's trajectory. Use of Poincare 

sections would also be useful in studying regions of 

chaos occurring during modelling. Although the practical 

applications of the results of such studies are not as 

tangible as those arising from the first three areas of 

proposed further research, use of such analysis tools may 

produce results which allow a fuller appreciation of the 

non-linear modelling. 
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ROTOR RELATIVE TO GROUND AT SF02 LOCATION 

EXPERIMENTAL RESULTS 
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ROTOR RELATIVE TO GROUND AT SF02 LOCATION 

EXPERIMENTAL RESULTS 

A V 

A = 0.4010E -1 0.4010E -1 

Oc2= 0.6107E 0 0.4901E 0 

Eo = O.IOOOE 1 0.1000E 1 

Psup= 0.2000E 1 0.2000E 1 (psi) 
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SQUEEZE-FILM DAMPER RESEARCH Rig ConFig. 3b 
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THEORETICAL NUMERICAL SOLUTION 
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HARMONIC BALANCE FLOW DIAGRAM 
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TABLE 1.1 2TC Film & Tt Film Forces 

Force Tt Film 2tt Film 

PI 
2MRl®we2 

C2(l _ 62)2 

0 

P2 
Tt|JLRl®€W Tt|-iR13ew 

P2 

2c2(l - e2)l.B c2(l - €2)1.6 



TABLE 3.1 Test Rig Configurations 

Test Rig 
Configuration 

Static Set Up 

Eox Eoz 
Simple Representative Rig Diagram 

la 

lb 

0.0 

0.4,0.8 

k2 

•VsSVs'-

2a 

2b 

3a 

3b 

0.0,0.5 

1.0 

1.0 

0.0 

1.0 

0.0 

1.0 

1.0 

•ROTOR SFDI Q ^ 2 ( 

ROTOR SFDI 



Table 7.1 Configuration la Experimental Jump Data 

The table below gives information regarding the jumps 
observed experimentally for an unbalance factor, Qc2, of 
0.733. 

Psup 

(psi) 

€l 
Max. 

ex 
Min. 

€i 
Jump 

Phase 
Min. 
(deg) 

Phase 
Max. 
(deg) 

Phase 
Jump 
(deg) 

Rotor 
Speed 
(Hz) 

2 1.06 0.62 0.44 42 166 -104 43-45 

4 1.00 0.66 0.34 64 150 -86 42 

6 0.98 0.60 0.38 74 145 -71 43 



Table 7.2 Configuration 2a SFDl Experimental Jump Data 

The table below gives information regarding the jumps 
observed experimentally for SFDl, rig configuration 2a 
(Table 3.1). 

QC2 Psup 
(psi) 

ei 
Max. 

€l 
Min. Jump 

Phase 
Min. 
(deg) 

Phase 
Max. 
(deg) 

Rotor 
Speed 
(Hz) 

0.733 2 1.03 0.57 0.46 47 143 43-41 

0.611 2 0.98 0.50 0.48 66 154 41-39 

0.490 2 0.78 0.48 0.30 123 147 37-35 

0.733 15 0.97 0.59 0.38 70 146 41-39 

Table 7.3 Configuration 2a SFD2 Experimental Jump Data 

The table below gives information regarding the jumps 
observed experimentally for SFD2, rig configuration 2a 
(Table 3.1). 

QC2 Psup 
(psi) 

€1 
Max. 

€1 
Min. 

ei 
Jump 

Phase 
Min. 
(deg) 

Phase 
Max. 
(deg) 

Rotor 
Speed 
(Hz) 

0.733 2 0.55 0.25 0.30 NA* NA 43-41 

0.611 2 0.58 0.26 0.32 M M 41-39 

0.490 2 0.51 0.29 0.22 NA NA 37-35 

0.733 15 0.55 0.29 0.26 NA NA 41-39 

* Not Applicable 



Table 7.4 Configuration la Minimum Jump Frequency Ratios 

The table below gives information regarding the jumps up 
on run down, the minimum jump frequency ratios, observed 
experimentally and predicted. 

QC2 G 

(mm) 

Psup 

(psi) 

Minimum Jump 
Frequency Ratio (w/wn) 

% Difference of 
Theoretical 
With Respect to 
Experimental 

QC2 G 

(mm) 

Psup 

(psi) 
Experimental Theoretical 

% Difference of 
Theoretical 
With Respect to 
Experimental 

0.733 0.5 2 1.36 1.54 + 13 % 

0.733 0.5 6 1.33 1.54 + 16 % 

0.611 2.0 6 1.17 1.36 + 16 % 

0.611 2.0 2 1.17 1.36 + 16 % 

0.490 2.0 2 1.11 1.27 + 14 % 

Table 7.5 Configuration 2a Minimum Jump Frequency Ratios 

The table below gives information regarding the jumps up 
on run down, the minimum jump frequency ratios, observed 
experimentally and predicted. 

QC2 Psup 

(psi) 

Minimum Jump 
Frequency Ratio (w/wn) 

% Difference of 
Theoretical 
With Respect to 
Experimental 

QC2 Psup 

(psi) 
Experimental Theoretical 

% Difference of 
Theoretical 
With Respect to 
Experimental 

0.733 2 1.30 — + % 

0.611 2 1.23 1.33 + 8 % 

0.490 2 1.11 1.33 + 20 % 

0.733 15 1.23 - + % 



Table 7.6 Configuration 2b Maximum Jump Frequency Ratios 

The table below gives information regarding the jumps up 
on run up, the maximum jump frequency ratios, observed 
experimentally and predicted. 

QC2 Psup 

(pal) 

Maximum Jump 
Frequency Ratio ( w / w n ) 

% Difference of 
Theoretical 
With Respect to 
Experimental 

QC2 Psup 

(pal) 
Experimental Theoretical 

% Difference of 
Theoretical 
With Respect to 
Experimental 

0.733 2 1.54 1.70 + 10 % 

0.611 2 1.67 1.70 + 2 % 

0.490 2 1.98 2.07 + 5 % 

0.733 15 1.67 1.82 + 9 % 

0.611 15 1.85 1.82 - 2 % 



Table 7.7 Unsimplifled Short Bearing Model Film Forces 

The table below gives information regarding the non-
dimensional SFDl film forces developed with various 
supply and cavitation pressures for the following damper 
parameters; 

A I 

ei 
ei' 
ai 
ai' 

= 0.02132 
= 0.9 
= 0 .1 
= 4.712 
= 1 . 0 

Psup Pmin 
PI P2 

(psi) (psi) 

0 0 0.20985 0.06050 

200 0 0.14208 0.09328 

0 -14.7 0.18018 0.07961 

2 -14.7 0.17853 0.08028 

6 -14.7 0.17559 0.08144 

20 -14.7 0.18701 0.08476 



Table 7.8 Summary of Non-Linear Phenomena 

CONFIGURATION 

FREQUENCY RATIO 

CONFIGURATION W/Wn 

0.5 - 1.0 
W/Wn 

1.0 - 1.5 
w/Wn 

1.5 - 2.0 
w/Wn 

2.0 - 2.5 

la Eoi=0.0 JD (HI) Wn (LOW) Wn (LOW) 

lb Eoi=0.4 JU/JD (HI) %B0 (LOW) 

lb Eoi=0.8 JU/JD (HI) %E0 (HI) 

2a Eoi=0.0 
EO2=1.0 

JD (HI) (Very LW) Wn (LOW) 

2a Eoi=0.5 
EO2=1.0 

JU/JD mo (LOW) %E0 (HI) 

2b Eoi=1.0 
EO2=0.0 

mo (LOW) %E0 (LOW) %B0 (LOW) 

JU (Very HI) 

3a Eoi=1.0 
EO2=1.0 

JU/JD (HI) mo (LOW) 

3b Soi=0.0 
EO2=1.0 

JU/JD (HI) 

NOTATION: Ĵ EO Half Engine Order (Subharmonic Resonance) 
Eoi Static Eccentricity in SFDl 
HI High / Strong 
JU Jump Up (speed increasing) 
JD Jump Down (speed increasing) 
LOW Low / Weak 
w Rotor Speed (Hz) 
Wn Response at Natural Frequency (32.4 Hz) 



APPENDICES 



APPENDIX 1 

&ED & other jELl£ Parametera 

SEDl Damper GaamejiiiY 

ci = 0.000254 m 

(l/c)i= 44.2 

(1/R)i= 0.144 

Gi = 0.002 m 

Gwi = 0.004 m 

Ni = 2 

5ED2 Dampar GeamejicaE 

C2 = 0.000216 m 

(l/c)2= 41.6 

(1/R)2= 0.132 

Ga 

GW2 

Ns 

= 0 .002 

= 0.004 

= 2 

m 

m 

a = 1.019 

b = 0.9716 

d = 0.5434 

f = 0.5968 

I = 11.5 

ki = 505 000 

kz = 505 000 

Wn = 203.58 

U = 6 .0 

m 

m 

m 

m 

kg.mz per land 

N/m per land 

N/m per land 

rad/s (Configurations la to 2b) 

cP (average) 

Al. 1 



APPENDIX 2 

Sliox!t 1.X1M So Xfc,jL.QiQ iZLiC Ksyno j,OK% 
Appl jL.6.̂  to %k6 SQXiIO62€rT„FjL XiD XîQiiniPOix? 

The full form of the Reynolds equations [3] dictating the 
pressure distribution within the SFD fluid film is 

(i/R2)(a/a0).{h3(ap/30)} + (3/az).{ h3(ap/3z)} = 

(6uc/R).{ (esin0 - 6acos0)(dh/d0) + h(ecos0 + easin0) } 

+ 12!ac(€cos0 + €asin0) 

..{A2.1} 

Now, observing the SFD geometry, 

c/R « 1 and, 

for a Short Bearing, 

« 3p/3z 

because we can assume circumferential fluid flow to be 
negligible in comparison to the axial flow. 

Equation {A2.1} can now be simplified and rewritten in a 
non-dimensional form: 

(R/l)2(3/az) { h^3p/3z } = 12(€'oo80 + e.a'.sin*) 

..{A2.2} 

where P = P(R/c )-2/( nw) , 

h = h/c = 1 + €.cos0 , 

2 = z/1 and 

(') = d/d(w.t) . 

Integrating {A2.2} twice with respect to z gives 

P(0,z) = 12.(1/R)2(e',cos0 + €.a'.sin0)z^(2(l + 6.co80 f) 

+ Zl.z + Z2 

..(A2.3) 

A2.1 



The following boundary conditions are used to determine 
the integration constants, Z1 and Z2-

P = Psup where z = - 0.5 

P = 0 where z = 0.5 

and atmospheric pressure (14.7 psi gauge or 1.013 bar 
absolute) taken as a zero pressure datum. 

This yields the result that 

Z1 = -Psup 

and Z2 = Psup - 1.5(1/R)2(€'.cos0 + €.a'.sin0) 

2 (1 + €.0080)3 

Now the form of {A2.3} becomes 

P(0,z) = 6(1/R)2(G'.COS0 + e.a'.sin0)(z^ - 0.25) 

(1 + e.cos0)^ 

+ Psup(0.5 - z) 
...(A2.4) 

This expression, {A2.4}, provides the value of non-
dimensional pressure at any point within the fluid film. 

Given the damper geometry, position, velocity, fluid 
supply pressure and the rotor rotational speed then the 
non-dimensional pressure can be calculated at a number of 
points which form a mesh, or array, within the SFD. These 
pressure values form a numerical film pressure map around 
the bearing which can be used to determine the forces PI, 
P2 generated by the damper (Fig 1.1). 

A2.2 



APPENDIX 3 

Ihfi 2]t film and a Eilm Short Bearing Equations 

The 2TI and it film models assume a statically centred SFD 
journal supplied with oil at atmospheric pressure, where 
atmospheric pressure (14.7 psi absolute) is taken as a 
zero pressure datum. Thus Psup is equal to zero. 

A statically centred SFD journal executes circular, 
centred steady state eccentricity orbits and, thus. 

a 

and €' 

1 

0 

The pressure equation, (A2.4), can now be simplified to 
become 

P(0,z) = 6(iyR)2(€.8in0(z2 _ 0.25))/(! + e.oos*)' 

(A3.1) 

Now, referring to Fig 1.1, the forces are derived by 
integration of the pressure equation, 

01 % _ _ _ 
PI = - m-w(c/R)2.R.1 J J P(0,z).cos0.dz.d0 

0 2 

01 % _ _ _ 
P2 = - u.w(c/R)2.R.1 r r P(0,z).sin0.dz.d0 1 J 

0 2 

...(A3.2) 

Table 1.1 gives the integrated, algebraic form of forces 
PI and P2 where : 

1. for the 2n film 01 = 0 radians 
' 

02 = 2 T t radians and 

2 . for the Tc film 01 = 0 radians 9 

02 = It radians 

A3.1 



APPENDIX 4 

Instrumentation Details 

Description Details 

Racal Analogue Tape Recorder Type STORE 7D 
Ser.No.T023/.016 

Capacitance Probes ('In House') 

Wayne Kerr Power Supply and 
Amplifier. 

Types TEP6 
6 X TEAl 

ME No.2677628 

Mech.Eng.Dept. 'In House' 
speed voltage pulse counter. 

Bruel & Kjaer Phase Meter Type 2971 
Ser.No.562987 

SFD Oil Supply Pressure Gauge 
(Budenburg) 0 - 6 0 psi 

Solartron Spectrum Analyser Type FFT 1201 
Ser.No.200161 

Brookfield Digital Viscometer 
with UL Adapter 

Model LVTD 
Ser.No.A06259 

Gould 20 MHz Oscilloscope Type 0S300 
Ser.No.57918007 

Gould Storage Digital 
Oscilloscope 

Type OS1420 
Ser.No.1941 

Kikusui Storage Oscilloscope Type DSS 6522 
Ser.No.2040052 

Racal-Dana Universal Counter 
Timer 

Type 9904 

Gould Advance Digital Multimeter Type DMM7 
Ser.No.15122 

Philips Automatic Multimeter Type PM2521 
Ser.No.DY026062 

A4.1 



APPENDIX 5 

A Noirffi jcm ISiXfiojTS^\A00i2i0"*^«i» Xin zz 
Supply Pressure 

Laminar axial fluid flow through a circular annulus can 
be calculated from the following expression: 

Q (PA - PB) TT.D.C® 

12.H.L 

Where Q 
PA 
PB 
D 
c 
u 
L 

Fluid Flow Rate (m^/s) 
Annulus Supply Pressure (N/m^) 
Annulus Discharge Pressure (N/m^) 
Mean Annulus Diameter (m) 
Annulus Clearance (m) 
Fluid Dynamic Viscosity (kg/ms) 
Annulus Length 

Where PB is atmospheric (as in the case of the damper 
discharge of the experimental rig) and PA is equal to the 
damper supply pressure, Psup then the expression can be 
rewritten as 

Q = Psup.TC.D.c® 

12.M.L 

This equation for fluid flow can be applied to the 
static, centred squeeze-film damper (SFD). This 
expression can be used to observe the theoretical SFD 
supply pressure drop experienced when the rig was re-
configured to involve two SFDs as opposed to one. 
Initially SFDl was the only damper supplied with oil and 
the maximum supply pressure was 24 psi. With SFDl and 
SFD2 supplied with oil the maximum supply pressure fell 
to 15 psi. Thus, for the same flow 

Tt.Psupl.Dx.ci3 

I2.U-L1 

Tt 

12.u 

Psup2 Dx.ci® + Ds.cs® 

L I Lz 

A5.1 



The above expression can be rearranged to give 

Psupl 
r 

Di.ci^/Li 

Psup2 Di. C l ^ / L l + D 2 . C 2 ® / L 2 

1 . 0 

Inserting the values of Psupl = 24 psi and Psup2 = 15 
psi, along with the SFD geometries, which can be derived 
from Appendix 1, the above left hand expression is found 
to be equal to 0.98. 

Therefore the maximum experimental SFD supply pressures 
observed with one and two SFDs being supplied do conform 
to this approximate analysis. 

A5.2 



APPENDIX 6 

Large Amplitude Vibrations in Rotor Bearing Assemblies 

The following is a reproduction of a paper written by 
Prof R Holmes and co-written by the author of this thesis 
and was published by the Journal of Sound and Vibration, 
see Ref [48]. 

LARGE-AMPLITUDE VIBRATIONS IN ROTOR ASSEMBLIES 

R . H O L M E S A N D J . E . H , S Y K E S 

Department of Mechanical Engineering, University of Southampton, Highfield, 
Southampton S09 5NH, England 

(Received 17 June 1988, and in revised form 16 February 1989) 

A p rocedure is es tabl ished for rapidly est imating the sizes and disposi t ions of large-
ampl i tude vibrat ions result ing f rom the combined action of rotat ing and static forces in 
rotor assemblies incorpora t ing oil-film bearings and dampers . Use is m a d e of d isplacement 
and velocity coefficients fo r per tu rba t ion of a journa l centre (a) f rom a static equil ibrium 
posi t ion a n d (b) f rom a s teady state orbi t a n d it is shown that a cor respondence exists 
between the two. Limita t ions of the me thod are discussed. 

1. I N T R O D U C T I O N 

Journal bearings are an essential feature of all rotating assemblies and provide the vital 
load-carrying capacity to support rotors against static and dynamic forces. In particular, 
oil-film journal bearings are to be found where loads are demanding and speeds are 
moderate. By virtue of the oil by which they are lubricated they have the capacity 
additionally to provide damping in response to excitation due to unbalance. However, 
they can be fickle in that such damping can become negative and uncontrollable instability 
can result to the equipment being supported. 

A squeeze-film on the other hand, is an annulus of oil supplied between the outer race 
of a rolling-element bearing (or the bush of a sleeve bearing) and its housing. Its main 
use is as multi-directional damping element for the control of engine vibrations. Such a 
squeeze-film is often placed in parallel with a soft flexible element to comprise a vibration 
isolator. By this means the natural frequencies of the rotor assembly are reduced so that 
they may be traversed well before the normal operating speeds are reached. The purpose 
of the damper in this application is to reduce to acceptable levels the amplitudes of 
vibration and transmitted force due to unbalance as these low natural frequencies are 
traversed. 

A squeeze-film damper is also often used on its own between a bearing and its housing, 
in which case no attempt is made to reduce the natural frequencies of the system, only 
to reduce vibration while running through the already existing natural frequencies. 
Rotation of the inner member of the squeeze-film damper is in this case prevented by 
anti-rotation pins or dogs. 

For adequately small-amplitude vibrations arising from small unbalance forces 
superimposed upon relatively large static loads, journal-bearing oil films are popularly 
modelled by linear displacement and velocity coefficients referred to a stationary eccen-
tricity vector; see, e.g., reference [1], and, more recently, many others. Attempts have 
also been made to represent squeeze-film dampers in a similar fashion [2]. However, 
journal bearing oil films and squeeze-films are highly non-linear in their dynamics and, 

when amplitudes of unbalance vibration are expected to be moderate, recourse has had 
to be taken to lengthy time-transient solutions to predict vibration orbits of the rotor-centre; 
see, e.g., reference [3]. 

A6.1 
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A squeeze-film damper is in effect a journal bearing in which the inner member does 
not rotate. Because of this there are similarities in the operation of the squeeze-film 
damper and of the journal bearing which can be exploited in an understanding of their 
performance characteristics, for cases where fairly large vibrations of the rotor centre are 
likely to occur. 

2. THE JOURNAL BEARING 

The starting point for the theoretical consideration of a hydrodynamically generated 
oil-film in a journal bearing is the well known Reynolds equation, which for incompressible 
fluids in the laminar regime may be written, when referred to Figure 1, as (a list of 
notation is given in the Appendix) 

1 (9 
+ -

<9z az 
12/u,c s cos » — e I — — a sin (1) 

Subjecting this equation to the boundary conditions p(9,1/2) = p(0,-1/2) = 0 and p = 0 
over the area where cavitation occurs, leads to solutions which bear a good resemblance 
to experimental observations, for steadily loaded and dynamically loaded journal bearings. 
Solution of equation (1) gives the pressure distribution in the journal-bearing oil-film. 
By integration of the pressures, the radial and transverse components P , , P. of the force 
exerted by the oil-film on the journal are obtained. 

Figure 1. The journal bearing. CgCj = e- ec. 

Let us compare the two cases d = 0 (i.e., aj/2> d) and a = oj (i.e., w / 2 < d) , with e = 0. 
In Figure 2(a) are shown the forms of the pressure distributions for d = 0 and d-w, 
with cavitation occurring over about half the film in each case. The oil-film forces P, and 
Pi involve respectively the integrals / , = | p cos 5 and / , = J sin 8, where integration is 
over the appropriate load-carrying (i.e., non-cavitating) portion of the film. As a result, 
the forms of f , and &re shown in Figures 2(b) and (c). From these it may be seen 
that area P, remains unchanged in value as a changes, but that P. changes sign. 

For e = 0 and d = (o, the pressure distribution rotates with the load vector at angular 
velocity co and is a reflection relative to the line of centres CgCj of the pressure distribution 
for the case where d=0. In Figures 3(a) and (b) are shown the regions of positive 
hydrodynamic pressure for d = 0 and d = w, respectively. If in each case d is now perturbed 

A6.2 
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a = 0 

, , 
TT ZtT TT Zv 

, ; 1 1 1 1 

(a) 

(b) 

(c) 

9 9 

Figure 2. Oil-film pressures and forces. 

(b) 
Figure 3. Oil-film force dispositions, (a) a =0; (b) a » w . 

and a perturbation s is also introduced, the forces P, and P; and P[ and P'2 will contain 
components due to wedge action and squeeze action as follows; 

If d is represented by a small perturbation 

For a = w + a , , 

f|;! = Efu(e) + (w/2 + dJAi.2(e). (4) 

In Figure 4 the perturbed position of Cj is shown, in relation to stationary co-ordinates 

together with the forces P, and P2 given in equation (3). C is the journal position 

resulting from the application of a static load alone, and Cg is the bearing centre. Thus 

Pr = P, cos a , - P, sin a , , P, = P, sin a , + P, cos a , . 

For small a , , 

SP, - 5P, - Pzga,, 8Ps = PiSa, + SP,. 

A6.3 
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Figure 4. Force system. 

Using equation (3) and making e « w, d , « to, one obtains 

SPr = Fi8e +— —- Se — h^Sd h^8a^ 
2 de 2 

SPs = F;5e +— 8e - /iiSd +— h^Sa^, (5) 

in which 8e = r/c and 5«j = s/cs. 

Returning to Figure 4, we now assume that Eg is an eccentricity vector rotating at shaft 
angular velocity, oj. Under these conditions we make C the journal centre under the 
action of a dynamic load, also rotating at shaft angular velocity, w. P , , P, are replaced 
by P'l, p2 as in Figure 3(b). 

Again for small a , , s « (o and d , « co, we obtain, using equations (4), 

8P'r = 8P{ + P I ^ A , = F , 5 E + — Se + 8a,, 

-aPz + Pjga; = -FjSe - j ̂  8e-h28d, + '^~ da. (6) 

where again 8e = r/c and 8a, = s/ce. Comparing equations (5) with equations (6) reveals 
that all direct coefficients are equal and of the same sign, but that all cross-coefficients 
are equal and of opposite sign. 

A popular assumption for many journal bearings is that they are short in relation to 
their diameter. If a bearing land is sufficiently short ( / / D « 0 - 5 ) then the first term on 
the left side of equation (1) may be dropped with little loss of accuracy. Capriz [3] has 
shown that if we then assume that cavitation occurs over half the film, P, and P j may 
be written as 

in which 

- % + f ) egi -egi + (^-d jeg3 (7) 

gi = 
-2s cos^ di 

(1 -£^ cos* 0,)̂ ' 

e sin gi[3 + ( 2 - 5 g ' ) cos^ g,] , ( l + 2e ' ) f g , _, / e sin (9, 

(l-e')'(l-e'cos=9,) \(l-«=)"= 

e sm 

and dj , $1 +IT is the region effectively occupied by the oil film. 

(8) 
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As equation (1) indicates, 0, is given by 

tan i9| = ( 2 e / ( u ) / g ( l - 2 a / a j ) . (9) 

If we consider the case of Figure 3(a) such that a / w « 1, then it may be observed that 
tan 0, 2e /we, which approaches zero as e/(o 0. Thus a, = 0 and 8. = ir. Any first order 
movement of the oil film around the bearing circumference will produce a first order 
change in pressure and, since force is the integral of pressure times circumferential 
coverage, the resultant change in force will be only of second order. Thus, for these small 
motions, equations (8) become 

= -
-2e 

(l-eY' 

For « ^ a> and s/a>«l (Figure 3(b)), equation (9) gives = it. Hence, in equations (8), 
shows a sign reversal from that given in equation (10), while g2 and g j remain unchanged. 

This in turn produces sign reversals in all the cross-coefficients, as expected from the 
more general reasoning given earlier. 

The foregoing is based on the premise that one can assume that any cavitation zone 
in an oil film under rotating load is similar to that in a statically loaded oil film. Some 
early work of Cole and Hughes [4] does suggest, albeit for fairly low loading, that the 
cavitation zones are similar. 

The values of the displacement and velocity coefficients are important in determining 
the reposition of the circular orbit resulting from the application of an external rotating 
load, when a static load is added. 

2 . 1 . E F F E C T O F STATIC L O A D 

Shown in Figure 5 is the journal centre, Cj, in a rotating-co-ordinate system r, s with 
the application of a static load W and incremental oil-film forces SP[ and 5P', defined as 

Thus, 

m[s - SO)-+ 2f(o] = SP',-W cos m[r - roj--Isat] dP',-W sin cot. (12) 

Solving for the complementary functions gives an indication of the stability of the system 
for a given orbit radius ceo, and predicts the tendency or otherwise to move out to a 
different orbit radius. 

TT 

2 ' 
Si 2 (T 

1 
(10) 

Figure 5. Static and dynamic forces. 
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Solving equat ions (12) for their particular integrals and putt ing r = sin cot + x cos ajt 
gives 

W(a,c,4-6,wd,)/(aY + w-6Y), x = (13) 

where 

= l^rrbssi^^ ~ {as, -2moj'){a,r - 2mco^) - (bsr + 2mu))(brs -2mco)aj^ + a,ra„, 

c, = cubrs + "̂.w -4moi', di = aib.s ~ Ors- (14) 

The linearized coefficients a^r, b„, etc., are funct ions of eo» and hence of the radius of 
the circular orbit. Sg is dependen t upon the rotating force (provided by unbalance, say), 
together with the operat ing parameters of the journa l bearing. 

2 . 2 . R E S P O N S E DUE TO U N B A L A N C E 

A journa l within its bearing is shown in diagrammatic form in Figure 6. Orbital motion 
results f rom a dynamic force P, due to some cause, such as unbalance. The ampl i tude 
of this orbital mot ion depends upon P, , P[ and P 4 , t h e last two forces arising hydrodynami-
cally f rom the oil film as in Figure 3(b). 

The equat ions governing the concentric motion of the shaft centre are then 

Pc cos (ait - a) + P[ =-mcsQW-, P^ s i n ( c o t - a ) - P'2 = 0 . ( 1 5 ) 

In equat ions (15) the oil-film forces, P\ and P ; , can be shown f rom equations (8) to be 
given, for concentr ic mot ion, by 

f; = (-/iR/̂ w/ĉ )[E5/(l - eg)-], 

P4 = (:r;ij%/̂ w/4ĉ )[eo/(l-E5)̂ -̂], (ig) 

and relate to a half-cavitated oil film. 

Equat ions (15) may be made non-dimensional by dividing by mew" to give 

Oc cos (w( - a) = -Go + [e5/(l - e5)̂ ](;̂ j;/fM6,)(//c)\ 

(pc sin (wf-a) = [e(,/4(l (17) 
where = PJmco)^. 

Figure 6. Journal bearing or squeeze-film damper. 
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If Pc arises due to mass unbalance mu, then P, = mu(o- and Q^ = u/c. By putting 
= i^R/maj){l/cY, equations (17) may be rewritten to give 

(w/c) cos (wr - a) = -eo + ;9ê /(l -

( « / c ) s in (cot-a) = (iT/3/4)eo/(l - (18) 

Hence 

(M/c)̂  = Co 
4--

.16 (l-eg) 

One can now find y and x (equations (13)) by using the coefficients for a half-cavitated 
oil film [1], suitably modified as in equation (6), and compare the orbits and their positions 
with the corresponding orbits and positions obtained by solving the full non-linear 
equations (7). In the notation of equations (11), the modified coegicients are as follows: 

(20, 

Although this case is subject to the reservations relating to cavitation zones expressed 
earlier, it will be a demanding test of the efficacy of the linear treatment. Other oil films 
are unlikely to be significantly more non-linear than the half film. 

For this case we find that equations (14) reduce to 

a, = - 4a;s - a^a^s + 2mio-(arr + 

bi = (2a„/aj)(a^ + a,J + 2mco(a,,-a„), c , = 3 a „ - 4 w w " , d , = - 3 a „ ; ( 2 1 ) 

So is determined by the value of /3 and of u/c in equation (19). 

y and x in equations (13) are further determined by the value of W. Equations (13) 
may be made non-dimensional by writing 

y/c=W(ac+6J)/[(a)^ + ( % + (22) 

where 

d = 6 = c = c,/mw:, J = 

a, . 6, c, and d, are given by equations (21). in which etc., are functions of 
M ^ ( / / c ) , as in equations (20). A set of non-dimensional parameters governing equations 
(22) IS, by inspection of equations (19), ^ w/c and the latter being 
recognized as a commonly used load parameter. 

In Figures 7(a)-(f ) are shown comparisons between journal-centre orbits relevant to a 
variety of bearing and load conditions with those obtained by solving the full non-linear 
equations (7). u / c values used are indicated in the figures. 

It may be observed that the linear treatment provides a convenient means of estimating 
the sizes and positions of journal-centre orbits when the linear orbits encircle the bearing 
centre, for moderate values of the load parameter W/,3. Even for a high load-parameter 
(Figures 7(e) and (f)), good estimates are achieved for the sizes of the major axes of 
those journal-centre orbits which again encircle the bearing centre. 
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3. T H E S Q U E E Z E - F I L M DAMPER 

The pwicular feature of a squeeze-Glm damper is that the journal (inner member) is 
^ centralizing spring or by anti-rotation pins called 

dogs. BoUi these devices allow orbital motion of the journal centre, which in turn allows 
energy dissipation by the oil m the damper clearance space. For the case of centralizing 
springs as the name implies, the unloaded journal is brought to the centre of the clearance 
space. Any static load then defects the journal to a static equilibrium position and any 
subsequent dynamic load causes the journal centre to move in orbital motion around this 
static equilibrium position. If this motion is of small magnitude, it might be argued that 
one can determine its size by using the coefficients found for the journal bearing [11 
sui t^ ly adapted by putting w = 0. However, this conceals the diGRculty that, if one put^ 
co~Qin equation (9), then 

tan 6̂  — e/-~B(x. (23) 

^ u s a, will no longer equal zero. It might then be argued that one can consider forces 
due to any orbital motion as consisting of superimposed forces arising from purely radial 
(e) and purely transverse ( e a ) motions, for which cases one could make tan (9, = 00 and 
zero respectively: i.e., 0, = tt/1 and zero. However, this is obviously inadmissible since 
e a ^ d ea are strongly coupled through equation (23) which in turn governs equations (8) 

A way out of this^ essentially non-linear problem is to think not in terms of a small 
orbital motion about a static equilibrium position but again of a small static deflection 
i ^ m an equilibnum orbit, the latter resulting from arotating load of constant magnitude. 
This IS reasonable since, whereas the journal bearings of most rotating machines are 

designed to withstand large static loads with superimposed relatively small rotating loads 
squeeze-mrnd^pers often have the assistance ofacentralizing spring to counteract any 
static load and the squeeze-film itself is used to help withstand any rotating load. 

One can then again work in a rotating-co-ordinate system. The consequences of this 
m w n that one CM again determine, relative to rotating co-ordinates, a set of displacement 
and velocity ct^mcients for the squeeze-GImdamperfor perturbations ofthe inner member 
or journal from an equilibnum or6:V, which will be similar to the corresponding 
coemcients in stationary co-ordinates for a journal bearing for dynamic perturbation of 
the journal from an equilibrium point. 

Following a procedure similar to that used for large excursions of a journal in a journal 
beanng we can now set up equations similar to equations (4), except that w /2 is replaced 
by w, owing to the fact that the angular velocity of the inner member (the journal) is 

equations similar to equations (6) are set up which 
show that, for the squeeze-glm damper, the direct damping terms are equal and of the 
same sign as for the j o u m ^ beanng under static load; the cross-damping terms are equal 
but of opposite sign; the direct stiffness terms are twice the values and of the same sign 
and the cross-stigneM terms are twice the values and of opposite sign. The eSect of adding 
a centering spring of stiffness k is to increase each direct stiffness term by k. 

Provided that we can assume that a rotating oil 61m exists in a squeeze-Glm damper 
which IS s imi l^ m nature to the stationary oil Glm in a journal bearing, then we can 
again replace tlw static eccentricity ratio vector eg of the latter by a rotating eccentricity 
ratio vector £« for the squeeze-film damper, with the proviso that all cross-coefficients 
a r ^ f opposite sign and that all displacement coefficients (a) arc of double magnitude. 

There is some doubt as to the degree to which cavitation in a squeeze-film damper 
r e s ^ b l e s cavitation i n a j o u m a l bearing [5]. This is likely to depend on external f a c t L 
such as supply pressure and loading and is the subject of much interest. The correspon-
dence between an uncavitated squeeze-Glm and an uncavitated journal bearing oil Glm 
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should, however, be complete. Displacement and velocity coefficients are available for 
the latter in the literature; see, e.g., reference [6]. For a squeeze-film which is half cavitated 
the coefficients of equat ions (20) can, subject to the above reservations, be suitably 
modified. They have also been derived by White [7], using a different approach. 

We can illustrate the impor tance of the squeeze-film coefficients in again determining 
the static displacement of the circular orbit resulting from the appl icat ion of an external 
static load. 

3 . 1 . E F F E C T O F STATIC LOAD 

With reference again to Figure 5, 8P', and 5 P ; are defined as in equat ions (11) except 
that a„, brr, etc., take on their new values and k is to be added both to a,, and to a „ . Thus, 

mis -- soj^ + lroj] = ~ ( a „ + fc)s - b,J - a,,r~b,,r- W c o s cat, 

m[r-r(xj--2sa)] = -(a„ + k)r-b„r-a,,s-b„s- W s i n ojt. (24) 

Solving for the complementary funct ions again gives an indication of the stability of the 
system for a given orbit radius and predicts the tendency or otherwise to j u m p to a 
different orbit radius. 

Solving equations (24) for their part icular integrals and putt ing r = y sin cos wf 
gives equat ions identical in form to equat ions (13), where this time, 

a, = brrbssC^'-{as^ + k-2mio'){arr + k-2mco') -(b,,-r2m(o)(brs -2mo))cD' + 

= = (25) 

The linear coefficients 6^, etc., are funct ions of So, the radius of the circular orbit. 
Eq is the response, dependen t upon the dynamic force provided by unbalance, together 
with the parameters of the squeeze-film damper . 

3 . 2 . R E S P O N S E DUE TO U N B A L A N C E 

In Figure 6 is shown, in d iagrammat ic form, the outer race of a rolling-element bearing 
within the oil container (the bearing), under the action of a restoring force kce arising 
f rom the equivalent stiffness fc of a centering spring. Vibration results f rom a dynamic 
force P, due to some cause, such as unbalance. The ampl i tude of orbital motion depends 
upon kcs, Pr, P\ and P'2, the last two forces arising hydrodynamical ly from the squeeze-
film, similar to those in Figure 3(b). The equations governing the concentric motion of 
the shaf t centre are then 

P c Q o s { ( o t - a ) + P \ - k c e Q = - m c e Q ( i } ' , P,. s i n (wf - a ) - P J = 0 , ( 2 6 ) 

where eo is the eccentricity ratio resulting f rom unbalance. In equat ions (26) the squeeze-
film forces, P\ and P j , can be shown f rom reference [6], to be given, for concentric 
mot ion, by 

p ; = 0 , P; = [;r/i^/^/c-(l-e=)^/:]e(,6, . (27) 

These relate to a full uncavi ta ted oil film. The assumption of concentr ic motion of the 
rotor centre precludes the prediction of subharmonic vibrations, which have been found 
in some squeeze-film applicat ions [8]. However, the speed ranges over which such 
vibrations appear are fairly restricted and predictable, and separate attention could be 
focused on them using a more comprehensive form of equat ions (27). 
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EQUB-tions (26) may be made non-dimensional by dividing by to give 

Q, cos ( 6 , / - a ) = -God - 1 ) , Q, sin (cuf- a ) = - 65))/=], 

(28) 

where k = = and = 

If P, arises due to mass unbalance mu, then P,-muw- and Q,=^u/c. By putting 
^ = {f^R/m(o){l/cy, equations (28) may be rewritten to give 

( u / c ) cos ( w f - a ) = ( £ - l ) e o , {u/c) sin (cot - a) = Tr/Seo/(1 - sly''. (29) 

Hence, after some manipulation, we obtain 

(1-G5)\ (30) 
So \(^r,/ \0J„ 

where [rrfjiR/sfkm){l/ cf and <x)„=^rkjm. 
Now suppose that the supply pressure is insufficient to maintain a positive pressure in 

areas of the squeeze-film where the boundary surfaces are instantaneously separating. 
For the sake of simplicity assume that as a result the squeeze-film becomes half cavitated. 
It may then be shown from equations (8) that P'^ is halved and that P\ is no longer zero, 
being given by 

p ; = ( - 2 / i ; ; / ^ w / c ^ ) [ e g / ( l - eg)-]. 

Hence, for circular concentric whirl, we have the following equations which correspond 
to equations (29) for the uncavitated case: 

(w/c) cos (6,f - a) = (t- l)eo4-2,8̂ 6/(1 - eg)̂ , 

(u/c) sin ((u(-a!) = (?;g/2)eo/(l-eg)̂ /-, (31) 

in which /3 = A{ky^^TT. Hence 

c/ (l-Co)̂  

1 , 

,4 :r"(l -Go) 

Mohan and Hahn [9] have shown how a half-cavitated squeeze-film gives rise to response 
curves displaying the classical hardening-stiffness form, with the consequent prediction 
of non-linear jump phenomena. 

Let us now find y and x (equations (13)) for a case where k = 0 and where the 
squeeze-film is half cavitated, and compare the orbits and their positions with the 
corresponding orbits and positions obtained by solving the full non-linear equations (7) 
in which w = 0. Although this case is subject to the reservations expressed earlier regarding 
the cavitation zone, it will again be a demanding test of the efficacy of the linear treatment. 
Other squeeze-films are unlikely to be significantly more non-linear than the half film 
and the presence of a centralizing spring stiffness would serve to moderate the effect of 
the squeeze-film non-linearity in the total system. For such a squeeze-film we find that 
equations (25) reduce to 

=-(^15-2mw-)(a„-l-a„), 6, = (â /w)(an. + a»), c, = 2a,̂  -4mw\ 

rf, = -2a„. 

Hence 

-);/c=M/(l-ê )̂ //3eo(34-e6), x/c = 0. (33) 
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Figure 9. Squeeze-film isolator orbits, (a) Non-linear, ;3 = 1-0, = 1-0, £ = 2-0; (b) linear, 0 - 1 - 0 , t V = l-O, 

fc = 2-0. 

A set of non-dimensional parameters governing equations (33) is, by reference to equations 
(32), again W, u/c and Wj0. Figures 8(a)-(f ) show comparisons between damper orbits 
relevant to the range of damper and load conditions with those obtained by solving the 
full non-linear equations (7), in which w = 0. 

The comparisons serve to show that the linear treatment gives a rapid means of 
estimating the vibration orbits and their dispositions for moderate values of mean damper 
deflection. As for the journal bearing it may be assumed that, provided that the circular 
journal-centre orbit circumscribes the bearing centre, then it gives a reliable indication 
of the size and position fo the true non-linear orbit, for moderate values of W/13. 

The presence of a retainer spring will reduce the significance of # / / 3 , as Figure 9(a) 
shows. This figure relates to orbits of journal-centre motion for the same values of /3 and 
W as were employed in Figure 8(e), but with the addition of a parallel spring, which for 
zero u/c , would cause the journal to take up an eccentricity ratio of 0-5 as a result of a 
gravity load. This implies that the value of k for this case is 2 0. The journal-centre orbits 
obtained by the corresponding linear treatment are shown in Figure 9(b). The improvement 
in the comparisons with the non-linear orbits is apparent. 

4. C O N C L U S I O N S 

The purpose of this paper is to show that for a journal bearing there exists a correspon-
dence between the linear oil-film coefficients referred to stationary co-ordinates for 
perturbation from a static equilibrium position and coefficients referred to rotating 
co-ordinates for perturbation from a circular concentric orbit. A similar correspondence 
is shown to exist with the coefficients referred to rotating co-ordinates for the oil film of 
a squeeze-film damper. 

Journal-bearing coefficients referred to stationary co-ordinates have been used to predict 
relatively small orbits of the unbalance response of heavy rotors such as those used in 
large power turbines. Similar coefficients are used here to estimate rapidly the dispositions 
of relatively large vibration orbits, certainly those circling the bearing centre, resulting 
from unbalance forces superimposed upon moderate static loads, whether they relate to 
journal bearings or to squeeze-film dampers. Comparisons of the sizes and dispositions 
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o f s u c h o r b i t s a r e s h o w n to b e s a t i s f a c t o r y w h e n c o m p a r e d w i t h o r b i t s o b t a i n e d b y s o l v i n g 

t h e fu l l n o n - l i n e a r e q u a t i o n s o f m o t i o n . 

F l u i d i n e r t i a f o r c e s m a y b e c o n s i d e r e d in a s i m i l a r w a y a n d i n e r t i a c o e f f i c i e n t s u s e d 

in c o r r e s p o n d i n g f o r c e e q u a t i o n s i n c o r p o r a t i n g t h e s a m e d i s p l a c e m e n t a n d v e l o c i t y 

c o e f f i c i e n t s c o n s i d e r e d in t h i s p a p e r . H o w e v e r , in t h e vas t m a j o r i t y o f c a s e s , t h e i r e f f e c t , 

will b e r e l a t i v e l y m i n o r , s i n c e r o t o r m a s s wil l d o m i n a t e o v e r a n y a d d e d m a s s e f f ec t o f 

t h e fluid. 
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A P P E N D I X : N O T A T I O N 

ars, etc., d i sp lacement coefficients 

A = (-rr/j,R/'ylcm)(l/ c)^ 
bn, etc., velocity coefficients 
c radial c learance 

D bear ing d iameter 

e eccentricity of j ou rna l in bear ing 

Pi.2 func t ions in oil-film forces 

21 .2 .3 , func t ions in oil-film forces 
h oil-film thickness 

func t ions in oil-film forces 
k stiffness of center ing spring per land 

I bear ing or squeeze-fi lm land length 

m mass per bear ing land or per squeeze-fi lm land 

P oil-film pressure 

.2,c oil-film forces or external force 
Qc -p.,/mcoj^ 
r radial co-ord ina te 

R = D/2 bear ing radius 
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^ transverse co-ordinate 
' t ime 

" displacement of mass centre From axis of rotation 
^ external static load 

s ta t ionary co-ordinate 
y s tat ionary co-ord ina te 
^ axial co-ordinate 
" a t t i tude angle 

angular velocity per turba t ion 
P -(jxR/m(u)(l/ cf 
y 
® = e / c , eccentricity ratio 

£o static or rotat ing eccentricity ratio vector 
M lubricant viscosity 

=fj.lR^/ ire" 
S ci rcumferent ia l co-ordinate 

shaf t or j ou rna l angula r velocity 
("n =si'kl m 
Cg bearing centre 
Cj dynamic jou rna l centre 
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Numerical Stability of The Harmonic Balance Method 

Harmonic Balance enables a full non-linear SFD model to 
be approximated by linear Fourier coefficients. Applied 
generally the method is capable of deriving quasi-linear 
stiffness and damping coefficients for as full a Fourier 
Series as is required. Thus, as well as the synchronous 
response, the non-synchronous response of an assembly 
might be investigated. 

The non-linear horizontal, or x displacement can be 
written as a Fourier Series in the form: 

J 
x(t) = Ao + 2 (Ad.cos(jwt/N) + Bj.sin(jwt/N)) 

(j = i) 

{ A 7 . 1 } 

and similarly in the vertical, or y direction. J is the 
total number of equally spaced frequencies of interest 
and Aj and Bj are the linear Fourier displacement 
coefficients. N is an integer which is smaller than J and 
An and Bn are the synchronous components of the 
displacement response. The non-linear force can also be 
approximated using linear coefficients such that 

J 
fx(t) = fo + k.x + c.x + 2 (aj.co8(jwt/N) + bj.sin(jwt/N)) 

{ A 7 . 2 } 

where fo is a static force, k is a synchronous stiffness 
coefficient, c , is a synchronous damping coefficient and 
aj and bj are nonsynchronous force coefficients. 

Therefore, providing that a non-linear force function, fx 
can be described and integrated with respect to (w.t), a 
set of linear force coefficients can be derived from a 
set of initial amplitude coefficient estimates. The force 
coefficients can then be used within a linear dynamic 
model of the system to calculate a revised set of 
amplitude coefficients. If the revised amplitude 
coefficients are similar to the initial estimates to 
within a prescribed convergence tolerance, or maximum 
error, then these coefficients represent an acceptable 
linear approximation of the response. If the comparison 
of the revised amplitude coefficients with the initial 
estimates is not within the maximum error then these 
revised coefficients can be reinserted to calculate a new 
non-linear force, fx and a new set of linear force 
coefficients derived. Thus a further set of amplitude 
coefficients may be calculated using the force 
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coefficients in the linear model and the convergence 
check carried out once more. This iteration is repeated 
until convergence is achieved and the process is 
illustrated by the flow diagram of Fig 11.5. 

This simple iteration can be described generally by the 
formula 

X(n+1) = H{X(n)} 

{ A 7 . 3 } 

Consider first the synchronous response of a SFD. The 
iteration formula, {A7.3} generates an iteration which is 
stable for a tx film model of a SFD whose journal has no 
static load, no linear support stiffness and a reasonably 
high bearing parameter, 0 (refer to [76]). If a linear 
support stiffness is included, then the iteration is not 
stable at, or very close to resonance due to the phase, 
ie the phase between the unbalance and displacement is 
90°. In this instance the amplitude is determined 
exclusively by the damping provided by the SFD. Remote 
from the resonance peak, in the absence of bistable 
solutions, the response is dictated primarily by the 
stiffness of the linear support. Such limitations on the 
modelling of the SFD response using the simple harmonic 
balance method severely restrict its application. 

It is not surprising that convergence problems arise. 
Even when only considering the synchronous response, the 
iteration is being carried out on six interdependent 
displacement coefficients. The iteration algorithm 
described by equation {A7.3} can be referred to as a 
direct iteration [77]. Consider, for the sake of 
simplicity, that only one variable, or coefficient is 
involved in the iteration, then the convergence of 
equation {A7.3} is determined by the gradient and form of 
the relationship of equation, as shown in Fig A7.1. 
Figs A7.1a,b illustrate two cases where convergence is 
assured, whereas. Figs A7.1c,d illustrate situations 
where convergence does not take place. In these instances 
a geometric transformation of the curve about the line of 
gradient unity will encourage convergence (as shown by 
the chained curve in Fig A7.1c). 

For the case of a number of interdependent variables a 
different iteration curve or relationship will exist for 
each variable at each step of the iteration. The 
convergence path of one variable will therefore not be 
along a number of points between the unity gradient line 
and one iteration function as in Fig A7.1a, for example, 
but will be along a number of points between the unity 
gradient line and a number of iteration functions, which 
have the potential of changing significantly between 
subsequent iterations. The inadequacy of the harmonic 
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balance iteration of equation {A7.3} in this application 
is due to such numerical instabilities. 

Although Xu [54] did not describe this shortfall, it was 
encountered during the analysis resulting in the paper, 
[54]. To attempt to overcome the instability Xu made a 
simple adjustment to the iteration method. A similar 
alteration was made, independently of Xu [54], by 
Levesley [77] after encountering the same difficulties. 
The stability of the method was improved by altering the 
iteration, equation {A7.3}, to the form shown below 

X ( n - + - X ) — H{(X(n) + X(n— 
{ A 7 . 4 } 

Equation {A7.4} represents an iteration which updates the 
displacement vector, X with the mean of the two previous 
displacement vectors. This technique resulted in stable 
iterations for a wider range of SFD parameters and the 
results compare well with those from the Runge-Kutta 
method [76]. 

In conclusion, the beneficial qualities of the harmonic 
balance method include the ability of the method to 
incorporate a non-analytical model of the squeeze-film. 
In particular, the Simpson's integration of the pressure 
map within the film, as used by the Runge-Kutta method, 
can be incorporated if required, allowing variation of 
the oil cavitation and supply pressures. Also the 
harmonic balance method does not rely on stored tables of 
pre-calculated data, as in the quasi-linear approach of 
Dogan [72]. The drawback of the harmonic balance method, 
as with many algorithms, is the stability of the 
convergence. For SFDs with no static load or parallel 
spring support, ie as for a vertical rotor, the method 
converges to a solution very quickly, displaying a l l the 
required qualities of speed and accuracy required by 
industry. The unfortunate effect of static load and 
support stiffness on iterative stability and the distinct 
benefits of introducing stability to the iteration 
algorithm have been discussed [77]. 
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