
University of Southampton

Faculty of Mathematical Studies

The Karlhede Classification and
Derivative Bounds

by

Julian M Collins



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MATHEMATICAL STUDIES

MATHEMATICS

Doctor of Philosophy

THE KARLHEDE CLASSIFICATION AND DERIVATIVE BOUNDS

by Julian Marc Collins

This thesis describes the Karlhede classification of a spacetime, this classifi-

cation providing a means of tackling the well known equivalence problem in

general relativity.

The Karlhede classification is performed on a number of cylindrically sym-

metric and stationary axisymmetric spacetimes, and the results given. An in-

variant classification scheme is presented for vacuum type D and vacuum type

N spacetimes, and a canonical form is derived for each of the resulting classes,

these canonical forms forming an essential part of the Karlhede classification.

In addition, the theoretical upper bound on the order of covariant derivative of

the Riemann tensor required to perform a Karlhede classification is examined

and reduced for a number of cases.
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Introduction

§1. Exact Solutions and the Karlhede Classification

With the publication in 1980 of the book entitled 'Exact solutions of Ein-

stein's field equations' [l], the result of many years work, the study of exact

solutions in general relativity took a major step towards becoming a much

more systematic enterprise. Until then the many solutions which had been

discovered were spread throughout the literature, but with the publication of

this book all solutions known at that time were presented systematically in a

single text, with some of their elementary properties discussed.

At around the same time major advances were being made in the de-

velopment of a practical procedure to provide a complete classification of a

spacetime which would tackle the equivalence problem. This is a problem

right at the heart of general relativity, because it arises from the fact that

the theory allows arbitrary coordinate transformations as one of its funda-

mental properties. Because of these arbitrary coordinate transformations the

algebraic form of a given metric tensor can vary enormously depending on

the coordinate system in which it is expressed. Indeed, there are many inci-

dents in the literature of the reporting of apparently new solutions, which turn

out to be known solutions in different coordinates. This leads to the equiv-

alence problem, the problem of determining whether two given metrics are

genuinely different, or whether they just represent a single metric expressed in

two different coordinate systems. The theoretical resolution of this problem

was originally provided by Cartan [2], who showed that it is necessary to cal-

culate the Riemann tensor and its successive covariant derivatives expressed

in a frame with constant frame metric. He proved that in the worst case it

would be necessary to continue up to the 10th covariant derivative. Cartan's

procedure was refined by Karlhede [3] into a practical algorithm, largely by
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the introduction of so called canonical forms for the spacetimes. A canonical

form is obtained by choosing a frame in which the Riemann tensor and its

derivatives adopt a simple standardly defined form. Karlhede was also able to

prove that the upper bound could, in fact, be reduced to seven in the worst

case (in fact, Karlhede's proof did not cover the conformally flat case, but it

was subsequently shown that the result could indeed be extended to this case

as well).

The development of the Karlhede algorithm occurred at a time when com-

puter algebra systems, and especially the system SHEEP [4], were being used

for work on exact solutions. As a consequence, a project was set up to use

Karlhede's algorithm to classify all known exact solutions, which were now

conveniently at hand in the exact solutions book. Karlhede's classification

was implemented in a computer program called CLASSI [4], which could per-

form large parts of the classification automatically. CLASSI was written in

SHEEP, which was specifically designed for calculations in general relativity.

A computer database of the solutions classified by CLASSI is gradually being

built up [5], and at the time of writing it contains well over a hundred exact

solutions (depending on the method of counting). When the database is com-

plete it is hoped that it can be widely available to workers in the field of exact

solutions, where it will be of great help in determining whether newly discov-

ered solutions are indeed new or are just old solutions in new coordinates.

§2. The Organisation of the Thesis

The Karlhede classification is a kind of generalisation of the well known

Petrov classification [6], in that the Petrov classification classifies only the Weyl

tensor whereas the Karlhede classification classifies the Riemann tensor and

its covariant derivatives. Indeed, CLASSI first performs a Petrov classification

when running a Karlhede classification, because this is useful for calculating

the canonical forms (see chapter 4). In chapter 2 of this thesis the Petrov
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classification is discussed and an algorithm for performing this classification

is presented. This algorithm is due to Letniowski and McLenaghan [7], and

it is very similar to an earlier algorithm of Aman et al [8]. The details of

both of these algorithms have been thoroughly checked through and no new

errors have been detected. Paper [7] identifies a few errors in [8] which have

been confirmed. However, on checking the implementation in CLASSI of the

Aman et al algorithm it was found that most of these errors had, in fact, been

corrected in the code.

In chapter 3 the equivalence problem and its resolution in terms of the

Karlhede classification are presented in great depth, together with some sup-

porting appendices (appendices A and B). This discussion is largely based on

a review by Karlhede [9], but it is included for completeness and many of the

details are filled in and the subtleties are thoroughly discused. It is felt that

this work is essential to a proper understanding of all subsequent work and,

therefore, justifies the attention devoted to it.

In chapter 4 the practical operation of CLASSI is discussed and some ap-

proaches found to be useful when performing a Karlhede classification using

CLASSI are examined. In particular, CLASSI has been used to classify the

cylindrically symmetric and a number of the stationary axisymmetric vac-

uum solutions contained in [1], and the results of this classification work are

presented. In addition, a few solutions and their generalisations have been in-

vestigated in more detail and the results discussed. A number of the stationary

axisymmetric solutions in [l] were not successfully classified because the com-

plexity of the metric caused the number of terms to multiply to such an extent

that the computer algebra system was unable to cope. Although some further

headway might be possible by clever choices of frame and carefully chosen

algebraic substitutions, it is felt that a substantial number of these solutions

may prove impossible to handle with presently available algebra systems.
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As mentioned above, Karlhede has shown that in the worst case it is

necessary to continue until the 7th covariant derivative in order to complete

the Karlhede classification, which would entail calculating 3156 components.

For complicated solutions each component would be expected to contain many

terms, so the amount of computation required would become too much even

for modern computer algebra systems. Therefore, the question of the upper

bound on the order of covariant derivative required is an important question,

not just from the theoretical perspective, but also in terms of assessing the

viability of constructing the database. Each extra differentiation requires an

extra (n + l)(n + 4)(n + 5) components to be calculated, where n is the order of

differentiation, so at higher orders even a reduction by one derivative represents

a large computational saving. For example, a reduction from 7th order to

6th order represents a saving of 1056 components. In chapters 5 and 6 the

question of the upper bound is addressed. All vacuum type D metrics are

known explicitly as a result of some work by Kinnersley [10], and they have

all been classified directly by CLASSI [11]. The result of this investigation is

that it was found to be necessary to continue only up to the second covariant

derivative. In chapter 5 the upper bound for this case is proved to be at most

3 by an indirect method which uses the field equations and Bianchi identities

expressed in GHP formalism (Geroch-Held-Penrose [12]), together with some

symmetry considerations. The importance of this approach is that it does not

require any integration of the field equations, and can, therefore, be extended

to cases other than vacuum type D where a complete set of solutions is not

available. Karlhede's analysis shows that an upper bound of 7 only occurs for

non-vacuum types D and N and vacuum type N, with all other cases having

an upper bound of only 5 (Karlhede's analysis shows that vacuum type D has

an upper bound of 5 because all vacuum type D solutions are known to have a

2-dimensional isometry group). In chapter 6 the upper bound is analysed for

vacuum type N solutions using a similar approach to that for vacuum type D,

except that NP formalism (Newman-Penrose formalism [13]) is used instead
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of GHP formalism. It is found that in the worst case the upper bound can be

reduced from 7 to 6, although in other cases it can be reduced as far as the

second covariant derivative.

In addition to lowering the upper bound, chapters 5 and 6 also analyse the

canonical forms required for the Karlhede classification of vacuum type D and

vacuum type N spacetimes. These canonical forms are the essential aspect of

Karlhede's work which make it an effective practical procedure for tackling the

equivalence problem, and are, therefore, of fundamental importance. All type

D and type N vacuum spacetimes are split into a number of invariant classes,

and a canonical form is derived for each class in turn. In addition to finding

the canonical forms, the frame transformations required to fix them are also

calculated.

In the final chapter, chapter 7, the upper bound for non-vacuum type D

spacetimes is analysed. Because it is already known from chapter 6 that in

the worst case it may still be necessary to continue up to the 6th covariant

derivative, attention is focused on reducing the upper bound from 7 to 6. The

approach here is similar to that for the vacuum cases in that it uses the field

equations, the Bianchi identities and some symmetry considerations, but use

is also made of crucial constraints on the form of the Ricci spinor if the worst

case is to be realised.

§3. Future Work

Although the Karlhede algorithm has now been checked independently, its

implementation in CLASSI has not. Moreover, the canonical forms reported

in this thesis have not yet been implemented and this would seem to be a

desirable addition.

On the theoretical side, the first project to be attempted should probably

be the application of the techniques of chapter 7 to the case of non-vacuum type



N spacetimes. Some progress with this has been achieved already, although

it has not yet proved possible to lower the upper bound. The approach could

also be extended to solutions of Petrov types I, II and III. Karlhede lowers

the upper bound to 5 for these cases. It seems that one of the main problems

with using the techniques of chapters 5, 6 and 7 for these cases is that the

symmetry considerations would not be effective because the invariance group

of the Riemann tensor, which is the group of transformations which leaves its

canonical form invariant, is zero dimensional (see chapter 3). One would then

be reliant on reductions of the upper bound being achieved purely by analysis

of the field equations and Bianchi identities.

Finally, it may well be the case that this indirect approach could be pushed

even further in particular cases (especially by exploiting special symmetry

conditions), which might lead to yet greater reductions in the upper bounds.



2
The Petrov Classification

§1. Introduction

The Petrov classification is an algebraic classification of the Weyl tensor

Capy6, and it is most easily and elegantly described in the language of spinors.

We shall not deal with spinors in this thesis but shall use much spinor theory,

so the reader unfamiliar with this topic is advised to consult one of the many

references dealing with it (for example [14]).

§2. The Classification

The starting point for the spinor description is to calculate the spinor

equivalent of the Weyl tensor. The result is

Ca/3jS <-> $ABCD^W'X'^Y'Z' + ^AB^CD^W'X'Y'Z' (2-1)

(the symbol «-> means 'is equivalent to' in the sense of spinor equivalents of

tensors). The spinor $>ABCD is a totally symmetric spinor called the Weyl

spinor which determines and is determined by the Weyl tensor.

It can easily be proved that any totally symmetric spinor can be expressed

as a symmetrised product of 1-spinors.

Proof :

Let <f>AB...K be a totally symmetric spinor with p indices. Let (A be an arbitrary

spinor and consider the expression

This is a homogeneous polynomial of degree p in £°, (l (for example if we take

C° = 1 and C1 = z, we simply have a polynomial in z). Such a polynomial can

always be factorised into p linear factors. Thus



or

(4AB...K - aA/3B . . . TTK)(A(B • • • (K = 0 (2.2)

The left hand side of (2.2) will contain p\/mln\ terms which contain m £°s

and n (xs, where m + n = p. If we add all these terms together the resulting

coefficient will, with a little thought, be seen to be

(p\/m\n\)((j){AB...K) - &(APB • • •

with m of the indices 0 and n of them 1. This term, because it contains a

different mix of (°s and (xs from all others and (A is an arbitrary spinor, is

independent of all others, so that (2.2) requires it to vanish. Therefore, we

obtain

4>AB...K = OL{APB • • • KK) (2.3)

where we have used the fact that <J)AB...K is totally symmetric so that $AB...K =

<t>(AB...K)- This argument can be repeated for all combinations of 0 and 1 in the

indices, so equation (2.3) is our required result.

Clearly each of our spinors aA .. .irk, which are called principal spinors,

is determined up to a complex scalar factor. It can be shown that each of

them determines a real null vector, and hence a real null direction. Because

the 1-spinors in (2.3) need not all be distinct, the decomposition (2.3), called

the canonical decomposition of 4>AB...K, determines at least 1 and at most p

real null directions, called the principal null directions of 4>AB...K- Thus the

multiplicities of the principal null directions provide a means of classifying

any symmetric spinor.

As has been stated following (2.1), the Weyl tensor determines and is

determined by a totally symmetric 4-spinor \I>ABCD called the Weyl spinor,

and thus we can classify the Weyl spinor, and hence the Weyl tensor, in terms

of the multiplicities of the principal null directions. This gives Penrose's form

of the Petrov classification [6]. The classification can be summarised by the

following table :



Table of Petrov Types

Parti t ion

[1111]

[211]

[22]

[31]

[4]
—

Petrov type

I

II

D

III

N

0

Form of ^ABCD

$ABCD = OUAPBICSD)

$ABCD = OC(AaB/3c1[D)

^ABCD = C{AaB^C^D)

^ABCD ~ CL(A<XB&cfiD)

^ABCD - ot(AaBacaD)

^ABCD = 0

The increasing algebraic specialisation as one goes down this table of Petrov

types may be set out in the following diagram :

Penrose Diagram

I

The arrow points in the direction of increasing specialisation. Type I is some-

times referred to as algebraically general, the other types as algebraically spe-

cial.

This all seems very nice but rather abstract. How do we determine the

Petrov type in practice? A well known result from the theory of spinors is that

the contraction of two spinors is zero if and only if they are proportional. Thus

if we denote an arbitrary spinor by (A, then it is proportional to a principal
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spinor if and only if

VABC»CA(B(C(D = 0 (2.4)

or
A tE RB rF &c fG &D tH — n

Using the result that £aA£aB = &A f°r a dyad £f, we can write this in terms of

dyad components as

\T; ( taAfEf thB /-F f fcC /-G £ (dD fH __ r\
* ABCD^aEC, C, C,bF<, (, ZcGC, (, C,dH^ C, — U

= 0

^a^CC'CC" = 0 (2.5a)

Writing (2.5a) out in full it becomes

*o(C°)4 + 4^1(C°)3C1 + 6*2(C°)2(C1)2 + ^ " ( C 1 ) 3 + ^ ( C 1 ) 4 = 0 (2.56)

where

1 = ^ 0 0 0 1

(2.6)

are the Newman-Penrose scalars. Note that we have used the total symmetry

of $ABCD to deduce the total symmetry of ^abCd and hence obtain relations

like \I>oooi = ^ooio e.t.c. Assuming C ^ 0 then dividing (2.5b) by (C1)4 and

letting (°/C1 — z one obtains the equation

^ 0 2 4 + 4*1z3 + 6*2-2 + 4*32 + *4 = 0 (2.7)
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Distinct roots of this equation represent distinct ratios C°/C1 an<^ hence distinct

(i.e. non-proportional) spinors satisfying (2.4). Thus the multiplicities of the

roots of (2.7) gives the multiplicities of the principal null directions of the Weyl

spinor. If it happens that * 0 = 0, then (2.7) will not be quartic, but the above

analysis can still be performed by defining the roots above the order of the

equation to be oo.

In order to determine the multiplicities of the roots of (2.7) we need to

study the theory of quartic equations [15]. We now summarise the results

obtained. Defining :

J =

o * i

j * 2

G = * 0
2 * 3 -

* 0 * 1
/ / =

* 1 * 2

Z = * 0
2 / - 12//2

D = I3- 27 J2

we have the conditions (iff = 'if and only if)

C l : D ^ 0 iff 4 distinct roots.

C2 : I — J = 0 iff at least 3 equal roots.

C3 : G = # = / = 0iff4 equal roots.

C4 : G = Z — 0 iff 2 pairs of equal roots (not necessarily distinct).

Using this information the Petrov type can be determined as follows

Type 0 : Iff * 0 . . . * 4 are all zero.

Type I : Iff Cl.

(2.8)
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Type II : Iff not Cl and not C2 and not C4.

Type III : Iff C2 but not C3.

Type N : Iff C3.

Type D : Iff C4 but not C3.

d'Inverno and Russell-Clark [16] applied this logic directly in producing

their algorithm for determining Petrov type from the \I>s. Their algorithm is

represented in the following flow-diagram :

Algorithm for Determining Petrov Type from the $s

NO
D = 0

\/

\'yes

Type I

= Z = 0

Type II TypeD

G = H = 0

Type III

yes

TypeN

In the case where C1 = 0 we instead divide (2.5b) by ((°)4, where we know

that C° ^ 0 (or else we would have (A = 0 ) . In this case instead of (2.7) we

obtain

* 4 z 4 + 4 ^ 3 ^ 3 + 6^2z2 + 4 ^ ^ + *o = 0 (2.9)

where we now have z — C/C- Thus if we interchange ^ 0 with ^ 4 and $i with

^ 3 in the definitions (2.8) then the algorithm proceeds as before. However,

12



given only the set of $s how does one know which definitions (2.8) to use in

the algorithm. The answer is that it does not matter. If one makes the sub-

stitution z = l/y in (2.7) and then multiplies through by y4, then a quartic in

y is obtained with the coefficients reversed. Since there is a 1 — 1 correspon-

dence between z and y we conclude that using the reversed coefficients in the

algorithm will give exactly the same result for the multiplicities of the roots.

Note that in the case where ^ 0 = ^4 = 0, although the above algorithm

can be used, d'Inverno and Russell-Clark present a much simplified algorithm.

§3. Advanced Algorithms

Although the logic of the d'Inverno and Russell-Clark algorithm is very

clear, what is really required is an algorithm that minimises the amount of

computation required to calculate the Petrov type. The general strategy be-

hind these more complex algorithms is to delay the calculation of quantities

of high order in the ^s (for example D which is sixth order) until as late as

possible, with the expectation that lower order quantities may determine the

Petrov type earlier in the algorithm. It will be noted that the d'Inverno and

Russell-Clark algorithm starts by calculating D. Here we shall present an al-

gorithm due to F.W. Letniowski and R.G. McLenaghan [7]. The mathematics

of this algorithm is largely the same as an earlier one due to Aman et al [8], but

the presentation is much clearer. The Aman et al algorithm (with some minor

corrections) is the one used by CLASSI and is compared to the Letniowski

and McLenaghan algorithm in detail in [7].

The Letniowski and McLenaghan algorithm considers the thirty two differ-

ent possible permutations of zero/non-zero ^;, i = 0,1,2, 3, 4, assigns to each

permutation a number n ranging from 0 to 31 and then analyses the Petrov

type for each n. Let us introduce the symbol rt where

r, = 0 if *,- = 0

n = 1 if tf; ^ 0

13



Then n is defined by the equation

n = [(r0r1r2r3r4)iase 2 ] 6 a s e 10 (2.10)

For example, if we have

$ 0 ^ 0, *x = 0, 1f2 ^ 0, * 3 = 0, $ 4 = 0 (2.11)

then

n = [(10100)6ase 2]base 10 = 20 (2.12)

We introduce a shorthand whereby a non-zero \&,- is denoted by the letter

N. Thus the permutation of ^ in (2.11) would be denoted by N0N00. The

following table shows how Petrov type is analysed in terms of the number n :

14



Table

N=non-zero

00000

0000N

000N0

000NN

OONOO

00N0N

00NN0

00NNN

ONOOO

0N00N

0N0N0

of Petrov Type Analysis by the Number n

n

0

1

2

3

4

5

6

7

8

9

10

Analysis

type 0 by definition

type N, all four roots are co

type III, 3 roots oo, 1 root 0

type III, 3 roots oo, 1 root = - ^ 4 / 4 ^ 3

type D, 2 roots co, 2 roots 0

type II, 2 roots oo, others ±(-W4/6V3)
1/2

type II, 2 roots oo, 1 root 0, 1 root -2$ 3 /3 t f 2

2 roots oo, other 2 roots are equal iff the

discriminant of the quadratic is 0

Thus if 2^3
2 - 3*2^4 = 0 then type D, else type II

type III, 1 root co, 3 roots 0

1 root oo, A^iZ3 — $4 = 0 has 3 distinct roots

=>• type I

type I, 1 root oo, 1 root 0, others ± ( - * 3 / * i ) 1 / 2
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N=non-zero

0N0NN

ONNOO

ONNON

ONNNO

ONNNN

NOOOO

N000N

N00N0

n

11

12

13

14

15

16

17

18

Analysis

G = 2*!3 / 0 => not type D or N

/ = _ 4 * ! ^ 3 / 0 => not type III

D = 0 <£> 27^4
2^i + 64#3

3 = 0 <4> type II

else type I

same analysis as 6 with coefficients in reverse order

G = 2$1
3 ^ 0 => not type D or N

/ = 3*2
2 ^ 0 =» not type III

D = 0 <£> ̂ ^ ^ 4 + 2$2
3 = 0 <̂> type II

else type I

1 root oo, 1 root 0

the other 2 roots are equal iff the discriminant

of the quadratic is 0

Thus if 9#2
2 - 16$!$3 = 0 then type II, else type I

special case 1 (see later)

all 4 roots are 0, type N

^oz
A + #4 = 0 has 4 distinct roots => type I

same analysis as 9 with coefficients in reverse order
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N=non-zero

N00NN

NONOO

NONON

NONNO

NONNN

NNOOO

NNOON

NNONO

NNONN

NNNOO

n

19

20

21

22

23

24

25

26

27

28

Analysis

G = #0
2#3 / 0 =4> not type D or N

/ = $0\^4 ^ 0 => not type III

£> = 0 «* * 0 ^ 4 3 - 27*3
4 = 0 ^ type II

else type I

same analysis as 5 with coefficients in reverse order

results in a quadratic in z2, each root of the

quadratic gives 2 distinct roots of the quartic

=£> if the discriminant of the quadratic is 0

then type D, else type I

i.e. 9\?2
2 - #0*4 = 0 <£> type D, else type I

same analysis as 13 with coefficients in reverse order

special case 2 (see later)

same analysis as 3 with coefficients in reverse order

same analysis as 19 with coefficients in reverse order

same analysis as 11 with coefficients in reverse order

special case 3 (see later)

same analysis as 7 with coefficients in reverse order

17



N=non-zero

NNNON

NNNNO

NNNNN

n

29

30

31

Analysis

same analysis as 23 with coefficients in reverse order

same analysis as 15 with coefficients in reverse order

special case 4 (see later)

18



Special Case 1 n — 15 or 30 (with coefficients reversed)

In this case the quartic reduces to the cubic equation

\^xz
z + 6*2z2 + 4*3z + * 4 = 0

The quantity / reduces to

The quantity J reduces to

J = - 1 4

If one defines

F2 = 9*

then the discriminant D is given by

D = -D/V* = 3F,2 + 2IF2

It is important to note that / , F\ and F2 are not independent since

*!F 2 + 3*2Fi - 2 * 3 / = 0

=̂> it is not possible to have exactly 2 of 7, Fx and F2 zero.

The algorithm for this case is given in figure 1.
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Figure 1. Algorithm for Special Case 1

One root is oo but the other three are finite =>- not type D or N

If / = 0 then 3J = ^ F i , hence if JF\ = 0 then / = J = 0 => type III

else D = 3F,2 ^ 0 =* type I

else 7 ^ 0 = ^ not type III

if Fx = 0 then F2 ^ 0 =* £> = 27F2 ^ 0 =^type I

if F2 = 0 then Fi ^ 0 =» /) = 3F,2 ^ 0 => type I

if /) (= 3FX
 2 + 2/F2) = 0 ^> type II

else D ^ 0 =>• type I

20



Special Case 2 n = 23 or 29 (with coefficients reversed)

In this case the quartic reduces to the equation

^xz4 + 6*2z
2 + 4^3z + #4 = 0

The quantity / reduces to

If / = 0 then

= 4*2*4 - 3*3
2 = J

If one defines F3 = * 0 ^ — 2*2^ then the discriminant D satisfies the relation

D = D/qQ = * 4 / 2 - 3 JF3

The algorithm for this case is given in figure 2.

21



Figure 2. Algorithm for Special Case 2

G reduces to * 0
2 * 3 ^ 0 =>• not type N or D

If / = 0 then i f J = 0 = ^ I = J = 0=» type III

else D = - 3 * 0 P ^ 0 =» type I

else 7 ^ 0 = ^ not type III

if J = 0 then D = * 4 / 2 ^ 0 =* type I

if F3 = 0 then P = * 4 / 2 ^ 0 => type I

if /3 (= * 4 / 2 - 3 JF3) = 0 =» type II

else D 7^0 => tj^pe I

22



Special Case 3 n = 27

In this case the quartic reduces to the equation

tyoz
4 + 4*xz3 + 4*30 + * 4 = 0

We have

/ = * 0 * 4 _4*1W3

J = -tfo*3
2 - tf^

Z = *0
3*4 - 4*0

2$1*3 - 12*!4

Let us define

U = *o*4 + 2^1*3

V = *0*3
2 - *!2*4

W = * 0 * 4 - 16*!*3

If G = 0 then
$>3Z = -2V?U (2.13)

If U = 0 then

*4G = - 2 $ ^ (2.14)

For type D we have the condition

G = Z = 0

But from (2.13) G =

From (2.14) f7 = 0

SoG = Z = 0=*£/ =

Also from (2.14) ifi7 =

From (2.13) ifC/ =

Therefore, overall

Type D &G = Z = 0&U = V = 0

The discriminant D reduces to

D = I3- 27J2 = WU2 - 27V2
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If one examines the algebraic form of / , U and W one finds that at most 1

of them can be zero. Similarly, the algebraic forms of J and V shows that at

most 1 of them can be zero.

The algorithm for this case is given in figure 3.
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Figure 3. Algorithm for Special Case 3

H = - * ^ ^ 0 =>• not type N

If V = 0 then ifU = 0=>G = Z = Q^ type D

else \{W = 0=>D = 0=> type II

else D = WU2 ^ 0 =» type I

else if / = 0 then if J = 0 =^ type III

else D = - 2 7 P ^ 0 =» type I

else if J = 0 then D = P ^ 0 =$• type I

else if D (= / 3 - 27J2) = 0 ̂ > type II

else D ^ 0 =4> type I
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Special Case 4 n = 31

In this case, all the coefficients $, are non-zero. Therefore, we have the full

quartic

* 4 = 0 (2.15)

or equivalently for x = tyoz + *i

x4 + 6Hx2 + 4Gx + *0
27 - 3H2 = 0 (2.16)

This new equivalent form is useful when considering the case H ^ 0 and G = 0,

as it then has coefficients 1,0, H, 0, * 0
2 / - 3H2. Then, if $ 0

2 / - 3 # 2 = °> w e

have the case N0N00 which, from the table, is found to be type II. Otherwise,

we have the case N0N0N, which is type D if *0
27 - 12#2 = 0 or type I

otherwise.

The quantities denned below are used in the following analysis

H = ^ 0 * 2 - ^

E = $o*4 - * /

Then we obtain
/ = E - 4A
G = ^ o F - 2 * ^

Note that A, F and II are dependent since

$ 0 / l - * 1 F + * 2 i / = 0 (2.17)
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Type N Determination

The quartic (2.15) is of type N iff there exists 'a' such that it can be written

mQ(z - a)4 = yoz
4 - 4*0«z3 + 6\EroaV - ^oa

3z + * 0 « 4 = 0 (2.18)

Then by equating the coefficients of (2.15) and (2.18) and performing a little

algebra it can be shown that we have type N iff

H = F = E = 0 (2.19)

The algorithm for this case is given in figure 4.
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Figure 4. Algorithm for Special Case 4

If H = 0 by (2.17) => $>0A = * j F

t hen \fF = 0=>A = 0=>J = 0 t hen if E = 0 ^ t ype N

else I = E ^ 0 =» type I

else F ^ 0 ̂  A, G = * 0 ^ ^ 0 =» not type D or N and * ! J = - A F ^ 0

=̂> not type III

if E = 0 then W^JD = -* 0 F/ l 2 (37* 2
2 + 27*!*3)

if 37*2
2 + 27*! # 3 = 0 then D = 0 =» type II

else £> ̂  0 =» type I

else if / = 0 then since J ^ 0 = > D / 0 = ^ type I

else if D = 0 then type II

else type I

else H ± 0

if I = 0 then if J = 0 => type III

else D = -27J 2 ^ 0 => type I

else if G = 0 then if Z = 0 => type D

else if * 0
2 / - 3H2 = 0 => type II

else type I

else if J = 0 then D = / 3 ^ 0 => type I

else if Z) = 0 then type II

else type I
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The complete algorithm is presented in the following series of flow charts.

The quantity appearing in a diamond shaped box is compared to 0 — the

right direction from the box indicates that the test was false, the downward

direction that it was true.
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The Equivalence Problem

§1. Introduction

In this chapter the equivalence problem and its solution are discussed in

detail as it is felt that an in depth understanding of this work is vital for a

proper understanding of all subsequent work. The account given here closely

follows a review by Karlhede [9], but concentrates on explaining as clearly as

possible the various subtleties that arise. In this way it is hoped that the

reader may be offered a short cut to a clear understanding of the problem,

which for the author took a considerable amount of study.

We are given two metric tensor fields g and g on manifolds M and M

where

g = rlijLOi®uj (3.1)

g = riij u{ ® & (3.2)

(note that each manifold has the same constant frame metric jfo)

Then regions U and U on M and M respectively are said to be equivalent if

and only if there exists a point-wise identification between points P in U and

P in U such that

9P = 9P (3-3)

(gp denotes the tensor at the point P)

If we express gp and gf in terms of coordinates as

gP = g^dx'dx" (3.4)

gp = g^dx^dx" (3.5)

where x^ and xM are local coordinates in U and U respectively, and then express

dx^ in terms of dx^ as

dx" = ^—dxv (3.6)
dxv
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we see that the condition gp = gp gives

dx" dx°

It is important to note that the investigation is for regions U and U with

local coordinates x^ and cf and, therefore, determines whether the spaces are

locally equivalent. As an example our investigation would find a plane and a

cone to be equivalent because locally their geometries are the same.

§2. Preliminary Discussion of the Problem

Referring to (3.1) and (3.2) we see that if

4 = *J (3-8)

then gp = gp. However, there exists a group of linear transformations of the

1-forms to1

w1' = br <J (3.9)

which leave the frame metric invariant :

VmVijVn = Vmn (3.10)

Then it is easily seen that these transformations bl • also leave the metric, g,

invariant
g = 7/y Of ® us1

= r\mn um ® w"

= 9

So we see that it is not necessary for the 1-forms to be equal to make the

metrics equal, but only for them to be equal up to the transformations &V.

The transformations 6*. form a group G which has a continuous subgroup of

rotations of dimension n(n — l)/2 where n is the dimension of M, together
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with a finite number of discrete transformations. In the case of n = 4 and 77̂

the Lorentz metric, i.e. general relativity, then G is the six dimensional ho-

mogeneous Lorentz group, the continuous subgroup of rotations is the proper

Lorentz group (C\) and the discrete transformations are space and time in-

versions. The analysis above enables us to state the following lemma :

Lemma 3.1a

Two geometries are equivalent if, and only if, there exists a point-wise iden-

tification P = P of P € U and P € U and a transformation b'j leaving 7/tJ-

invariant, such that

Let u>l(x^, eA,m) denote the basis of 1-forms at point P on the manifold

with coordinate x1*, with direction eA and m. x1' are local coordinates in £/,

eA are the n(n — l)/2 parameters of the rotational subgroup of G and m are

the discrete parameters in G. So one obtains all possible 1-forms at a point

with frame metric rjij by varying eA and m. In this language we can state the

content of lemma (3.1a) as follows :

Lemma 3.1b

Two geometries are equivalent if, and only if, there is a correspondence

x" = x"(x") (3.11)

eA = eA[eB,x") (3.12)

m = m(m) (3.13)

which gives

w'Xx", eA,m) = u^x", eA,m) (3.14)

A word about the m dependence — as stated before the number of discrete

transformations in G is finite, so we can handle the m dependence by fixing

m and investigating the existence of a solution for each value of m in turn.
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More generally we could have the relation

x" = x'l(x',eA) (3.15)

giving (3.14). However, for equivalence as we have denned it we need an

identification of P in U and P in U realising gp = gp, where gp and gp are

independent of the choice of tetrad (because the tetrads are generated by the

group G which keeps the metric constant). Therefore, the identification of U

and U has to be independent of the choice of tetrad, ruling out a relation like

(3.15).

So we see that our investigation of the equivalence problem has reduced

to the problem of determining the necessary and sufficient conditions for a

solution of (3.14) to exist. In the next section we analyse a similar but simplex-

situation and then use our results to solve the real problem in §4.

§3. Analysis of the Simpler Problem

Statement of Simpler Problem :

Given two systems of n linearly independent 1-forms u* and u?, denned on re-

gions U and U with local coordinates x>* and of respectively (i, // = 1, 2 , . . . n);

when does there exist an identification of U and U, given by the relation

x^ = x^^x"), realising Co* = ui*1

This is a similar problem to the one which we have but it is simpler because

we are only considering a point-wise identification of the regions U and U to

match up the 1-forms, not a rotation/discrete transformation as well.

Solution :

Take the exterior derivative of LJ' and Co*.

d^ = \c\h^r\^ c\h = -c\k (3 .16a)

<&'• = ic* th a>* A a>* &kh = - & h k (3-166)
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where dkh = c£h(z"), ?kh = &kh{x").

A) Let us first consider the special case where there are n functionally inde-

pendent functions among c'kh (and c'kh).

Note : n functions fl,f2,... /„ are said to be functionally independent if and

only if the vectors dfx, df2-, • • • dfn are linearly independent. The number of

functionally independent components among the / , is equal to the number of

linearly independent vectors among the df{.

Ai) To establish the necessary conditions for ui% = u>' in this special case let

us assume uf = Co1 as our starting point and see what deductions arise from

this.

If u>1 = Gf then du>' = du\ so from equations (3.16)

Further differentiation gives

dc\h = 4h,, J (3.18a)

dc\h = 4*|, w1 (3.186)

These derivatives must be equal from (3.17) so we obtain

Ckh\l = Ckh\l (3.19)

So we see that a necessary condition for u>' = Co1 is for (3.17) and (3.19) to be

compatible as equations relating x^ and x^. If we continued the differentiation

dcl
kh\< = c\h]lmum (3.206)

we would obtain, using the fact that the derivatives must be equal from (3.19),

that

&kh\lm = C'kh\lm (3.21)
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However, in this special case we have n functionally independent functions

among the cl-k {cl-k) which is of course the maximum number on an n dimen-

sional manifold, so that the c'̂ .,, (C'M,) must be functionally dependent on the
c)k (£}*;)• For (3.19) to be compatible with (3.17) requires this functional de-

pendence to be the same — i.e. the cl-k,t must be the same function of the cl-k as

the c'-k,, are of the cx-k. The functional dependence enables us to express all the

higher derivatives cj t | / m (cj.i|/m), (?jk\lmn (&jk\lmn) etc. in terms of c)k (cj.J (for

example c'jk,lm comes from differentiating c^,, which, because of the functional

dependence, is a function of d-k. Therefore, cj t|,m is a function of cl-k and c^,,

but we can substitute for c^,, using the functional dependence, giving c*-j.|,m

as a function of only c'-k). Thus, assuming the functional dependence is the

same for c'-̂ .,, and c'k,n we see that all untwiddled and twiddled higher deriva-

tives will be the same function of cl-k and cl-k respectively. Therefore, we see

that compatibility of (3.17) with (3.19) guarantees compatibility of all higher

derivatives, so that we need not concern ourselves with them.

Aii) In (Ai) we proved that the necessary condition for LJ' — u* is compat-

ibility of (3.17) and (3.19). We shall now show that compatibility of these

equations is also a sufficient condition by assuming the compatibility as our

starting point and showing this results in LU* = UJ'.

Assuming (3.17) and (3.19) are compatible as relations between x^ and

x1*, consider the set of equations

dci
kh-dci

kh = dkhll(u>'-u>l) = 0 (3.22)

This set will contain n linearly independent equations in Co1 — to1 because n

of the c\h are functionally independent, which means, as stated before, that

n of the vectors dc\h are linearly independent. Let us denote the n linearly

independent equations as

c$(u)l-J) =0 (3.23)
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where A represents some combination of i,j, k in cl-k and runs from 1 to n. If

we consider this as a matrix equation with eft an n X n matrix then because

of the linear independence of the vectors eft they will form an n x n matrix of

rank n, which will, therefore, have an inverse. This means that set (3.23) has

only the trivial solution u>' — u;' = 0, which proves our desired result.

To summarise what we have found so far, in the case where there are

n functionally independent functions amongst the cl
jk (cl

jk), compatibility of

(3.17) and (3.19) is a necessary and sufficient condition for u? = u'. Note

that because the set (3.17) contains n functionally independent relations it

will yield a unique coordinate relation if = xft(x") giving u>1 = a/.

B) In (A) above we investigated the special case where n of the cl
jk are func-

tionally independent. We now want to consider the general case where there

are n0 < n functionally independent components among the c'jk.

Bi) As in case (Ai) we first investigate the necessary conditions for ul = to' by

assuming at the outset this holds and investigating what consequences ensue.

We proceed exactly as in (Ai) and, therefore, generate the set of equations

-kh

Ckh\h — Ckh\h

(3.24)

ckh\h...ip+1

In case (Ai) it will be remembered that compatibility of the Oth and 1st

derivatives guaranteed compatibility of all others so that we could stop at

this stage, this being a result of the reasoning following (3.21). Using exactly
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the same reasoning again we see that set (3.24) need continue only to the

(jp + l)th derivative, which is the first derivative functionally dependent on

lower derivatives. Therefore, we have established the result that compatibility

of set (3.24) is a necessary condition for u>' =(!>'.

Bii) We now want to determine the sufficient conditions, so once again we

start by assuming that the set (3.24) are compatible.

Biia) First consider the case where the total number of independent compo-

nents produced by going to the pth derivative is n. We again form the set of

equations

<&** - ddkh = c\w{ul - J) = 0 (3.25a)

but because our n functionally independent components are now scattered

among the first p derivatives, we obtain relations linearly independent of set

(3.25a) from the set

(3.256)

= 0

Together (3.25a) and (3.25b) will contain n linearly independent equations for

CJ% — U/ produced by differentiating the n functionally independent components

among the c'kh and its first p derivatives. Therefore, just as in case (Aii), they

give as the only solution the trivial solution uil — ui' = 0. So for the case where

continued differentiation does finally produce n functionally independent com-

ponents we have the result that compatibility of the set (3.24) is a necessary

and sufficient condition for £>' — u>1.

Biib) Now consider the case where continued differentiation never produces n

functionally independent components. We can once again form the set (3.25),
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but the problem is that among the set there will only be k < n linearly

independent equations for the n unknown Cf — u*, where k is the number of

functionally independent components among the c\h and its first p derivatives.

Thus, the best that one will be able to do with the set (3.25) is to use it to

express k of the u* — u/ as linear combinations of the other n — k. So with a

suitable numbering we obtain

CbA - uA = b*(uQ - ua) (3.26)

where A, B etc. run from n — k + 1 to n (i.e. k of them), and a, (3 etc. run

from 1 to n — k (i.e. n — k of them).

So we have got to the stage where if we can just prove that compatibility

of set (3.24) makes the (n — k) ua — u>a zero, then we automatically have from

(3.26) that u)* — o>' = 0 for i running from 1 to n. The argument will run in

two stages :

1) Fora;"— ua = 0 it will turn out that a system of first order partial differential

equations needs to be integrable. A proof by Cartan shows this to be the case.

2) It will then be necessary to show that the coordinate relation obtained from

the system of first order partial differential equations is compatible with the

one obtained from our starting point, the set (3.24). This will also turn out

to be the case.

The final conclusion will be, therefore, that compatibility of set (3.24) is a

necessary and sufficient condition for there to exist an identification of U and

U giving Co1 = uf with i = 1 , . . . , n. The arguments involved in stages (1) and

(2) above are fairly involved and are dealt with in appendix A so as not to

interrupt the main flow of ideas.

Let us at least see explicitly how the requirement that Co" — ua = 0 leads

to a set of first order partial differential equations. In local coordinates we
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have

Cba = al dx" (3.27a)

Loa = al dx» (3.276)

which gives the n — k equations

ua - uja = a^ dx» - a°l dx" = 0 (3.28)

These equations are linearly independent in the dx^ because ua are linearly

independent, so we have n — k linearly independent equations for n unknown

dx^. Therefore, we can solve for n — k of them as linear combinations of the

other k. With a suitable numbering one obtains

dxa = byx" + ca
AdxA (3.29)

where once again A, B etc. run from n — k + 1 to n (i.e. k of them), and a, /?

etc. run from 1 to n — k (i.e. n — k of them).

The integrability of equations (3.29) is discussed in appendix A, where it

is shown that they can be integrated to the coordinate relation

xa = xa(x",xA) (3.30)

and that this coordinate relation is compatible with that emerging from set

(3.24).

We see, therefore, that in general the n relations x^ = x^(xu) providing the

identification of U and U giving Co' = u' are obtained from the set (3.24) (which

gives k of them) together with the integral relations (3.30) (which gives n — k

of them). The relations (3.30) are not unique but depend on n — k constants

of integration (see appendix A), so there are n — k continuous deformations

of (3.30) which preserve Co1 = u/. There may also be discrete transformations

which are not found in our analysis.
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The entire analysis contained in this section has enabled us to reach the

point where we can state the following theorem :

Theorem 3.1

Given two sets of n linearly independent 1-forms Co1 and uf defined on U and

U with local coordinates x^ and x^ respectively, then there exists a coordinate

identification of U and U, given by x1* = ^(x"), giving u' = u' if and only if

the equations (3.24) are compatible. The (p + l)th derivative is the first one

which is functionally dependent on lower derivatives (including the zeroth), so

p + 1 < n (see below). The coordinate relations xM = x'i(xi/) depend on n — k

constants of integration, where k is the the number of functionally independent

components in (3.24).

The reason that p + 1 < n can be understood as follows. If the c'-k are

constants then their derivatives will be zero, so that the differentiation termi-

nates at first order. Thus, in order for the process to continue beyond first

order the cljk must contain at least one functionally independent component.

Subsequent differentiation must produce at least one new functionally inde-

pendent component at each stage for the process to continue. However, in n

dimensions there are at most n functionally independent components so by the

(n — l)th derivative all n must have been produced, making the nth derivative

the first to be dependent on lower derivatives.

§4. The Equivalence Theorem

Theorem 3.1 is essentially telling us that the c'.fc, c'k,t etc. are the invariants

that must be equal in order to have an identification of the two regions U and

U giving o>! = UJ1 . The actual identification map would be obtained by finding

the coordinate relation x11 = x^(x") which makes the invariants equal (we call

the c'kh, c\m etc. invariants in that they are frame dependent but coordinate

invariant). However, the real problem that we have is not as stringent as the
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one we have just solved in that we do not require that LL>' = ul but only that

they are equal up to transformations 6' • of the group G.

To tackle this problem let us proceed according to Cartan [2], where the

idea is to keep the rotational freedom of the tetrad. Therefore, the u>% depend

not only on the n position coordinates x^ but also on the n{n — l)/2 rotation

parameters tA. In a coordinate basis we have

J = al(x",eA) dx" (3.31)

where ij, etc. and //, is, etc. run from 1 to n, and A, B, etc. run from 1 to

n(n-

The connection 1-forms uf • normally give the change in the tetrad between

neighbouring points, but because of our rotational freedom they will now also

contain a part which gives the change at a fixed point due to changes in the

eA. So we write u^. as

where w! ^ are the 'traditional' connection 1-forms defined by

d^^uS Au{x)j • u ^ - u f o (3.33)

where dx stands for the exterior derivative in xM space. If the connection

coefficients F*.,. are defined as

rjk=<u\Vkej> (3.34)

where Vfc is the covariant derivative and e, are basis vectors whose dual basis

1-forms are u\ so that < e^a/ >= 8{, then for a symmetric connection

(3.35)

This result (3.35) is derived in appendix B.
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The w*fc\j are defined by

<W = u? A ^OJ. ; wg^-wft (3.36)

where d€ stands for the exterior derivative in eA space, and gives the change in

the tetrad at a fixed point due to changes in eA. From equation (3.31) we see

that dxu>% contains only terms like dx1' A dx" whereas dcu>* contains only terms

like deA A dx^. This implies, using equations (3.33) and (3.36), that in local

coordinates {x^, eA} we have

u^) = ̂ (xl>,eB)dx" (3.37a)

J*t) = ai{{x\tB)deA (3.376)

By antisymmetry there are n(n —1)/2 different 1-forms u;^ and these must

be linearly independent because they give the n(n — l)/2 parameter rotational

subgroup of the group G which leaves the frame metric 77̂  invariant. We

therefore have n(n — l)/2 + n = n(n + l)/2 linearly independent 1-forms

{u)\ a;'-7} spanning the dual tangent space to the {x^, eA] space.

Recall that lemma 3.1b told us that two geometries are equivalent if, and

only if, there is a correspondence

x" = x"(x") (3.38a)

tA = ~eA{tB,x») (3.386)

giving

w<(x",£A)=a;<(a:/I,e>l) (3.39)

(Remember that we ignore discrete transformations because as there is only a

finite number of them they can be dealt with by keeping m fixed and investi-

gating the existence of a solution for each m in turn). From (3.33) and (3.36)

we see that Co* = u' implies that Cbli = uilj, so that we can say that equivalence

requires a coordinate relation (3.38) giving

u>i(x»,eA)=u>i(xl',eA) (3.40a)

uij(x^eA) =uii{x\tA) (3.406)
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If we now consider {x^, eA} as local coordinates on a region U* of a n(n + l)/2

dimensional manifold M* then, because the n{n + l)/2 1-forms a;', a;*-' defined

on £/* are linearly independent, the problem of determining whether there

exists an identification of U* and U* giving (3.40) is exactly the same problem

as the one tackled in §3, the only thing having changed being the dimension of

the problem, from n to n{n + l)/2. The identification obtained will be of the

desired form required for the equivalence of regions U and U (i.e. of the form

(3.38)) because & = u' implies a^ dx1' = a'^ dx^, which can only be satisfied if

x11 = x^(x") and not if if = x>i(x'/,eA). Therefore, the analysis of §3 provides

the solution of the equivalence problem.

The analysis of §3 led to theorem 3.1 which was essentially obtained by

differentiating the original 1-forms and equating the results. Let us see what

differentiation of our 1-forms u>', u1* gives.

^ A ^ + w ' A w ^ (3.41)

= uk A u}\

The derivative of uij is calculated in appendix B. The result is

dJ> = Jk A ujj
k + \Rij

klu
k A J (3.42)

where R^ki are the frame components of the Riemann tensor for the symmetric

connection T'-k, given by

Rijki = Tiji\k — Tijk\, + Tijm(Tm
kl — Tm

lk) + TimkT
rn

jl — Tim,Tm
jk (3.43)

So following the procedure used in §3, this time using the facts that ul = u>%

and cuu = uu'i, we see that the equation cl-k — c'k obtained from equating du'

and du>1 has the analogue, obtained by equating duf = die1 and dui'j = du'i

Rijki = Rijki (3.44)
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Next we differentiate Rijkl (see appendix B)

dRijkl = RmjuUTi + RimklU
m

i + RijmlU
m

k + Rijkm0Jm
l + Rijkl-.m^ (3.45)

Then equating dR{jkl and dRijki using u* = u/, u)'-7 = u'j and Rijki — Rijki

gives

Rijk,,m = Rijkl;m (3-46)

Differentiating Rijki-m gives

+ Rijkn;^", + R^kl^m + Rijkl.mn^ (3.47)

so we obtain

Rijkl;mn = Rijkl.mn (3.48)

and so on.

So it is seen that we end up with the result that equivalence is governed

by the following theorem, which is essentially the same theorem as theorem

3.1 except applied to the n(n + l)/2 dimensional space with local coordinates

{x1', eA}, where the c'jk, c^,,, etc. are replaced by the Riemann tensor and its

covariant derivatives.

Theorem 3.2 — The Theorem of Equivalence

Two regions U and U of two n-dimensional Riemannian manifolds are equiv-

alent if, and only if, the set

Rijkl = Rijkl

Rijkl.m = Rijkl.m

(3.49)

fl-ij kl;m1m2...mp+i
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is compatible as equations in af, x^, tA, eA. The (p+ l)th derivative is the first

one which is functionally dependent on lower derivatives (including the zeroth),

so p+1 < n{n-\-1)/2. The coordinate relations expressing if, tA as functions of

X*1, eA depend on n(n + l)/2 — k constants of integration, where k is the number

of functionally independent components among Rijki, Rijki-m, • • •, Rijki-,m1...mp-

This means there are n{n-\-\)/2 — k continuous deformations of the coordinate

relations which preserve equivalence. There may also be discrete transforma-

tions which preserve equivalence but these are not found in the above analysis.

So we see that the set {Rijkh Rijki-m, • • •, Rijki,m,...mp+1} provides a com-

plete invariant description of the geometry (invariant because the set are frame

components of the Riemann tensor and are, therefore, frame dependent but

coordinate invariant).

§5. How to Investigate Equivalence in Practice

In this section our aim is to use the theorem of equivalence 3.2 in order

to develop a practical procedure for investigating the equivalence of metrics.

We shall first clearly spell out the procedure used, leaving comments on it to

afterwards.

The Procedure :

1) Choose a constant frame metric r\ij for the tetrad.

2) Calculate the tetrad components Rijki of the Riemann tensor in an arbi-

trary fixed tetrad with metric rjij.

3) Determine Ho, the subgroup of G which leaves the Rijki invariant. In fact,

this is a straightforward procedure as will be shown in §7. Note that Ho may

contain discrete transformations since G does.

4) Determine, up to a transformation in Ho, a standard tetrad by requiring

that Rijki takes on a special form, called the canonical form. That this can

always be performed for Rijki and all its derivatives is shown in [17] and it will
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be done explicitly for Rijki in §7 (in spinor language).

5) Determine n0, the number of functionally independent components among

Rijki in its canonical form. Note that the Rijki are now only functions of x^

because we are using a particular standard tetrad (up to transformations Ho

which leave the Rijki invariant). The tA dependence has been dealt with in (3)

above.

6) Calculate Rijki-,mi in the standard tetrad.

7) Determine H1 the subgroup of Ho which leaves Rijki and Rijki-mi invariant.

8) Determine among the earlier standard tetrads, up to a transformation in

Hi, a new standard tetrad by stipulating a canonical form for Rijki-rm-

9) Determine n1, the number of components among Rijki and Rijki]mi in their

canonical forms which are functionally independent.

10) If dim(Hi) = dim(H0) and n^ = n0 then the procedure terminates. Oth-

erwise, we repeat the steps 6 — 9 for Rijki-mim2, Rijki-mim2m3, etc. until we reach

the stage when dim(Hp+i) = dim(Hp) and np+1 = np, in which case the proce-

dure terminates. The set {Hq, nq, Rijki>mim2...mq}, <? = 0, 1 , . . . , p + 1, classifies

the solution.

Then given two metrics g and g which we wish to compare for equivalence,

we start by completing the above classification for each metric. The rest of

the procedure is contained in the following steps :

11) If the two sequences HQ, n0; Hi,nx;...; Hq, nq for g and g differ, then so

do the metrics.

12) If the set of simultaneous algebraic equations Rijki = Rijkh Rijki,mi —

Rijki-,mi,---, Rijki,mimi...mq = Rijki;mim2...mq, with the invariants in their canon-

ical form, admits a coordinate transformation x' = x'(xl), i = 1 , . . . , n, as a

solution then the metrics are equivalent, otherwise they are inequivalent.

Because the corresponding invariants (i?mi and flun for instance) may

differ wildly in their functional form, determining whether the coordinate iden-
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tification exists can be a difficult problem. Indeed, since there is no construc-

tive procedure for solving simultaneous algebraic equations (here we do not

mean algebraic in the strict mathematical sense, our equations might be tran-

scendental), step (12) is not algorithmic.

The reason why the procedure terminates when dim(Hp+i) = dim(Hp),

np+i = np, is firstly because we have no new x^ functionally independent

quantities as np+1 = np and secondly because we have no new eA functionally

independent components because dim(Hp+i) = dim(Hp). The second argu-

ment follows from the result that dim(Hq) = n(n — l)/2 — m, where m is

the number of tA functionally independent components amongst the Riemann

tensor and its first q derivatives. This result can be validated by recognising

that the components of the Riemann tensor and its derivatives which are eA

functionally independent can be used as new parameters for the group G, with

the other components expressible purely in terms of these new parameters.

The key to understanding why this procedure tackles the equivalence prob-

lem lies in the use of the canonical form. The essence of what the equivalence

theorem 3.2 is telling us is that in order for us to have ul = u>' up to the

rotational freedom in the problem, we require that there exist frames in which

the two sets of invariants Rtjki, Rijki-,mi, etc. are equal, the actual identification

map being provided by the coordinate relation x^ = x/i(x") which gives this

equality. This is the meaning of looking for an identification eA = eA(eA,x")

which satisfies equations (3.49). Once one realises that this is the geometrical

meaning of the algebra the whole problem becomes much more transparent.

By using the canonical form we pinpoint much more precisely (up to transfor-

mations in Hp) the frame which will enable these invariants to be made equal,

by the coordinate identification x^ = x^{xv).

Even if the last step, step (12), cannot be tackled we still obtain a lot of

information about the geometry before this difficulty arises. In §7 we shall see
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that steps (1) to (4) are equivalent, for empty space, n = 4 and T/,J the Lorentz

metric, to the Petrov classification, in that the result depends uniquely on

the multiplicities of the principal spinors in the spinor equivalent of the Weyl

tensor. The procedure as a whole provides a kind of maximally generalised

Petrov classification — maximal in the sense that we classify all the covariant

derivatives of the Riemann tensor that are necessary to provide a complete

description of the geometry, it works for non-empty spaces and spaces of arbi-

trary dimension n and frame metric rj^. Note also that the classification works

for any geometry, regardless of whether the metric satisfies any field equations,

and is in this sense a purely geometrical classification. In the next section we

shall see how the procedure, excluding step (12), enables us to investigate the

dimension of the isometry group and its isotropy subgroup.

Finally let us make a brief comparison of the Karlhede procedure with

the one suggested by Brans [17]. The two procedures are very similar, the

main difference being that Brans first calculates the Riemann tensor and its

covariant derivatives and then determines a canonical form for them, starting

with the highest derivative. In this procedure we do this successively starting

with the curvature tensor, which greatly simplifies the process, making the

amount of computation required much more feasible.

In conclusion, we have reduced the equivalence problem to the problem of

determining whether or not a finite set of algebraic equations is compatible or

not as relations between of and x^.

§6. The Isometry Group

Definitions :

1) The isometry group / is the group of mappings of = x^(x") of the manifold

onto itself which preserve the metric, i.e. the metric at the original point is

the same as at the point reached under the mapping.
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2) The isotropy group H at the point P is the subgroup of / which leaves P

fixed.

3) The orbit T of a point P is the set of points into which it is mapped by the

elements of / .

If we know that two regions U and U of manifolds M and M are equiv-

alent then from the geometrical point of view the two regions are effectively

the same region U of the same manifold M, with the coordinate relations

giving equivalence, x11 = xM(x"), identifying effectively the same points. The

coordinate systems x** and x^ are then different coordinate systems covering

the same region of the same manifold. Variations in the coordinate relations

giving equivalence map points in U into new points in £/, and, therefore, from

what has just been said can be viewed as mapping points in U into new points

in [/, i.e. they provide a mapping of the manifold onto itself. If these varia-

tions in the coordinate relations maintain equivalence, they will by definition

map points to new points where the metric is the same, hence giving isome-

tries. Variations in the coordinate relations giving equivalence, which maintain

equivalence, are provided by the constants of integration obtained on integrat-

ing equations (3.29). As remarked in §3, these parameters give continuous

deformations of the coordinate relations maintaining equivalence, so our anal-

ysis enables us to investigate only the continuous part of the isometry group

— to find the discrete isometries we would need to identify discrete changes in

the coordinate relations maintaining equivalence, which are not found in our

analysis of the equivalence problem. In addition, because our investigation is

purely local, we only find local isometries.

Bearing in mind these limitations, let us state the following theorem, con-

sidering its proof afterwards.

Theorem 3.3

Given an n-dimensional Riemannian manifold M, suppose that there are k
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f u n c t i o n a l l y i n d e p e n d e n t c o m p o n e n t s a m o n g Rijki-, Rijki;mi•,••••> Rijki;mi...mr+n

m of them functionally independent as functions of eA and t of them function-

ally independent as functions of x^. M then has an isometry group / with

dimension

r = n(n + l)/2 - k (3.50)

The isotropy subgroup H has dimension

s = n(n-l)/2-m (3.51)

and the dimension of the orbits T is

q = r - s = n - t (3.52)

Proof :

Referring to appendix A, we see that if we use the functionally independent

components of the Riemann tensor and its covariant derivatives as coordinates,

then the coordinate relations giving equivalence take the form

X1 = X1 (3.53)

xb = xb{x»,ca) (3.54)

eM = eM(x",€A,ca) (3.55)

where X1 represent the functionally independent components of the Riemann

tensor and its covariant derivatives used as coordinates (so that with a suitable

numbering of indices / runs from n(n + l)/2 — k + 1 to n(n + l)/2, b runs from

1 to n — t, M runs from 1 to n(n — l)/2 — m, \i runs from 1 to n, A runs from

1 to n(n — l)/2 and a runs from 1 to ^n(n + 1) — k).

As explained above varying the parameters in (3.54) provides isometries.

However, we see that under these isometries it is only the n — t coordinates xb

which change, so that a point P is mapped into an (n — t) dimensional region,

the orbit, by these isometries.
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Consider a point P in the manifold and assume that the geometry is ana-

lytic at P, by which we mean that the metric at points P' in a neighbourhood

of P can be expressed in a Taylor series expansion about P. We take the case

where the manifold M has dimension 4 and possesses a Lorentz metric, i.e.

general relativity, although all our arguments in fact generalise to an arbitrary

n dimensional manifold. If we choose geodesic normal coordinates for this

neighbourhood then the Taylor expansion takes the form

flW(P') = V^P) - \R^p(P){x" - xl){x» - xg) + . . . (3.56)

where subsequent expansion coefficients are all functions only of the Riemann

tensor and its covariant derivatives, and i)^ is the Lorentz metric (diagonal

(1,1,1,-1)). From (3.56) we see that the coordinate basis vectors at P, which

are the tangent vectors to the coordinate lines, form a Lorentz frame — by

applying a Lorentz transformation to this frame at P we produce another

Lorentz frame at P which can in fact be associated with the coordinate basis

vectors at P for another set of normal coordinates, in some way rotated with

respect to the previous set. From equations (3.53) and (3.55) we see that a

general Lorentz transformation will change the Riemann tensor and its covari-

ant derivatives at P, but one using only the n(n — l)/2 — m parameters eA will

not, and will, therefore, keep the expansion coefficients in (3.56) for the new

rotated normal coordinates the same. Therefore, the metric at a given coor-

dinate location with respect to the rotated normal coordinates (i.e. a given

X'p — X'Q for p = 1 to n, where X'p is a rotated normal coordinate) will be the

same as the metric at the same coordinate location with respect to the original

normal coordinates (i.e. xp — XQ = xtP — X'Q). If we consider that instead of the

normal coordinates having rotated about P, the manifold has rotated about

P, that is we consider the transformation as active instead of passive, then we

have identified isometries that leave the point P fixed, i.e. we have identified

isotropies. Each eM in (3.55) will clearly give an independent isotropy, so that
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the dimension of the isotropy group is n(n — l) /2 — m. This completes the

proof of theorem 3.3.

§7. Canonical Forms for the Weyl Spinor and its Invariance Group

In this section we restrict our attention to the case where the manifold M

has dimension 4 and possesses a Lorentz metric, i.e. we have general relativity.

Instead of working with the tetrad components of the Riemann tensor and

considering proper homogeneous Lorentz transformations of the frame one

can work with dyad components of the equivalent spinor and consider SL(2,C)

transformations. This is because of the following two important results [9] :

1) The tetrad components of a tensor in a Newman-Penrose null tetrad are

the same as the dyad components of the equivalent spinor.

2) SL(2,C) transformations of the dyad correspond to proper homogeneous

Lorentz transformations (&+) of the Newman-Penrose null tetrad.

The relationship between the dyad {(£, Cj4} and the Newman-Penrose null

tetrad {/M, nM, m11, fh^} is provided by the equations

in _ n» fA?B'
* — ° AB'So S>0'

m" = <B<CC7T (3.57)

m11 — rr^ CATB'

The spinor equivalent of the Riemann tensor can be decomposed in the fol-

lowing way :

E< F'G'H'

+ ^CD^E'F'^ABG'H'

G'H' (3.58)
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where

^ ABCD = ty(ABCD) j <&ABC'D< = <&(AB)(C'D') = § ABC'D' (3.59)

A is essentially the Ricci scalar, the Ricci spinor, $ABCD< > represents the trace-

free Ricci tensor and the Weyl spinor, tyABCD-, represents the Weyl tensor.

For a vacuum spacetime, in this decomposition of the Riemann spinor

(3.58) it is only the Weyl spinor ^ABCD which does not vanish. From chapter

2 it will be recalled that because the Weyl spinor is totally symmetric it can be

written as a symmetrised product of 1-spinors, with the multiplicity of these

principal spinors determining the Petrov type. Thus one obtains :

Petrov type Weyl spinor

I ^ABCD = CL(APB1C5D)

II ^ABCD = O>{AaBf3clD)

= a(AaBacaD)

= 0

where aA, ftA, 7^ and 8A denote non-proportional spinors.

All SL(2,C) transformations can be represented as the product of three

matrices as follows :

0 W l 0\ (I b\
, A,a,6GC (3.60)

Let us call the first matrix T\, the second T2 and the third T3. Under Tx the

dyad {CoSCj4} transforms as

Ct — A-1^ (3.61)
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Under T2 the dyad transforms as

So * So

dA —»• Ci + Ho (3-62)

Under T3 the dyad transforms as

So ' So ^ "Si

£» —> (* (3.63)

By calculating the affect of these dyad transformations on the tetrad vectors

via equation (3.57), one can gain a geometrical interpretation of the trans-

formations they represent. Under Tl5 writing A = re'e, the tetrad transforms

as

mf —> e
M m " (3.64)

Thus we see that T\ represents a rotation in the {rn^fh] plane and a boost

in the {/,n} plane. Therefore, transformations Tx are termed spin and boost

transformations.

Under T2 the tetrad transforms as

/ • " — > / "

nM >• n" + am" + am* + aal"

m" —>m" + al" (3.65)

Thus we see that T2 represents a rotation about the vector ZM. Therefore, these

transformations are termed null rotations.
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Under T3 the tetrad transforms as

/" —> I" + bfh" + bm" + bin"

(3.66)

m"

Thus we see that T3 again represents a rotation, but this time about the n^

vector. Therefore, these transformations are also called null rotations.

Let us examine how the components of the Weyl spinor transform under

these transformations. It is easily calculated that under T\ they transform as

Under T2 they transform as

Under T3 they transform as

$0 —> * 0 + 46*!

(3.67)

a2*0 (3.68)

3a2*! + a3*0

i i 2 + 36 2* 3 + 63*4

* 2 —> * 2 + 26*3 + 62*4 (3.69)

*3 —> *3 + b$4

*4 > *4
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Let us now consider the question of determining a canonical form for the

Weyl spinor and determining its invariance group for each Petrov type in turn,

beginning with Petrov type III.

Petrov Type III

For Petrov type III the Weyl spinor has the form

^ABCD = a(AaBac(3D) (3.70)

Let us choose as our dyad

Co = <** (3-71«)

and

(3.716)

which clearly satisfies the dyad condition COACI = 1- With this dyad we can

contract the Weyl spinor with at most one (£ for a non-zero result as otherwise

we will contract two aAs giving zero. In addition, contracting with four (fs

will also give zero as we will contract two f3As. So we have

* 3 ^ 0 , * 0 = $ ! = $ 2 = tf4 = 0 (3.72)

We must now consider the SL(2,C) transformations of the dyad which leave

these components invariant. A little thought will convince one that any mixing

of the dyad or swapping over of its basis vectors will change this pattern of

zero/non-zero components so that we can only have the dyad transformation

71! given by
(\ 0 \

M o , / A ) • A€C (3J3)

From (3.67) we see that under this transformation the components in (3.72)

transform as follows :

ilr3 = A - 2 * 3 , *o = * i = *2 = *4 = 0 (3.74)
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where $ refers to the transformed value. Thus we see that invariance requires

that A = ±1. These two SL(2,C) transformations generate proper homoge-

neous Lorentz transformations of the Newman-Penrose null tetrad via (3.57)

as mentioned above. Clearly because (3.57) connects a tetrad vector with a

product of two dyad vectors both the transformation of the dyad with A = +1

and that with A = — 1 correspond to the identity transformation of the tetrad.

Thus we have a zero dimensional invariance group and consequently, from

theorem 3.3, the isotropy group is also zero dimensional.

Let us now consider a canonical form for the dyad components. Remember

that the idea of a canonical form is that by insisting the components have a

special form a special dyad is picked out, up to the dyad transformations that

leave the components invariant. The canonical form is chosen so that the

choice of dyads is as restrictive as possible. In this case it is obvious from

(3.74) that this can be achieved by insisting, for convenience, that ^ 3 is unity,

with all the other components vanishing. Because the invariance group is

zero dimensional, this canonical form determines a finite number of dyads and

hence tetrads (in fact, 2 dyads and 1 tetrad).

Petrov Type II

For Petrov type II the Weyl spinor has the form

^ABCD = a{AaBl3clD) (3.75)

Let us choose as our dyad

Co = aA (3.76a)

and

Cf = f3A/aBf3B (3.766)

in which case the dyad components of the Weyl spinor clearly satisfy

* 2 , * 3 ^ 0 , *o = *i = *4 = 0 (3.77)
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Once again a little thought will convince one that any mixing of the dyad or

swapping over of its basis vectors will change this pattern of zero/non-zero

components so that we can only have a dyad transformation of the form

(\ 0 \

( o I / A ) ' A e c (3'78)

Again from (3.67) we see that under this transformation the dyad components

in (3.77) transform as follows :

§ 2 = * 2 , \j?3 = A-2*3 , *o = * ! = * 4 = 0 (3.79)

Thus once again invariance requires that A = ±1, so we again have a zero

dimensional invariance group (and hence a zero dimensional isotropy group).

Let us now consider a canonical form for the dyad components. In this

case it is obvious from (3.79) that a convenient canonical form is obtained by

insisting that ^ 3 is unity, with all other components except ^ 2 vanishing.

Petrov Type I

For Petrov type I the Weyl spinor has the form

VABCD = <X{APB1CSD) (3.80)

Remember that each of the principal spinors is determined only up to a com-

plex scalar factor. Therefore, we can arrange that aA(3A = 1 and choose

{aA,/?A} as our dyad. In this dyad clearly vj/o and ^ 4 will both be zero as

they will involve the contraction of two aAs together and two ftAs together

respectively. If we introduce the notation (ct//3) to denote the contraction

aA(3A, then the full set of components of the Weyl spinor are (up to a constant

factor)

#0 = * 4 = 0

0

0 (3.81)
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In obtaining these expression we have used the result that for any two spinors

&APA = ~^ACAI and the result that the four principal spinors in (3.80) are

non-proportional and hence have a non-zero contraction with each other. Note

that because \&2 is a sum of two terms, it could possibly be zero.

First let us use a spin and boost transformation T\ to make

^ = $3 = ( i f ^ ) 1 / 2 (3.82)

where \&" and ̂ 3 refer to the untransformed values given in (3.81), while keep-

ing #0 = \?4 = 0 and leaving ^ 2 unchanged. If we now use a transformation

of the form
/ 1 1 \

T= [ (3.83)

V- l /2 1/2;

it is easily calculated that the ^s will transform as

#0 > 8*! + 6*2

* ! > 0

(3.84)

Clearly * 0 and \&4 can only be zero if vJ>2 = —|^i or * 2 = lty1 respectively. If

we let (-f/a)(6//3) = X and (j//3)(6/a) = Y then it is easily shown from (3.81)

and (3.82) that this can only occur if X = Y. However, from the definitions

of X and Y we see that X = Y implies that 7i<52 = 72̂ 1 or

71/72 = ^/S2 (3.85)

But we see that (3.85) contradicts our assumption that j A and SA are non-

proportional spinors, so we can deduce that neither * 0 or \&4 transforms to

zero under (3.83). Therefore, we can now use a spin and boost transformation
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to make \&0 = $4 , while keeping ^ i = ^ 3 = 0 and leaving <I>2 unchanged.

Thus our canonical form for Petrov type I becomes

<p0 = tf4 ^ 0 , * ! = * 3 = 0 (3.86)

where \t2 may or may not be zero.

From equations (3.67), (3.68) and (3.69) we see that the canonical form

(3.86) fixes the parameters A, a and b to certain discrete values, so that we

again have a zero dimensional invariance group.

To summarise our results so far we see that because our invariance group

is zero dimensional, defining a canonical form for Petrov types I, II and III

defines a finite number of dyads (and hence tetrads). The analysis that follows

shows that this is not the case for the remaining Petrov types — types D and

N.

Petrov Type D

For Petrov type D the Weyl spinor has the form

VABCD = a(AaBf3cpD) (3.87)

Let us choose as our dyad

(A = aA (3.88a)

and

Ci4 = PA/aBpB (3.886)

in which case the dyad components of the Weyl spinor clearly satisfy

$ 2 ^ 0 , #o = * i = *3 = * 4 = 0 (3.89)

It is clear that the transformation

A 0 \
, A e C (3.90)

0 1/Xj
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will preserve this pattern of zeros/non-zeros, and that because of the symmetry

between aA and (3A in the Weyl spinor, a transformation swapping them over,

i.e.
/ 0 a\

, aeC (3.91)
V-l/a 0/ '

will also maintain this pattern. Any transformation other than (3.90) and

(3.91) will involve mixing of the dyad vectors and will clearly change the pat-

tern of zeros/non-zeros in the components (3.89). It is easily shown that trans-

formations (3.90) and (3.91) leave the Weyl tensor components unchanged,

so these two sets of transformations together represent the invariance group.

However, transformation (3.91) can be written
0 a\ la 0 \ / 0 1

(3.92)
-I/a Oj \0 I/a) V - l 0, '

' A € C ; l - i o ) (393)

so we may write the invariance group for type D as

/A 0
7°=(o I/A

Thus, because A is complex, the invariance group is a 2-dimensional subgroup

of SL(2,C). From theorem 3.3 we see that this means that the maximum

dimension of the isotropy group is two.

Because the pattern of components (3.89) limits us exactly to the invari-

ance group /p, it provides a convenient canonical form. However, because the

invariance group is now 2-dimensional the canonical form limits us not to a

unique dyad but to an infinite number of dyads.

Petrov Type N

For Petrov type N the Weyl spinor has the form

$ABCD = aAaBacaD (3.94)

Let us choose as our dyad

C = <*A (3-95)
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and Ci4 a n arbitrary spinor satisfying (OA(^ = 1- It is clear that any dyad

component involving a contraction with aA will vanish so that we obtain

* 4 = 1 , * 0 = * 1 = * 2 = *3 = 0 (3.96)

In order for these components to remain invariant under a dyad transformation

it is clearly necessary that the transformation of (£ does not mix in any (f.

In addition we can transform £* in such a way that we multiply it by ±1 or

±i and add in any amount of £(f, as this will keep $ 4 = 1. The only SL(2,C)

transformations which satisfy these criteria are

(\ 0\
± , «£C (3.97)

\a 1/

and
/I 0\

±i[_ ) , b e e (3.98)
\b —1/

However, transformation (3.98) can be written

/I 0\ (I 0\ (i 0 \
±M - = ± - (3-99)

so the invariance group for type N can be written as

/ I 0\ /i 0\
IN = ±[ , a € C ; (3.100)

\a 1/ \0 -i)

which is a 2-dimensional subgroup of SL(2,C). From theorem 3.3 we see that

this means that the maximum dimension of the isotropy group is two.

Because the pattern of components in (3.96) limits us exactly to the in-

variance group IN, it provides a convenient canonical form . However, because

the invariance group is now 2-dimensional the canonical form limits us not to

a unique dyad but to an infinite number of dyads.

We can use these results above to refine the upper bound on the num-

ber of covariant derivatives which need to be calculated in order to determine
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equivalence (remember that the equivalence theorem 3.2 set this upper bound

at 10 for a 4-dimensional space). For Petrov types I, II and III the invariance

group of tyabcd is zero dimensional and so cannot change. If there are n0 com-

ponents among the ^abcd which are functionally independent with respect to

the coordinates x^, there are only 4 — n0 functionally independent components

that remain to be generated. We must generate at least one new functionally

independent component per differentiation, as otherwise the Karlhede algo-

rithm terminates, so that after at most 4 — n0 differentiations all functionally

independent components must have been generated, so we have

Petrov types I, II, III : p+1 < 5 - n0 (3.101)

So we see that in the worst case we only need to go to the fifth covariant

derivative for these Petrov types.

For Petrov types D and N we can use similar arguments, the only difference

being that the invariance group starts with dimension 2 and hence in the worst

case could drop 1 dimension at each differentiation down to zero dimensional.

Thus we have

Petrov types D and N : p + l < 7 - r a 0 (3.102)

So we see that in the worst case we only need to go to the seventh covariant

derivative for these Petrov types. It should be emphasised that these worst

case values of 5 and 7 assume that :

1) The tyabcd are constants (i.e. there are no functionally independent compo-

nents).

2) The dimension of the invariance group and the number of functionally in-

dependent components do not both change on differentiating.

3) We produce at most one new functionally independent component on dif-

ferentiating.
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4) The dimension of the invariance group goes down by at most one dimension

on differentiating.

So in actual calculations it seems very likely that less derivatives will be needed.

In fact, for all calculations performed to date it has been found necessary to

go up to at most the third covariant derivative.

If the solution possesses isometries then these upper bounds are reduced.

If the dimension of the isometry group is r then this means, from theorem 3.3,

that the final dimension of the invariance group, dim(HP), plus the number

of functionally independent components not produced (out of the 4 possible)

equals r. Thus we have

Petrov types / , / / and III : p + l < 5 — n0 — r (3.103)

Petrov types D and N : p+1 <7 - n0 - r (3.104)

These upper bounds will apply to non-vacuum as well as vacuum space-

times. For the non-vacuum case it can be seen from the decomposition of the

spinor equivalent of the Riemann tensor (3.58) that as well as the Weyl spinor

we have the Ricci spinor QABCD1, which represents the trace-free Ricci tensor.

Therefore, for the non-vacuum case any invariance group will have to keep the

dyad components of <$>ABCD> invariant as well as the dyad components of the

Weyl spinor, so the invariance group will either be of the same dimension as in

the vacuum case or of smaller dimension. This means that the upper bound

in the non-vacuum case will be the same as in the vacuum case.

The one case that has still not been considered is the conformally fiat case,

Petrov type 0, where the Weyl spinor vanishes. We shall not present the proof

here, but it turns out that by proceeding in a similar manner to that above

and considering the dimension of the invariance group of the Ricci spinor, it

can be shown that the upper bound for this case is also seven. Thus we have

Petrov type 0 : p + l < 7 - n o - r (3.105)
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4
The Karlhede Classification
of Cylindrically Symmetric

and Stationary Axisymmetric Spacetimes

§1. CLASSI

The classification procedure developed in the previous chapter (i.e. steps

1 to 10) is generally referred to as the Karlhede classification. A suite of

computer programs has been written to perform this classification on space-

time metrics, these programs being collectively called CLASSI [4]. Note that

as discussed in the previous chapter, the Karlhede classification is algorith-

mic, although determining equivalence in fact involves a non-algorithmic step,

so CLASSI does not determine equivalence. CLASSI is written in the com-

puter algebra system SHEEP [4], which is written in the language LISP. In

this section we give an account of the use of CLASSI to perform a Karlhede

classification. For more details about CLASSI and SHEEP in general see [4].

Because tensorial symmetries become far simpler when expressed in terms

of spinors, CLASSI performs the Karlhede classification in terms of the spinor

equivalents of the Riemann tensor and its covariant derivatives, which as noted

in the previous chapter is equivalent to using a Newman-Penrose null tetrad.

An important question is what is the minimal set of components of the Rie-

mann spinor and its covariant derivatives? More precisely, we wish to specify

a smallest set of components of the Riemann spinor and its first n covari-

ant derivatives, such that all components up to order n can be algebraically

expressed (i.e. using sum, products and contractions) in terms of this set.

The relations that enable one to find this algebraic dependence are the Ricci

and Bianchi identities, for Siklos has shown that these are the only equations

relevant in the most general case [18]. For the vacuum and electrovac cases,

Penrose showed that only the totally symmetrised spinor derivatives of the
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Weyl and Maxwell spinors are required [6]. However, for the general case

more components are required, and a convenient minimal set has been deter-

mined by Aman and MacCallum [19]. Although this set is not unique it is

convenient in that it is recursively defined (so that additional nth derivative

quantities need not be calculated to determine the set for higher derivatives)

and it contains only totally symmetrised spinors (which simplifies storage and

retrieval algorithms). This minimal set is defined as follows :

Let the set Vni? contain the following :

1) The totally symmetrised spinor nth derivative of the Weyl spinor

V{x
A'VY

B...VpVHKLM) (4.1)

2) The totally symmetrised spinor nth derivative of the Ricci spinor

3) The totally symmetrised spinor nth derivative of the scalar curvature

VgrvS'.-.V^A (4.3)

4) Let us define 'E.DEFW by

^DEFW = V W,^>CDEF = ^ (D ®EF)Y'W (4-4)

Then for n > 1, the set Vni? contains the totally symmetrised (n — l)th

derivative of "E^DEFW

y ' X7Z'~ w'] (A *>)

5) For n > 2, the d'Alembertian of all quantities in Vn~2i?, i.e.

V£,VfQ (4.6)

where Q is a member of Vn~2R.
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Then the minimal set for the Riemann tensor and all its derivatives up to

the nth is provided by the V i ? , for r running from 1 to n. How important is it

to find a minimal set? Well, the nth derivative of the Riemann tensor contains

in total 20 x 4" components. It can be shown (see for example [18]) that the set

V"i? contains (n + l)(n + 4)(n + 5) components. Therefore, if one calculated

the Riemann tensor and its first 7 derivatives (7 being the upper bound of

Karlhede), the cumulative totals of components work out to be 436,900 and

3156 respectively.

CLASSI gives special names to the spinors contained in VniZ. We have

f VY
B ... VpmHKLM) = DPSI, D2PSI, etc.

' . . . V**GB)
U'WI) = DPHI, D2PHI, etc.

' . . . VcjA = DLAMBDA, D2LAMBDA, etc.

g ' . ..V*'ZDEF)
W"> = XI, DXI, etc.

VA
X,VX'AQ = APSI, APHI, etc.

Let us outline the procedure by which one performs a Karlhede classifica-

tion using CLASSI, discussing various aspects in more detail subsequently.

1) Calculate a set of basis 1-forms for the metric (in any tetrad you like).

2) Input this set as IZUD to CLASSI.

3) Specify your input frame with (LORENTZ IFRAME) etc. (see [4]).

4) If the input frame, IFRAME, is not null, force calculations to be performed

in a null tetrad by specifying (NULLT FRAME).

5) Calculate PSI in this null tetrad, and determine Petrov type.

6) Bring PSI into the canonical form for its Petrov type by calculating a

suitable dyad transformation, and placing it in DYTRSPl.

7) Recalculate PSI in the new dyad, and check that it is in canonical form.

Calculate PHI.

8) Determine the invariance group Ho of PSI by checking its canonical form

(and hence Petrov type — see §7 of chapter 3). If any invariance group remains,
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and if it is possible to restrict PHI to a canonical form within this group,

calculate the dyad transformation that will restrict PHI to its canonical form

and place it in DYTRSP2.

9) Recalculate PSI and PHI in this new dyad. PSI should not be changed from

its canonical form, since we are only allowed to perform dyad transformations

in its invariance group in transforming PHI to canonical form. Check that

PHI is in canonical form. Calculate LAMBD (note that LAMBD is used to

denote the quantity LAMBDA, because LAMBDA has a very special meaning

in all LISP systems).

10) Set q = 0.

11) Determine the number of functionally independent components nq among

the set V"i? in its canonical form for n running from 0 to q, and the dimension

of the invariance group Hq of this complete set.

12) If nq = nq_1 and dim(Hq) = dim(Hq_i) then the classification terminates.

13) Otherwise set q = q + 1.

14) Further restrict the frame if possible, by putting V'i? into canonical form,

placing the dyad transformation in DYTRSP3. Again note that that VR

must be put into canonical form using only transformations in Hq_i, so that

the set Vni? with n running from 0 to q — 1 is not changed from its canonical

form.

15) Goto (11).

Let us discuss further how one goes about finding the canonical forms and

invariance groups for the spinors. It is convenient to consider three separate

cases :

Case I : Vacuum Metric

In this case we only have the PSI at zeroth order, and, therefore, only deriva-

tives of PSI appear at higher order. Let us list the canonical forms for PSI,

which as discussed in §7 of the previous chapter, can be determined from the
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Petrov type. The canonical forms are summarised in the following table :

Table of Canonical Forms for PSI

Petrov type

I

II

III

D

N

$ 4

$ 4

$ 3

$ 2

$ 4

= $

= 1,

= 1,

7^0,

= 1,

Canonical

, ^ 0, $3 = '

VjJF -^ Q iJJF :

$4 = $2 =

$4 = $3 =

$3 = $2 =

form

]>! = 0

= $ ! = <!

$1 = $O

$1 = $0

$l = $0

?o = 0

= 0

= 0

= 0

Abbreviation

XO-OX

10X00

01000

00X00

10000

The abbreviations used for the canonical forms in the above table are a

common shorthand in which the sequence of five characters represents the

components \P4 . . . $05 with coincidences between components being reflected

in the use of the same character to represent them (the blank entry for Petrov

type I indicates that there are no conditions on $2)- By checking the canonical

form, CLASSI determines the invariance group Ho for PSI, as discussed in §7

of the previous chapter. At first order the only new quantity will be DPSI, at

second order D2PSI and so on. For Petrov types I, II and III the invariance

group Ho is zero dimensional so no new dyad transformations are allowed at

higher order and the problem of finding a canonical form for DPSI, D2PSI etc.

does not arise. The problem of finding a canonical form for DPSI, D2PSI etc.

for Petrov types D and N, where Ho is 2-dimensional, is discussed in [20] and

[21] respectively.

Case II : Conformally Flat Metric

In the case of a conformally flat metric, PSI will vanish so that it is PHI which

must be put into a canonical form. In fact, it is more convenient to use a

spinor called CHI, which is built from PHI using the equation

XABCD = \$iABElF'®CD)E>F' (4.7)

as defined in [22]. This spinor CHI is called the Plebanski-Petrov spinor and

is classified in a Plebanski-Petrov classification. The reason it is convenient to
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use this spinor is that it is totally symmetric and can, therefore, be classified

in exactly the same way as the Weyl spinor using the Petrov classification pro-

grams of CLASSI. The canonical forms for CHI are exactly the same as for PSI,

with Plebanski-Petrov type replacing Petrov type, and these canonical forms

completely determine the canonical forms for PHI. By checking the canoni-

cal form, CLASSI determines the invariance group Ho for PHI. At first order

the new quantities will be DPHI and DLAMBDA, at second order D2PHI,

D2LAMBDA and APHI and so on. At each stage of covariant differentiation

the frame must be further restricted if possible, by putting the relevant spinors

into canonical form.

This approach to the canonical form for PHI is fine as long as the spinor

CHI does not vanish, when it will be necessary to use PHI directly. CHI only

vanishes for three Segre types, but unfortunately two of these are physically

interesting. The three Segre types involved are the perfect fluid, the tachyon

fluid and the electromagnetic null fluid. The canonical forms for PHI for these

Segre types are given in the following table, where unmentioned components

of PHI are zero:

Table of Canonical

Segre Type

Perfect fluid : Al[(ll l) , l]

Tachyon fluid: Al[l(ll , l)]

E.m. null fluid : A3[(ll,2)]

Forms for PHI

Canonical

$22'

$22'

= 2 $ n , =

= - 2 $ n ,

$22' 7̂  0

(CHI

Form

= $00' 4

= $00'

= 0)

= 0

By checking the canonical form CLASSI determines the invariance group

Ho for PHI.

Case III : Non-vacuum and Non-conformally Flat Metric

For Petrov types D and N, determining a canonical form for PSI (in the same

way as above, using the Petrov type, and putting the relevant dyad transfor-

mation in DYTRSPl) will still leave a 2-dimensional invariance group, so that
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one must then investigate if the dimension of this invariance group can be

reduced by determining a canonical form for PHI. To determine the invariance

group for PHI, and in fact to get a unique answer for the Segre type, CLASSI

needs to have it in the canonical forms given previously for the conformally

flat case. However, putting PHI into these canonical forms may disrupt the

canonical form of PSI, so CLASSI provides a dyad transformation DYTRPHI

which transforms CHI and a copy of PHI called PHISTD, but which does

not affect PSI. The following diagram summarises the dyad transformations

of CLASSI and the spinors they transform.

Dyad Transformation Mechanisms of CLASSI

DYTRSP

/
PSI.PHI

UNPSI/UNPHI

DYTRPHI

\
PHISTD

CHI

UNPSI and UNPHI stand for the untransformed spinors, i.e. the spinors in

the original null tetrad.

DYTRSP = DYTRSPlxDYTRSP2xDYTRSP3

DYTRPHI = DYTRPHIlxDYTRPHI2xDYTRPHI3

Note that DYTRSP in fact acts on all the spinors in V"72, for any n.

Thus by checking the canonical forms of CHI, or in the cases where it

vanishes PHISTD, the invariance group of PHI is determined. If we denote

the invariance group of PSI by 7* and that of PHI by 7$, then the transfor-

mations 7$ — 7$ can be used to determine a canonical form for PHI without

disturbing PSI, this canonical form possibly being less restrictive than the
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conformally flat counterpart. The relevant dyad transformations are placed in

DYTRSP2. The invariance group Ho can be calculated as 7$ f) 7$. At first

order the frame is further restricted if possible by finding a canonical form

for DPSI, DPHI, DLAMBDA and XI, with the relevant dyad transformation

being put in DYTRSP3. This process is continued at each subsequent stage

of differentiation until the frame can be restricted no more. There is a pack-

age called DYTAUT which will find the dyad transformations required to put

PSI, CHI and PHISTD into canonical form automatically, although at the

time of writing it is not always effective, especially with Petrov type I, so the

transformation must in many cases be calculated by hand.

In using CLASSI to classify a solution, apart from the substitution lists

required for algebraic simplification (see [4]), the main interaction of the user is

in transforming the dyad so as to put the various spinors into canonical form.

As mentioned previously, the system possesses an automatic mechanism for

finding the correct dyad transformation, and this works well for all Petrov

types other than Petrov type I. For Petrov type I it is often no use, so the user

has to experiment himself in order to find the required transformation. The

'Applications of SHEEP' manual of Jim Skea [4] states that a transformation

of the form

.1 I
2 2

can be useful in order to transform * ! and * 3 to zero (remember that the

canonical form for Petrov type I is * 0 = * 4 ^ 0, * 2 ^ 0, *! = * 3 = 0). Let

us examine this in more detail. It is straightforward to calculate the effect of

such a dyad transformation on PSI, and the result is

*o > *o + 4*! + 6*2 + 4*3 + * 4

. + - * , - ivj/, -f- J-11 I 8 ^ 2 4 ^ 3 T 1 6 ~
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Therefore, we see that $1 and $3 will vanish if initially ty0 = ^4 and $1 = $3.

In the classification work which was carried out, the cases for which it was

most difficult to find the correct dyad transformation indeed had $0 = ^4 and

'fj = \&3, so the dyad transformation (4.8) enabled one to transform $1 and

$3 to zero. A boost transformation,

(z 0 \
(4-9)

clearly causes the spin coefficients to transform as

Therefore, in these circumstances a boost can always be used to make ^ 0 =

while keeping ^1 = $ 3 = 0. One requires

z = (*4/*0)1/8 (4.10)

In many cases the components of PSI will be complicated algebraic expressions

and, because of simplification problems, the system will often still not recognise

that SPQ = ^4 even after the correct dyad transformation has been applied. In

such a case the only solution to the problem is to substitute for all of \J>0 by L

say and all of ^ 4 by M say, and to set z = (M/L)1/8. This results in

fixing the canonical form correctly.

Let us conclude this section by listing the commands which perform the

various classifications.
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A Petrov classification is performed by the command (PETROV).

A Plebanski-Petrov classification is performed by the command (PPETROV).

A Segre classification is performed by the command (SEGRE).

The Karlhede classification is performed by the command (CLASSIFY). Here

it will be necessary that the requisite dyad transformations are included in the

metric file. The commands (CLASSIFYO), (CLASSIFYl) etc. enable the user

to step through each stage of the classification procedure, allowing the fixing

of the tetrads along the way.

A classification summary can be obtained after (CLASSIFY) has been run,

by using the command (CLASSISUM). The output of this command takes the

form

ABC DE FGHI JKLM (4.11)

A is the Segre type (e.g. e = e.m. non-null fluid, p = perfect fluid, r =

e.m. null fluid), with 0 indicating vanishing Ricci spinor. B is 0 if LAMBD is

zero and 1 if it is non-zero. C is the Petrov type. D is the dimension of the

isometry group. E is the dimension of the isotropy group. F,G,H and I are

the invariance group at each stage of differentiation, Hq (e.g. e = spin and

boosts, n = null rotations, b = boosts, s = spin transformations). J,K,L and

M are the number of functionally independent components at each stage of

differentiation, nq. A blank entry for F,G,H or I with a corresponding blank

entry for J,K,L or M indicates that neither the dimension of the invariance

group Hq nor the number nq changes.

The output of (CLASSIFY) can be sent to a file by means of the command

(OUTF 'file name' (CLASSIFY)) and similarly for the output of CLASSISUM.

§2. Stationary Axisymmetric Spacetimes

In 1980 a book entitled 'Exact solutions of Einstein's field equations' [l]

was published, this book representing the result of many years work to compile

a complete list of all exact solutions then known. A major effort is underway
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to use CLASSI to compile a computer database of all the exact solutions. The

idea is that every exact solution will appear on the database together with

a Karlhede classification of that solution. In §4 of this chapter we present

the classification of the cylindrically symmetric metrics explicitly given in this

book as well as a number of stationary axisymmetric vacuum solutions.

First let us consider stationary axisymmetric solutions. Such a solution

possesses a Killing vector (" whose orbits are timelike curves and a Killing

vector ip" whose orbits are closed spacelike curves. In addition we require that

these two Killing vectors commute, i.e.

[C, r] = 0 (4.12)

These spacetimes are of great interest in general relativity since they describe

equilibrium configurations of axisymmetric rotating bodies. It has been shown

[23] that for the cases of greatest physical importance, asymptotically flat sta-

tionary axisymmetric spacetimes, (4.12) is automatically satisfied.

The commutativity of (" and i\)a means that we can choose coordinates

{x° = t, x1 = <f>, x2, x3} so that both (a = (^) a and ipa = ( ^ ) a are coordinate

vector fields. In such a coordinate system the metric components will be

independent of t and <j>, so the metric will take the form

ds2 = g^{x\ x*)dx»dxv (4.13)

Thus we must solve for 10 unknown functions, g^, of two variables. We shall

now show that by a further careful choice of coordinate system, a weak further

assumption and some use of Einstein's equations, we can reduce the metric to

one containing only four unknown functions for the non-vacuum case and one

containing only three unknown functions for the vacuum case. In addition, the

vacuum Einstein equations reduce to two equations for two of the unknown

functions together with a quadrature for the third.
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The first important simplification arises if the 2-dimensional subspaces of

the tangent space at each point spanned by the vectors orthogonal to (a and

if)a are integrable, i.e. are tangent to 2-dimensional surfaces. This is the case

if the conditions specified in the following theorem are satisfied, which is the

case for all explicitly known stationary axisymmetric solutions.

Theorem 4.1

Let (" and ip" be two commuting Killing fields such that (i) ([aipb^c(d\

and ([aipb^c^d] each vanishes at at least one point of the spacetime and (ii)

C,aR}hC,ctp^ = ij)aR}bC,cip^ = 0. Then the 2-planes orthogonal to £a and xj}a are

integrable

The conditions of this theorem will be satisfied by a wide range of sta-

tionary, axisymmetric spacetimes of physical interest. Condition (i) will be

satisfied for asymptotically flat spacetimes, since there must be a 'rotation

axis' on which i/>" vanishes. A wide variety of energy-momentum tensors will

satisfy condition (ii) including vacuum, a perfect fluid with the 4-velocity in the

plane spanned by (a and xj)a (i.e. circular flow) and a stationary axisymmetric

electromagnetic field [24].

If the conditions of this theorem are satisfied, then we may introduce coor-

dinates x2, x3 in one of the orthogonal 2-surfaces and 'carry' these coordinates

to the rest of the spacetime along the integral curves of (a and ip". Then in

the coordinate system {t, </>, x2,x3} the metric has the form

/-e2U WO 0 \

W X 0 0

0 0 g22 #23

\ 0 0 #23 533 J

The block of zero expresses the orthogonality of -—-^ and j ^ with — and jr.

Thus theorem 4.1 allows us to reduce the number of unknown metric functions

to 6. Without theorem 4.1 only two metric components in the 2 x 2 block
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could be set to zero by use of the coordinate freedom available in the choice

of a coordinate system adapted to (a and i/>°.

We still have not specified how the coordinates x2 and x3 are to be chosen

and we shall see that a clever choice of these coordinates leads to a further

simplification of the metric. We define the scalar function p by

p2 = e2UX + W2 (4.15)

i.e. p2 is equal to the negative of the determinant of the t — (f> part of the

metric. Assuming that Vap ^ 0, we choose p as one of the coordinates, a:2, of

the

2-surface. We choose the other coordinate, z = a;3, so that Vaz is orthogonal

to Va/9. In the coordinates {£, <j>, p, z} the metric now takes the form

-e2U e2Uw 0 0 \

e2Uw (p2e-4U - w2)e2U 0 0

0 0 e27

0 0 0

0

\

(4.16)

where w = We~2U, or

= -e2U(dt - wdcf>)2 + e-2Up2d<j> A2dz2) (4.17)

Thus we have reduced the number of unknown metric functions to 4 — U,

w, 7 and A. Equation (4.17) is the general form of a stationary axisymmetric

spacetime satisfying the conditions in theorem (4.1).

The form of the metric can be simplified further for the vacuum case,

Rai = 0. The Einstein equation

R\ = o

gives

DaDap = 0
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where Da is the covariant derivative in the 2-dimensional surface spanned by p

and z with the induced metric ds2 = e2l(dp2 + A2dz2). Equation (4.19) leads to

two important deductions : (a) If p ̂  constant, it can be shown that Vap can

vanish only at isolated points. Since our coordinates p, z will be well behaved

except where Vap = 0, this shows that our coordinate system can break down

only at isolated points. In fact, in many situations it is possible to show that

Vap ^ 0 everywhere, so the coordinates p and z are globally well behaved [25].

(b) Evaluating (4.19) directly leads to the result that A is a function of z only.

Thus if we transform z by the transformation z —>• f Adz, we set A = 1. Thus

we have reduced the number of unknown metric functions to 3, and the metric

now takes the remarkably simple form

ds
2 = -e

2U(dt - wd(f>f + e-2U[p2d4>2 + e2k{dp2 + dz2)) (4.20)

where e2k = e2le2U.

The remaining vacuum Einstein equations, other than (4.19), can now be

computed and the result is that we obtain four independent equations for the

three unknown metric functions. The first two equations involve only U and w

and can be formulated most succinctly by defining a 3-dimensional Euclidean

space

ds2 = p2d(j>2 + dp2 + dz2 (4.21)

and expressing the equations in terms of the flat covariant derivative operator,

Da, associated with this metric. In this way the first two equations may be

viewed as equations for axisymmetric scalar fields U and w in 3-dimensional

Euclidean space. The four equations are

0 = Da(e~2UDae
2U + p-2e4UwDaw) (4.22)

0 = Da{p-2eAUDaw) (4.23)

Si - ±oe-W\tde™_\2 _ <S£1
dp ~ 4 ^ C IV dp > V dz

dk _ 1 -4Ude2Ude2u 1 -1 4(7 dw_ dw_
dz - iPe dp dz ~ 2P e dp dz
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The integrability condition for the last two equations, j ^ - = j - ^ is satisfied

by virtue of equations (4.22) and (4.23). Therefore, given a solution of (4.22)

and (4.23), a solution of (4.24) and (4.25) always exists and is unique up to

the addition of a constant. Thus, apart from the computation required to find

k explicitly, the problem of solving for all stationary axisymmetric vacuum so-

lutions has been reduced to solving (4.22) and (4.23) for the two axisymmetric

functions U and w in 3-dimensional Euclidean space. This is a great simplifi-

cation of the original problem which was to solve the full Einstein equations

for the 10 unknown functions g^. However, the equations are still sufficiently

difficult to solve that, with the exception of the static solutions discussed

below, almost no solutions have been obtained by direct attack on equations

(4.22) and (4.23) (in cases where solutions have been found it has often proved

useful to work with coordinates other than p and z [26]).The equations can

be reformulated by the introduction of potentials, as was first done by Ernst

[27], and a few solutions of interest, the Tomimatsu-Sato solutions [28], have

been found by direct study of these modified equations. Recent progress in

methods for generating solutions [29] has produced algorithms for obtaining

all asymptotically flat stationary axisymmetric vacuum solutions, but because

the algebraic computations required in this procedure are so formidable, very

few explicit solutions have so far been obtained.

For static axisymmetric vacuum solutions direct attack on equations (4.22)

and (4.23) is completely successful in that all the static axisymmetric vacuum

spacetimes are obtained by this approach. For the static case, assuming that

the Killing vector ip" lies in the hypersurface orthogonal to £a, we have w = 0,

so (4.23) is trivially satisfied, and if we let \ = ln(e2U), equation (4.22) reduces

to simply

V2x = 0 (4.26)

that is x is a n axisymmetric solution of the ordinary Laplace equation in 3-

dimensional Euclidean space. Since all such solutions are explicitly known, all
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static, axisymmetric vacuum solutions of Einstein's equations can be explicitly

obtained. This analysis of static, axisymmetric vacuum spacetimes was first

carried out by Weyl [30], and the solutions are often referred to as the Weyl

solutions. It should be noted that the properties of the solution of (4.26)

do not translate in a simple way to the properties of the spacetime metric it

generates. Specifically, the monopole solution of Laplace's equation does not

generate a spherically symmetric spacetime, the Schwarzschild solution.

§3. Cylindrically Symmetric Spacetimes

A cylindrically symmetric solution possesses a Killing vector (a whose

orbits are spacelike curves and a Killing vector ?/>a whose orbits are closed

spacelike curves. Again we require that the two Killing vectors commute.

Therefore, the analysis of the metric form proceeds in the same way as the

stationary axisymmetric case, except that we now call the coordinate adapted

to the (a Killing vector z. Thus the general cylindrically symmetric metric

can be written as

ds2 = e2U(dz - wd<j)f + e~2Up2dcj)
2 + e2\dp2 - A2dt2) (4.27)

which can be obtained from (4.17) by the substitutions

t -+ z, z ->t (4.28a)

and the substitutions

p -* ip, e2U - » -e2U, e2^ - > - e 2 ^ (4.286)

which are required to obtain the correct signature for the metric. Therefore,

locally at least, the solution of Einstein's field equations is formally the same

problem for the cylindrically symmetric case as for the stationary axisym-

metric case, although it should be noted that the substitutions (4.28) will in

general take real stationary axisymmetric solutions into complex cylindrically

symmetric solutions.
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§4. Results

The following table summarises the results of the Karlhede classification

which has been performed on the cylindrically symmetric and stationary ax-

isymmetric vacuum solutions of the exact solutions book [1]. The metric files

for these solutions are given at the end of the thesis, in appendix C. The left

hand column of the table identifies the solution by its equation number in the

exact solutions book, with a prefix c— representing a cylindrically symmetric

solution and a prefix 5a— representing a stationary axisymmetric vacuum so-

lution. The right hand column is the output from (CLASSISUM), which has

been described earlier in this chapter.
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Table of Karlhede Classification of

Cylindrically Symmetric and Stationary Axisymmetric Solutions

Solution

c-20.7

c-20.8

c-20.9a

c-20.9b

c-20.9c

c-20.10

c-20.11

c-20.12

c-20.13

c-20.14

c-20.14(sp)

c-20.18

c-20.25

c-20.39

c-20.41

GH2

sa-18.2

sa-18.4

sa-18.8

sa-18.9

sa-18.23

Classification Summary

001 30 00 11

001 30 00 11

eOl 30 00 11

eOl 30 00 11

eOl 30 00 11

eOD 41 ebb - 111 —

eOl 30 00 11

eOl 30 00 11

p l l 30 00 11

pl l 30 00 11

pl l 30 00 11

pl l 30 00 11

001 20 00 22

rOl 20 00 22

rON 20 nOO- 022-

001 20 00 22

001 20 00 22

001 20 00 22

00D 41 ess- 111 —

001 20 00 22

002 20 000- 122-

Since the publication of the exact solutions book it has been discovered

that c-20.12 is, in fact, not a solution of Einstein's equations. In addition,

solutions c-20.9 require constraints on the values of the constants appearing

in the solution in order to satisfy Einstein's equations.
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Solution c-20.14(sp) is a specialisation of solution c-20.14 with C, = p (see

[1]). Solution GH2 is the general metric for a Lewis-type class of solutions

discussed in G.Holmes's Ph.D thesis (1986), p.79, case (ii). Solutions c-20.9a

and c-20.9b are, in fact, locally equivalent under the coordinate transformation

z.

Solutions c-20.9a and c-20.9c were investigated to discover which special-

isations would give a more algebraically special Petrov type. In order for the

Petrov type to be I, three of CLASSI's discriminants must be non-zero - they

are called PSI4 (which is just $4), U10CRIT and UllCRIT. All possible spe-

cialisations of the three parameters c, d and m of the solutions which broke

one or more of these conditions were found , and for both solutions c-20.9a and

c-20.9c this resulted in four distinct solutions of a more algebraically special

Petrov type - flat space, two of vacuum type D and one of non-vacuum type

D. The results are summarised in the following tables.

i) Solution c-20.9a :

where

ds2 = p2m2G2(dp2 - dt2) + P
2G2d<f>2 + G'2dz2

dp

Table of Specialisations of c-20.
Specialisation

d-.

d

m = 0 or

m = 1

= 0, m =

= 0 , 772 =

2

- 2

c = 0, m = 1

9a

Classification Summary

eOD 41 e b b -

00D 41 e s s -

00D 41 e b b -

Flat space

111 —

111 —

1 1 1 -

ii) Solution c-20.9c :

ds2 = p2m2G2{dP
2 + dz2) + P

2G2
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where again

G = cpm + dp-

Table of
Specialisation

m = 1

c = 0, m = |

c = 0, m = 2

m = 0 or c = 0, m

Specialisations of c-20.

= 1

9c

Classification Summary

eOD 41 ess—

00D 41 ebb -

00D 41 ebb -

Flat space

111 —

111 —

111-

The solution c-20.9a with the specialisation d = 0, m = —2 is equivalent

to the solution c-20.9c with the specialisation c = 0, m = 2 i f c = ±1 and

d = ±1 for the respective solutions.

The special case of the Weyl solutions with e2U = (frj){, where x is

a prolate spheroidal coordinate, has been investigated by Voorhees [31] and

Zipoy [26]. For 8 = 1 we have the Schwarzschild solution, sa-18.8, and for

8 = 2 we have the Darmois solution [32], sa-18.9. The Schwarzschild solution

is Petrov type D and the Darmois solution Petrov type I. An investigation was

made into which values of 8 give Petrov type D in general. This time, in order

for the Petrov type to be I, CLASSI'S discriminants called B4CRIT, U8CRIT

and U9CRIT must all be non-zero. It is found that the only values of 8 which

make the discriminants zero are 8 = 0, 8 = 1 and 8 = — 1. The solution

with 8 = — 1 is equivalent to the Schwarzschild solution under the coordinate

transformation x —> —x, the solution with 8 = 0 is flat space. Thus, one

may conclude that the only solution in this class with Petrov type D is the

Schwarzschild solution. Otherwise the Petrov type is always I, except when

8 = 0 in which case we have flat space.



The Karlhede Classification
of Type D Vacuum Spacetimes

§1. Introduction

Following some work by Kinnersley [10], all type D vacuum spacetimes are

split into 3 invariant classes. A canonical form is derived for each class in turn,

these canonical forms forming an essential part of the Karlhede classification.

In addition, the frame transformations required to obtain the canonical forms

are calculated.

At the end of §7 of chapter 3 consideration is made of the upper bound

on the order of covariant differentiation of the Riemann tensor required to

perform a Karlhede classification of a spacetime metric, and hence tackle the

equivalence problem. Equations (3.103), (3.104) and (3.105) tell us that, in

the absence of isometries, it might be necessary to go as high as the 5th deriva-

tive for Petrov types I, II and III, and as high as the 7th derivative for Petrov

types D, N and 0. Because all type D vacuum spacetimes admit at least a

2-dimensional isometry group, equation (3.104) tells us that the upper bound

for these spacetimes is reduced to 5. The Karlhede classification is a purely

geometrical classification in the sense that it works for any Riemannian man-

ifold, regardless of whether the metric obeys any field equations, and these

upper bounds are calculated without using the information contained in Ein-

stein's field equations. In this chapter we use the information contained in the

field equations and Bianchi identities, together with symmetry considerations,

to reduce the upper bound for the vacuum type D case to 2 for two of our

invariant classes, and to 3 for the third. In fact, Kinnersley [10] derived all

type D vacuum solutions explicitly, so one can use CLASSI on these solutions

directly. This has been done by Aman and Karlhede [11], and the result is

that it is only necessary to go up to the second covariant derivative. However,
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the advantage of the approach in this chapter is that it does not require a

complete set of solutions, and can, therefore, be extended to other cases where

a complete set of solutions is not known. In the next chapter vacuum type N

solutions are considered and in the final chapter non-vacuum type D solutions.

In none of these cases is a complete set of solutions known.

In this chapter we work in the extended NP formalism (Newman-Penrose

formalism [13]) called GHP formalism (Geroch-Held-Penrose formalism [12]).

The advantage of using this formalism results from the fact that type D space-

times have a Weyl tensor which admits spin and boost transformations as its

invariance group (see [9]), and it is precisely these transformations that the

GHP formalism respects. In this thesis we do not give an account of GHP

formalism, so the reader unfamiliar with it will need to consult [12].

In §2 a canonical form for the Weyl spinor of a type D spacetime and the

GHP equations for the vacuum case are given. In the following section the

totally symmetrised spinor covariant derivative of the Weyl spinor, DPSI, is

calculated, and by reference to the work by Kinnersley [10], the spacetimes

are split into three different classes and a canonical form derived for each

class in turn. In §4 D2PSI is calculated and the field equations, together with

the result that all type D vacuum spacetimes admit at least a 2-dimensional

isometry group, are used to show that the upper bound can in the worst case

be reduced to three. In the following section, by considering the third covariant

derivative, it is proved that the upper bound is three without having to use

Kinnersley's result or the isometry group result. The final section summarises

the main results of the chapter.

§2. Type D Vacuum Spacetimes

In a vacuum spacetime the Riemann tensor reduces to the Weyl tensor.

We introduce a spin frame {oA, cA] which satisfies

oAtA = 1
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From now on we shall use dyad components of the Weyl spinor and its covariant

derivatives, which is equivalent to using a Newman-Penrose null tetrad [9].

Because it is totally symmetric, the Weyl spinor has only five independent

dyad components which, in standard notation, are labelled

Then the Weyl spinor of a type D spacetime has the canonical form

\£0 = tf! = * 3 = tf4 = 0 ; # 2 ^ 0 (5.1)

The proper Lorentz transformations form a six parameter invariance group on

the spin frame at each point. The condition (5.1) is only preserved under the

two parameter invariance subgroup Ho defined by

f\ 0 \
Ho=[Q A_J ; A = re"€C (5.2)

under which

oA —> XoA

iA —-> A " 1 ^

i.e. Ho is the subgroup of spin and boost transformations.

In GHP notation, the Bianchi identities in vacuum under assumption (5.1)

become

= 0 (5.3a)

= 3/9*2 (5.36)

= 3r '^2 (5.3c)

= 0 (5.3d)
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= 0 (5.3e)

= 2p'^2 (5.3/)

= 3 T * 2 (5.3flf)

= 0

These equations require

a = a' = K = K,' = 0 (5.4)

which also follows directly from the Goldberg-Sachs theorem [33]. The Bianchi

identities, therefore, reduce to

(5.5a)

3'*2 = 3 T ' * 2 (5.56)

together with their primed versions (recall *'2 = * 2 ) .

Under assumptions (5.1) and (5.4) the GHP vacuum field equations be-

come

»/» = (/> - P)T ( 5 - 6 a )

Vp = p2 (5.66)

pT = p(r - f ' ) (5.6c)

3r = r2 (5.6d)

p'p = pp' - Tf - * 2 + 3'r (5.6e)

together with their primed versions, and the commutators acting on a spin

and boost weighted scalar of type {p, q}

= [(f _ T')8 + (T _ fy
- p(*2 - TT1) - g(*2 - rf')]7/p, (5.7a)

(P3 - 3P)T7P, = (ps - f'P + qpf')r,pq (5.76)

= \{p' - p')P + (p- p)P

+ p{pp' + * 2 ) - q{pp' + m2)]rjpg (5.7c)
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together with the equations obtained by applying prime, complex conjuga-

tion and both to (5.7b). We call equations (5.6) and (5.7) the GHP vacuum

field equations because both sets together contain the same information as

Einstein's vacuum field equations.

§3. First Covariant Derivative

The Bianchi identities in spinor form are

eAEVABCD,EF> = 0 (5.8)

from which it follows that the first covariant derivative of the Weyl spinor is

symmetric on all the unprimed indices, so that we do not need to symmetrise

in order to obtain DPSI. Then, using a similar notation to that used for dyad

components of the Weyl spinor, DPSI has 12 independent components labelled

0, = #0000;00< = ^ABCD,EF'OAOBOCODOEOF' (5.9a)

Oi = *0000;10' = ^ABCD,EF'OAOBOCODiEOF' (5.96)

lilO- = qABCD;EFiOAOBOCLDLBdF' (5.9c)

F'OAOBLClDlEdF' (5.9d)

F'OAlBlClDlEOF' (5.9c)

F.LAiBiCLDiEdF' (5.9/)

(£>*)„ , = ^0000:11' = ^ABCD,EF'OAOBOCODtElF' (5.9h)

1, = *0001;ll' = ^ABCD,EF'OAOBOCtDtElF' (5.9i)

= * 1 , = ^ABCD,EF,oAoBLCiDiEIF' (5.9j)

F.OAiBLCLDtElF' (5.9k)

F-tALBLClDlEIF' (5.9/)

Let us consider in detail the calculation of these components. We define a

generic symbol (A for the dyad {oA, tA} by

C = oA (5.10a)
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(A = tA (5.106)

together with

' = oA> (5.10c)

?; = TA>

The first covariant derivative is then defined by

where /i of the unprimed dyad vectors are (A 's. We use the Leibnitz property

of covariant derivatives to write this as

and consider the three possible cases : ^ = 5, // = 4 and fi < 4.

For the case // = 5 we can arrange that all 4 of the dyad vectors taken into

the covariant derivative are £A 's, so we have

(D*),,, = (*4):1/, - *C£lfX?C?(?*ABCD (5-12)

where we have contracted the spinor covariant derivative indices and used

the symmetry of the Weyl spinor. This contains a term (A
lf, which can be

expressed in terms of the spin coefficients Yahcd, as follows :

= Tmf.e
klCC (5-13)

Using this result in (5.12) gives

4 (5.14)
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For the case n = 4 we can again arrange that all 4 of the dyad vectors

taken into the covariant derivative are (f 's, the only difference with the first

case being that the remaining unprimed dyad vector is now a £^ instead of a

Cj*. In this case (5.12) will become

(£*)„,, = (*4);0/, - 4tfflflC?(?(?*ABCD (5-15)

The steps now proceed in an exactly analogous way to the previous case, again

expressing covariant derivatives of the dyad vectors in terms of spin coefficients

using a calculation of the type (5.13). The final result is

4 (5.16)

For the final case // < 4 we can arrange that all /J, of the Cj4 's a r e taken

into the covariant derivative so that the remaining dyad vectors are all (£ 's.

Therefore, equation (5.12) now becomes

, = (*„),„,, - Ki|o/.[Cf <?<?]*ABCD - (4 - Ai)CoVICf £<f]*ABCD

(5.17)

where a little counting will show that the first set of square parentheses con-

tains (/i — 1) (f 's and the second set contains \i (f 's (in obtaining (5.17)

the symmetry of the Weyl spinor has again been used). The calculation now

proceeds as in the previous cases, again expressing covariant derivatives of the

dyad vectors in terms of spin coefficients using a calculation of the type (5.13).

The final result is

- (4 - //)rolo/^M + (4 -

(2/x - 4 ) r i 0 0 / ^ + (4 - /i)rOOo/'^^+i (5.18)

where, in obtaining the final equality in (5.18), we have used the symmetry of

Tabcd, on the first two indices.
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For a type D vacuum spacetime (5.1) immediately tell us, referring to

(5.14), (5.16) and (5.18), that (!>*)„/» vanishes for p = 5, p = 4 and p = 0.

Using in addition (5.4), we see from (5.18) that (D^)^, also vanishes for p — 1.

Therefore, from (5.18), using (5.1) and (5.4), the non-vanishing components

for a type D vacuum solution in canonical form (5.1) are

= 3/9*2 (5.19a)

= 3r'*2 (5.196)

(5.19C)

2 (5.19d)

where the second equality in each case follows from the Bianchi identities

(5.5). The succinct nature of these equations illustrates how natural the GHP

formalism is for this problem.

To summarise, the zeroth order covariant derivative of the Weyl tensor

depends only on * 2 , i-e.

(5.20)

and the first covariant derivative depends additionally on p, p', r and r', i.e.

DV = DV(V2,P,P',T,T') (5.21)

Under Ho, these spin coefficients transform as follows :

p —> r2p (5.22a)

p' —> r~2p' (5.226)

r —-+ e2ier (5.22c)

T> -^ e-™T> (5.22a1)

Following the work by Kinnersley [10], all type D vacuum spacetimes can

be split into 3 invariant classes, depending on the zero/non-zero nature of
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the spin coefficients. Let us use equations (5.22) to determine the 1st order

canonical forms and invariance groups for each of these classes.

Class I : p ± 0, p' ^ 0, r = 0, r ' = 0

From (5.22) it is seen that we can fix

\p\ = \p'\ (5.23)

by setting

However, since r and r' are zero, 0 remains arbitrary. In this case, therefore,

the dimension of Hi is 1. Thus there still remains a 1-dimensional invariance

subgroup generated by rotations.

Class II : p = 0, p' = 0, r ^ 0, r' ^ 0

From (5.22) it is seen that we can fix

Im(T) = 0 (5.25)

by setting

0 = -{Arg{r))l2 (5.26)

(up to a multiple of TT/2). However, since p and p' are zero, r remains arbitrary.

In this case, therefore, the dimension of Hi is again 1. Thus there still remains

a 1-dimensional invariance subgroup generated by boosts.

Class III : p ^ 0, p' ^ 0, r ^ 0, r' ^ 0

In this case we can demand both conditions (5.23) and (5.25), which fixes the

frame completely. In this case, therefore, the dimension of Hi is zero, so that

no frame transformations are permitted and (5.1), together with (5.23) and

(5.25), completely specify the canonical form.
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Since in each case the dimension of the invariance group has changed, we

must continue to the next order of differentiation to continue the Karlhede

classification.

§4. Second Covariant Derivative

We proceed as we did in §3 and compute the dyad components of the sec-

ond covariant derivative of the Weyl spinor. In fact, it can be proved using

the Bianchi and Ricci identities that, for the vacuum case, at all orders of

covariant differentiation of the Weyl spinor only the symmetrised parts are

algebraically independent [6]. Therefore, we shall first calculate the second

covariant derivative and then symmetrise over its indices to obtain its sym-

metrised part, D2PSI.

The calculation of the second covariant derivative follows much the same

pattern as that of the first covariant derivative. The second covariant deriva-

tive is defined by

/^)2Vr^^ iTV \i~AtB t c tD tE}?F'tG7H' (<^07\
[V Vjuf.gh' = VABCD,EF',GH<[C,a Qb Cc Cd Ce JC/< Qg Qh' [b.ll)

where // of the unprimed dyad vectors in the square parentheses are (A 's. The

Leibnitz property then gives

(r>2\Tr\ — (\ii rArB tc rD rErF'\ tG7H'
[V V)nf';gh' - {^ABCD,EF'(,a 4j ( c Cd Ce C/< I.GH'Qg W

~ \S>a ^h Sc Sd St Sj> )\GH'^g U ' ^ABCD-EF'

The right hand side of this equation has /J (^ 's inside both sets of parentheses

and, therefore, (5 — //) (A 's. Hence, contracting the spinor covariant derivative

indices and using the symmetry of the Weyl spinor gives

~ f1Cl;gh'[Cb (c Cd Ce C/' }^ABCD;EF'

~ &gA(»(i
B(?C(?}*ABCD;EF. (5-28)
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A little counting shows that the second set of square parentheses contains

(n — 1) (f 's and the third set fi (f 's, as do the final set. All the types of

term in (5.28) have occurred previously except the term Cf'gh'- This term can

be expressed in terms of spin coefficients as follows :

— {(f;g'h)

(?)

= Tf,Vh.ae
k'''C[: (5.29)

If we now substitute in (5.28) using results (5.13) and (5.29) then we obtain

- (5 - / i j l mgh,e Qk [(6 (,c Qd C

— I / ' / 'h '^e <,*' LSa S.6 4c Sd 4e J

(5 -

' (5-30)

For a type D vacuum spacetime (5.19) immediately tell us, referring to

(5.30), that (Dty)pf, vanishes for /z = 5, /z = 4 and /J, = 0. Therefore, from

(5.30), using (5.4) and (5.19), the non-vanishing components for a type D
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vacuum solution in canonical form (5.1) are

(5.31a)

(5.316)

(5.31c)

(5.31a7)

(5.31e)

(5.31/)

(5.31flr)

9 T T ' * 2 + 3rf * 2 (

(5.31J)

(5.31/)

= 3(Pr')vEr2 + 18/5r'*2 (5.31m)

(5.31n)

3/»'^2 (5.31o)

(5.31p)

(5.31r)

(5.316)

(5.3K)

(5.31u)

(5.31u)

(5.31x)
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We now have to consider the problem of symmetrising the second covariant

derivative of the Weyl tensor to obtain its symmetrised part, D2PSI. Using a

similar notation to that used before the components of D2PSI are labelled

p 2 * ) ^ ; ,, = 0,1,2,3,4,5,6, */ = 0,1,2) (5.32)

this representing the symmetrisation of the component with [i of the unprimed

and v of primed indices equal to 1. Thus, for example

(D2y)3V = tf(0001;10';ll') (5.33)

where the unprimed and primed indices are symmetrised independently. It is

readily confirmed that there are 7 x 3 = 21 independent components. The

formula for calculating (D2^)^, from the (D2^)lif,.gh, is

(6

(6 - fi)(D2^),h>]0fl] (5.34)

where /i of the unprimed and v of the primed indices are 1. The reason this

formula is correct is that the process of symmetrising over the unprimed indices

can be broken down into (i) placing each of the 6 unprimed indices in turn

into the g slot and (ii) each time symmetrising over all the other unprimed

indices. There will be \i different Is that can be inserted in the g slot but

only 6 — n different 0s that can be inserted there, thus giving the weightings

in (5.34). The symmetrising over the 2 primed indices is trivial. From (5.34),

using equations (5.31), the non-vanishing components of D2PSI for a type D

vacuum solution in canonical form (5.1) are

2 (5.35a)

(5.356)

2 (5 .35C)
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(5.35<f)

3

+ (3T)$2

3 3 3 3
$ + -T'f'^2 + -/>/>'*2 + T/o/5'tf 2 (5.35e)

4 4 4
^ 2 (5.35/)

(5.35^)

(5.35/i)

(5.35i)

In summary

2, p, T, , P/9, V'p, 3/9,3>, Pr, P'r, 3r, 3'r, + primes) (5.36)

that is the second covariant derivative is a functional of the zeroth order quan-

tity \&2, the first order quantities p, p', T and T', together with the derivatives

with respect to P, P', 3 and 3' of all first order quantities. Thus the only pos-

sibly new information arises from the GHP operators acting on the first order

quantities. To investigate these terms we use the vacuum field equations (5.6)

and (5.7). Using equations (5.6) to substitute into equations (5.35) we obtain

(5.35a bis)

(5.356 bis)

= 12r2*2 (5.35C MS)

^ | 2 (5.35d bis)

+ -
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3 3 3 3
-Tf$2 + -pp'^2 + -pp'^i + -r 'f '*2 (5.35e bis)
4 4 4 4

| 2 (5.35/ bis)

# 2 (5.35z 6i

where all GHP operator terms other than

8>, Pr', P>, 3'r

and their primes have been expressed in terms of first order spin coefficients. In

addition, equation (5.6e) enables us to relate Vp to 8'r and its prime relates Pp'

to 8r'. However, equations (5.6) provide no information about 3'/9 and Pr' and

their primes — for these it is necessary to use the commutators (5.7). Taking

the complex conjugate of (5.7b) and acting with it on the {0,0} weighted

quantity \I>2 we obtain

Using the Bianchi identities (5.5) this gives

3P(r'*2) - 33 ' (^ 2 ) = 0

which, on using (5.5) again, leads to

3*2(Pr' - 3 » = 0 (5.37)

The vanishing of the quantity in parentheses, together with its prime, provides

us with relations between the required quantities.

In summary

2, p, //, r, r', Vp, Pp\ 5>, Up') (5.38a)
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where, from (5.6e) and (5.37), we have the relationships

pp = pp - Tf - * 2 + S'T (5.386)

S'/> = Pr' (5.38c)

and their primes. We return to the three classes of §3.

Class I : p ^ 0, p' ^ 0, r = 0, r ' = 0

From (5.38), all components of D2ty can be expressed algebraically in terms

of first order quantities. Therefore, we always retain a 1-dimensional invari-

ance group and (5.1), together with (5.23), completely specify the canonical

form. As no new quantities are introduced at this order, Karlhede's procedure

terminates at 2nd order.

Class II : p = 0, p' = 0, r ^ 0, r ' ^ 0

Again, from (5.38), all components of D2ty can be expressed algebraically in

terms of first order quantities. Therefore, we always retain a 1-dimensional in-

variance group and (5.1), together with (5.25), completely specify the canonical

form. As no new quantities are introduced at this order, Karlhede's procedure

again terminates at 2nd order.

Class III : p ± 0, p' ± 0, r ^ 0, r' ± 0

We use the result that all type D vacuum spacetimes admit at least a two

dimensional isometry group / [10]. Combining this with the result (3.50) of

chapter 3, we see that, since the dimension of Hx is zero, we have nq < 2, i.e.

there are at most two functionally independent components in total. One of

these is provided by ^2 , since it cannot be constant (as the Bianchi identities

(5.5) would then imply that p = p' = T = r' = 0, which contradicts our

assumptions). In the worst case no new functionally independent components

will be produced at first order, as the reduction of the dimension of the in-

variance group in going from q = 0 to q = 1 would still allow the Karlhede
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procedure to continue. However, in going from q = 1 to q = 2 the dimension

of the invariance group remains unchanged (namely zero) and, therefore, if

the procedure is to continue a new functionally independent component must

be produced at this stage, so that we now have them both. Therefore, the

Karlhede procedure terminates at q — 3.

§5. Third Covariant Derivative

In the previous section we used the result that all type D vacuum space-

times admit at least a 2-dimensional isometry group to arrive at our conclusion

that the Karlhede algorithm terminates at at most the third covariant deriva-

tive. In this section we consider the third covariant derivative explicitly to

obtain this result without having to use the isometry group result. We shall

not actually calculate the third covariant but deduce its form by some simple

arguments.

The third covariant derivative of the Weyl spinor is denned by the equation

( D3\Xf\ — VT) \tArB fc fD /'B]7F' tG7H' fL?M' (
V^ ^)n}';gh';lm' — * ABCD;EF';GH>;LM>[(,a <,b Cc Sd (.6 K/< S,fl W S.1 W [

where // of the dyad vectors in square parentheses are (A:s. All the dyad

vectors other than (f and (%' can now be taken into the covariant derivative

to obtain

\ U V)pf;gh>;lmi - [{U V)»J';gh\;lm' ~ ^Sl;/m 'Ci Cc Sd Ce C/' Qg Qh- ^ABCD;EF-;GH>

7C 7D7B7F'7G7H'\Ji
C,c (,d C,e (,f, L,g L,h, *ABCD;EF';GH'

A

/AfB/C/DfE/G?Hi\,
Sa Sb Sc Sd Se Sg Sh> *ABCD,EF',GH'

/-AfBfC fD[E?F'7H'-x,
So Sb Sc Sd St Sji Sh' *ABCD;EF>;GH>

^a S6 Sc ^d ̂ e S/' Sj * ABCD;EF> ;GH'

The vital part of the argument now comes from inspecting equations (5.13)

and (5.29). These equations show that in order for a term of (5.40) to contain

a {D2^)^p.tgh, then it must contain a ra6cd, of the form F01 or F10 , or a
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Fa'b'c'd of the form F0'i< or TV0' (this is because such Fs replace the dyad

vector which is being 'used up' in the covariant derivative). If we now apply

this argument to (5.40), using (5.13) and (5.29), and assuming that x of ^

are <^s and that y of ££' and C,^,' are (fi's, then it will take the form

- (5 -

- (2 - y)T0,Vmll(D
2y),f,tgh, + ... (5.41)

where the remaining terms do not contain (D2^)^,^. (D2$)M//;9A- is a spin

and boost weighted scalar of type {p, q} where p = (5 — p) + (1 — re) — p, — x =

6 — 2fj, — 2a; and q = (2 — y) — y = 2 — 2y. So (5.41) can be written

- pT10hn.{D2V)?,,,„ - qTv0lmn(D
2^),fl,gh, + . . .(5.42)

where we have used the symmetry FiO;m< = FOi;m< and Tvo,m,i = T0'ym'i- Equa-

tion (5.42) now becomes

&),./<;,*' + • • • ; Irri = 00' (5.43a)

>)/./<:,*' + • . . ; lm' = 01' (5.436)

(D3$>) t,. h,.lmi = 3'(D2\I>) f,. h, + ... ; lm' = 10' (5.43c)

(n3vE0 ,, , , , , — PYD2vEO „ ,, 4- • lm' — 11' (5 43<f)

Thus, we see that the spin coefficients /?, /?', e and e', occur in exactly the

right combinations and proportions for them to be included in either a P, 3,

3' or P' GHP derivative operator. It is clear that this result can, in fact, be

generalised to the dyad components of the covariant derivative of any spinor.

Now, using (5.38a), we see that this means that the only new terms which

will occur at third order are P, 3, P' and 3' acting on Pp', V'p, 3// and 3'p. Of

these 16 new terms the 8 8'P//, P'P//, PP>, 3P'/9, 3'8/J', P'3//, P3> and 5&p can
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be expressed in terms of lower order quantities by first using the commutators

(5.7) and then the field equations (5.6). For example,

PP> = PVp + (f - T')BP + (r - f ')3> - (*2 - TT')P - (*2 - ff')p

= 2pV'p + (f - T')5P + (T - f')5'p - (tf2 - r r > - ( f 2 - ff')p

The remaining 8 terms VVp1, 3P/)', 3'P>, P'P>, P3//, 33/)', 3'5'/9 and P'3'/9 can

be expressed in terms of lower order quantities by alternately using the com-

mutators (5.7) and equation (5.38b) or (5.38c), and finally the field equations

(5.6). For example

PP// <-» P3r' <-> 3Pr' *-> 35'p <-> Q'3p <-> S'[(p - p)r]

and

9Vp' «-» P3p' «-> PP'r <-+ P'Pr <-> P/[(r - f #)p]

where <-> implies equality modulo lower order quantities.

So we see that the only apparently new quantities at third order can, in

fact, be expressed in terms of lower order quantities. Therefore, we can indeed

show that for type D vacuum spacetimes it is necessary for the Karlhede algo-

rithm to continue to at most the third covariant derivative, without requiring

the isometry group result. The other result which was used on the way to our

conclusion that the upper bound is 3 is the splitting into only 3 classes at the

end of §3. In the proof above that we can express all quantities occurring at

third order in terms of lower order quantities, we have made no assumptions

about the zero/non-zero nature of the spin coefficients, and therefore it applies

for any conceivable case. Therefore, we could obtain our result that the upper

bound is 3 without knowing that the 3 classes of §3 are the only ones allowed.

This is important because it is only by integrating the field equations that one

finds that there are only these three classes, and it is nice that we can obtain

our result without requiring any integration of the field equations.

§6. Summary of Results

The main results of this chapter are summarised in the following table :
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Table of Results

Class

Invariant

Characterisation

Canonical Form :

Zeroth Order

1st Order

Upper Bound

I

p^O

P' + b
T = 0

T' = 0

*! = 0

^3 = 0

$ 4 = 0

\P\=\P'\

2

II

, = 0

p' = 0

T' ^ 0

*2^0

* ! =0

* 3 = 0

# 4 = 0

Im(r) = 0

2

III

p^0

p'^0

T ^ 0

T' ^ 0

*2^0

*! = 0

* 3 = 0

* 4 = 0

IH = \P'\
Im(T) = 0

3

As mentioned previously, all type D vacuum metrics have been explicitly

obtained by Kinnersley [10]. For completeness let us list which of these metrics

fall into each of the above classes. The 'related metrics' are metrics which differ

only in the choice of sign for constants of integration.

Class I : Schwarzschild (plus two related metrics) and NUT (plus two related

metrics).

Class II : 'B' (plus two related metrics) and 'Rotating B' (plus two related

metrics).

Class III : Kerr-NUT (plus five related metrics), ' C and 'Twisting C .
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The Karlhede Classification
of Type N Vacuum Spacetimes

§1. Introduction

In this chapter all type N vacuum spacetimes are split into various invariant

classes and a canonical form is derived for each class in turn, as well as the

frame transformation required to obtain this canonical form.

The work begun in the previous chapter in reducing the upper bound

on the order of covariant differentiation of the Riemann tensor required for

a complete Karlhede classification is continued in this chapter. It is shown

that for a type N vacuum spacetime the Karlhede upper bound of 7 can be

reduced to 2, 4, 5 or 6, depending on the invariant class. The analysis is carried

out in spinor language using NP formalism (Newman-Penrose formalism [13]),

and uses the simplifications of the NP equations that result from having the

spacetime in its canonical form.

In §2 a canonical form for the Weyl spinor of a type N spacetime and

the NP equations for the vacuum case are given. §3 introduces the invariant

classes into which type N vacuum spacetimes naturally split, and derives the

canonical forms at first order. §4 makes a general consideration of functional

independence and derives the second order canonical forms. The following

section analyses the problem of the upper bound on derivatives of the Weyl

tensor required in the Karlhede classification for each class in turn. The final

section summarises the main results of the chapter.

§2. Zeroth Order

The Weyl spinor of a type N spacetime has the canonical form

$ 0 = # ! = tf2 = # 3 = 0 ; * 4 = 1 (6.1)
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The proper Lorentz transformations form a six parameter invariance group on

the spin frame at each point. The condition (6.1) is preserved only under the

two parameter invariance subgroup Ho defined by

/ I 0\
Ho = ; a e C (6.2)

\a 1 /

under which
oA — • oA

iA —> iA + aoA

(4e - p)$

(4/3 - r)tf

4 = 0

4 = 0

4 = 0

F4 = 0

i.e. Ho is the subgroup of null rotations.

In Newman-Penrose notation, the Bianchi identities for a type N vacuum

spacetime become, using (6.1)

(6.3a)

(6.36)

(6.3c)

(6.3d)

These equations require

K = a = 0 (6.4a)

4e = p (6.46)

4/? = r (6.4c)

with (6.4a) also following directly from the Goldberg-Sachs theorem. From

now on, in order to simplify equations, p and r will be used instead of e and

f3 respectively.

For later reference the NP vacuum field equations and commutator equa-

tions are written out for a type N vacuum spacetime. The NP vacuum field

equations become, using (6.1) and (6.4)

Dp = f P2 + \pp (6.5a)
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DT = \pr + TTP- \pr (6.56)

Da - \8p = \poc + \pa - ±fp + fpn (6.5c)

DT — 8p = ^pr — ap + Tip (6.5c?)

|TTT \*ip + ra + alt + \TT= |TTT - \ ra + alt + \TT - \^p - \«jp (6.5e)

D\-8V = \p\ + \p\ + 7T2 + Q7T - i f 7T (6.5/)

Dp, — Sir = ^pp, + 7T7f — |/9/^ — 7ra + ^TTT

£)f — ATT = 7T// + f // + 7rA + TA + JIT — 77T — |/9Z/ — - j ^

AA - 8v = -//A - p\- 37A + 7A + 3az/ + TTZ/ - |f^ - * 4 (6.5z)

6p = f r/9 + ap-pr (6.5j)

^a - i^r = \p,p + aa + ±TT - \ar + fp-jp- \pp. (6.5A;)

^A — 8p, = pv — pv + /iTT — /XTT + pa + i/if + Aa — | A r (6.5/)

<5i/ — A/i = p? + AA + 7^ + 7/i — îTT + i r i / — a^ (6.5m)

^7 - | A r = | T 7 - 07 + |/iT - i/>p + ii-7 + aA (6.5n)

5r = A/) + fr2 - ra (6.5o)

A/9 — 6r = — pp, — | f r — a r + 7/3 + 7/9 (6.5p)

A a — <!>7 = |/9Z/ — | rA + 7 a — p a — | T 7 (6.5g)

The commutator equations become, using (6.4)

- DA)<f> = [(7 + 7)J9 + \(p + /))A - (r + *f)6 - (f + 7r)̂ ]</> (6.6a)

- D6)4> = [(a + i r - TT)£ - (f ̂  + i^)5]^ (6.66)

(SA - AS)<f> = \-vD + (fT - a)A + A^ + (/x - 7 + 7)<5]</> (6.6c)

- 88)<f> = [(/i - p)D + (p- p)A - ( a - i r ) 5 - ( i f - a)8]<j>(6.6d)

§3. First Order

The calculation of the first covariant derivative for a vacuum type N vac-

uum spacetime in canonical form (6.1) is exactly the same as the corresponding

calculation given in chapter 5 for a type D vacuum spacetime. From (5.14),
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(5.16) and (5.18) one obtains for the non-vanishing components, using (6.1)

and (6.4),

= P (6.7a)

, = 4a (6.76)

, = r (6.7c)

, = 4 7 (6.7d)

where the same notation as in chapter 5 has been used.

To summarise, at zeroth order there is just the constant ty4 = 1, whereas

the first covariant derivative depends on /), a, r and 7, i.e.

p -

a —

r —

7 -

-* P

—* a -

—> r H

- » • 7 -

1- |a/?

h ap

h aa -f |air + |aa/>

= £)*(/», a, r, 7) (6.8)

Under Ho these spin coefficients transform as follows :

(6.9a)

(6.96)

(6.9c)

(6.9d)

Let us now consider the possible zero/non-zero nature of these spin coeffi-

cients for type N vacuum metrics, using equations (6.9) to determine the first

order canonical forms and invariance groups for the various invariant classes

so obtained.

Class I : p ± 0

From (6.9c) it is seen that r can always be transformed to zero by setting

a — —TIp, which fixes the frame completely.
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Class II : p = 0, r = 0

From equations (6.9) it is seen that the only transformation remaining is (6.9d)

which reduces to

7 —> 7 + aa

This class is divided into two subclasses :

Ha) a ^ 0

The remaining transformation can be used to set 7 = 0 by setting a = —7/a,

which fixes the frame completely.

lib) a = 0

None of the spin coefficients can be transformed at all so the frame cannot be

fixed any further i.e. the full 2-d null rotations remain.

Class III : p = 0, T ^0

Again from equations (6.9) it is seen that the only transformation remaining

is (6.9d) which reduces to

7 —> 7 + (aa + | a r ) (6.10)

We shall denote

a = xexp(ix') (6.11a)

T = yexp(iy') (6.116)

a = zexp(iz') (6.11c)

Then the term in parentheses in equation (6.10) has real part

zx cos(x' + z') + \zy cos(y' - z') (6.12a)

and imaginary part

zx sin(x' + z') + \zy sin(y' - z') (6.12b)
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This class is divided into two subclasses :

Ilia) \a\ * \\r\ => x ± *y

In this case equations (6.12a) and (6.12b) can be set equal to arbitrary values

to yield two linearly independent equations for the two unknowns z and z'.

Therefore, we may transform both the real and the imaginary parts of 7 to

zero, fixing the value of a and hence the frame completely.

Illb)

In this case we can use the trigonometric formulas for the sum of two cosines

and the sum of two sines to write (6.12a) as

\zy cos(i(x' + y1)) cos(±(z' - y') + z') (6.12a bis)

and (6.12b) as

\zy s i n k s ' + y')) cos(±(z' - y') + z') (6.126 bis)

The two equations are now seen to be linearly dependent for the two unknowns

z and z' and we further divide this class into three subclasses :

Illbi) a = -\T => x' + y' = (2n + 1)TT

In this case the real part (6.12a bis) is zero for all z, z' whereas the imaginary

part can have any value depending on z,z'. Therefore, we can transform the

imaginary part of 7 to zero but not the real part. Because (6.12b bis) is

only one equation for the two unknowns z and z' the frame is fixed up to a

1-dimensional invariance subgroup Hl.

Illbii) a = fr =4- x' + y' = 2mr

In this case the imaginary part (6.12b bis) is zero for all z,z' whereas the

real part can have any value depending on z,z'. Therefore, we can transform

the real part of 7 to zero but not the imaginary part. Because (6.12a bis) is
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only one equation for the two unknowns z and z' the frame is fixed up to a 1

dimensional invariance subgroup Hi.

Illbiii) a + - f r, a ^ \T => x' + y' ̂  (2n + l)x , x' + y' ̂  2mr

In this case we may start with either the real or imaginary part and give it a

particular value, fixing the frame up to a 1 dimensional invariance subgroup

Hi as above. However, we see from equations (6.12a bis) and (6.12b bis) that

the ratio of the imaginary to the real part is tan(|(x' + ?//)), so that a particular

value for either the real or imaginary part fixes the other uniquely. Therefore,

in this case generically we may transform either the real or the imaginary part

ot 7 to zero, but not both.

Let us examine the 1-dimensional set of values that the group parameter

a assumes on fixing the three canonical forms in Class Illb), as this will prove

important later. Consider first the canonical form Re(~/) — 0. From equation

(6.12a bis) this gives

\zy cos(i(x' + y')) cos(±(z' - y') + z') = -Re(-y) (6.13)

If we now write

(x' - y')/2 = 0 (6.14a)

~2Re(j)/5y costs ' + y')) = f (6.146)

then equation (6.13) becomes

zcos(z' + 9) = f (6.15)

Expanding this equation one can obtain the connection between the real and

imaginary parts of a that it implies. Writing a = s + it one obtains

t = ms + c (6.16)
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where

m = cot (61) (6.17a)

c = - / / s i n ( 0 ) (6.176)

Thus, at each point on the manifold the canonical form chosen fixes a to lie on

a straight line, but as m and c are functions of the coordinates this straight line

will vary from point to point on the manifold. In the case where the canonical

form is Im{^) = 0 one obtains exactly the same results except that now

= -2 /m( 7 )

5y sm(±(x'+ y'))

§4. Second Order

Let us proceed as we did in §3 and compute the dyad components of

the second covariant derivative of the Weyl spinor. In fact, as discussed in

chapter 5, it can be proved using the Bianchi and Ricci identities that at all

orders of covariant differentiation of the Weyl spinor only the symmetrised

parts are algebraically independent so that there will be only 7 x 3 = 21

independent components (see [6]). However, in our subsequent analysis there

is no advantage to working with symmetrised components, so we shall not

symmetrise to save additional work. Thus, using a similar notation to that

used before, the components are labelled

( £ 2 * W < (/x = 0,1,2,3,4,5 ; a ,6 ,c=0, l ) (6.18)

For example

( £ / W)00';00' = ^OOOOIOO'JOO'

= t>ABCD,EF',GH'0AOB0COD0EdF'0GdH' (6.19)

The calculation of this second covariant derivative for a type N vacuum space-

time in canonical form (6.1) is exactly the same as the corresponding calcula-
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tion for a type D vacuum spacetime. From (5.30) the non-vanishing compo-

nents are, using (6.4) and (6.7),

l';10' — 2/5

l ' ; l l ' = 2/9T

./;lO' = 2/9T

— 9-r2

.';11' — AT

,,;00' = Dp + \p2 - \pp

)';10' = <*>/> + 7 a / 9 - i f /9

,,;oi- = 5/9 + f rp -ap-\-

i4o';ii' = A/9 + 37/9 + 4 a r — 7/0 + r r

'41<;00' = DT + \pT -TTp+ \pT

i4i';io' = <5r + 3 a r + 47/3 - pp + \TT

I41,;O1, = <§T -f | r 2 — Xp + a r

I41/;ii- = A r + 77r - Pp + jr

- 5irp + 5ap — pa

- 5A/9 + 20a2 - f a

(D2$)5O,.O1, = 45a — 5/x/o + 5 r a — 4 a a + 47/O

(D2vI')50;11/ = 4 A a - hvp + 207a - 47a + 47f

(D2ty)5V.oo, = 4D-) — 5TTT + 5/37 — 47fa + /07

(D2*)5i-;io' = 4^7 - 5Ar + 20a7 - 4/xa + T7

(D2*)51,;01, = 4<$7 - 5/xr + 57r - 4Aa + 47a

(JD
2*)51,11, = 4A7 - 5^r + 2O72 - 4z/a -f 477

(6.20a)

(6.206)

(6.20c)

(6.20d)

(6.20c)

(6.20/)

(6.20«7)

(6.20/i)

(6.20i)

(6.20J)

(6.20Jb)

(6.20/)

(6.20m)

(6.20n)

(6.20o)

(6.20p)

(6.20r)

(6.20s)

(6.20t)

In summary

(6.21)
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that is, from (6.8), the second covariant derivative is a functional of the first

order quantities p, a, r and 7, the derivatives with respect to D, 6, 6 and A

of all these quantities, and the new spin coefficients TT, A, ft and v.

The derivative terms can be expressed in terms of spin coefficients by

means of the NP vacuum field equations (6.5). Using these equations to sub-

stitute for the derivative terms in (6.20) gives

(JD
2^)3O';io' = 2p2 (6.20a bis)

(D2ty)30,lv = 2PT (6.206 bis)

{D2q)3V]W, = 2pr (6.20c bis)

(D2V)31,1V = 2r2 (6.20d bis)

{D2q)40,.00, = 2/J2 (6.20e bis)

(D2V)40,10. = 6p + lap - \fp (6.20/ bis)

(£>2*)40,01, =2p r (6.20g bis)

(D2y)A0,.lv = Ap + 3-yp + 4ar - jp + fT {%.2Qh bis)

(D2V)41,0Q, = 2rp (6.20i bis)

(D2ty)41,.w, =8T + 3ar + 4-yp - ftp + \tr (6.20j bis)

(D2y)n,.0V = 2T2 (6.20fc bis)

(£)2*)4 1 ,u , = A T + 77T - vp + 7r (6.20/ bis)

(£>2*)50,;00, = AD a - 5irp + Sap - pa (6.20m bis)

(Z)2*)50,10, = Ua - 5A/3 + 20a2 - f a (6.20n 6is)

(D2*)50,01, = Ua - 5up + 5ra - 4aa + Ayp (6.20o bis)

(D2q>)50]lv = AAa - hvp + 207a - 4-ya + A-yf (6.20p 6is)

(D2*)51,00, = 4^7 - 5TTT + 5/97 - 4?fa + pj (6.20q bis)

(I>2\f )SIMO' = 4<h - 5Ar + 20a7 - 4/xa + T7 (6.20r bis)

(D2y)51,.0V = 4^7 - 5/XT + 57T - 4Aa + 47a (6.20^ 62

(JD
2*)51,;11, = 4A7 - 5UT + 2O72 - Ava + 477 (6.20* 625
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In addition, equations (6.5) provide connections between the derivative terms.

The relevant equations are

Da — \8p = \pa + \pa — ±fp + \p-K (6.5c bis)

DT — 8p = \pr — ap + tp (6.5c? bis)

£>7 - \Ap = fT7r - ±7/> + ra + cnf + \rf - \*jp - \^p (6.5e bis)

8a - \8T = \\ip + aa + ̂ rf - \ar + ip-fp- \pji (6.5fc bis)

8j — - |AT = | r 7 — 07 + |^tr — \pv + | T 7 + aA (6.5n bis)

Ap — 8T = —pp. — \rr — ar -\- 7p + 7p (Q.5p bis)

Aa — ^7 = | /H/ — |rA + 7a — /la — | r 7 (6.5^ feis)

Equation (6.5d bis) gives nothing new but is consistent with equations (6.5b)

and (6.5j). Inspection of the remaining equations shows that there is functional

dependence amongst the following groups of derivatives

Da,8p (6.22a)

D~f,Ap,8T,8a (6.216)

£7, A T (6.22C)

Ac*, £7 (6.22d)

8a (6.22e)

A 7 (6.22/)

with (6.22e) and (6.22f) following from the fact that equations (6.5) provide

no information about the derivatives 8a and A7. In summary, it has been

shown that

D2^ = D2^(Dly, Da, D~/, S-y, Aa, 6a, A7, TT, A, p, v) (6.23)

Let us now consider the second order canonical forms for our various

classes. For classes I, Ila and Ilia the frame is completely fixed at first order, so

the specification of canonical forms is complete. For Class lib a 2-dimensional
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invariance group remains at first order, and for Class Illb a 1-dimensional

invariance group remains. Let us consider each of these classes in turn.

Class l ib : p = 0, r = 0, a = 0

From equations (6.20 bis) we see that the only potentially new functionally

independent information at second order is D'j, 67, £7 and A7. However,

on substituting p = r = a — 0 into equations (6.5e), (6.5n) and (6.5q) one

obtains

£ 7 = 0 (6.24a)

67 = 0 (6.246)

£7 = 0 (6.24c)

Therefore, from equations (6.24a), (6.24b) and (6.24c) it is seen that all of the

potentially new functionally independent information is zero except A7. Can

this term be used to fix the frame any further. It is easily verified that under

Ho the NP derivative operator A transforms as

A —> (A + a6 + a6 + aaD) (6.25)

It is seen from equation (6.9d) that 7 remains unchanged under Ho so we have

A7 —> (A + al + a6 + a

= A7 (6.26)

using the fact that D7 = 67 = ^7 = 0. So we see that A7 remains unchanged

under H° so that at second order we still have the full 2-d null rotations as

the invariance group.

It can be readily calculated using extensions of the calculations shown

in chapter 5 that at third and higher orders of covariant differentiation the

only non-zero component will be the highest labelled one and it will contain

as potentially new functionally independent information only a term of the
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form A A A . . . 7. For example, at fifth order we shall have, using an obvious

generalisation of our previous labelling, the component (-D5^r)5i/;ii/.>1i/;ii/;ii' as

our only non-vanishing one, and it will contain the term AAAA7 as the only

source of potentially new functionally independent information. It will now be

proved by induction that, using an obvious shorthand, An7 is invariant under

the group Ho of 2-d null rotations, for any n.

Suppose that A^""1^ is invariant under Ho, then under Ho A"7 will trans-

form as

A" 7 —> (A + aS + aS + a

An7 + aSA^-1^ + a<5A(n-1}7 + aaDA^'1^ (6.27)

From the commutator equations (6.6a), (6.6c) and the complex conjugate of

(6.6c) it is seen that the NP derivative operators D, 8 and 8 can be moved

through a line of A to the right. However, from equations (6.24a), (6.24b) and

(6.24c) we see that Dj = £7 = £7 = 0. Therefore, equation (6.27) becomes

Thus, we have shown that if A^""1^ is unchanged under HQ then so is A™7.

However, we know from equation (6.26) that A7 is unchanged under Ho so we

have by induction that An7 is unchanged for any n. Thus the canonical form

for this class cannot be restricted any further, so we shall retain the 2-d null

rotation group Ho as our invariance group at all orders.

Class I l l b : p = 0, r ^ 0, \a\ = \\T\

From equations (6.20 bis) we see that the potentially new functionally inde-

pendent information at second order is TT, A, fj, and v together with the NP

derivatives of the first order spin coefficients a, r and 7. Under null rotations

the new spin coefficients TT, A, n and v transform, using (6.1), (6.4) and the
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class condition p = 0, as follows :

7T — • IT + Da (6.28a)

A —> X + a(Tr + 2a) + Sa + aDa (6.286)

// —> fi + ax + |aT + 6a + aDa (6.28c)

v —• z/ + aA + a(/i + 27) + aa(2a + TT)

+ fa2T Aa + a<5a + a8a + aaZ)a (6.28(/)

The NP derivative operators transform as

D —». D (6.29a)

(6.296)

(6.29c)

A —> A + aS + aS + aaD 0

In order to fix the canonical form further at second order one requires a second

order quantity that transforms under null rotations but which does not contain

derivatives of the transformation parameter a in the transformation equation.

From equations (6.28) we see that the transformations of TT, A, \i and v are

not suitable, and from equations (6.9) we see that only a transformation of

an NP derivative operator acting on a. or r could be suitable. However from

equations (6.5b) and (6.5c), on substituting the class condition p = 0, we see

that one obtains DT = Da = 0. Thus, from equations (6.29), we see that we

must consider only the transformations of A T or Aa, or the quantity is fixed

under null rotations. It proves convenient to use the transformation of AT :

A T —» AT + (aS + a6)T (6.30)

This equation can be split into the transformation of the real part of AT

by a real amount and the transformation of the imaginary part of AT by

an imaginary amount. It will turn out that the frame can only be further

restricted in a way consistent with the fixing at first order if one has a second
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order canonical form which restricts only the numerical value of the real part

of AT. Thus, from equation (6.30), it is seen that to transform the real part

of AT by a real amount requires that r is not purely imaginary. Let us prove

that this is the case.

Adding equation (6.5o) and equation (6.5p), remembering that p = 0, one

obtains

(6 + 6)T = |T2 + ffT + T ( a - a ) (6.31)

If T were purely imaginary then it is readily confirmed by considering the

real/imaginary nature of the left and right hand sides of equation (6.31), that

this is only possible if both sides are zero. Subtracting equation (6.5p) from

equation (6.5o) gives

(6 - 6)T = | T 2 - f f T - T(Q + a) (6.32)

The same considerations as above will readily reveal that the only way that

T can be purely imaginary is if a is also purely imaginary. Writing r as

T = iy, the class condition \a\ = | | T | means that the condition that a is

purely imaginary gives a = ±fiy. Substituting these expressions for r and a

into the previous condition expressed in the form that the right hand side of

equation (6.31) is zero gives

- f y2 ± fy2 + fy2 = - i y 2 ± f y2 = 0

which is clearly a contradiction. Thus we may conclude that r is definitely

not purely imaginary.

Going back to equation (6.30) and choosing i?e(AT) = 0 as our canonical

form gives

(a8 + a6)Re(r) = -Re(Ar) (6.33)

From equation (6.16) a = s + it = s + i(ms + c). Substituting this in equation

(6.33) yields after some algebra

= -Re(Ar) + (zcS - ic6)Re(r)

(6 + 5)Re(r) + (imS - imS)Re(T) l ' '
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(note that m and c are real functions)

We now see the reason why one can only restrict the numerical value

of the Re(Ar) to be consistent with our canonical conditions at first order.

Inspecting equation (6.34) one sees that if it did not contain only Re(r) then

5, which is defined to be real, would in fact be complex. All that remains is

to check that the denominator of equation (6.34) is not zero, for otherwise the

attempt at fixing the canonical form clearly does not work. Substituting for

6T, 6T, m and c from equations (6.5o), (6.5p), (6.17a) and (6.17b) respectively,

and substituting for r and a from equations (6.11) (using the class condition

x — |y) , shows after much algebra that the denominator of equation (6.34)

evaluates to 2y2.

Therefore, to summarise, the standard form at second order is Re(Ar) = 0

which fixes the value of the group parameter a and hence the frame completely.

§5. Upper Bounds

In this final section we use the simplifications to the NP field equations

and the commutator equations which result from using the canonical forms

discussed above, to consider the upper bound on the order of covariant differ-

entiation of the Weyl tensor required in the Karlhede classification of each of

our classes.

Class I : p ± 0

As shown in §3 p 7̂  0 implies that r can be set to zero, fixing the frame

completely at first order. Let us examine the reduction of equations (6.5)

which occurs on setting r = 0. It is seen from equation (6.5b) that as p ^ 0

then 7T = 0, and from equation (6.5o) that A = 0. Substituting these zeros

into equations (6.5) gives

Dp = \p2 + \pp (6.35a)
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Da - \8p =

8p =

D1 - \Ap =

Dv =

\pa +

ap

-YP

Ipa

~ \lP

(6.356)

(6.35c)

(6.35e)

\ (6.35/)

&/ = - 3 C H / + * 4 (

/̂9 = a/) (6.35ft)

^a = |/i/9 + a a + ^p — 7/? — |yO/Z (6.35i)

6fi — pv — pa — pv (6.35j)

^^ — A// = /̂2 + 7/i + 7/i — az/ (6.35k)

£7 = —0:7 — i/jz/ (6.35/)

Ap — —pp. + 7/3 + 7/9 (6.35m)

Aa — 67 = | p^ + 7a — /ia (6.35n)

In principle, the worst case could occur if everything were constant at first

order, when it might be necessary to continue right up to the sixth order

derivative. However, from equation (6.35c) it is seen that putting p as a

constant implies that a = 0. In addition, from equation (6.351) it is seen that

putting 7 as a constant and a = 0 implies that v = 0. Now inspection of

equation (6.35g) shows that v = 0 gives an inconsistency (^4 = 1). Therefore,

the worst possible case is, in fact, not permitted. Thus, there must be a

non-constant component at first order, which means that at worst it could be

necessary to continue to the fifth covariant derivative.

Class II : p = 0, r = 0

Ha) a^O

As shown in §3 we can set 7 = 0, fixing the frame completely at first order.

Let us examine the reduction of equations (6.5) which occurs on setting p =
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r = 7 = 0. It is seen from equation (6.5e) that a s a ^ O then TT = 0, and from

equation (6.5n) that A = 0. Substituting these zeros in equations (6.5) gives

Da = 0 (6.36a)

Dfi = 0 (6.366)

Dv = 0 (6.36c)

8v = * 4 - 3ai/ (6.36d)

£a = aa (6.36e)

Sfx = —fia (6.36/)

8v — Afi = /i2 — av (6.36^)

Aa = -pa (6.36/i)

In principle, the worst case could occur if everything were constant at

first order, when it might be necessary to continue right up to the sixth order

derivative. However, putting a as constant in equation (6.36e) gives 0 = aa

which is a contradiction as for this class a ^ 0. Therefore, the worst possible

case is, in fact, not permitted. Thus, there must be a non-constant component

at first order, which means that at worst it could be necessary to continue

to the fifth covariant derivative. Clearly, the worst case now will be where

all spin coefficients are non-constant, as here all the derivatives of these spin

coefficients could produce new functionally independent information. Let us

examine this case in detail.

The only spin coefficients which are non-zero are a, \i and v. At first order

only a occurs, whereas at second order the NP derivatives of a occur as well

as fj, and v. From equations (6.36) it is seen that we know how to express all of

the derivatives of a in terms of spin coefficients except 8a, about which there

is no information. However, information about this term can be obtained by

applying 8 to the complex conjugate of equation (6.36h) and using the complex

126



conjugate of commutator equation (6.6c). Thus one has

^Aa = —[(Sfi)a + (Sa)fi]

Using the complex conjugate of commutator (6.6c) the left hand side can be

initially transformed to a double derivative term A8a and the three single

derivative terms Da, Aa and 8a. On using equations (6.36) all of these

terms reduce to combinations of spin coefficients, as does the only remaining

derivative term 8/J,. Thus one obtains an expression for 8a in terms of spin

coefficients only. The exact result is

pi8a = fia2 + jla2 — ftaa (6.37)

Thus it is seen that at second order everything can be expressed in terms

of /i and v. At third order one will obtain the NP derivatives of fi and v.

From equations (6.36) it is seen that Dfi, 8[i, Dv and 8v can be expressed

purely in terms of the lower order quantities a, /i and v. In addition, there

is a relationship between A/J, and 8v. However, there is no information about

8fi and Av. Information about 8/J, can be obtained by a similar calculation

to that which lead to equation (6.37), this time applying 8 to the complex

conjugate of equation (6.36h) and using commutator (6.6c). The result is that

one obtains an equation connecting 8n and Afi. However, one is still left with

the problem of finding information about Av and examination of the equations

(6.36) and the commutators (6.6) shows that no information about this term

can be obtained. Thus at third order the only possible new information comes

from the term Av and the functionally dependent group A/i, 8fi and 8v.

From equations (6.36a), (6.36b) and (6.36c) one sees that a, \i and v are

all independent of one of our four coordinates (the /** tetrad vector is taken to

lie along one of the coordinate lines). All derivatives of these quantities will

also be independent of this coordinate as can be proved by considering the

NP operator D acting on the derivative, and commuting the D through the
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expression from left to right using the commutators (6.6a) and (6.6b). Thus,

only three of the four coordinates appear in the covariant derivatives and,

therefore, at most 3 functionally independent components can be produced.

Thus, the Karlhede algorithm must terminate at fourth order.

lib) a = 0

In §4 it was shown that the full 2-dimensional null rotations remain as the in-

variance group throughout the Karlhede classification. Thus, for the Karlhede

algorithm to continue it will be necessary to produce at least one new function-

ally independent component on each differentiation. Thus it might be thought

that the upper bound would be the fifth covariant derivative. However, in

this case the simplifications of the NP field equations and commutators are

sufficient to reduce this upper bound still further by means of the following

considerations.

Substituting p — r = a = 0 into equations (6.5) one obtains

= 0 (6.38a)

DX-8w = 7T2 (6.386)

Dfx - 8% = TTTf (6.38c)

Dv - ATT = TT/Z + 7f A + 7?r - 7?r (6.38c?)

AA - 8v = -fi\ - p,X- 37A + 7A + -KV - $ 4 (6.38e)

8X — 8[l — flTT — pTT (6.38/)

8v — A// = fi2 + AA + 7/i + 7/x — v-n (6.38g)

8~i = 0 (6.38/i)

£7 = 0 (6.38i)

Now from equations (6.38a), (6.38h) and (6.38i) it follows that 7 is independent

of three of the coordinates. The derivatives which occur at higher orders, A7,

AA7 etc. will also be independent of these three coordinates as can be shown
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by acting on them with D, 8 or 6 and using the commutators (6.6a) and (6.6c)

to commute the derivative operator through the expression from left to right.

Thus only one of the four coordinates of this specially chosen coordinate system

can ever appear in the covariant derivatives and hence only one functionally

independent component can ever be produced. This component must be the

7 appearing at first order, so the Karlhede algorithm will terminate at second

order.

Class I I I : p = 0, r ^ 0

Ilia) H^||r|

As shown in §3 we can set 7 = 0, fixing the frame completely at first order. Let

us examine the reduction of equations (6.5) which occurs on setting p = 7 = 0.

DT = 0 (6.39a)

Da = 0 (6.396)

0 = f T7T + ra + an + \TT (6.39C)

DA - 8n = 7T2 + air - \TTT (6.39(f)

Dp, — 8-K — 7T7f — Tra + -JTTT (6.39e)

Dv - ATT = TT/I + ffi + 7f A + T\ (6.39/)

AA - 8v = -fiX - /zA + 3au + TTU - | f v - * 4 (6.39^)

8a - \8T = aa + ±rf - \ar (6.39/i)

8X — 8fi = fin — /iTr + /ia + i/xf + Aa — I AT (6.39Z)

8v - A// = /i2 + AA - vn + ^rz/ - ai/ (6.39j)

- | A T = |/iT + aA (6.39Jb)

<5T = | T 2 - TO (6.39/)

-^T = -\TT - ar (6.39m)

-frA-/xa (6.39n)
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In principle, the worst case could occur if everything were constant at first

order, when it might be necessary to continue right up to the sixth order

derivative. However, on putting r as constant in equations (6.391) and (6.39m)

one obtains

0 = fr2 — TCC (6.39/ bis)

0 = - f f T - ar (6.39m bis)

Equation (6.391 bis) gives a = | r . Substituting this value into (6.39m bis)

then gives 2rf = 0 which is impossible because r ^ 0. Therefore, the worst

possible case is, in fact, not permitted. Thus, there must be a non-constant

component at first order, which means that at worst it could be necessary to

continue to the fifth covariant derivative.

I l lb) \a\ = | | r |

In this case it has been shown that at first order one can make either the

imaginary part or the real part of 7 equal to zero but not both, fixing the

frame up to a 1-dimensional invariance subgroup. At second order one can

set the real part of AT equal to zero, fixing the frame completely. On setting

p = 0 in equations (6.5) they reduce to

DT = 0 (6.40a)

Da = 0 (6.406)

D 7 = |TTT + Ta + at + \TT (6.40C)

DX - 6TT = 7T2 + air - \T*K (6.40d)

— Sir = TTTT — ira + ^TTT (6.40e)

Dv — ATT = 7r/f + f /i + 5f A + r A + 7vr — JTT (6.40/)

AA - lv = -fi\ - p\ - 37A + 7A + 3ai/ + TTV - \fv - * 4 (6.40#)

8a - \8T = aa + ±rf - \ar (6A0h)

SX — Sfx = fxir — p,ir + pa + ^fif + Xa — |Ar
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8v — Afi = fi2 + XX + 7/i + 7/x — T̂T + | r i / — au (6.40j)

67 - | A r = | T 7 - 07 + | ^ r + ±T7 + QA (6.40&)

8T = | T 2 - r a (6.40/)

^r = | f r + ar (6.40m)

Aa — ^7 = — |rA + 7a — pa — | T 7 (6.40n)

In principle, the worst case could occur if everything were constant at first

and second order, when it might be necessary to continue right up to the

seventh order derivative. However, by exactly the same argument as used

above for Class Ilia, it is not in fact permitted to have everything constant

at first order. The worst case will now be when only one new functionally

independent component is produced at first order, none at second order, and

then only one more at each subsequent order. The Karlhede algorithm would

then not terminate until sixth order.

§6. Summary of results

The main results of this chapter are summarised in the following table :
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Table of Results

Class

Invariant

Characterisation

Canonical Form :

Zeroth Order

1st Order

2nd Order

Upper Bound

I

P

\|r

\]/

\P
\J)

\J>

T

5

+ 0

o = 0

i = 0

2 = 0

3 = 0

4 = 1

= 0

Ila)

P =

T =

* +

^ 1 :

^ 2 :

^ 3 :

\J/4 :

7 =

4

0

0

0

= 0

= 0

= 0

= 0

= 1

0

lib)

p =

T =

a =

* o =

^ i :

^ 2 :

^ 3 :

* 4 :

2

0

0

0

= 0

= 0

= 0

= 0

= 1

Ilia)

P = 0

r ^ 0

* o = O

* i = 0

* 2 = 0

* 3 = 0

^ 4 = 1

7 = 0

5

Illb)

^ = 0

|a| = f|r|

^x = 0

*2 = 0

* 3 = 0

* 4 = 1

i?e(7) = 0

ovlm('j) = 0

Re(Ar) = 0

6

All vacuum type N spacetimes have been split into four classes by C.

Mclntosh [34]. Let us consider these four classes and relate them to the classes

discussed in this chapter :

Class MI : pp-wave metric

These are plane-fronted gravitational waves with parallel rays, as defined in

[1]. The metric form is

g = 2dudv - 2d(d( f(u, (6.41)

where / (« , C) is an arbitrary function of u and £. These solutions fall into

Class II of the present chapter.
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Class Mi l : Rotating, plane-fronted wave metric

These are again plane-fronted gravitational waves, as denned by Kundt [35].

The metric form is

g = 2dudv - 2d(d( + 2(z + z)[f(Y, z) + f(Y, z)]dY2 (6.42)

where /(Y, z) is an arbitrary function of Y and z and

z = (-Yv, O = (u-Y()-Y((-Yv) (6.43)

These solutions fall into Class III of the present chapter.

Class Mi l l : The Robinson-Trautman metric

Metrics in this class are type N examples of a wider class of vacuum metrics

given by Robinson and Trautman [36]. Robinson-Trautman vacuum solutions

are defined to be vacuum solutions admitting a geodesic, shearfree, twistfree

and diverging null congruence. The metric form is

g = -2v2d(d( + 2[e(tx) du + v(P(d( + P^d() + Pdv]du (6.44)

where P(u, £, () satisfies

P2[/n(P)]« = e(u) (6.45)

These solutions fall into Class I of the present chapter, but additionally require

that the imaginary part of p is zero.

Class MIV : The twisting case

This is a class of solutions with non-zero twist, the Hauser metric [37] being

the best known solution. The metric form of the Hauser metric is rather

complicated and will not be presented here. These solutions also fall into

Class I of the present chapter, but additionally require that the imaginary

part of p is non-zero.
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Lowering the Upper Bound
for Type D Non-Vacuum Spacetimes

§1. Introduction

From chapter 3 equations (3.103), (3.104) and (3.105) we see that the upper

bound on the order of covariant derivative of the Riemann tensor required to

perform a complete Karlhede classification of a spacetime is 5 for Petrov types

I, II and III, and 7 for Petrov types D, N and 0. Thus in the worst case

it may be necessary to continue up to the seventh covariant derivative. In

chapter 5 this upper bound was reduced to the third covariant derivative for

vacuum type D metrics, and in chapter 6 it was reduced to the sixth covariant

derivative for vacuum type N metrics. Therefore, we see that at best the upper

bound can only be reduced to 6 for a general spacetime by the methods used in

this thesis. However, in order for an upper bound of six to be true in general

it still remains to show that it is not necessary to continue as high as the

seventh covariant derivative for non-vacuum type D and type N spacetimes.

In this chapter this is proved for the case of non-vacuum type D spacetimes

using some simple considerations involving the transformation properties of

quantities appearing in the non-vacuum case, the Bianchi identities and the

field equations. Work is under way to use a similar approach to prove the

result for non-vacuum type N spacetimes.

§2. Lowering the Upper Bound

From our discussion at the end of chapter 3, it is seen that the following

conditions all have to be satisfied for it to be necessary to continue up to the

seventh covariant derivative :

C l ) The Weyl spinor, Ricci spinor and A must all be constants.

C2) The invariance group at zeroth order Ho must have dimension 2.
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C3) The dimension of the invariance group and the number of functionally

independent components must not both change on differentiating.

C4) We must produce at most 1 new functionally independent component on

differentiating.

C5) The dimension of the invariance group must go down by at most 1 di-

mension on differentiating.

The Ricci spinor <&ABCD' has the following symmetries

It is easily verified that these symmetries reduce the number of independent

components to 6. Because of the symmetry on the primed and unprimed

indices, we can label these components using a similar notation to that used

previously for the Weyl spinor. Thus, we have

A ̂ B ^C1 ̂ D1 ft.$nn , = oAoBdc'd

$01'

$02'

$11'

$12'

$22'

= oA

A
= o

= oA

= oA

= tA

oBoc'T

Oil

iBoc'll

lB-i°'lL

lBTP'lD

&ABCD'

y
QABCD'

-v /

(7.2)

For a type D spacetime the canonical form for the Weyl spinor is

* 0 = * 1 = *3 = * 4 = 0 ; * 2 ^ 0 (7.3)

and, for the vacuum case, the invariance group a zeroth order, HQl is the

2-dimensional spin and boost transformations,

/A 0 \
Ho=[Q A_XJ ; .A = re"ec (7.4)
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Under these transformations, the components $at/ transform as

$00' — • r 4 $ 0 0 ' (7.5a)

(7.56)

(7.5c)

$01' -

$02' -

$11' -

$12' -

$22' -

—> r 2 e

-* e4i6

- $ n

-+r~2

-> r~ 4

SP0 1 /

$02'

'

$22'

(7.5c)

(7-5/)

From these equations we see that in order for the invariance group Ho to remain

2-dimensional for the non-vacuum case, it is necessary that all $aJ/ other than

$u/ vanish. Therefore, if the Karlhede classification is going to continue up

to the seventh covariant derivative, condition (2) above requires that

$00' = $01' = $02' = $12' = $22' = 0 (7.6)

Using the fact that everything must be constant at zeroth order (condition

(1)), together with equations (7.3) and (7.6), the Bianchi identities become

3/c* = 2/c$ (7.7a)

= -2/9$ (7.76)

= 2r$ (7.7c)

= - 2 a $ (7.7a7)

together with their primes (here \& = \&2 and $ = $u/). The contracted

Bianchi identities become

0 (7.8a)

(r + f')$ = 0 (7.86)

together with their primes. The field equations (excluding the commutators)

become

3/9 - 3 V = (p- P)T + (p' - P')K (7.9a)
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Vp - 3'K = p2 + aa - RT - T'AC (7.96)

Per - 8K = 0 (7.9c)

3r - P'<7 = p'a - a'p + r2 + ACAC' (7.9e)

p' / ) - 3'T = /j/5' + crcr' - TT - KK' - * - 2A (7.9/)

together with their primes (where we have used (7.8a) and (7.8b), assuming

that $ 7̂  0). It is seen from equations (7.7) and their primes that if any of

AC, K', r and r ' are non-zero then $ = |\P, whereas if any of p, p', a and a'

are non-zero then $ = —1\&. As we have a type D spacetime, we know that

* 7̂  0, so $ = | * and $ = —|\& are in contradiction. Therefore, there are

only 3 possible cases :

v ^ a s e _i_j K — AC — T — T — p — p — u — u — u

Case 2) AC = AC' = r = r ' = 0 and at least one of p, p', a and a' is non-zero.

Case 3) p = p' = a = a' — 0 and at lease one of AC, AC', T and r ' is non-zero.

It is important to note that $ ^ 0 for cases 2 and 3 — for case 2 $ = — f *

and for case 3 $ = | * .

Let us now calculate the first covariant derivative of the Weyl spinor and

Ricci spinor. Note that because A is a scalar, assuming it is constant implies

that its covariant derivative is zero. From equations (5.14), (5.16) and (5.18),

we see that under condition (7.3), the non-vanishing components of

are

(7.10a)

(7.106)

(7.10c)

1, = 6$ (7.10J)

0, = 3r'vf (7.10c)

1, = 3^ '* (7.10/)
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The calculation of the covariant derivative of the Ricci spinor follows the same

pattern as the calculation of the covariant derivative of the Weyl spinor. Using

a similar notation to that used for the covariant derivative of the Weyl spinor,

the covariant derivative of the Ricci spinor is defined by

where fi of the unprimed dyad vectors and v of the primed dyad vectors in

square parentheses are (fs and (fi's respectively. We use the Leibnitz property

of covariant derivatives to write this as

' (7-12)

Using the symmetries (7.1) of ^ABCD1-, (7-12) becomes

.D> - (2 -

& f D . - (2 - £/

If we now substitute in (7.13) using (5.13) and (5.29) then it becomes

(2 —

0 . e / . ^ . + (2 - v)T0,0,eflQKv+iy (7.14)

Using (7.6), we see from (7.14) that {D^)liV,.eji is definitely zero for all cases

other than i) a = 1, b = 1, ii) a = 1, b = 0, iii) a = 1, b = 2, iv) a = 0, b = 1

and v) a = 2, b = 1. For these cases we obtain from (7.14), using (7.6),

(D$) u , 0 0 , = £>$„, (7.15a)

.;oi. = *$n< (7-156)

MO. = £$„, (7.15c)
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(7.15d)

. (7.15e)

(7-15/)

, (7.15(7)

= 2f $ n , (

= 2 a ' $ n , (7.15J)

= 2 / /$ u , (7.15*r)

= 2/c'$n, (7.15/)

, (7.15m)

, (7.15n)

, (7.15O)

' (7.15p)

= 2T '$ 1 1 ( (7.15?)

= 2/9'$!!, (7.15r)

Let us now consider each of our three cases in turn.

C a s e 1)K = K' = T = T' = P = P' — a = a' = 0

From equations (7.10) and (7.15) we see that everything vanishes at first

order so that the Karlhede algorithm terminates at first order.

Case 2) K = K' = T = T' — 0 and at least one of p, p', a and a' is non-zero.

From equations (7.10) and (7.15) we see that the only non-vanishing com-

ponents at first order are :

1V = 3<T* (7.16a)
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(DV)31. = Sp'V (7.166)

and

(7.16c)

, (7.16a7)

, (7.16e)

, (7.16/)

, (7.16flr)

;io' = 2<T'$U, (7.16J)

The field equations become

3^ - g'o- = 0 (7.17a)

pp = p2 + aa (7.176)

Pa = 0 (7.17c)

Va = -p'a + a'p (l.lld)

p'p = pp + aa1 - * - 2A (7.17e)

together with their primes.

Under spin and boost transformations (7.4) the spin coefficients p, />', a

and a' transform as

p —> r2p (7.18a)

p> _ ^ r - y (7.186)

a — , rV 'V (7.18c)

a ' — , r-
2e-4 'V (7.18a7)

Equations (7.18c) and (7.18d) enable one to fix r by requiring a particular

modulus for the transformed quantity. In addition, they fix 9 by requiring that
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the transformed quantity is, say, real (imaginary will, of course, do equally as

well). Therefore, unless both a and a' are zero condition (C5) will be broken,

in that the dimension of the invariance group will reduce from 2 to 0. Thus,

in order for it to remain possible for one to require the seventh covariant

derivative, one must have a = a' = 0. The field equations (7.17) now become

3/9 = 0 (7.17a bis)

Pp = p2 (7.176 bis)

Pp = pp'-•$>-2k (7.17e bis)

together with their primes. Taking the complex conjugate of (7.17a bis), and

using (7.8a) (remembering that $ = — |\P ^ 0) one obtains

3> = 0 (7.19)

where we have used the fact that 3 = 3'.

At second order the only new quantities which will appear are the GHP

operators P, P', 3 and 3' acting on p and p'. From equations (7.17 bis) and

(7.19), together with their primes, we see that all these apparently new quan-

tities can, in fact, be expressed in term of lower order quantities. Therefore,

the Karlhede algorithm will terminate at second order.

Case 3) p = p' = a = a1 = 0 and at lease one of K, K'', r and r' is non-zero.

From equations (7.10) and (7.15) we see that the only non-vanishing compo-

nents at first order are :

(7.20a)

(7.206)

and

oo/ = 2 K $ U , (7.20C)
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, (7.20d)

, (7.20e)

' (7.20/)

(£$)O1,.OO, = 2/c$n, (7.20$)

The field equations become

(7.200

(7.20J)

3'AC = KT

3K = 0

p T - P'/c = 0

3r = r2

3'T = r f

+ T'K

-j~ rvrv

4- KK1 1]&-2A

(7.21a)

(7.216)

(7.21c)

(7.21d)

(7.21e)

together with their primes.

Under spin and boost transformations (7.4) the spin coefficients r, r', K

and K' transform as

r —-> e2iV (7.22a)

T ' —, e-2»V (7.226)

K —, r V " / e (7.22c)

«' —, r-4e-2"« ' (7.22a7)

Equations (7.22c) and (7.22d) enable one to fix r by requiring a particular

modulus for the transformed quantity. In addition, they fix 6 by requiring

that the transformed quantity is, say, real. Therefore, unless both K and K'

are zero condition (C5) will be broken, in that the dimension of the invariance

group will reduce from 2 to 0. Thus, in order for it to remain possible for one
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to require the seventh covariant derivative, one must have K — K' = 0. The

field equations (7.21) now become

PT = 0 (7.21c bis)

3r = r2 + KK' (7.21d bis)

Q'T = TT + KK' - * - 2A (7.21e bis)

together with their primes. Taking the complex conjugate of the prime of

(7.21c bis), and using (7.8b) (remembering that $ = |\P ^ 0) one obtains

PT = 0 (7.23)

where we have used the fact that P' = P'.

At second order the only new quantities which will appear are the GHP

operators P, P', 3 and 3' acting on r and r'. From equations (7.21 bis) and

(7.23), together with their primes, we see that all these apparently new quan-

tities can, in fact, be expressed in term of lower order quantities. Therefore,

the Karlhede algorithm will terminate at second order.

In conclusion, therefore, we see that for non-vacuum type D spacetimes

it is, in fact, not possible for the Karlhede algorithm to require the seventh

covariant derivative.
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Appendix A

We need to show that there is a solution of (3.29) of the form (3.30) which

is compatible with the coordinate relations obtained from equations (3.24).

Let W be a 2n-dimensional space with coordinates {xl',x't}. Let

(ba = Cja - ua = a°dx» - a^dx" (Al)

where a, j3 etc. run from 1 to n — k. Therefore, solving (3.29), which is derived

from (3.28), is equivalent to finding the submanifolds V C W such that

ua\v=Q (A2)

where u>a\v means the 'restriction of Cja to V , in the sense that Cja only acts

on vectors tangent to V. V will only exist (i.e. a solution of (3.29) will only

exist) if the vectors X such that

<iba,X>=0 (A3)

'knit' together in such a way as to be tangent to some submanifold V.

According to Cartan [2], the condition for this 'knitting' together is that

d(ua - ua) = 6° A (a/ - uf) (A4)

where 6p are arbitrary 1-forms. The exterior derivative must be taken in W

but will be the same as in (3.16) because LU1 (a?) are independent of x'1 (x*1).

Using (3.16), (3.17) and (3.26) we prove that (A4) is indeed satisfied

d(ua - ua) = \ca
kh(u

k A uh - uh A uh)

= \ckh[{&k + W*) A (&H - Uh) + {Uk - LOk) A (Cjh + LOh)}

= \c!pyW + w") A {& - Lf) - {Gf + uP) A ( £ ' - uf))

+ \ca
0A\K^ + ̂ ) A (^ ~ "") ~ (*A + "A) A ( ^ - a;")]

B + uB) A {uy - uf)]

= ea
p
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V will have dimension 2n - (number of constraints in (A2)). So we have

dim(V) = 2n - (n - k) = n + k (A5)

In addition, V will not be unique but there will be an n — k parameter family

of Vs. This arises because the number of orthogonal normal directions to a

given V is 2n - (dimension of V) = 2n — (n + k) = n — k, and each orthogonal

normal direction will parameterise a set of Vs — the initial vector X which is

'knit' together with the others to form the submanifold may lie at any initial

point along the normal directions.

To show how the above analysis works in practice consider the following

simple example.

Example :

n = 1, k = 0, coordinates {x,£}, x > 0, x > 0

1-forms u = x dx, u = — x dx

[k = 0 because in 1-d we only have c\x which by antisymmetry must be zero)

So (A2) becomes x dx + x dx = 0, which on integration yields x2 + x2 = c

or x = f(x,c).

Thus we obtain an n + k = 1 dimensional solution submanifold with

n — k = 1 parameter (c) parameterising different solution submanifolds, ex-

actly as expected. In this case the solution submanifolds are concentric circles

with the parameter c giving their radius, the radial direction being the only

normal direction.

We now need to show that the solution (3.30) is compatible with the

coordinate relations that are obtained from the set of equations (3.24). This

is achieved by reperforming the steps that led from (3.24) to (3.30), but in

a special coordinate system that makes the compatibility of the coordinate
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relations obtained with those obtained from (3.24) obvious. The argument is

as follows :

Introduce a new coordinate system {x1, x'} such that the k functionally

independent relations among the set (3.24) become

x'A = x'A (A6)

where A runs from n — k + 1 to n as before. What we have done here is simply

to let the functionally independent components act as a new coordinate sys-

tem, which we are at liberty to do because they are functionally independent.

Differentiating we obtain

dx'A = dxlA (A7)

where

dx'A = c'^tf (A8.i)

dx'A = cjfu/ (A8.U)

Suppose x'A = <?koho\h...ix f° r e x ample . Then

dx'A ~ cl°h ,, , ,-d>1

KoflQ \l i ...lxl

As x'A = c?k°oholh..,t then x'A = 4»ofto|/l..,x so

Comparing (A8.i) and (AS.ii) with (A9.i) and (A9.ii) shows

r'A — P° ( 41 n
C l • C-x. L I T J - 1/llU.

But from equations (3.24) we know that
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so that

~tf = cff (All)

Because the x'A are functionally independent, the dx'A are linearly inde-

pendent. So equations (A8.i) represent k linearly independent equations in the

n u'. Thus, as before, we can express some k of the u' as linear combinations

of the other n — k (c.f. (3.26)). With a suitable numbering one obtains

where A, B etc. run from n — k + 1 to n, and a, f3 etc. run from 1 to n — &.

Because of the equality (All) the corresponding equation for LOA will contain

exactly the same expansion coefficients bA and df,. So we obtain

uA = bAua + dAdx'B (A12.U)

Now subtracting (Al2.ii) from (A12.i) we obtain, using (A7)

CbA — U3A = bA(Cba — U!a) (A13)

What we have performed so far is merely what was performed in §3 to obtain

(3.26), except it has been performed in our new coordinate system. Continuing

as in that section, we investigate the solution of the equation

uja-Loa=Q (A14)

which, from (A13), will if satisfied give CJ' — to' = 0 for i running from 1 to n.

In our new coordinate system {x',x'} this equation becomes

a'fdx'1* + a'°dx'B - a';dxlp - a'°dx'B = 0 (A15)

However, and this point is crucial, from (A12.i) we see that {CJa,dx'A} span

the cotangent space and hence represent n linearly independent 1-forms. Ex-

panding the Cja in terms of the coordinates we have

Lja = a°dxw + dgdx
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We rewrite this equation as

Coa - a'£dx'B = a'^dx"3 (Al6.n)

Because {£ba,dx'A} are n linearly independent 1-forms the left hand sides of

(A16.ii) are linearly independent for different values of a, and so, therefore,

are the right hand sides. This means that the a'p form a non-singular matrix.

If we call its inverse (a'"1)^, i.e.

we obtain, by multiplying (A15) through by the inverse (a'~1)'ya,

dx'1 = -(a'-l)la'£dx'B + dxn + (a'-l)la'£dx'B (A18)

The integrability conditions (A4) will again be satisfied by virtue of (A13),

which enables us to keep reexpressing quantities in terms of ua — toa so as to

produce result (A4).Thus (A18) can be integrated to give

x'a = x'a(x'a,x'A,x'A) (A19)

Now, because we have been working in this special coordinate system in

which equations (3.24) have the exceptionally simple form given in (A6), we

can immediately see that the coordinate relations needed to make ua —ua = 0,

given in this special coordinate system by (A19), are completely compatible

with the coordinate relations which come from the set of equations (3.24),

given in this special coordinate system by (A6).
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Appendix B

§1. Proof of Equation (3.35)

We have the connection coefficients defined as

Vjk=<u>i,Vkej> (Bl)

Expanding this equation we obtain

r*i*=wie£CJ ;M = -u;; : / lC£C; (£2)

The exterior derivative of the 1-form a/ is given by

dxJ = tJ^dx" A dx" (B3)

For a symmetric connection (i.e. V'ivo = F^,,) we can replace the partial

derivative in (B3) by a covariant derivative because the additional term con-

taining the symmetric V u so introduced will disappear when contracted with

the antisymmetric wedge product. Thus (B3) can be rewritten as

dxJ = tj^dx" A dx» (B4)

If we now multiply (B2) by w*u^, using the result that e?u}* = 8", then we

obtain

Substituting this result in (B4) gives

4w* = rvfcu/ A uk {B6)

Comparing (B6) with (3.33) then gives

which is our desired result.
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§2.

In this section we derive a number of formulae which will be needed in the

calculation of dio'j.

Let u>)jAx^) be a fixed tetrad at x^. An arbitrary tetrad at x* with the

same frame metric 7/,j is obtained by rotating w'/*\, as discussed in §2 of chapter

3. Thus we have

J = b\Ju) (B8a)

u\}) = (b^Yy (586)

where b* .{b~1)3
 k = (6-1)!.b3\ = 8k. The change in u' when the tetrad is rotated

by 8eA is

8uf = b* • A8eALoJ,j} = (b*1)3
kb'j A8eAu>k (-^9)

Since the transformations 6'. preserve 77̂  we have

0 = 8g = rjij 8u>' ® m3 + 77,̂  u' (8> ^<^

= 8eA[(b-l)l
kbil>A + (fe-1)'.^,,^] w* < W

and hence, since ^e71 is arbitrary,

( f c " 1 ) ' * ^ = -{b-1)'jbu^ (510)

As in §4 of chapter 3, we define uLs- = al-AdeA as

d(e)u/ = a/ A u ; ^ (-611)

From (B8) we have

^(^a;1 = (b~1)3 flj A deA A cu* (-^12)

Comparison of this equation with (Bll) then gives

u\c). = -{b~v)k ft kAdeA (513)

a!.A = -(b-1)*^'^ (514)
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§3. Calculation of dujtj and

Using the results in §4 of chapter 3 we obtain

a%k to" A dtA + P \ A dtA A uk

Tij
k um A ak

mAdeA + a%B dtB A deA

> U fc A "~ -̂  ; a JfeA ~' aA\k! " e A a; + a^ B at A a e

and

uim A cjm
j' = (Pm,a;' + a{

AdtA) A (rm
j
fcw* + aJBdeB)

= TimiTJk w' A u l

Therefore,

ao;tJ + o;im A uJ1 = fr^u, + r i J
m r m , t + r i m , r m

;
t ) a? A to

A iJ

(517)

By using (B14) a fairly long but straightforward calculation shows that

Therefore, we see that because the wedge product is antisymmetric, the last

term in (B17) vanishes. To handle the second term we calculate Tl3,A. From

(B2) and (3.31), using the result that u/ = ??ue_,, we have

I*,. = -a'^aW (519)
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This formula can be used to calculate the change in P -k under an infinitesimal

rotation.

8Tijk = - ( £ ( < ; > ' " «*" + O ^ a * " + a^a^Sa"")

= -[(6a%a"ak» + ai
fija

j»akl' + a^a^Sa""} (£20)

Let us calculate 8a'^ from (B9). Writing (B9) in a coordinate basis using (3.31)

gives

8(J = (b-1)j
kb

i
jASeAaldx" = Sa^dx"

Multiplying (B19) by aj
aa

k
p and using the result efu/ = 8^ gives

Using (B21) and (B22) in (B20) gives

STV* = -aj
lAr'k6eA - ak,ATij'8eA + (a%atli8eA).il/a

i»ail1'

= [(aijia!ll).,a
jl'akl/ - aj

lATilk - ak
lATijl)6eA

= {a^^a^a^cf + a^a^a^a'" - a\AYilk - ak
lATij')8eA

= (a%y + a^jfi^a1"1 - aj,ATilk - ak
lATijl)8eA (523)

If we now use result (B22) to substitute for a;^,,, we obtain after some simpli-

fication the final result

6Tijk = {a%va
kv + a\AY'jk - aj

!ATi!k - ak
lATijl)8eA (£24)

so that

where we have used a'A^ = ali
Ava\. Therefore, we see that the second term

in (B17) also vanishes. If we use the antisymmetry property of the wedge
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product, (B17) can now be written as

du'3 + u m A uj = (r \m + r J
mr [/Jt]

— 1 11. J. — —X , 1 . I Ct/ / \ Lu

= ±Rij
kl uk A u' (526)

Finally let us calculate the exterior derivative of the Riemann tensor in

frame.

= Rijki\mu>m + Rijkl,AdeA (527)

So we see that we must calculate Rijki\m and Rijki,A- We have

Rijkl\m — Rijkl,»Clm = Rijkl;nam (B28)

where the last equality follows from the fact that R^ki is a scalar, so that its

partial derivative is equal to its covariant derivative.

+ « „ + r^.a^a^i?,,,, + (a*,, + T6
 afla°)a»mRijk6 (529)

In order to handle the second term in each of the brackets, let us take another

look at covariant differentiation.

= «I
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=»

Applying this result to the second term in each bracket and simplifying then

gives

Rijkl\m = Rijkl;m + at\mRaikl + aj\mRi/3kl + al\mRijy'

+ a?|rafly« + (rn
im - <imal)Rnjkl + (T"jm - a^ma;)Rinkl

+ (r%m - a«klma;)Rijnl + (r»,m - a^^^i?,,-^

= Rijki.m + Fn
imRnjkl + Tn

jmRinki + T"kmRijni -f Fn
]mRijkn (531)

If we now turn our attention to RijkiiA we have under an infinitesimal rotation

f t f a 6 , + R ^ ^

If we now use (B21) to substitute for 6a", 6a^ etc. we obtain

- RitikiainAan'i6eA

- RijkiialnAanil6eA

Rijkl,A = Rnjkian
iA + Rinkian

jA + Riin]O"kA + Rijkn^lji (J532)

If we now substitute in (B27) using (B31) and (B32) we obtain, using (3.35)

and (3.37b),

dRijkl = Rijkl,mum + Rmjk]u
m

i + Rimklu
m

j + Rijmlujm
k + RijkmLom, (533)
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Appendix C
Metric Files
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0
0

0

$
$
$

(TITLE "C7.DIA
GENERAL STATIONARY CYLINDRICALLY SYMMETRIC VACUUM FIELD.
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.7)")

'/. This file was written by :
'/, Julian Collins
'/. Department of Mathematics
V, Southampton University
*/. Highfield
'/. Southampton
'/. S09 5NH

(OFF ALL) (ON ESUBS SUBPOT POTSIM NOZERO)

(PRELOAD DIAINP DYTRSP)

(VARS T F P Z) '/. t , phi , rho , z

(RPL IZUD)

EXP(U) $ EXP(U)*A $ 0 $
0 $ P*EXP(-U) $ 0 $
0 $ 0 $ P"(N-2/4-l/4) $
0 $ 0 $ 0 $ P-(N"2/4-l/4) $

(RPL U A C S Q R)
(L0G(P*S))/2 $
C*P~N/N/Y/S+B $
I*N*(X*Y)~(l/2) $
X*P~N+Y*P~(-N) $
X-(l/2)*p-(N/2)-I*Y-(l/2)*p-(-N/2) $
X~(l/2)*P-(N/2)+I*Y~(l/2)*P~(-N/2) $

(FUNS (U P) (A P) (X) (Y) (N) (C) (B) S Q R)

(NEWSUL 5 RIESUL (DIFF 2))
U $ :U $
A $ :A $
C $ :C $
Y $ P~N(S-X*P"N) $
X $ S*P-(-N)-Y*P*(-2N) $

(USESUL RIESUL RIE)

(SETSUB ESUL)
S*P~(-N)-Y*P"(-2N) $ X $
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(NEWSUL 3 PSISUL)
q $ :q $
R $ :R $
S $ :S $

(USESUL PSISUL PSI)

(REDSIMP PSI)

(RPL DYTRSPl)

(Q/R)"(l/4) $ 0 $
0 $ (R/q)~(l/4) $
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(TITLE "C8.DIA
STATIC CYLINDRICALLY SYMMETRIC VACUUM FIELD.
LEVI-CIVITA (1917-19) SOLUTION.
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.8)")

'/, This file was written by :
V, Julian Collins
'/, Department of Mathematics
'/, Southampton University

'/. Highfield
'/, Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP)

(VARS T P F Z) '/. t , rho , phi , z

(FUNS (M))

(RPL GD)

P~M $ P~(M"2-M) $ P-(I-M) $ P~(M~2-M) $
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(TITLE "C9a.DIA
STATIC CYLINDRICALLY SYMMETRIC EINSTEIN-MAXWELL FIELD.
ANGULAR MAGNETIC FIELD (axial current).
Ref: D.Kramer , H.Stephani , M.MacCallum ft E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.9a)")

'/, This file was written by :
'/. Julian Collins
'/, Department of Mathematics
'/, Southampton University
'/. Highfield
'/, Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP)

(VARS T P F Z) '/. t , rho , phi , z

(FUNS (C) (D) (M))

(RPL G)

C*P~M+D*P~(-M) $

(FUNS G)

(NEWSUL 2 RIESUL)
1/G~2 $ :G~2/G~4 $
1/G~3 $ :G/G~4 $

(USESUL RIESUL RIE)

(NEWSUL JC1SUL)

1/G"4 $ :G/G"5 $

(USESUL JC1SUL JC1)

(NEWSUL PSIDSUL)
l/G-5 $ :G/G~6 $

(USESUL PSIDSUL PSID PHID)

(NEWSUL DPSIDSUL)
l/G-7 $ :G/G~8 $
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(USESUL DPSIDSUL DPSID DPHID APSI XID APHI)

(RPL GD)

P~(M-2)*G $ P"(M-2)*G $ P*G $ G~(-l) $
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(TITLE "C9b.DIA
STATIC CYLINDRICALLY SYMMETRIC EINSTEIN-MAXWELL FIELD.
LONGITUDINAL MAGNETIC FIELD (angular current).
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.9b)")

'/, This file was written by :
'/, Julian Collins
V, Department of Mathematics
V, Southampton University
*/. Highfield
V. Southampton

*/, S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP)

(VARS T P Z F) '/. t , rho , z , phi

(FUNS (C) (D) (M))

(RPL G)
C*P-M+D*P~(-M) $

(FUNS G)

(NEWSUL 2 RIESUL)
1/G"2 $ :G~2/G"4 $
1/G~3 $ :G/G~4 $

(USESUL RIESUL RIE)

(NEWSUL JC1SUL)
l/G-4 $ :G/G*5 $

(USESUL JC1SUL JC1)

(NEWSUL PSIDSUL)
1/G"5 $ :G/G~6 $

(USESUL PSIDSUL PSID PHID)

(NEWSUL DPSIDSUL)
1/G~7 $ :G/G~8 $
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(USESUL DPSIDSUL DPSID DPHID APSI XID APHI)

(RPL GD)
P-(M"2)*G $ P-(M~2)*G $ P*G $ G~(-l) $
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(TITLE "C9C.DIA
STATIC CYLINDRICALLY SYMMETRIC EINSTEIN-MAXWELL FIELD.
RADIAL ELECTRIC FIELD (axial charge distribution).
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.9c)")

'/. This file was written by :

'/, Julian Collins
'/. Department of Mathematics
V. Southampton University
'/. Highfield
'/, Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP)

(VARS T P F Z) '/. t , rho , phi , z

(FUNS (C) (D) (M))

(RPL G)

C*P*M+D*p-(-M) $

(FUNS G)

(NEWSUL 2 RIESUL)
l/G-2 $ :G"2/G~4 $
l/G-3 $ :G/G"4 $

(USESUL RIESUL RIE)

(NEWSUL JC1SUL)
l/G-4 $ :G/G"S $

(USESUL JC1SUL JC1)

(NEWSUL PSIDSUL)

1/G"5 $ :G/G-6 $

(USESUL PSIDSUL PSID PHID)

(RPL GD)
G-(-l) $ P"(M~2)*G $ P*G $ P~(M"2)*G $
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(TITLE "C10.DIA
STATIC CYLINDRICALLY SYMMETRIC EINSTEIN-MAXWELL FIELD.

LONGITUDINAL MAGNETIC FIELD (angular current).
THE MELVIN SOLUTION (MELVIN (1964)).
Ref: D.Kramer , H.Stephani , M.MacCallum ft E.Herlt.

Exact Solutions of Einstein's Field Equations.
Equation (20.10)")

'/, This file was written by :
'/, Julian Collins
'/, Department of Mathematics
V, Southampton University
'/. Highfield

'/. Southampton

*/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS T P Z F) */. t , rho , z , phi

(FUNS (B))

(RPL G)
B~2/4*P+1/P $

(FUNS G)

(NEWSUL 2 RIESUL)
1/G"2 $ :G~2/G~4 $
l/G'3 $ :G/G~4 $

(USESUL RIESUL RIE)

(NEWSUL JC1SUL)

l/G'4 $ :G/G"5 $

(USESUL JC1SUL JC1)

(NEWSUL PSIDSUL)
l/G'5 $ :G/G~6 $

(USESUL PSIDSUL PSID PHID)

(NEWSUL DPSIDSUL)
1/G*7 $ :G/G"8 $
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(USESUL DPSIDSUL DPSID DPHID APSI XID APHI)

(RPL GD)
P*G $ P*G $ P*G $ G-(-l) $

(RPL DYTRl)
-1 $ 1 $
-1/2 $ -1/2 $
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(TITLE "Cll.DIA
STATIC CYLINDRICALLY SYMMETRIC EINSTEIN-MAXWELL FIELD.
THE CHITRE SOLUTION (1975).
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.11)")

'/. This file was written by :
'/, Julian Collins
'/, Department of Mathematics

'/, Southampton University
7. Highfield

'/. Southampton
*/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS T P F Z) */. t , rhp , phi , z

(RPL IZUD)

C*p-(-2/9)*EXP(l/2*A~2*P~(2/3)) $ 0 $ 0 $ 0 $
0 $ C*p-(-2/9)*EXP(l/2*A~2*P"(2/3)) $ 0 $ 0 $
0 $ 0 $ P"(2/3) $ 0 $
0 $ 0 $ A*P $ P"(l/3) $

(RPL X)
l/54C~(-2)*E~(-A~2*P~(2/3))*P~(-14/9)*(-4P-(l/3)*A*I+6*A-3*P*I-2-3A-2*P~(2/3)) $

(RPL Y)
l/54C-(-2)*E-(-A~2*P~(2/3))*P~(-14/9)*(4P~(l/3)*A*I-6*A-3*P*I-2-3A-2*P~(2/3))$

(FUNS (A) (C) X Y)

(NEWSUL 2 UNPSISUL)
E-(-A-2*P~(2/3))*C-(-2)*(-l/18*A-2*p-(-8/9)-l/27P~(-14/9)-l/9*A-3*p-(-5/9)*I
+2/27*A*P~(-ll/9)*I) $
Y $
E-(-A~2*p-(2/3))*C-(-2)*(-l/18*A-2*p-(-8/9)-l/27P-(-14/9)+l/9*A-3*p-(-5/9)*I
-2/27*A*P-(-ll/9)*I) $
X $

(USESUL UNPSISUL UNPSI)
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(NEWSUL 2 JC1SUL)
SQRT X $ :X/SQRT X $
SQRT Y $ :Y/SQRT Y $

(USESUL JC1SUL JC1)

(RPL DYTRSP1)
(X/Y)*(l/8) $ 0 $
0 $ (Y/X)"(l/8) $

167



(TITLE "C12.DIA
STATIONARY CYLINDRICALLY SYMMETRIC EINSTEIN-MAXWELL FIELD.

THE WILSON SOLUTION (1968).
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.12)")

V, This file was written by :
'/. Julian Collins
V. Department of Mathematics
'/, Southampton University
'/. Highlield
V, Southampton
'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS W X Y Z) '/. x l , x2 , x3 , x4

(RPL IZUD)

0 $ 0 $ -SqRT(3)*L0G(W) $ 1 $
0 $ W"( - l / 2 ) $ 0 $ 0 $
0 $ 0 $ 1 $ 0 $
1 $ 0 $ 0 $ 0 $

(RPL M L N)
(((6-SQRT 3)/(6+SQRT 3))~(l/8))/SQRT 2 $
6+SQRT 3 $
6-SQRT 3 $

(FUNS (L)(M)(N))

(NEWSUL 3 PSISUL)
M $ :M $
6+SQRT 3 $ L $
SQRT 3 $ 6-N $

(USESUL PSISUL PSI)

(SETNSUB 3 ESUL)

l/8W~(-2)*N-(3/2)*L-(-l/2)-3/2W~(-2)*N-(l/2)*L-(-l/2) $
-l/8W-(-2)*N-(l/2)*L~(l/2) $
L $ :L $
N $ :N $
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(RPL DYTRSPl)
1 $ 1 i
-1/2 $ 1/2 i

(RPL DYTRSP2)
M $ 0 $
0 $ 1/M $
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(TITLE "C13.DIA
STATIONARY CYLINDRICALLY SYMMETRIC DUST SOLUTION.
van STOCKUM class of dust solutions specialised to cylindrically
symmetry.
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.13)")

'/, This file was written by :
'/. Julian Collins
'/, Department of Mathematics
'/, Southampton University
'/. Highfield
V, Southampton
'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS T P F Z) '/. t , rho , phi , z

(RPL IZUD)

1 $ 0 $ A*P"2 $ 0 $
0 $ 0 $ P $ 0 $
0 $ 0 $ 0 $ E~(-1/2A-2*P~2) $
0 $ E~(-1/2A~2*P~2) $ 0 $ 0 $

(RPL X Y)
1 -2*A*P $
1 +2*A*P $

(FUNS (A) X Y)

(NEWSUL 2 UNPSISUL)
A"3*P*E-(A-2*P~2) $ A-2*E"(A~2*P~2)*(l-X)/2 $
-A-3*P*E-(A-2*P"2) $ A-2*E-(A-2*p-2)*(l-Y)/2 $

(USESUL UNPSISUL UNPSI)

(NEWSUL 2 JC1SUL)
SQRT X $ :X/SqRT X $
SQRT Y $ :Y/SQRT Y $

(USESUL JC1SUL JC1)

(RPL DYTRSP1)
(X/Y)"(l/8) $ 0 $
0 $ (Y/X)'(l/8) $
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(TITLE "C14.DIA
GENERAL STATIC CYLINDRICALLY SYMMETRIC PERFECT FLUID SOLUTION.
Ref: D.Kramer , H.Stephani , M.MacCallum ft E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.14)")

*/, This file was written by :
'/, Julian Collins
'/, Department of Mathematics
'/, Southampton University
'/. Highfield
'/, Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP)

(VARS T P F Z) '/. t , rho , phi , z

(FUNS (B P) (G P) (D P))

(RPL GD)
EXP(D) $ 1 $ EXP(B) $ EXP(G) $

(NEWSUL 2 RIESUL)
G&P&P $ B&P&P+(B&P)~2+B&P*D&P-(G&P)-2-G&P*D&P $
D&P&P $ -(D&P)~2+B&P*G&P+G&P*D&P-(B&P)-2-B&P&P $

(USESUL RIESUL RIE PSID XI)
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(TITLE "C14(SP).DIA
STATIC CYINDRICALLY SYMMETRIC PERFECT FLUID SOLUTION.
Ref: D.Kramer , H.Stephani , M.MacCallum ft E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.14).(special case where exp(eta)=rho)")

'/, This file was written by :
'/, Julian Collins
'/. Department of Mathematics
'/, Southampton University
•/. Highfield
'/, Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP)

(VARS T P F Z) '/. t , rho , phi , z

(FUNS (B P) (G P) (D P))

(RPL GD)
EXP(D) $ 1 $ EXP(B) $ EXP(G) $

(NEWSUL 4 RIESUL (DIFF 1))
D&P&P $ -3(D&P)~2+(D&P)/P $
B&P $ l/P+G&P $
G&P&P $ 6(G&P)~2+(G&P)/P $
D&P $ -2G&P $

(USESUL RIESUL RIE PSID XI PHID DLAMBDA)

(NEWSUL JC1SUL)
G&PftP $ 6(G&P)~2+(G&P)/P $

(USESUL JC1SUL JC1)
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(TITLE "C18.DIA
STATIONARY CYLINDRICALLY SYMMETRIC PERFECT FLUID WITH RIGID ROTATION.
THE KRASINSKI SOLUTION (1978).
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.18)")

'/. This file was written by :
'/, Julian Collins
'/, Department of Mathematics
'/, Southampton University
'/. Highfield
'/, Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS T X Y Z) '/. t , x ,y , z

(RPL IZUD)

1/H $ 0 $ X/H $ 0 $
0 $ 0 $ 0 $ SqRT(B)/SqRT(P)*H~(3/2) $
0 $ 0 $ SQRT(F)/SqRT(B)/H $ 0 $
0 $ (F*P*H)~(-l/2) $ 0 $ 0 $
(FUNS (A) (B) (F X) (P X) (H X) (U X) (L X) (M X))

(RPL L M)
-l/16*B*H*P+l/16*SqRT B*SqRT F*H*P&X-3/16SqRT B*SqRT F*P*H&X+1/32*P*F&X&X
+l/32H*F&X*P&X-3/32P*F&X*H&X $
-B*H*P-SqRT B*SqRT F*H*P&X+3SqRT B*SqRT F*P*H&X+l/2H*P*F&X&X+l/2H*F&X*P&X-
3/2P*F&X*H&X $

(NEWSUL 2 UNPSISUL)
-l/16*B*H*P+l/16*SqRT B*SqRT F*H*P&X-3/16SqRT B*SqRT F*P*H&X+1/32H*P*F&X&X
+l/32H*F&X*PftX-3/32P*F&X*H&X $
L $
-B*H*P-SqRT B*SqRT F*H*P&X+3SqRT B*SqRT F*P*H&X+l/2H*P*FftX&X+l/2H*F&X*P&X-
3/2P*F&X*H&X $
M $

(USESUL UNPSISUL UNPSI)
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(NEWSUL 3 UNPHISUL (DIFF 2))
P&X $ P*(5H&X/H-F&X/F+B*X/F) $
H $ U"(l/3) $
U&X&X $ (U&X(F&X-B*X)+3/4U(F&X&X-F&X-2/F+B*X*F&X/F-B))/F $

(USESUL UNPHISUL UNPHI)

(RPL DYTR1)
1 $ 1 $
-1/2 $ 1/2 $

(RPL DYTRSP1)
(L/M)'(l/8) $ 0 $
0 $ (L/M)"(-l/8) $

(RPL DYTRPHI1)
2~(-l/2) $ 0 $
0 $ SqRT 2 $
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(TITLE "C25.DIA
CYLINDRICALLY SYMMETRIC VACUUM FIELD.
EINSTEIN-ROSEN WAVES.
Ref: D.Kramer , H.Stephani , M.MacCallum & E.HerIt.
Exact Solutions of Einstein's Field Equations.
Equation (20.25)")

'/, This file was written by :
'/. Julian Collins
'/, Department of Mathematics
'/, Southampton University
'/. Highfield
'/. Southampton
'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS T P F Z) '/. t , rho , phi , z

(RPL GD)
E-(K-U) $ E-(K-U) $ E*(-U)*P $ E"(U) $

(FUNS (U P T)(K P T)(L P T)(M P T))

(RPL L M)
E-(-2K+2U)*(P*U&T-3-3P*U&T-2*U&P+3P*U&T*U&p-2-P*UftP-3+3/2U&T-2-3U&T*U&P
+3/2U&P*2-U&T&P+U&P&P+1/2/P*U&P $
E"(-2K+2U)*(-P*U&T"3-3P*U&T-2*U&P-3P*U&T*U&P~2-P*U&P~3+3/2U&T~2+3U&T*U&P
+3/2U&P"2+U&T&P+U&P&P+l/2/P*U&P $

(NEWSUL 2 UNPSISUL)
E"(-2K+2U)*(P*U&T~3-3P*U&T"2*U&P+3P*U&T*U&P~2-P*U&p-3+3/2U&T"2-3U&T*U&P
+3/2U&P-2-U&T&P+U&P&P+1/2/P+U&P $
L $
E-(-2K+2U)*(-P*U&T-3-3P*U&T-2*U&P-3P*UfcT*U&p-2-P*UftP-3+3/2U&T-2+3U&T*U&P
+3/2U&P-2+U&T&P+U&P&P+1/2/P+U&P $
M $

(USESUL UNPSISUL UNPSI)

(NEWSUL 3 RIESUL (DIFF 1))
K&P $ P*(U&P~2+U&T~2) $
K&T $ 2P*U&P*U&T $
U&T&T $ (P*U&P)&P/P $
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(USESUL RIESUL RIE)

(RPL DYTRSPl)
(L/M)"(l/8) $ 0
0 $ (L/M)"(-l/8)
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(TITLE "C39.DIA
CYLINDRICALLY SYMMETRIC PURE RADIATION FIELD.
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.39)")

'/, This file was written by :
'/. Julian Collins

'/. Department of Mathematics
'/, Southampton University
'/. Highfield
'/, Southainpton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP)

(VARS T P F Z) '/. t , rho , phi , z

(FUNS (U P T) (KPT))

(RPL GD)
E'(K-U) $ E-(K-U) $ P*E"(-U) $ E"(U) $

(NEWSUL 2 RIESUL (DIFF 2))
K&P $ P*(U&P+U&T)~2 - K&T $
UftP&P $ U&T&T-U&P/P $
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(USESUL RIESUL RIE PHI PHISTD LAMBD)

(NEWSUL 3 UNPSISUL)
-P*(E**(-2*K+2*U))*(DF(U,T))**3-3*P
*(E**(-2*K+2*U))*(DF(U,T))**2*DF(U,P)-3*P*(E**
(-2*K+2*U))*DF(U,T)*(DF(U,P))**2-P*(E**(-2*K+
2*U))*(DF(U,P))**3+3/2*(E**(-2*K+2*U))*(DF(U,
T))**2+3*(E**(-2*K+2*U))*DF(U,T)*DF(U,P)+3/2*
(E**(-2*K+2*U))*(DF(U,P))**2+(E**(-2*K+2*U))*
DF(U,T,2)+(E**(-2*K+2*U))*DF(U,T,P)-1/2*P**(-
1)*(E**(-2*K+2*U))*DF(U,P) $

L $

1/3*P*(E**(-2*K+2*U))*DF(U,T)*DF(U,
T,2)+1/3*P*(E**(-2*K+2*U))*DF(U,T)*DF(U,T,P)+
1/3*P*(E**(-2*K+2*U))*DF(U,P)*DF(U,T,2)+1/3*P
*(E**(-2*K+2*U))*DF(U,P)*DF(U,T,P)-1/6*(E**(-
2*K+2*U))*DF(K,T,2)-1/6*(E**(-2*K+2*U))*DF(K,
T,P)+1/2*(E**(-2*K+2*U))*(DF(U,T))**2-1/2*(E**
(-2*K+2*U))*(DF(U,P))**2+l/2*P**(-l)*(E**(-2*
K+2*U))*DF(U,P) $

M $

p*(E**(-2*K+2*U))*(DF(U,T))**3+P*(E
**(-2*K+2*U))*(DF(U,T))**2*DF(U,P)-P*(E**(-2*
K+2*U))*DF(U,T)*(DF(U,P))**2-P*(E**(-2*K+2*U)
)*(DF(U,P))**3-2*(E**(-2*K+2*U))*DF(K,T)*DF(U
,T)+2*(E**(-2*K+2*U))*DF(K,T)*DF(U,P)+3/2*(E**
(-2*K+2*U))*(DF(U,T))**2-(E**(-2*K+2*U))*DF(U
,T)*DF(U,P)+3/2*(E**(-2*K+2*U))*(DF(U,P))**2+
(E**(-2*K+2*U))*DF(U,T,2)-(E**(-2*K+2*U))*DF(
U,T,P)-P**(-1)*(E**(-2*K+2*U))*DF(K,T)-1/2*P**
(-1)*(E**(-2*K+2*U))*DF(U,P) $

(USESUL UNPSISUL UNPSI)

(FUNS (L P T) (HP T) (N P T))

(LOAD DYTRSP)

(RPL DYTRSP1)

(N/L)"(l/8) $ 0 $
0 $ (L/N)~(l/8) $
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(TITLE "C41.DIA
CYLINDRICALLY SYMMETRIC PURE RADIATION FIELD.
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (20.41)")

'/, This file was written by :
'/• Julian Collins
'/, Department of Mathematics
'/. Southampton University

*/. Highfield
'/, Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS T P F Z) */. t , rho , phi , z

(FUNS (K P T))

(RPL GD)

E"(K) $ E"(K) $ P $ 1 $

(NEWSUL 4 RIESUL)
K&P $ -K&T $
K&P&T $ -K&T&T $
K&P&P $ K&T&T $
K&P&T&T $ -K&T&T&T $

(USESUL RIESUL RIE PSID JC1 JC2 PHID D2PSI APSI DXI D2PHI APHI)

(RPL DYTRSPl)
(-l/P*E~(-2K)*K&T)~(l/4) $ 0 $

0 $ (-l/P*E-(-2K)*K*T)~(-l/4) $
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(TITLE "GH2.DIA
CYLINDRICALLY SYMMETRIC RADIATIVE VACUUM SOLUTION.
Ref: J.Holmes PhD thesis (1986),p.79,case(ii)")

'/. This file was written by :

'/, Julian Collins
'/, Department of Mathematics
V, Southampton University
'/. Highfield

'/. Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(RPL IZUD)
EXP(G-S)
0
0
0

$
$
$
$

0
EXP(G-S)
0
0

$
$
$
$

0
0
P*EXP(-S)
X*EXP(S)

$
$
$
$

0
0
0
EXP(S)

$
$
$
$

(VARS T P F Z) '/. t , rho , phi , z

(FUNS (G P T)(S P T)(X P T)(W P T)(H P T)(A)(B))

(NEWSUL 7 RICSUL (DIFF 2))
S $ (L0G(A*P*C0SH(H)))/2 $
X $ (SINH(H)/COSH(H))/A+B $
G $ (L0G(C0SH(H)))/2+(L0G(P))/4+W/4 $
W&P $ (H&P~2+H&T"2)*P $
W&T $ (2HftP*H&T)*P $
H&PftP $ H&T&T-(H&P)/P $
SINH(H) $ (C0SH(H)~2-l)~(l/2) $

(USESUL RICSUL RIC)
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(NEWSUL 3 UNPSISUL)
-(E**(-2*G+2*S))*DF(G,T)*DF(S,T)-(E

**(-2*G+2*S))*DF(G,T)*DF(S,P)-(E**(-2*G+2*S))
*DF(G,P)*DF(S,T)-(E**(-2*G+2*S))*DF(G,P)*DF(S
,P)+(E**(-2*G+2*S))*(DF(S,T))**2+2*(E**(-2*G+
2*S))*DF(S,T)*DF(S,P)+(E**(-2*G+2*S))*(DF(S,P
))**2+l/2*(E**(-2*G+2*S))*DF(S,T,2)+(E**(-2*G
+2*S))*DF(S,T,P)+1/2*(E**(-2*G+2*S))*DF(S,P,2
)+l/2*P**(-l)*(E**(-2*G+2*S))*DF(G,T)+l/2*P**
(-1)*(E**(-2*G+2*S))*DF(G,P)-1/4*P**(-2)*(E**
(-2*G+6*S))*(DF(X,T))**2-l/2*P**(-2)*(E**(-2*
G+6*S))*DF(X,T)*DF(X,P)-1/4*P**(-2)*(E**(-2*G
+6*S))*(DF(X,P))**2-l/2*I*P**(-l)*(E**(-2*G+4
*S))*DF(G,T)*DF(X,T)-1/2*I*P**(-1)*(E**(-2*G+
4*S))*DF(G,T)*DF(X,P)-1/2*I*P**(-1)*(E**(-2*G
+4*S))*DF(G,P)*DF(X,T)-l/2*I*P**(-l)*(E**(-2*
G+4*S))*DF(G,P)*DF(X,P)+3/2*I*P**(-l)*(E**(-2
•G+4*S))*DF(S,T)*DF(X,T)+3/2*I*P**(-l)*(E**(-
2*G+4*S))*DF(S,T)*DF(X,P)+3/2*I*P**(-l)*(E**(
-2*G+4*S))*DF(S,P)*DF(X,T)+3/2*I*P**(-l)*(E**
(-2*G+4*S))*DF(S,P)*DF(X,P)+1/4*I*P**(-1)*(E**
(_2*G+4*S))*DF(X,T,2)+1/2*I*P**(-1)*(E**(-2*G
+4*S))*DF(X,T,P)+1/4*I*P**(-1)*(E**(-2*G+4*S)
)*DF(X,P,2)-1/4*I*P**(-2)*(E**(-2*G+4*S))*DF(
X,T)-1/4*I*P**(-2)*(E**(-2*G+4*S))*DF(X,P) $

L $

1/2*(E**(-2*G+2*S))*(DF(S,T))**2-1/
2*(E**(-2*G+2*S))*(DF(S,P))**2+1/2*P**(-1)*(E
**(-2*G+2*S))*DF(S,P)+l/8*P**(-2)*(E**(-2*G+6
*S))*(DF(X,T))**2-1/8*P**(-2)*(E**(-2*G+6*S))
*(DF(X,P))**2+1/2*I*P**(-1)*(E**(-2*G+4*S))*DF
(S,T)*DF(X,P)-1/2*I*P**(-1)*(E**(-2*G+4*S))*DF
(S,P)*DF(X,T)+1/4*I*P**(-2)*(E**(-2*G+4*S))*DF
(X,T) $
M $
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-(E**(-2*G+2*S))*DF(G,T)*DF(S,T)+(E
**(-2*G+2*S))*DF(G,T)*DF(S,P)+(E**(-2*G+2*S))
•DF(G,P)*DF(S,T)-(E**(-2*G+2*S))*DF(G,P)*DF(S
,P)+(E**(-2*G+2*S))*(DF(S,T))**2-2*(E**(-2*G+
2*S))*DF(S,T)*DF(S,P)+(E**(-2*G+2*S))*(DF(S,P
))**2+l/2*(E**(-2*G+2*S))*DF(S,T,2)-(E**(-2*G
+2*S))*DF(S,T,P)+1/2*(E**(-2*G+2*S))*DF(S,P,2
)-l/2*P**(-l)*(E**(-2*G+2*S))*DF(G,T)+l/2*P**
(-1)*(E**(-2*G+2*S))*DF(G,P)-1/4*P**(-2)*(E**
(-2*G+6*S))*(DF(X,T))**2+l/2*P**(-2)*(E**(-2*
G+6*S))*DF(X,T)*DF(X,P)-1/4*P**(-2)*(E**(-2*G
+6*S))*(DF(X,P))**2+l/2*I*P**(-l)*(E**(-2*G+4
•S))*DF(G,T)*DF(X,T)-1/2*I*P**(-1)*(E**(-2*G+
4*S))*DF(G,T)*DF(X,P)-1/2*I*P**(-1)*(E**(-2*G
+4*S))*DF(G,P)*DF(X,T)+l/2*I*P**(-l)*(E**(-2*
G+4*S))*DF(G,P)*DF(X,P)-3/2*I*P**(-l)*(E**(-2
*G+4*S))*DF(S,T)*DF(X,T)+3/2*I*P**(-l)*(E**(-
2*G+4*S))*DF(S,T)*DF(X,P)+3/2*I*P**(-l)*(E**(
-2*G+4*S))*DF(S,P)*DF(X,T)-3/2*I*P**(-l)*(E**
(-2*G+4*S))*DF(S,P)*DF(X,P)-1/4*I*P**(-1)*(E**
(-2*G+4*S))*DF(X,T,2)+1/2*I*P**(-1)*(E**(-2*G
+4*S))*DF(X,T,P)-1/4*I*P**(-1)*(E**(-2*G+4*S)
)*DF(X,P,2)-1/4*I*P**(-2)*(E**(-2*G+4*S))*DF(
X,T)+1/4*I*P**(-2)*(E**(-2*G+4*S))*DF(X,P) $

K $

(USESUL UNPSISUL UNPSI)

(FUNS (L P T) (M P T) (N P T))

(LOAD DYTRSP)

(RPL DYTRSP1)

(K/L)-(l/8) $ 0 $

0 $ (L/N)"(l/8) $
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(TITLE "SA2.DIA
GEKERAL STATIONARY AXISYHMETRIC STATIC VACUUM SOLUTION.
WEYL'S CLASS.
Ref: D.Kramer , H.Stephani , M.MacCallum ft E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (18.2)")

'/. This file was written by :
'/. Julian Collins
'/, Department of Mathematics
'/, Southampton University
'/. Highfield
'ft Southampton

'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS P Z

(RPL IZUD)
0
EXP(K-U)
0
0

T

$
$
$
$

F) 7. rho

0
0
EXP(K-U)
0

$
$
$
$

EXP(U)
0
0
0

phi

$
$
$
$

0
0
0
P*EXP(-U)

$
$
$
$

(FUNS (U P Z) (K P Z))

(NEWSUL 3 RIESUL (DIFF 2))
K&P $ P*(U&P"2 - UftZ"2) $
K&Z $ 2P*U&P*U&Z $
U&Z&Z $ -U&P&P - l/P+U&P $

(USESUL RIESUL RIE)

(NEWSUL 2 UNPSISUL)
4*P*(E**(-2*K+2*U))*(DF(U,P))**3-12
*P*(E**(-2*K+2*U))*DF(U,P)*(DF(U,Z))**2-6*(E**
(-2*K+2*U))*(DF(U,P))**2+6*(E**(-2+K+2+U))*(DF
(U,Z))**2-4*(E**(-2*K+2*U))*DF(U,P,2)-2*P**(-
l)*(E**(-2*K+2*U))*DF(U,P)-12*I*P*(E**(-2*K+2
•U))*(DF(U,P))**2*DF(U,Z)+4*I*P*(E**(-2*K+2*U
))*(DF(U,Z))**3+12*I*(E**(-2*K+2*U))*DF(U,P)*
DF(U,Z)+4*I*(E**(-2*K+2*U))*DF(U,P,Z) $
X $
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1/4*P*(E**(-2*K+2*U))*(DF(U,P))**3-
3/4*P*(E**(-2*K+2*U))*DF(U,P)*(DF(U,Z))**2-3/
8*(E**(-2*K+2*U))*(DF(U,P))**2+3/8*(E**(-2*K+
2*U))*(DF(U,Z))**2-l/4*(E**(-2*K+2*U))*DF(U,P
,2)-l/8*P**(-l)*(E**(-2*K+2*U))*DF(U,P)+3/4*I
•p*(E**(-2*K+2*U))*(DF(U,P))**2*DF(U,Z)-l/4*I
*P*(E**(-2*K+2*U))*(DF(U,Z))**3-3/4*I*(E**(-2
*K+2*U))*DF(U,P)*DF(U,Z)-1/4*I*(E**(-2*K+2*U)
)*DF(U,P,Z) $

Y $

(USESUL UNPSISUL UNPSI)

(FUNS (X P Z) (Y P Z))

(RPL DYTR1)
I $ 1 $
-1/2 $ -1/2*1 $

(RPL DYTRSP1)
(Y/X)~(l/8) $ 0 $
0 $ (X/Y)"(l/8) $
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(TITLE "SA4.DIA
STATIONARY AXISYMMETRIC STATIC VACUUM SOLUTION.
WEYL'S CLASS.
CHAZY(1924), CURZON(1924).
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (18.4)")

'/, This file was written by :
'/, Julian Collins
'/, Department of Mathematics
'/, Southampton University
'/. Highfield
'/, Southampton
'/. S09 5NH

(ON NOZERO POTSIM ESUBS)

(PRELOAD DIAINP DYTRSP)

(VARS R H T F) '/. r , theta , t , phi

(RPL IZUD)

0 $ 0 $ EXP(U) $ 0 $
EXP(K-U) $ 0 $ 0 $ 0 $
0 $ R*EXP(K-U) $ 0 $ 0 $
0 $ 0 $ 0 $ R*(SIN H)*EXP(-U) $

(RPL U K)
-M/R $
-1/2M-2*(SIN H)~2/R~2 $

(FUNS (M) (U R) (K R H))

(SETNSUB 2 ESUL)
U $ :U $
K $ :K $

(NEWSUL RIESUL)
(SIN H)-2 $ 1 - (COS H)-2 $

(USESUL RIESUL RIE)

(RPL DYTR1)
1 $ 1 $
-1/2 $ -1/2*1 $
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(RPL X Y)
-4*M**3*R**(-5)*(E**(-M**2*R**(-2
)*(C0S(H))**2+M**2*R**(-2)-2*M*R**(-l)))*(C0S
(H))**2+4*M**3*R**(-5)*(E**(-M**2*R**(-2)*(C0S
(H))**2+M**2*R**(-2)-2*M*R**(-l)))-6*M**2*R**
(-4)*(E**(-M**2*R**(-2)*(C0S(H))**2+M**2*R**(
-2)-2*M*R**(-l)))+6*M*R**(-3)*(E**(-M**2*R**(
-2)*(C0S(H))**2+M**2*R**(-2)-2*M*R**(-l)))+4*
I*M**3*R**(-5)*(E**(-M**2*R**(-2)*(C0S(H))**2
+M**2*R**(-2)-2*M*R**(-l)))*C0S(H)*SIN(H) $

-1/4*M**3*R**(-5)*(E**(-M**2*R**(
-2)*(C0S(H))**2+M**2*R**(-2)-2*M*R**(-l)))*(C0S
(H))**2+l/4*M**3*R**(-5)*(E**(-M**2*R**(-2)*(
C0S(H))**2+H**2*R**(-2)-2*M*R**(-l)))-3/8*M**
2*R**(-4)*(E**(-M**2*R**(-2)*(C0S(H))**2+M**2
*R**(-2)-2*M*R**(-1)))+3/8*H*R**(-3)*(E**(-M**
2*R**(-2)*(C0S(H))**2+M**2*R**(-2)-2*M*R**(-l
)))-l/4*I*M**3*R**(-5)*(E**(-M**2*R**(-2)*(C0S
(H))**2+M**2*R**(-2)-2*M*R**(-l)))*C0S(H)*SIN
(H) $

(FUNS (X R H) (Y R H))

(NEWSUL 2 UNPSISUL)
:X $ X $
:Y $ Y $

(USESUL UNPSISUL UNPSI)

(RPL DYTRSP1)
(Y/X)-(l/8) $ 0 $

0 $ (X/Y)-(l/8) $

186



(TITLE "SA8.DIA.
STATIONARY AXISYMMETRIC STATIC VACUUM SOLUTION.
WEYL'S CLASS.
THE SCHWARZSCHILD SOLUTION IN PROLATE SPHEROIDAL COORDINATES.
Ref: D.Kramer , H.Stephani , H.HacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (18.8)")

'/. This file was written by :
'I, Julian Collins

'/. Department of Mathematics
'/, Southampton University
'/. Highfield
'/. Southampton
*/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM ESUBS)

(PRELOAD DIAINP)

(VARS T X H F) '/. t, x, theta (using y = cos(H)), phi

(RPL GD) '/. D = delta
(A/B)"(D/2) $
K*(B/A)-(D/2)*(C*G)~(l/2)*(A*B/C/G)-(D-2/2)*(A*B)~(-l/2) $
K*(B/A)-(D/2)*(C*G)~(l/2)*(A*B/C/G)-(D-2/2) $
K*(B/A)-(D/2)*(A*B)~(1/2)*SIN(H) $

(RPL A B C G)
X-l $
X+l $
X-COS(H) $
X+COS(H) $

(FUNS (K) (M) (D) A B C G)

(SETNSUB 2 ESUL)
D $ 1 $
K $ M $
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(TITLE "SA9.DIA.
STATIONARY AXISYMMETRIC STATIC VACUUM SOLUTION.
WEYL'S CLASS.
THE DARMOIS SOLUTION IN PROLATE SPHEROIDAL COORDINATES.
Ref: D.Kramer , H.Stephani , M.MacCallum & E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (18.9)")

7, This file was written by :

'/, Julian Collins
'/. Department of Mathematics
'/. Southampton University
'/. Highfield
'/, Southampton
'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM ESUBS)

(PRELOAD DIAINP DYTRSP)

(VARS T X H F) */. t, x, theta (using y = cos(H)), phi

(RPL GD) '/. D = delta
(A/B)-(D/2) $
K*(B/A)-(D/2)*(C*G)-(l/2)*(A*B/C/G)-(D-2/2)*(A*B)-(-l/2) $
K*(B/A)-(D/2)*(C*G)-(l/2)*(A*B/C/G)~(D-2/2) $
K*(B/A)-(D/2)*(A*B)~(1/2)*SIN(H) $

(RPL A B C G)
X-l $
X+l $

X-COS(H) $
X+COS(H) $

(FUNS (K) (M) (D) A B C G)

(SETNSUB 2 ESUL)
D $ 2 $
K $ M/2 $

(NEWSUL 9 RIESUL)
I/A $ (:A)-2/A"3 $
1/A~2 $ :A/A~3 $
I/A"(3/2) $ :A/A"(5/2) $
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l/B-5 $ (:B)-2/B-7 $

1/B"6 $ :B/B"7 $
l/B-(ll/2) $ :B/B"(13/2) $

C $ :C $
G $ :G $
COS(H) $ (l-(SIN(H))-2)-(l/2) $

(USESUL RIESUL RIE)

(NEWSUL 2 B4CRITSUL)
l/A-5 $ :A/A"6 $
1/B~13 $ :B/B"14 $

(USESUL B4CRITSUL B4CRIT)

(RPL DYTR1)
1 $ I $
1/2 $ 1/2 $

(RPL L N P)
48*A**(-3)*B**(-7)*M**(-2)*X**7-96
•A**(-3)*B**(-7)*M**(-2)*X**6+240*A**(-3)*B**
(-7)*M**(-2)*X**5*(SIN(H))**2-144*A**(-3)*B**
(-7)*M**(-2)*X**5-288*A**(-3)*B**(-7)*M**(-2)
*X**4*(SIN(H))**2+288*A**(-3)*B**(-7)*H**(-2)
•X**4+336*A**(-3)*B**(-7)*H**(-2)*X**3*(SIN(H
))**4-480*A**(-3)*B**(-7)*M**(-2)*X**3*(SIN(H
))**2+144*A**(-3)*B**(-7)*M**(-2)*X**3-288*A**
(-3)*B**(-7)*M**(-2)*X**2*(SIN(H))**4+576*A**
(-3)*B**(-7)*H**(-2)*X**2*(SIN(H))**2-288*A**
(-3)*B**(-7)*M**(-2)*X**2+144*A**(-3)*B**(-7)
*M**(-2)*X*(SIN(H))**6-336*A**(-3)*B**(-7)*H**
(-2)*X*(SIN(H))**4+240*A**(-3)*B**(-7)*M**(-2
)*X*(SIN(H))**2-48*A**(-3)*B**(-7)*M**(-2)*X-
96*A**(-3)*B**(-7)*M**(-2)*(SIN(H))**6+288*A**
(-3)*B**(-7)*H**(-2)*(SIN(H))**4-288*A**(-3)*
B**(-7)*M**(-2)*(SIN(H))**2+96*A**(-3)*B**(-7
)*M**(-2)-96*I*A**(-5/2)*B**(-13/2)*M**(-2)*X
**4*SIN(H)*(-(SIN(H))**2+l)**(l/2)-192*I*A**(
-5/2)*B**(-13/2)*M**(-2)*X**2*(SIN(H))**3*(-(
SIN(H))**2+l)**(l/2)+192*I*A**(-5/2)*B**(-13/
2)*M**(-2)*X**2*SIN(H)*(-(SIN(H))**2+l)**(l/2
)-96*I*A**(-5/2)*B**(-13/2)*M**(-2)*(SIN(H))**
5*(-(SIN(H))**2+l)**(l/2)+192*I*A**(-5/2)*B**
(-13/2)*M**(-2)*(SIN(H))**3*(-(SIN(H))**2+1)**
(l/2)-96*I*A**(-5/2)*B**(-13/2)*M**(-2)*SIN(H
)*(-(SIN(H))**2+l)**(l/2) $
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4*A**(-3)*B**(-7)*M**(-2)*X**7-8*A**
(-3)*B**(-7)*M**(-2)*X**6+12*A**(-3)*B**(-7)*
M**(-2)*X**5*(SIN(H))**2-12*A**(-3)*B**(-7)*M
•*(-2)*X**5-24*A**(-3)*B**(-7)*M**(-2)*X**4*(
SIN(H))**2+24*A**(-3)*B**(-7)*M**(-2)*X**4+12
*A**(-3)*B**(-7)*M**(-2)*X**3*(SIN(H))**4-24*
A**(-3)*B**(-7)*M**(-2)*X**3*(SIN(H))**2+12*A
•*(-3)*B**(-7)*M**(-2)*X**3-24*A**(-3)*B**(-7
)*M**(-2)*X**2*(SIN(H))**4+48*A**(-3)*B**(-7)
*M**(-2)*X**2*(SIN(H))**2-24*A**(-3)*B**(-7)*
M**(-2)*X**2+4*A**(-3)*B**(-7)*M**(-2)*X*(SIN
(H))**6-12*A**(-3)*B**(-7)*M**(-2)*X*(SIK(H))
**4+12*A**(-3)*B**(-7)*M**(-2)*X*(SIN(H))**2-
4* A **(_3 )*B**( -7 )*M**( -2 )*X-8*A**( -3 )*B**( -7 )

*M**(-2)*(SIN(H))**6+24*A**(-3)*B**(-7)*H**(-
2)*(SIN(H))**4-24*A**(-3)*B**(-7)*M**(-2)*(SIN
(H))**2+8*A**(-3)*B**(-7)*M**(-2) $

3*A**(-3)*B**(-7)*M**(-2)*X**7-6*
A**(-3)*B**(-7)*M**(-2)*X**6+15*A**(-3)*B**(-
7)*M**(-2)*X**5*(SIN(H))**2-9*A**(-3)*B**(-7)
*M**(-2)*X**S-18*A**(-3)*B**(-7)*M**(-2)*X**4
•(SIN(H))**2+18*A**(-3)*B**(-7)*M**(-2)*X**4+
21*A**(-3)*B**(-7)*M**(-2)*X**3*(SIN(H))**4-30
*A**(-3)*B**(-7)*M**(-2)*X**3*(SIN(H))**2+9*A
**(-3)*B**(-7)*M**(-2)*X**3-18*A**(-3)*B**(-7
)*H**(-2)*X**2*(SIN(H))**4+36*A**(-3)*B**(-7)
*M**(-2)*X**2*(SIN(H))**2-18*A**(-3)*B**(-7)*
M**(-2)*X**2+9*A**(-3)*B**(-7)*M**(-2)*X*(SIN
(H))**6-21*A**(-3)*B**(-7)*M**(-2)*X*(SIN(H))
**4+15*A**(-3)*B**(-7)*M**(-2)*X*(SIN(H))**2-
3*A**(-3)*B**(-7)*M**(-2)*X-6*A**(-3)*B**(-7)
*M**(-2)*(SIK(H))**6+18*A**(-3)*B**(-7)*M**(-
2)*(SIN(H))**4-18*A**(-3)*B**(-7)*M**(-2)*(SIN
(H))**2+6*A**(-3)*B**(-7)*M**(-2)+6*I*A**(-5/
2)*B**(-13/2)*M**(-2)*X**4*SIN(H)*(-(SIN(H))**
2+l)**(l/2)+12*I*A**(-5/2)*B**(-13/2)*M**(-2)
•X**2*(SIN(H))**3*(-(SIN(H))**2+l)**(l/2)-12*
I*A**(-5/2)*B**(-13/2)*M**(-2)*X**2*SIN(H)*(-
(SIN(H))**2+l)**(l/2)+6*I*A**(-5/2)*B**(-13/2
)*M**(-2)*(SIN(H))**5*(-(SIN(H))**2+l)**(l/2)
-12*I*A**(-5/2)*B**(-13/2)*H**(-2)*(SIN(H))**
3*(-(SIN(H))**2+l)**(l/2)+6*I*A**(-S/2)*B**(-
13/2)*M**(-2)*SIN(H)*(-(SIN(H))**2+l)**(l/2) $
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(NEWSUL 3 UNPSISUL)
:L $ L $
:N $ N $
:P $ P $

(USESUL UNPSISUL UNPSI)

(RPL DYTRSPl)
(P/L)~(l/8) $ 0 $
0 $ (L/P)"(l/8) $

(FUNS (L X H) (NX H) (P X H))
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(TITLE "SA23.DIA
STATIONARY AXISYMMETRIC VACUUM SOLUTION.
VAN STOCKUM SUBCLASS (1937).
Ref: D.Kramer , H.Stephani , H.MacCallum ft E.Herlt.
Exact Solutions of Einstein's Field Equations.
Equation (18.23)")

'/, This file was written by :
'/, Julian Collins
'/. Department of Mathematics
'/. Southampton University
'/. Highfield
'/, Southampton
'/. S09 5NH

(OFF ALL) (ON NOZERO POTSIM)

(PRELOAD DIAINP DYTRSP)

(VARS P Z T F) '/. rho , z , t , phi

(RPL IZUD)

0 $ 0 $ 0 $ (P/W)"(l/2) $
0 $ 0 $ (P*W)"(l/2) $ -(P/W)-(l/2) $
P"(-l/4) $ 0 $ 0 $ 0 $
0 $ P"(-l/4) $ 0 $ 0 $

(FUNS (W P Z))

(NEWSUL RIESUL (DIFF 2))
W&Z&Z $ -W&P&P - W&P/P $
(USESUL RIESUL RIE)

(RPL DYTR1)
0 $ -1 $
1 $ 0 $

(RPL X)
-P**(l/2)*W**(-l)*DF(W,P,2)-5/4*P**
(-1/2)*W**(-1)*DF(W,P)+I*P**(1/2)*W**(-1)*DF(
W,P,Z)+3/4*I*P**(-l/2)*W**(-l)*DF(W,Z) $

(FUNS (X P Z))

(NEWSUL UNPSISUL)
:X $ X $
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(USESUL UNPSISUL UNPSI)

(RPL DYTRSPi)
X"(l/4) $ 0 $
0 $ X-C-l/4) $
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