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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

THE HOMOLOGICAL GRADE OF A MODULE OVER A CUMMUTATIVE RING

by Yousef Saleh Alshaniafi

Throughout the thesis, 'a ring1 means a 'commutative ring with identity',

and 'R-module' means a 'unitary R-module'. The category of all R-modules is

denoted by Mod-R and the annihilator of an R-module N is denoted by a m N.
R

For an ideal A of a ring R and an R-module M, David Kirby and Hefzi A.

Mehran, in a recent paper, define the homological grade of M in A,

hgr (A;M), to be inf{nlExt (R/A,M) ^ 0 } . In the thesis, we consider the
K R

homological grade of M in A as the homological grade of M in the cyclic
R-module R/A. We denote it by hgr (R/A;M) and extend this definition to

R

any arbitrary R-module N replacing R/A. The notion of an M-sequence in the

work of D. Kirby and H.A. Mehran is adapted for use in new situations. For an

R-module M and an exact sequence 0 •> N. 4 N 4 N , •» 0 of R-modules with N?

finitely generated, it is proved that, hgr (R/ann N_; M) = hgr (N_; M) =
R R 2. R A

min{hgr (N.; M ) , hgr (N_; M)} = the supremum of lengths of M-sequences in
R 1 R o

ann N . For R-modules N, M where N is finitely generated and for
R 2,

r < hgr_(N; M), it is shown that Ext^(N, M) = Hom_(N, ker d r ) , where
, , R R

ker d is the r cosyzygy in the minimal injective resolution of M. If,

in addition, arm N is finitely generated, a relation between hgr (N;M),
proj dim M and hgr (N; R) is given. Dual notions of the homological grade

R R

and an M-sequence are given and most of the results concerning the homological

grade are dualized. For an artinian R-module M and a finitely generated

R-module N, it is proved that for every n < cohgr (N; M) there exists a
R

regular M-cosequence in ann N of length n. Finally, if (R,^H) is a local
R

(noetherian) ring, it is shown that for every r < hgr (RA/H;R) the
R

contravariant left exact functor Ext (-, Horn (ker d , E(R/OH))) is an exact
R R

functor in the category of all R-modules of finite length. And if, in
addition, R is complete and n = hgr (R/^H;R) then, for a finitely generated

R
R-module N ^ 0 of finite injective dimension, the R-module Horn (O ,N) is

R n
finitely generated with finite projective dimension equal to n - hgr (R/*>H;N),

R
where O = Horn (ker dn, E(R/>/R)).

n R
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CHAPTER 1

INTRODUCTION AND SOME BASIC IDEAS

1 .1 Introduction

In [16], D. Rees introduced a numerical character of a finitely

generated module N ^ 0 over a noetherian ring R, called the grade of N.

This is defined as the least integer k such that Ext (N,R)^ 0, or,

equivalently; the maximal length of a regular R-sequence in the

annihilator of N. When R is not necessarily noetherian and if J

is an ideal of R and E an R-module such that JE ^ E, M.Hochster

in [4] defined g(J,E), the classical grade of J on E, as the

supremum of lengths of E-sequences contained in J. Then, he defined

a new notion of grade as follows. For an admissible pair (I,M); see

[4] p.56; of an ideal I of R and an R-module M, G(I,M) = sup

{g(I «> B , M ® B ) | B is a faithfully flat R-algebra }. And in [14],

R R
D.G. Northcott considered the classical grade of an ideal A of R

on an R-module E, g_{A;E}, as the upper bound of the lengths of all
R

finite E-sequences in A. Then he puts G_{A;E} = lim g r {AR[x;m];
R RI x f m jm-K»

E[x;m]} and calls it the true grade or polynomial grade of A on E, where

x.,...,x (= x;m) are indeterminates. Finally, D. Kirby and H.A.. Mehran,
1 m

in [7], extended the notion of an E-sequence of length d in A as

follows. For d = 0 the E-sequence is empty and for d = 1 it is a subset



{a. |i e 1} = c* £ A such that 0: £ Ra. = 0. For d > 1, they define,
iel

inductively, an E-sequence of length d in A as a sequence

en = {a. . I i e I },..., a = (a,,|i € I } of subsets of A such that
i li ' i a id' d

oi is an E-sequence of length 1 in A and ex ,....,a. is a

[ (FI E)/(a. . )E]-sequence of length d-1 in A. Thus in the standard

notion of E-sequence the sets en. are singletons, and, in effect, in

the extended notion of Hochster [4] and Northcott [14] the sets a..

are finite. It follows from the results of [7] that every maximal

E-sequence has the same length (which may be infinite). This maximal

length is inf{nI Ext (R/A,E) * 0} which they call the homological grade
R

of E in A and denote it by hgr (A;E).
R

The purpose of this thesis is to consider the homological grade

of E in A as the homological grade of E in the cyclic R-module R/A

and denote it by hgr (R/A;E), and extend this definition to any
R

arbitrary R-module N replacing R/A in an attempt to bring together

all the ideas and results mentioned above.

In section two of Chapter one, we quote some general results and

definitions for reference. And in section (1.3), we prove two

essential lemmas and their corollaries which we use frequently in

this thesis.

In section one of Chapter two, we give a definition of the

homological grade of M in N and investigate its properties. And



in section (2.2), we adapt the notion, in [7], of an M-sequence and

study the relation between the homological grade of M in N and the

length of an M-sequence in the annihilator of N in R. Section (2.3)

deals with the relation between the homological grade of M in a

finitely generated R-module N and the first non-vanishing term in the

complex Horn (N,E ), where E is the deleted minimal injective

KM M
resolution of M.

In section one of Chapter Three, we give a definition of an

M-cosequence in an ideal A of R and study the relation between the

cohomological grade of M in N and the length of an M-cosequence

in the annihilator of N. Section (3.3) is devoted to the relation

between the homological grade and the cohoniological grade of M in N

and the injective and projective dimensioniof M.

In section one of Chapter Four, we study the homological and

cohomological grades of artinian R-modules. Finally, in section

(4.2), we consider a local noetherian ring (R,^) with a unique maximal

ideal Jh and investigate the functors Ext (-, Horn (ker d « E(R/>H)))

and Horn (Hoin (ker d , E(R/^H)),-), where r ^ n = hgr (RA/H;R), ker d

is the r cosyzygy in the minimal injective resolution of R and

E(R/.vH) is the injective envelope of



1.2 Some General Results and Definitions

In this section we will give some definitions and state some

theorems which we will use throughout this thesis.

Definition 1.2.1 An R-module C is a cogenerator for Mod-R if for

every R-module M and every 0 * m <= M, there exists f:M -> C with

f(m) ^ 0. Or; for injective C equivalently; for every R-module M,

Horn (M,C) = 0 if and only if M = 0.

Theorem 1.2.2 There exists an injective cogenerator for Mod-R.

Proof Lemma 3.37 P. 79 of [17].

Definition 1.2.3 An "essential extension" of a module M is a module

E containing M such that every non-zero submodule of E has a

non-zero intersection with M. Or; equivalently; for every 0 * eeE

there exists r e R with 0 *• re e M.

Definition 1.2.4 An "injective envelope" of an R-module M is an

injective R-module which is an essential extension of M.

For the proof of the following theorems we refer to Chapter 2

Sections 5,6 of [13].



Theorem 1.2.5 Let M be an R-module. Then in Mod-R, we can

construct an exact sequence 0 -•• M -> E, where E is an injective R-module.

Theorem 1.2.6 Let M be an R-module and E an injective extension

module of M (i.e. 0 -> M -> E is an exact sequence). Then E

contains a submodule which is an injective envelope of M.

Theorem 1.2.7 Let f : M m M' be an isomorphism of R-modules, E an

injective envelope of M, and E' an injective envelope of M' . Then

f can be extended to an isomorphism of E onto E' .

Remark Theorem 1.2.6 ensures that every R-module has an injective

envelope, and Theorem 1.2.7 states that injective envelopes of an

R-module are virtually unique.

From now on we shall therefore speak of "the injective envelope"

of a module.

For an R-module M, one can construct an injective resolution of
^ o cf 1

M; that is to say an infinite exact sequence, 0 -»• M -> E -* E •*....-*•
. ,n-1 ,n .

n-1 d n d .jn+1 , , _i . . , . _ , n „ .,
E • E —• E. . . where each E is an injective R-module. Further,

one can construct an injective resolution in such a way that E is the

injective envelope of M, E is the injective envelope of E /M and

for each i > 1, E is the injective envelope of E /d (E ).

Such an injective resolution is known as a "minimal injective

resolution" of M.



For the construction of such injective resolutions and for the

proof of the following theorem, we refer to Chapter 3, Section 7, p.79

of [13].

Theorem 1.2.8 Let the R-module5 M and M' have minimal injective

resolutions

0 -> M -+ E° -* E -> E -+....

' ' o '1 '2
and 0 -> M -> E -»• E -> E ->....

respectively. Further let f :M as M' be an isomorphism in Mod-R. Then

it is possible to construct, in succession, R-isomorphisms <p : E 2* E ,

1 ' 1
<p : E ^ E and so on which are such that the diagram,

0 • M > E° > E 1 • E 2 >

E ° >• E • E -

is commutative.

Remark Theorem 1.2.8 shows that minimal injective resolutions of an

R-module are essentially unique.



We end this section by stating and proving the following

well-known theorem.

Theorem 1 .2.9. Let N,M be R-modules, and let

,o . ,1 _ . ,n-1 ,n
0 —• M — • E —• E —• E —• ... .—• E —• E —• E

be an injective resolution of M. Then,

(i) Ext" (N,M) ̂  Ext^(N, ker dn r) for all 1 < r < n
R R

(ii) Ext£(N, ker dm) = Ext^+1 (N,ker dm~1) for all k > 1, m > 1,
R R

Proof (i) Since,

U —r M • Ei

is an injective resolution of M then for 1 < r < n,

,o ,1 ,r-1 r
h . h _ 4 h n

. , ,n-r ^o .1 /I _r-1 ^r
0 —> ker d —> Q —> Q —>• Q —>• —»• Q * Q —>

. . , . -, , . r -,n-r , ^i n-r+i ,
is an infective resolution of ker d where Q = E and

h = d for i i 0. Now, deleting ker d from the above injective

resolution of ker d and applying Horn (N,-), we obtain the following

complex,



o H o mR ( i
N'

h O ) 1 Hom^i ,h1)
0 -> HomR (N,Q ) - > HomR(N,Q ) — • HomR(N,Q )

r-1 H o m R ( i
N '

h ) r H° mR ( iN' h ) r+1
HomR(N,Q ) - > HomR(N,Q ) — - > HomR(N,Q

Then, by definition of Ext;

tExtR(N,ker d
n~r) = ker HomR(iN,h

r) / Im HomR

= ker HomR(iN,d
n) / Im HomR (iN/d

n

= ExtR (N, M) .

(ii) By (i), we have, Ext£(N, ker d"1) = Ext£(N, ker dm+k k)
R R

~ T. j.m+k,.T ... ̂  „ . k+1 .„ , ,m+k-(k+1). _ , k+1 ,„ , ,m-1 ,= Ext (N,M) = Ext (N, ker d ) = Ext (N, ker d )
R H R

1.3 Some Basic New Results

In this section, we will prove two Lemmas and their Corollaries which

we will use frequently throughout this thesis.

Lemma 1.3.1 Let N, M, M' be R-modules where N is finitely generated

and M' is an essential extension of M. Then,

Horn (N, M) = 0 if and only if Horn (N, M' ) = 0



Proof. If HomR(N, M' ) = 0 then Horn (N,M) = 0 is trivial for M £ M' .

n
For the "only if" part, let Horn (N,M) = 0. Now N = £ Rx.. Suppose

R i=1 X

0 * f e Hom_(N,M' ). Then there is 1 < i < n such that 0 * f(x.) e M'
R 1

for f ̂  0. Without loss of generality we can take i = 1. Now 0 ̂  f(x )

e M' and M' is an essential extension of M, so there exists r. e R

with 0 * r f(x ) e M (for R f(x ) * 0 •• R f(x ) n M * 0). If r f(x ) =

0 take r = 1, otherwise there exists r_ e R with 0 * r r f(x ) € M.

If r
2
ri f(x-J = 0 take r = 1, otherwise there exists r e R with 0 *

r r r f(x ) e M. Continue doing this until you choose r . Now let r =

r r .....ror. . It is clear that r f(x.) e M for 1 < i < n.
n n-1 2 1 I

Claim: r f(x.) * 0 for some 1 < i < n.

Proof of the Claim: If r f(x ) ̂  0 we are done, otherwise 0 = r f(x ) =
n n

r r ...r r f (x ). Hence, by the way we choose r , r = 1 . Therefore

r = r ....r_r.. If rf(x .) * 0, we are done, otherwise 0 = rf(x .) =
n-1 2 1 n-1 n-1

r r __ ....r r . Hence, by the way we choose r , r = 1. Therefore

r = r ..... r_r.. If rf(x „) * 0 we are done, otherwise r _ = 1
n-2 2 1 n-2 n-2

and r = r ...r r . Continue this argument until either you find i > 1

with rf(x . .,) ̂  0, hence we are done, or no such i, hence r = r, .
n-(n-i) 1

But in this case rf(x ) ̂  0. This completes the proof of the claim.

Since rf(x.) e M for each 1 < i < n, rf(N) £ M. Now define g:N •* M

such that g(x) = rf(x). Then g is a well-defined R-homomorphism and



g * 0 for g(x^) = rf (x^) and, by the claim, there exists 1 < i < n

with rf(x.) * 0. Therefore 0 * g e Horn (N,M) which contradicts the

l R
assumption that Horn (N,M) = 0. Therefore, HomT,(N,M' ) = 0. This completes

K R
the proof of the Lemma.

Remark: Lemma 1.3.1 may not be true if N is not finitely generated. For

example, take R = Z the ring of integers, N = Q the rationals and

M = Z. Then M' = Q is an essential extension of M = Z and

Horn (Q, Z) = 0. But Hoin (Q, Q) * 0.

h Z

The next Corollary is a Lemma due to D. Kirby with different proof.

Corollary 1 .3.2: Let N,M be R-modules where N is finitely generated.

Then HomR(N,M) = 0 if and only if Horn (R/ann N,M) = 0.

Proof: For every f e Horn (N,M), f(N) £ (0 :ann N) = Horn (R/ann N,M). So,
M

if Horn (R/ann N,M) = 0 then, Horn (N,M) = 0. For the "only if" part, let

Horn (N,M) = 0. Let E(M) denote the injective envelope of M. By Theorem

1.2.6, E(M) exists and by the definition of an injective envelope, E(M) is

an essential extension of M. Therefore, by Lemma 1.3.1, Horn (N,E(M)) = 0

for Horn (N,M) = 0. Now, let A. = arm Rx. for 1 < i < n where

n
N = E R x.. We want to show that HomR(R/A_L,M) = 0 for each

1 < i < n. So, suppose Horn (R/A.,M) ^ 0 for some 1 < i < n. Then there
R 1

exists 0 * f «= Horn (R/A.,M). Hence 0 * f <= Horn (R/A. ,E(M)) for

M £ E(M). Now define g:R/A. -• N such that g(T) = x.

10



(1 = 1 + A., A. = arm R x . ) . Then g i s a w e l l - d e f i n e d R-monomorphism.
1 1 R 1

Now consider the diagram

g

0 —>• R/A. —*• N

0 * f +

E(M)

Since E(M) is an injective R-module, there exists an R-homomorphism,

f : N -> E(M) such that fog = f. But f ^ O . So 0 * f e Horn (N,E(M)) = 0
R

which i s a c o n t r a d i c t i o n . Therefore Horn (R/A.,M) = 0 for 1 < i < n .
R i

n
So, (0 : A.) = 0 for 1 < i < n . Hence (0 : n A.) = 0. But,

M X n M i = 1 X

( 0 : A n n N ) = ( 0 : n A . ) £ ( 0 : n A . ) = 0 . H e n c e ( 0 : a r m N) = 0 .
M R M 1 M i = 1 x M R

Therefore Horn (R/ann N,M) = (0 : arm N) = 0. This completes the proof of

the Corollary.

Lemma 1.3.3: Let N, M be R-modules with N finitely generated. Then

M «> N = 0 if and only if M ® (R/ann N) = 0.
R R R

Proof: Let E be an injective cogenerator for Mod-R. Such E exists by

Theorem 1 .2.2.

For the "only if part", let M ® N = 0. Then, 0 = Hoiri (M ® N, E) ̂
R R R

Horn (N,Hom (M,E)), and since N is finitely generated, then, by Corollary

1.3.2, Horn(R/annN, Horn (M,E)) = 0. Hence, HomR(M €> (R/annR N),E) =

Horn (R/ann N, Horn (M,E)) = 0. But E is an injective cogenerator for

11



Mod-R, so we must have M ® (R/ann N) = 0. For the "if" part, let

R R g
M ® (R/ann N) = 0. Consider the exact sequence 0 -> ker g -+ © R/ann N -> N

R I R

•+ 0 where N = 2 Rn. and g(S r.)= £ r.n., (r. = r . + ann N) .
... i . _ i , i i i i R

lei iel el
Tensoring the above exact sequence with M, we obtain the exact sequence

M ® ker g -> M ® (© R/ann N) •+ M ® N -• 0.
R R I R

But M ® (© R/ann N) = © (M ® R/ann N) = 0. Therefore, M ® N = 0.
R I R I R R R

We conclude this section with the following Corollary and a Remark on

it.

Corollary 1.3.4: Let N,M be finitely generated R-modules. If N ® M = 0
R

then for any submodules L, K of N, M respectively and for every n > 0,

Tor"(L;K) = 0 = Tor^(K;L) and Ext"(L,K) = 0 = Ext"(K,L).
R R R R

Proof: Let N ® M = 0. Since N,M are finitely generated, then applying
R

Lemma 1.3.3 twice, we have R/ann N ® R/ann M = 0 Hence,

0 = R/ann N ® R/ann M = R/(ann N + ann M)
R K K K

Therefore, R = ann N + ann M. But for any submodules L, K of N, M
R R

respectively and for every n > 0, we have,R = annR N + annR M S
 a n n

R

Tor"(L, K) n ann Tor"(K, L) . Therefore, Tor"(L, K) = 0 = Tor"(K, L) .
R R R K K

And, by the same argument, we can conclude that ExtR(L,K) = 0 = ExtR(K,L).

12



Remark: The condition that both N, M are finitely generated in Corollary

1.3.4 is necessary. For example, take the ring of integers Z; then Q/z,

z/nZ are Z-modules such that Z/nZ ® Q/Z = 0. But Tor (Z/nZ, Q/Z) * 0.

Z Z

The latter is true, for if we tensor the exact sequence 0 -• Z -> Q -»• Q/Z •+ 0

by Z/nZ we obtain a long exact sequence,

Tor (Z/nZ, Q/Z) —• Z/nZ —• 0.z

Hence Tor (Z/nZ, Q/Z) * 0 for Z/nZ * 0. Also, Hom_(Z/nZ, Q/Z) =z z

(0 : nZ) * 0 = Hora(Q/Z, Z/nZ) and Ext^,(Q/Z, Z/nZ) * 0.

Q/Z Z Z

The last two statements are true, for if we apply Horn (-, Z/nZ) to the
z

exact sequence 0 •+ Z -»• Q -• Q/Z -> 0 we obtain the following long exact

sequence,

0 -• Horn (Q/Z, Z/nZ) -> Horn (Q, Z/nZ) -> Homz(Z, Z/nZ) -> Extz(Q/Z, Z/nZ)

-> ...

But

Horn (Q, Z/nZ) = Hom_(Q, Hom_(Z/nZ, Z/nZ))
it Z

2= Horn ( Q ® Z/nZ, Z/nZ) = 0 (for Q <8> Z/nZ = 0)
Z Z Z

Hence, we can conclude that:

Hoin (Q/Z, Z/nZ) = 0 and 0 * Z/nZ ^ Horn (Z, z/nZ)Q Ext],(Q/z, Z/nZ)

13



CHAPTER 2

THE HOMOLOGICAL GRADE OF A MODULE

2.1 Definitions and Some Properties

For an ideal A of a commutative ring R with identity and a unitary

R-module M, D. Kirby and H.A. Mehran in [7], define the homological grade

of M in A to be

inf{n|Extn(R/A, M) * 0}
R

and denote it by hgr (A; M). In this chapter, we will consider the
R

homological grade of M in A as the homological grade of M in the

cyclic R-module R/A, and extend this definition to any arbitrary unitary

R-module N. So, for any unitary R-modules, N, M, we define the

homological grade of M in N to be

inf{n|Ext"(N; M) * 0}
R

and denote it by hgr (N; M). Hence 0 < hgr (N; M) < oo .

Most of this section is a generalization of Section 2 of [7]

14



Proposition 2.1.1: Let L £ N, M be R-modules with N finitely generated

and let arm N = S Ra.. If Hom_(N, M) = 0 (So (0 : arm N) = 0 by
R iel x * M R

Corollary 1.3.2), then the exact sequence

f g
0 > M • n M. *• M' »• 0 ,

where M. = M for all i e I, f(m) = (a.m) for all m <s M and M' is

the cokernel of f, gives rise to an exact sequence,

Ext£(id,g) o<
0 > n Ext(L, M.) > Ext (L, M' ) -=-»• Ext^ (L,M) > 0

R l R R

for all r > 0, where a. is the connecting homomorphi sm. Moreover

r < hgr (L;M) if and only if r < hgrfL, M' ) and if r < hgr (L, M), oi
R R R r

is an isomorphism.

Proof: Applying Ext (L, — ) to the exact sequence 0 -•• M -» n M. -• M' -> 0,

we obtain a long exact sequence:

Ext£(id,g) «
>Ext_ (L,M') >Ext_ (L,M)

R R

^(L,M) ^ >n Ext^(L,M.) >Ext_ (L,M) >Ext_
R , R 1 R R

€l

^ 1(id,f) Ext (id,g)
> n Ext^ (L,M.) > Extt (L,M' )

Since for all i <E I, a. e ann N S annRL, the map

15



Ext*-(id,f): Ext*-(L,M) • U Ext^(L, M.)
€l

is the zero map for all r > 0. Therefore, we obtain the short exact

sequence of the statement of the proposition. And if r < hgr (L; M)

R
then for all s < r, Ext^(L, M) = 0. Hence

R

a :Extf|(L, M' ) »-Extf+1 (L, M)
S R R

is an isomorphism for all s < r. Now, if r < hgr (L; M) then for all
R

s < r,

Ext*(L, M' ) = Ext^ (L, M) = 0,

since s + 1 < r < hgr (L; M). Therefore r < hgr (Lj M ' ) .
R R

Conversely, if r < hgr (L, M' ) then for all s < r, Extf°(L, M' ) = 0 . So,
R H

from the short exact sequence:

ExtS(id,g) a. .
n Ext (L, M.) • Ext^(L, M' ) -=-»• Ext^ (L, M) > 0

R i R R
lei

we conclude that

0 = Ext^(L, M.) = Ext^+1(L, M).
R 1 H

Therefore, r < hgr (L, M). This completes the proof of the proposition.
R
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For L £ N, M, R-modules with N finitely generated, the next

proposition relates hgr (N; M) to hgr (L; M).
R R

Proposition 2.1.2: Let L £ N, M be R-modules with N finitely generated.

Then hgr(L; M) > hgr (N; M).
R R

Proof: Proceed by induction on r > 0 to show r < hgr (N; M) implies r
R

^ hgr (L; M). For r = 0, 0 ̂  hgr (L; M) is trivial. Now suppose it is
R R

true for r > 0. For r + 1, we have 0 < r+1 < hgr (N; M), hence
R

Ho:m (N, M) = 0. So we can apply Proposition 2.1.1 and conclude that

r < hgr_(N,' M' ) since r < r+1 < hgr (N; M) . Therefore, by the induction

R R
step, r < hgr(L,» M' ) • So again, by Proposition 2.1.1, r < hgr (L; M).

R
Therefore r + 1 < hgr (L,' M). This completes the induction and hence the

R
proof of the proposition.

The next proposition relates Ext (N/L, M) to Ext (N, M) in terms
R R

of the projection TT : N — • N/L.

Proposition 2.1.3: Let L £ N, M be R-modules where N is finitely

generated. Then for all n < hgr (L; M), the R-homomorphism,
R

n(7T, id): Extn(N/L, M) > Extn(N,M)
R R R

17



is an injection which is an isomorphism when n < hgr (L; M) .
R

Proof: Applying Ext R(—, M) to the exact sequence

0 *• L -i+ N -^-* N/L • 0 ,

we obtain a long exact sequence

_1 ex. _ Ext"(TT, id)
ExtJJ (L, M) n > Ext"(N/L, M) • Ext£(N, M)

Extn(i, id)
»• Ext|j(L, M)

So for n < hgr (L; M), n-1 < hgr (L; M). Hence, Ext" (L, M) = 0.
R R R

Therefore,

ExtJ(n, id) : Ext"(N/L# M) > ExtJ (N, M)

is injective. And if n < hgr_(L; M), then Ext (L, M) = 0. Therefore,
R R

Ext (TZ, id) is an isomorphism.
R

For an R-module M and a submodule L of a finitely generated

R-module N, the following theorem relates the homological grade of M in

N to the homological grade of M in L and N/L.

18



Theorem 2.1.4: Let L £ N, M be R-module*with N finitely generated.

Then

hgr (N; M) = min{hgr (L; M), hgr (N/L; M)}
K K K

Proof: By Proposition 2.1.2, hgr (N, M) < hgr (L; M) and, by Proposition
R R

2.1.3,

"(rc, id) : Extn(N/L, M) • Ext"(N, M)
K R R

is injective for n < hgr (N; M). So, if r < .hgr (N, M), then
R R

r < hgr (N/L; M) hence hgr (N; M) < hgr (N/L; M). Therefore
R R R

hgr (N; M) < min{hgr (L; M), hgr (N/L; M)}

Now if hgr (N,1 M) < hgr (L," M), then, by Proposition 2.1.3,
R R

Ext"(n, id) : Ext"(N/L, M) • Ext"(N, M)
R R R

is an isomorphism for n < hgr_(N; M). Hence hgr (N; M) = hgr (N/L; M)
R R R

Therefore,

hgr (N; M) = min{hgr (L; M), hgr (N/L; M)} .
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Remark

For an exact sequence

0 > N' • N • N" • 0

of R-modules with N finitely generated and for any R-module M, we have

hgr (N; M) = min{hgr (N' ; M ) , hgr (N"; M)} .

For N' = f(N' ) £ N, N" = N/f(N' ).

We end this section with the following two Corollaries and a Remark on

them.

Corollary 2.1.5: Let L £ N, M be R-modules with N finitely generated;

then, Horn (N, M) = 0 if and only if Horn (L, M) = 0 and

Horn (N/L, M) = 0 .

Proof: By Theorem 2.1.4, we have

hgr_(N,* M) = min{hgr (L; M), hgr (N/L; M)}
R K K

Therefore, Horn (N, M) = 0 if and only if
R,
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0 < hgr (N; M) = min{hgr (L; M), hgr (N/L; M)}
H R R

Hence, HomR(N, M) = 0 if an only if Horn (L; M) = 0 and

Hom_(N/L, M) = 0.
R

Corollary 2.1.6: Let N, M be R-modules with N finitely generated, and

let annRN £ annRM. If Horn (N, M) = 0 then M = 0.

Proof: Since ann N £ arm M, we have an exact sequence,

0 >• ann M/ann N • R/ann N • R/ann M • 0 .

Then, by the Remark on Theorem 2.1.4,

hgr (R/ann N; M) = min{hgr (ann M/ann N; M ) , hgr (R/ann M; M)} .
R R R R R R R

Now if Honi (N, M) = 0 then, by Corollary 1.3.2, Horn (R/ann N; M) = 0 .
R R R

SO,

0 < hgr (R/ann N; M) < hgr (R/ann M; M) .
R R K R

Hence,

(0 : ann M) = Horn (R/ann M, M) = 0 .
M R R R

Therefore M = 0 .
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Remark:

Corollaries 2.1.4, 2.1.5 and 2.1.6 are not true when N is not

finitely generated. For example let (R, -M) be a complete local

(noetherian) ring and let p * M. be a prime ideal of R and E(R/p) its

injective envelope. Consider the exact sequence:

0 > R/p • E(R/p) • E' • 0 ,

where E' = E(R/p)^k/pJ. Then,

1) hgr (R/p; R) < hgr_(E(R/p); R) = oo . (See Corollary 4.2.2.)

K. R

2) 0 = annR E ( R M ) £ arm R/p and Horn (E(R/il), R/p) = 0. But

R/p * 0.

2.2 The Extended M-Sequences

For N, M R-modules with N finitely generated, the aim of this

section is to relate the homological grade of M in N to the length of

an M-sequence in the annihilator of N (annp
 N ) •

Let A be an ideal of R and M an R-module. We will follow

D. Kirby and H.A. Mehran in [7] and define an M-sequence in A as follows:

For n = 0 the M-sequence is empty, and for n = 1 it is a subset
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{a. I i e 1} = a S A such that 0 : 2 Ra. = 0. For n > 1, we define,
M iel

inductively, an M-sequence of length n in A as a sequence

V ' ̂2 = { ai 2l
i € V

of subsets of A such that ex is an M-sequence of length 1 in A and

a. . . ,a. is a [ (n M)/(a. )M]-sequence of length n-1 in A. Thus
£* Xl , X I

1

in the standard notion of M-sequences the sets en. are singletons, and,

in effect, the extended notion due to Hochster [4] and Northcott [14] the

sets en. are finite.

Let A be an ideal of R, M an R-module and let « , ...,ot be an

M-sequence in A where

We put

and

M « = M'

~ A •

M 1 = (n . n:L~'i)/{a. J M 1

oi . l en in oi

a.

for 1 < i < n, so that en. , en. , . . . ,a. is an M -sequence in A of

length
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Theorem 2.2.1: Let N, M be R-modules with N finitely generated and

let a.^, a. , ...,a be an M-sequence in a m N. Then n < hgrR(N; M)

and if n < hgr (N; M), there exists 01 £ ann N such that
K n+1 R

ci* i &.,... ,a. , a. is an M-sequence in ann N.1 2 n n+1 R

Proof: Proceed by induction on n. For n = 0, n < hgr (N; M) is trivial
R

and if 0 < hgr (N,* M) then Horn (N, M) = 0. Now since N is finitely

generated then, by Corollary 1.3.2, Horn (R/ann N, M) = 0. Hence,
(0 : ann N) = 0 and a = ann N is an M-sequence in ann N. Now

M R 1 R R

assume it is true for 0 ̂  n < m. For n = m + 1, let a. , . . . ,a. be an
1 m+1

M-sequence in ann N. Then a ,...,« is an M -sequence in a n n
n N

of length m, where

en

So, by the induction hypothesis, m < hgr (N,' M ) and if m < hgr_(N,' M )

there exists ot £ annn N such that a. , ...,a , oi is an

M -sequence in ann N. Now for every
R

and for r > 0, we have a. . annihilates Ext (N, M) . So in the long
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exact sequence which results from applying Ext (N, -) to the exact
R

sequence

f g 1

0 • M *• n . M • M • 0 ,

J ot

where f(m) = (a.. m) and g((m.)) = (m.) + (a .)M , the homomorphism

ExtJ"(id , f) : Ext£(N, M) > ExtJ(N, n M)
x\ IN K K . I

j

is zero. Therefore, for r > 0 we obtain the following exact sequence,

Ext (id ,g) ot
0 • n Ext^(N, M) »• Ext^(N, M ) -^+ Ext^+ (N, M) > 0

_ 1 R R Ot R

where en is the connecting homomorphism. Now for r < m, the central

term of the above exact sequence is zero, therefore the first and the last

terms are zero for each r < m i.e. Ext (N, M) = 0 for each s < m + 1.

R
Therefore n = m + 1 < hgr (N,* M)and if n = m+1 < hgr (N, M) then for

R R

r = m, we have the first and the last terms in the above exact sequence are

zeros, hence the central term is zero. Therefore Ext (N, M ) = 0 . Hence
R Ot

m < hgr (N, M ). So, by the induction step, there exists ex £ annt> N

such that ot , ...,oi , ot is an M -sequence in a m N. Hence
o1* r&^t • • • z01 . i a -, is an M-sequence in a m N. This completes the
1,2 m+1 m+2 R

induction and hence the proof of the theorem.
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Corollary 2.2.2: Let N, M be R-modules where N is finitely generated.

Then,

(i) If n = hgr (N; M) is finite, then every M-sequence in ann N has

length < n, and can be extended to an M-sequence of length n.

(ii) If hgr (N,' M) = oo, then no finite M-sequence in ann N is maximal.

Proof: Follows immediately from the Theorem.

The following Corollary shows that hgr (N; M) and hgr (R/ann N; M)

are equal when N is a finitely generated R-module.

Corollary 2.2.3: Let N, M be R-modules where N is finitely generated.

Then

hgrfN; M) = hgr (R/ann N; M) .
R R R

Proof: Straightforward from Corollary 2.2.2 and the fact that

ann (R/ann N) = ann N.
R R R

We end this section with the following Proposition.
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Proposition 2.2.4: Let N, M be R-modules where N is finitely generated,

and let n = hgr (N; M) (so, by Theorem 2.2.1, ann
n
 N contains an

M-sequence ex. , a . . ,a of length n). Then Ext_(N, M) = Ext (N, M )
\ 2. n R R R

for 0 ^ r < n where a.. = (a, ,|j e j } £ ann N and
l ij ' a. R

M° = M, M1 = (FI . M1 ) / (a_)M" ' (0 < i < n)
a. OL i ex

J a

Proof: For r = 0, Ext£(N, M) = Ext"(N, M°) for M = M°. If r = 1

then we have an exact sequence:

0 __> M° -Un, M°—> M
1 —> 0 ,

J
a.

where f (m) = (a .m) . Now, since

then applying Horn (N, -) to the above exact sequence, we obtain a long
R

exact sequence:

^ £(N, M) Ext^N, M^) t̂ (N, )
J

ExtR(N,
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But Ext^ (N, M^) = 0 and the map Extn(id , f ) is zero. Therefore

S Extn(N, M°) = Extn(N, M ) .

For r = 2, We have an exact sequence:

1 2 1 ?
0 > M -^ n M > M • 0 ,

a 2 a. a. '
J
en

where f
2^

m^ = ^ a2" m^' anc^ s i n c e

= U 2 j I ̂  € J^} " annR N'

then applying Horn (N, -) to the above exact sequence we obtain:

Ext£~2(N, M2) S Extn"1(N, M^) = Ext£(N, M).

And so on for every 0 < r < n.

2.3 The Minimal Injective Resolution of a Module

and the Homological Grade

In this section we will show that the homological grade of an R-module M

in a finitely generated R-module N, is determined by the first
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non-vanishing term in the complex Horn (N, E ), where
R M

,o , ,n-1 ,n ,
. F° d 1 .... n-1 ji n d n+1

M

is a deleted minimal injective resolution of M (So that 0 •+ M -> E is
M

a minimal injective resolution of M) .

Let M be an R-module and consider a minimal injective resolution of

M,

,o ,1 . ,n-1 ,n

n > M jf_> y° d , d . . _ . F
n-1_d^ k v

n d
U >• w • Ji > £i > > hi > hi > r,

Theorem 2.3.1 : Let M and R be as above, and let N be a finitely

generated R-module. Then the following are equivalent:

(i) m < hgr (N; M)

R

(ii) For all 0 < r < m , HomR(N, E
r) = 0.

Proof: For (i) >=» (ii), proceed by induction on m. For m = 0 it is

trivial. For m = 1 < hgr (N; M), we have HomR(N, M) = 0. But M = e (M),

hence Horn (N, e (M)) = 0. And since N is finitely generated then, by
R

Lemma 1.3.1, Horn (N, E°) = 0 for E° is an essential extension of e(M) .
R
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Now suppose (i) •» (ii) for m = k > 1. For m = k+1, let r < m

then r < k. If r < k then, by the induction hypothesis, Horn (N, E ) = 0.

If r = k, we have

k < k + 1 = m < hgr (N/ M) ,
R

so Ext (N, M) = 0 . Applying Horn (N, -) to the exact sequence,

0 • ker dk~1 > E k~ 1 > Ek"1/ker dk~1 > 0 ,

we obtain the following long exact sequence:

0 > HomR(N, ker d
k 1) >• HomR(N, E

k 1) >• HomR(N, ker

ExtJ,(N, ker dk~1 ) • 0 .
R

k-1
But Horn (N, E ) = 0 by the induction hypothesis. So

Horn (N, E k 1 /ker dk 1) ^ Extl(N, ker dk 1 ) = Extk(N, M) = 0
R R K

The last isomorphism is Theorem 1.2.9 (i). Therefore,

0 = Honi (N, E k V ker dk 1) S Hoin (N, Im dk 1 ) .
R R
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k k k—1

But E is an essential extension of ker d = Im d , hence, by Lemma

1.3.1, Horn (N, E ) = 0 for N is finitely generated. Therefore, for

each r < m < k + 1, Horn (N, E ) = 0 and the induction is complete.

(ii) -» (i) is trivial for if Hom_(N, Er) = 0 then, Ext^(N, M) = 0
R R

simply because Ext (N, M) is a quotient of two submodules of
K

Horn (N, E r ) .
R

Remark: Theorem 2.3.1 may not be true if N is not finitely generated.

For example let (R, ./H) be a local (noetherian) ring and let p * -M be

any prime ideal of R and let E(R/p) be the injective envelope of R/p.

Consider the minimal injective resolution of R/./H,

0 • R/OR > E° >• E 1

Then 0 < hgr (E(R/p), R/OH) . But Horn (E(R/p), E°) ^ 0

The next Corollary shows that Ext (N, M) and Horn (N, ker d ) are
R R

isomorphic R-modules for n < hgr (N; M) and N j0k finitely generated.
R

Corollary 2.3.2: Let N, M be R-modules with N finitely generated, and

l e tA
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. . ,n-1 ,n .
n > M . vo 1 n-1 ji n d n+1

be a minimal injective resolution of M. Then for n ̂  hgr (N; M),

Ext"(N, M) ̂  Homn(N, ker

Proof: For n < hgr (N; M) ; we have Extn(N, M) = 0. Also, by Theorem
R R

2 . 3 . 1 , Horn (N, En) = 0, hence Hoin (N, ker d n ) = 0. Therefore
K R

0 = Ext"(N, M) ̂  Horn (N, ker d n).

For n = hgr (N; M), we have

R
^(N, M) = ker H o m f i , dn) / Im Horn ( i , dn"1)

But, by Theorem 2.3.1, Horn (N, E n 1) = 0. So Im "^(ij,/ d" ) = 0

Therefore

Ext^(N, M) = ker Horn (i , <$n) .
R R in

There is now left to show that ker Horn (i , d ) = HomR(N, ker d )

So, let f e ker Horn (i , d n), then f e HomR(N, E
n) and

dn o f = dno f o iN = Ho
m
R(iN' d

n) (f) = 0

Hence dn(f(N)) = 0 and f(N) ̂  ker dn. Therefore f e HomR(N, ker d
n)
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Now l e t g e Horn (N, ker d ), then g <s Horn (N, E ) and

(dn o g)(N) = dn(g(N)) = 0 for g(N) £ ker dn . So,

0 = dn o g = HomR(iN, dn) (g)

Hence g e ker Horn (i , d ). Therefore,

ker Horn (i , d ) = Horn (N, ker d )
R N R

This completes the Proof of the Corollary.

The following Corollary together with 2.1.4 implies,

hgr_(N ® L; M) > max{hgr (N; M), hgr (L; M)}
R R R R

for N, L finitely generated R-modules.

Corollary 2.3.3: Let N, L, M be R-modules with N, L finitely generated.

Then

hgr (N ® L; M) = hgr (R/(ann_N + ann_L); M)
R R R R

R

Proof: Since arm N + arm L £ ann (N ® L), we have an exact sequence,
R R R R

0 -+ ann (N <2> L)/(ann N + ann L) -• R/(ann N + ann L) ->• R/ann (N ® L) -> 0.
R R

So, by the Remark on Theorem 2.1.4, we have:
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hgr_(R/(ann N + ann_L); M) < hgr (R/ann (N <» L); M) = hgr (N ® L; M)
R R

(Note: since L, N are finitely generated then N ® L is finitely
R

generated. Hence, by Corollary 2.2.3,

hgr (N ® L; M) = hgr (R/ann (N <9 L); M)) .
R R R R R

Now, consider a minimal injective resolution of M,

,n

Let r < hgr (N ® L; M ) . Then, by Theorem 2.3.1, we have for all s ^ r,
R R

Horn (N ® L, ES) = 0 . So,
R R

Horn (N, HomT,(L, E
S) ) ̂  Hom_(N ® L, ES) = 0

R R R R

Since N is finitely generated then^ by Corollary 1.3.2, we have

Horn (R/ann N, Horn (L, ES)) = 0.

So,
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HomR(L, HomR(R/annRN, E )) ̂  Horn (L ® (R/annRN), E ))

R

= Horn (R/ann N, Horn (L, ES)) = 0.

Since L is finitely generated then, by the same Corollary, we have

HomR(R/annR L, Horn (R/ann N,. ES)) = 0,

Therefore,

Horn (R/(arm N + arm L), ES) = Horn (R/ann L «> R/ann N, ES)

R
= Horn (R/ann L, Horn (R/ann N, ES)) = 0

for all s ^ r < hgr (N ® L; M) . Then, by Theorem 2.3.1,
R R

hgr_(N ® L; M) < hgr (R/(annn N + ann L ) ; M)R R R R
R

Therefore

(N ® L; M) = hgr (R/(arm N + ann L); M)
R R R R

R

The following Corollary includes

Ext£(N, M) = Homo(N/ Ext^(R/ann N, M))
R R R R

for n < hgr (N; M ) .
R
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Corollary 2.3.4: Let N, L, M be R-raodules where N, L are finitely

generated. Then for

n < hgr_(L; M), Extn(N ® L, M) 2= Hoin (N, Ext"(L, M)) .
R 13

Proof: By Corollary 2.3.3:

hgr (L; M) < hgr (N ® L; M).
R R R

Now let

,o A „ ,n-1 ,n
0 > M ^ ^ E° d t E1 >. . . . ^ En-1 cl ^ En d̂

be a minimal injective resolution of M. Let

n < hgr (L; M) < hgr (N ® L; M)
R R R

Then by Corollary 2.3.2,

^(N ® L, M) ^ Hom^CN ® L, ker dn) = Hom_(N, Horn (L, ker dn))
R R R R R R

^ HomR(N, Ext^(L, M)) .

For any R-modules N, M, the following Corollary relates hgr (N; M)

to hgr (R/ann N; M)
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Corollary 2.3.5: Let N, M be R-modules. Then

hgrR(N; M) > hgrR(R/annR N; M)

Proof: Let N = T. Rv.. Consider a minimal injective resolution of M
iel 1

,o . . ,n-1 ,n .

0 > M > E ° & > E
1 .̂... > E

n~1 & ^ E
n & > E

n+1

Let s < hgr (R/ann N; M ) . Now applying Horn (-, E ) to the exact
K R R

sequence,

0 > ker f > © R/ann N -̂ -> N > 0 ,

where f(£ r.)= Z r.v.

and

r. = r. + arm N;
I X R

we obtain the following exact sequence:

0 • Horn (N, E ) • n Horn (R/ann N, E ) > HomR(ker f, E ) > 0 ;

But since s < hgr (R/ann N; M) then, by Theorem 2.3.1, we have
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Horn (R/ann N, ES) = 0 . Hence, Horn (N, ES) = 0 . So, ExtR(N, M) = 0 for

all s < hgr (R/ann N; M ) . Therefore, hgr (R/ann N; M) < hgrR(N; M).
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CHAPTER 3

THE COHOMOLOGICAL GRADE OF A MODULE

3.1 Definitions and Some Properties

In this section we will dualize the definition of the homological

grade of a unitary R-module M in a unitary R-module N, and define the

cohomological grade of M in N, which we denote by cohgr (N; M), as
R

follows:

cohgr (N; M) = inf{n : TorR(N, M) * 0}R n

So, we have 0 < cohgr (N; M) < oo.
R

To study some of the properties of the cohomological grade, we will

start with the following proposition.

Proposition 3.1.2: Let L £ N, M be R-modules with N finitely generated

and let ann N = £ Ra.. If N ® M = 0 (so, R/ann N <s> M = 0 by Lemma
R iei X R R R

1.3.3), then the exact sequence,

g f
0 • M' • © M. • M
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where M = M. for all i « I, f( £ m.) = £ a.m. and M' = ker f ,
iel x i l

gives rise to an exact sequence

R °*n R Torpid, g)
0 • Tor^+1(L, M) -ii* Tor (L, M' ) > © Tor^(L, M ) • 0

n i e I

for all n > 0 where en is the connecting homomorphism. Moreover,

n < cohgr (L; M) if and only if n < cohgr (L; M' ) and if
R R

n < cohgr (L; M), en is an isomorphism.
R n

Proof: Applying Tor (L, -) to the exact sequence:
R

M' • © M. *• M • 0 ,

we obtain the following long exact sequence:

TorR (id, f) en
Tor .(L, © M.) — > Tor . (L, M) -^U Tor (L, M' )

n+1 I n+1 n

Tor (id, g) Tor (id, f)
• Tor (L,ffi M.) > Tor (L,M) • • • • • > Tor (L,M) > 0 ,

n I n o

where en is the connecting homomorphism. Since for each
n

i e I, a. e arm N £ arm L ,
1 R R
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we have a. annihilates Tor (L, © M.) for n ̂  0. So for n > 0 , the

homomorphism:

TorR(id, f) : TorR(L, © M.) > TorR(L, M)
n n 1 n

is zero. Therefore, for each n > 0 we have the following short exact

sequence

R a
n R TorR(id, g)

0 >Tor ,(L, M) -^—• Tor (L, M' ) - • Tor (L, © M.) • 0 .
n+i n n I

But

Tor (L, © M.) = © TorR(L, M. )
n x i T

Therefore, there results the short exact sequences of the statement of the

Proposition. Now, when

n < cohgr (L; M ) , TorR(L, M.) = 0 -R n i

Hence,

: TorR
+1 (L, M) > TorR(L, M' )

is an isomorphism for r ̂  n and for

r < n, 0 = TorR+1(L, M) 9= Tor
R(L, M')
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i.e. n ̂  cohgr (L, M' ). Conversely, if n < cohgr (L, M' ), then for
R R

r < n, we have

TorR
+ (L, M) = 0 = Tor

R(L, M).

i.e. n < cohgr (L; M).
R

For the R-modules M, L £ N where N is finitely generated, the next

Proposition relates cohgr (N; M) to cohgr (L; M).
R R

Proposition 3.1.3: Let L £ N, M be R-modules with N finitely

generated. Then cohgr (N; M) < cohgr (L; M) .

R R

Proof: Proceed by induction on n > 0 to show n ̂  cohgr (N; M)
R

implies n < cohgr (L; M) . For n = 0, 0 i cohgr (L; M) is trivial. Now
R R

suppose it is true for n > 0. For n+1 we have 0 < n + 1 < cohgr (N; M)
R

Hence N ® M = 0. And since n < n+1 ^ cohgr (N; M), then, by Proposition
R R

3.1.2, we have n < cohgr (N; M' ). Therefore, by the induction hypothesis,
R

n < cohgr (L, M' ). So again, by Proposition 3.1.2, n < cohgr (L; M) .
R R

Therefore n + 1 i cohgr (L; M). This completes the induction, and hence
R

the Proof of the Proposition.

•p D

The following Proposition relates Tor (N/L, M) to Tor (N, M) in

terms of the projection n : N — • N/L.
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Proposition 3.1 . 4: Let L £ N, M be R-modules with N finitely

generated. Then for all n ̂  cohgr (L; M), the R-homomorphism
R

TorR(n, id) : TorR(N, M) > TorR(N/L, M)
n n n

is an epimorphism which is an isomorphism when n < cohgr (L; M).
R

Proof: Applying Tor (-, M) to the exact sequence,

0 • L -i-* N -̂ -> N/L > 0 ,

we obtain the following long exact sequence:

T3

R
 a T o r (if id)

• • • • > Tor , (N/L, M) n + > Tor (L, M) > Tor (N, M)
n+1 n n

TorR(n, id) a
> Tor (N/L, M) -ii—>• Tor , (L, M) > • • • •

n n-1

So, for n < cohgr (L; M ) , we have n - 1 < cohgr (L; M ) . Hence,
R

Tor . (L, M) = 0 and then,
n-1

TorR(Ti, id) : TorR(N, M) »• TorR(N/L, M)
n n n

is an epimorphism. And if n < cohgr (L; M) then Tor (L, M) = 0. Hence
K n.

Tor (rr, id) is an isomorphism.
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Theorem 3.1.5: Let L £ N, M be R-modules where N is finitely

generated. Then, cohgr (N; M) = min{cohgr (L; M), cohgr (N/L, M)}.
R R R

Proof: By Proposition 3.1.3, cohgr_(N; M) < cohgr (L; M) . Now, if
R R

cohgr (N; M) < cohgr (L; M) , then, by Proposition 3.1.4,
R R

TorR(n, id) : TorR(N, M) > TorR(N/L, M)
n n n

is an isomorphism for all n < cohgr (N; M). Hence
R

cohgr (N; M) = cohgr (N/L; M)

And if

cohgr (N; M) = cohgr (L; M) ,
R R

then by Proposition 3.1.4, we have Tor (TT, id) is an epimorphism for all

n < cohgr (N; M). Then we can conclude that n i cohgr (N/L; M). Hence,
R R

cohgr (N; M) < cohgr (N/L; M)
R R

Therefore,

cohgr (N; M) = min{cohgr (L; M), cohgr (N/L; M)}
R K K
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Remark: For an exact sequence,

0 • N' - ^ N > N" > 0 ,

of R-modules with N • . finitely generated and for any R-module M, we have

cohgr_(N; M) = min {cohgr_(N'; M), cohgr (N"; M)}
R R R

This follows from Theorem 3.1.5 and the fact that

N' £ f(N' ), N" ̂  N/f (N' ) .

3.2 The Extended M-Cosequence

For an ideal A of R and an R-module M, the notion of an

M-cosequence of length n in A can be extended as follows. For n = 0

-the M-rCdsequence is empty and for n = 1 it is a subset

{b. | j e J} = ft c A such that ( £ R b.) M = M .

For n > 1, we may define, inductively, an M-cosequence of length n

in A as a sequence

{b2j I ̂ € 4] ^n = {bnj
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of subsets of A such that ft is an M-cosequence of length 1 in A

and ft0, (3 , . . . f(3 is an M\-cosequence of length n-1 in A where

Vi = ker ( e M — • M — > 0)

and

Thus in the notion of cosequence due to David J. Moore [11] the sets ft.

are singletons.

The main theorem in this section is the next one. But before we state

it, we need some notation.

Let A be an ideal of R, M and R-module and let ft , ft , .. . ,ft be

an M-cosequence in A where ft. = {b. . | j G j. } £ A. Now let K = M

and for 1 < i < n Let

4*
. - k e r (@ft < - i - ^ ^ -1 — 0 )

u •
1

where
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so that ft., ft. .,...,ft is an M\ -cosequence in A of length

Theorem 3.2.1: Let N, M be R-modules with N finitely generated and

let ft , ft ,..., ft be an M-cosequence in ann N. Then n ^ cohgr (N; M)

and if n < cohgr (N; M) , there exists ft ^ ann N such that

ft. , ftn,..., ft , ft is an M-cosequence in arm N.

Proof: Proceed by induction on n. For n = 0, n < cohgr (N; M) is
R

trivial and if 0 < cohgr (N; M), then N ® M = 0. So, by Lemma 1.3.3,
R R

R/ann N ® M = 0. Hence (ann N)M = M and ft. = ann N is an M-cosequence

in ann N. Now assume it is true for 0 ^ n < m. For n = m + 1, let
R

anft* i ft-,,---, ft be an M-cosequence in ann N. Then ft~,...,ft is
i z. n R £ n

M -cosequence in ann N of length m where
1 R

A -ker{

and K = M. So, by the induction hypothesis, m < cohgr (N; M\ ) and if
O R 1

m < cohgr (N; M ) there ex i s t s ft ^ ann N such tha t ft^,..., ft , /?m+2
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is an n -cosequence in ann N. Now for every b1 . e /? £ arm N and for

r t. 0, we have b.. . annihilates Tor (N, M) . So in the long exact

p
sequence which results frpm applying Tor (N, — ) to the exact sequence,

g
• © ^ M —'-> M* ? " • - -^

where f i ( ^ / ? m ' ^ = S / ? ^ 1 l i n ' a n c ^ g i s t h e i n c l u s : i - o n / t h e homomorphism

T o r p i d , f'?): Tor^(N, © M) »• Tor^(N, M)

is zero. Therefore, for r > 0 , we obtain the following short exact

sequence:

R °V R R Torpid , g)
0 > Tor (N, M) > Tor (N, M. ) = • © _ Tor (N,M) *• 0

3T+1 IT 1 , B IT
3 € J

where oi is the connecting homomorphism. Now, for r < m, the central

term of the above exact sequence is zero, therefore the first and the last

terms are zero for each r < m. i.e. Tor (N, M) = 0 for each s < m+1.

R
Therefore n = m + 1 ̂  cohgr (N, M) . And if n = m + 1 < cohgr (N; M),

R R

then for r = m, we have the first and the last terms of the above exact

sequence are zero. Hence the central term is zero. Consequently

m < cohgr (N; M ). So, by induction, there exists ft o £ ann N such that
R 1 m+̂ « K

48



(?„, . . . ,ft 1' P 2
 i s a n «<-cosequence in aim N. So, by definition,

ft. , ft2, . . . ,ft <> ft j is an M-cosequence in arm N. This completes the

induction and hence the Proof of the Theorem.

The following Corollary shows that cohgr (N; M) is the upper bound
R

of the lengths of all M-cosequences in the annihilator of N.

Corollary 3.2.2: Let N, M be R-modules with N finitely generated.

Then

(i) If n = cohgr (N; M) is finite, then every M-cosequence in ann N

has length £ n, and can be extended to an M-cosequence of length n.

(ii) If cohgr (N; M) = <x>, then no finite M-cosequence in ann N is
R R

maximal.

Proof: Follows immediately from the Theorem.

Remark: Let N, M be as in Corollary 3.2.2. Then it follows

immediately, from Corollary 3.2.2 and the fact that ann N = ann (R/ann N)»

R R R
that cohgr (N; M) = cohgr (R/ann N; M) .
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For a finitely generated R-module N and an R-module M, the next

Proposition relates cohgr (N; M) to hgr (M; N).
R R

Proposition 3.2.3: Let N, M be R-modules with N finitely generated;

then cohgr (N; M) < hgr (M; N) .
R R

Proof: Proceed by induction on n > 0 to show n < cohgr (N; M)
R

implies n < hgr (M; N). For n = 0, 0 ̂  hgr (M; N) is trivial. For
r\ R

n = 1, we have 0 < cohgr (N; M). So, by Theorem 3.2.1, there exists a
R

subset ft. = {b. . I j e j } of arm N such that ft. is an M-cosequence in
1 1 Ĵ 1 R 1

aim N. So, we have an exact sequence:

M • MVi • © M

J1

where f ( £ m.) = Z b. ,m. , W = ker f and g is the inclusion

map. Now for every b. . e ft S ann N and for r > 0, b. . annihilates
' 3 i R 13

Ext (M, N ) . So, in the long exact sequence which results from applying
R

Ho:>m (-, N) to the above exact sequence, the homomorphism:
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: Ext^M, N) Ext (M, N)

is zero. Therefore, we obtain the following short exact sequence:

Ext5(g,
ExtR(M, N) •• Ext!

? a 1
, N) -£—> Ext^+ (M, N)

R 0 ,

where ot is the connecting homomorphism. Also for r = 0 the

homomorphism Ext (f' , id ) is zero and at the same time is a

monomorphism. Therefore Horn (M, N) = 0 and hence 1 ̂  hgr (M,* N) . Now

assume it is true for 1 < k < n. For k = n + 1 < cohgr (N; M) we have
R

n < cohgr (N; M ). So, by induction, n < hgr (n ; N). Hence for r < n,
R 1 R 1

the central term of the above exact sequence is zero. Therefore the first

and the last terms are zero, i.e., n + 1 i hgr (M,* N). This completes the
R

induction and hence the Proof of the Proposition.

Remark

(i)a. The condition that N is finitely generated in Proposition 3.2.3 is

necessary. For example consider the ring R = k[x], where k is a

field and consider the R-module k[x ], where

n -m
x x

-(m-n) . ̂  .̂x if m > n

if m < n
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Then,

cohgrR(k[x
 1 ] ; k[x 1]) > 0

but

hgrR(k[x
 1 ] ; k[x~1J) = 0

b. Strict inequality may hold in Proposition 3.2.3, even if both N, M

are finitely generated. For example, let R be a ring and let x e R

be a non-unft nbn-*zero devisor • Then

0 = cohgr (R; R/Rx) < hgr (R/Rx; R)
R R

ii) If both N, M are finitely generated and if N <8> M = 0 then by

Corollary 1.3.4, we have

cohgr (N; M) = cohgr (M; N) = hgr (N; M) = hgr (M; N) = oo
R R R R

3.3 Injective and Projective Dimensions and

the Homological and Cohomological Grades

From the definition of the projective and injective dimensions of an

R-module and the definition of the homological and cohomological grades, it

is clear that if hgr (N; M) * co, then

R
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hgr(N; M) < min{proj dimR N, Inj dim M}

And if cohgr (N; M) * co , then
R

cohgr (N; M)< min{proj dim N, proj dim M}
R R R

In this section, we will try to relate hgr (N; M) to the projective
R

dimension of M, and cohgr (N; M) to the injective dimension of M.
R

We start this section with the following proposition.

n
Proposition 3.3.1 Let A = £ Ra. be an ideal of R and let E be

i = 1 j
an injective R-module. If Horn (R/A, E) = 0 , then cohgr (R/A; E) = oo.

R R

Proof: Since Horn (R/A, E) = 0, we have an exact sequence,
R

n
o —> E -=-* n E -̂->- E' —> o,

where f (e) = (a.e) for every e e E. And since E is an injective

R-module, the above exact sequence splits. Now, since for every r > 0,

Tor (R/A, -) is an additive covariant functor, then for every r > 0, we

have a split exact sequence.

Torpid, f) n
0 > Tor (R/A, E) • Tor (R/A, n E)

r r i 1

Tor (id, TT)
>• Tor (R/A, E' ) • 0
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Now, for any projective resolution,

cL dU °P —5U P 1 _>•... , P _ U P
m m-1 1

of E, we obtain a projective resolution,

n

n d
n . m n n
n p — • n p „ — • • • • • — • n p.,
. m . m-1 . . 1
1 1 1

n n

n d. n d
. _ 1 n o n
— • n p — > n E

n n
of n E. And for every r > 0, the homomorphi sms, f :P >• n p

1=1 1=1
defined by f(x) = (a. x) form a chain of maps over f. So, the

R R R n

homomorphi sm, Tor (id, f) : Tor (R/A, E) >• Tor (R/A, FI E) is a
r i = 1 R

multiplication by (a.) and hence a zero map. Therefore, Tor (R/A, E) = 0

for all r > 0. Hence, cohgr (R/A; E) = OO.
R

The following Corollary includes hgr (R/A; R) < Inj dim R where

A ^ R is a finitely generated ideal of R.

Corollary 3.3.2: Let M be an R-module and A a finitely generated

ideal of R. If Inj.dim. M < hgr (R/A; M), then cohgr (R/A; M) = oo.
R R H
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Proof: Let Inj dim M < hgr (R/A; M). We will prove by induction on

n = Inj dim M that cohgr (R/A; M) = OO. If n = 0 then M is injective

and since Horn (R/A, M) = 0, then, by Proposition 3.3.1, cohgr (R/A; M) = oo.

Now suppose it is true for n > 0. For n+1 , let

,o . ,1 ,n .

0 —* M —> E° -A_> E
1 JU- • • — > En -*-> En+1 — 0

be the minimal injective resolution of M. Then,

. , o . , 1 . ,n-1
n i ji « o h ^ 1 h « n - 1 h _ n -
0 > ker d > Q >• Q > • • • • > Q >• Q > 0 ,

where Q = E , h = d for all 0 S i < n , is the minimal injective

resolution of ker d and Inj dim ker d = n. Now since
R

n+1 < hgr (R/A; M) then, by Theorem 2.3.1, we have Horn (R/A, Er) = 0 for

all r < n + 1. Hence for all

r < n, 0 = Horn (R/A, E r + ) = Horn (R/A, Q r ) .
R R

Then again by Theorem 2.3.1, we have hgr (R/A; ker d ) > n. So, by
R

induction, cohgr (R/A; ker d ) = co. Since 0 < n+1 < hgr (R/A; M), then
R R

Ho:m (R/A, E ) = 0 and since E is an injective R-module then, by

Proposition 3.3.1, cohgr (R/A; E ) = OO. NOW, we have,
R

cohgr (R/A; E°) = cohgr (R/A; ker d ) = oo.
R R

Therefore from the exact sequence
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0 >• M *• E ° > ker d *• 0,

we can conclude that cohgr (R/A; M) = oo. This completes the induction
R

and hence the Proof of the Corollary.

Remark: If the ring R is noetherian, then the dual of Corollary 3.3.2

is true; i.e. if proj dim M < cohgr (R/A; M) then hgr (R/A, M) = oo.
R R R

For the next result, we need the following proposition.

Proposition 3.3.3: Let N be a finitely generated R-module such that

arm N is a finitely generated ideal of R. Let {M.}. be an arbitrary
R i i^I

family of R-modules and put K = © M.. Then for any integer

iel
n < hgrR(N; K),

Ext"(N, K) ^ © Ext"(N, M.)
R . _ R 1

i<sl

and hence,

hgr_(N; K) = inf{hgr (N, M.) I i e 1} .
K K 1 •

Proof: Use induction on n > 0 to show n < hgr (N; K) implies
R

Extn(N, K) = © Ext"(N, M . ) .
R iel R *

When n = 0, then, since N is finitely generated,
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Horn (N, K) = © HomR(N, M±)

Suppose it is true for n > 0. For 0 < n + 1 < hgr (N; K), we have
R

Horn (N, K) = 0 and hence, Horn (N, M. ) - 0 for all i e I. Now, let
R k R i

A = ann N = £ Ra.. Then, by Corollary 1.3.2,
R j 1 3

Horn (R/A, K) = 0 = Horn (R/A, M.)
R R i

for all i e I. Hence, we have the following exact sequences:

k

0 • K • n K -^-> K' *• 0 ,
j = 1

f. k 7i.
0 • M. — ^ + n M. ^> M'. • 0 ,

j 1 i

for all i e I. where f(x) = (a.x) for all x e K and K' = coker f,

a n d , f o r a l l i e I , f . ( x . ) = ( a . x . ) f o r a l l x . e M . a n d M ' . = c o k e r f . .
t 1 1 3 1 1 1 1 1

Then, by Proposition 2.1.1, n < hgr (N; K' ) and Ext"(N, K' ) =
R R

^ (N, K), and for all i e I, n < hgr (N; M.) and
R R 1

Ext (N, M'. ) = Ext (N, M.). Now, we have the following commutative
R 1 R 1

diagram with exact rows:
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K n K
TI K' 0 ,

ot

0 • © M.
©f. k ©TT

—i-»- © n M . —
1

© M'.

where a is the identity map, ft is the isomorphism

ft{{ £ m )) = Z (m, J
iel -1

and j' is the R-homomorphism induced by a and ft which makes the above

diagram commute. Hence, we can conclude that y is an isomorphism.

Therefore

n < hgr (N; K' ) = hgr (N; © M'. ) .
R R . _ l

So, by induction,

, K' ) ̂  Ext^(N, © M'. ) = © Ext"(N, M'. )
R , _ 1 _ R X

Therefore,

Extn+1 (N, K)
R

Ext"(N, K' ) = © Extn(N, M'. )
R . _ R 1

© Ext"+1(N, M.)
R 1

This completes the induction. Now we have shown that for all
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0 < n < hgr (N; K), Ext£(N, K) ̂  © Ext"(N, M.).
R R , _ R 1

Hence, it is easy to conclude that

hgr (N; K) = inf{hgr (N; M.)
R R 1

For a noetherian ring R and finitely generated R-modules N, M,

H. Matsumura, in [10], Theorem 16.9, p.132, and D. Rees, in [16] Theorem

1.1, p.29, have shown that if

grade N = k (grade N = inf{n I Ext"(N, R) * 0} = hgr (N; R))
1 R R

Fromand if proj dim M = I < k then, Ext (N, M) = 0 for i < k - I.

this we can conclude that k - I < hgr (N; M). Or,
R

hgr (N; M) + proj dim M > k = grade N = hgr (N; R).
R R R

The following Theorem generalizes the above result in the sense that

we allow M to be any R-module and drop the noetherian condition on R,

but impose some condition on N which is satisfied already in the

noetherian case.

Theorem 3.3.4: Let N, M be R-modules such that N, arm N are

finitely generated. Then,

hgr(N; M) + proj dimM > hgr (N; R).
R R
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Proof: The Proof is trivial if proj dim M = oo. So, let

proj dim M = n. Now we use induction on n to prove the theorem. If
R

n = 0 then, M is projective R-module and hence, we can find a free

R-module G such that G S M © M' for some R-module M' . Hence,

Ext^(N, G) = Ext£(N, M) © Ext£(N, M')
R R R

for all k > 0. Consequently, hgr (N; G) < hgr (N; M ) . Therefore, by
R R

Proposition 3.3.3, hgr (N; R) = hgr (N; G) < hgr (N; M ) . So, the theorem
R R R

is true for n = 0.

For n > 0, we can find an exact sequence 0 >• K • F > M »• 0,

where F is a free R-module. Hence, proj dim K = n - 1. So, by
R

induction,

hgr_(N; K) + proj dim K > hgr (N; R ) .
R R R

Now if r < hgr (N; R) - n then,
R

r + 1 < hgr (N; R) - (n-1) = hgr (N; R) - proj dim o K < hgr (N; K)R R R R

i.e. r + 1 < hgr (N; R) = hgr_(N; F) and r + 1 < hgr (N; K ) . Now, the
R R R

short exact sequence

K > F > M • 0 ,

gives rise to a long exact sequence,
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k k k k +
• Ext (N, K) > Ext*(N, F) > Ext (N, M) • Ext (N, K)

K K K K

k k+1 k
So, for k < r, Ext (N, F) = 0 = Ext (N, K). Consequently Ext (N, M) = 0

R R R

for all k < r. i.e. r < hgr (N; M). Therefore,
R

hgr (N; R) - n < hgr (N; M) . Or hgr (N, M) + n > hgr (N; R) . This
R R R R

completes the induction and hence the Proof of the Theorem.

Remark: In the above Theorem, the condition, that ann N is finitely
R

generated, is only imposed to ensure that hgr (N; R) = hgr (N; F) for any
R R

free R-module F ^ 0.

Before we state the dual of Theorem 3.3.4, we need the following

Proposition.

Proposition 3.3.5: Let A be a finitely generated ideal of R. Let

{M,}. be an arbitrary family of R-modules and put K = FI M..

R i € l R
Then for any integer n < cohgr (R/A; K), Tor (R/A, K) = n Tor (R/A,

and hence,

coghr (R/A; K) = inf{cohgr (R/A, M.) I i <= 1} .
R R 1

Proof: The Proof is dual to the Proof of Proposition 3.3.3 if one

realizes that
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R/A ® n M. = n (R/A ® M . ) .
R iel X i«=I R

But this is always true, since R/A is finitely presented.

We end this section by stating the following Theorem which is

dual to Theorem 3.3.4.

Theorem 3.3.6: Let N, M be R-modules such that N and ann N are

finitely generated. Then, for any injective cogenerator Q of Mod-R,

cohgr (N; M) + inj dim M ^ cohgr (N; Q).
R R R
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CHAPTER 4

SOME APPLICATIONS

4.1 Homological and Cohomological Grade of Artinian Modules

In this section, we study the homological and cohomological

grades of artinian R-modules. We show that, for a finitely generated

R-module N and an artinian R-module M, if Horn (N, M) = 0 then,

hgr (N; M) = cohgr (N; M) = co. And for an injective cogenerator Q of
R R

Mod-R, we show that Horn (M, Q) behaves as a noetherian R-module in the
R

sense that for all n < hgr (N; Horn (M, Q)), there exists a regular
R R

Horn (M, Q)-sequence a ,...a in ann N of length n.

n
Proposition 4.1.1: Let M be an artinian R-module and B = Z Rb. be

a finitely generated ideal of R. If Horn (R/B, M) = 0 then
R

hgr (R/B; M) = oo .
R

Proof: Let Horn (R/B, M) = 0. Then, by Proposition 2.1.1, the exact
R

sequence:

f n g

o — • M • n M • M' —•() (1),
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n
where f (m) = (b. m) <s n M for all m e M and M' is the cokernel of

1 i=1
f, gives rise to an exact sequence:

n Ext (id, g) ex
0 > n Ext^(R/B, M) - >Extr(R/B, M' ) -̂> Ext*; (R/B, M) > 0 (2)

i1 R R R

for all r > 0 , where a is the connecting horaomorphism, and if r <

hgr (R/B," M), C* is an isomorphism. Now, since Imf is a submodule of the
R r

n
artinian module n M then, by [5] Proposition 3, p.55, we can conclude

i=1
that there is an integer k > 1 such that

(Imf : B) £ Imf + (0 : Bk) .
n n
n M n M

But (0 : Bk) = 0 for (0 : B) = n (0 : B) = 0 . Hence
n n i=1 M
n M n M

(Imf : B) = Imf. Therefore,
n
n M
i=1 n

0 = (Imf : B)/Imf = (0 : B) = Horn (R/B,( n M)/lmf) = Horn (R/B,M' ).
n n i = 1
n M ( n M)/Imf

Now, since 0 < hgr (R/B,- M),
R

a.
° 1

0 = Hoin (R/B, M' ) = Ext (R/B, M)
R R
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1

Therefore, Ext (R/B, M' ) = Ext2(R/B, M). But also M' is artinian and
R R

Horn (R/B, M' ) = 0 . Then, by the same argument, we can show that
R

Ext (R/B, M') = 0 . Therefore,
R

(R/B, M) = Ext!(R/B, M') = 0.
R R

So, for every n > 0, we can repeat the argument n times to conclude that

n < hgr (N; M) . Therefore, hgr_(N; M) = oo.
R R

For an artinian R-module M and a finitely generated ideal B of R,

the following proposition includes,

cohgr (R/B; M) > hgr (R/B; M) .
R R

n
Proposition 4.1.2: Let M be an artinian R-module and B = £ Rb. an

ideal of R. If Horn (R/B, M) = 0 then, cohgr (R/B; M) = oo.
R R

Proof: Let Horn (R/B, M) = 0. Since BM is a submodule of the
R

artinian R-module M then, by [5] Proposition 3, p.55, we can conclude

that there is an integer k > 1 such that

M = (BM : B) £ BM + (0 : B ) .
M M
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But (0 : B ) = 0 for (0 : B) = Horn (R/B, M) = 0 . Therefore M = BM.
H M R

Then, by Proposition 3.1.2, the exact sequence:

g n f
0 — > M' • e M > M — • 0 (1),

n n
where f(S m.)= £ b. m. and M' = kerf, gives rise to an exact

i=1 i=1
sequence:

R ^ R Tor (id, g) n
T o r

r+1
 ( R / B ' M ) *• T o r (R/B' M ' ) *• ® T o r

i 1

for all r > 0 where a is the connecting homomorphism and if r <

cohgr (R/B; M), a. is an isomorphism. Now, since (R/B) ® M = M/BM = 0,
R "JO

0 < cohgr (R/B; M). Therefore,
R

en
R ° R

Tor, (R/B, M) =5 Tor (R/B, M' ) = (R/B) ® M' .
1 ° R

But from the exact sequence (1), we can conclude that M' is an artinian

R-module and Horn (R/B, M' ) = 0. So, by the same argument, we can show

that BM' = M', or. (R/B) ® M' = 0 . Therefore,

R

TorR(R/B, M) = (R/B) ® M' = 0 .
R

Hence 1 < cohgr (R/B; M) and
R
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2 °S R
Tor (R/B, M) = Tor (R/B, M' )

R 1

But then, by the same argument as for M, we can show that

R 2
Tor (R/B,M' ) = 0. Therefore Tor (R/B, M) = 0. So, for every n > 0, we

1 R

can repeat the argument n times to conclude that n < cohgr (R/B; M) .
R

Therefore, cohgr (R/B; M) =00.
R

In the following Theorem, we show that hgr (N; M) e {0, 00} for any
R

finitely generated R-module N where M is an artinian R-module.

Theorem 4.1.3: Let N, M be R-modules where N is finitely generated

and M is artinian. If Horn (N, M) = 0, -then,

R

hgr (N; M) = cohgr (N; M) = 00 .
R R

Proof: Let Horn (N, M) = 0. Then, by Corollary 1.3.2,
R

Horn (R/ann N, M) = 0. Since M is artinian then, by [5] Lemma 3, p.54,

there exists a finitely generated ideal B <= arm N such that

R
Horn (R/B, M) = 0. Therefore, by Propositions 4.1.1, 4.1.2, we have

hgr (R/B; M) = cohgr (R/B; M) = 00. now, consider the exact sequence:
R R

ann N/B > R/B • R/ann N • 0 .
R K
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Then, by the Remarks on Theorem 2.1.4 and Theorem 3.1.5, we can conclude

that

hgr (R/ann N; M) = cohgr (R/ann N; M) = oo.
R R R R

But since N is finitely generated then, by Corollary 2.2.3, and the

Remark on Corollary 3.2.2, we have

and

hgr (N; M) = hgr (R/ann N; M) = oo
R R R

cohgr (N; M) = cohgr (R/ann N; M) = oo

Remark: It is necessary to have N finitely generated in Theorem

4.1.3. For example, consider the artinian Z-module Z = z/nZ and the

Z-module Q/Z, where Z is the ring of integers and Q its rational

field. Then, hgr (Q/Z; Z ) = 1.
Z n

Before we state the next Proposition, we need the following

Definitions.

Definition: [C.f [6] p.571].

An R-module M * 0 is called coprimary if r € R and r « rad(ann M)

imply M = rM.
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N.B.: if M is a coprimary R-module, then, by [6] Proposition

1, p.571, rad(ann M) is a prime ideal of R.
R

Definition: [c.f. [6], p.571].

When the R-module M is coprimary and P = rad(ann M) , we say that M

R

is P-coprimary and M belongs to P.

Definition: [c.f. [6], p.573].

A representation M = N. +. . ..+N, of an R-module as a sum of coprimary

R-modules is called a normal coprimary decomposition of M when the prime

ideals to which the N. belong are distinct and M ^ N.+....+N.+....+N.
I 1 I k

for i = 1,....,k.

Proposition 4.1.4: Let M be an artinian P-coprimary R-module. Then,

for any ideal A of R, AM = M if and only if A S P .

Proof: Let AM = M and suppose A S P . Since M is artinian then, by

[5] Lemma 3, p.54, there exists a finitely generated ideal B £ A such
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that (0 : Bk) = (0 : Ak) for all k > 0. But since B is finitely
M M

generated and B £ A £ P = rad(ann M) then, there exists an integer n > 1

such that B n£ arm M. Hence (0 : An) = (0 : Bn) = M. And then,

A £ ann M. So, 0 ^ M = A M = A M = 0 which is a contradiction.

Therefore, A S P .

For the only if part, let A £ P • then there exists a e A such that

a <k P. Hence, by the Definition of coprimary R-module, aM = M. Therefore

AM = M.

For any ideal A of a noetherian ring R and for any artinian

R-module M, E. Matlis, in [9] Theorem 2, p.499, has shown that AM = M if

and only if there exists a e A such that aM = M. And D.G. Northcott,

in [12], Proposition 2, p.290, has shown that if R is not necessarily

noetherian but A is finitely generated then, the above result still

holds.

In the following Corollary, we generalize the above result.

Corollary 4.1.5: Let M be an artinian R-module and A an ideal of

R. If AM = M then, there exists a e A such that aM = M.
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Proof: Let AM = M. If M = 0 then the Proof is trivial. So, let

M * 0. Then, by [6], Proposition 4(b), p.572 and Theorem 1, p.573, M has

a normal coprimary decomposition say, M = N. + ....+N, , where N. is

P.-coprimary. If A S P . for some 1 < j < k then, as in the Proof of

Proposition 4.1.4, we can find an integer n > 1 such that A £ a n n
p
 N'-

Now, since M = AM then,

k k
M = AnM = Z AnN. = £ AnN. ^ £ N.

1=1 1=1 1=1

which contradicts the irredundancy of the N.'s. Therefore A S P . for

all 1 < i < k. So, by [13], Theorem 13, p.179, there exists a <= A such

that a c P. for all 1 < i < k. Hence, by Proposition 4.1.4,

k k
a M = Z a N . = 2 N. = M .

For an R-module M, D.G. Northcott in [12], defined an R-cosequence on

M of length n > 1 to be a sequence a ,....,a of elements of R such

that for all 1 < i < n, a. M1" = M1" , where M1 = (0 : Ra + +Ra.)

M
and M = M. And for an ideal A of R, he defined the cograde of A on

M (cogr{A; M}) to be the upper bound of the lengths of all finite

R-cosequences on M whose members are contained in A. We will refer to

such sequence as a regular M-cosequence in A to distinguish it from an

M-cosequence.
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The following theorem relates cohgr (R/A; M) to cogr{A; M}, where
R

M is an artinian R-module and A any ideal of R.

Theorem 4.1.6: Let M be an artinian R-module. Then for any ideal A

of R, cohgr_(R/A; M) = cogr{A; M}.
R

Proof: Since every regular M-cosequence in A is an M-cosequence in A

then, we have cogr {A; M} 5 cohgr (R/A; M). Hence, if cogr {A; M} = oo

R R R
then the Proof is trivial. So, let cogr {A; M} = n. Now, use induction

R

on n = cogr {A; M}. For n = 0, we have aM ^ M for all a e A. Hence,
R

by Corollary 4.1.5, AM * M. Therefore,cohgr (R/A; M) = 0. Assume it is
R

true for n > 0. For n + 1 = cogr {A; M}, let a ,a ,....,a be a
R I JU n+1

maximal regular M-cosequence in A. Then a_,....,a . is a maximal
regular (0 : a.)-cosequence in A. So, by induction,

M

cohgr (R/A; (0 : a )) = cogr{A; (0 : a )} = n
R M 1 M 1

And from the exact sequence:

(0 : a ) — > M — — * M — > 0 ,
M
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we can conclude that

cohgr (R/A; M) = cohgr_(R/A; (0 : a.)) + 1 = n + 1
R R M 1

This completes the induction and hence the Proof of the Theorem.

For an artinian R-module M and an injective cogenerator Q of

Mod-R, the following Corollary shows that Horn (M, Q) behaves as a
R

noetherian R-module in some sense.

Corollary 4.1.7: Let A be an ideal of R and M an artinian

R-module and let Q be an injective cogenerator of Mod-R. Then for every

integer 0 ^ n < hgr (R/A; Hoin (M, Q)), there exists a regular

Horn (M, Q)-sequence a.,....,a in A of length n.

Proof: For n = 0, the empty sequence is a regular M-cosequence of

length 0. So, we may assume that n ^ 1. Since Q is an injective

R-module then, by [2], Proposition 5.1, p.120, we have for every r > 0,

Ext£(R/A, HomR(M, Q)) ^ HomR(Tor
R(R/A, M), Q).

And since Q is an injective cogenerator of Mod-R, we conclude that
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hgr (R/A; Horn (M, Q)) = cohgr (R/A; M)

Hence, by Theorem 4.1. 6,

hgrR(R/A; HomR(M, Q)) = cogr{A; M}

So, if

1 < n < hgr (R/A; Horn (M, Q)) = cogr{A; M}

then, there exists a regular M-cosequence a.,....,a in A of length n. *

Now for every 1 < i < n,

i-1 i-1
(R/ Z Rak) ® HomR(M, Q) ̂  HomR(HomR(R/ Z Rafc, M), Q) = HomR(M

1 , Q),
K=1 R k=1

where £ R a. = 0 for i = 1 . Hence
k=1 k

i-1
Horn (R/R a., (R/ S Ra, ) ® Horn (M, Q)) S Horn (R/Ra., Horn (M1' , Q))R i k = 1 k R R R i R

^ftR/Ra.) ® M1 1, Q) = 0.
R X R

Therefore, a.,...,a is a regular Horn (M, Q)-sequence in A.
in R
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4.2 Further Applications

In this section, we say (R, -M) is a quasi local ring when R is a

commutative ring with a unique maximal ideal M. If, in addition, R is

noetherian, we say that (R, -M) is a local ring. For a local ring (R, JA.)

and for every integer r < hgr (R/Ji; R), the aim in this section is to show

R
r r

that the contravariant functor Ext (-, Horn (ker d , E(R/^H.))) is an exact

functor on the category of all R-modules of finite length, where ker d

is the r cosyzygy in the minimal injective resolution of R and

E(R/*/H) is the injective envelope of R/M. Hence, if Horn (ker d ,

R
E(R/OH)) is finitely generated, it is a Gorenstein R-module. Also, we show
that if (R, -M.) is a complete local ring and if n = hgr (R/./H; R) then,

R
for every finitely generated R-module N ^ 0 of finite injective dimension,

the R-module M = Horn (Horn (ker d , E(R/^H)), N) is finitely generated of
R R

finite projective dimension equal to hgr (R/-M; R) - hgr (R/./H; N ) , and
R R

M, N have the same support.

We start with the following Lemma which we will use throughout this

section.

Lemma 4.2.1: Let (R, Ĥ.) be a quasi-local ring (i.e., R is a

commutative ring with a unique maximal ideal -M), and let L * 0 be an

R-module such that -M £ arm L £ JA. for some k > 1 . Then, for any
R

R-module M, hgr (L; M) = hgr (R/l; M) and cohgr_(L; M) =
R R K

cohgr (R/Ok; M).
R
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Proof: Since -M S a m L ^ M. then, by [7], Theorem 2.2,
R

p. 115 and Proposition 2.3, p.116, for any R-module M, we can conclude that

hgr (R/ann L; M) = hgr (RyOH; M) . Therefore, by Corollary 2.2.3, we have:
R R R

hgr (L; M) = hgr (R/ann L; M) = hgr (R/./II; M) .
R R R R

Now, if E = E(R/>/H.) is the injective envelope of R/M. then, for any

R-modules N, M and for all i ^ 0, we have, by [2], Proposition 5.1,

p.120:

Horn (M, E)) ^ Horn (TorR(N, M), E) .

Since E = E(R/^i) is an injective cogenerator of R then, it is easy to

conclude that for all i > 0, Ext^(N, Hom_(M, E)) = 0 if and only if

Tor^(N, M) = 0. i.e., hgro(N; Horn (M, E)) = cohgr (N; M). Therefore, fromR R R R

the above argument, we have

cohgr (L;M) = hgr (L; Horn (M, E) ) = hgr ( R M ; Hom_(M,E)) = cohgr ( R M ; M)
R R R R K R

This completes the proof of the Lemma.

Corollary 4.2.2: Let (R, ^H) be a complete local (noetherian) ring and
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let P * -M. be any prime ideal of R and E(R/P) its injective envelope.

Then for any artinian R-module M and any finitely generated R-module N,

cohgr_(M; E(R/P)) = hgr_(E(R/P); N) = oo.

Proof: Let P *• JA. be a prime ideal of R. Then, Horn (R/̂ ti, R/P) = 0.

So, by Lemma 1.3.1, Horn (R/./R, E(R/P)) = 0 and, by Proposition 3.3.1,

coghr (B./Ji; E(R/P)) = oo. Hence, by Lemma 4.2.1, we have for any R-module

L ^ 0 of finite length,

cohgrfL; E(R/P)) = cohgr (R/l; E(R/P)) = oo .
R R

Let M be an artinian R-module.

Claim: M = U (0 : ̂ Hk) and for all k > 1, (0 : Mk) has finite
k>1 M M

length.

Proof of the Claim: We have U (0 : ̂ k ) S M. And if x e M then, Rx
k>1 M

has finite length. Hence, there exists an integer k > 1 such that

^Hkx = 0. Therefore M = U (0 : >/Hk) .
k>1 M

k k-1
Now for every k > 1 , (0 : -M ) / (0 : -M ) is an artinian R-module

M M
annihilated by ^H. So, it is a finitely generated R/./t-vector space. Hence
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it has finite length as an R-module. So, by induction, (0 : -M ) has finite
M

length and the claim is proved.

By the above argument, we have for all i 2: 0,

TorR(M, E(R/P)) = TorR(lim(0 : ^ k ) , E(R/P)) = lim TorR((0 : ^l k), E(R/P)) = 0
l I -> ri -»• I t̂

Therefore, cohgr (M; E(R/P)) = oo .
R

Now let N be any finitely generated R-module and E = E(R/Ji) be the

injective envelope of R/-M. Then, by [8], Corollary 4.3 (3), p.528,

Horn (N, E) is an artinian R-module and N = Horn (Horn (N, E), E). Hence,

by the above argument; cohgr (Horn (N, E ) ; E(R/P)) = ooT i.e. for every

i > 1, TorR(E(R/P), Hoin (N, E)) = 0. Now for every i > 1, we have, by [1],
1 R

Proposition 5.1, p.120,

Ext^(E(R/P), N) S ExtJ(E(R/P), HomR(HomR(N, E), E))

= HomR(Tor
R(E(R/P), HomR(N, E)), E) = 0

i.e hgr (E(R/P), N) = oo. Therefore,
R

cohgr (M, E(R/P)) = hgr_(E(R/P); N) = oo.
K K

This completes the Proof of the Corollary.
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Before we state and prove the next result, we have to digress for a

moment.

Let R be a commutative noetherian ring with identity and M an

R-module and consider the minimal injective resolution of M.

0 • M • E°(M) • E 1(M) • • E 1(M)

For every p € spec(R), let E(R/P) denote the injective envelope of R/P.

H.Bass in [1] defines cardinals fJ (P, M) by the equation

E1(M) = © ^1(P, M) E(R/P),
Pespec(R)

where ©/LJE denotes a direct sum of ju copies of E. And he shows, [1],

Lemma 2.7, p.11, that for all P e spec(R) and all i >: 0,

, M) = dim Ext^ (R/P R , M ),
R P P PRp/PRp

and that if M is finitely generated then ^ (P, M) < co.

Theorem 4.2.3: Let (R, -M.) be a local (noetherian) ring and M an

R-module. And let,
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,o
0 — > M - ^ E° ^ —

be the minimal injective resolution of M. Then for any finitely generated

R-module N and for all r > 0 and all 0 S k < hgr (N; M), we have the
R

following:

R k f 0 if r < k
(i) Tor (N, ker d ) ̂  \

r { Tor (N, M) for r > k

HomD(ker d
k,

R

for r < k
r-kExt" (N, Homn(M, E(R/1) ) )R R

for r > k

where E(R/^H) is the injective envelope of R/̂ ti.

Proof: If N = 0, then the Proof is trivial. So, assume N ̂  0.

To prove (i), use induction on k with 0 < k < hgr (N; M) . For k
R

0, we have ker d = M. Hence for all

r > k = 0, TorR(N, ker d°) ̂  Tor^_ (N, M) .

Now suppose it is true for 0 5 k < hgr_(N; M) . For 0 < k+1 < hgr (N;M),
K K

we have 0 < k < k+1 < hgr (N; M). Hence, by Theorem 2.3.1,
R
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HomR(N, E
k) = 0. Then, by Corollary 1.3.2, Horn (R/ann N, Ek) = 0,

and, by Proposition 3.3.1, cohgr (R/ann N; E ) = oo. Therefore, by the
R R

Remark on Corollary 3.2.2, cohgr (N; E ) = oo. Now applying Tor (N, -)
R R

to the exact sequence

k k k+1
0 — • ker d — • E —> ker d —> 0 ,

we obtain the following long exact sequence:

R k R k+1 R k
Tor£+1(N, E ) > Tor^+1(N, ker d ) >• Tor^(N, ker d )

Tor (N, E ) > Tor (N, ker d

k R k
Since cohgr (N, E ) = oo, then Tor (N, E ) = 0 for all r > 0. So, from

R r

the above exact sequence, we can conclude that

R lc R lc+1
Tor^(N, ker d ) = Tor^+1(N, ker d ) .

Now, if r + 1 < k + 1 then r < k and, by induction

R k R k+1
0 = Tor (N, ker d ) ̂  Tor . (N, ker d )

r r+1

And if r + 1 > k + 1 then r > k and, by induction,

R R k R k + 1
Tor (N, M) ̂  Tor (N, ker d ) = Tor (N, ker d )

81



Hence,

I, ker d"") ̂  TorR (N, M) = ~ R

IT is.
' M )

This completes the induction and hence the Proof of (i).

For the Proof of (ii), we have, by [2], Proposition 5.1, p.120, for

all r > 0 and all 0 < k < hgr_ (N; M),
R

Ext£(N, Horn (ker d , E(R/1))) = Horn (Tor (N, ker d ), E(R/i))
R R R IT

But, by ( i ) ,

TorR(N, ker d k ) =

0 i f r < k

TorR (N, M) i f r > k

r k
Therefore, Ext_(N, Horn (ker d , E(R/1))) = 0 for r < k. And for r > k,

R R

, HomR(ker d
k, ^ HomR(Tor

R(N, ker d k),

^ Hoin (TorR . (N, M), E(R/Ji)
R IT—K.

^ Extf k(N, Homo(M,R R
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This completes the Proof of (ii).

For a local (noetherian) ring R with a unique maximal ideal -M, if

,o ,1 . ,k
0 > R > Eo _d ^ E, _d ^ . . . ^ Ek _d

is the minimal injective resolution of R then, for k < hgr (R/̂ H; R) ,
R

i k
the following Corollary includes, ^ {sM, Horn (ker d , E(R/>/H))) = 6 ,

R IK.

where S is the Kronecker delta and E(R/^) is the injective envelope

of R/l.

Corollary 4.2.4: Let (R, -M) be as above and consider the above minimal

injective resolution of R. Then for every finitely generated R-module N

and for all r > 0 and all 0 < k < hgr (N; R) , we have the following:
R

r 0 if r * k
(i) Tor (N, ker d ) =s J

r I N for r = k

, 0 if r
(ii) Ext^(N, Horn (ker d , E(RM))) =

1 Hoin (N, E(R/1)) if r = k
R
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Proof: Taking M = R in Theorem 4.2.3, we have

0 if r < k

(N, ker dk) ̂
1 Tor (N, R) for r > k

X*—K.

But R is a flat R-module, hence Tor (N, R) = 0 for r > k and for
r "~K.

r = k ,

Tor R (N, R) = To r R (N , R) = N ® R = N.
r it o

T h i s p r o v e s ( i ) . S i m i l a r l y , f o r ( i i ) , we h a v e , by Theorem 4 . 2 . 3 ( i i ) ,

Ext*;(N, Horn ( k e r d k , E ( R / 1 ) ) ) = 0
R R

for r < k. And for r > k,

I, Horn (ker d k , E ( R / i ) ) ) = ExtR (N, Horn (R,

But Hoin (R, E(R/>^i)) = ECR/~M) i s an injective R-module, hence

r-k
for r > k, Ext (N, Horn (R, E(RM))) = 0

and for r = k,
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Ext°(N, Horn (R, E(R/^H))) = Horn (N,

This completes the Proof of (ii).

For the next result, we need to recall the definition of a Gorenstein

module. For a commutative noetherian ring R, R.Y.Sharp in [19] has

introduced a special class of R-modules of finite injective dimension under

the name of Gorenstein modules, and he defines them as follows:

Definition: [c.f. [19], p.123].

A non-zero finitely generated R-module M is Gorenstein if and only

if the Cousin Complex for M provides a minimal injective resolution for

M.

For the construction and the properties of the Cousin Complex for an

R-module M, see [18] (2.6) p.344, and (2.7) p.345. And for the

characterization of Gorenstein modules, see [19], Theorem 3.6, p.124.

Also, see Theorem 3.11, in the case when R is a local ring.

Corollary 4.2.5: Let (R, -M) be a local (noetherian) ring and,

R
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be the minimal injective resolution of R. Then for every

0 ^ k < hgr (R/./H; R ) , the contravariant functor
R

k k
F = Ext (—, Horn (ker d , E(R/^H))) is a non-zero exact functor on theK R R

category of all R-modules of finite length. Hence if Horn (ker d , E(R/JI))

is finitely generated, then it is a Gorenstein R-module and R is a

Cohen-Macaulay ring of Krull dimension k.

Proof: Let 0 < k < hgr (R/l; R) . Then, by Lemma 4.2.1, k < hgr (L; R)
R R

for every R-module L ^ 0 of finite length. Now, let O = Horn (ker d ,
K. R

E(R/OR)) so that Fk = Ext£(-, O k ) , and let 0 —»• L1 —>• L 2 -> L 3 —* 0 be

an exact sequence of R-modules of finite length. Applying Horn (-, O )

R K.
to the above exact sequence, we obtain the following long exact sequence,

E x t R ( L 1 '

But, by Corollary 4.2.4, we have Ext ~ (L., O ) ̂  Hom_(Torf .(L., ker
R 1 K. R K~ 1 1

lc k+1 R 1c

d ), E ( R M ) ) = 0. And Ext^ (L_, O, ) ̂ Homn(Tor. (L_, ker d ),

= 0 . So7 we have an exact sequence

0 -> Ext^(L3, Ok) -> Ext£(L2,
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Therefore F is an exact functor on the category of all R-modules of

finite length. Hence if Horn (ker d , E(R/^H)) is finitely generated,
R

then, by [3], Theorem 3.8, p.203, Horn (ker d , E(R/^)) is a Gorenstein
R

R-module and k = Krull dimension of R. And, by [19] Theorem 3.11

(vii), p.127, R is Cohen-Macaulay. This completes the Proof of the

Corollary.

If (R, ̂ H) is a complete local (noetherian) ring and M is any

R-module, the following theorem shows, in particular, that for every

finitely generated R-module N =* 0 of finite injective dimension (so,

inj dirnN = hgr_(R/OH; R) .) and for all t > hgr (R/l; R) - hgr_(RM; M),

R R R R
Ext(M, N) = 0. Moreover, if hgr (R/l; M) > hgr (RM; R) then,

R R R

^(M, N) = 0 for all t > 0.

Theorem 4.2.6: Let (R, Ji) be a complete local (noetherian) ring. Let

M be any R-module and

0 __> M

U > M

be the minimal injective resolution of M. Then for any finitely generated

R-module N and for every 0 ̂  k :< hgr (R/̂ H; M),
R

hgr_(M; N) + k = hgr (ker d , N)
R R
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and for all t > 0, Ext^(M, N) = Ext^ (ker d , N) .
R R

Proof: For 0 = k < hgr (R/^H; M), we have M = ker d° and the Proof is
R

trivial. So, assume that 0 < hgr (R/OK; M) . By Theorem 2.3.1 (ii), we
R

have for all 0 < i < hgr (R/l; M), Horn (RM, E1) = 0. But
R R

E 1 ^ © ^1(P, M) E(R/P)
Pespec(R)

Hence, we can conclude that

= © /J1(P, M) E(R/P)
Pespec(R)

Now, by Corollary 4.2.2, we have for all

Ji * P e spec(R), hgr (E(R/P); N) = oo.
R

Therefore, it is easy to conclude that hgr (E , N) = co for all
R

0 < i < hgr (R/.>H; M). Now applying Horn (—, N) to the exact sequence:
R R

0 >• ker d1 > E1 >• ker d1+1 > 0 ,

we obtain the following long exact sequence:
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Ext^ (ke r d l + 1 , N) • E x t ^ E 1 , N) • Ext f c(ker d 1 , N)
R R

E x t ^ + 1 ( k e r d l + 1 , N) • Ext^+ 1 (E1 , N)
R R

But, for 0 < ± < hgr (R/-M; M), hgr (E , N) = oo. Hence, from the above
R R

long exact sequence, we can conclude that Ext (ker d , N) = Ext (ker

dl+1, N) for all t > 0. i.e. for all

0 < i < hgr (R/OR; M), hgr (ker d1, N) = hgr (ker dl+1 , N) - 1
R R R

Therefore,

hgr_(M; N) = hgr (ker d°, N) = hgr (ker d , N) - 1
R R R

= hgr (ker d2, N) - 2
R

= hgr (ker dl+1, N) - (i+1)
R

Or, for all 0 < k < hgr (R/OH; M), hgr (M, N) = hgr (ker dk; N) - k. i.e.
R R E

hgr (M; N) + k = hgr (ker d ; N), and for all t > 0,
R R

^(M; N) S Ext^(ker d°, N) ̂  Ext^+1(ker d1 , N)
R R R

= Ext^+2(ker d2, N)
R

^ ( k e r dk"\ N) ̂  Ext^+k(ker dk, N)
R R
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This completes the Proof of the Theorem.

If (R, JA.) is a Cohen-Macaulay local ring of Krull dimension m and

if R is a homomorphic image of a Gorenstein local ring (A, J{) of Krull

dimension n, R.Y. Sharp in [20] has shown that the R-module

O = Ext. (R, A) is a Gorenstein R-module which satisfies the following

property: for every finitely generated R-module N ^ 0 of finite injective

dimension, the R-module Horn (Q, N) is finitely generated of finite

projective dimension equal to hgr (R/OH; R) - hgr (R/>/H; N) . For a complete

R R
local ring (R, -M.) and for n = hgr (R/*/H, R), the following Corollary

R
shows that the R-module, O = Horn (ker d , E(R/^H.)) satisfies the above

n R

property, where ker d is the n cosyzygy in the minimal injective

resolution of R and E(R/^H) is the injective envelope of R/-M.

Corollary 4.2.7: Let (R, -M) be a complete local ring and

n = hgr (R/./H; R) . If
R

,o . ,1 ,n .
n > F ° d 1 d . . . . n d n+1

is the minimal injective resolution of R and if

Ci = Horn (ker d , E{R/Ji)) then, for every finitely generated R-module

N ^ 0, of finite injective dimension the R-module Horn (O , N) is finitely

R n
generated and
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proj dim Hom_(Q , N) = hgr (R/./R; R) - hgr (R/OU; N)
R R n R R

and supp Horn (O , N) = supp N.
R n

Proof: Let O = Horn (ker d , E(R/>/H)) and consider the minimal
n R

injective resolution of fi ,
n

,o . ,1 ,n

Q° <U Q1 *U- • • — > Qn *U

By Corollary 4.2.4 (ii), we have for all i > 0:

( 0 if i ^ n

HOULIRM, E(RM)) ^ R/M for i = n

R

( 0 if i * n

1 if i = n

So, for all i > n + 1, Horn (R/./R, Q ) = 0. Now, since
R

i . n+1 «n+1 ^
ker h • Q • Q

is the minimal injective resolution of ker h and Horn (R/M, Q ) = 0
R

for all i >: n+1 then; by Theorem 2.3.1, we have hgr (R/-M; ker h ) = oo.
R

So, n + 1 < hgr (R/Ji; ker h ). Hence, by Theorem 4.2.6, we have for all
R

t > 0, Ext^ker h n + 1
f N) £ Ext

t + ( n + 1 } (ker h 2 ( n + 1 ), N) = 0 for
R R
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inj dim N = n. So, applying Horn (—, N) to the exact sequence,

« > in n , , n+1 „
0 >• ker h • Q > ker h • 0 ,

we c a n c o n c l u d e t h a t Ex t ( k e r h , N) = E x t ( Q , N) . B u t , s i n c e
R R

fun(M, O ) = 1, Qn ^ E(RM) S> A A P , " ) E(R/P)
Pespec(R)VH

Hence, by Corollary 4.2.2, we can conclude that,

Extn(ker h11, N) = Extn(Qn, N) = Ext"(E(R/OK) , N)
R R R

Now, since n = hgr (R/Ji; O ) by Theorem 4.2.6,
R n.

Horn (O , N) = Ext^(ker hn, N) = Ext"(E(RM), N)
R n R R

Now, the Proof of the Corollary follows from [15] Theorem 4.10, p.66.

We end this thesis with the following Corollary.

Corollary 4.2.8: Let (R, «M.) be a complete local ring and let:

R __> Fo d° 1 d \ k d\
K r Ei r £. r • hi r Jt

be the minimal injective resolution of R. If N is any finitely

generated R-module then, for every k ̂  hgr (R/OR; R) and for all t ̂  0,

R
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. . r o i f t ^ k
ExtJ(ker d , N) ^ I

IN if t = k

Proof: By Theorem 4.2.6, we have for all t > 0,

t+k k +•

Ext (ker d , N) S Ext^(R, N)

hence, if t * 0, Ext^(R, N) = 0 and if t = 0,
rv

N S Horn (R, N) S Ex t^ (ke r d k , N)
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