ABSTRACT

The existing‘design languages and methods available to the computer
systemé designer are critically examined in this report. A new
language, which is considered to be fiexible, expansible and more
akin to the designers' natursl methodology, is presented. 4 command
structure and an implementation technique for use with a Honeywell
DDP 516 computer with disc backing storage for developing an abstract
definition of combinational networks, of upto 20 input and 20 output

variables, on an interactive basis, 1is also presented.

FACULTY OF ENGINEERING

DEPARTHENT OF ELECTRONICS

Master of Philosophy

A LANGUAGE FOR COWPUTER AIDED LOGIC SYSTHEM DESIGH

by

Dinesh Pai, B.Sc.(Ing.)

CONTENTS

Page

Acknowledgement t.'0.‘....00'.'.0!'0..'0..Q..Q'O“l.l'(..‘(!'iv

1. Introduction to Digital System Design Specifications eces.
1.7 Introduction seesocssscesvsocecorcecscacecccrsscosconosns
1.2 Design Automation scececevssccocccosnsnevceocacsccnvse

2. Regular ExpressSions cececesecroscconcecccconcaoscscscocscos
2.1 Introduction coceseocecooscoesssceosssscanccocssacnocasc
2,2 Historical SUTVEY ecoecesecsscceocscescoscscsccscssccsns
2.% Definitions and Properties cecececonsrtecnsssstenoccs
2.4 Regular Expression from Natural Language Description .
2.5 Regular Expressions for Combinational Logic cececocece
2.6 Regular Expressions from State Diagrams sececesceccces
2.7 State Diagrams from Regular EXpressions seecceecccscces

2.8 Derivatives of Reg&lar }’})CpreSSionS PO R B Lo B CEEEBERL LD E

L

L]

*

L)

L]

L]

8

¢

.h.‘1

60.01

cena?
ceseb
ceesb
cessl
ceesB
ool
eeal?
S
ees16

05018

2.9 State Diagrams from Regular Expressions using Derivatives 21

2.10 The S'ba-te Charac’teris‘tic Equ&tion ccqnoqucouoootoeonc0060523

2.11 Minimal State Diagrams for Multiple Outpuls eecesscces
2,12 Transition Graphs cevescccscecocoesscencsaecvesncscocs
2.1% Conversion to a Ueterministic FOIM secececcocecossncan
2.74 Conclusions cecocscssscrecesssoncocacocescooecocoseecse
3, Languages Describing Microprogrammed Systems and Their

Applications ceeececoccccescecocsvccsccococecersosooscoocs
Z.1 Introduction sseececooccscecssossescoscasnoscocsceconon
%,2 Reed's Register Transfer Language cceecececssscnvocces
3,3% lLanguages based on Progfamming Languéges cecoccsrceocos
36301 FOTLYEI weorvocoscoaraaoncososnsonssonccocncscon
B30%.2 ALEOL ceconsorscscsccsocecencossoccasooosoossssna
%3e3e3 Iverson's APL ceccecssvecoceccocsconcsonccceoosos

303:4 APL as a Désigm Lan{%uage chbLObAROOOEOCRDCBEOOHE

i

L]

@

ae$26
eo§26
NPNLS

34«932

ﬁee47
0»049
seoD3

ovne56

4.

g

3.4 Partitioned Systems teveseosesecessssscncssesccsscsacoccesesdd

305 Sequence Char.t Ana«]-yser .h.C‘..OG..l.l‘.“....‘loD.OO‘..OOO.65

3,6 State Tables from Microprogrammes teeevecssnscosesesnsasesbb

3.7 Mﬂltiple TTanSferS 0.000.0000000000'000o.odtoboo000003.0.072

3.8 mxtension to include Read Only Memory ssececceccecccccse

3.9 Different types of ROM Implementations teececrereceoove

3,10 Microprogram Transformations ceesccececsccceccccrsosncee

3,11 Structure Descriptive Languages seececessccvsvecscescree

3.12 Conclusions 000000006FO‘C000.ﬁaﬂ‘ot&'...'..ﬁi.&oooDOO..

Methods based on Switching Theory and Information Theory ..

4.1 lntroduCtion lﬂ.".ﬂ'.03.00'0.‘.00.0'.05060000..QO@@'(IO

4«2 Carroll and MOtt'S Meﬁhod seeebcouobbbOoOOOOCE LS

4.3 Smith and Tracy's Method cccescccccocnsccess
4ol Pelri Nels cecoveccocvacoccocscosscscoconses
4.5 Conclusions cecesccceccceconsaccccoscessance
An Approach to Computer aAided Logic Design eceee
5.1 Development ceoececcceccoccccsccrescecccocce
5.2 ‘the Intuitive Approach scccescoscececcsccoce
5.3 The Computer Aided APProach ceesesceccencscs
the Logic Design Language seeeeceeoscossccccsecno
6.1 Introduction ccecececsccccoscccsocoasncsssos
6.2 Structure of the Description of a System e..
6.3 DesCription evcescecessocosscossoencacascones
6.4 Voriables coseeescscccocevsscscaascescoceans
Command Structure of the Truth Table Generator .
7.1 The Requirements coccecoccoccoccocoscsceccacs
7.2 ‘the Usage of the Programie .cceccececeeosces
7.% Proposed Implementalion ceeececccccceccconce
Conelusions cescesconcossscceccossesocossoscacse

8n1 Summ&ry L EE B O EEEOHGLGEEHOEHELHOOHELEGBLESEHS

e

&

L3

4

®

¢

&

%

&0 e @

¢ 56 e

LG

& v 80

& ¢ 8o

e e &

LI

6 e w0

¢ o8

LI

¢ o o0

cee 14
eeel5
eeeT9
cee83

0ee90

eee93

30093
eee94

. 101

.0 148
153
»e 153

802 Current viork ..O..‘lQO..'l00..0...'l...0.......0...‘.00....157

8‘3 Future Work ‘..0.’..‘...0...0“‘0..0‘0."..0.00000‘0.‘... 0158

-

-159

References and BibliograDhy ceesecescococsossoccescssscsoccan
Appendix I Weesescsescenctecersevosoarcssoesessnosscocnsesosvesh=l
A1oT eeeueosnesovosoossossoasscsonsnssscossasesosescasocsesseesh=l
A1~2 Regular Expressions cecesosccancovsssesncesscersssvccscessshml
A1-3 Reed~Schory LangUuage seeescecocscessscscososoccscsssossecsh=B
A1-4 Schlaeppi's Language LOTIS sveeesoscsccocecacocoascccossssh=9
A1-5 Language of Chu et al teesesccoensssesnncsesecscescascseseshml0

A1”6 Okada aﬂd Mctooka EREE O CELOLOOOEDEDOOELOGCOCOEPDOEOOELAROEEDEOOE oA“11

°

+A-11

-

AT‘? Metze and SeShu C 6B O E O EEEERCEODLEREOEDEOOEOEOEIEEOEOSOOESE

A1”8 Uuley and Dietmeyer 0&oocavebaectooototcclu6Ie-otdﬂcaaeodoAm13

A=14

»

A1”9 U&Ss&ndfa C e E b S L ECEEOEROEDBEOOCOEDOPEORLETSEHLOOELELESOROE

LA-15

A1”1O IVerSﬂn e b e P O LB EECRED O LS HODOOEODOEOEEELO0OEEDOHELELEEELS

-

oA-16

A1"11 GeraCé'S Method @6 6 6 6 & 0L G 6D ELCODSEEEERETERODEEEOLOH0EEELLC

A1=-12 Roth’s Sequence Chart noaeooeoaoc‘eooaceqacea.cnaaaaoeaaeA”?S

cA~2T

o

A1”13 PMS Level Description eP e oo 0O 66 B EPEEERROEPEEEBOOECLEEDE
A1“14 ISP Level Descripti@n acotwa»ncvaécnooqeoeooo»coaceeoccneﬂ”27

A=29

Appendix II d04eococeeeveaecooeneeoabeeioloeoouootcbccnaeeoua
A2"1 The Hamming OOde oonnul&oseceeactaalﬁaOvﬂvoccoconOGanaceaA"29

Appendix III i'BOOG'OEOOOGﬂ&0&&66&6009"’9GEQé&bﬂ‘nbDQGOQO.GDGO'BA”BO

Appendix IV Analysis of Sequential Logic Uircuits cessvoceosseh~32

ACKNOWLEDGEMENT

I am indebted to my project supervisor, Professor Douglas Lewin,
Brunel University, formerly of Southampton University, for his guidance,
helpful discussions and his continuous encouragement. I also wish to

acknowledge the valuable assistance given by Dr. R.G. Bennetts with

this project.

I wish to thark International Computers Limited and the Science

Research Council for the financial support.

My gratitude extends to Catherine wuither for the timely
assistance in converting my illegible writing into a typed manuscript
and to Sharon Conlin for her patience and encoursgement throughout

the preparation of this report.

RT3

1. Introduction to Digital System Design Specifications

1.1 Introduction

A digital system is conventionally divided into
hardware, i.e., the part which implements the basic
characteristics of the system using electronic or
mechanical building blocks and which dis relatively
difficult to modify, and software which forms a
superstructure on the hardware and assigns a set of
different characteristics to the digital system for
the final applications. The design processes of
the two parts dare physically different in that they
rely on different building blocks and consequently
employ different criteria. For example, hardware
design is influenced by the types of electromnic
switching elements available, fan-in and fan-out
factors of gates, i.e., the number of inputs and the
number of outputs that may be connected to a gate,
packaging of the switching elements, interconnection
methods and problems of fabrication of sub-units and
unitsy; whereas the software design is based on the
repertoire of instructions executable by the hardware,
menory accessing and information management techniques
and the input-output device handling techniques
employed by the bhardware, and the communication

between various sections of software.

Conceptually however, the design phase for both
hardware and software is ddentical and can be

characterized by the following steps:

.y

a. Defiﬁé‘the system in a natural language
describing its overall characteristics, such as
input-output behaviour, performance, etc.

b. Convert the description in a. to formal
specifications.

c. Implement the formal specifications in terms of
appropriate building blocks with due regard to
physical constraints such as speed, cost,
reliability, téstability and to a lesser extent

future modifiability{

Despite the identical nature of the design procedures

* for hardware and software, Tt is a current practice

to treat the two aspects completely differently,
especially in steps b. and c. Often -+ step b. is
completely bypassed in the design process. This is
due to several reasons, the main ones being the
designers!' reluctance to conform to any formalization
of the design process since it could be regarded as
reducing the scope for exercising their skill and
ingenuity, and the distinct lack of standard formal
techniques which could cover a wide fange of problems.
Obviouély then, the design process relies heavily on
the designers; past experience and ingenuity, is
extremely time consuming and prone to errors. Such
a process is also subject to inaccurate and inadequate
documentation. In many cases the documentation is
based on the final design with no trace of the

intermediate steps taken by the designer.

This means that there is a proliferation of many

different techniques currently employed in the design

of a'digital system. While this practice does not
cause many broblems when small systems are being
implemented \ presents more and more acute problems
when digital systéms of large sizes, such as modern
éomputers are designed. yHere, of necessity, the
design process must be divided up and the need for
suitable formalization of overall design teclrmiquesl;c:wwl
good documentation ,for intercommunication between
numerous designers and for the subsequent

manufacturing;becomes more urgent.

Design Automation

In the last application mentioned above, the data
required particularly for large system implementation
is very ‘a%a@ indeed and in most cases certainly
too large for manual handling. Fortunately, however,
large and powerful.computers have recently become
available and these can be efficiently employed to
handle the mechanical tasks in system implementation.
In fact, most manufacturing concerns already use
digital computers to perform component layout, back
panel wiring, and cable connections -~ also providing
a check on circuit completeness. Additionally,
useful tasks of documentation of parts~lists and
drafting are also relegated to the computer. Both
these factors-assist and improve the production

process.

It is, therefore, natural to extend the scope of
design automation and consider the possibility of

employing the digital computer in the design process.

Apart from the obvious advantaées of documentaticn
facilitiés and automatic logic generation, as
requircd in step ¢, the digital computer can also
provide to the designer some powerful facilities,
which, in most cases, otherwise would be beyond the

time and effort available. These are:

1. minimization, di.e., removing redundancies,

2. simulation to check the design completeness
and to obtain perforﬁancé figures,

3. generation of test sets which would allow the
detection and location of faults if and when

they arose.

The results obtained by invoking the above facilities
can provide very valuable feedback to the designer
allowing him to modify the design specification or
the design itself as necessary,andfcoreinitiate the
design cycle until an optimal, 1.e., economically
satisfactory, solution is reached - a process which
norhally should be executed before any expensive
manufacture is initiated. If the designer had
facilities to communicate directly with the computer,
e.g., via a teletype unit or a visual display unit,
the feedback cycle could be made much shorter.
The designer then would be in a position to
experiment with various designs, incrgasing
considerably his scope for ingenuity and exercising

his skill.

Unfortunately, however, in view of the current state

of the art, the above procedure has major drawbacks.

The data generated during the design phase is lavge
and the resulting computation is very complex even
when performed on large computers. Switching theory,
[i}, [2], [3] the'only tool available for rigorous
désién, is still mainly applicable to small systems.
and its application to large systems' design, both
hardware and software, is still at an infancy stage.
Nevertheless, the potential advantages of the above

approach are unquestionable.

The designer then,must be provided with a
communication interface with the computer, i.e., a
language. This language must be such that it is of
a high enough level so that too much time is not
spent specifying routine duties, yet at the same
time must be of a low encugh level to be flexible.
It must also be reiatively easy to learn to be of
practical value, e.g., in documentation, teaching
its use to new designers etc. And of course, the
language must be translatable into a format so that
tools provided by switching or similar theory may be

applied.

In the following chapters we examine the various
languages proposed so far and discuss their relative

merits and disadvantages. A comprehensive set of

examples is also provided in the appendix to complement

the discussion.

JT

2. REGULAR EXPRESSTONS

2.1 Introduction

Regular expressions [4 - 307 describe the input-output
behaviour of a clocked or pulse mode system in a way which is
independent of its internal structure. As such,regular expressions
piovide a method of representing a system as an abstract automaton
and of deriving a mathematical model for it. Also, since all

clocked or pulse mode systems are covered, regular expressions can

handle a large class of seguential systems, The languzge of repulax

expressions is precise and since tﬁe description is in a single-line
type of format it is much easier to process than, say, state tables
or state diagrams. Furthermore, becsuse of their characteristics
egular expressions sometimes clogely resemble natural lansvage
description. It appears, therefore, that the language of regular

2

expressions is a very useful tool for analysis. However, the

\o

expression describing a system can vary considerably depending on the
way 1t is derived and to the author's knowledge, no satisfactory method
vet exist to discover the - identities of equivaleat vegslar expressions.

The limitation of the language of regular expressions is
that it can only apply to a finite state syslten., A computer is
essentially a finite state machine with a separate large memory and,
therefore, regular expressions cannot be used for synthegsof

computers. Secondly, the regular expression representation is such

that when the expression becomes valid, i.e. when the system Y“accepts"

the regular expression the ouput is made equal to 1; otherwise the
output remeins at C. Therefore, for multivle oubputs the only way

to use this language is to consider each ocutput separately and

derive the relevant regular expression for each. Thus this method

is mostly suited for single output systems.

: regular

These disadvantages restrict the use of regular expressions
and designing digital computers using regular expressions only would
be an extremely léng and laboricus, if not an impossible process.

The mathmematical nature of regular expressions, hoﬁever, has roused
considérable interest and a wealth of papers have appeared since
Kleene[18] first introduced their use in connection with automata.
The following discussion, therefore, is included as an illustration
of the language of regular expressions and a rigorous and complete

coverage is not included.

2.2 Historical Survey

- The theory of regular expressions dates back to 1943 when
McCulloch and Pitts {21] developed a logical theory to describe the
behaviour of nerve nets. Tn 1956 Kleene [jd)extended the ideas to
describe abstract automata by regular expression and also showed that
every finite state deterministic automaton can be defined by a regular
expression and that every régular expression can be realised by a
finite state, deterministic automaton. The theory he developed,
however, was mainly in terms of nerve nets and was rather complicated.

. Later Copi, Elgot and Wright D?}, in their expository paper, simplified
the discussion but restricted themselves to instantaneous logic.

In 1960 McNaughtén and Yamada,[?éiadded to the theory by providing
algo;ithms for deriving regular expressions from state diagrams and
vice versa. Some other treatments of regular expressions were also

. developed by Lee Exﬁ, Arden E4], Mayhill [?51 and. Rabin and Scott [?é} ;
but their terminology and presentation varied widely. In 1962
Brzozowski Esi} published an expository paper giving a unified account
ofaall the theory published until then; and around the same time
Ghiron L15} independently published a cérreSpondence enumerating rules
to manipulate regular expressions. Since then Brzozowski has

published a number of papers-on this subject. He and HcClusky)L6_1

furthered the ideas of Arden [4] and applied signal flow graph
techniques to regular expressions. He alsc overcame one of the major
disadvantages of the technique by McNaughton & Yamada which requires
very lengthy manipulation, by &eveloping‘the concept of derivatives

of regular expressions E7'] and the techniques to cbtain state

diagrams from regular expressions using derivatives, Spivak [?9] also
independently developed these techniques of derivatives, but he
referred to a derivative as "the quotient of division', Udagaws

et al [30], in 1965, unified the derivative approach and Arden's

linear equation method into a matrix form.

The more recent work in this field has been mainly on the

algebra rather than applications of regular expressions [9,11,27] .

2.5 Definitions and Proverties

Consider a set of n inputs to a machine M as shown in
Figure 1, such that each input can take up a value of logical O or 1,

These binary variables are called input sisnals, A particular

ordered arrangement of the input signals is called an input configsuration.

Assuming the input configuration represents a binary string with 2.1
as the most significant bit and a, as the least significant bit, the

value of the string is called an input symbol, and the set of input

symbols is called an input alphabet. It follows that the input symbols

can take values between O and 2"~1 and the input alphabet contains 2%
symbols. Only synchronous machines are considered and the values
assumed by the input symbols at successive clocking times denote an

input sequence,

For the present discussion we restrict ourselves %o a limited
set of regular operators containing +y09%,(y) namely the disjunction,
concatenation and star operators and parenthesis. The regular

expressions are recursively defined as follows:

FIGUREI. MACHINE M

10

1) Any symbol of the input alphabet, a § or a Ais a regular
expression,

2) If A and B are regular eéxpressions then A+B, A.B (sometimes
written é@) and A% are also regﬁlar expressions.

%) Only expressions derived by application of rules 1 and 2 a

finite number of times are regular expressions,

Parenthesis are used to group sequences of regular expressions,
The symbol A is an input sequence of zero length and @ is the null or
enmpty set of segquences, the difference being that A is a set with one
symbol and ¢ is a set with no symbols. The star operator is defined

as follows:

A¥ = A o+ A+ AA+ AMA 4+ ALAA 4+ ...
= A +ATA2+_¢§.~5+A4+000

An automaton realises a regular expression or it is said to
accept a regular expression if when a valid sequence contained in that
regular expression is applied to the machine an output of 1 is
produced, and such a regular expression defines the machine, Before
attempting to derive any regular expressions for a given machine and
vice versa,; it will be useful to consi&er some of the basic properties

which are enumerated below,

If A, B and C are regular expressions, then
Pt | —]

—

i) A+ 3B = B+ A Commutative

i1) (A+38) +C= 4+ (B+0) . Associative
f11) () = A(3C) Associative

iv) AB+AC = A(B+0) Distributive

v) AC+3B = (L+ 3B)C Distributive

vi A4+ = f§+A = A
vii) Ap = @A = ¢ Properties of ¢

ix) A = M = A
Properties of A
x) ¥ = A
Xi) _jl: + _{3: = A
xii) (4 + B)* = (4*.Be)*

In some cases the knowledge of sequences from time zero is
not required or available. In such cases a don't care symbol is
useful. At is called i meaning any symbol of the alphabet and i* is

a don't care sequence,

2.4 ZRegular Bxpression from Hatural Lanzuage Descrivtion

As we stated in the preceding sectionaregular expression
is essentially a sequence of inputs accepted by an automaton. Thus
the language of regular expressicns can be used for describing sequence
recognisers and it is this kind of description that the language suits
most. If the set of input sirings accepted by the automaton s known
or alternatively if an automaton has to be designed with a known set of
input strings, then it is a simple matter to convert this description
into a regular expression. The task of discovering the set of all-
input strings accepted by an automaton, however, is a very complex

one and in practice, except in a few cases, is impossible.

Suppose that it is necessary to generate an output if the
input string contains the sequence 1011 then the regular expression

describing this sutomaton would be simply

R = 1i¥1011(i%1011)%, i=140.

A betler example would be one containing the Boolean
operators & (AID) and ' (negation). For example, an automaton
accepting an input sequence containing groups of 11 followed by
groups of 00 but not ending in 0Ol or accefting an input sequence
containing groups of 101 would have the regular expression

R = (i¥11(11)%00(00)*) & (i*01)' + i*#101(101)%*

11

Another, useful, example is a divide~by~two automaton
which accepts all sequences containing an even number of 1's,
This éutomaton is defined completely and precisely by the regular
expression

R = 0%10%1(0%10%1)*

2.5 Repgular Ixpressions forx Combinational Lozic

As was stated before, a regular expression decribes a
sequence of input symbols at successive clock times necessary to
produce an output of 1. It follows, therefore, that the regular
expression for a unit delay is

R o= i%1i (1)

This expression is valid for a machine containing
instantaneous logic. ° If, however, a unit delay is inherent in the
logic then the regquired expression is

B = i¥ | (2)

Regular expressions for combinational logic devices can be

similaxly derived and some examples are given in figure 2,

2.6 Regular Bxpressions from State Diacrams

The technique illustrated below is due to Arden‘-4}.

tach state has a regilar exprgssion associated with it which
describes all the sequénces necessary to bring the machine into that
staﬁé from a starting state. This regular expression is obviously
equal to all the regular expressions associated with the adjacent
states, l.e. the states from which the state under consideration can
be reached by inputting a single symbol, followed by the symbols
which will cause the transitions, This equation can be written as:

251 = a1ty F Duofoy e ¥ DA (3)

13

1 -

AN AND GATE R=13

0o

AN OR GATE R= * (1424 3)

o

AN INVERTOR R=i¥0

FIGURE 2

where -:-Qsl is the regular exvression describing all the sequences
taking the auvtomaton from the starting state 4 to the state 4 and
asy is the input symbol causing a direct transition from state 45 to

state 499 etc.

Regular expressions associated with other states can be

written down similarly:

.1_132 = 7 a12-s~;)2a2+ FRPIN +P~sng’n2'

pe = T XK A

D*f*s Jssla'ls + 2323’25 + + -Q'sn ns +

-p-sn = Dolal‘ D,32‘1:211 Toeeo -D'snann‘ (4)

where A 1s the starting symbol.
These can then be solved as simultanecus equations.

As an example consider the state diagram shown in figure 3,
of a machine with only one input., If A,B,8, and D represent the
regular expressions associated with the states 4,3,C and D respectively,

then the relevant equations are

A = DL +A | (5)
.3 = 0. | (6)
€ = B+ AL+ Qo (7)
D = C1 + BO + DO (8)

Then substituting for B in (7)

¢ = A(01+1) + €O (9)

This is an equation of the +type
X o= Z+3B
-

which suggests that a sequence B is required to arrive at state X

and any further occurrence of sequence A will cause transition back

FIGURE 3

15

PR
F
LN

to X, i.e. the solution to the equation is

X = BA*
In fact it can be shown that this is the only solution to this type
of equation providing A does not contain AT

Thus the solution to (9) is

¢ = a(o1+1)ox (16)

From (10) ana (6)

i

D

A((0L+1)0%1 + 00) + DO

i

A((01+1)0%1 + 00)o* (11)
and from (5) and (11) we get
A = A((01+1)0%L + 00)O¥1 +A,

= MN((01+1)0%1 + 00)0*1)%,

= (((0L+1)0%1 + 00)o*1)*, - (12)
Hence
B = (((01+1)0%1 + 00)o*1)*0, (13)
¢ = (((01+1)0%1 + 00)0%1)%(01+1)0%, (14)
D = (((o1+1)0%1 + oo)o«-l)%((01+1)0‘h'-1+bo)0:+ (15)

If the machine produces an output in state D then the

regular expression defining the machine is D.

247 State Diagsrams from Resular Fxpressions

The method described below is due to Mclaughton and Yamada
[22]. It is illustrated with a running example which uses the

regular expression obtained in the last section.

Step 1. Associate a position 1 with the leftmost symbol
in the regular expression. Associate a position 2 with the next
occurrence of the same symbol to the right and so on until the last

occurrence is suitably identified. Hepeat this procedure for all

T see Appendix II1I1,

17

the other symbols in the alphabet. These identifications appear as

subscripts to the symbols in the regular expressicn,

Applying this step to the expression D we get

2 = (((0y1;+1,)0%1 0504)o§14)%((0615+16)o§17+08q;o§0. (16)

A position is termed initial if a wvalid sequence is contained
in the regular expression which begins with that position and
gimilarly a position is terminal if a valid sequence can terﬁinate
in that.position. In the above regular expression these positions
are

Initial 01, 12, 03, 06’ 16’ 08.

Terminal 17, 09, OlO'

Step 2, In this step, we determine all the allowable
transitions. These are ordered pairs of positions which a valid
sequence can follow. The meaning should be clear from-the ordered
pairs in the example which aré

(0,,1,);

(0,50,)5 (0515);

(04,0,)3

(0,,05), (0,1,

(05,0,)5 (05,1,

(06’15);

(0,,0.), (07,13

(0g104)3

(099014);

(0701014)3

(11,0,)s (13,15)s

(1540,)5 (1,,1,)3

(15500), (1551,)3

(14,0105 (3451505 (34505)5 (14400)s (1,51),5 (1,405);

-

(15a07)9 (15’17)5
(16’07).’ (16’17>;

(171010)?
Step 3. The state diagram is then built uwp using the

following procedure., Assume a present state a; corresponding to

position set

i =

of the symbol i, Suppose a symbol j is received then the next

k is an integer}

\

state qj is the largest set {Pj(such that there is at least one
allowable transition to each position of the set;{Pj} from the set
{Pi3 o If there is no such set, i.e. it is an unallowable transition,
then the next state is a fault state and all the transitions from this
state terminate in this state., This process is continued until all

positions are covered., An initial starting state S is also assumed,

Applying this procedure to the example we obtain the siate
diagram shown in figure 4. This appears quite different from the
state diagram in figure 3, for which the regular expression D was
derived; however, using usual minimisation techniques the diagram in

" figure 4 reduces to the same as in figure 3,

2.8 Derivatives of Rersular Ixpressions

:

A far more elegant method fo obtain the minimal state
diagram is the use of derivaties of regular expressions, a method
" developed by Brzozowski [j7] and independently by Spivak [?9]. The
derivatives simply give an indication whether a particular sequence
is contained in the regular expression or not. They also handle
multiple occurrences simultaneously; hence repeats, corresponding to
loops in the state diagram are recognised and identical loops merged.

The state diagrams thus obtained, therefore, are minimal.

FIGURE 4

There are two kinds of derivatives: =z) the left derivative
denoted by D];'Eb";] where R is' the regular expression whose derivative
is taken with respect fo the. séquence s, and D) the right derivative
which is denoted by Di@] They both can be used idemtically to
develop state dia agranse For the dlscusclon below, we restrict

ourselves to the left derivative and omit the superscript.

The derivative of a regulax expression B with respect 1o a
sequence s is defined as

»[B] = (’c]'st 6_11}

Before going into the defails of this method, a function &
has to be defined and rules of derivatives given. The 8§ funciion is
defined by

s[R] =1 if A €R

= § Cif A ¢R
and the rules of derivatives, given withoui proof, are listed 'belo»:.
| DE:LE"‘?] = A if a) =
= otherwise (29)

where aq and a, are symbols of the input alphabet.

If a is a symbol of the input alphabet, f is any funckion
of the two regular expressions B and Q, then '
ra[mq) = (0a[E))2 +8 [H]rala] (20)
a[R¥] = Dafg]m» . (21)
Da,[g'] DaLP_L_] . (22)
Da[f@,_g):} f(ba[_zg}, Da@‘]) | (23)

and finally DA‘LJ =

1t

1

]

At
=

where ' is used tc indicate negation.

From the above rules it follows that

DRCERN RG] @
a3, [y] @)

21

-

Also from the definition of derivatives it follows that a

regular expression can be written in the form

R = 6R + aD, R (26)

wvhere § R is introduced if R contains A.

2.9 State Diagrams from Regular Expressions using,Derivatmmdﬁlj,fééT-

In section 2.7, an elementary siate diagram was obtained from
& regular éxpression and ﬁhen switching theory was used to reduce it to
8 minimal form. The algebra of regular expressions can also be used to
obtain a minimal state diagram directly. To do this, first the rules
and properties of identical, or more correctly indistinguishsable, states
must be noted. Indistinguishability is defined as follows: two states

of an automaton are said to be indistinguishable if the behaviour of the

automaton is identical in each of the two states.

Assume an automaton M, defined by a regular expression R. It
follows from the definition of reguiar expressions that if the automaton
is in the starting state q, then a valid sequence)s, contained in R will
be accepted by M. Similarly a state a; is said to accept a sequence s
if M is in state qa and if the sequence é.is applied to M, an output of
1 is produced at the end of s. Quite clegrly4 then, two states a; and
end q.j are indistinguishable if all the sequences accepted by one are

also dccepted by the other and vice versa.

Now, if a seguence s; takes the automaton from the starting
state q, to a state a5 it follows from the definition of derivatives
‘that the derivative of the regular expression R with respect to s is a
regular expression which contains all the sequences accepted by a;-
Thergfore the definition of indistinguishability can be modified to read
"that two states g. and q; ere indistinguishable if the denvativey with
respect to s; and s; are equivalent where §j is the sequence taking M

from starting state to the state qéjand si is also similarly defined."

LY

This provides the criterion for minimality.

The state diagram then is obtained by the followiné procedure,

which applies to an automaton M defined by the regular expression R

and whose
'
Step 1.

Step 2.

Step 3.

Step k.

Step 5.

input alphabet is containing the input symbols a., &,
; 1 2

Begin by taking Dy B which will be R.

Determine all D, R .and asscciate a new state with each
distinet D, R .% This will give all the derivatives to
sequences o? length 1.

Continue step 2 for sequences of length 2 and beginning with
each a; for which ba.,§ were different.

Repeat step 3 for hi;her length sequences until no further
distinet derivatives are obtained.

Determine the outputs associated with each of the states
generated by the above steps. The output is 1 if the &
function of the corfesponding derivative is equal to A.

This follows directly from the rules of derivatives and the

definitipn of § function.

The above function is illustrated by the same example in the

previous sections where the input symbols are {0,1} and the output is z.

000

001

D = (((01+1)o*1éoo)o*1)*((Ql+1)o*1+oo)o* (15)
D =D §(D) = ¢, z =0, (27)
D = (10*1+0)0%¥1D + (10%1+0)0* 46(D0 D)=¢, z=0 (28)
D = O¥10%1D + O*10% (b, D) =9, z=0. (29)
D = O+lD + 0% §(Dyg 2) =1 z =1. (30)
D = OX10¥1D + 0%10% =D, D (31)
D = O0%10¥1D + 0¥%10% = D, D (32)
D = 0%1D + O¥ = Dyy D (33)
D = O¥lD + O* = Dyy D (34)
D = D =D, D (35)

N

N

23

-

Thus there are only four distinct states corresponding to

Dy, D, D2, Dllg ’ and‘D D and the state diagram is as in figure

0 00
5 which is the same as in figure 3 with states A,B,C,D-ieplaced by

states Qyrdgrdy and Q6O respectively.

In the examples so far the outputs are associated with states
only, i.e. only Moore machines are considered. Another type of
machine, called a Mealy type, has its outputs associated with
transitions, i.e. they depend on the present state and the input.

The above procedure is easily aménded to produce Mealy 1ype machines.

In the Moore type of machines a distinctioﬁ is made between
two derivatives differing only by A as one of these has an outout
associated with it and the other one does not. In deriving Mealy
machines this distinction is omitted and the outputs are associated
with transitions. The Mealey machine diagram corresponding to the

exanple is shownin figure 6.

2.10 The State Characteristic Foustion

From its definition a derivative of a regular expression with
-respect to a sequence s is a regular expression accepted by the state

A s where the sequence s tzkes the automaton from the starting state

q, to Qe Thus, it follows that a technique similar to Arden's can

be ;gplied with derivatives to state diagrams to obtain regular
expressions, Udagawa et aJ.[BOQ wnified Brzozowski's derivative

-method and Arden's simultaneous equations method into a matrix form

to do this giving the state characteristic equation.

Consider a set of states {ql, Qoy eons qn}. We define a

matrix D

- FIGURE 5

FIGURE 6

24

D
n

e -

d

nl

dn2

n3

L dln

L] d2n

LN) d
nn

(36)

such that dij is a regular expression which describes the class of

sequences causing a transition from the state q; to qj.

define a matrix A

L

A
n

8o

*

a,

nl

.

Ry,

anZ

811 312 13

3,

23

a

n3

eoe aln
L) azn
. .
. .

a
XK nn

Ve also

(37)

where aij is an input symbol causing a transition from the state 45
to qj. And Tinally we define an n by n matrix E whose diagonal

elements are X and all the other elements are {.

Now if the starting state of the automaton is Ay using

Arden's method we get

dyp = dygaqp, v dyan, L
Inn2°
Ain = 9321, * dpfpn *oree T dya (38)

The? if we write ;dll’ dl2’ ey dln as Dl’ we get

Similaxly D2 = D2A + E2 etc,.
Hence D = DA + B (39)

By similar procedure the derivative form can be written as

D = A.D""Eo

(40)

Equations (39) and (40) are called the characteristic equations,

LY

The matrix A is simply another way of stating the state
table and the matrix E expresses the ocutput states. Giveg that an
equation of the form X = AX + B has a solution X = A*BT and the
equation of the form-X = XA + B has solution X = BA**; usual matri#

techniques can be extended to solve the equations (39) and (40).

2,11 Minimal State Diagrams for Multiple Outputs

As was stated before, one regular expression has to be
associated with each output;and therefore one way to obtain state
diagrams for multiple ocutput automata is to derive a separate state
diagram for each output. However, this does not necessarily produce
an overall minimal machine, Brzozowski (73 gave the following method

which is an extension to the derivative method.

The set of n regular expressions associzted with the n outputs
is written as a vector

R = {&, & .., B L (41)
Then using methods described above a vector of derivatives and anoiher

of outputs are gensrated, i.e.

DR = 0 K aD, Bpa e, K (2)
1 1 1 1
$ (Dai .I:i..) = {Zl’ Zoy eeey 2 }e (43)

As before, the state diagram is built up by associating a new state
with each new vector. The output vector is also taken into account

if a Moore machine is reguired,

2.12 Transition Graphs

A state diagram describes a deterministic type of systenm.
By this we mean that if an input is applied to the system in a state,
. :
then the next state can be uniquely determined; and also that the
gystem at any given time can exist in only one state. These

restrictions are necessary to make a physical realisation of the

system possible.

26

In the preceding sections we developed state diagrams from
regular expressions adhering to the above constraints Howe?er,
regular expressions can describe very complex sequences and while id
is possibvie to obtain'a state diagram of +the system to ac“ept & given
regular expression it is sometimes easier 4o 1lift the restrictioms
and consider only the seguences or sets of seguences described by the

regular expressions. . The diagram we then obtain is called a

trangition graph.

A transition graph consists of suitably identified nodes
and directed arcs which are labelled by the input symbols connecting
them. At least one of the nodes is t?rmed s a starting node,
identified by a short unlabelled arrow = going into it, and at least
one of the nodes is an accepting or terminal node indicated by a
double circle. It ig not necessary to have an arrow leading out of a

node for every input symbol; also there can be more than one arrow

from a node labelled by the same input symbol,

A sequence of directed arcs of a trensition graph is called
a path and every path describes a sequence of input symbols determined
by the symbols associated with the directed arcs. A sequence is said
to be accepted if there exists at least one path between a starting
node and a terminal node which dn"oribyq the sequence; otherwise, it

. ‘

is said to be xejected.

A regular expression describes all the sequvncbv accepted by
én automaton. Thus, from above, it is clear that to construct a
transition graph for a given regular expressi on, it is only necessary

to generate nodes and arcs to centain paths describing the sequences

in the regular expression in the simplest waye.
Por exanple, consider the regular expr on R = 10%1+00,

To construct a transition graph for this, assume a starting node 4.

27

28

An input of 1 will cause a‘transition to a node B, Any number of
O's following this 1 ﬁill causé a transition back to B and finally
a second 1 will lead to the terminal node C, Similarly, a O in the
starting node will lead to avnode D and a second O will lead to the

terminal node C. This transition graph is shown in figure 7.

This procedure can be extended to more complicated regular
expressions by merely segmenting the sequences in the expression and
suitably coalescing their transitioﬁ graphs, -As an illustration the
transition graph for the regular expression D in (15) is shown in

figure 8 which was obitained by straightforward inspection only.

2.13 Conversion to a Deterministic Form

In general a transition graph is non-deterministic and the
automaton descrided by it cannot be directly realised. However, a
systematic procedure does exiéﬁ to convert any non-deterministic
graph to a deterministic graph which means that where it is easier
and more convenient a non-deterministic graph may be derived with the
certainty that a deterministic graph may be obtained, The procedure
is given below and is illustrated with the fransitiqn graph of

figure 8.

Step 1. Begin by establishing & node to represent the set of all

starting nodes,

Step 2. Find all the -successors of the starting node for each input
symbol and create a new node for each distidet set of
successor nodes, If a particular (new) node does not have
any successor for a particular input symbol then a successor
node f is generated. This node represents the condition
when a non-accepiable string is applied to the automaton.

In state diagrams this would be equivalent to the "don't care®

or "can't happen" conditions. Once the asutomaton has

[

s

29

FIGURE 7

TRANSITION GRAPH FOR R= IO 1+00

FIGURE 8. TRANSITION GRAPH FOR

» D = ((o1+) o*l;oo) Sf((ol+l) 31+ 00) O

Step 3. .

Step 4.

reached the § node any further input sequences cause
transitions back %o this node. For this reason this
condition is sometimes called a fault state.

Repeat step 2 for every new nodé generated wntil all distinct
sets of successor nodes of the non-deterministic graph are
covered.,

Any new node representing a set of nodes which contains a
terminal node is also made a terminal node of the

deterministic graph.

The above procedure is simplified by building up a successor

table using the results of steps 2 and 3, in which the columns

represent the input symbols and the rows the nodes of the deterministic

gx. a.ph .

figure 8,

Step 1.

Step 2.

Step 3.

Ste é Ao

Appiying the above proéedure to the'transition graph in

we obtain the following:

There are two sfarting states, A, H. We create a node AH
to represent the set of nodes {i,HlL

The O-successors of A are B and ¥ and of H are J and N,
Let us name the set of nodes {3,F,J,N} as BFJN.‘ Similarly,
the l-successor of the set {4,H} is the set {C,X}
represented by the node CK, |

By repeating step 2 for nodes BFJHN and CK and so on we
construct a tuccessor table shown in figure 9.

Since M and P ave terminal nodes in the non-deterministic
graph, the nodes HI and GP of the deterministic graph are
also made terminal nodes and this is indicated by meking

the outputs in these nodes equal to 1.

Clearly, since each node has only 1 successor for each input-

symbol and there is only one starting mode, the successor-table defines

3{%;

Wl
o

a deterministic automaton. The description in figure 9, therefore,
is identical to a state taﬁle, with the node AH representing the
state AH, ete., By inspection~we note that the nodes CK and DL are
equivalent and also that the nodes E1 and GP are equivalent. Thus
we;can derive a‘state table with 4 states to accept the regular
expression D in (15) by using the conversion procedure. This state
table and the corresponding state diagram are shown in figures 10

and 11 respectively.

' 2.14 Conclusions

In this chapter we have bfiefly introduced the lénguage

of fegular eXpreésions and discussed its appliéations to finite state
systems. We note that an algorithmic procedure docs exist for
obtaining a régular QXpression for a given state diagram [6] . It
is obvious that the comﬁlexity of the regular expression increases
rapidly with the number of stétes; it increases even more when the
~size of the input alphabet increases. We also note that the final
regular expression depends very much on the intermediate steps taken
and several regular expressions seemingly completely different may
represent the same system. Some theorems ao exist.to manipulate
regular expressions [12],[13] s but since no canonical form is
available forregular expressions, no algorithmic procedure exists

to prove the identity of eguivalent expressions.

In some cases regular expressions for a particular system
can be written down directly. However, this is certainly not the

general case and we find little justification in statements, such as

that by'Oglesby'{Qé], "... then the logic desisner has only to

¥ Compare figure 11 with figure 3 from which the regular expression
D was originally obtained.

AH

BFIN|

K
EM
GP

DL

INPUT
o |
BFIN| CK
EM | CK
DL | EM
GP | AH
GP | AH
DL | EM
FIGURE 9

OUTPUT

SUCCESSOR TABLE FOR D

33

INPUT OUTPUT
STATE o |

FIGURE 10

STATE TABLE FOR D

FIGURE Il

STATE DIAGRAM FCR D

35

W
o~

transform the word statement into a regular expression ~ an extremely
simple task.,"! The problem of explaining a given regular expression
by a word statement is even more difficult and this may be readily

verified by examining the regular expressions from this chapter.

The problem of deriving a finite state system to accept a

ok

glven regular expression has been tackled in three ways, The las
technique, that of transition graphs, is the simplest and is
algorithmic in nature and consequently may be prozrammed for a
computer fairly easily. This still leaves us with the problem of
obtaining a regular expression describing the system; the difficulty
becomes more acute if multipie outputs are handled and impossible
when the system to be described is non~finite, i.e. where an infinite

or very large memory is coupled to a finite state system.

Ve conclude from the discussion so far that the language of
regular expressions, by itself, is inadequate to describe most practical
systems, Their best use is when describing sequence detection, and

thus may be ideally employed in syntax checking of programmes [ﬁB] .

3, Languages Describing HMicroprogrammed Svstems and Thelr Applicsiions

3.1. Introduction

In general any digital system may be considered as a finite
g J

. . s - RS P B
state machine and techniques of switching theory described in Llj,{d2j,

33} or regular expressions discussed in Chapter 2 may be applied in the

s the

o

design of such a system. However, in large systems, such
present-day computers, the number of states is so large that the theory
of finite automata tends not to be very useful, On the other hand,
no formal theory similar to switching theocry yet exists for a lavge
system which has provisions to exclude unnecessary detail and still be
rigorous enough to define the behaviour of such a system concisely and

precisely. in attempt can, however, be made towards a formalism by

examining the present-day large digital systems.

large digital systems are essentially instruction execution
machines, The design of these systenms involves providing for the
facilities to store the data and the way the data is manipulated to
exccute o given set of instructions. The system can, there

-

partitioned into two parts and we obtain the classic model,

sugeested by Glushkov 356} which consists of an operational part

w
L
O

containing the data rage and manipulative facilities, and & cont

part which provides signals to the operational part in a certain
sequential mode to activiate the manipulation within the operational
parte. The control part can also specify certain tests, the resulis of

which in turn can alter the sequencing of the control parte

.

The data, which is ueually a string of O's and 1l's, is stored
b & $

in memory units called registers. The operational part contains a

)

collection of wegisters, and combinational loglc fo create data pat

f‘

between the registers and to perform logicael functions on this data.

hy I O“WSLG?

RO

The flow of data in such a configuration is referred 1o

N
3

38

&

O/i

423ndwo> D JO |2pOW AO%YSN|D | 29nbi 4
[e e o e = e e e e
i
i .
- : sjpubis jos3uod
g m Lyvd N Lyvd
|
1 WNOILYY3dO ~ TOHLINOD
N
i
:
-

152} JO SNS2d

b e e e)

Transfers; and the function of each instruction may be expressed in

terms of register transfers in an algorithmic mannexr,

Obviously it is possible to produce one set of registers and
register transfers for each instruction in the machines repertoires
however, this will inevitably result in a large amount of redundancy.
The logic designer, therefore, proposes an intuitively derived set of
registers sufficient for the instruction execution, and alsc limits the
operations to an opitimal number determined by the size and speed
requirements and the instructions themselves., These operations are

called elementary operations. Elementary operations are also consirained

so that once initiated, they do not need further inputs from the control
part for completion, and typically reflect the available resources.

For example, with integrated circuit hardware technology the.elementary
‘0peratlons on data may include lO"lC&l AND, logical OR, negation, etc.
but may not include addition or subtraction, whereas in Large Scale
Integrated systems addition and subtraction may easily be treated as

elementary operations.

The signals from the control part initiating the operations in

the operational part are called micro orders, and the algorithm of an

instruction in terms of these micro orders is called a microprogram¥*.
Thus the control unit contains a collection of microprograms for the

instructions in the machines instruction set.

% Husson's [62, p.20) definition states that a microprogram is a
set of micro-orders stored in a control store on a word basis.
We remove this restriction and hence, generalise the definition
to cover other methods of implementing the control part lncludlnb
the "hard-wired" method.

39

[

40

The design of a digital system with the structure described
above consists of defining the storage and manipulative facilities,
writing suitable microprograms to interpret the instructions in the
instruction repertoire, and obtaininz a éuitable control part to

execute the microprograms. Clearly then, the functions of such a

. system can be expressed by the microprograms and this suggesis a method

of formalising the design procedure for a large systen.

With the above approach the configuration of the operational
part is fixed and microprograms are written in terms of the available
facilities, A microprogram can also be viewed from another angle
and used to determine the manipuiative facilities in terms of elementary
operations that are necessary to execute the instructions. In this
way the control part and a section of the operational part can be

synthesized from the microprogram specifications,

Projecting even further, a microprogram can be assumed to be
an algorithm interpreting an instruction. It should then be possible
to extract sufficient data to determine what storage facilities are
requiréd and how they are manipulated, i.e. a fuller synthesis approach

can be taken based on a microprogram type specification,

HMicroprogram specification, we therefore believe, is an

important step in the formalisation of design of large systems,

Tﬁe next step obviously is to construct a suitable language
to specify microprograms in a way that is easy to comprehend, precise
and concise. The requirements on the language become more acute in
a Computer-Aided-Logic-Design (CALD) environment since the sPecifications
must be sufficiently low level for automatic interpretation, and at the
same time, high level yet flexible for the desigmer to work at his own

level without necessitating detailing.

Several languages have been devised to specify microprograms

and the associated grchitecture of the operational part with varying

degrees of succesg. We discuss these languages below,

Ze2 HReed's Register Transfer lLanguage

A Janguage to describe the transfers between registers was
fifst proposed by Reed in 1952 ‘78]. An account of this language is
also éiven in [34]. This language is simple and has a small vocabulary;
however, we shall examine it in detail here to elucidate the concepts
involved before progressing to the more complex and Higher level

languages,

In this 1anguage.a register refers to a hardware block
consisting of an array of memory elements. each capable of storing one
bit of data, i.e. flip-flops., Tt is identified by an alpha character
or a string of alphanumeric characters beginning with an alpha character,
The register may be indexed suitably to identify individual flip-flops
if necessary and this also provides a facility for using registeré of
different 1engths. Operations are usually specified between the full
registers; however, the individual flip-flops may also be selected if

required. In the former case, the expansion in the translation process

produces the latter form,.

Cpﬁsider a machine consisting of three registers, A, B and C,
each 16 bits longc. Let the operationé to be performed depend on bit
16% of register C: if this bit is O then a logical AND is performed
with the contents of the registers A and B, otherwise a logical OR is

performed. The result then is placed in register C. The register

* The convention adopted here is to conszider the contents of each
register as a binary representation of a number and to refer to
the leftmost bit as the most significant bit. The least
significant bit, unless otherwise specified, will always be bit 1.

41

i
|

k-

42

aulyobw 2idwis y

Z P_:wi

9lff O

3UN uolduUng

ol

o1f

43

transfer statements to describe this action would be written as
lc(16)'] = 4 & B>c | @)
[c(16) | : A+ B>C (2)
where &y + and ' repfesent the logical AND, logical OR and negation,
respectively. The vertical bars is a shorthand notation to indicate
that the action on the right hand side of the colon is to be executed
if the logical value of the variables between the bars is 1, i.e.
| | : can be translated to the Algol statement if ... then. The
variable may be substituted by a boolean function if necessary. The
arrow is a short form notation to indicate the replacement of the
contents of the register at the head of the arrow by the variable or
boolean function specified at the tail of the arrow. Therefore,
transfer 1 correctly translated means "provided that bit 16 at register
C at 2 timetis not 1 replace the contents of register C at time t+1 by
the AND of the contents or egisters A and B at time t, assuming that
the transfer reguires a wnit time".
The transfers 1 and 2 may be expanded to

[c(16) "] = a(i) & B(i)»c(i), i=1,2,...16 (3) '
and |c(16) | A(L) + B(i)»c(i), i =1,2,...16 (4)

.

.

In this example all the elements of the registers were
involved in the transfers simultaneously, but it is quite possible that
only a part of each register is affected. Suppose that only the last
thrqe significant bits were used in the transfer and the others were

unaffected, then this could be writen as

| oa6) | : a(3) & B(3)>c(1), i=1,2,3 (5)
cand | ¢(16) |+ A(1) + B(i)=cCld), i=1,2,3 - (6)
C(3)7C(3)y 3 = 445, «uu 16 (7)

but it would be sufficient to write only transfers (5) and (6)

without losing clarity.
[

In all the above cases the value of ¢(16) determined the
operation on each element of the registers and it can be considered as

a_scalar multiplier. TFor example, transfers (1) and (2) can be

44

rewritten as

0(16);(A & 3) + é(lé) A+ B)>C (8)

It is easy to see that the operations described above have
- a direct correspondence with hardware elements. In Reed's original
language other operators, such as shifting and addressing were also

included again having direct hardware counterparts,

Schorr [ﬁé}, {95}, used this language and developed algorithms
to generate the necessary boolean equations for the set and reset
terminals ef the flip~flops, i.e. the synthesis procedure, - This
translation process is in two steps: a) each statement is converted
to produce the reéuired set and reset equation,and b) all the
individual boolean equations for each set and reset terminal are OR'ed
together, Thus from transfer (1) we get

c(i)/1
and ¢(i)/o

c(16) 'oa(i).B(i), i =1,2,...16 (9)

it

(c(16) *.a(1).B(1)) ", i= 1,2,...16. (10)
where C(1)/1 is interpreted as bit C(i) is set to 1 if the logical
value of the expression on the right hand side equals 1, i.e., the
boolean equation for the set terminal. Similarly from transfer 2

we get

c(16)(a(1) + B(1)), i =1,2,00.16 (11)
(c(16)(A(i) + B(i)))",4

c(i)/1
¢(i)/o

]
il

1,2,4..16 (12)

Grouping these boolean equations we get

c(i)/1

and C(i)/0

i

¢(16) r.a(i).B(1)+c(16) (a(i)+B(1)), i = 1,2,...16 (13)

it

(c(16)r.n(i).B(1) +(C(16)(A(1)+B(i))) ", i=1,2,..16 (14)

In Reed's original language the sequencing was implied by the
order in which the transfers were written; however this had limitations
when branching or repeats had to be specified. Schorr included timing
pulses as part of the boolean functions of the conditions and introduced

a type of 'goto' transfer. By this method the above example could be

written as a sequence of transfers as
Staxrt : 1+.ti;
ltl.C(lé)" | & A&B>C, 1>t,3
' Itl.C(16) | 2 A+ B>Cy 1ot (15)
where start initiates the sequence of transfers in the machiné and

4. is a condition specifying the next transfer. tl and t, therefore

2 2
are the outputs of the cirecuitry contrelling the transfer and starst
and C(16) are the inputs to it. It is a simple matter from the above

description to extract the logic for the control circuitry.

Schorr also suggested'a method for analysing digital systems
by converting boolean equations into registervtransfers. ‘It requires
thaf all the regisfers and control vaiiables are declared as such and
that the boolean equations specify set-reset conditiqns and that they
are in a sum-of-products (SOP) form. The analysis program makes
successive compilation passes, first separating out the control and
register transfer expressions‘and then building up the register
transfers. The transfers so obtained, obviously reflect the hardware
structure and operation. Schorr did comment on the difficulty of

obtaining the transfers in terms of composite events, i.e. involving

non-logical operations. HNevertheless, the procedure does allow a
concise and formal description to be obtained for an already existing

_system which then can be used for re~synthesis or simulation.

The language described so far is simple, symbolic and easily

learned; and there is a direct correspondence between it and the logic

hardware. However, since it has a small vocabulary, a complete
description is lengthy. Another disadvantage is that the language
is too symbolic to be suitable for communication between the logic

designers and members of other disciplines.

Gorman and Anderson [57) enhanced this language slightly by

introducing simple arithmetic operators, facility for subroutines and

45

declarations of special hardware blocks, such as a parallel adder or a
cornter, whose internal functions may not need detailing, particularly
if it is to be implemented with L.S.I. circuits. Algol type operators,

such as if, then, else, goto, allowed a more concise description and

made it more “readable",

The translation process with this language, due to Proctor [77],

4

generated a comprehensive table specifying all the registers involved in

each transfer, the operations, any additional components ﬁséd for the
transfers and the timing. The table was filled as far as possible
with the data from the register transfer description and then completed,
particularly with regards to timing, by fhe designer, The table was
then analysed to achieve the shortest possible execﬁtion time. The
table then contained data in = similar format to‘that used by Schorr,

from which boolean equaticns could be generated,

Ilovaiski and Lozowskii [63] described a method to synthes1ze
loglc for a computer from a formal spec1flcatlon which was not too
unlike Gorman and Anderson's method, The formal description was
divided into two parts, a) a declaration part, and b) an operational
part. The declaration part declared facilities pertinent to data
storage and address mechanism, namely i) storage devices and their bit
capacities, 1ii) methods of representing numbers with their formats,
iii) address formats, iv) methods used to modify addresses, v)
instruction system, wvi) principles uséd to organise the data, and
vii) a table defining the durations of all standard operations

expressed in arbitrary units.

The operational part consisted of register transfers and
branching information in a similar way to Schorr's and organised with

a single elementary operation per line each with a unique label,

47

The synthesis algorithm first assigns the time durations to
each step in accordance wifh the initial declarations., Consecutive
operations are then merged to 6ccur in the same "time slot" unless a
variable on the left hand side of one operation is used on the right
hgnd side of the other, or if conditional transfers in some way are
affectéd by the operation to be merged. This results in several micro
operations to be grouped together to form new larger micro operations,

The subsequent steps are identical to those discussed previously.

3.3 Lancusges based on Programming Lancusces

One of the goals of a design language for describing logic
is that »- the language may be used in a computer-~gided-design
environment, Consequently, a description in such a language is to
be processed by a computer and in effect constitutes a prégram for a
computer, It would be natural to ask the question "why not an already
exis{ing programming language?® as the designer then would be able to
use currently developed software providing good flexibility., Another
advantage is that it reduces the overheads of "learning" a new language
which also means that the language could be used easily as w standard
language for communication between members of different disciplines,
On a closer exmination, however, it is found that the capabilities
of programming languages tend to be more numerically oriented and
features pertinent to logic design, including synthesis and simulation,
are not handled efficiently, Nevertheless, it should be possible to
avgment a pfogramming language to make it suitable for microprogram

definitions and still retain its overall structure,

Several languages have been proposed, based on FORTRAN
Drop ’ ’

ALGOL, IVERSON and PI/1l. These are discussed below,

3¢3.1 IORTRAN

The only language based on Fortran was proposed by Metze

and Seshu in 1966 [74]0 A computing system is viewed ag consisting
of separate automata each possessing its own controls and sub-controls.
With this type of modelling.it‘is possible to describe parallel and
asynchronous operations and as such represents the first real attempt

at describing large systems with realistic properties.

The description in this language is given in two blocks.
In the first, the system constraints such as the channel capacities,
simultaneity of automata, a measure for cost-effectiveness and global
constraints and variables are given} The second block defines each
automaton with its declarations and register transfers. The transfers
themselves were restricted to boolean operations; +the other operations
such as arithmetic functions were called as subroutimeswhich in turn

were detailed as boolean operations,

One of the reasons behind using subroutine call structure
is that each subroutine could be detailed in several different ways
all producing the same result but having different overheads and
which could be stored in a back-up library. The "compiler" then
could search the library to choose one of the routines best suited
for the application. This concept is very useful and will be

explored further later on,

The language allows simultaneous operations and if an
interdependence is encountered a method of waiting to allow correct
sequencing is defined. Another facility included allows the global
conditions to be overffidden for a perticular operation. These
suggest that any general asynchronous machine may be defined using
this language. A language proposed by Schlaeppi (discussed later)
had a limited facility of this type but the concept developed by

letze and Seshu was a significant improvement over the earlier ones,

However, to the author's knowledge, nc translater:. was

constructed for this and no further references have heen avallable.

3.3,2 ALGOL

Schlaeppi proposed a langusge based on Algol in 1964 {Qﬂl,
which was one of the firsit fo be capable of describing a computing
gystem in a hierarchical manner, He introduced four notionsg for
this, namely a step, a sequence, a Function and a group. A step
was defined as a set of elementary operations which are explicitly
declared to be executed in parallel and a succéssion of steps constitute
a sequence, In cases where the internal structure of a particular
section was not known or need not bé known, then its terminal behaviour
was called a function; and finally a group represented a collection
of sequences or functions under a common control, Thus a degree of
partitioning of the system could be indicated in the description.
Secondly, the function facility allowed the machine organisation to be
described with bread structural features; the subsequent expansion,
as would be necessary in synthesis, could be done by refining the

description.

Schlaeppi also introduced time indication in description,
firstly by declaring time for standard operations in advance - in a
way similar to that adopted by Ilovaiski and Lozowskii - then by timing
each step either in units for synchronous operations or by making a
transfer conditional upon a ready signal and thus setting up an inter-
lock for asynchronous operations, In addition each group contained
an "availability indicator" which if set implied that the group was

busy, and which could be used to avgment timing interlocks.

The transfers within the steps were written in an Algol-like

form and usually were between registers. However, Schlaeppi introduced

a distinction between permanent signals such as the contents of registers

and transient signals such as busses. The transients could also be

used in the transfers without being explicitly declared.

49

&

Chu published a language CDL [39] in 1965 which had &
closer resemblance to Algol. A description in CDL begins with the
usual declération of registers; sub-registers, memories, terminals
and operations. A terminal is useful in describing signals which
are not stored in registers but can be accessed from the outside

world; it is in some ways similar to a bus mentioned previously.

Labels corresponding to the state of the control part are
attached to the transfers. Parallel transfers are indicated by
attaching the same label %o the relevant transfers. However, no
facilities are available for indicating asynchronous operations and

s is a drawbacke.

The language allows the inclusion of special operators
whose definitions may be separately detailed and sequences in a
similar way to sub-routine calls. The control, however, is still
comnon and the decentralisation of control extensively used in real
system cannot be indicated, which also means that a hierarchical |

type of description is not possible.

This language, therefore, forms only an extension t0 Reed's
S b H

language with a different syntax.

COL wam later improved by Chu, McCurdy and lMesztenyi

{40-42, 71, 73}, who also illustrated methods of boolean translation

and simulation. The translation process consists of four phases
which are as follcws,.

i) The design specification is scanned to produce a table
with as many rows as microoperations.

ii) The table is analysed to generate in effect two tables,
one for control part and the other for operational part showing the

input output conditions for each step.

iii) Boolean products are generated from these tables, and finally

50

iv) These are sorted and combined 4o produce boolean equations

for the register inputs and the outputs,

Tn 1966, Parnas [76] also published a version of Algol to
describe synchronous logic in which he introduced a notion of time
block to describe parallelness of operation in a similar way to
shared labels in CDL, The methodology of the language views the
system to be described for its behavioural properties only and as such
neither the structure of the system nor the "how" may be described,
The latter restriction could lead *o difficulty when synthesizing
large systems. Secondly, as with CDL, only éynchronous systems may

be described with this language.

This language, however, could be used quite well for simulation

of synchronous systems,

Darringer [45] modified this language to include structured
information. A designer usihg this language could specify registers
» of different type such as octal, binary, character, etec. which in
some cases woﬁld be useful. ﬁOWever, the type declaration of a
register fixed its usage and dynamic interpretation was not possible,
For example a binary interpretation of a decimal register may be

desirable and even necessary in certain cases.

As in CDL, the operations in this language are synchronous
and limited to one clock pulse; however, it is possible to indicate
an operation over multiple clock pulses. An "if ever" operator
similar to the "on condition® operator of PL/1 allowed certain
operations to occur asynchronously and in parallel with the main
program. The simulation programs, however, did not handle the
semantics of these statements coriectly. For synthesis, Darringer
offered some comments on the translation into hardware but did not

suggest any concrete algorithms,

51

52

Wilber [Qf] also gave a version of Algol which was very

much similar but in addition provided a facility for implicit timing,

Okada and Motooka.[7§] proposed a highly hardware oriented
languaaé also based.on Algol which unlike the languages described so
far fully exploited its block structure. The description in this
language is divided into five levels. At the lowest level, level 1,

a hardware definition in terms of primitives such as gates, flip~flops,
and delays is given, It is also possible at this level to include
black boxes whose internal structure need not be detailed but which
can be used as primitives. The description at level 2 is a funcfional

relation corresponding to the description at level 1,

The description at level 3 shows the system behaviour at each
clock pulse including simple explicit sequencing which may be used
directly to implement the hardware configuration and control,

Finally an algorithmic description may be given 2t levels 4 and 5,
the difference between them being that at level 5 it is more Algol-~
like and is similar to that by Chu and the description at level 4 is

more hardware related as in Reed's language,

The system to be described is modelled as a module containing
sub-modules, each of which in turn may contain sub=-submodules and so
on. This is reflected in the block structure used in the language.

In addition a change of block also allows a change of level; +thus a

desired detailing may be achieved by suitable nesting of blocks,

The above modelling is very useful since it allows the
designer to choose to detail the parts he wants specifically defined
and leave the rest as default options, and is a good design aid.

A limitation, however, is that modules operating in parallel ecannot

be described,

The proposed translation process involved the changing of
levels with the help of library definitions of arithmetic operators,
macros, hardware items and modules in an interactive mode, Mo
results were available on the efficienoy.of this process; however,
we feel that the interactive approach with suitable recourses to a

library is a right approach and will be exploring this further,

3.3.3 Iverson's APL [49, 59, 64, 66, 70]

A register transfer language essentially describes the
hardware layout and the ihterconnections between them. The micro-
programs written in such a language therefore, réflect the hardware
. eonstrainits élaced upon the systenm, A register-transfer-like
language can also be developed for software which will similarly
reflect the coﬁstraints put on it, namely the capabilities of the
hardvare procéssor. However, in both cases the algorithmic
description is not sufficiently abstract for "evolving" a design
and merely provides a means for mechanisation of routine tasks.

A formal description independent of such constraints is required in

the design stages.

Iverson proposed a language, APL, which was meant to be
universal in a sense that it has a built-in hierarchy to express
functions which are usually considered to be hardware oriented as
well as those which are usually softwa?e oriented, This is in
direct contrast with the other programming languages since either they
are.og toe law o tevel and are strongly machine dependent or
they are of too high a level to have sufficient resoltuion for, say,
bit operations. The operations in APL can be specified at a bit

level, an array level or a matrix level without loss of detail and

thus offer facilities for a precise and concise notational description

of algorithms which is machine independent, and consequently ideal for

a wide rance of uses.

(S

53

54

A rigorous‘and full account of the language is given in
[663; Lhowever, a brdef description of some of the operations, which
aie likely to be more uséful, is given below, i

The variables in the language are defined as either scalars
or arrays which are one dimensional (vecto:s) or two dimensional
(matrices). The scalar operations‘are‘expressed in much the same
way as in other programming languages; these are extended on an

element by element basis to apply to array operations,

‘For example,
¢ « a @ b where @ is any operation
is a scalar operation and of course all the variables are scalars;
whereas
e *z2 @b
is a one dimensional vector operation and it is interpreted as
S« 2, @ b, i=1,2,u00, 9(c)*
and obviously the dimensions of each of the three variables must be
the same and its magnitude is determined by (c). The matrix .
operation of the same form is written as
C+4 @3
meaning

.

i i, .1 . .
’QJ+’A"J B’Ej : l=1’29'-°")(_&)’ 3= 1L,2,000,u (4),
where 3 (A) and y (A) are the column and row dimensions respectively

of the matrix A,

The elements of the vector can be any numeric or logical
quantities or even any alpha-numeric or other characters. The one
dimensioral vector operations are particularly important in digital
system design since they can be used to indicate register operations
directly, and the matrix operations can be very useful in data

manipulations as in symbol processing applications.

* a 1 origin indexing is used here and the leftmost element is element 1,

The language comprises all the usual arithmetic operators,
such as addition, subtraction, multiplication, division and exponentiation,
and the logical and rélational‘OPerators. Shifting type of operations,
which are of significant importance in digital system design, are
also included, However, the particularly strong powers of the
lahguage come from fhe special operators, such as reduction, masking,
expansion and compression of arrayse. The reduction of.a vector is
defined ss

y o« 9/x

where y is a scalar gquantity and 'is set to za@gd@..ﬁég) (x)

Extending this to matrices, we have:

T« /% columns are reduced
Y <« @//x rows are reduced,

If the operator is replaced by a binary vector, we get a
selection operation by which the elements specified by a 1 in the
selection vector are picked out to form a new vector, For example,

if (p,1,H,E,S,1,P,A,TI)

]
i

(1,0,0,0,0,0,1,0,0) and »(x) must be the same as v(u)

+ wx

L
will meke y = (D,P)

and

e
!

then

A more practical example is when certain bits of the
instruction word are used as the instruction code etec, this type of

operation can be used effectively,

Masking is shown as follows
z <+ [xsusy/
and it means Wz = u/x and w/z = ufy and obviously

7(u)

W(x) = () = v(z).

]

A related operation and of considerable importance in file

sorting is the meshing operation shown as

z + \x;usy\

and u/z = x and u/z = L. It follows that +/u = v(x) and +/u = V(¥

Another very useful operator is the base 2 value operator,
which is particnlarly important in memory addressing type operations.
Su@pose L is a register and rontains the address of a word in the
main memory I and it is necessary to extract this word and put in into

the register a, then this is written as

a « PFLE;

There are some special vectors which are very useful in
digital system design and they are listed below.
full €(n) ALl elements of the n length vector are 1,
unit € I(n) jth element is 1 all others O,
prefix fﬁ(n) the first j elements are 1 the rest O,
suffix ‘ng(n) the last j elements are 1 the rest O,

interval iY(n) elements are numerically consecutive beginning with j.

These vectors in conjunction with the special operators
mentioned before can be used in g very. versatile manner allowing a
concise yet precise description., An example of a microprogramme in

this notation has been included in the appendix,

3¢3.4 APL as a Desism Lansuage

APL may be used, and has been used {48,59], to specify the
‘microprograms of an existing computer but it becomes Just another way
of writing register transfers and useful for analysis only, However,
the main flexibility of APL lies in being able to deseribe algorithms
in a machine-independent waye Thus it should be possible to use it

as design language,

In its full form the language is very general and contains a

56

57

comprehensive set of operators., A hardware reilization of a machine
capable of executing all the operations and facilities would be very
large‘indeed; on the other hand, a suitable subset of the language
could be easily and directly implemented into hardware and the
remainiﬁg facilities translated in terms of this subset. Since there
is a natural hierarchy in the language, the higher level operators may
be expressed in terms of the lower level without much difficulty and
the translation process can be fairly straightforward. The system
developed [51,86] would be very general and be capable of executing

most, if not all, statements written in APL.

One of the drawbacks of APL in a computer environment is
the large number of specialrsymbols whiéh are required to express the
operations correctly., Iverson [65] suggested a scheme for transliterating
these symbols in which one line of APL program is converted into two
lines of progiam written with the more conventional alphabet, with
vertical correspondence between them, Obviously this is not only

inconvenient and inefficient but also leads o loss of visual clarity,

Friedman and Yang [51,52,53] have developed a design suite,
ALERT, which accepts a microprogram description written in a modified
subset of APL and converts it into hardware logic design. In this
system a physical device, such as a flip-flop, is associated with each
variable, Simple logical operators are implemented directly into
hardware and the others are converted using library routines in much
the same way as sgggested by Okada and Motooka, In the subsequent
processing the redundancies are removed and hardware expanded where
necessary, followed by a sequence analysis, The output of the
program is in the form of boolean equations for the input terminals

of flip~flops and can be used by synthesize logic with gates,

ALERT also represents the first real attenpt of synthesizing

hardware logic automatically via a high level design language on a

58

_larée scale., A synthesis of an existing computer (IBM 1800) was
attempted via ALIRT and thé results then were compared with +he “huwman®
design [51]. Using fhe gate Eount as a criterion for the “goodness"
of design, the initial design obtained via AILIRT was very much worse
(about 160%) than the human designj however, an approach was

suggested which would improve this considerably (about 3%% worse),

Another weakness of APL as a design language is that timing
of an operation cannot be indicated. Friedman and Yang defined a
clock rate outside the main microprbgrams, thus they were not able to
indicate asynchronous operations. Senzig [54] proposed two separate
notations to indicate timing with APL. The first, for synchronous
operations, is similar to several mentioned earlier. The second
for asynchronous operations, uses three timing states, namelylidle,
active and standby. A statement is normally idlé unless activated
by a previous statement in the sequence and it is then said to be
active, After completion it.activates the succeeding statement(s)
and goes into a standby state and if the succeeding statement(s) does
become active then the current statement reverts to the idle state.
The method described here allows asynchronous operations tc be indicated
with respect to statements rather than quentities, For example, a
statenent of the type "wheneveﬁ ~== Do -==" cannot be indicated.
VThe method is also unsuitable for showing operations in independent

but parallel modules.

Ancther important consideration of s design language for
digital systems is that the designer should be able to specify the
choices of hardware, modules and procedures which are available along
with their speeds and criteria to be used for optimality of the design.,

APL does not provide for this.

We may conclude by noting that APL is very effective in

59
expressing algorithms but in its basic form is not suitable as a
complete design language, An augmented version, however, may prove

a powerful design tool.

3.4 Partitioned Systens

The languages discussed so far tend to use a Glushkov model
for a computer, i.e, one having a single control part-and a single
operational part, which is quite adequate for describing relatively
simple systems or subsystems. 'However, when dealing with a large
syétem it is natural to partition it into several subsystens each of
which is characterised by a Glushkov model and all in +turn responding
to a common control, The complex control mechanism of such an
organisation cannot be suitably handled by the earlier languages which
were based on a simpler model; only the language proposed by Metze
and Seshu had some facilities for this. A formal approach, however,

was given by Duley and Dietmeyer in their language DDL [46,47].

In DDL, a system is viewed as a collection of several subsystens
or automata each containing "private" facilities and having access %o
~ the "public" facilities, ‘the latter being used for intercommunication
between the zutomata. This corresponds almost exactly to the earlier
mentioned concept except that the common conirol is diffused through
the subsystems via the "public" faciiities and hence is slightly more
general, An almost identical approach was also used in CASSANDRE
[32,33,58,69,72] which was published (independently) about the same
time as DDL and in project CASD [45,44] in 1970, The major differences
between these are the use of different base languages: DDL is built
uppn Reed's language, CASSANDRE is very heavily Algol derived and the
CASD language is a version of PL/l. We shall consider these languages

in a little more detail below.

60
A description in DDL is o description of a collection of

automata in a block structure format. It begins with an identification

of the outermost block, corresponding to the overall system, and the

declaration of common highways, global variables and common registers,

Each automaton is represented as a block within the outer block and is

described in terms of its registers,‘terminals, sefments and states

along with the global variables. The notion of segments allows each

automaton to nest further sub-automata and the states are used to

specify the sequencing,

The statements are written in a way similar to that by Reed
but a larger vocabulary is employed and the description ténds to be
soméwhat ideographic; nevertheless it is relatively simple to interpret
with a liti{le practice., The automata indicated are usually synchronous
but it is also possible to show asynchronous autonata, An.importan%
omission, however, is that synchronisation of asynchronous events, as
in the WAIT facility proposed by lietze and Seshu, cannot be indicated,
On the other hand, it is possible to indicate Jump to a specified
state in a segment and the return state; this could be employed to

define a complex control of shared segments,

The translation process is performed in several passes,
ultimately producing a set of transfers in a Reed-like form for the
'whole system subsequent realisation into hardware from which has been
described earlier, The segments are "removed" first, ©Each
segment is checked to see if it has any segment calls in ity if it
has, then all the states of the called segment are included in the
calling segment, with suitable adjustment for next state and return
state specification, and the declarations associated with the called
segments are also added to the declarations of the calling segqment,
The states and the transfers are checked to remove duplication, and

redundancies, and the remaining states suitably renamed to distinguish

61

outputs

~.

j2pow A2ing € 24nbi 4
PN [O4]OD * $224N0S24 VoWWod t——
o
o
< - e |
i G Q.
] , c
i ' -
t £,
< <
< <
[SRFACR
S224N0s2)
- - = [DNPIALPUI
U uolbwoIND g uojpwoinp | uolDWOND

between then. The resulting description is then that of an

individual automaton,

The next step is to create a state register (unless already
declared) such that there is a unique sta*e of the register for every
unique state of the automaton, The transfers then can be relaﬁelled
to make them conditional upon the contents of the register and the
transitions are indicated as a change in the staﬁe of the state
register, Obviously the size of the register and the coding required
to map each state of the)auﬁomafon into the registér will be determined
by the mode of operation, i.e. asynchronous or synchronous,‘etc;
Another tasr at this stage is to exrress the special operators,
including shifting tut exclndlng time shared operations, into a more
register-transfer form. The shifts, for example, may be translated
into single shift regiéter transfers by associating a counter with it
to control the shifting loop., The time shared operators are assumed
to be realised only once with suitable gating to control the time
sharing. The sequencing logic mav be derived‘by methods already
described along with the boolean equations for input terxrminals of

flip-flops and the outputs,

DDL is escentially for hardware representation of partitioned
systems, Synchronous systems may be snecified precisely using this
language; asynchronous systems, howéver, cannot be very well handled,
Another observation is that the philosophy behind DDL suggests that
© the system to be "designed" has already gone through a design phase
and that the language is used merely to describe, ineshorthand way,

a pre-fixed structure for computer interfacing. Thus the language
fo?ms an extension, albeit a complex one, to the Register Transfer
Language initially formed by Reed. We feel that the interactive

method through which modules may be selected from the backing library

is to be strongly recommended.

62

;Mé}
As stated before, the structure of CASSANDRE is almost

identicél to that of DDL. The use of standard language, Algol, as a

base language, however, makes CASSANDRE far easier to use than DDL.

The block structure of Algol is also perfectly fitting to the

pa:titioning concept where each automaton - or unit as it is called

in CASSANDRE - can be represented by a block. CASSANDRE also has

sonme mimewavariations which are discussed below,

A unit in CASSANDIRE is assuméd to be completely independent
from all other units and‘the comimmication between the units is done
through the inputé and outputs only, Thus a block corresponding to
a unit appears similar to a procedure definition with the inputs and
outputs as parameters. The declarafions following the header contain
all the facilities special to the unit as well as any other units used
in the description; the latter are declared as external since they are
detailed elsevhere, ¥o globval variablés are employed since such
variables may always be included in the input~output list; however

this could obviously lead to a long input-output list.

The unit is defined by a set of transfers which may be
- elther boolean comnections or synchronous transfers, the latter always

being conditicned by a clock-pulse. A repeat operator "for —-- equal

~== 10 ===~ do" is also included to allow iterative arrays to be set
up.‘ The sequencing is achieved by labelling the discrete steps as
done in DDL, and explicitly indicating a transfer to that labels

- implicit sequencing is not allowed. The sequencing algorithm
extracts this information to set up a tabie with a correspondence
between the labels representing a set of transfers and the conditions
ne?essary to branch to the label, and organising the sequence control
to allow execution of the transfers corfeSponding to all the labels

whose conditions are satisfied. Thus explicit and implicit

parallelism may be attained, However, it is not very clear how the

UNIT: WAiDZ (INPUT 1, INPUT 2, .., INPUT N; OUTPUT 1,... OUTPUT M);

SIGNAL , , s 3
FULSE C
CLOCK ¢ 3
EXTERNAL Ty 9 H
Boolean connections
STl ¢ C sequential transfer; GOTO 5T2;
sT2 5

FIN

Figure 4 : Structure of a ﬁyﬁical CASSANDRE description

sequencing algorithm handles cases where the results of one transfer
are directly relevant in the next, particularly if some amount of

timing discrepancies occur.

The translation process is quite different from that used
in DDL. A table is set up with the declared items along with their
scopes. The source description is then converted into a reverse
polish notation with pointers replacing the occurrences of variables,
An important point about the philosophy of the translation érocess is
that the partitioning defined by the designer is not altered (as was
done in DDL), The resulting strings may be used directly for
simulation, It is also stated that these may be used for microprogram

generation and hardware synthesis; however, no results have been

avallable,

Much of the above description, especially regarding {he
translation procedure, may also bé appiied to CASD language. Apart
from the change of the basé language to PL/1, a few useful additions
are also proposed in this system, In particular, these include
multi-tasking facilities for exﬁlicit " parallelism and the WAIT
" facility acquired from Metze and Seshu. The CASD system, therefore,
seems to be more general than the CASSANDRE system. However, at the
time of writing this report no results were available regarding the

algorithms for translations, especially the translation of asynchronous

Systems,

3¢5 Sequence Chart Analvser

By definition a microprogram-is a collection of micro~orders
. - 0 - » 13
in a particular sequence to utilise the available facilities of hardware
or software and also, since it is impossible to achieve instantaneous

logic, each micro-order will require a finite time for its execution,

66

For ease of comstruction, it is usual to consider a microprogramn in
terms of a block diagram in which each block represents a micro-order,
However, this type of format is difficult to process by a computer and
the languages considered so far convert this information to a linear

format, which allows ease of processing but loses the visual clarity

of sequencing.

Roth [79] published a paper in 1965, giving a method used by
I8 which still maintains the visual clarity of a block diagram, and
is not as difficult to pfocess.' In this method, the block diagram
is represented by a sequence chart which is a grid with horizontal
divisions as units of time, and the vertical divisions %o be used to
separate operations. Each transfer is shown as a horizontal bar
extending for the length of time of its execution and the corresponding
transfer is written over this bar. Conditional transfers are
indicated by writing the conditions inmediately to the left of the
bar; branching is indicated by broken lines and arrows. An entry
into the chart is shown a box named chart entry and containing certain
conditions, When these conditions are satisfied the chart is

initiated, Similarly an exit is shown by a box containing FIDOP,

The sequence chart essentially is a method of presenting a
completed design and as such is difficult to be used in design stages,
Howéver, in common with the register transfer l-nguages it can be
used 1o syntheisize logic and the associated control, but since it is
- more difficult to use than the transfer languages, despite its
resemblance to block diagrams,it is less likely to be favorred.

3.6 State Tables from Microprograms
)

It was pointed out earlier that if an abstract description

of a digital system can be given or generated within a computer then

67

it would be possible to make use of +the well developed switching
theory and an overall optimisation can be achieved, But, for even a
reascnably sized machine, this is an immense +ask and consequently
some partitioning haé to be made, Obviously the abstract
description and its subsequent processing will greatly depend on the
partitioning used; however, it should be possible to combine the
partitioned machines [60] and to try other partitions as a check for

optimality.

All the transfér languages considered so far were suitable
for an already structured organisation and the translation process
generated this boolean equations for the terminals, the outputs and
the inputs to flip-flops. The structure assumed is that of several
registers, each usually more than one element long, interconnected +o
allow the various ;egiéﬁer transfers, Gerace [54J suggested changing
this structure to that of several iteratively connected smaller machines
and deriving the state-table for each., The structure appears as shown

in Figure 5 . An account of his method follows,

To illustrate the method let us consider a simple example
“where the machine behaviour is expressed by a single trénsfer only,
such as a parallel adder., lLet one operand be contained in the
machine and when an external operand is input to it lgt its memory

be ;verwritten by the answer. The ﬁsual structure of the machines
to achieve this would be as shown in Figure 6 . The operand length
" is assumed to be 16 bits, register A contains the first operand and B
is the second operand, This representation assumes that the outpﬁts
of register A remain unchanged despite the changes via the combinational
logic; only when the operation is complete that these are allowed to
vary. In practice this is done by using clock pulses in the inpute

output gating or using special flip-flops such as the J-K type.

Figure 7 shows the structure in Gerace's method where A(i) is an

68

240PNJIS UIYDDW PRId2UUOD A[3A1IDJ2Y) S 24nbi 4
sindino
VAR
-~
A A \
S e~ — - -]
(NN _ (VN . (uN
= R —_— : =N R, -
A #
A S
NS

syndu |

B(16) B(15) B(1)
Y 7
COMBINATIONAL LOGIC
14(16)] Aa(15) A1)
pume e

Y

Y

A(16) A(15)

Figure 6. Conventional Structure for an Adder

B(16)

ngél A(16)

A(16)

Figure 7. Iterative Structure for an Adder

B(15) B(i) 3(1)
Yy Y Y

0(1\5) A(15) .%1.42...()&}% A(l) —%izj) ""'"""“""9'{2&)" A(1)
A(15) A1) A1)

69

individual cell of the maochine.

Let the register transfer description be

A ADD B> A (16)
Expanding this to a bit level, we get

£(1) é B(i) © c(i-1) » A(d) (17)

A(i).B(1) + c(a=1)(a(d) + B(1)) = c(i) (18)

i=1,2,000,16, and ¢(0) =0,

Generally each.ith cell will be described by register
transfer and boolesn equation statements similar to those in (17}
and (18). The transfer siatement describes the way the memory of
the cell is modified, i.e, state variable behaviour, and the boolean
equations define the outputs, Thus (a) the variable on the right
hand side of all the tyansfer statements are taken to be state |
variabless ‘consequéntly all the variables on the left hand side except
those already present on the r.h.s. are inputs to the cell, and (b)
the outputs are those defined by the boolean equations and also the

state varizbles,

In the example there is only one state variable,i(i); the
inputs are B(i) and C(i-1), the latter being derived from the previous
cell, and the outputs are A(i) and ¢(i). It follows that for z
cireuit to funciion satiéfactorily all ¢{i) must be propagated before
the operation is completed, Gerace, therefore, imposed two
conditions:

1) that the machine will not change its iﬁternal state during
the absence of the glock pulse but the outputs may change according
to the inputs and as defined by the boolean equations,

® 2) during the presence of the clock pulse the outputs'and the
state varizbles will remain unchanged and only when the pulse is

removed that the change may be affected.

.Mgow.

A next-state table may now be constructed. The right hand
side of each transfer statement is replaced by a next-state variable,
say Yi, and any occurrence of the state variable of the l.h.s. is
replaoed by the corresponding present-state variable v A table is
constructed such that the rows correspond to all tﬁe combinations of
the input variables and the entries are the values of the next-state
variable defined by the transfer equations where the arrows are
replaced by equal signs and with the above conditions. The output

table is similarly constructed,
Applying this procedure to the example, we get,

B(i) c(i-1)

Clock =0 Clock = 1
¥ 00 01 11 10 00 01 11 10
0 ol ol ol o o1 1] 01 T | pante 1.
Hext~state
1 101111 1] ol 1] o table,
v
i
B(1) ¢(i-1)
Clock = O Clock = 1
00 0l 11 10 00 01 11 10
0 00100 o1 o0 |l ool ool 01| o0
Table 20
Output
1 1011 11|l 10| 11) 11] 11 | teble.

A(i) c(4)

These two tables give the behaviour of the individual cell

in terms of state tables; however, it is not completely abstract as

LY

binary values have been asrigned to the state variables. By a simple
modification and combining the two tables together we obtain a flow

table which gives the complete abstract behaviour of the i'th cell.,

B(i) c(i-1)

state Clock = O Clock = 1

00 01 11 10 11 0O 11 10

1 1/00|1/00{1/01{1/00 | 1/00 {2/04 1/01 {2/00 [Table 3.
The abstract
state table,

2 | 2/1012/11(2/11{2/11} 2/10 {1/11 2/11 {1/11

Next state, outputs A{i) c(i)

The state behaviour during the presence of the clock pulse
is considered unstable owing to the definition of the circuit, stable

otherwise, and it is usual to circle the stable entries.

Note that the celi corresponding to i = 1 has only one input

and its state tabls will be much simpler as shown in Table 4.

present Clock = 0 Clock = 1

state 0 1 Ov 1

1/00 1/00 1/00 2/00 Table 4.
Machine for
i=1o

2/10 |2/11 | 2710 | 1/11

Next state, outputs A(1), c(1).

3¢% Multiple Transfers

Generally a microprogram will consist of several transfers

and therefore the system can usually be broken down into two parts,

72

LY

1) the control unit, and 2) the operational parts; the procedure
detailed above can be extended to obtain the abstrzct behaviour of

the operational part as well ag the control unit.

A typical transfer statement in a set of microprograms

would be written as

5, 3 1X(1) | fl+A(i), f2—>B(i); S, > 5
|x(2) | fa—»A(i), f4+B(i); 5, > S (19)
Sk+l: ‘ «os

where 3's directly correspond t¢ the state of the control part and
govern the transfers in the operational part, X's are conditional
expressions, A(i) and B(i) are the state variables in the operational

part and the f's are boolean expressions,

The transfers refer to each element of the register arrays;
however, it is quite possible and usual that a large number of the
elements behave identically and some, especially the terminal elements,
require separate descriptién. Thus the first step in obtainiﬁg the
abstract description from microprograms is to recognise the number of
different machines that are described., The next step is to enumerate
- all the non-simultaneous transfers and identify each with a different
label with a view that the control part will generate one signal per
each different label and each set of simultaneous transfers will require
onl& one signal.

In fact, the number of separateblabels can be far smaller
since the same transfer, but identified by a different S label, can
be gi&en the same label, The labelling process, therefore, is as

follows:
L]

i) separate out each transfer and the associated conditional

expressions and the transfers in S,

[N

ii) if two transfers are identical but have different S
transfers associated with them they are given the same

label,

iii) after (ii) all trensfers not labelled and having common

S behaviour are given the same label,

iv) provision has to be made to allow no transfers in the

operational part.

If we examine the transfers we find that each set of
fransfers is associated with a state of the control unit gnd it also
gives the transfer of state, i.e. the present staté and the next
state are defined; since the conditional expressions effectively
modify the state transfers, these must be the inputs to the control
unit and obviously the outputs of the control unit correspond to the
labels obtained above., From this information, it is a fairly

straightforward routine to obtain the state table for the control unit.

The state tables for the operational part are obtained in
the same way as described in the last section, with the signals

-corresponding to the labels acting as further inputs.

An example is included in the appendix to illustrate the

above procedure,

3,8 Extension to_include Read Only Memory (ROM)

In large systems the number of different transfers is quite
large and consequently the state table for the control unit of such
a system is wvery complex. To reduce this complexity, a separate

®

memory, which has a non-destructive read-out* and is at least an

% The discussion here is deliberately limited to read only type
memories, however, it is accepted that a read-write memcry may
be successfully employed to achieve a better flexibility.

74

75

order faster than the main memory, is used to contain the detéilé
about transfers, tests and ‘the sequencing in a coded form. These
memories are usually called Read Only Menmories (ROM'S) or Read Only
Stores (ROS'S). The control unit behaviour with an ROM can, in
many wéys, be likened to the state tables as generated in the last

sectiony however, there are some differences.

In a state table, it is possible to have many next states
for a present state; whereas when using an ROM it is usual to have
only two next-word addresses, an address having a direct correspondence
to a state‘in the state table. The selection of the next address is
done by checking the result of the test specified in the word, or if
multiple tests are specified, then by collating the results of these
tests, and extracting the true-false value from it., The next
addresses are, therefore, sometimes called the true address and the
false address. The more complex ROM systems have facilities for

more alternative addresses,

To implement the state table for the control wunit in terms
of ROM, the state table is first reorganised to have only two columns,
adding if necessary some dummy transfers to allow for mulfiple tesmts,
The states thus obtained can be coded to give the addresses of the
words in the ROM, The outputs defined in the state table are
analysed and a coding generated such that the number of bits required
in the codihg is the smallest without losing the flexibility to
indicate parallel’ transfers where necessary. The contents of the
words in the ROM are then determined by this coding, the coding used
to specify the tests and the next-word addresses derived from the

state table,

3,9 Different types of ROM Implementations

In the last section, we considered a simple implementation

vi

of a state table describing a control unit by an ROM in which the
nunber of alternate addresses were restricted to two, corresponding

to thé true and false resﬁlts, only, The state table, however, is.

in an ideal form for manipulation for different types of implementations

t0 allow more efficient utilization of the available resources.

One obvious parameter is the word length. TUsually as the
word length is increased the length of the micronogram reduces,
assuming, -of course, that sufficient facilities are available in the
operational part to allow the necessary parallelism; bui the associated
cost, due to increased highway gize and decoding networks, increases,

In the converse case, the control becomes very much simpler but at the
expense of speed measured in terms of number of control cycle per
instruction.)It is easy to see that a state table may be reorganised

to reflect the two* types of implementation requirements.

A different type of reorganisation was suggested by Gerace
et al Y55] in which the change in the state table format rather than
the dimensions is utilized., Before exposing the method, however, let

us first reconsider the structure of a mieroprogram description,

We have already noted before that a register transfer type
description of a microprogram is a description of a set of control
states each of which has associated with i%, the operations to be
executed when the state is reached, and a branch to the next state
determined by the tesfs. A typical control state description in

i

accordance with this is shown in (20).

.0

. N , .
Si Oi’ gélxl 7010 Sj else if Xm goto Sk

S, @
; (20)

where the S's refer to the control states, Oi are operations to be

¥ These two forms of implementations are commonly called horizontal
microprograming and vertical microprograming respectively.

A Moore State Table
(a)

Y

A Moore type ROM

Corresponding to (a)

Figure 8

Figure 9

Xl Xm
§3’01 Sk,om

A Mealy, State Table
(v)

(-

o

413

A Mealy type ROM

Corresponding to (b)

ve

executed in State Si and X's are the tests. In state table terms
thevexpression (20) can be restated with Si as the present state,
Oi the outputs, ¥'s as the inputs. Clearly then a description in

a form similar to (20) translated into a state table of the Moore

typ: [3, p207].

We stated earlier that an RCM implementation of a state
table may be achieved by creating an image of each row of the state
table into a word (or a set of words) into the ROM. For convenilence
let us call the ROY implementation of a Moore state table as a loore
type ROM. Bach word in a Moore HO must contain the information
regarding the operations and branching; therefore the number of
conditions tested in a single RCM cycle must be kept down to limit
the size of ROM words¥*. Another important factor associzted with a
Moore ROM is that the address selection fqr the next control word is
performed by selecting one of the addresses specified by the EOM word.
Thus the complexity of the addréss generation networks increases with

+the number of alternate addresses™*,

A microprogranm description may also be wrltten such that the
operations performed in a control state are not only functlons of the
control states but also of the results of tests as, for example, shown

(21)

s i h 3.3
Si if Xl then do Ol’ goto 543
else if Xm then do Om’ goto Sk; (21)

where the symbols have similar meanings as before.

¥ The word length mey be kept down by restricting the fests to two
as suggested in the last section. However, a number of durnv
transfers may have to be introduced to et vl
resulting in inefficient usage of memory and a reduced ¢ putﬂtlonal

speed. The argument here iz more concerned with the way the
branch information is stored.

#% Addressing relative to the present control word address or an
address specified by a base register is often employed to reduce
the inputs to the address generation networks. Nevertheless,
the statement above is still valid,

78

The state table derived from this type of description may
be easily seen to be of a lealy 1Type {}, p.lO?j. Now each entry
in a lMealy. state table figure speci ifies the outpuis (operations to
be done) and the next state (adliress of the next control word) e
Gerace suggested that this duple may be coded into a single ROM word

hereby creating a word image for every entry in the Mealey state

table. Obviously then the number of conditionzs to be tested is not
restricted by the length¥ of the ROM word but only contributes to the
complexity of the address generation network. Since the generation
network only handles one address data its complexity in general may

be shown to be legs than the network in an equivalent WMooxre tywe of

realisation,

T i

Cadden | 37] has shown that cvery Moore state table can be
converted into an equivelent Mealy sinte table and vice versa, and

KR TR S R
eyt 1o o
SELTS Tanie 18

HEy
o
O
]
S
o
.
{

that the number of internal states (rows) in the o
J

ountput) in

equal to the numbe

zn always be converted 1o g

a Mealy state table, Thus a loove

a llealy, state table, sueh

Fy
g

Mealy w ROM, i.e. an ROH implementation o

that the number of words in both is the same. A word in a Hoore RO,
however, is lonrer than in the equivalent lMealey ROH for »easons

alreads discussed. A Mealy: relisation, therefore, is to be favoured

giving a smaller memory, requiring legs complex supnorbting networks

nd o hicher computational speed.

3.10 Wicroprogram Tronsformations

It is uswal to comgider a microprogrammeéelsystem To he

U S AT . R JEp ['“_'2 Ry 5 AR S N S
characterised by a Glushkov model [56), Pirure 1, consisting of an

o

This is not
are specifie

“w

operational part which containg the register structure and a control

part, which is a finite gtate machine controlling the operational

part. It is, of course, theoretically possible to merge the two

parts and design the éystem a8 a singl~ finite state machine; but for
practical reasons a division must be made, The position of the

dividing line, however, is questionable and usuwally is set by the
designer through his experience, intuition, and the knowledge of available
resources. Obviously, in doing so, the desiéner will experiment with
different structures and weigh the relative advantages before deciding

upon the final siructure,

Berndt [35] suggested a concept of status level diagrans,
which he described as functional microprogramming, to help this.The
diagrams depict the control states and the sequencingbin a diagrammatic
form rather like state dlagrams. The operations associated with each
'state! will obviously depend upon the resources employed in the

operational part and the timing.

An approach similsr to this was also used by Franke and

lergler {50} to develop a state table~like description of the control

" system. This state table description and the status level diagram

both provide an overall functional description of the control section

which can then be manipulated, say, to merge common control states or
L]

to split the states, The resources in the operational part can also

be re-examined with regard to the effect on the status level diagrams.

" The manipulations indicated here are commonly called nicroprogram

transformations.

A formal presentation of microprogram transoformations was
L) - .
made by Stabler BJ He.suggested five goals to achieve this which

are as follows,

1) Remove a register from the operational part and adjust the
microprograms to allow for this. The latter amounts to adding a

register (or an image of ii) to the control part.

2) This is the converse of 1, and adds:a register to the

opcrational part,.

These two goals achieve the shifting of the dividing line

between the operational part and the control part.

3) The resources in the operational part can be modified to
allow two or more operations to occur in perallel, The microprogram
control is then modified to produce one signal for the parallel
epcrations instead of the individual ones before the transformztions.

Conversely,

4) Split the parallel oporations intc serial operations thereby

reducing the complexity of the omerational nart,
& T y T I

3 and 4 clearly indicate that a Sﬁeed/resource trade off
is possible, Pinally,
5) Reduce the input variables to the control unit and modify

the two parts accordingly to preserve the overall behaviour.

The last transformation is particularly impo;tant where
cable and highway sizes between control part and operational part as
well as the RO size are important, A common application of this
was described earlier Qhere the conditions of “the operational part to
be éested are SPeéified in the microinstruction in a coded form, and

the results are retuvrned on a relatively few lines, Obviously

‘decoding delays are introduced eausing a loss of performance,

The goals 3 and 4 directly contribute to the number of RO}

cycles required to execute a set of instructions which can be related

10 the execution time, However, an important way of achieving an

81

improvement in the execution time is to overlap ROM cycles and the
bexecutions in the operational part, This ﬁethod is widely used in
present day computers and is of particvlar importance in large
computers., Stabler does not deal with fhis aspect of micro-

programing.

3.11

Strﬁcture Descriptive Languages

The languages so far considered impose a certain
structure on the system and describe its operation

in terms of algorithms. This description may be
given with varying degrees of conciseness and
manipulated using a computer to produce the necessary
amount of expansion and/or minimisation, and also
generate the logic for the control part governing

the system. Thus these languages satisfy certain
design¥* requirements. The dmportant point to note
is that a part of the structure is defined and the

remaining generated through computer assistance.

There exists another class of languages which are
more closely oriented towards describing an already
completed design. Using these languages a system
may be described in terms of its structure, i.e.,
the implementational detail, or in terms of its
functions, i.e., describe the "what" rather than
"how" of the systenm. The application of these
languages for design is rather limited, nevertheless
they have a wide range of uses, such as, documentation,
input to implementation programs in a design
automation suite, structural and funcitional

simulation and fault diagnosis¥*x,

* The term design is used here to mean logic (or
program) design rather than implementation design.

*% See Appendix IV, .

Most digital system manufacturers employ design
automation techniques in production ¢f the systems
for some or all of the application suggested above;
and there must be of necessity at least one structure
descriptive language associated with each. However,
there is very little published material regarding
either these languages or the suites; and it is not
possible to gauge the proliferation of versions,
differing maybe» only slightly, of such languages.
Examples of typical commercially used languages are
in the LOGSIM system developed by the Marconi Company
and the RADDS system [}OO, 1oi} developed by the
Raytheen Company. The usual method of description

is to describe each gate or an available primitive
module in terms of its inputs, outputs and attributes
{(e.g. delay)(cf Okada & Motcoka [75]). It is also
possible to create new blocks cut of the available
primitives and treat these blocks as primitives,

i.e. nesting is possible. Despite this facility
howevef, the description of a large system tends

10 be very large and consequently the effort required
for manually producing these, as is still the normal

practice, is also la rge.

Stabler proposed a System Descriptive Language[106]

84

which was basically on extension of Reed's Language 178].

The main additions were on Algol-prccedure~type
construct to describe a gating network and on Algol-
iterative -~ tType construct to handle iterstive net-

works -~ a common feature in digital computer logic.

:v4

85

A serious omissién is that neither primitive elemental
delays nor explicit delays such as of delay elements

and cable delays can. = be described which would be
required in structurzl simulation. Nevertheless with

the constructs suggested and by nesting the description

as necessary, it is possible to describe computer logic
in a very concise manner. A digital computer can be

then employed to remove the linguistic intricacies and
produce a structural description in a much more primitive

form.

Bell and Newell [89, 90, 91} proposed a much more
comprehensive method of describing a computer structure.
Using their method, a computer system is described at
two levels, namely

i) The PMS (Processor-Memory-Switch) Level and

ii) The ISP (Instruction-Set-Processing) Level.

At the PMS Level the organisation of the whole system
is described in terms of its constituent (PMS Level)
components and their attributes, including the types,
throughput and size, in a diagrammatic form. The

main components at PMS level are units such as

(a) Memory M - component which stores
$ N p
inf ormation

(b) Link, L - component that transfer
information between two
components of a systen,
i.e. data highway

(¢) Control, K - a component that svokes an
operation or set of operations
in other components -
effectively the control state
of a system

(d)/

-(d) Switch, S - component to switch between

links
(e) Transducer, T - component that transforms

one type of information into
another, e.g. voltage levels
into characters on paper,
light input voltage levels

(£f) Data operation, D - the data manipulation part
of a computing system

(g) Processor, P ~ component to execute a (user)
defined program

Each component in turn may be further qualified depending

on its rate and application within the system, e.g.

Pc to mean central processor, Ms to mean secondary

memory.

At the ISP level the processor itself is detailed in
terms of its ISP level constituenis such as registers,
memories, processor controcl states and data operations.
The description is similar to that in Parnas's language
in that the effect of the data operations rather than
the step taken in achieving them are indicated. This
level does not detail the logic structure of the

system.

The method proposed by Bell and Newell is quite
comprehensive at the PMS level for describing system
configuration, particularly since it allows in a

natural manner the scope of the language to increase teo
COVET any future concepts. ‘The two levels of
description together provide a good means of documenting

the architecture of a computing system | 850].

It has been stated above that a description in ISP
essentially describes the "what'" rather than the "how”

of/

81

of the system and in this respect is different from

a design langauge specification. The basic approach

for design, so far considered, involves extracting the
structural information, abstract behaviour of the

control part and determining the data and control paths =~
one of the main aims in this process being the

minimization of resources.

Bell et al] 92, 96, 103] argue that with the availability
of circuit modules implemenfed in large scale integration
(LSI) technology this constraint may not bhe so relevant.
They propose a concept of register transfer modules

(RTM) which implement directly the operations evoked

by the processor state, e.g. an arithmetic operation
between memory bars and a processor register, so that

for every different operation a different RTM is
employed. Simultaneously, control type RTM's are
employed to execute the boolean testing and branching
involved without first going through the exercise of
extracting the complete behavioural specification of

the control part. Obviously as the numbers of different
operations, and of different types of controls, increase,
the number of different RIM's required increases.
However, the approach has the elegance and neatness

of being simple for a novice to understand and cutting
the time and effort required to implement a design.

This concept will certainly prove very useful in
teaching.

In/

88

In SDL1, the language proposed by Gorman [94, 95]

and in CDL1, the language proposed by Srinivasan

[104,

105]? the system may be described at four

different levels. These are as follows.

(1)

(2)

(3)

(4)

The/

Behavioural ~ In a behavioural description a
system is Qiewed as a black box with no
knowledge of the internal structure and its
behaviour is described entirely in terms of

the inputs and outputs.

Functional - The black box representing the systenm

is segmented into major functional units such that

This represents a coarse breakdown of the overall
system. The functional description then describos
the interconnection between the units and an
algorithm in terms of these units to achieve the

required behaviour.

Structural - At this level, the authors suggest,
the description should be sufficiently precise go
that (at least conceptually) the design can be
put together by using "off-the-shelf'" components,

which may be hardware ov software.

Implementational -~ A description of this level
defines the method of inplementing the system

physically either in terms of actual gates and
registers for hardware, or machine instructions

for software.

89

The statements within a description at a certain level
are grouped together to give 2 hierarchical description
where the hierarchy is determined by the scope of the
facilities used in the statements. The scope however,
is not limited to within the bounds of the hierarchy
and may be extended to a higher level by explicit
statements. This concept is slightly better than the

global and local variable concept.

These languages contain a coﬁprehensive set of facilities
to allow variable interpretation of any entity which is
a very useful facility when large systems are considered.
The language also allows an extension of the syntax and

modification of . semantics.

The common syntax for all the levels is particularly
useful in system modelling since a common simulator can
be constructed to handle description at all levels.

As the design progresses it is only necessary to change
description to a different level within the same

language.

In general however, structure descriptive languages

serve an intermediate, and a very useful stage between

the design process and the implementat ion. Their scope,
o especially when defining the control part of a system,

tends to be restricted. Our basic aim to study the

possibilities of describing a system without, as far

as possible, any structural constraints. To this end,

structure descriptive languages are of an indirect

interest only.

90

Conclusions

Most large digital systems can be regarded as instruction'
executing systems and congisting of an operational part
which contains the data storage facilities, i.e. registers;
and the data manipulation, i.e. register transfer,
facilities, and a control part which provides the
necessary signals to activate the register transfers in

a correct manner. We have noted in the discussions in
this chapter, that the behaviour of the operational part
can be described, in terms of microprograms, in a register
transfer language and that it is possible to extract the
behaviour of the control part from this description.
However, the flexibility offered by the various langusges
to describe any complex modes at microprograms varies

widely.

Earlier register transfer languages were simple and could
be directly mapped and thus were good tools for analysis
of already designed systems and for automation of
implementation. They had their limitation such as,
inability to indicate segmentation, multiple operations,
mixed synchronous and asynchronous operations etec., and
their timing notation was particularly poor. Roth's
sequence chart analyser {793 expressed microprograms in

a graphical mnner which indicated timing and multiple
operations, but owing to its graphical nature it is

difficult to automate.

Further languages were developed to increase the
flexibility and specification ability for which notational
and operational conciseness was introduced by using

complex/

91

complex operators and macro calls etc. Some of these
langw ges were based on the structure of existing
programming languages, e.g. Metze and Seshn's language
based on Fortran (74 and Chu's CDL [39 - 42]
and Cassandre [32, 33, 58] based on Algol. Segmentation
facilities were introduced in DDL by Duley & Dietmeyer

&46, 47] and in Cassandre.

The Iverson notation [64 - 66] provides a means of
describing the logical functions of a system at wvarious
levels of detail including elemental bit levels,
independent of the machine structure and in an algerithmic
manner lending itself to a good interpretation in terms
of hardware realization. However, the designer usually
defines the system in terms of functional blocks first
before attewpting an algorithmic solution of the problem.
The Iverson notation unfortunately, does not have a
sufficiently high level of functional descriptive
ability. Secondly, at the algorithmic level the language
does not contain adequate facilities to express control,

particularly timing.

Since 2ll the languages use a predefined register
structure, the automatic part is still limited to
deriving the controlling circuity and the combinational
logic driving the register structure. Gerace [54]
described a method by which the register structure
implied in the register transfer description may be
reformulated into an .iterdtively-connected-machine
structure and obtain a formal abstract deﬁinition for

each. A more pertinent application of register transfer

language/

language description is however, in producing a ROM
implementation of the control part, ROM implementations
are somewhat more flexible in that it is possible to
change the characteristics of a given operational part
relatively easily by changing the ROM part of the
control part and thus by using, say, plug in ROM modules
an effectively different system may be obtained. Gerace,
et al[55] have described methods of different ROM

implementation and minimisation.

Another interesting, aﬁd potentially very useful result
noted [85] was that the dividing line between the
operational part and the control part is somewhat
arbitrary and that certain rules can be applied to
shift this line one way or the other. This also
exemplifies the artificiality of dividing a system into
two arbitrary parts. It should be possible to view a
digital system from an overall system view point and
describe its behaviour in some manner that is
independent of the internal sfructure and then either
algorithmically or via some interaction with the

designer evolve the necessary structure.

Finally, the usefulness of a register transfer type
language for documentation of system cannot be emphasized
too greatly. Its value is further enhanced if a
methodology is developed by which a system can be
detailed, at the various levels necessary, as it
progresses through the design stage. Such a methodology
[907] also allows a suitable comparison of various

systems to be made in uniform manner.

4. Methods based.on Switching Theory and Information Theory

4.1 Introduction

One of the advantages of using switching theory in logic network synthesis
i1z that it provides algorithmic, and hence programmable,techniques for
producing logic designs from input-output specifications. These progrems

may be then used by even a relatively inexperienced designer to produce

IN

complex, error free logic designs, providing of course the specifications

¢

of the network are input to the program in suitable forms. tThe latter
constraint however, represents a serious disadvant@ge in that large
amounts of data corresponding to truth tables, stzate tables or flow
tables have to be input and obviously this, apart from being tedious,
could lead to errors which may be hard to detect. The specifications
therefore, have to be input in a way that the chore of the tables may be

relegated to the computer.

4.2 Carroll and lott's Method

An approach to this was suggested by Carroll and MNott {93} in which the
inputs and outputs are considered to be related by some continuous function(s)
which may be input directly into the program. Carroll and Mott distinguished
between 3 types of logic networks. If n is the number of inputs and m is
the number of outputs, then these three types are a) those having n=1,m% 1
b) those with n»l, m31 and c)where n»! and m=1, A single input network
as in type a is a special case in that it represents a counter in which
the input itself is the clock input and the outputs are coded in the
required form, The input-output relation in such a case is cyclic repeating
after p pulses where

Ospsflh
The other two cases are more general froms of logic networks and could
represant combinational or sequential networks; the concept of simple
input-output functional relations however, is only applicable to combinaiicnzl
networks. Nevertheless if these are known, the production of truth tables

is fairly straightforward. A difficulty arises when thess functions sre

e

94
to be determined,especially if they are limited to be numerical, as implied
by Carroll and Mott, and iﬁ many cases it is not possible to determine them.
One way to overcome this is to extend the types of functions that may be
specified and to include slgorithmic descriptions, particularly where
iterative relations are invelved. snother useful addition is to complement

the relational description with the input-output pairs where necessary.

4.% Smith and Tracy's Method

The specification of a sequential network behaviour introduces anothex

dimension to the problem, i.e. that of time dependence. ‘Ihe method
suggested above cannot be used for sequential networks except in the special
case of counters. Smith and Tracy {jO?} propogsed a method whereby the

behaviour of asynchronous networks may be speci jed in a short form and

converted into normal flow tables.

e g o v Lo
O Sery

The method relies on being able to specify the output respo:
of input sequences as, for example,in patitern recognisers er counters.

ithe series may contain several individugl sequences; and the ordering

cither to create loops { as in counterz) or to indicate branching

is shown by attaching notes goto and follovs. 'he seguences themselves

may be defined in terms of either all inputs or a subset of inputs.

As an illustration, consider a network with two inputs a,b and two outputs
V,%. ¥ becomes equal to 1 if a=1 and b follows the sequence 10 and
providing that a has followed the sequence 010 immediately prior to this.
7 becomes equal to 1 under the same conditions except that b follows the
seguence 01.

The output response type description for the above preblem is shown in

figure 1.

. ¥
In the translation of this type of description to a normal flow table,

Although the steps described here are taken directly from Smith and
paper, they are slightly modified in the illustration by introducing the
restriction that only one input varisble way change in 2 transition.

an intermediate flow table, called a module flow table (MFT) is first
generated., This flow table indicates the ordering of the sequences and in

effect is a mapping of the goto and follows notes. Next, a preliminary flow ‘

table is generated for each sequence such that firstly stable state entries
are made where input—output response pairs are specified and then unstablé
state entries are made corresponding to the next stable states. No unstable
entries are made at the tail of the sequences, i.e. at the end of the
sequences, The individual flow tables are then concatenaled together using
the information .contained in the MFT and adding unstable entries at the tails
of the individual flow tables to correspond to the next stable states. These
steps are illustrated in figures 2,3, and 4. The final flow table, obtained
algorithmicelly, is shown in figure\4 and may be compsred with the state
diagram obtained directly from the initial specification and the corresponding

flow table shown in figures 5 and 6 respectively.

The érocedure illustrates some interesting points., Firstly the description
is almost a state diagram type description but it is in a fowxm which is
much more allied to the approach likely to be taken by a designer who

is unfamiliar with switching theory methods. Secondly the method does not
require a full specification and can be completed in stages; and it seems
ideally suited for generating a flow table in an interactive mode. TFinally,
although the method has been illustrated only with an asynchronous design
example, it may be possidle to generalize it to include synchronous

designs.

inputs outputs notes

a b y Z
seg 1 1 0 - 0 0

2 1 - 0 0

seq 2 3 O - 0 0 follows 2
seq 3 4 1 1 0 0 follows 3
seq 4 5 1 0 1 0 follows 4, goto 1
seq 5 6 1 0 0 0 follows 3
seq 6 T 1 1 0 1 follows 6, goto 1
seq 7 8 O - 0 0 follows 4,6, goto 3
seq 8 9 1 - 0 0 follows 5,7, goto 1

Pigure 1. Input-outpul response gpecification

\\i?puts
00 01 i1 10

seq. number 1 g 2 -y 2 The dash indicates
2 3 5 the starting inputs
3 7 7 4 of the seguence
4 1 1 8 8
5 7 7 6
6 1 1 8
7 2 2

1 1

Pigure 2. NPT corresponding to the example in figure 1
")

inputs = ab

00 01 11 10
® /00 @ joo 2 2

sequence 1

® /o0 @ /00
B3 /oo () /oo sequence 2
@ /00 sequence 3
C>/1O sequence 4
C)/OO seguence 5
@)/01 seguence 6
®) /00 @ /oo sequence T
@ /00 @) /00 sequence 8

Figure 3. Individual flow tables corresponding to the

example in figure 1,

inputas = ab
00 01 11 10

M /oo @0 2 2
3 3 (@ /00 (2)/00

(/oo G)yjoo 4 6

8 @ /oo 5
1 9 (3 /10
8 7 ©/00
1 (/o1 9

/00) /00

o~
N

1 1 9 /oo () /00

Figure 4. Concatenated flow table

Figure 5,

State Disgoram for the Network

inputs = ab

00 01 11 10

@ oo @ /o0 2 7

3 3 ® joo (/00

G /o0 () /00 4" 6

@ /o0 5

AN

1 8 (&) /10

3 7 ®/00

-

(D /o1 8

/oo (@) /00

-
-

Pigure 6. Flow table corresponding to figure 5,

4.4 Petri Nets

The importance of considering the behaviour of the overall system rather
than segmenting it prematurely into hardware and software was also
emphasized by Holt et al {97,9é] inn their work on Petri Nets. Using these
nets, which were first conceptualized by C.A.Petri as transition nets,

it is possible to indicate the behaviour of a system in terms of information
flow through hardware processes or software processes in a precise and
concise manner. ‘hus these nets provide a method for describing a system

in & unified way and is a significant step towards the reguired goal.

The basic unit of information flow in a Petri Net is an event. A system
can be described by a set of events Joined together in a loop,allowing
repetition of events. ‘he term event therefore, is generally taken tfo

mean a repeatable event and an individual repetition of an event is called

an occurrence.,

an event in a Petri Net is represented as a itransition and is depicted by

a2 bar with a suiteble number attached to it so as to distinguish it. Uhe

transitions are connected together by arrows via places or conditions which

are depicted by circles. The entries in the places specify the conditions

neceggsary for the transitions.

the arrows establish the relations between the transitions and places:
an arrvow from & place to a transition means that the place is an input
condition for the transition and an arrow from a transition to a place

indicates that the transition generates the condition.

A simple example of a repsatable event is a compuler in a user envirorment.
Initially let the computer (C) be in an idle state (CI). A user (U)
accesses the computer via a teletype unit (T) and inputs a program (P).
fhe computer the computes the program (CP) while the user is waiting at

the teletype unit (UTW). When the computer has finished the computation (CP')

the results are passed on to the user (UTR) who leaves the computer in an

—\ yan

cp!
T

= N

 utw)
(v
_/

Vi
VA

UTP

Net

M
Fi

&
%

A Pel

Figure 7.

103

idle state (CI) and the teletype unit free (TF).

The Petri Net for the above is shown in figure 7. svent 1 in this diagram
shows that it will take place only if the two conditions CI and UTP are
satisfied. As soon as the event. takes place the conditions CP and UTW are
generated. The conditions for transition 2 are thereby sgatisfied and the
condition CP' is generated, This in turn, along with UTW, allows

transition 3 to take place,

ihe Petri Wet considered here clearly indicates the information flow through
the system in a concise and precise way. 'These nets can also handle
concurrent or parallel and independent events particularly Well. Thus they
can be used to'describe the behaviour of a variety of systems with a

vgrying amount of detail.

The history of a system can be reccrded by performing a simulation on the
Petri Net. Conventionally this would be done as a record cf states snd

the associated conditions generated by them. However, this requires that
every distinguishable state be recorded as a separate entry., Holt intwxoduced

a notion of occurrence graphs which illustrate +the simulation in a graphical

way and are able to handle concurrent evenis more easily than by the
conventional approach. An occurrence graph for the Petri Wet considered
here is shown in figure 8, where the nodes indicate the transitions and
the arcs indicate when the conditions specified by the labels assoclated

with the arcs are true,

Petri nets offer some exciting applications. Firstly, concurrency can be
relatively easily and concisely depicted. They can be used to describe the
input-output behaviour completely,and entirely in terms of its envirornment
withoul imposing any constraints of Implementation technology. The latter
application is particularly useful in design. Yor example, an algerithn

may be depicted using Petri Nets containing ss much concurrency as is

allowed by the consiraintis due to environment. Now the designer csn cheoose

cp! utw

UTR
&
T
e
yTp
Ccp
° UTW
CP!

Figure 8., An Occurrence Graph

104

a particular implementation such that "parts" of the zlgorithm can correspend
directly with the "parts" of implementation. Conversely the designer can
modify the algorithm with the constraints of an existing implementation in mind,

tr Hest use the implementation.

4.5 Conclusions

Switching theory provides us with methods to describe the behaviour , i.e.
the input-output mapping, of & system in a precise manner. Unfortunsiely,

the amount of data required to do so and the data generated in the subseguent
phases of design tend to be very large indeed. ‘his does not however, mean
that switching theory should be ignored for practical design and in fact

switching theory is a very effective means of producing error free designs.

The methods of generating truth tableg or ztate tables described here,go

some way towards bridging the gap between the concepts specified by swiﬁchiﬁg
theory and practical methods likely to be adopted by a designer. However,
there is a strong reluctance among designers to assume switching theory
technigues in their design processes and a considerable support is still

necesgary before these technigues are in general use.

One of the drawbacks in swiiching theory is that at present it is somewhat
inadequate to handle large systems with parallel processing. Petri nets
however, handle such systems neatly and also offer some additional useful
applications, such as optimization and simulation. The Petri nets =zeen to
offer real potential towards a unified method of system behaviour descripiion

and system architecture design.

5.1

5. AN APPROACH TO COMPUTER AIDED LOGIC DESIGN

Development

It is clear from the foregoing discussion that the logic
designer acting in a coumputer aid enviromment, and
especially in an interactive mode, has a language problem.
Many languages have been devised and utilised to a varying
degree of success. It is also clear that the main drawe
back comes from the correlation, or the lack of it,

between the language and the designer's natural methodology,
and also the "design" aspeét rather than Jjust the simulation '
capability of the language. To surmount these drawbacks

and to devise a new language, it would be helpful to

exemine what we are trying to design and how we, as human:

designers, tackle the problem intuitively.

The system under consideration is a digital processing
system; by which we mean that the system will accept
information on lines which carry one of only two values
and that after processing produce outputs on similar
lines. Typical examples of such systems are traffic
light controllers and digital computers. It is also
envisagedpthat thegse systems will, in general, process
the inputs in more than one way, ie.e¢. they will have a
certain instruction repertoire and that the required
instruction would be selected by an external input,

such as a program. This definition allows the inclusion
a general class of digital processors, since if only one

function/

S5e2

107

function is executed, the repertoire will include only
one instruction and the external input would be, say, an

on/off switche.

The Intuitive Approach

To understand the steps which a designer is likely to
follow, it will be useful to consider an example. The
example we choose is a simple one, yet adequate to
illustrate the steps taken. Two numbers each seven bits
long are coded with Hamming distance code * and are
accepted in a serial mode. Their parity is checked and
a correction is applied if necessary. If the first
number is greater than the second then the two numbers
are multiplied otherwise they are added together,
Finally, the output is correctly coded with Hamnming code

and put on an output line, again seriazlly.

This itself defines the first step in any design: that
of a description of what the overall system is expected
to do. There is no mention as to how the parity is
checked or how the multiplication or addition is achieved,
or for that matter, whether the operation within the
system is conducted serially or in parallel. The
abstraction we can derive from the above description is
that it is a black box with one input line carrying the
input data, another one to validate (synchronize) that

data and one output line for output data.

* Appendix IIIX

108

start/stop
Pad
clock ready
I e
SYSTEM
input output
T S

Figure 1. A Small System

Although the clock was not. explicitly expressed we deduce
that it is necessary. We would also need to provide
another output line to indicate when the output is ready
and obviously a start/stop line. Since the output is
also serial, we would need to know whether a clock line
for this has to generate or if the input clock is running
continuously and consequently can be used for the output.

Let us assume the latter.

It is clear that at this level we are only concerned with
outlining our system in terms of the input and the output
and the system behaviour is described. We call this type
of description a ‘behavioral descriptiont. Ideally, we
would like to input just this much information into an
automation programme and let the desipgn be evolved with
respect to some pre-defined cost-effectiive measures

which the designer specifies. But it would be naive to
attempt to obtain a solution, let alone an optimal

solution.

The/

109

Wa1SAS U3 JO UMODYD2IQ [DUOdUNY 2 24nbiy
wndino waishs Jun woyshs e
indino S112WYII4D 1nduig
ApD2ald p oTel e

doys/1vys

110

Woshs 23Ul JO UMODYDBIG [DUOIIDUNY ¢ 2nbidy

memgo £319 / ppE Mw:/ £11q N ndug
4 ll.nﬁ/ UOoI122440 D Aytind
ndino k= Ajiind : 1523 e A31iDd = e
/) 16342 W33y D
ApD2d 14250} Adinuw pIDOSIP MIO]D
N A 3 3 I A A

dois/ 3dois

111

start

l.

accept first 7 bits serially number a

!

check code and correct if necessary

l

discard parity bits

!

repeat the last 3 steps for number b

l__ yes

multiply & and b add g and b

test if a> b

generate correct Hamming code parity bits

i

merge output bits and parity bhits

v

put ready = 1 and output

Figure 4, TFunctional algorithm

11z

The next step is to break down the black box, calied

system, into sub~systems; each designated certain functional
capabilities. This would start on a coarse breakdown
extending to a finer detail as necessary. The functional
breakdown for our system is shown in figures 2 and 3.

The description of the architecture based on this type of
breakdown is called 'functional description' of the system.
We would also draw up a flow diagram of how we utilise this

architecture and this is shown in figure 4.

The flow diagram gives us the sequence in which each
function has to be performed. We still cannot tranclate
this information directly into hardware or software
routines until the how of each function is specified.
However, since the flow diagram is not related %o any
machine structure, it is still abstract and independent

of the final machine and acts as an overall reference,

The next step is to detail cach function in an algorithmic
manner. The human designer at this stage, owing to his
experience and intuition, may resort to hardware blocks
and express the algorithms with these hardware constraints.
However, we feel that this is “jumping the gun' as this
process may lead to quick hardware realisation but will
not allow any logical process of overall minimization.

For example, the designer may allocate J=K flip-flops for
memory elements to minimize hazards due to asynchroncus
signalsbut the overall system may be such that only RS

flip-flops, which are cheaper, may be adequate. Another

example /

example is that the designer may allocate separate
registers and a parallel adder whereas a serial cingultxy

may be sufficient,

It can be safely said that a designer will normally derive
a flow diagram similar to the one in figure 4, from the
description of the system in a natural language which is
sufficiently formal for the logic designer yet it is quite
comprehensible to the members of other disciplines. Since
we wish to devise a language that can be used as a general
purpose design language, we feel that at the highest level
the language should incorporate information of this type.
It must be vemembered, however, that the statements in the
flow diagram indicate the flow of data and the operations
performed upon it, and that the logical operations for
each statement have still to be defined. Therefore, it

will be useful to think of these steps as macro functions

and each of these is detailed in a logic design language.

Returning to the example, we consider the required transg-
lation of the functional macros. We have established a
data flow through the functional boxes, the data being a
collecﬁionrof strings or bit patterms. The input data
may be sustained long enough for the functional boxes to
perform the necessary operations; on the other hand,
especially in the caseof serial transfers, it may not be
present long enoughand thewheleof the data may require

"memorizing".

The Hamming code used here has 3 check bits and 4
information bits and since the validity of the number

cannot/

cannot be checked until all the 7 bits are present, all

these will have to be memorized. Let this functiom be

denoted by a register and since seven bits of esach number

have to be registered and that they appear serially, a

counter has to be introduced. The functional breakdown,

then would be as follows,

1. set counter to O

2. increment counter by 1

3. 1if the clock pulse is present then register input
into a vector, the position being determined by the
value of the counter.

k., if the counter has a value 7 then go to 5 else go to
2.

5. te o

This is an algorithmic description of the functiomal breake
down and the Iverson notation is most useful here. The
algorithm is re-written below using this notation, where
the counter is k, the clock is ¢, and the first seven bit

nunber is 8e

1. k <= O

2, k <« k +1

3. ©:0, (=)= 3: (&) 2, < input;
e k37, (=) = 5; (A - 2;

59 een

The error checking and correcting steps are expressed

algorithmically as follows.

5. el <= M/UN)T 85)/a (N = exclusive or)
6. e2 <« M/ 51)/a
V/((?7) T 15)/a

A

7. ek
8@/

8., n < 1 el,e2,e1
9. n:0, (=) = 105 (#) a, = &)

10. L X]

el,e2 and el are three scalar quantities corresponding to
the three error bits. Statement 5 is interpreted as: mask
the vector a by a binary pattern whose value is 85, i.e.
select the odd bits of a and if the sum is odd then there
is an error; similar interpretation‘is used on statements
6 and 7. The statements 8 and § define a single error
correction. The masking patterns can be generated using%
special Iverson operators and 5,6 and 7 can be re-written
as

5. el < ¥/(2 |i1(7))/a

6. e2 < /(4 |iM(7))/a

7. el <« ¥/(31(7) > 3)/a

Without going through the remaining steps it is easy to see
the general format of the algorithmic description and that
it can be similarly applied to the remaining functions of

the machine,

The hierarchy in the description is already apparent as

the functional macros are at a higher level than the
algorithmic description, and it can be extended so that
each operation is further simplified to a lower level and
s0 on. In an intuitive approach, the hierarchy is extended
until the description has almostdone to one correspondence
with some structural elements. Thus the vectors are
immediately translated into registers, the steps into
timing cycles and the remaining operaticns performed by

clever/

clever manipulation of interconnecting logic to minimise
delays, elements and, in the case of parallel processing,
hazards. This process can be largely automated and has
indeed been demonstrated by Friedman et al [533. The input
to their program :, ALERT,i$inthe form of Iverson state-
ments and the outputs define the excitation equations for
the flip flops, and these are subsequently processed to

obtain the logic diagrams, wiring diagrams etc.

It may be recognised that the Friedman approach is to
assign hardware blocks to achieve the various operations;
however; this is the same as in the case of register
transgfer languages and the only functions that the

computer provides is to assign these blocks automastically,
and to remove redundancies. We feel that a better approach
is to derive the behaviour in terms of, say, truth tables
and state tables from the functional description and then

process this by a logic assignment programme.

There are two ways of obtaining this information, the first
is to use the functional description and converting this
directly to statetables by a method similar to Gerace's [54]
and the second is to use the allocations obtained by a

programme similar to Friedman's and then from the excitation

equations obtain the state tables.

Clearly then, a 1ibrary'of available and usable physical
objects has to be created and for this a flexible and
comprehensive declaration facility is needed., As new

objects/

5.3

111

objects bec?me available they should be readily added to
this library without affecting either the flow
or the structure of the language using this library and
hence the declaration facility should be expandable
naturally. It should include sufficient information to
determine its applicability completely. For example, a
software routine will require in its declaration, its
name, input and output parameters, how it is called in the
main programme, its size and speed. Further information
which may be necessary is how the routine functions and
any illegalities either in operation or interaction with
another routine. Another useful parameter would be a
cost figure, which is particularly useful in cases where
the designer wishes to trade cost with speed or vice

vVerss.

The Computer Aided Approach

From the previous discussion we deduce that the designer
needs to specify a system at turee different levels. At
the first, the system is defined entirely in terms of its
input and output behaviour, i.e. the specification at this
level describes the system as a whole without any indication
as to its internal structure. At the second level, the
system is decompesed into several sub systems, each as
which may be defined

(a) in terms of its input-output behaviour, or

(b) by algorithm specifying its functions

Finally at the third level the designer may specify a
structural detail and the operations constrained by this

structure.

118

To apply any of the minimization programs. . the data in
Vﬁhe computer must be obtained either in terms of truth
tables or the equivalent forms thereof, or in terms of
state tables or their equivalent forms., If the designer
inputs the data in terms of behavioural specification then
the subsequent manipulation iz straightforward. However,
the data to be input becomes enormous and a short form

- method must be considered. Such a method for inputting
behaviogral specification for combinational networks is

proposed later,

The structural definitions can be given by register
transfer languages or in a form of Iverson notation [5330
This type of description is very useful for analysis work
and, in the design process, can be used to generate ths
boolean equations for the logic interconnecting the
registers. The bodean equations can be manipulated to
minimize the combinational logics however, the registers
themselves are not minimized, mainly because no formal
methods yet exist to minimize sequential logic without
returning to a state-table~type specificaticn. Furthermore,
a large part of the design is already complete before use
ot computers is sought. A method to automate the earlier
parts of design, namely the functional detailing, must be

considered,

The Iverson notation is very useful here since it éan be uvsed
detail design information at this functional level, i.e.
without resorting to structural constraints,and has

sufficient flexibility to detail at different levels of
parallelness at operations. It also can be easily

extended to describe the operations within a structural

definition but has no provision for defining this

atrueturse naor Toaw oy avnlamt b 400wt m

Tede

A logic design language is primarily a language to

describe the algorithma for Jlogical processing of system.
Its main uses are in the &sign of logic systems: however,
the language should also be capable of documenting existing
systems. Furthermore, it is te be used by members of

other disciplines also, as a common reference langunge and
thus should be lucid, sufficiently descriptive, yet without
too much detail, Conversely however, a description in this
language must be interpretable by a computer as a progran
to produce abstract data for subsequent manipulation, and
this requires that the laﬁguage is highly structural, highly
symbolic and that the description contains a considerable

amount of detail.

As noted in the previous discussions a program in a
conventional programming language tends to define & set of

processes to be executed sequentially, where as a logic

system in general contains fecilities to execute processes
in parallel and the necessary synchronization., The

language must reflect this clearly. Also, the structure

~of the language should be such that undve restrictictions

are not imposed on the designer's mecde of design, but
rather is adaptable to the different methodologies used by
different designers and cater for the different aspects of

~

a design process,

In
4 119

120

In the following sub-sections we discuss the various
facilities demanded of the language, .~ how they are catered

for, and the structure of the language.

Structure of the Deseription of a Svsten

The system under consideration must be of a nature such

that a set of abstract data, the level of which is decided

by the designer, may be generated from its description. It
should therefore be either constrained to & certain size

(in terms of, say, an algorithm) or segmented down to produce
manageable sub-systems. It is suggested that this segmentation
is based on a functional division within the system, as .

discussed earlier,
The system can then be described in the following ways:

(1) Entirely by its input-output behaviour

(2) In terms of the inputs, outputs and an algorithm or

algorithms defining the functions within the system

(3) 1In terms of the inputs, outputs, a predefined structure

and the data flow

Despite the distinctions in the different vays however, the
basic structure of the descrivtion must necesssrily be
common, A designer may wish to use any one or more of the
above mthods to describe a system depending on the size of

the system and the detail available.

The description therefore, is organized in a bleck structure
similar to Algol; however, there are some important
differences. In Algol, a block introduces a new level of

variables,/

121

isetc., oy it may be an independent entiiy,

«

nich nay be accessed by program

substituting the dummy parameters of

the prosedure. Quwing to the geguential nature of Algol, as

s

any other programaing language, only one copy of each

proceture g

ter be waintained. In the logic design

lang

vage however, & ‘procedure', or in the general terus,
& systen or & sub-system, may be one of two types, namely,
orne which is shared, in the same way as an Algol procedure,

and cne which is duplicated.

We define FPACILITY as being & system or a sub-gystem which
is shared, with éifferent argunents a5 Necessary, and a
MODULE as being a system or & sub system which is duplicated
for each separate use. Of course, a module or & facility in

turn may contain, within it, additional modnles oY facilities.

In the leogic design 1anguage‘(LDL) therefore, a system is &
Medule containing various other modules and facilities and |
the description in the LDL in a program defining the interes
relation between the inputs, outputs and any facilifies and
modules contained in the System Module. In a programming
language this interrelation is al#ays defined by an
‘glgorithm; however, in LDL it could be in one or more
forms as selected by the designer. For example, the
description may be & truth table, a state table, flow table,
wvave form description, functional algorithm or an algorithm
in terms of predefined structure. The designer specifies

the/

&
fhe type of data involved by succeeding the BEGIN at the
start of the block by the appropriate type name and when
the type of information is to be changed; this is done by

introducing a new block.

A module or a facility in general must be declared before

it is used. However, two cther forms are also allowed.

A block may be declared as FORWARD in which case the
declaration is expected later on in the description.
Alternatively a module or a facility may be decliared as
LIBRARY where a library of previously designed modules or
facilities has been set up and is to be used when completing
the description. The library facility is particularly useful
when a team of designers design differené sectionsg of a
system separately and compile a library in the process

which is then accessed to complete the overall design.

As mentioned earlier a block introducesanew level of
variables, label etec. thus an identifier declared in an
outer block is accessible to an inner block except when an
identifier with the same name is declared in the inner
block. The identifiers declared in the inner blocks are
never accessible to the outer block. Similar restrictions

also apply to labels.

The/

—.

N

The syntax for e ‘program' in the LDL is given below in

the DockusweNaur forwu

<program>

13

i3

Q:) lo cl«:>

{unlabeled block)

re

{block type) s
<block head> e
"(block name) .

Qdentifiex‘ list) ‘o

{output list) e

{value part e

{specification partd:e

Qescription> ‘e

<descrip'tion head> te

-

Qescr iption type> i

<blOC}{> FINISH.

anlsbeled E]@ck} \ Qabel> t (block>
{vlock typey (;biock head> {description>

END .|
(vlock typey (block heady FORWARD|
Lolock typey <{block heady LIBRARY

MODULE l FACILITY
{block neme) ((input listy.{output listy)
<va1ue part> <sp@cification part}
{identifier)

(identifier list>) < emp ty»
{identifiery. ‘(identifier> .
(identifier list)
(igentifier list)] {empty)

VALUE identifier 1istd | Lempty)
LLype (identifier list\»ktype>
<identifier lis‘i:> °
<specii’ication part>

SC‘AL!%R \VECTOR \ I‘U&'TRIX ‘CLQCK \ PULSE
<description heady « @.escription tai}>

BEGIHN Q}.escrip‘cion type—z> .
<d.@cla.ratioﬂ>

TRUTH TABLE \STATE TABLE& FLOW TABLE\

BOOLEAN EQ.\

WAVEFORH\ REGULAR EXPRESSION:

FUNCTIONAL| STRUCTURAL

-
N
i

‘<dec1arat:‘aon> 1= (Smp'ty:) t\,‘(\"r,'y)pe> <identj.fier 3-iist> .
Q&eclaratiun>
GLOBAL CUNDITION <Bcolean ez:prezsaion> .
<de clarat j.c:m>

@escz’iption w':&il> «= { blocky.{description tail) \

{description in the appropriate format}

A typical example of an adder would be as follows

MODULE ADDER (A.B.Kl.TI..CK.)e

VECTOR A.B.C [0:I], SCALAR Kl.I.K.

BEGIN STRUCTURAL -
SCALER J. VEGTOR KP [0:I + 1] .
LABEL L.
MODULE ADD (A.B.Kl..C.K).
SCALAR A.B.K1.C.K.

BEGIN TRUTH TABLEL -

ABKL CK
000 00
001 10
010 10
011 01
100 10
101 o1
110 o1
111 11

ERD »

6.3

ot
(%
un

0 k [6] < 0.
1 L J <= 0.
2 app (A [0). B(Vxp [0].. c o) . kp o+ 1]).
3 J < J+ 1.
L IF J<I GOTO L.
5 K< Kkp [J + 1),
END
Description

The description of a system may be in an abstract form, ¢.g.
when the system is defineq entirely in terms of its inpute
output behaviour. Common forms of such descriptions are
truth tables, state tables, flow tables, boolean equations,
regular expressions etc. A description in‘one of these
forms has neither a provision of any kind to include an
algorithmic type of description nor to introduce named
modules or facilities other than those determined by the
subsequent manipulation programs. The advantage ef such
& description is that the full power of automation may‘be
applied to produce an optimal design. The disadvantage
however is that the description tends to be very lengthy:
and an interactive mode of operation to develop it is
preferred and this in turn requires a versatile command
structure. A suitable command structure to develop an
abstract description of a combinational network is given

in the following sectiona

A major part of the description in LDL however, will be in
the form of an algorithm either at an abstract level or in

terms/

terms of structural constraints of the system, In both
cases the description is given by statements. At an abstract
level a statement may be a data transfer as in a programming
language, or at a struciural level it may be a regigter

transfer type of statement.

In general a statement defines a sequence of actions to be
performed and once initiated, the execution of the statement
cannot be interrupted. A set of statements may be grouped

together to form a compound statement where again once

initiated the execution of the statement cannot be interrupted
unless a global condition declared within the compound statge
ment becomes false., A dompound statement is distinguished by
enclosing statements between BEGIN and END. The enclosed
statements themselves may be any statemenis including compound
statements. A compound statement may also introduce new
global (global to the compound statement) conditions and new

variables,

Sequencing is implicit in the order in which the statements
are presented except when modified by either explicit or
implicit parallelness or by branching., Labels may be

associated with each statement for branching,

Each statment can also be made subject to a condition or a
set of conditions, in the same way as in Algol as long as

the evaluation of the conditions produces a logical value of
frue or false. These conditions can be any relational tests.
A ptatement may also contain several sets of conditions and
the corresponding actions for each condition similar to the

Algol conditional statements., In addition we introduce a

?2?k

notign of global conditions which are tes

compencement of execubtion of each statemsent. For

a clock signal or an interrupt signal fromeperivhe

may beuglobal condition., The scope of global signa

also be controlled by declaring it at the appropriate level
that is if a signal X is declared as global in block A then
it influences all the statements and blocks contained in
block A but if bleck B zortains A then signal X will not

influence the execution of block B.

We also introduce additional conmstructs to indicate
synchronism and parallel execution, namely the until state~
‘ment, . when statement, the while statement and the in
parallel statement. In the first three cases a condition,
as defined by a boolean expression or a relational test is
monitored continuously. In the until statement the state~
ment following the test is executed, repeate&ly if necessary,
until the condition becomes true , the converse is true in
the while statement if when the condition become false
control is passed to the next statement after the while
statement. The when statement effectively requires the

system to halt until the condition tested becomes true.

The in parallel statement initiastes the execution of all
the statements defined in the scope of the in parallel
statement together. The sta;emenﬁﬁ defined to be executed
in parallel may themselves be any statemengs ineluding in
parallel statements. This facility we feel is particularly
important when'.asynchronou& processes &re executed in

parallel,

The/

128

The operations within a statement are evaluated using
right to left (N.B.) procedure as required by the Iverson

notation. This however, may be modified by parenthesis.

The syntax for a description is given below in the

Backus-Naur form.

{escription) cem {ptatement). (description)\
<sta&:emen‘t>
{statement) 3= {unconditional sﬁatemen‘bl(condition:}

{unconditional statementd {alternativey
Lunconditional ce= {until statement) \(while 5tatemezzt>}
statement™> ‘
{when statement) \
Q,n parallel statezgent) ((sinzple statemezﬁ;}}
Q:ompound statemem’;>\
/facility call statenment
N
<module call statement>
Juntil statement> Pve UNTIL {boolean expression >
DO (statement
{while statement) ;= WHILE {poolean expression>
DO statement)
<when statament> o= WHEN <boolean expression>

D0 {statement

{in parallel :+= IN PARALLEL DO BEGIN (description> « END
statement) B

(simple statement) = Qranch statement)> ‘ {aszignment>
(oranch statement) 1:= GOTO L branch point>

Q::ranch point> Lie Qabeld>

<assignment> <im s(za.sxss:i.gz;armu-:.n’t: written in Iverson notation§

{ compound s’catemen‘\:};;g BEGIN ({ieclaratior};} (Bescription™ END
¢

6.4

Py
N
O

<boolean expressions - {an expression vhen evaluated returns

a true or false valueg

<facility call to- Lpame of facility) (<input parameters> «
statement’)
, {output parameters>)

{name of facility> ss= (identifier)

LXN

<input parameters> s.= <parameter>. ((pax-ameter>

<input parameters>

<output parameters>.-- <parameter> \ <parameter>

® 8

<output parameters>

Qparameter) se= Qdentifier>

<module call « o= Lpame of moduley ((input parameters}-ﬁ
statement> L

@xpression>

{output parameters))

<name of module> .e= (identifier)

<

Qondition} e IF<boclean expx‘ession> THEN
<a1ternative> ti= ELSE (statement’) \ Cempty™>
Variabl@é

The variables in the description are interpreted as in

Iverson notation, i.e. they can be logical, integer or real
variableseither in a scalar form or vector form. Matrix
manipulation is not envisaged at present but a reference may
be made to any vector (row or column) of an arraye. A variable
must be declared (at the head of the block) before it is used.
However, it is not distinguished by any particular terminelogy
as is inherent in the Iverson notation but is implied in the
usage. For example, a vector quantity when used as a scalar
will refer to the right most scalar quantity. Similarly a
numerical quantity used as a logical gquantity will be

interpreted as trueif it is non-zero or false if zero.

TRUTH TABLE GENERATCR

7. COMMAND STRUCTURE OF 7

In the following section the fac ad the command

o

structure which will be used to input and complete & truth-
table in an intersctive mode are presented. The account is
divided into three subsections: the types of combinational
networks and their requirements from a designer's viewpoint
are given in the first, and the command structure and the |
proposed method of implementation using the Honeywell 516
computer in the department are given in the second and third

subsection resgpectivelyv.

7.1 The Reguirements

The behaviour of a combinational network may be known to
the designer in different forms. These are broadly
categorised into the following types which are not
necessarily exclusive but provide convenience of detail-

inge

i) The full truth table. The designer knows and wantes
to input the output behaviour for each input

configuration®*,

Sote
(%8
~

The truth table with incompletely specified I.Ce
This is similar to i) above except that the designer
only knows a subset of the I.C. and the remaining

are either ‘'don't cares' or a faullt conditione

In both the above cases the dsigner can specify each input

or output variable as being one of three values, viz.

* Here after referred to by I.C. and similarly an output

configuration will be referred to by 0.C.

- 131
on or a 1 condition, off or a O condition and a
'don't care' condition. If the entries are specified
in binary notation, value of each variable can be
explicitly indicated as a 1, a O, or a =~ respectivelye.
However, with up to 20 input and 20 output veriables
the full c;nfigurations in binary form are tedious and
lengthy to input. A shortened version is often used
where three bit groupings from the least significant end
(the right hand end) are expressed by their equivalent
octal value. A slight difficulty arises when the don't

cares have also to be specified and teo overcome this the

following two* methods are often used.

1) Each configuration is specified as an octal duple
with the first element set equal to the octal value
when all the non~-on conditions, i.e. the off's and
the don't care's are set to O and the second element

similarly specifying the off conditions.

2) The second method is similar but specifies the on and
the don't care conditions. The choice between the twa

is arbitrary ancd entirely depends on the designer,

In some cases, it is easier to input the entries with their
¥ P
equivalent decimal forms. The don't care conditions are

then treated in the same way as above.

iii) Routing Networks. This does not actually involve
real ‘design' but as it is one of the commonly
used types it is included in the discussion here.

Tt/

* Others are possible but they are only different combinations
of the ON, OFF, and DCN'T CARE conditions and are not

congsidered here.

(Y
It is characterized by the fact that inputs can
be divided into controlling variables and the
routed variables,
iv) Functional Relation, Not a1l truth tabks‘are known
in their abstract form and in fact, the most conmmon
mode is when the I.C.'s have a mapping into the 0.C.'s
and this mapping is\known. The designer may wish to
specify this mapping as a logical or numerical function.
v) Iterative Combinational Networks. These fall. between
the combinational and sequential networks. In practice
sequential techniques are often used to solve problems
of such networks and’a combinational treatment tends
sometimes to be academic. However, these networks
will be included in the programmes where they may be

specified by DO loops similar to the FORTRAN DO loops.

7.2 The Usage of The Programme

The first essential set of parameters required for the
programme is the input output size. The present minimization
programmes &t the Southampton University operate on up to

20 input and 20 ocutput variables, and this same limit will

be adhered to in the truth table generation Programne,

The variables can be separate identifiers or members of
arrays or a combination of both, subject to the condition
that the input and output names may not be common. These
will bedeclared in response to requests generated by the

programme immediately on initiation.

During the process of generating the truth table in an
interactive mode, it may be necessary to be able to type

headings/

headings out and the truth table filled in a column
form. Since there are only 72 character positions per line
available on the tele~type unit, a severe restriction has
to be placed on the length of each identifier. A maximum
of two characters, both alpha characters, per identifier
and in the case of array identifiers the first character
will be assumed to be the name of the array and the second
character, a digit, will specify the relative address.

The latter constraint allows only 10 variables in an arrays
however,‘it is felt that this limit will still be quite
adequate and if larger arrays are necessary they can be

specified as two arrays.

The generation of truth tables is achieved in two WaY.S S

a) by inputting a truth table via the conscle by an intere

active process or

b) dinputting a functional description and letting the

Program = generate the truth table,

These two methods are distinguished by the directives
immediately following the input-output declaration. If a
functional description is put in, the program will fiil
up as much of the truth table as possible and the remainder

will need to be completed by method a).

The completion process, a), is executed in two modes:

i) the program . cycles through each unspecified I.C,

and the designer fills in the appropriate 0.C, and

ii) the designer specified both I.C. and the corresponds

ing 0.C.

A/

—h
AN
EaN

A mode indicator is used to identify each mode: it is set
to zero, also the default mode, for the former and set to one

for the latter.
a) Pully specified truth teble in binary form.

In this case, immediately after the input output declaration,
and when the programme is in an avaiting state, the designer
inputs a command @G0, Since there are no other commands the
programme will recognize this as a fully specified truth table
input in mode 0O, and will print out two headings INPUTS and
OUTPUTS followed by a list of the input and output variables

in the same order as in the declarations. It will then print
out the I.C. 000...0 and invite the user to type by displaying
a guestion mark (?). The designer then ent@ra the corresponding
C.C. with 1's, O s or a blank or hyphen to denote a don't care.
The teletype will be automatically aligped for columnizing but

if the inputting is prematurely terminated by a carrisage

return, line-feed or a semicoln, the remaining entries are
assumed to be don't care's. After carriage return the programme
will line feed and print out the next 0.C. and so on. Any

additional carriage returns or line-feeds will be ignored.
b) Fully specified truth table in octal or decimal form.

If a decimal or octal print out or if the designer wighes to
input in decimal or octal the fellowing commands are used:
@TY OC,0F carriage return for octals with OFF's specified

see 7.1l.ii

@ry 0c,nc t for octal with DON'T CARE'S
@TyY DE,OF " for decimal with OFF'S
and @ry DE,DC 1t for decimal with DOR'T CAREYS

These/

RS
N
(%3}

These commands instruct the programme to type out in the
appropriate format and also inform the progrsmme as te¢ which
type of inputting should be expected. They can be used
before the initial @GO command in which case the list of
variables as headers will be suppressed or if in the middle
of the programme, the last line will be reprinted and the
subsequent output will be in the required format. A return
to the binary format is made by the command

'@TY BI

the headers then will be displayed again.

The designer on the other ﬂ&nd can override the: specified

format while inputting by typing in CO (the letters 0), 0D, DO,
DD and BI before the actual inputting to mean octal with offfg,
octal with don't care's,decimal with offfs, decimal with don't

care's and binary respectively.
¢) Truth table with incompletely specified I.C.'s

As indicated above a set mode command, @40 = can be used to
set the mode to 1 to allow the designer to input the whole or
the required amount of the truth table himself. A more common
usage, however,; is when a subset of the inputs need to be
given a value and the others are c¢ycled through. The set
variable commands, @SV are used for this, the format of which
is shown below.

@sy veriable list & logical value

For example, in a h4e-input, 2-output combinational network the
first two inputs never occur together. A possible method for

this is as follows:

INPUTS ? a,b,c,d The programme messages are in
OQUTPUTS 7 e,f capitals
@sv a=0
@sv b=l
@go
INPUTS OUTPUTS

A B C D E F

0 1 ¢ o % 1 -

¢ 1 0 1 2 0 0

¢ 1 1 0O ? 1 1 etc. followed by
@sv a=1
@sv b=0
@go

and filling in the next part. The other 0.C.'s are set to
DON'T CARE'S by entering

@ot = =

@go
and finally terminating the input process by

@efi

In the above example the 'others' were set to DONfT CARE'S, but
they could just as well have been set to a required 0.C. to
indicate a fault condition. If the input variable assignation
was to be done in decimal or octal then fhe VALU operator,
corresponding to the Iverson operator, could be used as

@sv valu {variable listy = <§ecimal valuey

and @sv valu (variable list) *Coctal value>

i

respectively where a variable list is a list of variables

separated/

separated by commas acting ascencatendbion™ operators.

d) Routing Networks

Here the inputs are divided into controlling sigrals and
routed signals. "In theinput specification the routed signals
are set to DON'T CARE's and the remaining cycled throughe

The 0.C.'s then could be inserted as in formal programming
languages, i.e. by enclesing literals in quote marks or
preceding them by'equalmggrwsigns; however, as the number of
characters in a line is necessarily limited, a non-printing
character, CTRL L, will be used. The choice of the character
is such that it does not conflict with any of the contirol

functions of the tele-type unit; the letter L is chosen to

stand for literal.
e) TFunctional Relation

A @FUNCTION directive is used to instruct the controlling
program . to accept the subsequent input in functional format;
however, since the tfanslation on the HONEYHELL 516 computer
is to in conjunction with the Fortran Compiler, differences
have to be introduced. The usage of the format iz given
below, |
i) No segment declaration is made since the functional
specification will coﬁgist of only one segment;
however, this segmeni may be processed in several
steps each initiated by @G0 directive, providing that
the specification until then is complete within itself,

iee. it does not refer to a non-existing label etc.

* defined later

[¥8
[
~

For every new instruction, the controlling
programme will type out a sequence number which

may be used for deletion etc,

iii) All quantities will be assumed to be of either logical
or unsigned integer type and the operations between
them will determine their type. The operations for
the time being will be limited to those listed below
with their trans-literation, but it is hoped that the
entire vocabulary of the Logic Design Language
connected with combinational networks will be imple-

mented.

iii.a.) Each single variaﬁle may have two logical values:
True and False represented by a 1 and a O regpectively.
Arrayed variables will be considered to be ﬁt?ing$<
with logical values for each element. If in an
essignment the quantity on the right hand side is
greager than the capacity of the variable on the
left hand side, then only the right hand portion
will be preserved and the rest will be lost; on
the other hand if reverse is the case then the
left hand side will be filled by O's., Siwmilar
arrangements will be employed in arithmetic
operations.

iii.b.) In string operations the variebles may be
1) whole arrays in which case the arrays are

referenced by their names only, ic.e. without

indices,

2)/

2) parts of arrays in which case the first and
the last indices are given in parenthesis
separated by a comma and following the names

of the arrays, and
3) set up using concatenation operators (,). A

new variable may be introduced to assume the

value of the concatenated arraye.

Examples of 2 and 3 are A (1,4) and Al,A2,A3 Ak
where each refers to the sub-array formed out of
the first four elements of the array A. In the

latter case an assignment

N = Al,A2,A3 Ak
may be used where N is a new variable which may

be used in subsequent manipulations.

jii.c.) The processing order will be from the right to the
left unless modified by parenthesis.
jii.d.) Unpredictable results will occur if any of the
variables on the right hand side have been set to
DON'T CARE's before the instruction is executed.
iv) The following operations will be implemented.
Function Symbol Example
Leogical Not 1% complement ! At
Logical Or A 2 h B
Logical And o A.B
Logical Nor (A) (A B
Logical Nand C.) (AB)?
Addition + D+E

Subtraction/

140

Function Symbol Example

Subtraction - D-E (D > E)

' Equals or assignation = A = D+E
Catenation ’ A = DyE
Greater than > IF (A >B) A= BYC
Greater than or equal to V= IF (Ad= B) A = B!
Equal to : e IF (A=.B) GOTO 10
Not equal to =t IF (A='B) GOTO 20
Less than or equal to <=> IF (A {=B) D= D!
Less than < ~IF (A <300) B=0
Conditional) Ir IF(G) A=B!
Branch ' GOTO IF(A='B) GOTO 20

v) Transfer of control from normal execution is achieved
by GOTO, IF and DO statements. In the present cage
only ordinary GOTO statements will be implemented, i.e.
computed GOTO and ASSIGN statements will not be
considered. The DO loops will be the same as in For tran
except that the terminal statement for each ID loap

must be a GO (without the @) statement,
vi) There will be no DATA statements.

vii) VWhen typing the specifications in, the first characters
following the sequence numbers may be a C to indicate
a comment line or a digit to start a label which should
be all numeric, or a form character to skip the label
field. There will Le no column for continuation lines
but instead a delimiter (3) is to be used to indicate
the end of a program line. Comments may be introduced

following this semicolon and the next carriage return.
&

viii)/

141

viii) There will be no instructions similar to the FORTRAN

£)

input~output instructions and all outputting will
have to be done in the format specified elsewhere.
However, a print-out of the programme written so far
may be obtained by introducing a 1 after the terminal
@G0 statement and it takes the form

@G0 1 CR for a print out

@Go CR for no print out

Iterative Functions
This is a special category of e) above and the DO loop
format defined above will be used for this type of

function.

The above instruction define the commands used to partially

or completely £ill the truth table. The remaining

instructions deal with modifications or subsequent manipulations
such as displaying or paper=tape output etc. Present plans

do not include visual display using the grephies terminal,

but since this will provide a very rapid and useful ueans

of checking the truth table contents sericus consideration

will be given to its use later on.

i) Set up a mask. An assignment is used to setup a mask
for deleting purposes. Upto 10 masks will be allowed
at any one time and are set up by the command

@SHn = (mask pattern)
where n is a decimal number O to 9 inclusive. The mask
pattern can be of any of the five types used in input

output/

ii)

output specification discussed earlier. If the
pattern is specified in binary and not all entries
(each entry corresponding to an input variable) are
specified, the mask will'necessarily be left justified
and in the sanme order as the input declaration; the

unspecified entries will be set to DON'T CARE's.

The delete instruction. The delete instruction is

@pIL and can take one of the following forms.

a) @DL Mn where n is a decimal number O to 9 inclusive
and Mn specifies a mask previocusly set up. On
execution the imstruction causes the 0.C.('s)
corresponding to the I.C. specified by the mask

to be deleted.

b) @DL Mnqy,Mn, where lMny and Mnp specify a mesk each
as before. This instruction causes all the C.C.'s
corresponding to the I.C.'s between those
speeified by the masks to be deleted. Mny may be
replaced by a decimal number in which case this
instruction will be executed as in a), and repeatéd
for the entries in the table the number of which is
specified by the decimal number., Note that if
VALUE Mnjy = VALUE Mnp + 1 the deletion process will

cycle until all the truth table is deleted. A

better method is to use the following form.

c) @DL AL This instruction deletes zll, i.ce.

effectively restarts the programme.

a)/

142

iii)

iv)/

143

d) Using the format of a) and b) above the masks can
be set at the time the delete instruction; the
Mn's then are replaced by binary, octal or decimal

patterns.

e) If the input format is of functional type a delete
instruction should refer to & line by its sequence
number in the functional specification. The format
for the deléte instruction then is

@DpL n

where n is the sequence number

A line following this command may be

1. another delete command

2o start of additional functional specification,
in which case the updating specification until
the next delete command or @G0 command will be
inserted after the &lete line, or a

3¢ @GO directive to execute the updating aﬁd
reprocessing. A 1 is introduced after the @GOV
directive if a listing of the updated file is

also regquired,

The entries may be changed instead of being deleted by

the @CH (change) instruction. It is used as follows.
@CH Mn,Mm

Mn specifies a mask as in ii,a.) above, and Mn is a

binary, octal or decimal pattern of the usual format

which should replace the 0.C.('s) corresponding to

the I.C. specified by the mask Fn.

iv)

v)/

Since the programme is on an interactive basis, it is
quite possible that part-way through a need for a new
input or a new output may arise or that an input or
output may be found redundant. Rather than starting
the programme all over again the fcllowing four

instructions may be used.

“@rM 1P, {input variable list>
@RM OP, (output variable list)
@Ny IP, ({input variable list)

@NW OP, (output variable listp

where RM, NW, IP and OP refer to remove, new, input ang

output respectively. Usually an input should be removed

only if it is redundant; however, if cn its removal

144

conflictions are encountered then these will automatically

be brought to the designer’s attention. Similarly if a

new input is introduced then the two O0.C.'s

‘distinguished! by this input will be set eqgual to the
same vaiue as when it did not exist and the subsequent
entrieslof course will be correctly treated. The outw

put entries corresponding to the new outputs prior to

~thelr introduction will be set to DON'T CARE's.

For convenience of implementation, problems with upto
12 input or output variables are treated differently
from those with greater inputs or outputs. Thus care
should be taken to see that these boundaries are not

crossed with the sbove instructions.

145

v) The @EQ instruction. This instruction is used to
equate the 0.C.'s corresponding to two or more I.C.'s
and may have two, three or four arguments according to
the function required. ZFach argument specifies an
J.C. and can be defined directly or by masks set
previously set as with @DL or @CH instructions. If
two arguments are specified then the 0.C. corresponding
t§ the second JT.C. is set equél to the 0.C. correspond-
ing to the first; if.three are specified then the
second two refer to the limits between which the equate
operation has to be repeated; and if four arguments
are specified then the block specified athe last twe is
equated to the block specified by the first two. ZErrors
such as conflictions or unequal length blocks will be

brought to the desigher's attention.

vi) Mode setting. The mode is set by the directive
MO =
A '1' or a 'O' is entered on the right hand side to

set or reset the mode respectively.

vii) Inputting via the paper tape reader. %o enable the
paper tape reader for command and data input the
directive @PR will be used. The last instruction on
the tape must be @AK to return the control back to

the tele«type unit key-board.

viii) File* Input. If a file of the truth table is to be
input the instruction @FI n will be used, where n is
a decimal number identifying the file or if it im

preceded by * then it i1s an octal number.

* see following subsection

ix)

Output. At present only two output media are
considered, namely the tele~type unit and the paper
tape punch; however, it is hoped that the graphics
terminal could also be used at a later data. The
éorresponding instructions are

@AP PL,, PLp for output on the tele-type unit and

@pPp PL3, PIp for output on the paper tape punch

PLy is a parameter list to define the scope of butput

which can be one of the following three:

a) A small section of the truth table whose start
and finish are specified in the same way as in

@DL instruction.

b) A file is output in which case PLj is specified
as FN= followed by a decimal or octal number as
in viii) above.

¢) The entire truth table is output in which case

a hyphen (~) is written for PLj.

PLp is a parameter list to indicate the format
of output and same abbreviations as in the &@TY

instruction will be usged,

Note 1: The paper tape output is to be compatible
with the input requirements of the sube
sequent minimization programmes and it
should be remembered that the binary

format is not used.
Note 2: If the file number is entered as a
hyphen (=) then the file currently being

processed will be output.

1

6

147

x) Return to B.0.S. The programme will normally be run
under the auspices of the operating system B.0.S.
controlling the computer. A return to the operating

system will be made if at any time @SB is typed in.

xi) Error Corrections
i) Errors while typing in. The same conventions
as those being currently used with B.0.S. will
be employed, viz.

a) Delete the last character. This is done
by one CTRL H per character to be deleted
with the modification that spaces will be
ignored and one deletion per character

other than space should be input.

b) Delete the whole line. A left pointing

arrow is input to delete the whole linec.

ii) Interruption during execution. It will be
necessary to include a facility to interrupt
the execution phase; however the exact format

will be defined at a later date.

xii) Comments. Comments may be included any time between
quote marks ('), These will only be useful at input
time as these will net be stored and cannot be retrived
except in the case of functional specification, where
they are introduced by a C in the first column of a new
instruction line or following the terminating semicolen

and the subsequent carriage return.

7.3/

7.3

Proposed Implementation

The programme is required to deal with upto 20 input and

20 output variable problems. If a full truth table is
generated for a problem of this complexity then it would
contain of 220 rows and 40 columns or putting it another

way 220 words of storage, assuming that each word can hold
all the 40 columns, will be required. The constraint demands
that the word length be 40 if only O's and 1l's are to be
stored or 80 if the DON'T CARE's have also to be stored.
Using a 16 bit word therefore, 270 x 5 words of storage

space will be necessary.

However, in practice, no designer is likely to generate a

truth table of such a size or if he does not all the entries
are likely to be completely distinct and this could lead to

a saving of storage space., In any csse, the storage and the
manipulation has to be severely scrutinized to keep the problem

within manageable size. Various schemes for storage are

considered below.

1) The address of each computer word is made to mateh with
an input configuration. This immediately has an advantage
that the input configurations do not have to be stored
thus on an average the storage space is halved. This also
has the disadvantage that if the inputs contain any DON'T
CARE's then the corresponding outputs have to be repeated
and this means that for every DON'T CARE input two
identical output entries have to be defined. Thug if
there are a large number of DON'T CARE input configurations

a large amount of redundancy results,

2)/

‘ 2) The I.C, is stored along with»its mask*® and‘the
corresponding output entries which will require only
the conditions specified by the designer to be storedl;
however, again DON'T CARE conditions have to be expanded
and secondly, since this data will be stored sequentially
as it is input . the order of the I.C.'s will be lost
and consequently, no indication will be available as to
which I.C.'s are not specified other than by placing an
end marker and cycling through the memory to test for an

I.Ce

3) A third method is to store the I.C.'s in the same way as
above, but in an order according to their values. To keep
a tab on the relative position of the entries they could
be either
&) stored consecutively in an ascendiné order but in
which caée a later addition or deletion means pushing
down or raising the later entries or

b) attaching a link word to point to the successor, i.e.
to use a list structure.

The list structure method requires one more word per entry:

however, it offers two major advantages:

i) it is véry flexible since the size of the list
can be altered very essily by altering the links
and

ii) it offers a concise and precise way of storing

data.

It is proposed, therefore, that a type of list structure

be adopted.

* defined overleaf

Each bleck of data, or cell, will require to hold three
items of data, namely the I.C. in an expanded form, thg
0.C. and a mask. The mask defines which of the entries
in 0.C., contain valid CFF's or ON's and which are fo be

taken as DON'T CARE's

Input More sig.| Mask for|Less sig.|Mask fo
Link
Config. [output | M.S.0/P. output L.5.0/P.

Figure 1. A cell in o list struciure,

The I.C.'s are the same as inputted by the designer if

they have been specified in Tull, or fully expanded by the

programme based on the specification provided by the

designer. The full expansion is necessary since for

subsequent manipulation the truth table must contain all

the input configurations for which a non-trivial cutput

configuration exists. In storage the two trivial output

cases which will be omitted are as follows:

1) when a large number of 1.C.'s exist for which the
outputs are all DON'T CARE's or

2) when a large number of I.C.'s exist for which the
outputs are either all O or some other specified 0.Ce

Both these cases are defined by the directive @0T =

and the programme will check against this before outputting

the truth table,

The Data Words. The programme will handle upte 20 input and
20 output variables. Since the computer word is only 16 bits
Jong at least 2 words will have to be used for each outpub

configuration/

151

configuration, however, allowing for the relevant masks 2

more words will be required. Hence in a full sized problenm
each block of data must contain at least 4 computer words per
0.C. Similar considerations for the inputs show that 2 words
per input configuration are necessary. Thus, 7 words including
the link word per block corresponding to each row of the truth
table will be necessary, i.e. in 16k store (that of the
Honeywell 516 computer) only about 2k entries will be possible
without leaving much room for the programme itself. This is
overcome by dividing the data into fileg, the number of each
file is determined by the valuve of the more significant bits
(the first inputs during declaration), and the address within
a file by the value of the less significant_bitsn The division
between %he less and the more significant bits is, therefore,
dictated by the constraint that within each file each entry is
directly addressable. This in the worst case means that all

20 outputs are specified for each I1.,C. and the whole file can
be held in the computer store or within about 12k, allowing

the number of I.C.'s per file of upteo about 2k or 12 input
bits. The less significant half will therefore be with 12
input variables and the remaining 8 inputs will generate upto
256 files which also will be linked in a list format and stored
in backing store., Access to a file in thebacking store is
obtained by dumping thetile presentinstave into the backing s tore

and reloading the store with the named file,

For economy of storage the programme in core will be limited
to instructions to call the relevant routines from the disc

store/

152

store and the current programme operating on the data. Thus
the area in store will appear as a small executive to which

the user communicates,

Most of the routines will be in DAP, the low-level language
for the Honeywell 516 computer but for functional specification

the Forteen Library and some subroutines in Fortran will also

be used.

8.1

8. CONCLUSIONS

Summary

In the design of any logical system: , the behaviour is
usually expressed in a natural language first, the designer
then extracts the relevant information and puts it into
formal terms and then proceeds to the final design. Various
techniques of abstraction are investigated here; and their
applications to large system design are studied and the
conclusions summarized below. A pertinent factor involved
is that the human designer has relatively little patience
to learn new technigues and abandon his usual methods,
particularly if the new techniques are rather remote from

his way of thinking.

For a small scale design, the natural language specification
is easily converted into a flow table, state table or a
state diagram, and switching theory can be used extengively
to obtain an optimal design. However, large amounts of
store are used in the process especially in the last case

where graphical inputting is required.

The algebra of regular expressions has been developed to
express the above information in a linear form and in
mathematical terms allowing easier computation. It is
precise and can apply to allsynchronous and pulse mode
gystems: it ies also closer to & natural language
description than, say, the state table apyroach. However,
the use of regular expressions as a @eaign tool has peveral
problens. The major ones are

1) It/ : 153

154

1) It is highly mathematical and as such the designer

will have to be educated specially.

2) Different methods uéed to obtain the regular expressions
tend to produce different answers and which usually bear
little or no resemblance to each other, i+ despite the
advances: in the algebra, their identity is still cumber=

some to prove,

3) As in the case of the state table approach, it is only

applicable to finite state machines.

The last objection is particularly relevant, since large
scale systems cannot, in general, be represented as finite
state machines, or conversely, if they are so specified,
the description in terms of, say, state tables would be

sstronomical in size.

The large scale systems of interest to us are essentially
instruction execution machines; the instructions(may be
known at a2 high level but their deteiling, if any, is not
known. The designer, designing intuitively, defines a
structure with known capabilities and limitations. He
then decomposes the instructions inteo low level commands
which lie within the scope of this structure. The
decompositioﬁ merely defines the way data is transferred

between registers and the necessary control for it.

Earlier register transfer lanpusges, devised to express
micro program. were simple and could be directly mapped

into/

inte hardware:

- 4 4

already desipgnae for the autemation

aystens

i

They were hewever, lisited in their scepe of

specification which tended to be lengthy.

Further lengusges were developed to increase the flexzivility

and the specification ability to which notational and
operational conclseness was introduced by using complex

ators and macro cells., Some were usefully developed

£
el

op
based on the structure of existing programming languages,

such as DDL Lased on Reed's language E783 and Cassandre based on Algol.

Since all the languages used a predefined structure, the
automatic part was still limited to deriving the controlling
circuitry and the combinational legic driving the register
structure, Gerace[54, 55] gave methods by which the
register structure implied in the register transfer demeripte-
ion may be reformulated into an iteratively « connected =
machines structure and the formsl abstract d@finikipm for

each mway be derived,

He also gave methods of implementing the control part of a
systen using read-only-memories, Another useful technique
was given by Stabler L85] for microprogramme transformation,
that is, to modify the structure and shift the line dividing

the register structure and control siructure.

The Iverson notation [663 provides a means of describing
the logical functions of a system at various levels of
0éetail, including elemental bit levels, independent of the

machine/

machine structure and in an algorithmic manner, lending
itself to a good implementation in terms of hardware
realization. While providing excellent facilitles for the
description of an algorithm however, Iverson notation is
particularly lacking in high level functional description

and in timing.

At the other end of the specirum, some langaunges vere
specially developed to describe the structure of a sysien.
The application of these languages in the early stages of
design is limited, neveftheless they have a wide range of
applications, including implementation in a design automate
ion suite, structural simulation, documentation and fault

diagnosise.

Tdeally we would like to employ techniguesg offered by
switching theory in our design, since only these cive vigourevs
enough to produce error free designs and alsc allow ug to
interface with the other aspects of design such as fanlt
disgnosis in a consistent manner. Unfortunately howéverf
switching theory is s1ill at an infancy stage as far as

large scale system design is concerned.

The Petri Nets and occurrence graphs[i9?]show a promise
of dealing with large scale systems in an abstract manner,
with these it may be possible to produce a uni ed theoxry
of system behaviour description and system architecture

degign,

8.2

Current Work

One of the most important aspects of a design language is
that it should cater for the different methods of design
used by designers in a consistent and natural manner. It
also should be easy to learn and be concise and precise yet

flexible.

The structureof such a language has been proposed. We feel
that this language allows a designer to express the design

specification in a manner similar to his own thinking. It

is block structured so that at the system level the blocks

in the language correspond closely to the functional blocks
making up the system. The control and timing interrelation
between the functional blocks can be expressed at the block
level. The blocks in turn can be detailed into further

blocks as necessary.

At the low level the description normally would be in an
algorithmic form; alternatively the designer may choose to
detail in a different form and use an interactive process
to develop this detail. The library facility in the
language allows this to be done without modifying the

general stiructure of the description.

A command structure to develop a description of combinat-
ional networks is defined to be used with the Honeywell 516
computer at the Southampton University. The main description

however is related to the ICL 1907 at the University.

The/

157

8.3

158

The language also provides a means of uniformly describing
the processes of a logical system for design, simulation

and documentation.

Future Work

The IDL language can be used to describe the design
specification of a logical system. However, it is largely
biased towards hardware systems, but‘is sufficiently flexible
to include software specificationg. The necessary extensions

need to be defined.

The command structure described herein also is limited to
combinational network design. Additional command structure
needs to be defined, say, similar to the one developed by
Smith & Tracy 11027, and in particular for using a graphics

terminal for this.

The current scope of the language as a whole is necessarily
limited for batch processing type of operation on the ICL 1907
computer at the University. However, techniques need to be
developed to suggest alternative functional blocking to the
designer which he may choose to accept or ignore. This
necessarily means that a suitable system design theory needs

to be developed and the language used in context of thisg.

159

REFERENCES and BIBLIOGRAPIHY

[4]

[5]

[7]

6]

[]

f10)

[11]

[2]

[23]

Hill, P.J., and Peterson, G.R.,
Introduction to Switching Theory and Logical Design,
J. Wiley & Sons Inc., 1968,

Kohavi, Z.,
Switching and Finite Automata Theory,
McGraw Hill Book Company, 1970,

Lewin 3 D.W. 9
Logical Design of Switching Circuits,
ThomasNelson and Sons Ltd., 1968.

Arden, DeWe,

Delayed Logic and Finite State Machines,

Theory of Computlna Machine Desien,

University of Miohigan, 1960 Summer Session, pp. 1=35.

Brzozowski, Jele,
A Survey of Regular Expressions and Their Applications,
IAR Transactions on Blectronic Computers, June 1962, pp. 324-3%35.

Brzozowski, J.A., and McCluskey, B.J. Jre,
Signal Flow Graph Technigues for Sequential Circuit State Diagrans,
TEER Transactions on Flectronic Computers, April 1963, pp. 67-T6.

Brzozowskl, Jehe,
Derivatives of Regular Ivpressions,
Journal of the A.C.M., Vol. 11, October 1964, pp. 481-494,

Brzozowski, Jeba,

Regular BExpressions froem Sequential Circuits, Short Hote,
T8RS Tpronsactions on Blectronic Computers,

Vol. BC~13%, Deccmber 1964, ppe. T41-T44,

Brzozowski, Jehe,
Roots of Star Bvents,
Journal of the ACH, Vol. 14, July 1967, ppe 466-477.

Burks, A.W., and Wright, J.B.,
Theory of Io'JCd] hetu,
Proceedings of the IRH, Vol, 41-10, 19537,

Cohen, R., and Brzozow%kj, ¢A.,
On Decomposition of Regular Events,
Journal of the ACM, Vol. 16-1, Jarmary 1969, pp. 132-144.

(/(7’19 Iu;‘eg JJl(‘Ot (1 [Jo, 8;11‘.(3. 1'\73?3',5;}‘1{;, JQBG,
Realisation of va“ ts by Logical Hetse.
Journal of the ACH, Vol, 5, April 1958, pp. 181-196,

Fujina, Kiichi,
A Method of Automatic Generation of Compilers,
WWHC Resesrch and Development, No. 16, Jamuary 1960, pp. 86«95,

Wy

[2¢]

L7]

(2e]

[19]

[20]

[24]

é]

[27]

160

‘Gelenbe, S.,

Regular Expressions and Checking Experiments,
Polytechnic Institute, Brooklyn, ¥.Y.
U.S.G.R.D.R. AD 666 696, September, 1967.

Ghiron s He o

Rules to Manipulate Regular Expressions of Finite Automata,
IRE Transactions on Blectronic Computers,

Correspondence, August 1962, ppe 574-=575.

Ginzburg, Sa,
A Procedure for Checking Fquality of Regular Expressions,
Journal of the ACM, Vol., 14, April 1967, ppe. 355-360.

Johnson, M.D., & Lackey, R.Bs,
Sequential Machine Synthesis using Regular Expressions.
Computer Desien, September 1968, pp. 44-47.

Kleene, S.C.,
Representation of Events in lerve Nets and Finite Automata,
Rand Research Memorandum, No. R¥M.704, 1951.

Tangholz, G.,

Regular Exvressions and Their Analysis and Synthesis of Automata.
2nd B.C.5. Svmoosivm on Logic Design, Reading University,

28th Harch, 1969.

Lee, C.Y.,

Avtonata and Finite Automats, :

Bell System Technical Journal, Vol, 39, September 1960,
DPpe 1267-1295,

MeCulloclk, W.S. & Pitts, W.,
A Logical Calculus of the Ideas Immanent in MNervous Activity,
Bell Iath, Biophvsics, Vol., 5, 1943, ppe. 115-133%,

Helaughton, Re & Yamada, H.,
Regular ﬁvdro“qaonu and State Graphs for Automata,
IRE Trensactions on IBlectronic Computers, Vol. 1C-9, March 1960,

PPe 39~47.

Melaughton, Re,

Techniques for Hanipulating Regular IExpressions,
Systems and Computing Sclence, Fds. JoF. Hart & 8. Takusu
University of Toronto Press, 1067, ppe 27=41.

Mirkin, B.G.,
The Language of Pseudo Regular Expressions,
Kibe Tnetn,ws Vol., 2, Hoe 6oy 1966, ppe 8=11.

Fyhill, J.,
Finite Automata and Representation of Bvents,
WADC Renort, 1957.

Oglesby, Rehe,
A Computer-Aided~Logic=Design using Regular Bypressions,
Computer Desizn, August 1570, ppe 79-84.

Paz, A, & I eleg, Ba,
On Concatenative Decomposition of R 11? Events,

1588 Transactions on Computers, Voke =17, March 1968, ppe. 229«237.

(o)

f29)

[30)

[34]

18]

(39

[40]

;51'

Rabin, M.0. & Scott, D.,

Finite Automata and Their Decision Problenms,

I8 Jovrnmal of Research & Development, Vol, 3, April 1959,
Ppe 114-125,

Spival, M.A.,

A New Algorithm for Abstract Synthesis of Automata,
Proceedings of Scientific Seminar on Theoretical and Applied
Problems in Cybernetics and Theory of Automata,

Vol, 1, Ho. 3, Kiev, 1963,

Udagawa, K., Inagaki, Y., & Tange, H.,

The State Characierl tic Equations of Finite Automata and
Their Regular Exvressions,

Electronics & PoL“unlcmtvon in Jazpan, Vol. 48-9, Septenmber
1965, ppe 25-36.

Abrams, P.S.,

An APL Kachinp,
AD 106 741 SU=SELmT0-017
February 1,(0o

Anceav, F., Liddell, P., Mermet, J., Payan, C., & De Pollignac, .,
CASSANDRE for Lq“1cu1 Systen noge]11D@

Prepared for the Auvgtralian Comvuter Louferenoe Ausust 196G,
x $ o >

Ancean, F., Liddell, P., Mermet, J., Payan, C., & Doussey, J.,
CAS: z Larﬂ”“o et Systene,
athenatiquee Appliquees, Grenoble, May 1970.

eg L dng, & an@ I Se,
Desirm of “3 tal I

Berndt, H.,
Functional Hicroprogramming as a Logic Design Aid,

55

1Bl Trensactions on Comonters, Vol, C-19, October 1970, pp. 902-907.

Brever, Hihe,
General Survey of Design Avtoration of Digital C@ﬂﬁwi@T39
Froceedings of the ITEE, Vol., 54, No., 12, December, 1966, pp. 1708-1721.

Cadderny; Wede,
Eguivelent Sequential
I8 Transactions on Ciy
ppe 30~34.

ld-
=
o
o
O
5
L
<
@]
2ad
o
«Q
=
H
N

. =6, March 1959,

-

Cain, J.T., ﬂic”TG, Follsy & FMcelamee, L.Pe,
Simulation of a Digital Sys- Using a Compiler Level Language,
Proceedings of the 20th SWIBEESCO, April 1968, pp. 1301-13D3

Chu, Yo,
An Algol=like Computer Design uan"uuke?
Compunications of the ACH, Vole 8, Ho. 10, 1965, pp. 607=615,

Cbu, Yo ?

suage for Describi lleroprogramn
Technical Report, 0 GJ"((; Septenb

{41)

l42)

(43)

[46]

{49)

(53]

Chu, Y.
Design Au omation by the Computer Design Langvage,
NASA=CR=100566, N,69-22155, Harch, 1969.

Chu, Y., Pardo, P.Rs & Yen, J.,

A Hethodology for Unified Hardware Software Design,
HASA-CR=-110445, University of Maryland Technical Report
TR-T0-107, January 1970,

Crocket ; EeD,, Capp. D.H., Frandeen, J.W., Isberg,; C.hA.,
Bryant, P.s; Dickinson, W.Hk., & Paige, M.R.,

Computer-iided System Design.
Proceedingsg of the Tall Joint Convuter Conference 1970,

PPe 287‘“2/6 ®

Crocket , B.D., Cavp, D.H., Frandeen, J.W., Isberg, C.A.,
Bryant, P., Dickinson, V.EB., Paige, .1,
Computer-Aided System Design

I Report 16,198, July 1970.

Darringer, Jelhe,
A Langn ge for the Description of Digital Computer Processors,

SHARE-ACH-TEEN Degicrn Automation ”ﬁ“@s‘ov, July 15-18th 1968,

Duley, J.I., & Dietmeyer, D.L.,

A ji;ri{‘;:l »::/«"S‘ue, Deais an La anguage (iJ)T’>9

IBSE Transaciions on COﬂwuuGrug Vole C-17, No. 9, September 1968,
Ppe 350-861.

Duley, J.H., & Dietmeyer, D.l.,
Transliation of & DDL Digital Systen Specification to Boolean

sactions on Comnmuters, Vol. C-18, Ho. 4, April 1969,

4 Formal Description of System 3/60,

IBT Journal of Regearch & Develovnent, Vol. 3, No. 3, 1964,

PPe L198«261,

Yoster, G,HQ,
APL: A Perapicuous languape,
] nation, November 1969, ppe. 24-27.

Franke, E.A. & Mergler, HW.,
Computer Aided Functlonr Design of Digital & V"bemu,

Proceedings of the 20th SWINENSCO, Anril 1968, pne 13%01~1304,

¥riedman, T.D., & Yang, B.C.y
Guality of Designs from an Automatic Logic Generatox,
TH Computer Avplications Revort RC 2068 C#TO) g), 25 April 1968,

Friedman, T.D.
ALERTs A 1 o wa to Compile Logic Designs of New Computers,
Direst of the lst TUHT Comvuter Conference, 6-8%th September 19689

Phe 12&""1)0 &

Friedman, T.D., & Yang Sih-Chin,
ALIERT: TL i

nods of Logilc Generation,
T

5 Trervsactions on Commuters, Vol,

162

(¢2]
(63
1)

[65]

163

‘Gerace, G. B.,

Dlgltai System Design Automation - A Method for Designing a
igital System as a Sequential Hedwork System,

IF?N Transactions on Computers, Vols C- 17, No. 11. Hovember 1968,

ppe 1044-1061.

Gerace, GeBe, Vanneshi, M., & Casaglia, G.F.,

Eguivalent liodels and Comparison of Microprogrammed Systems,
Presented at the International Advanced Suwﬁnr Institute on
Microprogramning, St. Raphael, France, Auvgust-September 1971.

Glushkov, V., :
Automate Theory and Formal hlcr0pr gram Transformations,
Eibernetica, Vol., 1, Ho. 5; 1965,

Gorman, DI, & Anderson,; J.P.,
A Logic Design Translator,
Proceedings of the Fall Joint Computer Conference 1962, pp. 251261,

Harrand, Y., Anceau F., Liddell, P., Mermet, J. & Payan, C.,
CASSANDRE -~ Langage pour la Concention A331stee des Ensemble
Logiques.

L'Onde Ilectrique, Vols 49, f.l, Janvier 1959, vp. 120-126.

Hellerman,
Digital Comouter Systen Princinles,
Hew York, McGraw Hill Book Company,

Hennie, F.Cey
Elnlhﬁ State lodels for Logical Machines,
Jg \f. ¥, J‘e)“" l96u9 [)1)0 14"“&00

GeDe, Thomas, E.L. Spann, Re.l. & Diehuis, ReJo,

farnbuckle,
Comnvcﬂr-ﬁld d Logic DOS1 en oon the TX-2 Computer,
- ACH-TE0E Meoting Proceedings, 1969, ppe 357-3%69,

Huszan, S.S,,
Hicronprogramning Princivles & Practices,
Prentice Hall, 1970,

Tlovaiskiy T.Ve, & Lozowskii, V.Se,
Using the Address Lenguage to Automsie Synthesis of Digital Computers,
AD 679~5¥¢, Harch 1968.

Iverson; K.E.,
A Comuon language for Hardware, Software & Applications,
Proceedings of the Pall Joint Computer Conference, 1962, pp. 121-129,

Iverson, K.E.,
A Transliteration for Keying and Printing Microprograms,
port, 12th April 1962,

DTS v

Iverson, X.E.,
A Prosramine Iansuage,
John Wiley, 1962,

¥nuthy, D&EG, & Meleeley, J.La,
500 ~ A Symbolic TLanguage for General Tus
Gals Transgetions on Flectronic Commale

pose sSystem Simulation,
5, 1964, vp. 401-414,

[68) 1azerev, V.G.,
On the Symthesis of Microprogramming Automats,

AD 674 217, 29th September 1967.

T69] 1ustman, F.,
Simulation d'une Hachine Digitalé a Paritir d'une Descripiion
en Langage Cassandre,
R.I.R.0., Vole 3, Noo B~2, 1969, ppe 77-91.

[70] ticCracken, D.D.,
Whither APL,
Datamation, 15th September 1970.

[71) scCurdy, B.D., & Chu, Y.,
Boolean Pranslation of a Macro Logic Design,
IEED 1st Computer Conference, 6-8 September 1968, pp. 124-127.

(72] tlermet, J. & Iustman, P.,
CA obﬂ‘”‘dﬁ' Un Langage du Jvuc%lwtlon de llachine Digitales,
Hevue Francaise ’Tn‘o“maiamvo et de Recherche Operationell

Voli 2, Xoe 15, 1968, pp. 3-35.

[jﬁ] MHeszten:

,,i? 3
Conputer De Language Simulation and Boolean Translation,
11-68-31£8% 8=72), June 1968, laryland University.

ﬁﬂl HMetze, Go., & Seshu, S.,
A fr090~a1 for a Computer Compiler,
Proceedings of the Svring Joint Commuter Conference, 1966,
poe 253263,

[75] Okada, Y,, & ¥otooka, M.,
Logical Design Langusge,
jlectrozlco & Communicetions in Japan, Vol. 50,

toot
<4
o
*
ot
N
Y
ks
3
>
o)
<
g\
H
et
[
3
&~

[7 6} ?Jﬂ? I§79 Q E) ‘]J L
A Lwngtﬂr@ for Describing the Functicns of S nchronous Systens
Commmications of the ACH,; Vol. 9, Noe 2, Februa 3 1966, pne T2=T7.

[77] Proctor, Rui,
A Logic Design Translater Ixperiment Demonstrating Relationship
of Languages to Systems,

mhin Tranggetions on Lle

7[78] Reed, I.5.,

L3 ®
Symbolic Synthesis of Digital Computers,
Proceedings of the ACH. September 1952, ppe 90-94.

[79]

sign of Aai aJa

S 2
of the 17, . 1965, ppe 1096-1100,

O

and Modelling Digital Structural

o Yachine Logic, Timing and

e

Hlectronic Computers, Ausust

Ls2]

(&3]

fe4)

{e5]

[es]

(

_7]

)

N
\Ji

Schorr, H.,
Fowards the Automatic Analvsis and Symthesis of Dirital Systems,
FPheD. Dissertation, Princeton University, 1963,

Schorr, H.,

Computer-Aided Digital System Design an? Analysis using a
Register Transfer Language,

IUEE Transactions on Flectronic Comnuters, Vol. BC~13, December

}-964’ PPe 130-T37,

Senzig, D.l.,
sugzested Tindng Motation for the Tverson Notation,
I8 Report, 20th July 1962,

St&bl@r, EcPe,

Hicroprogran Transformations,

TEIE Transactions on Comnuters, Vol. C-19, INo, 10, October 1970,
pp. 908-916,

Thurber, X.J. & lyrna, JJW.,
system Design of a Cellular APL Computer,
IERES Transactions on Cormmmters, Vol, C-~19, o, 4, April 1970,

pPpe 291303,

‘.filbe.r‘, Jo:’f\xa $

A Lanruapge Tor Desceribing Digsdital Computers,

University of Tllinecis, Departs
February 1966,

of Computers Report 197,

L88]

[¢0}

Loz

L92]

(93]

Barbaceci, M., Bell, C.G., Newell, A.,
ISP: A Language to Describe Instruction Sets and Other
Register Transfer Systems,

Digest of the Sixth Annual IEEE Computer Society

International Conference, September 1972. P.Pe 219-222

Bell, C.G., Newell, A.,
The PMS and ISP Descriptive Systems for Computer Structures,

Proceedings of the Spring Joint Computer Conference, 1970.

Pepe 351374

Bell, C.G., Newell, A,,

Computer Structures, Readings and Examples,

MeGraw Hill, 1970

Bell, C.G., Knudsen, M., Siewiorek, D.,
PMS: A Notation to Describe Computer Structures,

Digest of the Sixth Annual TEEE Computer Society

International Conference, 1972 p.p. 227=230

Bell, C.G.,
Eggert, J.L., Grason, J., Williams, P.
The Description and Use of Register Transfer Modules,

(RTM's), Short Notes, IEEE Transactions on Computers,

May 1972 p.p.495-500

Carroll, C.C., M tt, H.,
Procedures for the Automated Synthesis of Logical Networks

IEEE Transactions on Education, Vol. E~10 No.2 June 1967

papa 77"‘81

Lokl

[95]

(96]

{97]

[98]

[991]

[100]

Gorman s D.F. '

Systems Level Design Automation: A Progress Report on

the System Descriptive Language (SDL II)

IEEE 1st Computer Conference, 1968 p.p.l31-134

Gorman, D.F.,

A Systems Descriptive Language and its Uses,

Ph.D. Thesis, University of Pennsylvania, 1968

Grason, J., Bell, C.G., Eggert, J.,

" The Commercialization of Register Transfer Modules

Computer October 1973 p.p.23=27

Holt, A.W., et al,

Information System Theory Project

Contract AF 30 (602) - 4211, Project 4594, Task 459403.

22nd October 1968

Johnson, R.R.,

Measures and Evaluations,

Transcript of Lecture given at Grenoble 1969 p.p.ll, 22-39

Patil, S.S.; DPennis, J.B.,
The Description and Realization of Digital Systems,

Digest of the Sixth Annual IEEE Computer Society

International Conference, September 1972 pe.p.223=226

Scheff, B.H., Kronstadt, B., Young, S,

The Role of a Computer Machine Aids System in the Digital

Design Process

Joint Conference on Methematical and Computing Alds to

Design, 1969

167

168

£1017] Sedlak, J.,
Language for Modelling Logical Sequential Circuits (SELOB),

Information Processinz Machines No.l4, 1968 p.p.193-212

{1027 Smith, R.J.II, Tracely, J.H.,
A New Method for Sequential Circuit Specification,

Proceedings of the SW IEEESCO, p.p.458-462

[103] Spruel, A.H.,

The Construction of Digital Computers using Register

{10k] Srinivasan, C.V.,

CDL1: A Computer Description Language,

{1051 Srinivasan, C.V.,

Introduction to CDL1, A Computer Description Language,

AFCRL-67-0565, Report 1, September 1967

[106] Stabler, E.P.,
System Description Languages,

IEEE Transaction on Computers, Vol. C=19 No0.12, p.p.ll60«1173

f107] Varian, H., Kronstadt, E., Scheff, B.H., Young, S.,
RDDL: A Versatile Computer Design Language based on a
Precedence Grammar Compiler

Joint Conference on Mathematical and Computing Aids to

Design 1909

[108] .

(109]

169

Wendt, S.,

A Method for the Design of Synchronous Digital Hardware

Systems,

Elektron Rechenanl, Vol.1l2, December 1970, p.p.31k-323

Wendt, S.,
On Structures of Micro Program Control Units,

Elektron Rechenanl, Vol,13, February 1971, p.p.22-26

APPENDIX I
Al-1

Several languages have been described in the preceding sections and a
comparison made; however, it is felt that an exaﬁple of each would be helpful
to illustrate their differences. Strictly speakiﬁg an example should be included
for each language, but in some cases where the differences are small it would be

pointless to do so; also for ease of comparison the same example is used throughout,

Most of the languages only apply to digital computers and as such the example
taken is a small, fictitious, 12 bits/word digital computer. It is mot meéﬁt to be
exhaustive of the capabilities of the languages but will be used to bring out any
‘pertinent features. The block diagram of the computer and the instruction formats
along with the instructions are shown in figs. Al-and A2 respectively. The description
below, however, is limited to the multiplication algorithm only, and its flow

diagram is depicted in fig. A3.

Al~-2 Regular Expressions

The computer described here cannot easily be represented as a finite state
- machine and hence regular expression techniques cannot be applied. On the other
hand if the multiplier was represented as a finite state machine then a description

would be, albeit large, possible and this can be illustrated fairly simply.

Regular expressions essentially describe the valid sequences to produce an
output; if the two twelve bits are available in parallel then the minimum sequence’
length is one and the input alphabet will consist of 224 symbols and there will be
23 regular expressions for the 23 bits of the answer. This then bécomes a
straightforward table look-up method. On the other extreme, if the multiplier is
a serial multiplier then the input alphabet will consist of two symbols only but

the minimum sequence length will be 24,

" Since each output symbol can assume only one of two values, its regular
expression will contain all the sequences of length n, where n is the length of
the smallest -sequence producing an output, which do produce the output as well
as all the sequences of length n which do not produce an output followed by any
of the sequences of length n producing an output. Hence, if P contains all the
sequences producing an output but does not contain the star operator then the

regular expression describing the machine is

R= (R)% P ((p")* p)

0
(R
M D[S PC
0 8
8
I A A !
A
e) € |
=y
' 4
A | |
I K
AA 0 ‘J 11 y 5 /
p <
+ |
B | A Q
Ao 11 0 j, 11 11
e e {;, < < — -’
Combinational ‘
Logie S Start
M : Memory 512 12-bit words, B : Memory buffer, Stop
‘A ¢ Accuwmulator, @ : Multiplier register,
I : Instruction register, K : Counter,
AD: Address register, PC: Programme counter,
OV: Overflow, S : Sign register. feset

The Register Structure of the Machine FIGURE A~}

oP

ADDRESS = ADDIL

1
Q 23 11
Group A Operation Code (OPl) Instruction
001 Add to Acﬁumulator
010 Jump Unconditionally
011 Jump if Accumulator zero or positive
100 Store Accumulator
101 Multiply Accumulator
110 Load Accumulator Indirectly
111 Decrement Store by 1.
OP1=OOO OP2 SHIFT COUNT = ADD2
0 23 56 11
Group B OP1 = 000 OP2
000 Halt
001 Clear Accumulator
010 Complement Accumulator
011 Spare
100 Right Circulate
101 Left Shift
110 Right Circulate Double Length
111 Left Shift Double Length
FIGURE A-2

The Order Code Formats

. Start

v

Is Instruction Multiply =z NO ~—5p Qut
l Yes
Load Multiplier into Q
and Multiplicand into B
Set Counter to 12

\ 2 <

Check least significant bit of Q

Is it 1

Yij//zf//’ . No

Add B to A /

I

Shift A,Q 1 bit right
bypass sign bit of Q
: ¥

Copy sign of B into sign bit of A

Decrement count by 1

¥

Is count = 1

l Yes

Is sign of Q=1

Yes \\5\\\\ No

Subtract B from A Add B to A

T e

Store Answer

¢
END

Y

No o~

FIGURE A-3

The Multiplication Algorithm

A-5

This expression will realise a Moore machine and the corresponding Mealey

machine is described by
R= ((B°)% P)*

As an example the regular expressions for a two bit multiplier, without the

sign bit, are obtained as follows. The expressions for each P derived from fig.

A4 are

]

0101 + 0111 + 1101 + 1111

0110 + 0111 + 1001 + 1011 + 1101 + 1110
1010 + 1011 + 1110

1111

I

2]
5
B,
2,

The state diagrams for each machine or a composite machine can be obtained
using the techniques shown in section 2; however, to complete the illustration

here, the state diagram for the Mealey machine corresponding to 23 is derived.

State | R, = (((B)")* B* ' Output
1 DA[R,|= Ry Z2=0
2 D[Ryl = ((B)'(RI)* By + P)* R, z=0
3 D00[3_3'J= (oo+01+1o+11)(_gé)* B,R, Z2=0
3 Do1[Bsl= DodRs) z2=0
4 0000[53]— (0 + 1)(R})*E,R, Z2=0
4 Doo1[R3]= Dooo (R3] z2=0
> oooor 3]' (B3)* PR, 2=0
> Dooo1[B3] 0000[53—] | 2=0
6 D1[§3J= (0104011+110) " (R3)*P,R, + (010+011+110)R,Z = O
7 D o[Ry]= (10+11)'(2))* B.R, + (10+11)R, Z=0
8 D;y[R 3]= (10)*(R3)* B,R, + (10)R, £=0
4 Digo[Rg)= (O+L)(BI* BRy = D[Ry z2=0
9 Diorl Bs]= (O4D) R, Z=0
4 Dy 10[Rs)= (O+1)(E; >*P3R3 = DyodRy] z2=0
10 Dlll[—%j} 1(p.)*P3R3 + OB, Z=0
1 D1o10[Ra)= Bs z=1
1 Dio11]R5)" B3 z=1
1 P1110{ B3] Bs z=1
> Dnuﬁiﬂ (B3)*B R, = Doooo[B-:, z=0
2 Dooooo| R3]~ 2olRs] z2=0
6 Dogoo1[B3)= D; (R3] z2=0

The corresponding state diagram is shown in figure A5.

Input Sequence . Outputs

0000 4 3 2 1
0001 0O 0 0 ©
0010 0 0 o0 o0
6011 0 0 o0 o
0100 0 0 o0 o0
0101 0 0 0 1
0110 -0 0 1 o
0111 0O 0 1 1
1000 0O 0 o0 o
1001 0 0 1 o
1010 0 1 o0 o0
1011 0 1 1 o
1100 0O 0 o0 o
1101 0 0o 1 1
1110 0 1 1 o
1111 | 1 0 0o 1
FIGURE A-4

Input/Qutput Behaviour for the Two-Bit Multiplier

A6 -

FIGURE A-5

STATE DIAGRAM FOR THE

TWO-BIT MULTIPLIER

Al-3 Reed - Schorr Language

Reed's language was basically an algorithm description language and had no
formal declaration facilities; let the various registers be somehow declared in

the programme as per fig. A-l. Schorr used a notation

“(A) B Al-3-1

to mean that the contents of A were transfierred to B and

KA B Al-3-2
to mean that the contents of the register specified by A were transferred to B.
Here to avoid a large number of brackets, the brackets in a transfer of type
Al-3-1 will be omitted as done by Reed and leave out the angular brackets from

the second type of transfer, Thus the transfers Al-3-1 and Al-3-2 will be written

as
A - B Al-3-3

and (A) —> B Al-3-4

respectively. |
{Start.tll : 1 > ~t2
| stop | : 1 > t,; stop
| Reset] : 0 — A; 0= B; 0-> Q; 0-> AD; 0 —> 0C;

0 — I3 0->K; 0->S; 0->0V; 1=t

'tz' : PC —= AD; 1—9-t3;
|t3§ : (AD:M) = B; PGH+1?PC; 1-> t,
|t4| : B - I; 1> t5

Multiply
| £5.0.(0).0P. (1) ".0P. (2)] : = L
[L | : ADDI —=>AD; A —>Q; 1-> t,
lt6l : (AD:M)>B; -11>K; 1 — ty
| £,Q(11) | : B + A->A; 1 - tg
[t7Q(11)'[' : - 1 = tg
{tsl K Rl(A,Q(lzll)); B(0) = A(0); 1 —» ty
[tg | ! K+ 1=K; 1-—?»t1'0
| tlo,.K(o) : 1 =t
;tw.K(o)'.Q(o){ : A - B->A; 1>t
[tlooK(O)'Q(O)'I 1=>tg,
It : A — B; 1—=>t,
|t12i : B-> (AD:M); ADD1 + 1 - ADD1 ; 1 —> ti3
ltlj : Q —> B; ADDl ~» AD; 1 mv»tlA
‘t14 : B > (AD:M); 1 > £

start next instruction

[t1 1

A~9
The addition and subtraction operations are specified by the use of, what

Schorr calls, a vittual register, which is used to represent the carry bits.

Hence the addition operation A -+ B —» A is written as

A(L) B B(i) B CE) — A(L) i=0.1,...,11
A(1).B(1) + A@G).C(i) + B(i).C(i) = C(i=-1)
0 - C(11)

Al=4 Schlaeppi's Language LOTLS

This is more a simulation language than a synthesis language and some figures
for timing are introduced which are all in microseconds. Let the memory access time
.be 2 units and the cycle time 5 umits,

CPU DP/

M(9b,12); AD(12); B(12); I(12) = OPl(S),ADD1(9) = OP1(3), OP2(3), ADD2(6)

K(5); A(12); Q(12); PC(9); OV(1); S(1); ready(l); +(2); -(2);

_ Comment The store cycle is asynchronous and when the cycle is fihished
a Ready signal is produced.

fct Read, Memory/

1. 2: Ready : = 0; B : = M(AD)/

2. 3: Ready : = 1/fin

fct Store, Memory/

1. 2: Ready : = 0; M(AD) : = B/
2. 3: Ready : 1/fin

seq begin, Control/

1. Start: if not (Stop or Reset) then call fetch else goto fin/
2. Stop : goto fin/ |

3. Reset: A,B,AD,I,Q,PC,0V,S,K : = 0/fin

seq fetch, Control/

1. Ready: AD : = PC; PC : = PC + 1/

2. Memory: call Read/

3. Ready ¢ I : = B/

4. Goto CP/fin

seq Multiply, Arit/

1. AD : = ADD1; Q : = A; K : = =11/

2. Memory: call Read/

3. Ready : if (Q(11)=1) then A : = A + B else goto 4/

4. Az = (B(0),A(0,10)); Q = = (Q(0);A(11),Q(1,10));
K:=K+ 1/

if K(0)) then goto 3 else if (Q(0)) then A : = A - B/
B : = A/

]

©

©

5

6

7. Memory: call store/

8. Ready : ADD1 : = ADD1 + 1/

.

9. AD : = ADDl; B

A-10

1= Qf

10 Memory: call Store/fin

Al-5 Language of Chu et

al

Register AD(O-11),
A (0-11),
B (0-11),
I (0-11).
Q (0-11),

PC (0-11)
K (0-4),
ov (1),

s (1),

Sub-register OPl (0-2)=1(0-2)

OP2(0-2)

ADD1(0-8)=1(3-11)
' ADD2(0-5)=I(6-11)
Memory M (0-511,

Switch Start
Stop
Reset
Clock T
/Start/ T <« 1
/Stop/ T <« O

Address register for the memory
Accumulator Register '

Memory interface and arithmetic reg.
Instruction Register

Multiplier Register

Instruction Counter

Counter

Overflow Register

Sign Register

Group A Operation Code Bits

=I1(3~5) Group B Operation Code Bits
Group A Address Bits

Group B Address Bits

Hh th M M M M M M M M M M

0-11) Main Memory

/Reset/ AD¢ 0, A< 0, B< 0, I« 0, Q< 0, K< 0, OV< 0,
S« 0, T <0, '

Sequence fetch

Comment begin when the clock has been set to 1 it automatically steps

/Pl/ AD = PC

itself at the end of each step in the sequence unless reset at the end of an

instruction or by external switches. end;

/®,/ B <~ M(AD), PC<- PC ADD 1
/P3/ I « B, end of fetch sequence

/B,.(0P,=5)/
/Bg. (OP,=5)/
/Pg. (0P, =5)/
/P,.(0P,=5)/
/Bg. (OP.=5)/

comment begin ADD
/P9.(OP1=5)/
/Ploé (OP1=5)/

AD< ADDl, Q< A, K< -11

B <« M(AD),

do ADDM

do RIGHTSHIFT

if K# O then P« 6 else if Q(0) = 1 then

B« A SUB B else B« A

and SUB are addition and subtraction routines. end;
M(AD) < B, ADD1 <~ ADD1 ADD 1

AD « ADD1l, B « Q

A-11
/Pll.(OPl=5)/ M(AD)<« B, P < 1
ADDM : if Q(11) = 1 then A < A ADD Bj
RIGHTSHIFT: A&Q(1l-11) < shr B(0) & A & Q(1-10),
if K# 0 then K <« K ADD 1;
"Al-6 Okada & Matooka |

The language proposed by Okada and Motooka has five levels of descriptions;

the 5th level corresponds to the algorithmic description and is quite similar to
Chu's language. At level 4 the sequencing is shown more formally as is done for the ~

multiplication sequence below.

Level 4 '
Ml : AD := I(3-11), Q := A, K :=-11;
M2 + B = M(AD) : M2(READY'), M3(READY);

M3 s M4 (Q(11)), M5(Q(11)");
M4 : A = A+ B; '

M5 : A(0):=B(0), A(1-11):=4(0-10), Q(1-11):=A(11)&Q(1-10);
M6 : K =K+ 1

M7 s : M3(K(0)), M8(K(0)");

M8 : : M9(Q(0)), M10(Q(0)");

M9 : B := A- B;

M10: M(AD) := B :MIO(READY'), M11(READY);

M1l: I(3-11):= I(3-11) + 1;

M12: AD := I(3-11), B := Q;

M13: ,(AD) := B, :M13(READY'), END(READY);

END; ‘

At level 3 the sequencing is described with single unit timings and it is

more explicit. Therefore operations such as additions have to be detailed. At
level 2 the operations are shown as in level 3 but the sequencing is omitted and
at level the interconmections of gates etc. along with declarations of delays of
the gates are enumerated. For the present these are omitted from here.

Al-7 Metze and Seshu

c Declaration of the name of the system
MACHINE COMPUTER DP
C ‘Global Headers

SYN (WL, 12), (DWL, 23), (AL, 9)

PARALLEL (MEMORY, CP)

OPTIMISE (SPEED)

These headers declare global quantities such the word length, WL,
Double word length, DWL, and Address Leﬁgth, AL, as well as the modules
which can operate simuitaneously and the criterion for optimality.
MACRO READ (M, AD, B)

C This declares the read routine of the main-gmemory which is assumed to have an

A-12

.independent control within itself, The control unit activates an access line
ACC and waits till a READY signal becomes true,
CALL MEMORY (ACC)
WAIT (READY=1)
B= (AD)
ENDC -
ENDM
MACRO WRITE (M, AD, B)
CALL MEMORY (ACC)
WAIT (READY=1)
(AD)=B
ENDC
ENDM
CONTROL CP
C Start Description of main computer
REGISTER A(WL), B(WL), Q(WL), I(WL), PC(AL), AD(AL), K(4), OvV(l) , S(1)
EQUIV (OP1)= 1(0,2)),(0P2 = I(3,5)), (ADDL = 1(3,11)),' '
1 (ADD2=I(6,11)) :
INTERFACE(MEMORY) AD,B
DECODE(OP1) DEC,ADD,JMC,JMZ,STO,MPY,LAL,DS1
DEC DECODE(OP2) HLT,CLA,COA, ,RSC,LSS,RCD,LSD
C Main Programme
MPY AD= ADDIL
CALL READ
EA
A=B
=-11
L1 IF(Q(11)=0)L2
.ADD(A,B,0V)
C ‘The prefix . requests a library routine
L2 Q(2,11)=Q(1,10) '
Q(1)=A(11)
A(1,11)=A(0,10)
A(0)=B(0)
+ADD(K,1,)
IF(K(0)=1) L1
1IF(Q(0)=0) L3
-SUB(A,B,)
L3 B = A
CALL WRITE
.ADD{ADD1, 1,)

P

AD = ADDI1
B=Q

A-13

CALL WRITE

GOTO NEXT

C This fetches the next inStruction

ENDM

Al-8 Duley and Dietmeyer DDL

In the description using DDL the system model is assumed to be a collection wf

automatoy

highway.

" normally functioning independently and communicating via e common

In our system let the memory unit be one automaton, switches and the catral

processor itself being the other automata Let the timing be a global variable and

be controlled by the switches.

LSy
<TE>
<ELY

8oy

vy
STy

avy |

REY

an
{opy
CTEp

T

“r>
aw
8O

{SEGY
&

Computer

START, STOP, RESET, SW([1:3]

THREE SWITCHES (S[1:3]).

START = SW[1, STOP = SW[2, RESET = sw [3]
INTERLOCK

Ao:[s [1]. s[2, s[3]°[O \ s 7—>A0°L}: —> Al,
->A2. ~>A3 .. |

L2 L4

Al: sw|3}= 1.,

A2: sW[2]= 1..

A3: sw[i}= 1...

CP:START:

af0:11], Bf0:11], qfo:11], 1{o:11], apfo:g], »cfo:g], K0:4],

ov, s.

P(1E-6)

ADD(4,B)[0:11]

al0:11], B[0:11], c[0:11], ov

ADD = A® B @ C,

clo: 10] = afi:11).sf1:11]v(a[1:11] Vs[1:11]).c[1:11),
cfif] = o, |
ov = alo]. BloV(AlOVB @]) .cld]..

SUB (A,B)[0:11]
alo:11], Blo:11], cfo:1y, ov
SUB = A'¢B @ C,

Clo:20) = al1:1] *.B 11V (A[L:1] 'V B[1:11]).c{1:11],
clii] = o,

ov = Ald'.B{0]V(aldvBId]).c{o]..

FETCH

FO: AD <- PC, & PC, -= Fl

F1 : |READY'| => MEMORY(READ=1) —> F2; —=>F1;
F2 : |READY | I < B, -=F3; —»>F2,, '

A-14

F3 : fr[o:z]ﬁ_%«v MPY(3> FO); -=-F3...

g The above step assumes that multiplication is the only instruction
to be interpreted and.the others cause a restart of instruction
fetching sequence.

{SEG> MPY :

MO : . AD < I[3:11], Q < A, K = 11D5, —> MIl.
MI: READY' ::3 MEMORY (READ=1), —>M2,
M2 : READY :§ 1(3:11], ~>M3,
M3 |Q(1l]| & < aDD(a,B) . —

M4 : s B[] oa[0711]0Q[L:11], $ K,>M5;

M5 [k=0 |-=>M6; —=>M3. ,

M6 lqlol | B = suB(A,B), —=M7; B <« A, —>MJ.
M7 READY': => MEMORY(WRITE=1), - M8, ‘
M8 : READY : AD < I(3:11}, B<- Q, —=M9.

M9 : | READY': => MEMORY(WRITE=1), —> MiO.

M10: READY : = .,

Lat> MEMORY : P

G MEM(RD [12], READY: READ,WRITE,WD [12], ap(9).

RE> an[9), B[12, '
QE> DLY(2E-6). _
& LO : [READ| —>RDO; [WRITE| —=WRO; —=Lo.
RDO : READY < 0, DLY = 1, —>RDI.
RD1 : B < RD, READY < 1, == ..
WRO : READY < 0, - WR1..
WRL : WD <= B, DLY = 1,5WR2..
WR2 : READY < 1, = .,
. (END OF SY)
Al-9 Cassandra
This language is in many ways similar to DDL and is based on Algol.
UNIT Computer (INPUT (0:11), START, STOP, RESET; OUTPUT(0:11))
REGISTER A(0:11), B(0:11), Q(0:11), 1(0-11), PC(0:8),
AD(0:8), 0V(0:0), S(0:0), K(0:4);
SIGNAL READ, READY, START,STOP, RESET;
EXTERNAL ADM(AD(0:9), B(0:11), READ; READY(1:1), OUT(0:11))
AD (A(0:11), B(0:11); C(0:11), 0vV(0:0));

COMMENT These external units are memory addressing and addition;

CLOCK p;
OUTPUT := A;
S1: <> AD < 0C;

S2: <5 AD(PC, 1; PC,), READ := 1;

83: (> . ADM(AD, , READ; READY,B);
Sk <> IF READY THEN I < B;
S5: ‘ IF 0P(0:2) EQUAL 5 THEN GOTO MP ELSE GOTO S1;
MP: > AD < I(3:11); |
MP1: > - ADM(AD , , READ; READY,B);
MP2: <> Q = A, K< =11
MP3: &> IF Q(11) THEN AD(A,B;A,0V);
MP4: &> AD(K,1; K,);3A(0:11)&Q(1:11), A(0) < B(0);
MP5: IF K NOT EQUAL O THEN GOTO MP3;
MP6 ; &> IF Q(0) THEN AD(1,B';B,) ELSE GOTO MPS;
COMMENT This complements B; '
MP7 : > AD(A,B; A,0V);
MP8 : &> B < A, READ :=0;
MP9: <> ADM(AD,B,READ; READY,);
MP10: <> IF READY THEN AD(AD,1;AD,), B < Q;
MP11; <> = ADM(AD,B,READ;READY,);
MP12: &> IF READY GOTO S1;
-
UNIT ADM(P,AD(0:8), IN(0:11),READ; READY, OUT(0:11));
REGISTER M(0:11,0:511);
SIGNAL ~ AD(0:8), IN(0:11), READ(1:1), READY(1:1), OUT(0:11);
PULSE P; CLOCK P; .
Al: <P READY:=0, IF READ NOT EQUAL 1 THEN M(,LAD) < IN
ELSE OUT < M(, 1AD); :
A2: (P> READY:=1;
END

UNIT AD(A(0:11), B(0:11), C(0:11), OV(1l:1));
SICNAL A(0:11), B(0:1l), C(0:11), D(0:11), OV(l:l);
C := A¥B¥C;
. C(1:11) & OV := AABV(AVB)AC,
C(0) := 0
END
Al-10 Iverson
The Iverson notation is capable of describing algofithms only and has no
formal declaration facilities for registers etc. Assume these are declared as in
fig. A-1.
1 start Astop'A reset' : 1 #, =) > (1,6)
2 ' start : 1 #,=) > (2,6)

A-16

3 stop : 1 (#,=) = (4,3)
4 reset : 1 #,=) -= (6,5
5 a, b, a, k, ad, i, ov, 5 <« O E > 2

6 ad <« pc

7 A pc 212 | {(Lpc + 1)

8 b < ytad

9 i <« b

10 .L(e:é/}_) : 5 # = (other imstructions)
11 k<« 2(5)TIL ‘
12 ad < @9/;

13 b < nt3

14 q < &

15 oilg : 1 ¢, =) > (17,16)
16 L a 212(_1. +4Lb)

17 Lk «elk-1

18 g,(_él/_g_ - a(l/h,_é}_,(1$o<\lo)/g_

19 k : 0 : (# , =) > (15,20)
20 041[9 -0 #, =) > (21,22)
21 1 a «<ta -=-L15b

22 wtad oy

23 L@ fieit? /i + 1

24 ad -« @9/1_

25 b <« g

26 ytad oy - 3.

Al-11 GERACE's method

Gerace's method converts register transfer type expressions to state tables,
but this description must be written to indicate bit by bit operations. The

multiplication algorithm, thus, should be written as follows.

The indices are i=1,2...,10. j=2,3,000,10. m=0,1,2,3.
|t (I(0)I(1)1(2):101) ty >ty
(I(0)I(1)I(2):101) ty —> ts
'tl|. A>Q M—>B, C>K £ £,
|t21 (Q(11):1) A(i) @ B(i) ® s(i+l) — A(i),
A(11) @ B(11) @[s(12)=0]-> A(11), t, ty
(Q(11):0) t, —> t
|t, | A(i-1) —> A1), B(O) —> 4(0),

A1) — Q(1), Q(j-1) == Q(j),
K(m) @ r(m+l) —= K(m),

K(4) @ [r(5)=1] - K(4), t, —> t;

= o e e OO O O X

- OO X

s(i+l)

~
[
~

= = O O = = O O <
= O e O = O
o e O = 0O 0 O n

r(i+l) r(i)

= O e
- O O

Figure A-6

Definitions of the carry functions s(i) & r(i)

A-1T

lt4 | (K(0)QL0):01) A(L) @ B' (1) ®s(i+l) — A1),
S A(11) @ B'(11) @ [s(12)=1]+ A(11)

A(0) ®B'(0) & s(1) - A(0) t;

(K(0)Q(0):00)
(K(0) & 1)

A-18
t4 —p to;
b Tty

Note C contins the-constant -11, and the functions s and r are defined by the

tables in fig. A-6.

There are four sets of machines corresponding tq A,B,Q and K and it would be

pdssible to derive the state tables for each separately; however, the machines

corresponding to A and Q are clearly connected and the partition

T ={43 3 Q)

would be preferable, The first step is to identify the distinguishable submachines

of each of the machines and list the transfers associgted with them. There are four

distinguishable sub-machines of the A,Q machine corregponding to bit O, bit 1, bit j

and bit 11 and their lists are as follows,

. (LO)A,Q ‘
a, t, - A(0) | = Q0);
a, (Q(ll):l)t2 — ty A(0) ®B(0) ®s(1) —> A(0);
a, t3 - t4 B(0) | - A(0);
a, (K(0)Q(0):01) £, >t A(0) ® B'(0) & s(1) —= A(0);
(Ll) A,Q
a g, > ot A(l) |- Q(1);
a, (Q(11):1) t2 - t3 A(l) ® B(1) @ s(2) - A(l);
8y | t, - t, A(0) | - A(1);
A(1l) (= Q(1);
a, (K(0)Q(0):01) t, >t A(l) @ B'(1) ®s(2) - A(l);
() X,Q
a, t, = ot AGG) == QUi); .
a, (Q(11):1) t, = t, A(G) @ B() ®s(j+1) — A();
2, t3 — .t4 A(G-1) = A(3);
Q(i-1) > Q(3); _
2, (K(0)Q(0):01) t, > A(J) @ B'(j) @ s(§+1) = A();

A~19

L) 50
al t]_‘ - . tz. D ’A(ll) T Q(ll);‘
2, (QUIL):1) £, — ¢, ~|a1) @ B(11) @[s(12)=0) = A(11);
a4 ty - t, » AC10) -= A(11); QC10) = q(11);
8, (K(0)Q(0):01) t, > &, A(11) @ B'(11) e s(12)=1) == A(11);

Similarly the lists for B and K are:

(Ln) B n=0,1l,...,11
a t, - t, M(n) - B(n);
(Lm) K
a £, = t, C(m) - K(m);
a4 Lty t, K(m) & r(m+l) - K(m);
(La) K
ay t, - t, K(4) EB[r(5)=l] - K(4);
and finally
aO (I(0)I(1)1(2):101) t0 - t1
(I(O)I(l)l(Z):lOl)'tO oA t5
(Q(11):0) b, ™ty
(K(0)Q(0):00) t4 —rpm tO
(K(0) : 1) £, > t,

From the listing above it is apparent that the inputs to the control part are Q{11),
K(0), Q(0) and the three instruction bits I(0), I(1l) and I(2); hence the state table-in
fig. A7 for the control unit can be derived. For the sake of simplicity some combinations

of the inputs have been omitted as these do mot provide any additional information.

The entries in this table correspond to the next state of the control unit and the
outputs which initiate the transfers in the operational part; it is in an abstract form

and can be synthesized in terms of hardware or software as necessary.

Seven different state tables have to be generated to specify the operational part

completely; however since this example is for illustrative purposes only, the state table

. A=~20
for A(0), Q(0) machine only will be derived here.

The external inputs to this machine are s(1), B(0) and the a outputs from the control
anit; the present state variables Yis Yy replace-A(0) and Q(0) respectively on the left
nand side of the transfer expressions and Yl, Y2 similarly on-the right hgnd side. The
state table derived using the procedure described in the main text is shown in fig. A-8
In fig A-9 the corresponding output table is depicted. Finally the abstract state table

including the output behaviour is shown in fig A~10.

&
I9TTATITNN 9U3 3O 1Iuf 1033U0) oYyl 0] 91qel ©3€35 8yl [~V 2Indid
0,¢0, 7960, 0g?, _) ",
€oc, A €ee] A €aey LA €eey £
z
- - - - - om“mu Nm.mu 3
T,el, Toel, Toel, Tyel, Toel, Toel, 1,2, I,
| : Op ¢S, | 0p T - - - - - 0,
WX X (0),0(0) | (0)1(0) % (o) (1n),d (TT)d .
s931®e3lSs
uasaig
: s3ndug

A-22

(0)0(0)V Sutydew 9Y3 I0J °1qe] 938315 POUSISSE O], 'g-y 9angdrg

..Nm Mm N.m Mm Om
ol 7\ A
Vi RN 7 N, =
01 00 01 00 01 00 00 01 00 01 11 01
11 10 11 10 11 10 10 11 10 11 T1 11
10 11 10 .HH 11 10 11 10 11 10 00 10
00 01 00 01 01 00 01 00 01 00 00 00
.mH 11 (mo mm\ T 0, RY! T1 10 o@
(1)s(0)q (0)d (1)s(0)d

sandug

01

11

10

00

A-23

01

11

10

00

(0)0(0)V

.

(0)0(0)V sutydew 9y3 103J 9[qe], 3Nd3IN0 °6~V 94NJIg

(0)s (0)s
¢m M.m Nm .—..m
AN\ V. VoS
\ V4 Y ré .
0 1 0 0 - - 1 1 1 0 -
0 1 0 0 - - 1 1 T 0 -
1 1 1 0 - - 0 1 0 0
1 T T |.0 - - 0 1 o | o
0T 11 10 00 1 0 ol IT 10 00
d L% 7 \ ra
~ 4 4
(0)q (1)s(0)d

(1)s(0)g

01
11
10
00

(7Y

sjadul

A-~24

(0)b(0)V SUTYdS®W 5y3 103 51qe3 91838 oYL (0I-V SInTTi

(0)s @31®31S IxXON
¢m Mm Nm . H.m Om
7 N\ N /T A\ N\ 7 - TN
01 0% |11 0y | 01|l -‘v =TTt 1w o1t otw =ity Vi
11 0t | 1% 0‘c | ozl -‘¢ Ul 1z 1%¢d otz ofe =gl -f¢ €
10 1°C 1% 1] o‘c || -*‘¢ =zl ofe | 17| o‘c| o°z ‘2l -fz rA
00 T 1% T | 0% || =% =1 0y 1t | 0% | oft =41l -1 1
; s3e3g
01 11 10 00 1 0 01 11 10 00 juesaag
N 7 N\ 4 N, /
N Av4 g A4 L
Slnogu
(0)g (1)s(0)d . k

(0)d(0)V
(1)s(0)q

All-l.lll-l.llcj

°3IBYD 30USNDIS 5,430y ‘71-1V

OHAOVU uOHM

0=(0)0 ‘0=1

0 A

A 03 T PPy

(0)V {03 (0)d

(1)0 [03(TD)¥Y

134314 D3 FTYS

134313 vaI1yyg

T e mnr —— e S — ——]

hf = oon 2 e e -

VY 03 g PpY

388 j0u (TT)d

398 (T11)0

——— —V— — g

97240 QViy 231035 T18H

b

A1dTaTnR
£13ug 3aey)

0]
1aav

€1

A

11

4-26

°do pug

LT

Acmzcﬂuaoov AR A

9T0AD 91TaM 921038 TIED q
03
o
av
o1

1aay Taqv
03 T PPY]
97242 231TaM 31031S €D
R
. o1V
44 17 07 61 81 L1 91 61 71 £l

97 6T YT 144

. A-27
Al-13 PMS Level Description

T

In the machine considered here, only the register structure is shown. The PMS
level description is more concerned with the way the system is configured. Let us
therefore assume that there are two peripheral controllers on the system, first one
héndling some magnetic devices and the‘second one handling devices such as printers

and card equipment.

Mt—- §— PC— S S T.START (Push button§ console) <

— T.STOP * (push button; console) <
- T.RESET (push button; console) <
L T (cardjreader; 100/300 cards/min) <

~ T (Card; punch; 50 cards/min) >

— T (printer; 100 lines/min) >

———— S T Disk; fixed head; delay 10ms?]
100 ps/w; 32k w; 12 b/w

T | #* 0:3; magnetic tape; 66 in/s;
' 800 b/in; 6b/char

 Al-14 ISP Level Description=

Pc State

'
AD <p:é> memory address Fegister
PC <b:8> program counter
I <b:1l> Instruction register
K <b:5> Multiplication counter
B <@:l£7 Memory buffer
" A (Q:li? Accumulator
Q £0:117 Multiplier
ov overflow registers
S sign register
Mp state

M [0:511](0:11> main memory
Pc Conso%e State

START start switch

STOP '~ stop switch

RESET reset switch

i

Instruction format
oP <0:2> 1= @:2> opcode
MADLD : 8 =1 <3:11> address
Start process , :
START A1 {STOPV RESET) -> fetch;
Fetch process "
fetch := (B -« M[AD_] ; next I < Bj PC <« PC + ']); -» execute
execute process
execute = (
multiply (:= OP = 5#(Q <« A; B« M MAD ; K < 12; - Loop);
Loop := (QQI)= 1> A< A+ B; next
AQ:1D 0 Q Q1< 20210 ed:1ly /25
K< K - 1; next K ¥ 1-» loop; = 1 -» fin);
fin := (QE» =1 > A <« A+ B; Q<0” = 0»A< A - B; mext
M [AD] < A; next AD < AD + 1; next M{aD] « Q)

)3—9 fetch

A-28

* APPENDIX 11

A2-1 The Bamming"Code

The Hamming Code is a special form of parity. checking and is used for single
error correction. The number of check bits is determined by the number of data bits;

if there are m data bits, k check bits will be required such that
2k > m+k

and these check bits are placed in the positions corresponding to the powers of2, the
lowest, 20, being the leftmost.

The Zith check bit is used as a parity check, for even parity, on those positions
whose checking numbers contain a 1 in the‘Zith column. For example, the 20 check bit
is used to check the parity of positions 1,3,5,75..., the 21 check bit is used to check

the parity of positions 2,3,6,7,10,1L... and so on.

When error detecting and error correcting, if the check is successful, then a O
is placed in the column corresponding to the check bit and a 1 if it fails. For singlé

error correction, the bit in the position indicated by these check bits is inverted.

For example, consider a 4 bit data message 1011, which requires 3 check bits and
the encoded message is 0110011. Let us suppose that during transmission bit four is
inverted and the received message is‘0111011. Applying a parity check to the positions
1,3,5,7, we get an even parity and therefore the check bit 0 is set to zero. Parity
check on bits 2,3,6,7, is also successful and the check bit 1 is also set to zero: The
final check, however, is unsuccessful and the check bit 3 is set to 1. Thus the bit
corresponding to the position 100, i.e. bit 4 is in error. Therefore the corrected

message is 0110011.

A-30

Appendix IIT

A) Proof that X = BA* is the solution of the equation
X=XA+ 3,044 (1)

This proof was given in a theorem by Arden t4:\ and is

reproduced below,

The fact that X = BA* is a solution of equation (1) can
be verified by direct substitution, and we get

A+ B

il

BAkA + B
= Blaxas)

= BA’X'

I

X

Now suppose X = BA% is not the only solution of equation (1)

and there exists a solution X = BA¥ + C such that CflBA¥* = ¢

Then

Za+B = (A +0A+3B

]

= BA*A + CA+ B
= B(&A + 1) + 04
but XA+ B = X = BAC

therefore Biv+C = 3A% + CA : (2)

Intersecting both sides of equation (2) by C we get
BAMC + OAC = DA*AZ + CAN

therefore

o}
i
pig
—

Q

<

o

implying

But since the assumption is that A does not contain A, the
shortest sequence of _C_A_ must be longer than the shortest sequence of

C unless C is empty, thence C Z CA. Therefore A = BA¥C is not a

—n

A-3%1

solution of equation (1), and since this is true for all cases at C
when C and BA¥ are disjoint, the only solution of eguation (1) is
X = Bax,

B) Proof that X = A*B is the solution of the equation

X = X+3B 4 (3)

This proof follows from an identical procedure used in the

last proof,

g

APPENDIX IV

Proof copy of

Analysis of Sequential Logic Circuits

to be published in

Computer Journal, February, 1974.

1‘1"32

AR

ANALYSIS OF SEQUENTIAL LOGIC CIRCUITS

D. Pai* B.Sc.

and

Professor Douglas Lewin¥*# T;c.., M.Se., C.Eng., M.I.E.R.E.

* Burrough Machines Ltd., formerly
Dept. of Electronics, Southampton University.

X% Dept. of Electrical Englneerlng and Electronics,
runel University.

Index Terms

Feedback loops, secondary variables, asynchronous

sequential circuits, logic circuit analysis.

Abstract

Incthe analysis and simulation of sequential circuits,
and in particular asynchronous sequential circuits, the
automatic location of feedback loops within the network often

presents serious problems. '

This paper presents an algorithm, based on an analytical
approach, which will isolate the true feedback loops in a
network, that is those paths which correspond to the actual

secondary variables of the circuit.

1. Introduction

A logic circuit can usually be defined in a formal mathematical
panner using truth-tables, state or flow-tables or some such model [i}.

An egbstract definition of this type is often used in digital systems

design, for example:

() for the economical implementation and re-configuring

of circuits;
(b) to obtain a true logical simulation;

(¢) to enable fault testing and diagnosis procedures to

be evaluated;

(d) for the concise documentation of logic circuits, etec.

Often, however, especially if the circuit has been designed intuitively,
this type of description is not available; the circuit then has to be

analysed in order.to derive a formal model.

The problem of analysing cominational circuits (in order, for
example, to generate a truth¥taﬁle) is relatively simple, and can
be solved by using conventional éimulation techniques or by tracing
the paths between éhe inputs and the outputs.’ When analysing sequen-
utiél circuits, however; the presence of feedback loops in the
network means that these techniques are no longer applicable. The
normal method of proceeding in these cases is to isolate the
feedback loop in some manner (often intuitively) and then apply
the standard combinational technigques. In the case of clocked

sequential networks or relay circuits the problem is trivial, since

the feedback loops are clearly distinguishable. The/

The major problem lies with asynchronous nétworks, that is,
circuits containing interconnected NAND or NOR gates, and it is this.
aspect of analysis which is considered in this paper.

Sequential circuits.can be divided into ﬁwo main categories
(i) synchronous and (ii) asynchronous. Synchronous circults are
characterisea by the fact that in the absence of a sampling signal,
i.e. the clock signal, changés in the inputs do not alter the
internal state of the circuits (although of course the outputs may
change. To achieve this, storage elements (bistables) with pre-
‘defined feedback loops (i.e. secondary variables) are employed in
the circuit and driven by combinational logicl; thus all the
feedback loops are consequently restricted to these storage elements.
The analysis of synchronous sequential circuits thereforé reduces
to ;n analysis of combinational circuits and is a straightforward

procedurez.

Asynchronous circults in many cases are implemented using relays
which act as the storage elements. The analysis of these circuits is

similar/

1. The outputs of the storage elements may be fed back to the

inputs of the storage elements. In this case these storage
elements are such that the outputs do not change during the presence of
the clock signal; hence, for the purposes of analysis they may be
considgred as independent variables and the circuit feedback-free.
If the outputs do change during the presence of the clock pulse the
circuit will malfunction. .

2. The algorithm to be described in this paper is equally applicable
to combinational circuits. .

/similar to the analysis of synchronous sequential circuits and it is
only necessary to derive the excitation equations for the combin-

ational circuits driving the reley coils.

In the more usual case however, when the cireuit is
implemented using standard logic modules (such as NAND gates), the
feedback loops are not so clearly defined. The method adopted so

far (13, (2], (3], (4] is to assume a feedback loop, break this

loop and through simulation find out if it is possible to fully define
the behaviour of the circuit. This method, though usable, is not
algorithmic and does not lend itself to computer programming for

automatic analysis.

' In this paper we present a more systematic approach for

locating these feedback loops and hence the secondary variables. -

2. Algorithm

The analysis of asynchronous sequential circuits involves
(1) Qetecting the feedback loops, and
(ii) selecting only those feedback loops which correspond

to the secondary variables.

Before we proceed with the description of the algorithm let

us examine the condition implied in the second step. If

Yy = {set of all the secondary variables}

-

then/ - \

o h -

then for all i if 5 is the value of the ith secondary variable at
time t and if Yi is the value of the same variable at time t+ 6t
where 8§t is a function of the logic delays then it is a necessary

condition [1] that
Yi = fi(yi) I A I I AP PN 2¢l

such that fi(yi) contains at least one positive y; term and that this
term is not redundant. If this condition is not met v is redundant
and the corresponding loop can be removed. We shall not concern

ourselves with the proof of this statement which can be found in (1.

The behaviour of a general logic circuit can be expressed as

7. = g.(X e eerenenaa. 2.2
3 gJ(_,x)

where Zj is the jth variable in the set Z, the set of all outputs,
and X is the set of all inputs; if the circuit is combinational then
the set Y 1s empty. In the algorithm deseribed below the eircuit

being analysed is assumed to be combinational until found otherwise.

The algorithm requires a topological description of the circuit
e
in which each gate is defined in terms of its inputs, output” and the

function (3] . t 1s also necessary to distinguish the external/

3. t is assumed that each gate produces only one output. If gates
generating multiple outputs, e.g. ECL gates with complementary
outputs, are employed, then each of these outputs must be specified
by a separate gate with identical inputs but with different functions
and different outputs. If wired functions are used it 1s necessary to
also specify these by additional gates with wired outputs acting as
inputs to these gates and their outputs feeding the next stages.

’

/external inputs and outputs, i,e; through which the eircuit is accessed,
from the connections internal to the circuit. A convention adopted

here is to label outputs by Zj,’inputs by X, and the internal
conneétions by Cn wheré J» k and n are all integers. Thus for a

cirecuit contéining k inputs, J outputs and n internal connections

the description is given as

Z

a 1.2,...,3"

fa (X,C,2) : a

1.2,...,n

it

and C

L = £(X,0,0) b

where C is the set of all internal comnections.

In the following discussion we shall refer to the inputs,
internal connections and the outputs by X-types, C-types and Z-types .

respectively.

The algorithm is based on tracing the logic path of a Z-type
backwards, i.e. towards the inputs, so as to finially obtain an
equation forZ in terms of X and the secondary variables (if any),
only. Thus, starting from the topological description»of a circuit,
the terms in an output equation Z are expanded (unless it is a
primary gnput) by substituting the inputs of the corresponding gate
which generates that term; we shall call the equation produced

in this way a Z-equation.

Further/

Further substitutions are made in successive passes for each
of the C-types and Z-types in the Z-equation. Clearly this will
either lead to a Z-equation inftérms of X-types only, or feedback
loops will be encountered; in the latter case the process will
never terminate. During the iteration process a note is kept in
a list, called the C—list, of each C-type and Z-type encountered
during the substitutions. The presence of a feedback loop is
detected by noting if during the iteration the Z-equation contains
& C-type or a Z-type for which a substitution was already made in the

previous iteration(s), since this implies that the particular

signal is a function of itself. Any variables which are‘detected

in this way are entered into a feedback variable list, the F.V. list.

If during a pass one or more new F.V's are detected then the
C-list and the Z-equation so far generated are deleted and the prcedure
restarted with the modification that substitutions are not allowed for
eny variables contained in the F.V. list (except when it is necessary
to obtain an initial equation) and that these variables are not entered
into the C-list. The sequence is repeated until all the feedback
variables between the 7 and the inputs are located and a Z-equation

is obtdined in terms of X and the feedback varisbles only.

At the conclusion of the algorithm the F.V. list contains those
variables which re-occurred after an initial substitution wes made,
thereby implying that feedback loops may be present. However, it is
necessary to ascertain that all the variables in the F.V. list do
in fact correspond to loops (and hence to secondary variables) that
is their characterising equations must satisfy the condition spécified
in 2.1. The nexﬁ step therefore is to obtain an excitation equation
for each F.V. and the procedure for this is identical to that used
to obtain a Z-equation. The resulting equation is checked to see
thet condition 2.1 is met. If the condition is not met then the
corresponding varisble ié deleted from the F.V. list and the whole

procedure restarted.

It/

It then only remains to apply this érocedure to the remaining
Z-types and any other feedback variables that are detected. The
final F.V. list corresponds to the list of secondary variables,
the equations for the F.V.s to the excitation equaticns‘and the
Z-equations to the output equations. The flow diagram for the

above procedure is depicted in figure 1.

The output equations and the excitation equations obtained
from the algorithm completely define the asynchromous circuit, and

may be expended to generate the flow tables.

3. Examples
w1ll now be

The above procedure . / illus
First ﬁe}bon51der a Texes Ingtrume
which is given in figure 2 and th

description in table 14.

Let us start by taking Z4.

C-list F,V.list
24 - Z1=‘§3 +
Z1,C2,Z2 - = X.' +

Now Z4 is already in the C-1i

- Z1 Z1= X‘i +
02,22 Z1 = X1 -+
. +

02 is therefore added to the

- Z41Co Z= Xq +
2y Z4,Cp =X, +
Z5:C3 Z4,Cy =X +
294C3yCy Z45Cy; =X +
C3 is added to the P.V.list.
- ' 241Cp1Cx 24 “} +

Z, 21,c2,cs =‘:‘<‘1
Applyinb the procedure to C,
- Z4sCsC5 Cp= [
Cy 215C:C3 = X4C

trated through a number of examples.
nt D-type bistable the circuit for

e corresponding topological

Equation

XpCqeXz + XpoCyoBq ..

st; hence we add Z4 to the F.V.list.
Ca + Zp
CT-X2°X3 + X2-C3-Z1
C2)+XpeX3

(Eé +-i; +.E;)'X2'Z1

(X + Ty +

FaVoliste

i

+ Z2
+ CgeXp 24

Co

NN

(@]

+ (¢2 + X3 + xz-x4-03)-x2'z1
+ 25

o+ X2°03-Z1

and C3 we getl

n§4

I

oaooo-cocooo(3‘1)

(@]

X2 + X3

4‘C2 + XQ +)(3

L,

programare in Polish form;
here for illustration purposes.

The algorithm has already been programmed.

The inputs to this -

however, a standard form is used

C-list F.V.list Fgquation
01'04 21102903 »'= Xq'(:f‘\:q_ + 3?2 + _‘C‘%)OCZ o+ YQ +‘i-3 000000(3'2}
- 21,02,03 C3= C2 + X5 + C4
C4 Z1,CZ1C3 = C2 + X3 + X4.X2.CZ oaaoooo-ao(B'B)
and finally
- Z Z"""“— T. Z sesvosse e Ze
1,02,03 o= Xy + c3 + 2, (3-4)
ZT' Czﬁand 03 are the secondary varizbles and 7 7. equations 3+1,3-2

and 3+3 represent the corresponding excitation equations., The output
equation for Z, is given in 3+4 and since 24 is an output as well zs
‘\

a secondary variable a dummy output equation is generated for Z1a'iqe.:

7. = 21 . ' ‘ boo;ooo‘too(3'5>

1
Ixample 2.
Consider the circuit given in figure % the topological description
for which is given in table 2,

Starting with Z1 we get

Cc-list F.V.list Tquation
Z1 - Z1= X1 -+ 3
Z1103 ’ - = .X.z + C2‘Z1'C4
- Z1 Z1'= _5(-1 + ‘6.3
C3 Z4 = Xq + CprZqCy
CpsC31Cy 24 =Xy (Cq 4 x2)-z1-(c3 + X))

’ thus
Now,'Z1 iz in the P.V.list and the substitution for it is/complete;’

-

however, since
- 21% g(zj)‘

Z1 is therefore removed from the F.V.list.

05 Z1= 3

1 ooob-oovoe(s‘s)
"'» 03 C35 02+Z1+C4

+
el

24

C~list F.V.1list Egquation
02,21,(34 03 = C1‘X2 + X1°03 + X2‘03

L

C2324,C4sCq C3 XqoXp + X305 + XpeCy coeserivceas(3:7)

»TpgrefO?e c.3 is the only secondary variable, and the corresponding
excitation' and output equations - . _ are given by 37 and 36
respectively.

Example 3,

Ve finglly consider a circuit which Unger [p] has analjoed oy 1dert L fying

and breaking feedback loops using a trial and error process The ecireult and

the topological descripiion are given in fi e 4 and teble 3 respectively.
< Py .

_ C-list F.V.list Equation

y/ - Z = Cg

Z,C/ R = X1 C1O

Z,Cg,Cq0 - = Xq*(C5+Cy+C5+Cg)

Z C6 Z = ”%
- Ce Ce= X1tCqp .

C1O C6 L= X1+C3’C4‘C5'C6

010,03,04,05 Cg = x1+(c7+c9)-(x2+c7)~(c10+09)-06 A
- CesCio Cg= X4#Tyg

Cg is removed from the F.V.list. The equation for Z now reads
Z=X1'C1O .0000000000(3.8)

Restarting the substitution process for Cqp we get

' - Cyo Cip= C3+Cy+Cs+C
C3,C41C55 Cqg = Cq*CgtXpe Cp+Cge Cg+Xq+Cag
Ce
C3,C4,C55 Cyg = X (6‘+c2+03+c4)+x2-x1+
CgrC71Cq Cqg Cqp° (T1+T+C5+C,) 4K+ Cag
- C102C3,C4 Cyo= "5+E:+65+5g
" €y G5 Ci01C5:Cy = TyalyCogeCotXyeCyq
1Cg, G 010,03;04 = E} Z;+c‘o (c 0ot CsaCy)+x “Co

C51CgsCys C107C31Cy = 03+c4+010-(09-C8+x2-08+03+c4)+x1-010.

C2:Cg

...ll....

C-1list PV, 1list Egquation

- C10?03y04gc9 Cqo= 65+6k+65+5€

C5:Cg C10103:C4Cq - =,53+5ﬁ+01o’¢9+xi‘010
- C10C31C41Cq Cs= Cprly

C7 Cq04C5:C4sCo = X4+Cg

03 is also removed from the P.V.list. Substituiing for C3 in the
equation for Cqg we get
C1o= —i} ‘C9+—6;;+C1O . Cg-?XT ‘C10

Next we obtain an equation for Cy.

C107C42Cg Cy= XptCy

eliminating 04 also from the F.V.list. The equation for C4g now reads
Ci0= Xq*CqtXp Xy#Ceg°CytXy*Cip eonrersa(59)

Similarly for 09 we get

- C10+Cg Cg= [N
C15C25C35 CqgsCq = Cg*CgtXpeCgtCqeCoytXpCy
C4 |
C1,C2,C3, C10,Cq = Cg*Cio+Xp Tio+K1*Co+Xp Xy wecersra(3.10)
C4sCq,Cg

The circuit shown in figure 4 therefore is characterized by
equations 3+9 and 310 which are the excitation equations for the iwo

secondary variables and the outpul equatiion 3-85.

5. The equagions obtained here are idential teo those obtained by
Unger [SJ where yl and y2 refer to C§ and Clo respectively.

-—12_

4, Coneclusions

4

‘ The‘algorithm presented here detects feedback loops analyticallx

from a topologicel description. However, the following points should

be noted.

a) The procedure concerns itself only with the terminal behaviour
of the circuit. Hence, variasbles which have no effect on the external
behaviour of the circuit, e.g. a redundant feedback lodp, will be
ignored. . ' |

b) The resulting excitation equatiéns may be different to those
used during the design of the circuit. In this case the behaviour
obtained using this'procedure will be eguivalent to the original

behaviour.

c} The élgorithm does not accept explicit delays. It is assumed
that the logic circuit being analysed is made up using real gateg with
inherent delays and that the circuit functions correctly. It is
envisaged that the algorithm will be extended to include explicit

delays end predefined gate delays.

-d) The algorithm is equally applicable to the analysis of
combinational circuits, in which there are no feedback loops. Thus

the method is quite general and useful in general logic network analysis.

A preliminary version of this algorithm has already been programmed
using a list processor imbedded in FORTRAN., We hope to include this
algorithm as part of the facilities offered by the Computer-Aided-Logic-
Design suite currently being developed at Brunel and Soﬁthampton

. .. 6]
Universities.

ey
I
.

21-

-

-t

[4]-

5]
(6]

References
HELETENCeS

S.H.Unger, Asynchronous Sequential Swite

J.Wiley & Sons, New York, 1969.

A.A.Keposi and D.R.Holmes, Logic Network Analysis,

Computer Aided Design, Autumn 1970 pp 9-18.

D. Carmingham, The Generation of Diagnostic Testing Procedures

Sequential Circuits, IEE Colloouium on Computer Applications

for

to

3

Design, Simulation and Testing of Logic Circuits and Systens,

16 November, 1971.

H.Y.Chang,C.G.Menning and G.Wetze, Fault Diagnosis of Digital

Svstems, J. Wiley and Sons, 1970, p.95.

S.H.Unger, ibid, pp. 174-177.

D.W.Lewin, E.Purslow and R.G.Bennetts. |
Computer Assisted Logic Design - The CALD System
I.E.E. Conf. on C.A.D. Pub.No.86 p. 3k3-351 1972.

- 14 =~

Acknowledgoment

One of the authors (Pai) wishes to acknowledge the financial

support given by the Seience Research Council and International

Computers Limited for part of the work.

FIGURE 1.
Cbtain X,C,%, from
topological description

Set W & C list emdty
|

Select a Ziype

<)
-
N\
Add to C list
. e
Remove this YES
variable from -
F.V. 1list f Note 211 C,2
Lypes on HAES
1. V.
excl., ¥V A
—
»
add dup.var.
1o FV list. :
erase C list Add to C list
- i
subst. using | :
eq. obtained in eq. subst.
here for each of
these
_
N\
delete the Z ~
egs. add the !
Zs to ¥V list erase C list. s
select next F\ A\ ‘ |
i erase £G.
\> ™
erase C list. ob»tai,n' inltiftl
select next 2 Fv=£(X,C,2)
ain as Z eg erase eqQ -

- 16 =

Al

N

L

X3

Ly
&

&

oy

J % 3

Ly

X2

C2
|

C

D

CZL—_ o

=

X2°

uu\E 4’?

P}

FEGK aem

Table 1

(@]
n
I
(@]
A
*

Table 2

]
O
'Y
L]
Q
I\
*
]
W
L]
Q
N

Table 3

Lisiy

3P

E
M JERG A V34

1

gure

e
iS

