
ABS'l-RACT

The existing design languages and methods available to the computer

systems designer are critically examined in this report. a new

language, which is considered to be flexible, expansible s-nd more

akin to the dedigners' natural methodology, is presented. A command

structure and an Implementation technique for use with a Honeywell

DDP 516 computer with disc backing storage for developing an abstract

definition of combinational networks, of upto 20 input and 20 output

variables, on an interactive basis, is also presented.

FACULTY OP ENGINEEBIHG

DEPARTMENT OP ELECTRONICS

Master of Philoso

A LANGUAGE FOR COMPUTER AIDED LOGIC SYSTEM DESIGN

by

Dinesh Pal, B.Sc.(Eng,)

CONTENTS

Page

Acknowledgement

1. Introduction to Digital System Design Specifications 1

1.1 Introduction1

1.2 Design Automation 2

2. Regular Expressions6

2.1 Introduction6

2.2 Historical Survey 7

2. 3 Definitions and Properties 8

2.4.Regular Expression from Natural Language Description11

2.5 Regular Expressions for Combinational logic 12

2.6 Regular Expressions from State Diagrams .* ...12

2.7 State Diagrams from Regular Expressions16

2.8 Derivatives of Regular Expressions ,,,...18

2.9 State,Diagrams from Regular Expressions using Derivatives 21

2.10 The State Characteristic Equation ..,,,,,,,.«.*«..*2$

2.11 Minimal State Diagrams for Multiple Outputs 26

2.12 Transition Graphs 26

2.13 Conversion to a Deterministic Form »«**.**28

2.14 Conclusions * ,,.$2

3. Languages Describing Microprogrammed Systems and Their

Applications .,,,,« * 37

3.1 Introduction ,,,,., '"37

3.2 Reed's Register Transfer Language 41

3.3 Languages based on Programming Languages ,,,...,47

3.3.1 Fortran e e ® . 4 7

3 , 3 * 2 Algo1 49

5 « 3 ** 3 X V'GX'SOn ̂ S

3,3.4 APL aa a Design Language * ,..,56

i

11

5 . 4 Partitioned Systems • • • 5 9

5• 5 Sequence Chart Analyser • 6 5

3 .6 State Tables from Micro pro grammes 66

5.7 Multiple Transfers ..72

5 . 8 Extension to include Read Only Memory 7 4

3.9 Different types of ROM Implementations e??

5 . 1 0 Microprogram Transformations 7 9

5.11 Structure Descriptive Languages 8 3

3.12 Conclusions ••90

4 , Methods based on Switching Theory and Information Theory93

4*1 Introduction #»93

4.2 Carroll and Mott's Method 93

4.3 Smith and Tracy's Method 94

4*4 Petri Wets101

4*5 Conclusions , .*...*, *..* * lOj

5* An Approach to Computer Aided Logic Design IO6

5.1 l^velopment *.... IO6

5*2 'ihe Intuitive Approach **..*.* * ..IO7

3 The Computer Aided Approach «*»,*«*«****«**«*«*'«'' 7

6* The Logic Design Language *.*,.*** ,..*.*.* 119

6.1 Introduction ..**.** * * **119

6.2 Structure of the Description of a System ***«.*«********.120

6*3 Description *.**..* .**12j

6 . 4 Variables129

7. Command Structure of the Truth Table Generator *......«**.*«*130

7.1 The Requirements *130

7 . 2 The Usage of the Programme .132

7*3 Proposed Implementation i48

.153

8e Conclusions #**##**#####«#*

8# 1 $*#####*####*###**###*##****"* # # # # * # * # # # * # # *

Hi

* # # * # # # #

I

159

• A™1

A-" 1

«•«••»•«•«•••«A^1

• A"™ 8

»««««••«» A™^

.,A-10

.,,A-11

A—11

'

* # # # # # * # # # * #

8.2 Current Work "'57

8.3 Future Work ^58

References and Bibliography

Appendix I

A1-1

Al~2 Regular Expressions ...

A1-3 Reed-Schorr Language

A1-4 Schlaeppi's Language LOTIS

A1-5 language of Chu et al

A1-6 Okada and Motooka

A1 ™Y Metze and Seshu

A1—8 Dxiley and Dietmeyer oA—1 3

A*! Uassandra ^ A-

Ai""i0 Iverson A-̂ l̂5

A1 ""11 Gerace^s Method. A-̂ l6

A1 ™12 Roth's Sequence Chart ##*#.#.#*..##»###*«##***#********'*A™25

AI-I3 FMS Level Description A-27

A1 "*'14 ISP Level Description- . a™27

Appendix II A"2y

A2'"1 The Hsmnixtig Cod© eA™2^

Appendix III .A-30

Appendix IV Analysis of Sequential Logic Circuits A-32

. ACENOWlEDGmENT

I am indebted to my project supervisor, Professor Douglas Lewin,

Bnmel Hniveraity, formerly of Southampton University, for his guidance,

helpful discussions and his continuous encouragement. I also wish to

acknowledge the valuable assistance given by Dr. R.G. Bennetts with

this project.

I wish to thank International Computers Limited and the Science

Research Council for the financial support.

]̂ y gratitude extends to Catherine yuither for the timely

assistance in converting my illegible writing into a typed manuscript

and to Sharon Conlin for her patience and encouragement throughout

the preparation of this report.

IV

1.Introduction to Digital System Design Specifications

1.1 Introduction

A digital system is conventionally divided into

hardware, i.e., the part which implements the basic

characteristics of the system using electronic or

mechanical building blocks and which is relatively

difficult to modify, and software which forms a

superstructure on the hardware and assigns a set of

different characteristics to the digital system for

the final applications. The design processes of

the two parts physically different in that they

rely on different building blocks and consequently

employ different criteria. For example, hardware

design is influenced by the types of electronic

switching elements available, fan-in and fan-out

factors of gates, i.e., the number of inputs and the

number of outputs that may be connected to a gate,

packaging of the switching elements, interconnection

methods and problems of fabrication of sub-units and

units; whereas the software design is based on the

repertoire of instructions executable by the hardware,

memory accessing and information management techniques

and the input-output device handling techniques

employed by the hardware, and the communication

between various sections of software.

Conceptually however, the design phase for both

hardware and software is identical and can be

characterized by the following steps:

a. Define the system in a natural language

describing its overall characteristics, such as

input-output behaviour, performance, etc.

b. Convert the description in a. to formal

specifications.

c. Implement the formal specifications in terms of

appropriate building blocks with due regard to

physical constraints such as speed, cost,

reliability, testability and to a lesser extent

future modifiability.

Despite the identical nature of the design procedures

for hardware and software, £t is a current practice

to treat the two aspects completely differently,

especially in steps b. and c. Often step b. is

completely bypassed in the design process. This is

due to several reasons, the main ones being the

designers' reluctance to conform to any formalization

of the design process since it could be regarded as

reducing the scope for exercising their skill and

ingenuity, and the distinct lack of standard formal

techniques which could cover a wide range of problems.

Obviously then, the design process relies heavily on

the designers' past experience and ingenuity, is

extremely time consuming and prone to errors. Such

a process is also subject to inaccurate and inadequate

documentation. In many cases the documentation is

based on the final design with no trace of the

intermediate steps taken by the designer.

This means that there is a proliferation of many

different techniques currently employed in the design

of a digital system. While this practice does not

cause many problems when small systems are being

implemented'\i presents more and more acute problems

•when digital systems of large sizes, such as modern

computers are designed. ...Were, of necessity, the

design process must be divided up and the need for

suitable formalization of overall design techniques

good documentation jfor intercommunication between

numerous designers and for the subsequent

manufacturing^becomes more urgent.

1.2 Design Automation

In the last application mentioned above, the data

required particularly for large system implementation

is very indeed and in most cases certainly

too large for manual handling. Fortunately, however,

large and powerful computers have recently become

available and these can be efficiently employed to

handle the mechanical tasks in system implementation.

In fact, most manufacturing concerns already use

digital computers to perform component layout, back

panel wiring, and cable connections - also providing

a check on circuit completeness. Additionally,

useful tasks of documentation of parts-lists and

drafting are also relegated to the computer. Both

these factors assist and improve the production

process.

It is, therefore, natural to extend the scope of

design automation and consider the possibility of

employing the digital computer in the design process.

Apart from the obvious advantages of documentation

facilities and automatic logic generation, as

required in step c, the digital computer can also

provide to the designer some powerful facilities,

which, in most cases, otherwise would be beyond the

time and effort available. These are;

1. minimization, i.e., removing redundancies;

2. simulation to check the design completeness

and to obtain performance figures;

3. generation of test sets which would allow the

detection and location of faults if and when

they arose.

The results obtained by invoking the above facilities

can provide very valuable feedback to the designer

allowing him to modify the design specification or

the design itself as necessary,«»«kioreinitiate the

design cycle until an optimal, i.e., economically

satisfactory, solution is reached - a process which

normally should be executed before any expensive

manufacture is initiated. If the designer had

facilities to communicate directly with the computer,

e.g., via a teletype unit or a visual display unit,

the feedback cycle could be made much shorter.

The designer then would be in a position to

experiment with various designs, increasing

considerably his scope for ingenuity and exercising

his skill.

Unfortunately, however, in view of the current state

of the art, the above procedure has major drawbacks.

The data generated during the design phase is large

and the resulting computation is very complex even

when performed on large computers. Switching theory,

[l] , [2] , [3] the only tool available for rigorous

design, is still mainly applicable to small systems

and its application to large systems' design, both

hardware and software, is still at an infancy stage.

Nevertheless, the potential advantages of the above

approach are unquestionable.

The designer then,must be provided with a

communication interface with the computer, i.e., a

language. This language must be such that it is of

a high enough level so that too much time is not

spent specifying routine duties, yet at the same

time must be of a low enough level to be flexible.

It must also be relatively easy to learn to be of

practical value, e.g., in documentation, teaching

its use to new designers etc. And of course, the

language must be translatable into a format so that

tools provided by switching or similar theory may be

applied.

In the following chapters we examine the various

languages proposed so far and discuss their relative

merits and disadvantages. A comprehensive set of

examples is also provided in the appendix to complement

the discussion.

2. REGULAR EXPRESSIONS

2.1 Introduction

Regular expressions [4 - 30j describe the input-output

behaviour of a clocked or pulse mode system in a way which is

independent of its internal structure. As such,regular expressions

provide a method of representing a system as an abstract automaton

and of deriving a mathematical model for it. ^Iso, since all

clocked or pulse mode systems are covered, regular expressions can

handle a large class of sequential systems. The language of regular

expressions is precise and since the description is in a single-line

type of format it is much easier to process than, say, state tables

or state diagrams, Furthermore, because of their characteristics,

regular expressions sometimes closely resemble natural language

description. It appears, therefore, that the language of regular

expressions is a very useful tool for analysis, Sowevcr, the regular

expression describing a system can vary considerably depending on the

way it is derived and to the author's knowledge, no satisfactory methods

yet exist to discover the identities «f ^ .

The limitation of the language of regular expressions is

that it can only apply to a finite state system. A computer is

essentially a finite state machine with a separate large memory and,

therefore, regular expressions cannot be used for syntheg^&of

computers. Secondly, the regular expression representation is such

that when the expression becomes valid, i.e. when the system "accepts"

the regular expression the ouput is made equal to 1; otherwise the

output remains at 0, Therefore, for multiple outputs the only way

to use this language is to consider each output separately and

derive the relevant regular expression for each. Thus this method

is mostly suited for single output systems.

These disadvantages restrict the use of regular expressions

and designing digital computers using regular expressions only would

be an extremely long and laborious, if not an impossible process.

The matlimematical nature of regular expressions, however, has roused

considerable interest and a wealth of papers have appeared since

Kleenejjsj first introduced their use in connection with automata.

The following discussion, therefore, is included as an Illustration

of the language of regular expressions and a rigorous and complete

coverage is not included.

2,2 Historical Survey

The theory of regular expressions dates back to 1943 when

McCulloch and Pitts [2# developed a logical theory to describe the

behaviour of nerve nets. In 1956 Kleene {jsj extended the ideas to

describe abstract automata by regular expression and also showed that

every finite state deterministic automaton can be defined by a regular

expression and that every regular expression can be realised by a

finite state, deterministic automaton. The theory he developed, '

however, was mainly in terms of nerve nets and was rather complicated.

. Later Copi, Elgot and Wright [l2j, in their expository paper, simplified

the discussion but restricted themselves to instantaneous logic.

In 1960 McNaughton and Tamada added to the theory by providing

algorithms for deriving regular expressions from state diagrams and

vice versa. Some other treatments of regular expressions were also

. developed by Lee Q&J, Arden [4], Mayhill [25] and. Ek&in and Scott [28j ;

but their terminology and presentation varied widely. In 1962

Brzozowski published an expository paper giving a unified account

of all the theory published until then; and around the same time

Ghiron j _ ' ' 5 j independently published a correspondence enumerating rules

to manipulate regular expressions. Since then Brzozowski has

published a number of papers on this subject. He and HcOlusky

furthered the Ideas of Arden [4] and applied signal flow graph

techniques to regular expressions. Ee also overcame one of the major

disadva.n'ta.g'ss of the tschniô ue by McHa.ugh.toii & laoiada which requires

very lengthy manipulation, by developing the concept o-f derivs-tives

of regular expressions I 7] and the techniques to obtain state

diagrams from regular expressions using derivatives. Splvak [29] also

independently developed these techniques of derivatives, but he

referred to a derivative as "the quotient of division". Udagawa

et al [30J, in I965, unified the derivative approach and Arden's

linear equation method into a matrix form,

The more recent work in this field has been mainly on the

algebra rather than applications of regular expressions [$,11,27J .

2.5 Definitions and Properties

Consider a set of n inputs to a machine M as shown in

Figure 1, such that each input can talce up a value of logical 0 or 1.

These binary variables are called in-nut sifnials. A particular

ordered arrangement of the input signals is called an input configuration.

Assuming the input configuration represents a binary string with a

as the most significant bit and as the least significant bit, the

value 01 the string is called an input S7/mbol. and the set of input

symbols is called an input alphabet. It follows that the input symbols

can talce values between 0 and 2^-1 and the input alphabet contains 2^

symbols. Only synchronous machines are considered and the values

assumed by the input symbols at successive clocking times denote an

input sequence.

For the present discussion we restrict ourselves to a limited

set of regular operators containing +,.,*,(*) namely the disjunction,

concatenation and star operators and parenthesis. The regular

expressions are recursively defined as follows:

^0
&1

%1-1

FIGURE I. MACHINE M

10

1) Any symbol of the input alphabet, a 0 or a Xis a regular

expression.

2) If A and B are regular expressions then A+B, A.B (sometimes

written AB) and A* are also regular expressions,

3) Only expressions derived by application of rules 1 and 2 a

finite number of times are regular expressions.

Parenthesis are used to group sequences of regular expressions,

The symbol X is an input sequence of zero length and 0 is the null or

empty set of sequences, the difference being- that X is a set with one

symbol and ^ is a set with no symbols. The star operator is defined

as follows:

A* = X -i- A -f M + AAA + AAAA + ...

2 3 4
= X + A + A 4- A + A

An automaton realises a regular expression or it is said to

accept a regular expression if when a valid sequence contained in that

regular expression is applied to the machine an output of 1 is

produced, and such a regular expression defines the machine. Before

attempting to derive any regular expressions for a given machine and

vice versa, it will be useful to consider some of the basic properties

which are enumerated below.

If A, B and jC are regular expressions, then

i) A ™ ~ B + A Commutative

ii) (A + ̂ f C = A + (B + Associative

iii) (AB)0 A(BC) Associative

iv) + AC = + c) Distributive

v) (A + B)C Distributive

vi) A + 0 = 0 + A =
-)

vii) 0A 0 I Properties of

viii) 0 - x - = X

11

ix) AX =

X* = X

xi) A + A = A

xii) (A +

Properties of X

In some cases the knowledge of sequences from time zero is

not required or available. In such cases a don't care symbol is

useful. 11 is called i. meaning any sjmbol of the alpliabet and is

a don't care sequence*

2.4 Regular Expression from Natural Ianmiaf?e Description

As we stated in the preceding section,^regular expression

is essentially a sequence of inputs accepted by an automaton. Thus

the language of regular expressions can be used for describing sequence

recognisers and it is this kind of description that the language suits

most. If the set of input strings accepted by the automaton is* known

or alternatively if an automaton has to be designed with a known set of

input strings, then it is a simple matter to convert this description

into a regular expression. (The task of discovering the set of all-

input strings accepted by an automaton, however, is a very complex

one and in practice, except in a few oases, is impossible.

Suppose that it is necessary to generate an output if the

input string contains the sequence 1011 then the regular expression

describing this automaton would be simply

R = i*101l(i*101l)*, i = 1 + 0.

A better example would be one containing the Boolean

operators & (AIIo) and ' (negation). Per example, an automaton

accepting an input sequence containing groups of 11 followed by

groups of 00 but not ending in 01 or accepting an input sequence

containing groups of 101 would have the regular expression

R = (i*ll(ll):^00(00)*) & (i*Ol)' + i*10l(l0l)*

12

Another, useful, example is a divide-ty-two automaton

which accepts all sequences containing an even number of I's,

This automaton is defined completely and precisely by the regular

expression

R = 0*10*1(0*10*1)*

2.5 Regular Expressions for Combinational Loaio

As was stated before, a regular expression decribes a

sequence of input symbols at successive clock times necessary to

produce an output of 1. It follows, therefore, th&t the regular

expression for a unit delay is

% = (1)

This expression is valid for a machine containing

instantaneous logic. ' If, however, a unit delay is inherent in the

logic then the required expression is

R = i*l (2)

Regular expressions for combinational logic devices can be

similarly derived and some examples are given in figure 2.

2.6 Re&ular Expressions from State

The technique illustrated below is due to Arden^4],

Each state has a regular expression associated with it which

describes all the sequences necessary to bring the machine into that

state from a starting state. This regular expression is obviously

equal to all the regular expressions associated with the adjacent

states, i.e. the states from which the state under consideration can

be reached by inputting a single symbol, followed by the symbols

which will cause the transitions. This equation can be written as:

2sl = + Dggagi + ... + Dg^a^^ (3)

13

AN AND GATE R = T 3

AN OR GATE R= /U+2+3)

AN INVERTOR R= i*0

FIGURE 2

14

where is the regular expression describing all the sequences

taking the automaton from the starting state to the state and

^21 input symbol causing a direct transition from state to

state q^, etc,

Regular expressions associated with other states can be

written down similarly;

^ 2 ^sl^l2 ^2^22 + + ̂ n^n2'

4 s - ^sl^ls + 42^2s + ' - + ^

4 n 4l^ln 42^2n + *" + (4)

where X is the starting symbol.

(These can then be solved as simultaneous equations.

As an example consider the state diagram shown in figure 3,

of a machine with only one input. If A,3,0, and D represent the

regular expressions associated with the'states A,3,C and D respectively,

then the relevant equations are

A = m + X (5)

B = AO, (6)

c = m + M + CO (Y)

D = CI + BO + DO (8)

Then substituting for S in (7)

C = A(01+l) + CO (g)

[This is an equation of the type

X = 201 + B

which suggests that a sequence 3 is required to arrive at state X

and any further occurrence of sequence A will cause transition back

i

o

FIGURE 3

to X, i.e. the solution to the equation is

X =

In fact it can be shown that this is the only solution to this type

of equation proTiding A does not contain aJ'

Thus the solution to ($) is

C = A(01+l)0* (IG)

Prom (lO) and (6)

D = AX(01+1)0*1 + 00) +.Dp

= AX(01+1)0*1 + 00)0* (11)

and from (5) and (ll) ve get

.A = AX(01+l)0*l + 00)0*1 +A .

= x (((o i + i) o * i + 0 0) 0 * 1) * .

= (((0 1 + 1) 0 * 1 + 0 0) 0 * 1) * . (1 2)

Hence

B = (((0 1 + 1) 0 * 1 + 0 0) 0 * 1) * 0 . (1 3)

c = (((0 1 + 1) 0 * 1 + o o) o * i) * (o i + i) o * . (1 4)

D = (((0 1 + 1) 0 * 1 + 0 0) 0 * 1) * ((0 1 + 1) 0 * 1 + 0 0) 0 * (1 5)

If the machine produces an output in state D then the

regular expression defining the machine is D.

2.7 State Diagrams fron Regular Expressions

The method described below is due to McBaughton and Yamada

[22]. It is illustrated with a running example which uses the

regular expression obtained in the last section.

Step 1. Associate a position 1 with the leftmost symbol

in the regular expression. Associate a position 2 with the next

occurrence of the same symbol to the right and so on until the last

occurrence is suitably identified. Repeat this procedure for all

f sae Appendix III.

1 7

the other symbols in the alphabet. These identifications appear as

subscripts to the symbols in the regular expression.

Applying this step to the expression D we get

B = (((Oill+lgjOgl;* 050pO|l^)»({05l5+l6)0|YOg(^OJj,. (l6)

A position is termed initial if a valid sequence is contained

in the regular expression which begins with that position and

similarly a position is terminal if a valid sequence can terminate

in that position. In the above regular expression these positions

are

Initial 0^, Ig* lg» Og,

Terminal 1^, 0^, 0^^,

Step 2, In this step, we determine all the allowable

transitions. These are ordered pairs of positions which a valid

sequence can follow. The meaning should be clear from the ordered

pairs in the example which are

(°2

(04.05). ("4

(cy,o^), (O5 'Ij)

(Og.i^);

(Oy.Oy), ,1?)

5

(°9*°lo)'

(°io'°io) 5

(1], fOg)' ,13)

(ig:

(1^,0^), (I,, '14)

(I4' '^2)

18

(1^,0^q);

Step 3, The state diagram is then built up using the

following procedure. Assume a present state q corresponding to

position set

1 ^ is azi integer j

of the symbol i. Suppose a symbol j is received then the next

state q. is the largest set {?.(such that there is at least one

t
allowable transition to each position of the set) P. (from the set

r 1 L J J

"there is no such set, i.e. it is an unallowable transition,

then the ne%t state is a fault state and all the transitions from this

state terminate in this state. This process is continued until all

positions are covered. An initial starting state S is also assumed.

Applying this procedure to the example we obtain the state

diagram shown in figure 4. This appears quite different from the

state diagram in figure 3» for wliich the regular expression ̂ was

derived; however, using usual minimisation techniques the diagram in

figure 4 reduces to the same as in figure 3.

2.8 Derivatives of Regular Expressions

A far more elegant method to obtain the minimal state

diagram is the use of derivaties of regular expressions, a method

developed by Brzozowski [,7 J and independently by Spivak ^29]. The

derivatives simply give an indication whether a particular sequence

is contained in the regular expression or not. They also handle

multiple occurrences simultaneously; hence repeats, corresponding to

loops in the state diagram are recognised and identical loops merged,

The state diagrams thus obtained, therefore, are minimal.

19

FIGURE 4

20

There are two kinds of derivatives: a) the left derivative

L- -1

denoted "by D^IE j where E is t^e regular expression whose derivative

is taken with respect to the- sequence s, and d) the ri^t derivative

which is denoted by 2hey "both caa be nsea identicqUj to

develop state diagrams. Por the discussion below, we restrict

ourselves to the left derivative and omit the superscript.

The derivative of a regular expression B with respect to a

sequence s is defined as

\L~J [tjst EE

Before going into the details of this method, a function 6

has to be defined and rules of derivatives given. The 5 function is

defined by

5[s] = i if * £H

= 0 if X ifR

and the rules of derivatives, given without proof, are listed below,

= A :#ai = a2

= ^ otherwise (l9)

where a^ and a^ are symbols of the input alphabet.

If a is a symbol of the input alphabet, f is any function

of the two regular expressions E and then

Da[RQ] = CDa[R])& +6 [gjaalo] (20)

(21)

Da[a\] = Da[g" (22)

= f(Da[k], %&[&]) (23)

and finally D = E

where » is used to indicate negation,

From the above rules it follows that

V 2 M ° % [\ H] (24)
•••='n[S]= (25)

21

Also from the definition of derivatives it follows that a

regular expression can be written in the form

R = 5 R + eD R (26)
— — aeA a — ^

vhere 5 R is introduced if R contains A.

2.9 State Diagrams from Regular Expressions using Derivativ tsf 7.1 •, r29l.

In section 2.7, an elementary state diagram was obtained from

a regular expression and then switching theory was used to reduce it to

a minimal form. The algebra of regular expressions can also be used to

obtain a minimal state diagram directly. To do this, first the rules

and properties of identical, or more correctly indistinguishable, states

must be noted. Indistinguishability is defined as follows: two states

of an automaton are said to be indistinguishable if the behaviour of the

automaton is identical in each of the two states.

Assume aji automaton M, defined by a regular expression R. It

follows from the definition of regular expressions that if the automaton

is in the starting state then a valid sequence s, contained in R will

be accepted by M. Similarly a state q^ is said to accept a sequence s

if M is in state q^ and if the sequence s is applied to M, an output of

1 is produced at the end of s. Quite clearly, then, two states q^ and

and q. are indistinguishable if all the sequences accepted by one are
J

also Accepted by the other and vice versa.

Now, if a sequence s^ takes the automaton from the starting

state q to a state q., it follows from the definition of derivatives

-that the derivative of the regular expression R with respect to s^ is a

regular expression which contains all the sequences accepted by q^.

Therefore the definition of indistinguishability can be modified to read

"that two states q. and q. are indistinguishable if the with
^ J

respect to s. and s. are equivalent where s. is the sequence taking M
^ J J

fTom startins state to the state 5. 3 also smilarly defined."

22

This provides the criterion for minimality.

The state.diagram then is obtained by the following procedure*

which applies to an automaton M defined by the regular expression R

and whose input alphabet is containing the input symbols a^, a^

Step 1. Begin by talcing R which will be R.

Step 2. Determine all R .and associate a new state with each
i

distinct D R .. This will give all the derivatives to
&i

sequences of length 1.

Step 3. Continue step 2 for sequences of length 2 axid beginning with

each a. for which D R were different.
1 a. —

1

step 4. Repeat step 3 for higher length sequences until no further

distinct derivatives are obtained.

Step 5. Determine the outputs associated with each of the states

generated by the above steps. The output is 1 if the <5

function of the corresponding derivative is equal to X.

This follows directly from the rules of derivatives and the

definition of 6 function.

The above function is illustrated by the same example in the

previous sections where the input symbols are {0,1} and the output is z.

'
D = = (((0 1 + 1) 0 * 1 + 0 0) 0 * 1) * ((0 1 + 1) 0 * 1 + 0 0) 0 * (1 5)

D : =]D 5 (1 0 = 0 . Z = 0 . (2 7)

^ 0
D : = (1 0 * 1 + 0) 0 * 1 D + (1 0 * 1 + 0) 0 * 6 (D q D) = 0 , z = 0 (2 8)

^ 1
D : = 0 * 1 0 * 1 D + 0 * 1 0 * S (D^ D) = 0 , z = 0 . (2 9)

^ 0 0
D : = 0 + l D + 0 *

" " o o
D) = X z = 1 . (3 0)

®01 D : = 0 * 1 0 * 1 D + 0 * 1 0 * - D, D
— 1 —

(3 1)

' ^ 1 0
D : : 0 * 1 0 * 1 D + 0 * 1 0 * = &, D

— 1 —
(3 2)

®11
D = : 0 * 1 D + 0 * = D

— 0 0 — (3 3)

^ 0 0 0
D = : 0 * 1 D + 0 * = Dqq D (3 4)

^ 0 0 1
D = : D = D, D

— X — (3 5)

2)

Thus there are only four distinct states corresponding to

D , Dq D , D , and D and the state diagram is as in figure

5 which is the same as in figure 3 with states A,B,C,I) replaced by

states q.^,qQ,q^ and respectively.

In the examples so far the outputs are associated with states

only, i.e. only Moore machines are considered. Another type of

machine, called a Mealj ; type, has its outputs associated with

transitions, i.e. they depend on the present state and the input.

The above procedure is easily amended to produce Meal^^ type machines.

In the Moore type of machines a distinction is made between

two derivatives differing only by X as one of these has an output

associated with it and the other one does not. In deriving Meal^

machines this distinction is omitted and the outputs are associated

with transitions. The Healey machine diagram corresponding to the

example is shovn in figure 6.

2,10 The State Characteristic Equation

Prom its definition a derivative of a regular expression with

respect to a sequence s is a regular expression accepted by the state

q, , where the sequence s takes the automaton from the starting state

qĵ to q , Thus, it follows that a technique similar to Arden's can

be applied with derivatives to state diagrams to obtain regular

expressions. Udagawa et al [30J unified Brzozowski's derivative

method and Arden's simultaneous equations method into a matrix form

to do this giving the state characteristic equation.

Consider a set of states {q^, q , ..., q^}. We define a

matrix D

24

FIGURE 5

FIGURE 6

25

D

" V \ l "̂ 12 *ln

^21 "̂ 22 *2n

• • • •

• • • •

. V _̂ nl '̂ n2

(36)

such that d.. is a regular expression which describes the class of
1J

sequences causing a transition from the state to

define a matrix A

We also

A =

n

^ 1 ^ 2 ^13 " '

^21 *22 *23
a,
2ii

&n2

(37)

where a.. is ah input symbol causing a transition from the state q.

to qy And finally we define ail n by n matrix E whose diagonal

elements are X and all the other elements are

Now if the starting state of the automaton is q^, using

Arden's method we get

11

12

^11*11 * *123^1 * + *ln*nl '

^11*12 + *12*22 + ... + d_ a
In n2 .

Then if we write d^^, d^^, .

= V + Ei.

Similarly = D^A + B etc.

Hence D DA + E.

. + a, a
In mi.

as D^, we get

(38)

(39)

By similar procedure the derivative form can be written as

D = ilD 4- E. (40)

Equations (39) and (40) are called the characteristic equations,

26

The matrix A.is simply another way of stating the state

table and the matrix E expresses the output states. Given that an

equation of the form X = AX + B has a solution X = Â B"!" and the

equation of the form X = XA + B has solution X = BA*1", usual matrix

techniques can be extended to solve the equations (39) and (4 0) ,

2.11 Minimal State Biagraras for Multiple Out-puts

As was stated before, one regular expression has to be

associated with each output;an,d therefore one way to obtain state

diagrams for multiple output automata is to derive a separate state

diagram for each output. However, this does not necessarily produce

an overall minimal machine. Brzozowski gave the following method

which is an extension to the derivative method.

The set of n. regular expressions associated with the n outputs

is written as a vector

S = ^2' •••» (41)

Then using methods described above a vector of derivatives and another

of outputs are generated, i.e.

. Da. 3a. (42)

~ ^ ~ Z2» •••> }• (43)

As before, the state diagram is built up by associating a new state

with each new vector. The output vector is also taken into account

if a Moore machine is required»

2.12 Transition Graphs

A state diagram describes a deterministic type of system.

By this we mean that if an input is applied to the system in a state,
«

then the next state can be uniquely determined; and also that the

system at any given time can exist in only one state. These

restrictions are necessary to make a physical realisation of the

system possible.

27

In the preceding sections we developed state diagrams from

regular expressions adhering to the above constraints. However,

regular expressions can describe very complex sequences and while it

is possible to obtain a state diagram of the system to accept a given

regular expression it is sometimes easier to lift the restrictions

and consider only the sequences or sets of sequences described by the

.regular expressions.^ The diagram we then obtain is called a

transition graph,

A transition graph consists of suitably identified nodes

and directed arcs which are labelled by the input symbols connecting

them. At least one of the nodes is termed as a starting node,

identified by a short unlabelled arrow , going into it, and at least

one of the nodes is an accepting or terminal node indicated by a

double circle. It is not necessary to have an arrow leading out of a

node for every input symbol; also there can be more than one arrow

from a node labelled by the same input symbol.

A sequence of directed arcs of a transition graph is called

a path and every path describes a sequence of input symbols determined

by the symbols associated with the directed arcs, A sequence is said

to be accented if there exists at least one path between a starting

node and a terminal node which describes the sequence; otherwise, it

is said to be rejected.

A regular expression describes all the sequences accepted by

an automaton. Thus, from above, it is clear that to construct a

transition graph for a given regular expression, it is only necessary

to generate nod^and arcs to contain paths describing the sequences

in the regular expression in the simplest way,

For example, consider the regular expression .R = 10*1+00.

To construct a transition graph fo- this, assume a starting node A.

28

An input of 1 will cause a transition to a node B, Any number of

O's following this 1 will cause a transition back to B and finally

a second 1 will lead to the terminal node C, Similarly, a 0 in the

starting node will lead to a node D and a second 0 will lead to the

terminal node C, This transition graph is shown in figure 7,

This procedure can be extended to more complicated regular

expressions by merely segmenting the sequences in the expression and

suitably coalescing their transition graphs. As an illustration the

transition graph for the regular expression D in (ig) is shown in '

figure 8 which was obtained by straightforward inspection only.

2.13 Conversion to a Deterministic form

In general a transition graph is non-deterministic and the

automaton described by it cannot be directly realised. Eowever, a

systematic procedure does exist to convert any non-deterministic '

graph to a deterministic graph which means that where it is easier

and more convenient a non-deterministic graph may be derived with the

certainty that a deterministic graph may be obtained. The procedure

is given below and is illustrated with the transition graph of

figure 8,

Step 1. Begin by establishing a node to represent the set of all

starting nodes.

Step 2. Find all the -successors of the starting node for each input

symbol and create a new node for each distidct set of

successor nodes. If a particular (new) node does not have

any successor for a particular input symbol then a successor

node ^ is generated. This node represents the condition

when a non-acceptable string is applied to the automaton.

In state diagrams this would be equivalent to the "don't care"

or "can't happen" conditions. Once the automaton has

FIGURE 7

2 9

TRANSITION GRAPH FOR R= lO l+OO

<0

> / 0 0

FIGURE 8. TRANSITION GRAPH FOR

D = (((0 l+ l)0* l+00)0* l f ((0 l+ i)Cf l+00)d

3 1

reached the 0 node any ftirther input sequences cause

transitions back to this node, Tor this reason this

condition is sometimes called a fault state.

Step 3. . Repeat step 2 for every new node generated until all distinct

sets of successor nodes of the non-deterministic graph are

covered.

Step 4. Any new node representing a set of nodes which contains a

terminal node is also made a terminal node of the

deterministic graph.

The above procedure is simplified by building up a successor

table using the results of steps 2 and 3, in which the columns

represent the input symbols and the rows the nodes of the deterministic

graph.

Applying the above procedure to the transition graph in

figure 8, we obtain the following:

Step 1. There are two starting states, A, H. We create a node AH

to represent the set of nodes

Step 2. The 0-successors of A are S and P and of H are J and B.

Let us name the set of nodes as BFJIJ, Similarly,

the 1-successor of the set {A,H} is the set {C,K}

represented by the node CK,

Step 3» By repeating step 2 for nodes BFJlf and CK and so on we

construct a successor table shown in figure 9o

Step 4« Since H and P are terminal nodes in the non-deterministic

graph, the nodes SI and GP of the deterministic graph are

also made terminal nodes and this is indicated by making

the outputs in these nodes equal to 1,

Clearly, since each node has only 1 successor for each input-

symbol and there is only one starting mode, the successor-table defines

79 'J

a aetorministic automaton. The descrijition in figure therefore,

is identical to a state table, with the node AH representing the

state AH, etc. By inspection we note that the nodes CK and DL are

equivalent and also that the nodes EM and GP are equivalent. Thus

we can derive a state table with 4 states to accept the regular

expression D in (15) by using the conversion procedure. This state

table and the corresponding state diagram are shown in figures 10

t
and 11 respectively,

2.14 Conclusions

In this chapter we have briefly introduced the language

of regular expressions and discussed its applications to finite state

systems. We note that an algorithmic procedure does exist for

obtaining a regular expression for a given state diagram [63 . It

is obvious that the complexity of the regular expression increases

rapidly with the number of states; it increases even more when the

size of the input alphabet increases. We also note that the final

regular expression depends very much on the intermediate steps taken

and several regular expressions seemingly completely different may

represent the same system. Some theorems do exist to manipulate

regular expressions [1^ ,[13] , but since no canonical form is

available foriBgular expressions^ no algorithmic procedure exists

to prove the identity of equivalent expressions.

In some cases regular expressions for a particular system

can be written down directly. However, this is certainly not the

general case and we find little justification in statements, such as

that byOglesbylja^ , "... then the logic designer has only to

' Compare figure 11 with figure 3 from which the regular expression
jD was originally obtained.

3 3

INPUT OUTPUT
O I

AH

BFJN

CK

EM

GP

DL

BFJN CK

EM CK

DL EM

GP AH

GP AH

DL EM

O

FIGURE 9

SUCCESSOR TABLE FOR D

34

\ INPUT
S T A T E \ O 1

OUTPUT

1 2 3 O

2 4 3 O

3 3 4 O

4 4 1 1

FIGURE 10

STATE TABLE FOR D

35

FIGURE II

STATE DIAGRAM FOR D

36

transform the word statement into a regular expression - an extremely

simple task."! The problem of explaining a given regular expression

by a word statement is even more difficult and this may be readily

verified by examining the regular expressions from this chapter.

The problem of deriving a finite state system to accept a

given regular expression has been tackled in three ways. The last

technique, that of transition graphs, is the simplest and is

algorithmic in nature and consequently may be programmed for a

computer fairly easily. This still leaves us with the problem of

obtaining a regular expression describing the system; the difficulty

becomes more acute if multiple outputs are handled and impossible

when the system to be described is non-finite, i.e. where an Infinite

or very large memory is coupled to a finite state system.

We conclude from the discussion so far that the language of

regular expressions, by itself, is inadequate to describe most practical

systems. Their best use is when describing sequence detection, and

thus may be ideally employed in syntax checking of programmes [13] .

Lan^ua^es Describin% Micronro#rammed Systems and Their A^plicationg

5.1. Introduction

In general any digital system may be considered as a finite

state machine and techniques of switching theory described in [ijfLzJ,

or regular expressions discussed in Chapter 2 may be applied in the

design of such a system. However, in large systems, such as the

present-day computers, the number of states is so large that the theory

of finite automata tends not to be very useful. On the other hand,

no formal theory similar to switching theory yet exists for a large

system which has provisions to exclude unnecessary detail and still be

rigorous enough to define the behaviour of such a system concisely and

precisely. An attenpt can, however, be made towards a formalism by

examining the present-day large digital systems.

Large digital systems are essentially instruction execution

machines. The design of these systems involves providing for the

facilities to store the data and the way the data is manipulated to

execute a given set of instructions. The system can, therefore, be

partitioned into two parts and we obtain the classic model, figure 1,

suggested by Glushkov fgG) which consists of an operational part

containing the data storage and manipulative facilities, and a control

part which provides signals to the operational part in a certain

sequential mode to activiate the manipulation within the operational

part. The control part can also specify certain tests, the results of

which in turn can alter the sequencing of the control part.

The data, which is usually a string of O's and I's, is stored

in memory units called registers. The operational part contains a

collection of registers, and combinational logic to create data paths

between the registers and to perform logical functions on this data.

The flow of data in such a configuration is referred to by Register

38

O

i
UJ
CL
o

15

a

h-
o :
<

CL

/I

w

Ifl

C
O
u

_J
o
cc K~
i_ DC
z <
O CL
o

3
CL
E
O
o

o
H-
o
w
x>
o
e
>

•S
3
o

g * Ll

59

Transfers; and the function of each instruction may be expressed in

terms of register transfers in an algorithmic manner«

Obviously it is possible to produce one set of registers and

register transfers for each instruction in the machines repertoire;

however, this will inevitably result in a large amount of redundancy.

The logic designer, therefore, proposes an intuitively derived set of

Registers sufficient for the instruction execution, and also limits the

operations to an optimal number determined by the size and speed

requirements and the instructions themselves. These operations are

called elementary operations. Elementary operations are also constrained

so that once initiated, they do not need further inputs from the control

part for completion, and typically reflect the available resources.

For example, with integrated circuit hardware technology the elementary

operations on data may include logical AND, logical OR, negation, etc,

but may not include addition or subtraction, whereas in Large Scale

Integrated systems addition and subtraction may easily be treated as

elementary operations.

The signals from the control part initiating the operations in

the operational part are called micro orders, and the algorithm of an

instruction in tezms of these micro orders is called, a microprogram'*'.

Thus the control unit contains a collection of microprograms for the

instructions in the machines instruction set.

* Husson's 16?, p.20] definition states that a microprogram is a
set of micro-orders stored, in a control store on a word basis.
We remove this restriction and hence, generalise the definition
to cover other methods of implementing the control part including
the "hard-wired" method.

40

The design of a digital system with the structure described

above consists of defining the storage and manipulative facilities,

writing suitable microprograms to interpret the instructions in the

instruction repertoire, and obtaining a suitable control part to

execute the microprograms. Clearly then, the functions of such a

. system can be expressed by the microprograms and this suggests a method

of formalising the design procedure for a large system.

With the above approach the configuration of the operational

part is fixed and microprograms are written in terms of the available

facilities, A microprogram can also be viewed from another angle

and used to determine the manipulative facilities in terms of elementary

operations that are necessary to execute the instructions. In this

way the control part and a section of the operational part can be

synthesized from the microprogram specifications.

Projecting even further, a microprogram can be assumed to be

an algorithm interpreting an instruction. It should then be possible

to extract sufficient data to determine what storage facilities are

required and how they are manipulated, i.e. a fuller synthesis approach

can be taken based on a microprogram type specification.

Microprogram specification, we therefore believe, is an

important step in the formalisation of design of large systems.

The next step obviously is to construct a suitable language

to specify microprograms in a way that is easy to comprehend, precise

and concise. The requirements on the language become more acute in

a Computer-Aided-Logic-Design (CALD) environment since the specifications

must be sufficiently low level for automatic interpretation, and at the

same time, high level yet flexible for the designer to work at his own

level without necessitating detailing.

41

Several languages have been devised to specify microprograms

and the associated architecture of the operational part with varying

degrees of success. We discuss these languages below,

5«2 Reed's Register Transfer Language

A language to describe the transfers between registers was

first proposed by Reed in 1952]78l • An account of this language is

also given in • This language is simple and has a small vocabulary;

however, we shall examine it in detail here to elucidate the concepts

involved before progressing to the more complex and higher level

languages.

In this language a register refers to a hardware block

consisting of an array of memory elements.each capable of storing one

bit of data, i.e. flip-flops. -It is identified by an alpha character

or a string of alphanumeric characters beginning with an alpha character.

The register may be indexed suitably to identify individual flip-flops

if necessary and this also provides a facility for using registers of

different lengths. Operations are usually specified between the full

registers; however, the individual flip-flops may also be selected if

required. In the former case, the expansion in the translation process

produces the latter form.

Consider a machine consisting of three registers, A, B and C,

each 16 bits long. Let the operations to be .performed depend on bit

16* of register C: if this bit is 0 then a logical AlID is performed

with the contents of the registers A and B, otherwise a logical OB. is

performed. The result then is placed in register C, The register

* The convention adopted here is to consider the contents of each
register as a binary representation of a number and to refer to
the leftmost bit as the most significant bit. The least
significant bit, unless otherwise specified, will always be bit 1,

42

dD

Ic
u
o
E

JN
Cl
.i
Ui

(N

3
cn

4)

transfer statements to describe this action would be written as

: A & B * C (1)

|c(l6)| : A + B-rC (2)

where &, + and ' represent the logical Aim, logical OR and negation,

respectively. The vertical bars is a shorthand notation to indicate

that the action on the right hand side of the colon is to be executed

if the logical value of the variables between the bars is 1, i.e.

I I : can be translated to the Algol statement î f ... then. The

variable may be substituted by a boolean function if necessary. The

arrow is a short form notation to indicate the replacement of the

contents of the register at the head of the arrow by the variable or

boolean function specified at the tail of the arrow. Therefore,

transfer 1 correctly translated means "provided that bit 16 at register

C at a tineiis not 1 replace the contents of register C at time t+1 by

the AIU) of the contents or egisters A and B at time t, assuming that

the transfer requires a unit time".

The transfers 1 and 2 may be expanded to

^(16)'I : A(i) & B(i)^»c(i), i = 1,2,...16 (3)

and p(l6) I : A(l) + B(i)^C(i), 1 = 1,2,...16 (4)

In this example all the elements of the registers were

Involved in the transfers simultaneously, but it is quite possible that

only a part of each register is affected. Suppose that only the last

three significant bits were used in the transfer and the others were

unaffected, then this could be writen as

I C (16) ' I : A(l) & B(i)^rc(i), i = 1,2,5 (5)

and I C(16)| : A(i) + B(i)<rc(i), i = 1,2,3 (6)

C(j)-rc(j), j = 4,5, ... 16 (7)

but it would be sufficient to write only transfers (5) and (6)

without losing clarity.

In all the above cases the value of C(l6) determined the

operation on each element of the registers and it can be considered as

a scalar multiplier. For example, transfers (l) and (2) can be

44

rewritten as

C(16)'(A & B) + C(l6)(A + B)^»C (8)

It is easy to see that the operations described above have

a direct correspondence with hardware elements. In Reed's original

language other operators, such as shifting and addressing were also

included again having direct hardware counterparts,

Schorr [82], [93], used this language and developed algorithms

to generate the necessary boolean equations for the set and reset

terminals af the flip-flops, i.e. the synthesis procedure. This

translation process is in two steps; a) each statement is converted

to produce the required set and reset equation, and b) all the

individual boolean equations for each set and reset terminal are OR'ed

together. Thus from transfer (l) we get

C(i)/l = C(l6)'.A(i).B(i), i = 1,2,...16 (9)

and G(i)/0 = (c (l 6) ' . A (i) . B (i)) ' , i.= 1,2,...16 (l o)

where C(i)/1 is interpreted as bit C(i) is set to 1 if the logical

value of the expression on the right hand side equals 1, i.e. the

boolean equation for the set terminal. Similarly from transfer 2

we get

C(i)/l = C(l6)(A(i) + B(i)), i = 1,2,...16 (ll)

G(i)/0 = (c(l6)(A(i) + B(i)))',l = 1 , 2 , . . . 1 6 (1 2)

Grouping these boolean equations we get

C(i)/1 = C (l 6) ' . A (i) . B (i) + c (l 6) (A (i) + B (l)) , i = 1,2,...16 (13)

and C(i)/0 = (c (l 6) ' . A (i) . B (i) +(C(l6)(A(i)+B(i)))', 1=1,2,..16 (I 4)

In Heed's original language the sequencing was implied by the

order in which the transfers were written; however this had limitations

when branching or repeats had to be specified. Schorr included timing

pulses as part of the boolean functions of the conditions and introduced

a type of 'goto' transfer. By this method the above example could be

45

written as a sequence of transfers as

Start : 1-̂ t^;

I t^.C(l6)'' j : A & B-v G, l-> tgj

It .0(16) I : A + C, 1+ tgi (15)

where start initiates the sequence of transfers in the machine and

tg is a condition specifying the next transfer. t^ and t^ therefore

are the outputs of the circuitry controlling the transfer and start

and C(l6) are the inputs to it. It is a simple matter from the above

description to extract the logic for the control circuitry,

Schorr also suggested a method for analysing digital systems

by converting boolean equations into register transfers. It requires

that all the registers and control variables are declared as such and

that the boolean equations specify set-reset conditions and that they

are in a sum-of-proaucts (SOP) form. The analysis program makes

successive compilation passes, first separating out the control and

register transfer expressions and then building up the register

transfers. The transfers so obtained, obviously reflect the hardware

structure and operation, Schorr did comment on the difficulty of

obtaining the transfers in terms of composite events, i.e, involving

non-logical operations, Nevertheless, the procedure does allow a

concise and formal description to be obtained for an already existing

. system which then can be used for re-synthesis or simulation.

The language described so far is simple, symbolic and easily

learned; and there is' a direct correspondence between it and the logic

hardware. However, since it has a small vocabulary, a complete

description is lengthy. Another disadvantage is that the language

is too symbolic to be suitable for communication between the logic

designers and members of other disciplines,

Gorman and Anderson [57] enhanced this language slightly by

introducing simple arithmetic operators, facility for subroutines and

46

declarations of special hardware blocks, such as a parallel adder or a

oornter, whose internal functions may not need detailing, particularly

if it is to be implemented with L.S.I, circuits. Algol type operators,

such as j^, then, else, goto, allowed a more concise description and

made it more "readable".

The translation process with this language, due to Proctor {T?!,

generated a comprehensive table specifying all the registers Involved in

each transfer, the operations, any additional components used for the

transfers and the timing. The table was filled as far as possible

with the data from the register transfer description and then completed,

particularly with regards to timing, by the designer. The table was

then analysed to achieve the shortest possible execution time. The

table then contained data in similar format to that used by Schorr,

from which boolean equations could be generated,

Ilovaiski and Lozowskii [63] described a method to synthesize

logic for a computer from a formal specification which was not too

unlike Gorman and Anderson's method. The formal description was

divided into two parts, a) a declaration part, and b) an operational

part. The declaration part declared facilities pertinent to data

storage and address mechanism, namely i) storage devices and their bit

capacities, ii) methods of representing numbers with their formats,

111) address formats, iv) methods used to modify addresses, v)

instruction system, vi) principles used to organise the data, and

vii) a table defining the durations of all standard operations

expressed in arbitrary units.

The operational part consisted of register transfers and

branching information in a similar way to Schorr's and organised with

a single elementary operation per line each with a unique label.

47

The synthesis algorithm first assigns the time durations to

each step in accordance with the initial declarations. Consecutive

operations are then merged to occur in the same "time slot" unless a

ŷ Jî iable on the left hand side of one operation is used on the right

hand side of the other, or if conditional transfers in some way are

affected by the operation to be merged. This results in several micro

operations to be grouped together to form new larger micro operations.

The subsequent steps are identical to those discussed previously.

3*3 languages based on Programming Iianguages

One of the goals of a design language for describing logic

is that • f, the language may be used in a computer-aided—design

environment. Consequently, a description in such a language is to

be processed by a computer and in effect constitutes a program for a

computer. It would be natural to ask the question "why not an already

existing programming language?" as the designer then would be able to

use currently developed software providing good flexibility. Another

advantage is that it reduces the overheads of "learning" a new language

which also means that the language could be used easily as % standard

language for communication between members of different disciplines.

On a closer ezmination, however, it is found that the capabilities

of programming languages tend to be more numerically oriented and

features pertinent to logic design, including synthesis and simulation,

are not handled efficiently. Nevertheless, it should be possible to

augment a programming language to make it suitable for microprogram

definitions and still retain its overall structure.

Several languages have been proposed, based on FORTRAN,

ALGOL, IVERdON and P I / 1 . These are discussed below.

3.3.1 FORTRAN

The only language based on Fortran was proposed by Motze

4 8

and Seshu in I966 [74]* A competing system is viewed as consisting

of separate automata each possessing its own controls and sub-controls*

With this type of modelling.it is possible to describe parallel and

asynchronous operations and as such represents the first real attempt

at describing large systems with realistic properties.

The description in this language is given in two blocks.

In the first, the system constraints such as the channel capacities,

simultaneity of automata, a measure for cost-effectiveness and global

constraints and variables are given. The second block defines each

automaton with its declarations and register transfers. The transfers

themselves were restricted to boolean operations; the other operations

such as arithmetic functions were called as subroutiam&which in turn

were detailed as boolean operations.

One of the reasons behind using subroutine call structure

is that each subroutine could be detailed in several different ways

all producing the same result but having different overheads and

which could be stored in a back-up library. The "compiler" then

could search the library to choose one of the routines best suited

for the application. This concept is very useful and will be

explored further later on.

The language allows simultaneous operations and if an

interdependence is encountered a method of waiting to allow correct

sequencing is defined. Another facility included allows the global

conditions to be over-ridden for a particular operation. These

suggest that any general asynchronoua machine may be defined using

this language. A language proposed by Schlaeppi (discussed later)

had a limited facility of this type but the concept developed by

Ketze and Seshu was a significant improvement over the earlier ones.

However, to the author's knowledge, no translator; was

constructed for this and no further references have been available.

49

3.5.2 AlGOIj

Schlaeppi proposed a language based on Algol in 1964 {8(1,

which was one of the first to be capable of describing a computing

system in a hierarchical manner. He introduced four notions for

this, namely a step, a sequence, a function and a group, A step

was defined as a set of elementary operations which are explicitly

declared to be executed in parallel and a succession of steps constitute

a sequence. In cases where the internal structure of a particular

section was not known or need not be known, then its terminal behaviour

was called a function; and finally a group represented a collection

of sequences or functions under a common control. Thus a degree of

partitioning of the system could be indicated in the description.

Secondly, the function facility allowed the machine organisation to be

described with broad structural features; the subsequent expansion,

as would be necessary in synthesis, could be done by refining the

description.

Schlaeppi also introduced time indication in description,

firstly by declaring time for standard operations in advance - in a

way similar to that adopted by Ilovaiski and Lozowskii - then by timing

each step either in units for synchronous operations or by making a

transfer conditional upon a ready signal and thus setting up an inter-

lock for asyncnronous operations. In addition each group contained

an "availability indicator" which if set implied that the group was

busy, and which could be used to augment timing interlocks.

The transfers within the steps were written in an Algol-like

form and usually were between registers. However, Schlaeppi introduced

a distinction between permanent signals such as the contents of registers

transient signals such as busses. The transients could also be

used- in the transfers without being explicitly declared.

Chu published a language CDL in 1965 which had a

closer resemblance to Algol. A description in CDL begins with the

usual declaration of registers, sub-registers, memories, terminals

and operations, A terminal is useful in describing signals which

are not stored in registers but can be accessed from the outside

world; it is in some ways similar to a bus mentioned previously.

Labels corresponding to the state of the control part are

attached to the transfers. Parallel transfers are indicated by

attaching the same label to the relevant transfers. However, no

facilities are available for indicating asynchronous operations

thwis a drawback.

The language allows the inclusion of special operators

whose definitions may be separately detailed and sequences in a

similar way to sub-routine calls. The control, however, is still

common and the decentralisation of control extensively used in real

system cannot be indicated, which also means that a hierarchical

type of description is not possible.

This language, therefore, forms only an extension to Reed's

language with a different syntax.

GDI wae later improved by Chu, McCurdy and Mesztenyi

[40-42, 71, 73], who also Illustrated methods of boolean translation

and simulation. The translation process consists of four phases

which are as follows.

i) ihe design specification is scanned to produce a table

with as many rows as microoperations.

ii) The table is analysed to generate in effect two tables,

one for control part and the other for operational part showing the

input output conditions for each step.

iii) Boolean products are generated from these tables, and finally

51

iv) Ihese ai'e sorted and combined to produce boolean equations

for the register inputs and the outputs.

In 1966, Pamas [7^ also published a version of Algol to

describe synchronous logic in which he introduced a notion of time

block to describe parallelness of operation in a similar way to

shared labels in CDL, The methodology of the language views the

system to be described for its behavioural properties only and as such ^

neither the structure of the system nor the "how" may be described.

The latter restriction could lead to difficulty when synthesizing

large systems. Secondly, as with CDL, only synchronous systems may

be described with this language,

This language, however, could be used quite well for simulation

of synchronous systems,

Darringer ĵ 45] modified this language to include structured

information. A designer using this language could specify registers

of different type such as octal, binary, character, etc. which in

some cases would oe useful. However, the type declaration of a

register fixed its usage and dynamic interpretation was not possible.

For examplte a binary interpretation of a decimal register may be

desirable and even necessary in certain oaaes.

As in CDL, the operations in this language are synchronous

and limited to one clock pulse; however, it is possible to indicate

an operation over multiple clock pulses. An "if ever" operator

similar to the "on condition" operator of PL/l allowed certain

operations to occur asynchronously and in parallel with the main

program. The simulation programs, however, did not handle the

semantics of these statements correctly. For synthesis, Darringer

offered some comments on the translation into hardware but did not

suggest any concrete algorithms.

Wilber [87J also gave a version of Algol which was very

much similar but in addition provided a facility for implicit timing.

Okada and Motooka [75] proposed a highly hardware oriented

language also based.on Algol which unlike the languages described so

far fully exploited its block structure. The description in this

language is divided into five levels. At the lowest level, level 1,

a hardware definition in terms of primitives such as gates, flip-flops,

and delays is given. It is also possible at this level to include

black boxes whose internal structure need not be detailed but which

can be used as primitives. The description at level 2 is a functional

relation corresponding to the description at level 1.

The description at level 3 shows the system behaviour at each

clock pulse including simple explicit sequencing which may be used

directly to implement the hardware configuration and control.

Finally an algorithmic description may be given at levels 4 aad 5,

the difference between them being that at level 5 it is more Algol-

like and IS similar to that by Chu and the description at level 4 is

more hardware related as in Reed's language.

The system to be described is modelled as a module containing

sub-modules, each of which in turn may contain sub-submodules and so

on. This is reflected in the block structure used in the language.

In addition a change of block also allows a change of level; thus a

desired detailing may be achieved by suitable nesting of blocks.

The above modelling is very useful since it allows the

designer to choose to detail the parts he wants specifically defined

and leave the rest as default options, and is a good design aid.

A limitation, however, is that modules operating in parallel cannot

be described.

5 3

The proposed tranalation process involved the changing of

levels with the help of library definitions of arithmetic operators,

macros, hardware items and modules in an interactive mode, No

results were available on the efficiency of this process; however,

we feel that the interactive approach with suitable recourses to a

library is a right approach and will be exploring this further,

5 . 5 , 3 I v e r s o n ' s A P L j ^ 4 9 » 5 9 , 6 4 , 6 6 , 7 0 J

A register transfer language essentially describes the

hardware layout and the interconnections between them. The micro-

programs written in such a, language therefore, reflect the hardware

constraints placed upon the system, A register-transfer-like

language can also be developed for software which will similarly

reflect the constraints put on it, namely the capabilities of the

hardware processor. However, in both cases the algorithmic

description is not sufficiently abstract for "evolving" a design

and merely provides a means for mechanisation of routine tasks,

A formal description independent of such constraints is required in

the design stages,

Iverson proposed a language, APL, which was meant to be

universal in a sense that it has a built-in hierarchy to express

functions which are usually considered to be hardware oriented as

well as those which are usually software oriented. This is in

direct contrast with the other programming languages since either they

are tad kow . and are strongly machine dependent or

they are of too high a level to have sufficient resoltuion for, say,

bit operations. The operations in APL can be specified at a bit

level, an array level or a matrix level without loss of detail and

thus offer facilities for a precise and concise notational description

of algorithms which is machine independent, and consequently ideal for

a wide range of uses.

54

A rigorous and full account of the language is given in

[̂ 66J5 however, a ordef description of some of the operations, which

are likely to be more useful, is given below.

The variables in the language are defined as either soalara

or arrays which are one dimensional (vectors) or two dimenaional

(matrices). The scalar operations are expressed in much the same

way as in other programming languages; these are extended on an

element by element basis to apply to array operations.

For example,

o + a @ b where @ is any operation

is a scalar operation and of course all the variables are scalars;

whereas

_c a @ ^

is a one dimensional vecoor operation and it is interpreted as

% @ j2.j_ i = 1,2,..., 9(c)*

and obviously the dimensions of each of the three variables must be

the same and its magnitude is determined by (c). The matrix

qpoMaion of the same form is written as

C + A @ B

meaning

-j ® -j ^ " 1,2,..., (A), j = 1,2,..., li (A) .

where 4(A) andw(Aj are the column and row dimensions respectively

of the matrix A.

The elements of the vector can be any numeric or logical

quantities or even any alpha-numeric or other characters. The one

dimensional vector operations are particularly important in digital

system design since they can be used to indicate register operations

diioccly, aiid the matrix operations can be very useful in data

manipulations as in symbol processing applications,

a 1 origin indexing is used here and the leftmost element is element 1

55

The langiiage comprises all the umial arithmetic operators,

such as addition, subtraction, multiplication, division and exponentiation,

and the logical and relational operators. Shifting type of operations,

which are of significant importance in digital system design, are

also included. However, the particularly strong powers of the

language come from the special operators, such as reduction, masking,

expansion and compression of arrays. The reduction of a vector is

defined as

y +- (8/̂

where y is a scalar quantity and is set to .

—1 —2 — i)(2c)

Extending' this to ciatrices, we have:

Z columns are reduced

X ©//X rows are reduced.

If the operator is replaced by a binary vector, we get a

selection operation by which the elements specified by a 1 in the

selection vector are picked out to form a new vector. For example,

if X = (D,I,K,E,S,n,P,A,l)

and u = (1,0,0,0,0,0,1,0,0) and ;(x) must be the same as v(u)

then 2 u/x

will make ^ = (l),P)

A more practical example is when certain bits of the

instruction word are used as the instruction code etc. this type of

Operation can be used effectively.

Masking is shown as follows

and it means = ^/x and and obviously

f(u) = V(x) = V(y) = j(z),

A related operation and of considerable importance in file

sorting is the meshing operation shown as

56

and u/z = z and 2 ^ = 2* It follows that +/^ = and +/|i = y(%),

Another very useful operator is the base 2 value operator,

which is particularly important in memory addressing type operations.

Suppose r is a register and contains the address of a word in the

mam memory M and it is necessary to extract this word and put in into

the register then this is written as

a

There are some special vectors which are very useful in

digital system design and they are listed below.

full l(n)

unit

prefix :;^n)

suffix wj^n)

interval ij(n)

These

mentioned before can be uaed in a very versatile manner allowing a

concise yet precise description. An example of a microprogramme in

this notation has been included in the appendix,

3^3*4 APL as a Design Lan,̂ a,Ê fi

API may be use^ and has been used [4^,5%], to specify the

microprograms of an existing computer but it becomes just another way

of writing register transfers and useful for analysis only. However,

the main flexibility of APL lies in being able to describe algorithms

in.a machine-independent way. Thus it should be possible to use it

as design language.

In Its full form the language is very general and contains a

57

comprenenaive set of operators. A hardware realization of a machine

capable o f executing all the operations and facilities would he very

large indeed; on the other hand, a suitable subset of the language

could be easily and directly implemented into hardware and the

remaining facilities translated in terms of this subset. Since there

is a natural hierarchy in the language, the higher level operators may

be expressed in terms of the lower level without much difficulty and

the translation process can be fairly straightforv/ard. The system

developed [51,86] would be very general and be capable of e x e c u t i n g

most, if not all, statements written in API.

One Oi. the drawbacks of APL in a computer environment is

the large number of special symbols which are required, to express the

operations correctly. Iverson [65] suggested a scheme for transliterating

these symbols in which one line of APL program is converted into two

lines of program written with the more conventional alphabet, with

vertical correspondence between them. Obviously this is not only

inconvenient and inefficient but also leads to loss of visual clarity,

Friedman and Yang [51,52,53] have developed a design suite,

ALERT, which accepts a microprogram description written in a modified

subset of APL and converts it into hardware logic design. In this

system a physical device, such as a flip-flop, is associated with each

variable. Simple logical operators are implemented directly into

hardware and the others are converted ysing library routines in much

the same way as suggested by Okada and Hotooka. In the subsequent

processing the redundancies are removed and hardware expanded where

necessary, followed by a sequence analysis. The output of the

program is in the form of boolean equations for the input terminals

of flip-flops and can be used by synthesize logic with gates.

ALERT also represents the first real attempt of synthesizing

hardware logic automatically via a high level design language on a

58

.large scale. A synthesis of an existing computer (IM 1800) was

attempted via ALERT and the results then were compared with " hvw,**,"

design [gl]. Using the gate count as a criterion for the "goodness"

of design, the initial design obtained via ALERT v/as very much worse

(about I6O/0) than the human design; however, an approach was

suggested which would improve this considerably (about worse).

Another weakness of APL as a design language is that timing

of an operation cannot be indicated. Friedman and Yang defined a

clock rate outside the main microprograms, thus they were not able to

indicate asynchronous operations, Senzig %_84] proposed two separate

notations to indicate timing with APL, The first, for synchronous

operations, is similar to several mentioned earlier. The second

for asynchronous operations, uses three timing states, namely idle,

active and standby. A statement is normally idle unless activated

by a previous statement in the sequence and it is then said to be

acti^. After completion it activates the succeeding statement(s)

and goes into a standby state and if the succeeding statement(s) does

become active then the current statement reverts to the idle state.

The method described here allows asynchronous operations to be indicated

with respect to statements rather than quantities. Per example, a

statement of the type "whenever Do " cannot be indicated.

The method is also unsuitable for showing operations in independent

but parallel modules.

Another important consideration of a design language for

digital systems is that the designer should be able to specify the

choices of hardware, modules and procedures which are available along

with their speeds and criteria to be used for optimality of the design.

APL does not provide for this.

We may conclude by noting that APL is very effective in

59

expressing algorithms but in its basic form is not suitable as a

complete design language. An augmented, version, however, may prove

a powerful design tool,

3.4 Partitioned Systems

ITlie languages discussed so far tend to use a Glushkov model

for a computer, i.e. one having a single control part and a single

operational part, wnich is quite adeq_uate for describing relatively

simple systems or subsystems. ' However, when dealing with a larg-e

system it is natural to partition it into several subsystems each of

which is characterised by a Glushkov model and all in turn responding

to a common control. The complex control mechanism of such an

organisation cannot be suitably handled by the earlier languages which

were based on a simpler model; only the language proposed by Metze

and Seshu had some facilities for this. A formal approach, however,

was given by Duley and Dietmeyer in their language DDL [46,47].

In DDL, a system is viewed as a collection of several subsystems

or automata each containing "private" facilities and having access to

the public facilities, the latter being used for intercommunication

between the automata. This corresponds almost exactly to the earlier

mentioned concept except that the common control is diffused through

the subsystems via the "public" facilities and hence is slightly more

general. An almost identical approach was also used in CASSAt JURE

[32,33,58,69,72] which was published (independently) about the same

time as DDL and in project GAoD [4 3 , 4 4] in 1970. The major differences

between these are the use of different base languages: DDL is built

uppn Eeed's language, CASSAIiDRZ is very heavily Algol derived and the

OASD language is a version of Pl/l. Ms shall consider these languages

in a little more detail below.

60

A description in DDL is a description of a collection of

automata in a block structure format. It begins with an identification

of the outermost block, corresponding to the overall system, and the

declaration of common highways, global variables and common registers.

Each automaton is represented as a block within the outer block and is

described in berrns of its registers, terminals, segments and states

along with o.ne global variables. The notion of segments allows each

automaton to nest further sub-automata and the states are used to

specify the sequencing.

The statements are written in a way similar to that by Reed

but a larger vocabulary is employed and the description tends to be

somewhat ideographic; nevertheless it is relatively simple to interpret

with a little practice. The automata indicated are usually synchronous

but it is also possible to show asynchronous automata. An important

omission, however, is that synchroni.sation of asynchronous events, as

in the WAIT facility proposed by iietze and Seshu, cannot be indicated.

On the Ovher hand, it is possible to indicate jump to a specified

state in a segment and the return state; this could be employed to

define a complex control of shared segments.

The translation process is performed in several passes,

ultimately producing a set of transfers in a Reed-like form for the

whole system subsequent realisation into hardware from which has been

described earlier. The segments are "removed" first. Each

segment is checked to see if it has any segment calls in it; if it

has, then all the states of the called segment are included in the

calling segment, with suitaole adjustment for next state and return

state specification, and the declarations associated with the called

seyments are also added to the declarations of the calling segment.

The states and the transfers are checked to remove duplication, and

redundancies, and the remaining states suitably renamed to distinguish

61

c
o
o
e

B
3
o

CM

C

B
o
E
O

=»
n

Q

S =j
o

—1/>
o w .

"O

o u t p u t s

A

A

o
t.
c .
o
V

x>
o
e

3
Q

«/>

u t_
rs
O
0)
w
c.

O
E
e
o
o

ro

w (-
3
g*
iZ

A
n pu t s

A

62

between them. The resulting description is then that of an

individual automaton,

The next step is to create a state register (unless already

declared) such that there is a unic[ue state of the register for every

unique state of the automaton. The transfers then can. be relabelled

to make them conditional upon the contents of the register and the

transitions are indicated as a change in the state of the state

regis uer» Obviously xhe size of the register and the coding required

to map each state of the automaton into the register will be determined

by the laode of operation, i»e« asynchronous or synchronous, etc.

Another task at this stage is to exj3ress the special operators,

shii ting uut excluding time shared operations, into a more

register—transfer form. The shifts, for example, may be translated

into single shiit register transfers by associating a counter with it

to control the shifting loop. The time shared operators are assumed

to be realised only once with suitable gating to control the time

sharing. The sequencing logic may be derived by methods already

described along with the boolean equations for input terminals of

flip-flops and the outputs.

DDL is essentially for hardware representation of partitioned

systems. Synchronous systems may be specified precisely using this

language5 asyncnronous systems, however, cannot be very well hajidled.

Another observation is that the philosophy behind DDL suggests that

the system to be "designed" has already gone through a design phase

and that the language is used merely to describe, in^shorthand way,

a pre-fixed structure for computer interfacing. Thus the language

foiras an extension, albeit a complex one, to the Register Transfer

Language initially formed by Reed, We feel that the interactive

method through which modules may be selected from the backing library

is to be strongly recommended.

6)

Aa stated before, the structure of CASSAMDRE is almost

identical to that of DDL. The use of standard language, Algol, as a

base language, however, makes CASSAKDRE far easier to use than DDL,

The block structure of Algol is also perfectly fitting to the

partitioning concept where each automaton - or unit as it is called

In CASSAHDE3 - can be represented by a block. CASSANDRE also has

some mmAY jvariationa which are discussed below.

A unit in CASSANDRE is assumed to be completely independent

from all other units and the communication between the units is done

through the inputs and outputs only. Thus a block corresponding to

a unit appears similar to a procedure definition with the inputs and

outputs as parameters* The declarations following the header contain

all the facilities special to the unit as well as any other units used

in the description; the latter are declared as external since they are

detailed elsewhere. No global variables are employed since such

variables may always be included in the input-output list; however

this could obviously lead to a long input-output list.

The unit is defined by a set of transfers which may be

- either boolean coanections or synchronous transfers, the latter always

being conditioned by a clock-pulse. A repeat operator "for equal

is. I2." is also Included to allow iterative arrays to be set

up» The sequencing is achieved by labelling the discrete steps as

done in DDL, and explicitly indicating a transfer to that label;

implicit sequencing is not allowed. The sequencing algorithm

extracts this information to set up a table with a correspondence

between the labels representing a set of transfers and the conditions

necessary to branch to the label, and organising the sequence control

to allow execution of the transfers corresponding to all the labels

whose conditions are satisfied. Thus explicit and implicit

parallelism may be attained. However, it is not very clear how the

6 4

m i T : HAina (n e u T i , n e n r 2 , . . . m e u r N ; o u r p u r 1 , . . . O D T p m : %) ;

aacis'nm

FIN

» >

J i t

SIGN&L , ,

PULSID C ;

CLOCK C ;

EXTERNAL ' , , .

Boolean connections

STl : C sequential transfer; GOTO ST2;

S T 2 :

Figure 4 : Structure of a typical CASSANDRE dAsnrintinn

65

sequencing algorithm handles cases where the results of one transfer

are directly relevant in the next, particularly if some amount of

timing discrepancies occur,

The translation process is quite different from that used

in DDL, A table is set up with the declared items along with their

scopes. The source description is then converted into a reverse

polish notation with pointers replacing the occurrences of variables.

An important point about the philosophy of the translation process is

that the partitioning defined by the designer is not altered (as was

done in DDI). The resulting strings may be used directly for

simulation. it is also stated that these may be used for microprogram

generation and hardware synthesis; however, no results have been

available.

Kuch of the above description, especially regarding the

translation procedure, may also be applied to OASD language. Apart

from the change of the base language to PL/l, & few useful additions

are also proposed in this system. In particular, these include

multi-tasking facilities for explicit parallelism and the WAIT

facility acquired from Ketze and Seshu. The CASD system, therefore,

seems to be more general than the CASSAKDRE system. However, at the

time of writing this report no results were available regarding the

algorithms for translations, especially the translation of asynchronous

systems.

3*5 Sequence Chart Analy. se:

By definition a microprogram^is a collection of micro-orders

la a particular sequence to utilise the available facilities of hardware

or software and also, since it is impossible to achieve instantaneous

logic, each micro-order will require a finite time for its execution.

66

For ease of c oris "true t ion, it is usual to consider a microprogram in

terms of a block diagram in which each block represents a micro-order*

However, this type of format is difficult to process by a computer and

the languages considered so far convert this information to a linear

format, which allows ease of processing but loses the visual clarity

of sequencing.

Roth [79J puDlished a paper in I965, giving a method used by

IH-I which still maintains the visual clarity of a block diagram, and

is not as difficult to process. ' In this method, the block diagram

is represented by a sequence chart which is a grid with horizontal

divisions as units of time, and the vertical divisions to be used to

separate operations. Each transfer is shown as a horizontal bar

extending for the length of time of its execution and the corresponding

transfer is written over this bar. Conditional transfers are

indicated by writing the conditions immediately to the left of the

bar; branching is indicated by broken lines and arrows. An entry

into the chart is shown a box named chart entry and containing certain

conditions, V/hen these conditions are satisfied the chart is

initiated. Similarly an exit is shown by a box containing HvDOP,

The sequence chart essentially is a method of presenting a

completed design and as such is difficult to be used in design stages.

However, in common with the register transfer l-nguages it can be

used to syntheisi,* logic and the associated control, but since it is

more difficult to use than the transfer languages, despite its

resemblance to block diagrams,it is less likely to be favo-red.

5*6 state Tables from Microprograms

It was pointed out earlier that if an abstract description

of a digital system can be gtven or generated within a computer then

67

it would oe possible to make use of the well developed switching

theory and an overall optimisation can be achieved. But, for even a

reasonably sized machine, this is an iinmense task and conseq^uently

some partitioning has to be made. Obviously the abstract

description and its subsequent processing will greatly depend on the

partitioning used; however, it should be possible to combine the

partitioned machines [6o] and to tr̂ r other partitions as a check for

optimality.

All the transfer languages considered so far were suitable

for an already structured organisation and the translation process

generated this boolean equations for the terminals, the outputs and

the inputs to flip-flops. The structure assumed is tliat of several

registers, eacn usually niore than one element long, interconnected to

"khe various register transfers, Gerace [̂ 54j suggested clianging

this structure to that of several iteratively connected smaller machines

and deriving the state-table for each. The structure appears as shown

in Figure 5 , An account of his method follows,

To illustrate the method let us consider a simple example

where the machine benaviour is expressed by a single tr^sfer only,

such as a parallel adder. Let one operand be contained in the

3nd when an external operand is input to it let its memory

be overy/ritten by the answer. The usual structure of the machines

to achieve this would be as shown in Figure 6 , The operand length

is assujned to be 16 bits, register A contains the first operand and B

is the second operand. This representation assumes that the outputs

of register ii remain unchanged (fespite the changes via the combinational

lo^io; only when the operation is complete that these are allowed to

vary. In practice this is done by using clock pulses in the input-

output gating or using special flip-flops such as the J-K type.

Figure 7 shows the structure in Gerace's method where A(i) is an

68

/

lA -«-»

3
Cx.
c <

I I

J.

\

> 3
o

L_

w
.£
Lc
u

1
w
c
c

8

• J

L

IT)
«

L .

r? p

/k

\ -s» c

z /

A

69

A(16) A (1)

COMBDIATIOmi, LOGIC

Y V

A(16) A(15)

y

A(1)

Figure 6. Conventional Structure for an Adder

B(16)
V

B(15)

V
2(1)
V

V
A(16)

A(16) 2(151
A(15) A(i)

V
A(15) A(i)

B(,)

V

A(1)

Figure 7. Iterative Structure for an Adder

70

individual cell of the machine.

Let the register transfer description be

A ADD B + A (16)

Expanding- this to a bit level, we get

A(i) e 3(i) @ G(i-1) + A(i) (1 7)

A(i).B(l) + C(i-l)(A(i) + B(i)) = C(i) (18)

i = 1,2,,..,16, and C(0) = 0,

Generally each.fth cell will be desoribea by register

transfer and. boolean equation statements similar to those in (1 7)

and (18). The transfer statement describes the way the memory of

the cell is modified, i.e. state variable behaviour, and the boolean

equations define the outputs. Thus (a) the variable on the right

hand side of all the transfer statements are taken to be state

variables; consequently all the variables on the left hand side except

those already present on the r.h.s, are inputs to the cell, and (b)

the outputs are those defined by the boolean equations and also the

state variables.

In the example there is only one state variable,A(i); the

inputs are B(i) and G(i-l), the latter being derived from the previous

cell, and the outputs are A(i) and C(i). It follows that for a

circuit to function satisfactorily all C(i) must be propagated before

the operation is completed. Gerace, therefore, imposed two

conditions:

1) that the machine will not change its internal state during

the absence of the clock pulse but the outputs may change according

to the inputs and as defined by the boolean equations,

' 2) during the presence of the clock pulse the outputs and the

state variables will remain unchanged and only when the pulse is

removed that the change may be affected.

71

A next-state table may now be constructed. The right hand

side of each transfer statement is replaced by a next-state variable,

say and any occurrence of the state variable of the l.h.s. is

replaced by the corresponding present-state variable y^. A table is

constructed such that the rows correspond to all the combinations of

the input variables and the entries are the values of the next-state

variable defined by the transfer equations where the arrows are

replaced by equal signs and with the above conditions, The output

table is similarly constructed.

Applying this procedure to the example , we get,

B(i) C(i.l)

Clock = 0 Clock = 1

^i \
00 01 11 10 00 01 11 10

0 0 0 0 0 0 1 0 1

1 1 1 1 1 1 0 1 0

"i

"X B(i) C(i-1)

Clock = 0 Clock = 1

^i \
00 01 11 10 00 01 11 10

0 00 00 01 00 00 00 01 00

1 10 11 11 11 10 11 11 11

Table 1,
Next-state
table.

Table 2,
Output
table.

A(i) C(i)

These two tables give the behaviour of the individual cell

in "terras of state tables; however, it is not completely abstract as

72

binary values have been aspigned to the state variables. By a simple

modification and combining the two tables together we obtain a flow

table which gives the complete abstract behaviour of the i'th cell.

B(i) C(i-1)

Clock = 0

00 01 11 10

Clock = 1

11 01 11 10

1

2

I /OO 1 / 0 0 l / O l 1 / 0 0 1 / 0 0 2/OC 1 / 0 1 2 / 0 0

2 / 1 0 2 / 1 1 2 / 1 1 2 / 1 1 2 / 1 0 1 / 1 1 2 / 1 1 l / l l

Table 3.
The abstract
state table.

Next state, outputs A(i) C(i)

The state behaviour during the presence of the clock pulse

la considered unstable owing to the definition of the circuit, stable

otherwise, and it is usual to circle the stable entries,

Note that the cell corresponding to i = 1 has only one input

and its state table will be much simpler as shown in Table 4,

state

Clock = 0

0 1

Clock = 1

0 1

1/00 l/OO 1/00 2/00

2/10 2/11 2/10 1/11

Table 4.
Machine for
i = 1.

Kext state, outputs A (i) , C (i) ,

5*7. Multiple Transfers

Generally a microprogram will consist of several transfers

and therefore the system can usually be broken dora into two parts,

7 3

l) the control unit, and 2) the operational part; the procedure

detailed above can. be extended to obtain the abstract behaviour of

the operational part as well as the control ixnit.

A typical transfer statement in a set of microprograms

would be written as

S%;|X(1)|: fg+Bfi); Ŝ . +

| X (2) | : f ^ + A f i) , + (1 9)

S^+l:

* #

where S's directly correspond to the state of the control part and

govern the transfers in the operational part, X's are conditional

expressions, A(i) and B(i) are the state variables in the operational

part and the f's are boolean expressions.

The transfers refer to each element of the register arrays;

however, it is quite possible and usual that a large number of the

elements behave identically and some, especially the terminal elements,

require separate description. Thus the first step in obtaining the

abstract description from microprograms is to recognise the number of '

different machines that are described. The next step is to enumerate

all the non-simultaneous transfers and identify each with a different

label with a view that the control part will generate one signal per

each different label and each set of simultaneous transfers will require

only one signal.

In fact, the number of separate labels can be far smaller

since the same transfer, but identified by a different S label, can

be given the same label. The labelling process, therefore, is as

follows:

i) separate out each transfer and the associated conditional

expressions and the transfers in S,

7 4

il) if two transfers are identical but have different 8

transfers associated with them they are given the same

label,

iii) after (ii) all transfers not labelled and having cdmmon

8 behaviour are given the same label.

iv) provision has to be made to allow no transfers in the

operational part.

If we examine the transfers we find that each set of

transfers is associated with a state of the control unit and it also

gives the transfer of state, i.e. the present state and the next

state are defined; since the conditional expressions effectively

modify the state transfers, these must be the inputs to the control

unit and obviously the outputs of the control unit correspond to the

labels obtained above. Prom this information, it is a fairly

straightforward routine to obtain the state table for the control unit.

The state tables for the operational part are obtained in

the same way as described in the last section, with the signals

-corresponding to the labels acting as further inputs.

An example is included in the appendix to illustrate the

above procedure.

).8 Extension to include Read Only Memory

In large systems the number of different transfers is quite

large and consequently the state table for the control unit of such

a system is very complex. To reduce this complexity, a separate

memory, which has a non-destructive read-out* and is at least an

* The discussion here is deliberately limited to read only type
memories, however, it is accepted that a read-write memory may
be successfully employed to achieve a better flexibility.

7 5

order faster than the main memory, is used to contain the details

about transfers, tests and the sequencing in a coded form, These

memories are usually called Read Only Memories (ROM's) or Read Only

Stores (ROS'S), The control unit behaviour with an ROM can, in

many ways, be likened to the state tables as generated in the last

section; however, there are some differences.

In a state table, it is possible to have many next states

for a present state; whereas when using an ROM it, is usual to have

only two next-word addresses, an address having a direct correspondence

to a state in the state table. The selection of the next address is

done by checking the result of the test specified in the word, or if

multiple tests are specified, then by collating the results of these

tests, and extracting the true-false value from it. The next

addresses are, therefore, sometimes called the true address and the

false address. The more complex ROM systems have facilities for

more alternative addresses.

To implement the state table for the control unit in terms

of ROM, the state table is first reorganised to have only two columns,

adding if necessary some dummy transfers to allow for multiple teats.

The states thus obtained can be coded to give the addresses of the

words in the ROM. The outputs defined in the state table are

analysed and a coding generated such that the number of bits required

in the coding is the smallest without losing the flexibility to

indicate parallel transfers where necessary. The contents of the

words in the ROM are then determined by this coding, the coding used

to specify the tests and the next-word addresses derived from the

state table,

3*9 Different typos of ROM Implementations

In the last section, we considered a simple implementation

7 6

of a state table describing a control ijnit by an ROM in which the

number of alternate addresses were restricted to two, corresponding

to the true and false results, only. The state table, however, is,.,

in an ideal form for manipulation for different types of implementations

to allow more efficient utilization of the available resources.

One obvious parameter is the word length. Usually as the

word length is increased the length of the microprogram reduces,

assuming,-of course, that sufficient facilities are available in the

operational part to allow the necessary parallelism; but the associated

cost, due to increased highway size and decoding networks, increases.

In the converse case, the control becomes very much simpler but at the

expense of speed measured in terms of number of control cycle per

instruction. It is easy to see that a state table may be reorganised

to reflect the two* types of implementation requirements,

A different type of reorganisation was suggested by Gerace

et al [553 in which the change in the state table format rather than

the dimensions is utilized. Before exposing the method, however, let

•us first reconsider the structure of a microprogram description,

¥e have already noted before that a register transfer type

description of a microprogram is a description of a set of control

states each of which Was associated with it, the operations to be

executed when the state is reached, and a branch to the next state

determined by the tests, A typical control state description in

accordance with this is shown in (20),

S. ; 0., if Xt goto S . else if X goto S,
X x' — 1 J — m ̂ k

Sj : (20)

where the S's refer to the control states, 0. are operations to be
1

* These two forms of implementations are commonly called horizontal
microprograming and vertical microprograming respectively.

77

s .
,1

0.
1

s.
1

X, X
1 m

Sj.Oi S, ,0
k in

A Moore State Table

(a)

A Mealyi State Table

(b)

Figure 8

S.
1

0. s. 3,
X J k

0.

A Moore type ROM

Corresponding to (a)

A Mealy type ROM

Corresponding to (b)

Figure 9

78

executed in State and. X's are the tests. In state tabl^ tenns

the expression (20) can be restated with as the present state,

0^ the outputs, X's as the inputs. Clearly then a description in

a form similar to (20) translated into a state table of the Moore

typo [5, KlO?].

Ve stated earlier that an ROM implementation of a state

table may be achieved by creating an image of each row of the state

table into a word (or a set of words) into th^ ROK. For convenience

let us call the EOK implementation of a Moore state table as a Moore

typo ROM. Each word in a Moore ROX must contain the information

regarding the operations and branching; therefore the number of

conditions tested in a single ROM cycle must be kept down to limit

the size of ROM words*. Another important factor associated with a

Moore ROM is that the address selection for the next control word is

performed by selecting one of the addresses specified by the ROM word.

Thus the complexity of the address generation networks increases with

the number of alternate addresses-*-*.

A microprogram description may also be written such that the

operations performed in a control state are not only functions of the

control states but also of the results of tests as, for example, shown

in (21)

S. : if X_ then do 0,, goto S
1 — 1 1? J

else if X then do 0 , goto 3, ; (2l)
— — — —- m — — m K -

where the symbols have similar meanings as before.

* The word length nay be kept down by restricting the tests to two
as suggested in the last section. However, a nunber of dummy
transfers may have to be introduced to multiple tests
resulting in inefficient usage of memory and a reduced computational
speed. The argument here is more concerned with the iway the
branch information is stored.

** Addressing relative to the present control word address or an
address specified by a base register is often employed to reduce
the inputs to the address generation networks. Nevertheless,
the statement above is still valid.

79

The state table derived from this type of description may

be easily seen to be of a Mealy type [3, p.lO?]* Now each entry

in a Mealj uate table figure specifies the outputs (operations to

be done) ana the next state (address of the next control word),

Gerace suggested that this duple may be coded into a single ROM word

thereby creating a word image for every entry in the Healey state

table. Obviously then the number of conditions to be tested is not

restricted by the length* of the EOH word but only contributes to the

complexity of the address generation network. Since the generation

network only handles one address data its complexity in general may

be shown to be less than the network in an equivalent Moore type of

realisation.

Cadden |g7j has shown that every Moore state table can be

converted into an equivalent Mealy - state table and vice verua, and

that the number of internal states (rows) in the Moore state table is

equal to th^ number of different pair entries (next state, output) in

a Mealy state table. Thus a Koore BOM can always be converted to a

Mealy. ROM, i.e^ an ROM implementation of a Meal%, state table, such

that the number of words in both is the same, A word in a Moore ROM,

however, is longer than in the equivalent Mealey ROM fo^ reasons

already discussed. AiMealg^ relisation, therefore, is to be favoured

giving a smaller memory, requiring less complex supporting networks

and a higher computational speed,

5.10 Microprogram Transformations

It is usual to consider a microprogrammedcystem to be

characterised by a Glushkov model [5^^, Figure 1, conpistin^ of an

* This is not strictly true since often the conditions ̂ o be tested
are specified as a part of a microinstruction, thus reduc he
number of inputs to the state tabl", but increasing the] of
the ROM word. The proposition here, however, is valid ii cms
type of coding is not used.

80

operational part which contains the register structure and a control

part, which is a finite state machine controlling the operational

part. It is, of course, theoretically possible to merge the two

parts and design the systen as a singl" finite state machine; but for

practical reasons a division must be made. The position of the

dividing line, however, is questionable and usually is set by the

designer through his experience, intuition, and the knowledge of available

resources. Obviously, in doing so, the designer will experiment with

different structures and weigh the relative advantages before deciding

upon the final structure.

Bemdt suggested a concept of status level diagrams,

which he described as functional microprogramming, to help this.The

diagrams depict the control states and the sequencing in a diagrammatic

form rather like state diagrams. The operations associated with each

'state* will obviously depend upon the resources employed in the

operational part and the timing.

An approach similar to this was also used iPr&hke '

Mergler [50] to develop a state table-like description of the control

system. This state table description and the status level diagram

both provide an overall functional description of the control section

which can then be manipulated, say, to merge common control states or

to split the states. The resources in the operational part can also

be re-examined with regard to the effect on the status level diagrams.

The manipulations indicated here are commonly called microprogram

transformations,

A formal presentation of microprogram transoformations was

made by Stabler Ee...suggested five goals to achieve this which

are as follows.

81

1) Remove a register from the operational part and adjust the

microprograms to allow for this. The latter amo-unts to adding a

register (or an image of it) to the control part,

2) This is the converse of 1, and adds;, a register to the

operational part.

These two goals achieve the shifting of the dividing line

between the operational part and the control part.

3) The resources in the operational part can be modified to

allow two or more" operations to occur in parallel. The microprogram

control is then modified to produce one signal for the parallel

cp-rations instead of the individual ones before the transformations.

Conversely,

4) Split the parallel operations into serial operations thereby

reducing the complexity of the operational part.

3 and 4 clearly indicate that a s^eed/resource trade off

is possible, Finally,

5) Reduce the input variables to the control unit and modify

the two parts accordingly to preserve the overall behaviour.

The last transformation is particularly important where

cable and highway sizes between control part and operational part as

well as the rcOIi size are important, A common application of this

was described earlier where the conditions of the operational part to

be tested are specified in the microinstruction in a coded form, and

the results are returned on a relatively few lines. Obviously

decoding delays are introduced causing a loss of performance.

The goals 3 and 4 directly contribute to the number of ROM

cycles required to execute a set of instructions which can be related

to the execution time. However, an important way of achieving an

82

improvement in the execution time is to overlap EOH cycles and the

executions in the operational part. This method is widely used in

present day computers and is of partic^ilar importance in large

computers. Stabler does not deal with this aspect of micro-

programming.

83

3.11 structure Descriptive Languages

The languages so far considered impose a certain

structure on the system and describe its operation

in terms of algorithms. This description may be

given with varying degrees of conciseness and

manipulated using a computer to produce the necessary

amount of expansion and/or minimisation, and also

generate the logic for the control part governing

the system. Thus these languages satisfy certain

design* requirements. The important point to note

is that a part of the structure is defined and the

remaining generated through computer assistance.

There exists another class of languages which are

more closely oriented towards describing an already

completed design. Using these languages a system

may be described in terms of its structure, i.e.,

the implementational detail, or in terms of its

functions, i.e., describe the "what" rather than

"how" of the system. The application of these

languages for design is rather limited, nevertheless

they have a wide range of uses, such as, documentation,

input to implementation programs in a design

automation suite, structural and functional

simulation and fault diagnosis**.

* The term design is used here to mean logic (or

program) design rather than implementation design.

** See Appendix IV.

8A

Most digital system manufacturers employ design

automation techniques in production of the systems

for some or all of the application suggested above;

and there must be of necessity at least one structure

descriptive language associated with each. However,

there is very little published material regarding

either these languages or t)^ suites; and it is rK)t

possible to gauge the proliferation of versions,

differing mayb* only slightly, of such languages.

Examples of typical commercially used languages are

in the L0G8IM system developed by the Marconi Company

j&nd the RADD8 system [lOO, 10^ developed by the

Raytheon Company. The usual method of description

±8 to describe each gate or on available primitive

module in terms of its inputs, outputs and attributes

(e.g. delay)(cf Okada & Motooka [75]). It is also

possible to create new blocks out of the available

primitives and treat these blocks as primitives,

i.e. nesting is possible. Despite this facility

however, the description of a large system tends

to bo very large and consequently the effort required

fof Manually producing these, as is still the normal

practice, is also large.

Stabler proposed a System Descriptive Language[106]

which was basically on extension of Reed's Language [78l|,

The main additions were on Algol-procedure-type

construct to describe a gating network and on Algol-

iterative - type construct to handle iterative net-

works - a common feature in digital computer logic.

A/

A serious omission is that neither primitive elemental

delays nor explicit delays such as of delay elements

and cable delays can be described which would be

required in structural simulation. Nevertheless with

the construed suggested and by nesting the description

as necessary, it is possible to describe computer logic

in a very concise manner. A digital computer can be

then employed to remove the linguistic intricacies and

produce a structural description in a much more primitive

form.

Bell and Newell [89, 90, 911 proposed a much more

comprehensive method of describing a computer structure.

Using their method, a computer system is described at

two levels, namely

i) The PM8 (Processor-Memory-Switch)Level and

ii) The ISP (Instruction-Set-Processing) Level.

At the PMS Level the organisation of the whole system

is described in terms of its constituent (PMS Level)

components and their attributes, including the types,

throughput and size, in a diagrammatic form. The

main components at PMS level are units such as

(a) Memory, M - component which stores
information

(b) Link, L - component that transfer
information between two
components of a system,
i.e. data highway

(c) Control, K - a component that e v o k e s an
operation or set of operations
in other components -
effectively the control state
of a system

(d) /

86

(d) Switch, S - component to switch between
links

(e) Transducer, T - component that transforms
one type of information into
another, e.g. voltage levels
into characters on paper,
light input voltage levels

(f) Data operation, D - the data manipulation part
of a computing system

(g) Processor, P - component to execute a (user)
defined program

Each component in turn may be further qualified depending

on its rate and application within the system, e.g.

Pc to mean central processor, Ms to mean secondary

memory.

At the ISP level the processor itself is detailed in

terms of its ISP level constituents such as registers,

memories, processor control states and data operations.

The description is similar to that in Parnas's language

in that the effect of the data operations rather than

the step taken in achieving them are indicated. This

level does not detail the logic structure of the

system.

The method proposed by Bell and Newell is quite

comprehensive at the PM8 level for describing system

configuration, particularly since it allows in a

natural manner the scope of the language to increase

cover any future concepts. The two levels of

description together provide a good means of documenting

the architecture of a computing system [90^.

It has been stated above that a description in ISP

essentially describes the "what" rather than the "how"

of/

of the system and in this respect is different from

a design langauge specification. The basic approach

for design, so far considered, involves extracting the

structural information, abstract behaviour of the

control part and determining the data and control paths -

one of the main aims in this process being the

minimization of resources.

Bell et al [92, 96, lOSj argue that with the availability

of circuit modules implemented in large scale integration

(LSI) technology this constraint may not be so relevant.

Ttiey propose a concept of register transfer modules

(RTM) which implement directly the operations evoked

by the processor state, e.g. an arithmetic operation

between memory bars and a processor register, so that

for every different operation a different RTM is

employed. Simultaneously, control type are

employed to execute the boolean testing and branching

involved without first going through the exercise of

extracting the complete behavioural specification of

the control part. Obviously as the numbers of different

operations, and of different types of controls, increase,

the number of different RTM's required increases.

However, the approach has the elegance and neatness

of being simple for a novice to understand and cutting

the time and effort required to implement a design.

This concept will certainly prove very useful in

teaching.

In/

88

In SDLl, the language proposed by Gorman (94, 95^

and in CDLl, the language proposed by Srinivasan

^104, lOsl, the system may be described at four

different levels. These are as follows.

(1) Behavioural - In a behavioural description a

system is viewed as a black box with no

knowledge of the internal structure and its

behaviour is described entirely in terms of

the inputs and outputs.

(2) Functional - The black box representing the system

is segmented into major functional units such that

a behavioural description of each unit is possible.

This represents a coarse breakdown of the overall

system. The functional description then describes

the interconnection between the units and an

algorithm in terms of these units to achieve the

required behaviour.

(3) Structural - At this level, the authors suggest,

the description should be sufficient^ precise so

that (at least conceptually) the design can be

put together by using "off-the-shelf" components,

which may be hardware or software.

(4) Implementational - A description of this level

defines the method of implementing the system

physically either in terms of actual gates and

registers for hardware, or machine instructions

for software.

The/

89

The statements within a description at a certain level

are grouped together to give a hierarchical description

where the hierarchy is determined by the scope of the

facilities used in the statements. The scope however,

is not limited to within the bounds of the hierarchy

and may be extended to a higher level by explicit

statements. This concept is slightly better than the

global and local variable concept.

These languages contain a comprehensive set of facilities

to allow variable interpretation of any entity which is

a very useful facility when large systems are considered.

The language also allows an extension of the syntax and

modification of semantics.

The common syntax for all the levels is particularly

useful in system modelling since a common simulator can

be constructed to handle description at all levels.

As the design progresses it is only necessary to change

description to a different level within the same

language.

In general however, structure descriptive languages

serve on intermediate, and a very useful stage between

the design process and the implements ion. Their scope,

especially when defining the control part of a system,

to..ds to be restricted. Our basic aim to study the

possibilities of describing a system without, as far

as possible, any structural constraints. To this end,

structure descriptive languages are of an indirect

interest only.

90

3.12 Conclusions

Most large digital systems can be regarded as instruction,

executing systems and consisting of an operational part

which contains the data storage facilities, i.e. registers,

and the data manipulation, i.e. register transfer,

facilities, and a control part which provides the

necessary signals to activate the register transfers in

a correct manner. We have noted in the discussions in

this chapter, that the behaviour of the operational part

can be described, in terms of microprograms, in a register

transfer language and that it is possible to extract the

behaviour of the control part from this description.

However, the flexibility offered by the various languages

to describe any complex modes at microprograms varies

widely.

Earlier register transfer languages were simple and could

be directly mapped and thus were good tools for analysis

of already designed systems and for automation of

implementation. They had their limitation such as,

inability to indicate segmentation, multiple operations,

mixed synchronous and asynchronous operations etc., and

their timing notation was particularly poor. Roth's

sequence chart analyser [7 9] expressed microprograms in

a graphical manner which indicated timing and multiple

operations, but owing to its graphical nature it is

difficult to automate.

Further languages were developed to increase the

flexibility and specification ability for which notational

and operational conciseness was introduced by using

complex/

9 1

complex operators and macro calls etc. Some of these

languages were based on the structure of existing

programming languages, e.g. Metze and Seshn's language

based on Fortran [743 and Chu's CDL [39 - 42]

and Cassandr* [32, 33, 58] based on Algol. Segmentation

facilities were introduced in DDL by Duley & Dietmeyer

[4^^ 47] and in Cassandrg.

The Iverson notation [64 - 66] provides a means of

describing the logical functions of a system at various

levels of detail including elemental bit levels,

independent of the machine structure and in an algorithmic

manner lending itself to a good interpretation in terms

of hardware realization. However, the designer usually

defines the system in terms of functional blocks first

before attempting an algorithmic solution of the problem.

The Iverson notation unfortunately, does not have a

sufficiently high level of functional descriptive

ability. Secondly, at the algorithmic level the language

does not contain adequate facilities to express control,

particularly timing.

Since all the languages use a predefined register

structure, the automatic part is still limited to

deriving the controlling circuity and the combinational

logic driving the register structure. Gerace [54]

d^^cribed a method by which the register structure

implied in the register transfer description may be

reformulated into an i t s f c l t i v e h^-connected-machine

structure and obtain a formal abstract definition for

each. A more pertinent application of register transfer

language/

language description is however, in producing a ROM

implementation of the control part. ROM implementations

are somewhat more flexible in that it is possible to

change the characteristics of a given operational part

relatively easily by changing the ROM part of the

control part and thus by using, say, plug in ROM modules

an effectively different system may be obtained. Gerace,

et a l [553 have described methods of different ROM

implementation and minimisation.

Another interesting, and potentially very useful result

noted ^85] was that the dividing line between the

operational part and the control part is somewhat

arbitrary and that certain rules can be applied to

shift this line one way or the other. This also

exemplifies the artificiality of dividing a system into

two arbitrary parts. It should be possible to view a

digital system from an overall system view point and

describe its behaviour in some manner that is

independent of the internal structure and then either

algorithmically or via some interaction with the

designer evolve the necessary structure.

Finally, the usefulness of a register transfer type

language for documentation of system cannot be emphasized

too greatly; Its value is further enhanced if a

methodology is developed by which a system can be

detailed, at the various levels necessary, as it

progresses through the design stage. Such a methodology

^ 9 0 J also allows a suitable comparison of various

systems to be made in uniform manner.

4* Methods based.on Swltohlnfr Theory and Information Theory

4*1 Introduc tion

One of the advantages of using switching theory in logic network synthesis

.is that it provides algorithmic, and hence programmable,techniques for

producing logic designs from input-output specifications. Gliese programs

may be then used by even a relatively inexperienced designer to produce

complex, error free logic designs, providing of course the specifications

of the network are input to the program in suitable forms, 'ihe latter

constraint however, represents a serious disadvantage in that large

amounts of data corresponding to truth tables, state tables or flow

tables have to be input and obviously this, apart from being tedious,

could lead to errors which may be hard to detect. The specifications

therefore, have to be input in a way that the chore of the tables may be

relegated to the computer,

4.2 Uarroll and Mott's Method

An approach to this was suggested by Carroll and Mott ^9^ in which the

inputs and outputs are considered to be related by some continuous function(8)

which may be input directly into the program. Carroll and Mott distinguished

between) types of logic networks. If n is the number of inputs and m is

the number of outputs, then these three types are a) those having n=1,m>1

b) those with n"̂ !, m^1 and o)where n:>1 and m^l. A single input network

as in type a is a special case in that it represents a counter in which

the input itself is the clock input and the outputs are coded in the

required form, The input-output relation in such a case is cyclic repeating

after p pulses where

0 ̂ p ̂ 2'̂ -1.

The other two cases are more general froms of logic networks and could

represent combinational or sequential networks; the concept of sjmple

input-output functional relations however, is only applicable to combinational

networks. Nevertheless if these are known, the production of truth tables

is fairly straightforward. A difficulty arises when these functions are

to be determined,especially if they are limited to be numerical, as implied

by Carroll and Mott, and in many cases it is not possible to determine them.

One way to overcome this is to extend the types of functions that mqy be

specified and to include algorithmic descriptions, particularly where

iterative relations are invol/ed. Another useful addition is to complement

the relational description with the input-output pairs where necessajry.

4') Smith and Tracy's Method

The specification of a sequential network behaviour introduces another

dimension to the problem, i.e« that of time dependence. 'Ibe method

suggested above cazmot be used for sequential networks except in the special

case of counters. Wmith and Tracy [_102] proposed a method whereby the

behaviour of asynchronous networks may be specified in a short form and

converted into normal flow tables.

The method relies on being able to specify the output responses to a series

of input sequences as, for example,in pattern recognizers »r counters.

'Ihe series may contain several individual sequences; and the ordering,

either to create loops (as in counters) or to indicate branching (tests),

is shown by attaching notes goto and follors. The sequences themselves

may be defined in terms of either all inputs or a subset of inputs.

AS an illustration, consider a network with two inputs a,b and two outputs

y,z. y becomes equal to 1 if a=1 and b follows the sequence 10 and

providing that a has followed the sequence 010 immediately prior to this,

z becomes equal to 1 under the same conditions except that b follows the

sequence 01.

Ihe output response type description for the above problem is s^own in

figure 1.

In the trajislation of this type of description to a normal flow table,

Although the steps described here are taken directly from Smith and Tracy';
paper, they are slightly modified in the illustration by.introducing the
restriction that only one input variable may change in a transition.

95

an intermediate flow table, called a module flow table (MPT) is first

generated. This flow table indicates the ordering of the sequences and in

effect is a mapping of the goto and follows notes. Next, a preliminary flow

table is generated for each sequence such that firstly stable state entries

are made where input-output response pairs are specified and then unstable

state entries are made corresponding to the next stable states. JMo unstable

entries are made at the tail of the sequences, i.e. at the end of the

sequences. The individual flow tables are then concatenated together using

the information contained in the MPT and adding unstable entries at the tails

of the individual flow tables to correspond to the next stable states. These

steps are Illustrated in figures 2,3, and 4» The final flow table, obtained

algorithmlcal^y, is shown in figure 4 a^d may be compared with the state

diagram obtained directly from the initial specification and the corresponding

flow table shown in figures 5 and 6 respectively.

The procedure illustrates some interesting points. Firstly the description

is almost a state diagram type description but it is in a form, which is

much more allied to the approach likely to be taken by a designer who

is unfamiliar with switching theory methods. Secondly the method does not

require a full specification and can be completed in stages; and it seems

ideally suited for generating a flow table in an interactive mode* Finally,

although the method haa been illustrated only with an asynchronous design

example, it may be possible to generalize it to include synchronous

designs.

96

inputs outputs notes

a b y z

seq. 1 1 0 — 0 0

2 1 — 0 0

seq 2 5 0 — 0 0 follows 2

seq 3 4 1 1 0 0 follows 3

seq 4 5 1 0 1 0 follows 4, goto 1

seq 5 6 1 0 0 0 follows 3

seq 6 7 1 1 0 1 follows 6, goto 1

seq 7 8 0 — 0 0 follows 4,6, goto 3

seq 8 9 1 0 0 follows 5,7, goto 1

Figure 1, Input--output % 'esponse scecifioation

inputs

seq. nimber 1

2

3

4

5

6

7

00 01 11 10

- , 2 - , 2

5 5

7 7 4

1 1 8 8

7 7 6

1 1 8

2 2

1 1

The dash indicates

the starting inputs

of the sequence

Figure 2. MPT corresponding to the example in figure 1

inputs = ab

00 01 11 10

97

(T)/00 (3)/00 2 2

(^/OO 0/00

g)/00 Q/oo

0/00

CD/10

^D/00

0 / 0 1

(8)/00 0 /00

© / o o 0/00

sequence 1

sequence 2

sequence)

sequence 4

sequence 5

sequence 6

sequence 7

sequence 8

Figure 3. Individual flow tables corresponding to the

example in figure 1.

inputs = ab

00 01 11 10

(Dvbo CD/00 2 2

3 3 (2)/tW ^gl/W

(^U^O (^/OO 4 6

8 ^0/00 5

1 9 GD/10

8 7 GD/tW

1 G&/01 9

GD/OO 4 6

1 1 (^/%0 ggvoo

Fimzre 4« Concatenated, flow table

01/00

00/00

""IT/OO

Figure 5. State Dia^aa for the Network

100

inputs = ab

00 01 11 10

CD/00 Q)/00 2 2

5 3 Cb/oo ^D/00

CD/00 4 6

3 (3)/oo 5

1 8 g)/l0

3 7 (gvoo

1 CD/01 8

1 1 Gb/bo ̂ D/00

Figure 6. Flow table corresyondinK to fi&ure 5,

101

4.4 P e t r i Nets

The importance of considering the behaviour of the overall system rather

than segmenting it prematurely into hardware and software was also

emphasized by Holt et al ̂ 97,9^ in their work on Petri Nets. Using these

nets, which were first conceptualized by C.A.Petri as transition nets,

it is possible to indicate the behaviour of a system in terms of information

jTLow through hardware processes or software processes in a precise and

concise manner. Thus these nets provide a method for describing a system

In a unified way and is a significant step towards the required goal.

The basic unit of Information flow in a Petri Met Is an event, A system

can be described by a set of events joined together in a loop,allowing

repetition of events. The term event therefore, is generally taken to

imean a repeatable event and an Individual repetition of an event Is called
t

an occurrence.

an event in a Petri Met is represented as a transition and is depicted by

a Ibar with a suitable number attached to it so as to distinguish it. The

transitions are connected together by arrows via places or conditions which

are depicted by circles. The entries in the places specify the conditions

necessary for the transitions.

The arrows establish the relations between the transitions and places:

i&n i&rrow from a place to a transition means that the place is an input

condition for the transition and an arrow from a transition to a place

indicates that the transition generates the condition.

A simple example of a repeatable event is a computer in a user environment.

Initially let the computer (C) be in an idle state (CI). A user (U)

accesses the computer via a teletype unit (T) and inputs a program (P).

The computer the computes the program (OP) while the user is waiting at

the teletype unit (UT^Q. When the computer has finished the computation (CP')

the results are passed on to the uaer (UTR) who leaves the computer in an

102

3
CP

103

idle state (Cl) and the teletype unit free (TP).

The Petri Net for the above is shown in figure J. iwent 1 in this diagram

shows that it will take place only if the two conditions CI and UTP are

satisfied. As soon as the event takes place the conditions CP and UTW are

generated. The conditions for transition 2 are thereby satisfied and the

condition CP' is generated. This in turn, along with UTi¥, allows

transition 3 to take place.

Ihe Petri Net considered here clearly indicates the Information flow through

the system in a concise and precise way. These nets can also handle

concurrent or parallel and independent events particularly well. Thus they

can be used to describe the behaviour of a variety of systems with a

varying amount of detail.

The history of a system can be recorded by performing a simulation on the

Petri Net, Conventionally this would be done as a record of states and

the associated conditions generated by them. However, this requires that

every distinguishable state be recorded as a separate entry. Holt introduced

a notion of occurrence graphs which illustrate the simulation In a graphical

way and are able to handle concurrent events more easily than by the

conventional approach. An occurrence graph for the Petri Net considered

here is shown In figure 8, where the nodes Indicate the transitions and

the arcs indicate when the conditions specified by the labels associated

with the arcs are true.

Petri nets offer some exciting applications. Firstly, concurrency can be

relatively easily and concisely depicted. They can be used to describe the

input-output behaviour completely,and entirely in terms of its environment

without imposing any constraints of implementation technology. The latter

application Is particularly useful in design. For example, an algorithm

may be depicted using Petri Nets containing as much concurrency as is

allowed by the constraints due to environment. Wow the designer can choose

i'J/.

OP' UT*

TITR

UTP

UTW

CI UTK

Figure 8. An Occurrence Granh

105

a particular implementation such that "parts" of the algorithm can correspond

directly with the "parts" of implementation. Conversely the designer can

modify the algoi^thm with the constraints of an existî ng implementation in mind,

tn best use the implementation.

4.5 Conolusions

Switching theory provides ua with methods to describe the behaviour , i.e.

the input-output mapping, of a system in a precise manner. Unfortunately,

the amount of data required to do so and the data generated in the subsequent

phases of design tend to be very large indeed, 'fhis does not however, mean

that switching theory should be ignored for practical design and in fact

switching theory is a very effective means of producing error free designs,

The methods of generating truth tables or state tables described here,go

some way towards bridging the gap between the concepts specified by switching

theory and practical methods likely to be adopted by a designer. However,

there is a strong reluctance among designers to assmne switching theory

techniques in their design processes and a considerable support is still

necessary before these techniques are in general use.

One of the drawbacks in switching theory is that at present it is somewhat

inadequate to handle large systems with parallel processing. Petri nets

however, handle such systems neatly and also offer some additional useful

applications, such as optimization and simulation. The Petri nets seem to

offer real potential towards a unified method of system behaviour description

and system architecture design.

5. AN APPROACH TO COMPUTER AIDED LOGIC DESIGN

5.1 Development

It is clear from the foregoing discussion that the logic

designer acting in a computer aid environment, and

especially in an interactive mode, has a language problem.

Many languages have been devised and utilised to a varying

degree of success. It is also clear that the main draw-

back comes from the correlation, or the lack of it,

between the language and the designer's natural methodology,

and also the "design" aspect rather than just the simulation

capability of the language. To surmount these drawbacks

and to devise a new language, it would be helpful to

examine what we are trying to design and how we, as human*

designers, tackle the problem intuitively.

The system under consideration is a digital processing

system, by which we mean that the system will accept

information on lines which carry one of only two values

and that after processing produce outputs on similar

lines. Typical examples of such systems are traffic

light controllers and digital computers. It is also

envisaged that these systems will, in general,process

the inputs in more than one way, i.e. they will have a

certain instruction repertoire and that the required

instruction would be selected by an external input,

such as a program. This definition allows the inclusion

a general class of digital processors, since if only one

function/
106

107

function is executed, the repertoire will include only

one instruction and the external input would be, say, an

on/off switch®

5.2 Intuitive Approach

To understand the steps which a designer is likely to

follow, it will be useful to consider an example. The

example we choose is a simple one, yet adequate to

illustrate the steps taicen. Two numbers each seven bits

long are coded with Hamming distance code * and are

accepted in a serial mode. Their parity is checked and

a correction is applied if necessary. If the first

number is greater than the second then the two numbers

are multiplied otherwise they are added together.

Finally, the output is correctly coded with Hamming code

and put on an output line, again serially.

This itself defines the first step in any design: that

of a description of what the overall system is expected

to do. There is no mention as to how the parity is

checked or how the multiplication or addition is achieved,

or for that matter, whether the operation within the

system is conducted serially or in parallel. The

abstraction we can derive from the above description is

that it is a black box with one input line carrying the

input data, another one to validate (synchronize) that

data and one output line for output data.

* Appendix III

108

start/stop

>

clock
-Ttrr • •

ready

SYSTEM

input output

figure 1. A Small System

Although the clock was not explicitly expressed we deduce

that it is necessary. We would also need to provide

another output line to indicate when the output is ready

emd obviously a start/stop line. Since the output is

also serial, we would need to know whether a clock line

for this has to generate or if the input clock is running

continuously and consequently can be used for the output,

let us assume the latter.

It is clear that at this level we are only concerned with

outlining our system in terms of the input and the output

and the system behaviour is described. We call this type

of description a 'behavioral description'. Ideally, we

would like to input just this much information into em

automation programme and let the design be evolved with

respect to some pre-defined cost-effective measures

which the designer specifies. But would be naive to

attempt to obtain a solution, let alone an optimal

solution.

The/

109

>. "O
o
w

O.

o

4-» E
3 w
O.
4-» 1/)
3
o

E
w
U)
Sr

V

3
CL
C

E
w

CL
O
U)

p
U)

u
o
u

3
o.
c

c $
o
3
o
w

u

u
E
JC c

3

o
c
g v*
V
c
3
u.

(\

w
I.
3
o*
E

110

I
U)

c
3̂
O
"O
o
w

o

m

2
3

u_

u

(A

U

11-

start

accept first 7 blta serially number a

check code and correct if necessary

V
discard parity bits

i
repeat the laat 3 steps for number b

yes

Y
multiply a and b

no.

add a and b

generate correct Hamming code parity bits

merge output bits and parity bits

put ready = 1 and output

end

Figure 4. Functional algorithm

11:

The next step is to break down the black box, called

system, into eub-systems, each designated certain functional

capabilities. This would start on a. coarse breakdown

extending to a finer detail as necessary. The functional

breakdown for our system is shown in figures 2 and 3.

The description of the architecture based on this type of

breakdown is called 'functional description' of the system.

We would also draw up a flow diagram of how we utilise this

architecture and this is shown in figure 4.

The flow diagram gives us the sequence in which each

function has to be performed. We still cannot translate

this information directly into hardware or software

routines until the how of each function is specified*

However, since the flow diagram is not related to any

machine structure, it is still abstract and independent

of the final machine and acts as an overall reference.

The next step is to detail each function in an algorithmic

manner. The human designer at this stage, owing to his

experience and intuition, may resort to hardware blocks

a.Ed express the algorithms with these hardware constraints.

However, we feel that this is "jumping the gun'\ as this

process may lead to quick hardware realisation but will

not allow any logical process of overall minimization.

For example, the designer may allocate J-K flip-flops for

memory elements to minimize hazards due to asynchronous

signal*but the overall system may be such that only E-S

flip-flops, which are cheaper, may be adequate. Another

example/

ir
example is that the desi gner may allocate separate

registers and a parallel adder whereas a serial citcwitv^

may be sufficient.

It can be safely said that a designer will normally derive

a flow diagram similar to the one in figure 4, from the

description of the system in a natural language which is

sufficiently formal for the logic designer yet it is quite

comprehensible to the members of other disciplines. Since

we wish to devise a language that can be used as a general

purpose design language, we feel that at the highest level

the language should incorporate information of this type.

It must bef6«n@m»bey6d^ however, that the statements in the

flow diagram indicate the flow of data and the operations

performed upon it, and that the logical operations for

each statement have still to be defined. Therefore, it

will be useful to think of these steps as macro functions

and each of these is detailed in a logic design language.

Returning to the example, we consider the regiiired trans-

lation of the functional macros. We have established a

data flow through the functional boxes, the data being a

collection of strings or bit patterns. The input data

may be sustained long enough for the functional boxes to

perform the necessary operations; on the other band,

especially in the caseof serial transfers, it may not be

present long e n o u g h q w j w k o W o f the data may require

"memorizing".

The Hamming code used here has 3 check bits and 4

information bits and since the validity of the number

cannot/

1 1 '

cannot be checked until all the 7 bits are present, all

these will have to be memorized. Let this functioa be

denoted by a register and since seven bits of each number

have to be registered and that they appear serially, a

counter has to be introduced. The functional breakdown,

then would be as follows.

1« set counter to 0

2. increment counter by 1

3« if the clock pulse is present then register input

into a vector, the position being determined by the

iraliie ()f tlie counter.

4. if the counter has a value 7 then go to ^ else go to

2.

5. .. *

This is an algorithmic description of the functional break-

down and the Iverson notation is most useful here. The

algorithm is re-written below using this notation, where

the counter is k, the clock is c, and the first seven bit

number is a.

1. k ^ 0

2. k ^ k + 1

3. c:0, (=) -iP" 3; (/) input;

4. k:7, (=) (/) 2;

5e « . *

The error checking and correcting steps are expressed

algorithmically as follows.

5* el ^ ^ / ((7) T 8^)/a (-V- a exclusive or)

6. e2 V/((7)T51)/a

7. e4 ^ -V/((7)Tl5)/a

8./

8» n <- —L. 6^,62,el

9. n:0, (=) 10; (/) <-

10. ...

el,e2 and e4 are three scalar quantities corresponding to

the three error bits. Statement 5 is interpreted as: mask

the vector a by a binary pattern whose value is 85, i.e.

select the odd bits of a and if the sum is odd then there

is an error; similar interpretation is used on statements

6 and 7. The statements 8 and 9 define a single error

correction. The masking patterns can be generated using

special Iverson operators and ^,6 and 7 can be re-written

as

5. el V/(2 I il(7))/a

6. e2 y/(4 I ̂ 1(7))/a

7. e4 V/(il(7) :$)/a

Without going through the remaining steps it is easy to set

tlie general format of the algorithmic description and that

it can be similarly applied to the remaining functions of

the machine.

The hierarchy in the description is already apparent as

the functional macros are at a higher level than the

algorithmic description, and it can be extended so that

each operation is further simplified to a lower level and

so on. In an intuitive approach, the hierarchy is extended

until the description has almostdone to one correspondence

with some structural elements. Thus the vectors are

immediately translated into registers, the steps into

timing cycles and the remaining operations performed by

clever/

V v

clever manipulation of interconnecting logic to minimise

delays, elements and, in the case of parallel processing,

hazards. This process can be largely automated and has

indeed been demonstrated by Fri edman et al [5^1. The input

to their program , ALERT,is in the form of Iverson state-

ments and the outputs define the excitation equations for

the flip flops, and these are subsequently processed to

obtain the logic diagrams, wiring diagrams etc.

It may be recognised that the Friedman approach is to

assign hardware blocks to achieve the various operations;

however, this in the same as in the case of register

transfer languages and the only functions that the

computer provides is to assign these blocks automatically,

and to remove redundancies. We feel that a better approach

is to derive the behaviour in terms of,say, truth tables

and state tables from the functional description and then,

process this by a logic assignment programme.

There are two ways of obtaining this information, the first

is to use the functional description and converting this

directly to state tables by a method similar to Gerace^s [^4]

and the second is to use the allocations obtained by a

programme similar to Friedman's and then from the excitation

equations obtain the state tables.

Clearly then, a library of available and usable physical

objects has to be created and for this a flexible and

comprehensive declaration facility is needed. As new

objects/

I I

objects become available they should be readily added to

this library without affecting either the flow

or the structure of the language using this library and

hence the declaration facility should be expandable

naturally. It should include sufficient information to

determine its applicability completely. For example, a

software routine will require in its declaration, its

name, input and output parameters, how it is called in the

main programme, its size and speed. Further information

which may be necessary is how the routine functions and

any illegalities either in operation or interaction with

another routine. Another useful parameter would be a

cost figure, which is particularly useful in cases where

the designer wishes to trade cost with speed or vice

versa.

The Computer Aided Approach

From the previous discussion we deduce that the designer

needs to specify a system at thre* different levels. At

the first, the system is defined entirely in terms of its

input and output behaviour, i.e. the specification at this

level describes the system as a whole without any indication

as to its internal structure. At the second level, the

system is decomposed into several sub systems, each as

which may be defined

(a) in terms of its input-output behaviour, or

(b) by algorithm specifying its functions

Finally at the third level the designer may specify a

structural detail and the operations constrained by this

structure.

118

To apply any of the minimization programs the data in

the computer must be obtained either in terms of truth

tables or tl^ equivalent forms thereof, or terms of

state tables or their equivalent forms. If the designer

inputs the data in terras of behavioural specification then

the subsequent manipulation is straightforward. However,

the data to be input becomes enormous and a short form

method must be considered. Such a method for inputting

behavioural specification for combinational networks is

proposed later.

The structural definitions can be given by register

transfer languages or in a form of Iverson notation [5^].

This type of description is very useful for analysis work

and, in the design process, can be used to generate the

boolean equations for the logic interconnecting the

registers. The bodean equations can be manipulated to

minimize the combinational logic; however, the registers

themselves are not minimized, mainly because no formal

methods yet exist to minimiae sequential logic without

returning to a state-table-type specification. Furthermore,

a large part of the design is already complete before use

of- computers is sought. A method to automate the earlier

parts of design, namely the functional detailing, must be

considered.

The Iverson notation is very useful kere since it can be used lb

detail design information at this functional level, i.e.

without resorting to structural constraints,and has

sufficient flexibility to detail at different levels of

parallelness at operations. It also can be easily

extended to describe the operations within a structural

definition but has no provision for defining this

structure nor fnr m n v mynlirif t \ r: 4 n i? _

6 . THE LOGIC DESIGN LANGUAGE

6.1 Introduction

A logic design language is primarily a language to

describe the algorithms for .lQ,.gical processing sY&tGfM.

Its main uses are in the (bsign of logic systenis; howeYer,

the language should also be capable of documenting existing

systems. Furthermore, it is to be used by members of

other disciplines also, as a common reference language and

thus should be lucid, sufficiently descriptive, yet without

too much detail. Conversely however, a description in this

language must be interpretable by a computer as a program

to produce abstz^ct data for subsequent manipulation, and

this requires tkat the language is highly structural, highly

symbolic and that the description contains a considerable

amount of detail.

As noted in the previous discussions a program in a

conventional programming language tends to define a set of

processes to be executed sequentially, where as a logic

system in general contains facilities to execute processes

in parallel and the necessary synchronization, The

language must reflect this clearly. Also, the structure

of the language should be such that undue restrictictions

are not imposed on the designer's mode of design, but

rather is adaptable to the different methodologies used by

different designers and cater for the different aspects ojT

a design process.

In/
119

120

In the following sub-sections we discuss the various

facilities demanded the language^ how they are catered

for, and the structure of the language.

6.2 Structure of the Description of a System

The system under consideration must be of a nature such

that a set of abstract data, the level of which is decided

by the designer, may be generated from its description. It

should therefore be either constrained to a certain size

(in terms of, say, an algorithm) or segmented down to produce

manageable sub-systems* It is suggested that this segmentation

is based on a functional division within the system, as .

discussed earlier.

The system can then be described in the following ways:

(1) Entirely by its input-output behaviour

(2) In terms of the inputs, outputs and an algorithm or

algorithms defining the functions within the system

(i$) In terms of the inputs, outputs, a predefined structure

and the data flow

Despite the distinctions in the different ways however, the

basic structure of the description must necessarily be

common. A designer may wish to use any one or more of the

abovenethods to describe a system depending on the size of

the system and the detail available.

The description therefore, is organized in a block structure

similar to Algol; however, there are some important

differences. In Algol, a block introd'uces a new level of

variables,/

121

en, labels etc., or it aay be an independent entity,

in the fort;) of a - , re, which may be accessed by program

with actiial parameter substituting the dummy parameters of

the procedMre. 'Owing to the sequential nature of Algol, as

any other programming language, only one copy of each

procedure needs to be maintained. In the logic design

language however, a 'procedure*, or in the general terms,

a syatem or a Bub-system, may be one of two types, namely,

one which is shared, in the same way as an Algol procedure,

and one which is duplicated.

We define FACILITY as being a system or a sub-system which

is shared, with different arguments as necessary, and a

MODDIjE as being a system or a sub system which is duplicated

for each separate use. Of course, a module or e. facility in

turn may contain, within it, additional modules ot facilities.

In the logic design language (LDL) therefore, a system i& a

Module containing various other modules and facilities and

the description in the LDL in a program defining the inter-

relation between the inputs, outputs and any facilities and

modules contained in the System Module. In a programming

language this Interrelation is always defined by an

'algorithm; however, in LDL it could be in one or more

forms as selected by the designer. For exaaple, the

description may be a truth table, a state table, flow table,

wave form description, functional algorithm or an algorithm

in terms of predefined structure. The designer specifies

the/

i2̂

the type of data involved by succeeding the BEGIN at the

start of the block by the appropriate type name and when

the type of information is to be changed, this is done by

introducing a new block,

A module or a facility in general must be declared before

it is used. However, two other forms are also allowed,

A block may be declared as FORWARD in which case the

declaration is expected later on in the description.

Alternatively a module or a facility may be declared as

LIBRARY where a library of previously designed modules or

facilities has been set up and is to be used when completing

the description. The library facility is particularly useful

when a team of designers design different sections of a

system separately i&nd compile a library in the process

which is then accessed to complete the overall design.

As mentioned earlier a block introduces&new level of

variables, label etc. thus an identifier declared in an

outer block is accessible to an inner block except when an

identifier with the same name is declared in the inner

block. The identifiers declared in the inner blocks are

never accessible to the outer block. Similar restrictions

also apply to labels.

The/

123

The ey.ntaz for a 'progreun' iia the LDL is given below in

the Backus-Naur form

^progran^

^lock^

^(unlabeled block^

<(block

^ l o c k head^

<^block name^

^nput liat^

<QLdentifier list))

^utput liet^

(^alue part")>

Specification part)>

<(type^

description^

description head^

(block^ FINISH.

'2 Unlabeled blocki^ | ̂ abel')^ I <^lock)>

» ^block type^ ^block head^ <(deGcriptioi:i^

END.I

(^block typ^ ((block head)> FORWARD|

^lock typ^ 4[̂ block head^ LIBRARY

- MODULE I FACILITY

- name^ (^nput liel^.^utput list^)

^alue part^ dpGcification part^

^dentifier^

^identifier list^} <empty)"

<identif ier"^, j^identif ier"^ .

identifier list^

identifier list^ j <empty^

VALUE identifier list^ j <empty')>

(^identifier liGt^.|<(type^

^identifier liet^ •

^Pacification part^

SCALAR I VECTOR |MATRIX |CLOCK | PULSE

^description head^ « description tai]^

BEGIN description type^ «

declaration^

description type"))- ^ TRUTH TABLE |STATE TABLE | FLOW TABLE |

BOOLEAN EQ.!

WAVEFORMj REGULAR EXPRESSION]

FUNCTIOTiALj STRUCTURAL

124

^declaratior^ ^identifier likt^ -

^eclaration^

GLOBAL CONDITION ^ B o o l e a n e x p r e s s i o n ') '

^eclaratioa)>

description tail^ 22 ^block^.description tail^

{description in the appropriate format j

A typical example of an adder would be as follow:

MODULE ADDER (A . B . K 1 . I . . C , K .) .

VECTOR A.B . C { [O : !] . SCALAR K l . I . K .

BEGIN S T R U C T U R A L .

SCALER J . VECTOR KP [o : I + l] .

LABEL L .

MODULE ADD (A . B . K 1 . . C . K) .

SCALAR A . B . K l . C . K .

BEGIN TRUTH TABLE .

ABKl CK

000 00

001 10

010 10

Oil 01

100 10

101 01

110 01

111 11

END .

125

0 K [o] 0 .

1 L; J 0.

2 ADD (A [j].. C [j] . KP [j + l]),

3 J J + 1 .

4 IF J6l GOTO L.

5 K < - KP [j + i] ,

END.

6.3. P^iBcriptioa

The description of a system may be in an abstract form, e.g.

when the system is defined entirely in terms of its inputs-

output behaviour. Common forms of such descriptions i&re

truth tables, state tables, flow tables, boolean equations,

regular expressions etc. A description in one of these

forms has neither a provision of any kind to include

algorithmic type of description nor to introduce named

modules or facilities other than those determined by the

subsequent manipulation programs. The advantage of such

a description is that the full power of automation may be

applied to produce an optimal design. The disadvantage

however is that the description tends to be very lengthy;

and an interactive mode of operation to develop it is

preferred and this in turn requires a versatile command

structure. A suitable command structure to develop an

abstract description of a combinational network is given

in the following section.

A major part of the description in LDL however, will be in

the form of an algorithm either at an abstract level or in

terms/

126

terms of structural constraints of the system. In both

cases the description is given by statements. At an abstract

level a statement may be a data transfer as in a programming

language, or at a structural level it may be a register

transfer type of statement.

In general a statement defines a sequence of actions to be

performed and once initiated, the execution of tHe

cannot be interrupted. A set of statements may be grouped

together to foj^ a compound statement where again once

initiated the execution of the statement cannot be interrupted

unless a global condition declared within the compound state-

ment becomes false. A compound statement is distinguished by

enclosing statements between BEGIN and END. The enclosed

statements themselves may be any statements including compound

statements. A compound statement may also introduce new

global (global to the compound statement) conditions and new

variables.

Sequencing is implicit in the order in which the statements

are presented except when modified by either explicit or

implicit parallelness or by branching. Labels may be

associated with each statement for branching.

Each statment can also be made subject to a condition or a

set of conditions, in the same way as in Algol as long as

the evaluation of the conditions produces a logical value of

true or false. These conditions can be any relational tests.

A statement may also contain several sets of conditions and

the corresponding actions for each condition similar to the

Algol conditional statements. In addition we introduce a

notion of global conditions which are tested prior to

commencement of execution of each statement. For pie

a clock signal or an interrupt signal frocoperirhoi-al unit

may bewglobal condition. The scope of global signals

also be controlled by declaring it at the appropriate level

that is if a signal X is declared, as global in block A then

it influences all the statements and blocks contained in

block A but if block B cortains A then signal X will not

influence the execution of block B.

We also introduce additional conGtructs tcr indicate

Bynchronism and parallel execution, namely the until state-

ment, when statement, the while statement and the in

parallel statement. In the first three cases a condition^

as defined by a boolean expression or a relational test is

monitored continuously. In the until statement the state-

ment following the test is executed, repeatedly if necessary,

until the condition becomes true , the converoe is true in

the while statement if when the condition become false

control is passed to the next statement after the while

statement. The when statement effectively requires the

system to halt until the condition tested becomes true.

The in parallel statement initiates the execution of all

the statements defined in the scope of the in parallel

statement together. The statements defined to be executed

in parallel may themselves b$ any statements including in

parallel statements. This facility we feel is particularly

important when asynchronous processes are executed in

parallel.

The/

|g8

The operations within a statement are evaluated using

right to left (N,B.) procedure as required by the Iverson

notation. This however, may be modified by parenthesis.

The syntax for a description is given below in the

Backus-Naur form.

description)*

^statement)*

^unconditional
statement^*

^until statement/

Statement")), ^descriptiori^l

^tatement^

^unconditional statement!<(condltion)>

.(unconditional statement)^ ^(alternative

^ntil statement^ | (while statement]))!

^vhile statement^ .,^

^when statement^ « -

^in parallel
statement^

^simple statement^

^branch statement^ ;

^ r a n c h pointy J

^ssignment^ ;

{/compound statemen^^

^when statement^

^ n parallel statement^ | pimple statement^ |

(^lompound statement^ ̂

facility call statement^ |

^odule call statement^

UNTIL (boolean expression^

DO (^^^statement^

WHILE ((boolean expressior^

DO ^tatement^

WHEN ^oolean expression^

DO (^statement^

IN PARALLEL DO BEGIN <$escriptioz(> . END

^ranch statement^x | ̂ assignment))

GOTO ^(branch point))

<^abel)>

^assignment written in Iverson notation^

BEGIN declaration)) <(^escription^ END

129

^boolean expressioi^*-^ ^an expression when evaluated returns

a true or false value^

^facility call •«« <narae of facility^ (̂ 'input parameters^
statement"^

<putput parameters^)

<^name of facility^ «•» <^identifier>

<^nput parameter^ ^parametei^. |^parameter^

^input parameters^

^utput parameter^.^- ^arameter^ . | ̂ parametez^

^utput parameter;^

^arameter^ ^dentifiei^ j^xpreBsion^

<̂ raodule call , •- ^lame of module^ (/input parameters^ •
Btatement)> ' ^

^output parameters^)

^name of module^ •«- <^ideiitifier^

^ondition^ IF ̂ boolean expresGion^ I'HEN

^alternative^ ^«- ELSE ^tatement^ | ^empty^

6#4 Variables

The variables in the description are interpreted ae in

IverBon notation, i.e# they can be logical* integer or real

variables either in a scalar form or vector form. Matrix

manipulation is not envisaged at present but a reference may

be made to any vector (row or column) of an array. A variable

must be declared (at the head of the block) before it is used.

However, it is not distinguished by any particular terminology

as is inherent in the Iverson notation but is implied in the

usage. For example, a vector quantity when used as a scalar

will refer to the right most scalar quantity. Similarly a

numerical quantity used as a logical quantity will be

interpreted as true if it is non-zero or false if zero.

7. CCmMAND STRljCTUEE 0? ^ , TRUTH GENERATCR

In the following section the facilities and the coamaad

structure which will be imed to input and complete a truth-

table in an interactive mode are presented. The account is

divided into three subsections: the types of combinational

networks and their requirements from a designer's viewpoint

are given in the first, and the command structure and the

proposed method of implementation using the Honeywell $16

computer in the department are given in the second and third

subsection respectively*

7.1 The Requirements

The behaviour of a combinational network may be known to

the designer in different forms. These are broadly

categorised into the following types which are not

necessarily exclusive but provide convenience of detail-

ing.

i) The full truth table. The designer knows and wants

to input the output behaviour for each input

configuration*.

ii) The truth table with incompletely specified I.C*

This is similar to i) above except that the designer

only knows a subset of the I.C. and the remaining

are either 'don't cares' or a fault condition*

In both the above cases the ̂ signer can specify each input

or output variable as being one of three values, viz.

* Here after referred to by I.C. and similarly an output

configuration will be referred to by O.C* 1 %

131

on or a 1 condition, off or a 0 condition and a

* don't care' condition. If the entries are specified

in binary notation, value of each variable can be

explicitly indicated as a 1, a 0, or a - respectively®

However, with up to 20 input and 20 output variables

the full configurations in binary form are tedious and

lengthy to input. A shortened version is often used

where three bit groupings from the least significant end

(the right hand end) are expressed by their equivalent

octal value. A slight difficulty arises when the don't

cares have also to be specified and to overcome this the

following two* methods are often used.

1) Each configuration is specified as an octal duple

with the first element set equal to the octal value

when all the non-on conditions, i.e. the off's and

the don't care's are set to 0 and the second element

similarly specifying the off conditions.

2) The second method is similar but specifies the on and

the don't care conditions. The choice between the two

is arbitrary and entirely depends on the designer*

In some cases, it is easier to input the entries with their

equivalent decimal forms. The don't care conditions are

then treated in the same way as above*

iii) Routing Networks. This does not actually involve

real 'design' but as it is one of the commonly

used types it is included in the discussion here*

I V

* Others are possible but they are only different combinations

of the ON, OFF, and DON'T CARE conditions and are not

considered here.

1)2

It is characterized by the fact that inputs can

be divided into controlling variables and the

routed variables.

Functional Relation. Î at s&l truth tabks j&M known

in their abstract form and in fact, the most common

mode is when the I.C. 's have a mapping into the O.C.'s

and this mapping is known* The designer may wish to

specify this mapping as a logical or numerical function,

v) Iterative Combinational Networks. These fall between

the combinational and sequential networks. In practice

sequential techniques are often used to solve problems

of such networks and a combinational treatment tends

sometimes to be academic. However, these networks

will be included in the programmes where they may be

specified by DO loops similar to the FORTRAN DO loops.

7.2 The UsaRe of The Programme

The first essential set of parameters required for the

programme is the input output size. The present minimization

programmes at the Southampton University operate on up to

20 input and 20 output variables, and this same limit will

be adhered to in the truth table generation programme.

The variables can be sepGurate identifiers or members of

arrays or a combination of both, subject to the condition

that the input and output names may not be common. These

will be declared in response to requests generated by the

programme immediately on initiation.

During the process of generating the truth table in an

interactive mode, it may be necessary to be able to type

headings/

13)

headings out and the truth table filled in a column

foria. Since there are only 72 character positions per line

available on the tele-type unit, a severe restriction has

to be placed on the length of each identifier. A maximum

of two characters, both alpha characters, per identifier

and in the case of array identifiers the first character

v;ill be assumed to be the name of the array and the second

character, a digit, will specify the relative address.

The latter constraint allows only 10 variables in an array;

however, it is felt that this limit will still be quite

adequate and if larger arrays are necessary they can be

specified as two arrays.

The generation of truth tables is achieved in two ways:

&) by inputting a truth tdale via the console by an inter-

active process or

b) inputting a functional description and letting the

program; generate the truth table.

These two methods are distinguished by the directives

immediately following the input-output declaration. If a

functional description is put in, the program: will fill

up as much of the truth table as possible and the remainder

will need to be completed by method a).

The completion process, a), is executed in two modes:

i) the program cycles through each unspecified I.e.

and the designer fills in the appropriate O.C. and

ii) the designer specified both I.C. and the correspond-

ing O.C.

A/

134

A mode indicator is used to identify each mode: it is set

to zero, also the default mode, for the former and set to one

for the latter.

a) Fully specified truth table in binary form.

In. this case, immediately after the input output declaration,

and when the programme is in an awaiting state, the designer

iaputa a command Since there are no other commands

programme will recognize this as a fully specified truth table

input in mode 0, and will print out two headings INPUTS and

OUTPUTS followed by a list of th^ input and output variables

in the same order as in the declarations. It will then print

out the I.e. 000...0 and invite the user to type by displaying

a question mark (?). The designer then enters the corresponding

O.C. with I's, 0 s or a blank or hyphen to denote a don't care.

The teletype will be automatically aligned fcr columnizing but

if the inputting is prematurely terminated by a carriage

return, line-feed or a semicoln, the remaining entries are

agGumed to be don't care's. After carriage return the programme

will line feed and print out the next O.C. and so on. Any

additional carriage returns or line-feeds will be ignored.

b) Fully specified truth table in octal or decimal form.

If a decimal or octal print out or if the designer wishes to

input in decimal or octal the following commands are used:

6TY OC,OF carriage return for octals with OFF's specified

see 7.1.ii

@TY 00,DC " for octal with DON'T CARE'S

@TY DE,OF " for decimal with OFF'S

and @TY DE,DC " for decimal with DOH'T CARE'S

These/

'3;

These commands instruct the programme to type out in the

appropriate format and also inform the programme as to which

type of inputting should be expected. They can be used

before the initial @G0 command in which case the list of

variables as headers will be suppressed or if in the middle

of the programme, the last line will be reprinted and the

subsequent output will be in the required format. A return

to the binary format is made by the command

the headers then will be displayed again.

The designer on the other hand can override thtk specified

format while inputting by typing in 00 (the letters 0), OD, DO*

DD and BI before the actual inputting to mean octal with off's*

octal with don't care's,decimal with off's, decimal with don't

care's and binary respectively.

c) Truth table with incompletely specified I.C.'s

As indicated above a set mode command, 6M0 e can be used to

set the mode to 1 to allow the designer to input the whole or

the required amount of the truth table himself. A more common

usage, however, is when a subset of the inputs need to b*

given a value and the others are cycled through. The set

variable commands, @SV are used for this, the format of which

is shown below.

@SV variable list a logical value

For example, in a 4-input, 2-output combinational network the

first two inputs never occur together. A possible method for

this is as follows:

136

INPUTS ? a,b,c,d

OUTPUTS ? e,f

@sv a=0

@sv bsl

@go

The programme messages are in

capitals

INPUTS

A B C D

0 1 0 0

0 1 0 1

OUTPUTS

E P

? 1 -

? 0 0

? 1 1 etc. followed by 0 1 1 0

a=l

@i8v b=0

©go

and filling in the next part. The other O.C.'s are get to

DON'T CARE'S by entering

@ot = —

8go

and finally terminating the input process by

@fi

In the above example the 'others' were set to DON'T CARE'S, but

they could just as well have been set to a required O.C. to

indicate a fault condition. If the input variable assignation

was to be done in decimal or octal then the VALU operator,

corresponding to the Iverson operator, could be used as

@sv valu Variable list^ = ^ecimal valued

and @8V valu Variable list^ = '^ctal value^

respectively v;here a variable list is a list of variables

separated/

separated by commas acting asceo.tAienatian'* operatore.

d) Routing Networks

the inputs are divided into controlling signals and

routed signals. In theinput specification routed signals

are set to DON'T CARE's and the remaining cycled through*

The O.C.'s then could be inserted as in formal programming

languages, i.e. by enclosing literals in quote marks or

preceding them by'equal to' signs; however, as tlbs number of

characters in a line is necessarily limited, a non-p]rinting

character, CTRL L, will be used. The choice of the character

is such that it does not conflict with any of the control

functions of the tele-type unit; the letter 1 is chosen to

stand for literal.

e) Functional Relation

A ©FUNCTION directive is used to instruct the controlling

program to accept the subsequent input in functional format;

however, since the translation on the HONEYWELL $16 computer

is to in conjunction with the Fortrem Compiler, differences

have to be introduced. The usage of the format is given

below*

i) No segment declaration is made since the functional

specification will consist of only one segment;

however, this segment may be processed in several

steps each initiated by ©GO directive, providing that

the specification until then is complete within itself,

i.e. it does not refer to a non-existing lab6t etc.

* defined later

1)8

ii) For every new instruction, the controlling

programme will type out a sequence number which

may be used for deletion etc.

iii) All quantities will be assumed to be of either logical

or unsigned integer type and the operations between

them will determine their type. The operations for

the time being will be limited to those listed below

with their trans-literation, but it is hoped that the

entire vocabulary of the Logic Design Language

connected with combinational networks will be imple-

mented.

iii.a.) Each single variable may have two logical values:

True and False represented by a 1 and a 0 respectively,

Arrayed variables will be considered to be strings

with logical values for each elements If in an

assignment the quantity on the right hand side is

greater than the capacity of the variable on the

left hand side, then only the right hand portion

will be preserved and the rest will be lost; on

the other hand if reverse is the case then the

left hand side will be filled by O's. Similar

arrangements will be employed in arithmetic

operations.

iii.b.) In string operations the variables may be

1) whole arrays in which case the arrays are

referenced by their names only, i.e. without

indices,

2)/

139

2) parts of arrays in which case the first and

the last indices are given in parenthesis

separated by a comma and following the names

of the arrays, and

3) Get up using concatenation operators (,). A

new variable may be introduced to assume the

value of the concatenated array.

Examples of 2 and 3 arc A (1,4) and A1,A2,A3,A4

where each refers to the sub—array formed out of

the first four elements of the array A. In the

latter case an assignment

N = A1,A2,A3,A4

may be used where N is a new variable which may

be used in subsequent manipulations.

iii.c.) The processing order will be from the right to the

left unless modified by parenthesis.

iii.d.) Unpredictable results will occur if any of the

variables on the right hand side have been set to

DON'T CARE'S before the instruction is executed.

iv) The following operations will be implemented.

Function Symbol Example

Logical Not 1' complement ' A'

logical Or A t B

Logical And « A.B

Logical Nor (̂)' (A t B)'

Logical Nand (.)' (A.B)*

Addition + D+E

Subtraction/

140

Function

Subtraction

Equals or assignation

Catenation.

Greater than

Greater than or equal to

Equal to

Not equal to

Less than or equal to

Less than

Conditional

Branch

Symbol

t

>

> =

< =

<
IF

GOTO

Example

D-E (D E)

A = D+E

A = D,E

IF (A >B) A= C

]# (A>= B) A = B'

IF (A=.B) GOTO 10

IF (A='B) GOTO 20

IF (A <^=B) D= D'

IF (A <300) B=0

IF(G) A=B'

IF(A='B) GOTO 20

v) Transfer of control from normal execution is achieved

by GOTO, IF and DO statements. In the present case

only ordinary GOTO statements will be implemented,i*e,

computed GOTO and ASSIGN statements will not be

considered. The DO loops will be the same as in Fortran

except that the terminal statement for each DO loop

must be a GO (without the @) statement.

vi) There will be no DATA statements.

vii) When typing the specifications in^the first characters

following the sequence numbers m;%y be a C to indicate

a comment line or a digit to start a label which should

be all numeric, or a form character to skip the label

field. There will Le no column for continuation lines

but instead a delimiter (;) is to be used to indicate

the end of a program line. Comments may be introduced

following this semicolon and the next carriage return.

viii)/

14

viii) There will be no instructions similar to the FORTBAN

input-output instructions and all outputting will

have to be done in the format specified elsewhere.

However, a print-out of the programme written so far

may be obtained by introducing a 1 after the terminal

©GO statement and it takes the form

©GO 1 CR for a print out

@G0 CR for no print out

f) Iterative Functions

This is a special category of e) above and the DO loop

format defined above will be used for this type of

function.

The above instruction define the commands used to partially

or completely fill the truth table. The remaining

instructions deal with modifications or subsequent manipulation

such as displaying or paper-tape output etc. Present plans

do not include visual display using the graphics terminal,

but since this will provide a very rapid and useful means

of checking the truth table contents serious consideration

will be given to its use later on.

i) Set up a mask. An assignment is used to setup a mask

for deleting purposes. Upto 10 masks will be allowed

at any one time and are set up by the command

©SMn = ^mask pattern^

where n is a decimal number 0 to 9 inclusive. The mask

pattern can be of any of the five types used in input

output/

142

output specification discussed earlier. If the

pattern is specified in binary and not all entries

(each entry corresponding to an input variable) are

specified, the mask will necessarily be left justified

and in the same order as the input declaration5 the

unspecified entries will be set to DON'T CARE's.

ii) The delete instruction. The delete instruction is

@DL and can take one of the following forms.

a) @DIj Mn where n is a decimal number 0 to 9 inclusive

and Mn specifies a mask previously set up* On

execution the instruction causes the O.C.t's)

corresponding to the I.G. specified by the mask

to be deleted.

b) @DIj Mn2^,Mn2 where Mn^ and Krt2 specify a mask each

as before. This instruction causes all the O.C.'s

corresponding to the I.C.'s between those

apeeified by the masks to be deleted. Mng niay

replaced by a decimal number in which case this

instruction will be executed as in a), and repeated

for the entries in the table the number of which is

specified by the decimal number. Note that if

VALUE Mn^ = VALUE Mn2 + 1 the deletion process will

cycle until all the truth table is deleted. A

better method is to use the following form.

c) @DL AL This instruction deletes all, i.e.

effectively restarts the programme.

d) /

14)

d) Using the format of a) and b) above the masks can

be set at the time the delete instruction; the

Mn's then are replaced by binary, octal or decimal

patterns®

e) If the input format is of functional type a delete

instruction should refer to a line by its sequence

number in the functional specification. The format

for the delete instruction then is

@DL a

where n is the sequence number

A line following this command may be

1. another delete command

2, start of additional functional specification,

in which case the updating specification until

the next delete command or ©GO command will be

inserted after the^lete line, or a

3* 8G0 directive to execute the updating and

reprocessing, A 1 is introduced after the ©GO

directive if a listing of the updated file is

also required.

iii) The entries may be changed instead of being deleted by

the @CE (change) instruction. It is used as follows.

@CH Mn,Mm

Mn specifies a mask as in ii.a.) above, and Mn is a

binary, octal or decimal pattern of the usual format

which should replace the O.C.('B) corresponding to

the I.e. specified by the mask Mn*

iv)/

144

iv) Since the programme is on an interactive basis, it is

quite possible that part-way through a need for a new

input or a new output may arise or that an input or

output may be found redundant. Rather than starting

the programme all over again the following four

instructions may be used.

@RM IP, ^input variable lisi^

@RM OP, <^utput variable list)>

IP, ^nput variable li8t)>

@NW OP, ^utput variable list^

where RM, NW, IP and OP refer to remove, new, input and

output respectively* Usually an input should be removed,

only if it is redundant; however, if on its removal

conflictions are encountered then these will automatically

be brought to the designer's attention. Similarly if a

new input is introduced then the two O.C.'s

'distinguished' by this input will be set equal to the

same value as when it did not exist and the subsequent

entries of course will be correctly treated. The out-

put entries corresponding to the new outputs prior to

their introduction will be set to DON'T CARE'S.

For convenience of implementation, problems with upto

12 input or output variables are treated differently

from those with greater inputs or outputs. Thus care

should be taken to see that these boundaries are not

crossed with the above instructions.

v)/

145

v) The @EQ instruction. This instruction is used to

equate the O.C.'s corresponding to two or more I.C.'s

and may have two, three or four arguments according to

the function required. Each argument specifies an

I.e. and can be defined directly or by masks set

previously set as with @DL or @CH instructions. If

two arguments are specified then the O.C. corresponding

to the second I.C. is set equal to the O.C. correspond-

ing to the first; if three are specified then the

second two refer to the limits between which the equate

operation has to be repeated; and if four arguments

are specified then, the block specified ihthe last two is

equated to the block specified by t]^ first two. Errors

such as conflictions or unequal length blocks will be

brought to the designer's attention.

vi) Mode setting. The mode is set by the directive

@M0 =

A '1' or a '0* is entered on the right hand side to

set or reset the mode respectively.

vii) Inputting via the paper tape reader. To enable the

paper tape reader for command and data input the

directive @PR will be used. The last instruction on

the tape must be @AK to return the control back to

the tele-type unit key-board.

viii) File* Input. If a file of the truth table is to be

input the instruction @FI n will be used, where n is

a decimal number identifying the file or if it is

preceded by ' then it is an octal number.

* see following subsection

146

ix) Output, At present only two output media are

considered, namely the tele-type unit and the paper

tape punch; however, it is hoped that the graphics

terminal could also be used at a later data. The

corresponding instructions are

@AP PLi, PL2 for output on the tele-type unit and

@PP P L i j PLg for output on the paper tape punch

PL% is a parameter list to define the scope of output

which can be one of the following three:

a) A small section of the truth table whose start

and finish are specified in the same way as in

@DI, instruction.

b) A file is output in which case PLi is specified

as FN= followed by a decimal or octal number as

in viii) above.

c) The entire truth table is output in which case

a hyphen (-) is written for PL^.

PLg is a parameter list to indicate the format

of output and same abbreviations as in the @TY

instruction will be used.

Note 1: The paper tape output is to be compatible

with the input requirements of the sub-

sequent minimization programmes and it

should be remembered that the binary

format is not used.

Note 2: If the file number is entered as a

hyphen (-) then the file currently being

processed will be output.

x)/

147

x) Return to B.O.S. The programme will normally be run

under the auspices of the operating system B.O.S.

controlling the computer. A return to the operating

system will be made if at any time @SB is typed in.

xi) Error Corrections

i) Errors while typing in. The same conventions

as those being currently used with B.O.S. will

be employed, viz.

a) Delete the last character. This is done

by one CTRL H per character to be deleted

with the modification that spaces will be

ignored and one deletion per character

other than space should be input.

b) Delete the whole line. A left pointing

arrow is input to delete the whole line,

ii) Interruption during execution. It will be

necessary to include a facility to interrupt

the execution phase; however the exact format

will be defined at a later date.

xii) Comments. Comments may be included any time between

quote marks These will only be useful at input

time as these will not be stored and cannot be retrived

except in the case of functional specification, where

they are introduced by a C in the first column of a new

instruction line or following the terminating semicolon

and the subsequent carriage return.

7 .3 /

148

7.3 Proposed Implementation

The programme is required to deal with upto 20 input and

20 output variable problems. If a full truth table is

generated for a problem of this complexity then it would

contain of 2^0 rows and 40 columns or putting it another

way 2 words of storage, assuming that each word can hold

all the 40 columns, will be required. The constraint demands

that the word length be 40 if only O's and I's are to be

stored or 80 if the DON'T CARE's have also to be stored.

Using a 16 bit word therefore, 2^^ x $ words of storage

space will be necessary.

However, in practice, no designer is likely to generate a

truth table of such a size or if he does not all the entries

are likely to be completely distinct and this could lead to

a saving of storage space. In any case, the storage and the

manipulation has to be severely scrutinized to keep the problem

within manageable size. Various schemes for storage are

considered below.

1) The address of each computer word is made to match with

an input configuration. This immediately has an advantage

that the input configurations do not have to be stored

thus on an average the storage space is halved. This also

has the disadvantage that if the inputs contain any DON'T

CARE 'S then the corresponding outputs have to be repeated

and this means that for every DON'T CARE input two

identical output entries have to be defined. Thus if

there are a large number of BDN'T CARE input configurations

a large amount of redundancy results.

2) /

149

2) The I.e. is stored along with its mask* and the

corresponding output entries which will require only

the conditions specified by the designer to be stored;

however, again DON'T CARE conditions have to be expanded

and secondly, since this data will be stored sequentially

as it is input . the order of the I.G.'s will be lost

and consequently, no indication will be available as to

which I.C.'s are not specified other than by placing an

end marker and cycling through the memory to teat for an

I.e.

A third method is to store the I.C.'s in the same way as

above, but in an order according to their values. To keep

a tab on the relative position of the entries they could

be either

a) stored consecutively in an ascending order but in

which case a later addition or deletion means pushing

down or raising the later entries or

b) attaching a link word to point to the successor, i.e.

to use a list structure.

The list structure method requires one more word per entry;

however, it offers two major advantages:

i) it is very flexible since the size of the list

can be altered very easily by altering the links

and

ii) it offers a concise and precise way of storing

data.

It is proposed, therefore, that a type of list structure

be adopted.

* defined overleaf

150

Each block of data, or cell, will require to hold three

items of data, namely the I,C« in an expanded form, the

O.C, and a mask. The mask defines which of the entries

in O.C. contain valid OFF's or ON's and which are to be

taken as DON'T CARE's

Input More sig. Mask for Less sig. Mask for
Link

L.S.p/P. Gonfig. output M,S.O/P. output L.S.p/P.

Figure 1. A cell in a list structure.

The I.C.'s are the same as inputted by the designer if

they have been specified in full, or fully expanded by the

programme based on the specification provided by the

designer. The full expansion is necessary since for

subsequent manipulation the truth table must contain all

the input configurations for which a non-trivial output

configuration exists. In storage the two trivial output

cases which will be omitted are as follows:

1) when a large number of I.C.'s exist for which the

outputs are all DON'T CARE's or

2) when a large number of I.C.'s exist for which the

outputs are either all 0 or some other specified O.C.

Both these cases are defined by the directive @0T =

and the programme will check against this before outputting

the truth table*

The Data Words. The programme will handle upto 20 input and

20 output variables. Since the computer word is only 16 bits

long at least 2 words will have to be used for each output

configuration/

151

configuration, however, allowing for the relevant masks 2

more words will be required. Hence in a full sized problem

each block of data must contain at least 4 computer words per

O.C. Similar considerations for the inputs show that 2 words

per input configuration are necessary. Thus, 7 words including

the link word per block corresponding to each row of the truth

table will be necessary, i.e. in l6k store (that of the

Honeywell $l6 computer) only about 2k entries will be possible

without leaving much roim for the programme itself, "rhis is

overcome by dividing the data into files, the number of each

file is determined by the value of the more significant bits

(the first inputs during declaration), and the address within

a file by the value of the less significant bits. The division

between the less and the more significant bits is, therefore,

dictated by the constraint that within each file each entry is

directly addressable. This in the worst case means that all

20 outputs are specified for each I.C. and the whole file can

be held in the computer store or within about 12k, allowing

the number of I.C.'s per file of upto about 2k or 12 input

bits. The less significant half will therefore be with 12

input variables and the remaining 8 inputs will generate upto

256 files which also will be linked in a list format and stored

in backing store. Access to a file in the backing store is

obtained by dumping the|-i^^P*^entMstcire into the backing store

and reloading the store with the named file.

For economy of storage the programme in core will be limited

to instructions to call the relevant routines from the disc

store/

152

store and the current programme operating on the data. Thus

the area in store will appear as a small executive to which

the user communicates.

Most of the routines will be in DAP, the low-level language

for the Honeywell $16 computer but for functional specification

the Fortran Library and some subroutines in Fortran will also

be ueed.

8. CONCinSIONS

8.1 Summary

In the design of any logical system: , the behaviour is

usually expressed in a natural language first, the designer

then extracts the relevant information and puts it into

formal terms and then proceeds to the final design. Various

techniques of abstraction are investigated here; and their

applications to large system design are studied and tl^

conclusions summarized below. A pertinent factor involved

is that the human designer has relatively little patience

to learn new techniques and abandon his usual methods,

particularly if the new techniques are rather remote from

his way of thinking.

For a small scale design, the natural language specification

is easily converted into a flow table, state table or a

state diagram, and switching theory can be used extensively

to obtain an optimal design. However, large amounts of

store are used in the process especially in the last case

where graphical inputting is required.

The algebra of regular expressions has been developed to

express the above information in a linear form and in

mathematical terms allowing easier computation. It is

precise and can apply to aJll synchronous and pulse mode

systems; it is also closer to a natural language

description them., say, the state table approach. However,

the use of regular expressions as a design tool has several

problems. The major ones are

1) It/

154

1) It is highly mathematical and as such the designer

will have to be educated sp0cially«

2) Different methods used to obtain the regular expressions

tend to produce different answers and which usually bear

little or no resemblance to each other, despite the

advances; in the algebra, their identity is still cumber-

some to prove*

3) As in the case of the state table approach, it is only

applicable to finite state machines.

The last objection is particularly relevant, since large

scale systems cannot, in general, be represented as finite

state machines, or conversely, if they are so specified,

the description in terms of, say, state tables would be

t^itronomical in size.

The large scale systems of interest to us are essentially

instruction execution machines; the instructions may be

known at a high level but their detailing, if any, is not

known. The designer, designing intuitively, defines a

structure with known capabilities and limitations. He

then decomposes the instructions into low level commands

which lie within the scope of this structure. The

decomposition merely defines the way data is transferred

between registers and the necessary control for it.

Earlier register transfer languages, devised to express

micro program were simple and could be directly mapped

into/

155

into hardware; and. time were good tools for analysis of

already designed Gyetems and for tb: automation of imple-

mentation. %hey were however, limited in their Gcope of

epecification which, tended to be lenwrthY.

Further languages were developed to increase the flexibility

and the epecific.ation ability to which notational and

Operational conciGeness was introduced by using complex

operators and macro cells. Some were usefully developed

based on the structure of existing progreunming languages,

such as DDL based on Reed's language [78] and Gas sandre based on Algol.

Since all the languages used a predefined structure, the

automatic part was still limited to deriving the controlling

circuitry and the combinational logic driving the register

structure. Gerace[54, $$] gen^ methods by which the

register structure implied in the register transfer descript-

ion may be reformulated into an iteratively - connected -

machines structure and the formal abstract definition for '

each may be derived.

He also gave methods of implementing the control part of a

Bystem using read—only—memories* Another useful technique

was given by Stabler [,6$] for microprogramme transformation*

that is, to modify the structure and shift the line dividing

the register structure and control structure.

The Iverson notation [66] provides a means of describing

the logical functions of a system at various levels of

^detail, including elemental bit levels, independent of the

machine/

machine structure and in an algorithmic manner, lending

itself to a good implementation in terms of hardware

realization. While providing excellent facilities for the

description of an algorithm however, Iverson notation is

particularly lacking in high level functional description

and in timing.

At the other end of the spectrum, some langauges were

specially developed to d^iscribe the structure of a systemo

The application of these languages in the early stages of

design is limited, nevertheless they have a wide range of

applications, including implementation in a design automat-

ion suite, structural simulation, documentation and fault

diagnosis.

Ideally we would like to employ techniques offered by

switching theory in our design, since only these otr*

enough to produce error free designs and also allow us to

interface with the other aspects of design such as fault

diagnosis in a consistent manner. Unfortunately however,

switching theory is still at an infancy stage as far as

large scale system design is concerned.

The Petri Nets and occurrence graphs[97 jshow a promise

of dealing with large scale systems in an abstract manner,

with these it may be possible to produce a uni ed theory

of system behaviour description and system architecture

design.

157

8.2 Current Work

One of the most important aspects of a design language is

that it should cater for the different methods of design

used by designers in a consistent and natural manner. It

also should be easy to learn and be concise and precis® yet

flexible.

The structureof such a language has been proposed. We feel

that this language allows a designer to express the design

specification in a manner similar to his own thinking. It

is block structured so that at the system level the blocks

in the language correspond closely to the functional blocks

making up the system. The control and timing interrelation

between the functional blocks can be expressed at the block

level. The blocks in turn can be detailed into further

blocks as necessary.

At the low level the description normally would be in an

algorithmic form; alternatively the designer may choose to

detail in a different form and use an interactive process

to develop this detail. The library facility in the

language allows this to be done without modifying the

general structure of the description.

A command structure to develop a description of combinat-

ional networks is defined to be used with the Honeywell ^l6

Computer at the Southampton University. The main description

however is related to the ICL 190? at the University.

The/

158

The language also provides a means of uniformly describing

the processes of a logical system for design, simulation

and documentation®

8.3 Future Work

The LDL language can be used to describe the design

specification of a logical system. However, it is largely

biased towards hardware systems, but is sufficiently flexible

to include software specifications. The necessary extensions

need to be defined.

The command structure described herein also is limited to

combinational network design. Additional command structure

needs to be defined, say, similar to the one developed by

Smith & Tracy TlOZj, and in particular for using a graphics

terminal for this.

The current scope of the language as a whole is necessarily

limited for batch processing type of operation on the ICL 190?

computer at the University. However, techniques need to be

developed to suggest alternative functional blocking to the

designer which he may choose to accept or ignore. This

necessarily means that a suitable system design theory needs

to be developed and the language used in context of this.

159

EEFEREiqCES and BIBLIOGRAPHY

[l] Hill, P.J., and Peterson, G.R.,
Introduction to Switching Theory and Logical Design,
J. Wiley & Sons Inc., 1968.

[2] Eohavi, Z.,
Switching and Finite Automata Theory,
McGraw Hill Book Company, 1970*

] Levin, D.W «J
Logical Design of Switching Circuits,
ThomasKelson and Sons Ltd., I968,

{4] Arden, D.W.,
Delayed Logic and Finite State Machines,
Theory of Comoutin%: Machine Design,
University of Michigan, 1960 Summer Session, pp. 1-35*

[5] Brzozowski, J.A,,
A Survey of Regular Expressions and Their Applications,
IRE Transactions on Electronic Computers, June 1962, pp. 324-335*

[6] Braozowski, J.A., and McGluskey, E,J. Jr.,
Signal Flow Graph Techniques for Sequential Circuit State Diagrams,
IEEE Transactions on Electronic Computers, Ap#d2 I963, pp. 67-76.

[7] Brzozowski, J.A.,
Derivatives of Regular Expressions,
Journal of the A.C.M., Vol. 11, October I964, PP* 4G1-494*

(8] Brzozowski, J,A,,
Regular Expressions from Sequential Circuits, Short Bote,
IEEE Transactions on Electronic Computers,
Vol. EC-13, December I964, pp* 741-744o

[9] Brzozowski, J.A.,
Roots of Star Events,
Journal of the ACM, Vol. I4, July I967, pp. 466-477*

[10] B^rks, A.V., and Wright, J.B.,
Theory of Logical Nets,
Proceedings of the IRE, Vol. 4I-IO* 1953*

[11] Cohen, R., and Brzozowski, J.A.,
On Decomposition of Regular Events,
Journal of the ACM, Vol. 16-1, January I969, pp* 132-144*

[12] Copi, I.M,, Elgot, C.L., and Wright, J.B.,
Realisation of Events by Logical Hets.
Journal of the ACM, Vol. 5, April 1958, PP* I8I-I96.

[13] Fujino, Kiichi,
A Method of Automatic Generation of Compilers,
NEC Research and Development, No. I6, January I96O, pp. 86-95*

160

0-41 Gelenbe, S.,
Regular Expressions and. Checking Experiments,
Polytechnic Institute, Brooklyn, N.Y.
U.S.G.R.D.a. AD 666 696. September, I967.

[15] Ghiron, H.,
Rules to Manipulate Regular Expressions of Finite Automata,
IRE Transactions on Electronic Computers,
Correspondence, August 1962, pp. 574-575*

£16] Ginzburg, 8.,
A Procedure for Checking Equality of Regular Expressions,
Journal of the ACM. Vol. I4, April I967, pp. 355-366.

[17] Johnson, M»D., & Lackey, R.B.,
Sequential Machine Synthesis using Regular Expressions.
Computer Design, September 1968, pp. 44-47.

[18] Kleene, S.C.,
Representation of Events in Herve Mets and Finite Automata,
Rand Research Memorandum, No* RM,704, 1951*

[13] langholz, G.,
Regular Expressions and Their Analysis and Synthesis of Automata.
2nd B.C.8. Symposium on Logic Design, Reading University,
28th March, I969.

[20] Lee, C.Y.,
Automata and Finite Automata,
Bell System Technical Journal, Vol, 39, September I96O,
pp. 12^7-1295.

[2l| McCullock, W.S. & Pitts, W.,
A Logical Calculus of the Ideas Immanent in Nervous Activity,
Bell Math, Biophysics, Vol. 5, 1943, PP* 115-133*

[22] McNaughton, R. & Yamada, H.,
Regular Expressions and State Graphs for Automata,
IRE Transactions on Electronic Computers, Vol. EC-9, March I96O,
pp. 39-47.

3(McKaughton, R.,
Techniques for Manipulating Regular Expressions,
Systems and Comnutin^ Science, Eds. J.P, Hart & S. Takusu,
University of Toronto Press, 1967, pp. 27-41*

[24] Mirkin, B.G.,
The Language of Pseudo Regular Expressions,
Kibernetica, Vol. 2, No, 6., I966, pp. 8-11.

(25] Myhill, J.,
Finite Automata and Representation of Events,
WADC Report. 1957*

Oglesby, R.A.,
A Computer-Aided-Logic-Design using Regular Expressions,
Computer Design, August 1970, PP* 79-84*

[27] Paz, A. & Peleg, B.,
On Concatenative Decomposition of Regular Events,
IEEE Transactions on Computers, Vol. C-17, March I968, pp. 229-237,

161

[2^ Eabln, M.O. & Scott, D.,
Finite Automata and Their Decision Problems,
IBM Journal of Research & Development, $, April 1959,
pp. 114-125.

[2^ Spivak, M.A.,
A New Algorithm for Abstract Synthesis of Automata,
Proceedin^^ of Scicntific Seminar on Theoretical and Applied
Problems in Cybernetics and Theory of Automata,
Vol. 1, Ho. 3, Kiev, I963.'

Udagawa, K., Inagaki, Y,, & Tange, E,,
The State Characteristic Equations of Finite Automata and
Their Regular Expressions,
Electronics & Comnunications in Japan, Vol* 48-9, September
1965, pp. 25-36.

[5̂ 1 Abrams, P.S.,
An APL f^achine,
AD 706 741 SD-SEL-70-017.
f^^#uary 1970.

Anceau, P., Liddell, P., Mermet, J., Payan, C., & De Pollignac, K.,
CA3SA10EE for logical System Modelling,
]Prepared for the Australian Computer Conferenco, August I969.

5̂:̂ 1 Anceau, P., liddell. P., Mermet, J., Payan, C., & Doussey, J.,
CASSAT^RE; et Systemo.
Institute Hathenatiquee Appliquees, Grenoble, May 1970.

Bartee, T.C., Lewbou, E.L., & Reed, 1.8.,
Theory and Design of Digital Machines,
j^cGraw Hill Book Company, I962,

3erndt, H.,
^Functional. Microprogramming as a Logic Design Aid,
IEEE Transactions on Computers, Vol, C-I9, October 1970, pp. 902-907.

Breuer, M.A,,
i&eneral Survey of Design Automation of Digital Computers,
Procecdinc^ of the IEEE, Vol. 54, No. 12, December, I966, pp. 1708-1721.

[37] Cadden, W.J.,
Equivalent Sequential Circuits,
IRE Transactions on Circuit Theory, Vol. GT-6, March 1959,
pp. ^-54.

Cain, J.T., Mickle, M«H., & McNamee, L.P.,
Simulation of a Digital System Using a Compiler level Language,
Procoedino^ of the 20th SWIEEESCO. April I968, pp. I3DI-I3D3I

Chu, Y.,
An Algol-like Computer Design Language,
Comnunications of the ACM. Vol. 8, Ho. 10, I965, pp. 607-6I5.

[40] Chu, Y.,
A Higher Order Language for Describing Microprogrammed Computers,
]^aryland University Technical Report, TR 68-78, September 19680

162

Chu, Y.,
Design Automation by the Computer Design Language,
NA5A-CR-100566, 69-22155, March, 1969.

[42] Chu, Y., Pardo, P.H. & Yen, J,
A Methodology for Unified Hardware Software Design

$

HASA-CE-IIO445, University of Maryland Technical Report
TR-70-107, Jaimazy 1970.

[4^ Crocket, E.D., Capp. D.E., Frandeen, J.W., Isberg, C.A.,
Bryant, P., Dickinson, W«E., & Paige, M,E«,
Computer-Aided System Design.
Proceedings of the Pall Joint Computer Conference 1970,
pp. 287-296.

^44] Crocket, 2.D., Capp, D.H., Prandeen, J.W., Isherg, C.A.,
Bryant, P,, Dickinson, W.E., Paige, &LR.,
Computer-Aided System Design,
IBMTReoort 16.198, July 1970.

1̂ .5] Darringer, J.A.,
A Language for the Description of Digital Computer Processors,
SHARE-AGM-IEEE Design Automation Workshop, July 15-18th I968,

[46] Duley, J.R., & Dietmeyer, D.L.,
A Digital System Design Language (DDL),

Transactions on Computero. Vol. C-I7, I?o* 9, September I968,
pp. 850-861,

[47] Duley, J.E., & Dietmeyer, D.L.,
Translation of a DDL Digital System Specification to Boolean
Equations,
IEEE Transactions on Commuters, Vol. C-18, Mo. 4, Anril I969,
pp. 305-51$;"

[48] A Formal Description of System 3/^0,
IBM Journal of Research & Development, Vol, 5, Ho. 5, 1964,
pp. 198-261.

[49] Foster, G.H.,
APL: A Perspicuous Language,
Computers and Automation, November I969, pp* 24-27,

[50] F^anke, E.A, & Mergler, E.W.,
Computer Aided Functional Design of Digital Systems,
Proceedin,'̂ ^ of the 20th SUI^^KSCO, April I968, pp. I50I-I504,

^51] Friedman, T.D., & Yang, S.C.,
Quality of Designs from an Automatic Logic Generator,
IBM Comruter An^lications Report RC 2068 6^^0536), 25 April I968.

I52] Friedman, T.D.,
ALERT; A Program to Compile Logic Designs of Mew Computers,
Digest of the 1st IEEE Computer Conference, 6-8th September I968,
pp, I28-I5O,

[53] Friedman, T.D., & Yang Sih-Chin,
ALERT: Methods of Logic Generation,
IEEE Transactions on Computers, Vol, 18, Ho. 7, July I969 pp. 593-^^4,

163

t"54l Gerace, G.B.,

Digital System Design Automation - A Method for Designing a
Digital System as a Sequential Network System,
iKWd Transactions on Computers. Vol* 0-17, Mo, 11* November 1968,
pp, 1044-1061*

t55l Gerace, G.B,, Tanneshi, H., & Casaglia, G.F.,
Eqiiivalent Models and Comparison of lii-croprogrammed Systems,
Presented at the International Advanced Summer Institute on
MicroproRrajmzLn/?, St. Raphael, Prance, August-September 1971*

[56] Glushkov, v..
Automata Theory and Formal Tlicroprogram Transformations,
Kibernetica, Vol. 1, Ko. 5, 1965*

[57] Gorman,"D.P., & Anderson, J.P.,
A Logic Design Translator,
Proceedings of the Fall Joint Computer Conference I962, pp, 251-261.

Harrand, Y., Anceau P., Liddell, P., Mermet, J. & Payan, C,,
CASoA^DRE - Langage pour la Conception Assistee des Ensemble
Logiques*
I'Onde ^^ectrique. Vol* 49, f.l, Janvier 1969, PP* 120-126.

[5^ Eellerman,
Dic^tal Computer System Principles.
Mew York, HcGraw Hill Book Company, I967.

[60] Hennie, P.C.,
Finite State Models for logical Machines,
j\w. Wiley, lj60, pp. 14-20."

[61] Earnbuckle, G.D*, Thomas, E.L. Spann, R.B. & Diehuis, R.J.,
Computer-Aided Logic Design on the TX-2 Computer,
SHAR]i]-ACM-I2ZE Meeting Proceedin/:?s, I969, pp* 357-369*

[6^ Hussan, S.S.,
HicroprOf.-'rammin,'? Principles & Practices,
A?entice Haiir i ^ r

(6^ Ilovaiski^ I,V., & Lozowskii, V.S.,
Using the Address Language to Automate Synthesis of Digital Comnuters,
AD 679 519. I-Iarch I968.

Iverson, E.E.,
A Common Language for Hardware, Software & Applications,
Proceedings of the Fall Joint Computer Conference. 1962, pp. 121-129.

[65] Iverson, K.E.,
A Transliteration for Keying and Printing MicroDrograms,
IBM Report. 12th April I962.

[66] Iverson, K.E.,
A Prop-ramming Laivmage,
John iZiieyr 196"^

[67] Knuth, D,S.; & McKceley, J.L.,
SOL - A Symbolic Language for General Purpose System Simulation,
I^EE Transactions on Electronic Connutcrs, I964, pp. 4OI-414,

104

[68] Lazarev, T.G.,
On the Synthesis of liicroprogramming Automats,
A3 674 217, 29th September 1967*

[69I Liistinan, P.,
Simulation d'xme Machine Digital^ a Partir d'un.e Description,
en Langage Cassandre,
E.I.R.O.. Vol. 3, No. B-2, I969, pp. 77-91.

[7^ IIoGracken, D.D.,
Wiither A PL,
Datamation, l^th September 1970»

[71) McGurdy, 3.D,, & Chu, Y.,
Boolean Translation of a I'lacro logic Design,
.iKKa Ist Com^^ter Conference. 6-8 September I968, pp. 124-127*

[7^ Memet, J. & Lustman, P.,
CASSAKDRB: Un langa^^ du Description de Machine Digitales,

IPrancaise d'lnformatiq^e et de Recherche Onerationelle.
vJii 2, Ho. 15, 1968, ppi '3-35.

[7^ I'lesztenyi, C.R.,
Computer Design language Simulation and Boolean Translation,
IT-68-51483 (l'R-68-72), June I968, Maryland University.

4j Hetze, G., & Seshu, S.,
A Proposal for a Computer Compiler,
Proceedinrrs of the Spring Joint Comiiuter Conference, I966,
pp. 253-263.

[7!^ Okada, Y,, &Kotooka, C.,
Logical Design Language,
Electronics & Communications in Japan, Vol. 50, 12, pp. 109-117«

[7^ Parnas, D.L.,
A iLa^guage for Describing the Functions of Synchronous Systems,
Communications of the Adi, Vol, 9, 2, February 1966, pp. 72-77*

[77] Proctor, E.K.,
A Logic])e8lgn Translater Experiment Demonstrating Relationship
of Languages to Systems,
IEEE [Transactions on Electronic Conputers.Avc^vs-t 1964', fp424-4.So.

[78] Reed, I.S.,
Symbolic Sy^ithesis of Digital Computers,
Proceedings of tl̂ e ACjI. September 1932, pp. 90-94.

[79] Roth, J.P.,
Systematic Design of Automata,
Proceedinrrs of the P.J.C.C. I965, pp. 109$-1100*

[soj Salum, Kb.,
A for Describing and Modelling Digital Structural
Systems (YS^IOD),
AB 673 811, 1967.

[8^ Schlaeppi, R.P.,
A Por:.:al Lan^juage for Describing '̂ ''achino Logic, Timing ;md
Sequenc-ng (hOYIu),
IEEE Transactions on ElGctronic Comnutors, 1964, pp. 439-448.

!D>

£823 Schorr, H«,
Towards the Automatic Analysis and Synthesis of 3i?ital Systems.
Ph.D. Dissertation, Princeton University, I963.

Schorr, H.,

Coaputer-Aided Digital System Design an*̂ . Analysis ixsin/? a
Register Transfer Language,

Transactions on Electronic Computers. Vol. EC-13, December
1964, pp. 730-737.

jj&l] Senzig, D.H.,
Suggested Timing dotation for the Iverson Notation.
IBM Report, 2bth July 1$62,

[8^ Stabler, E.P.,
]Mlcroprogram Transformations,
IEEE Transactions on Coomuterg'. Tbl. C-I9, Mo, 10, October 1970.
pp. 9OO-9I6. ' *

[86] Thurber, K.J, & Hyrna, J,W,,
System Design of a Cellular APL Conputer,

Transactions on Computers. Voll C-I9, No. A, Anrii 1970
pp. 291-303. ' " '

[87] Wilber, J.A.,
A Language for Describinz Digital Computers.
University of Illinois, Department of Computers Eenort 397.
February I966. ' " ' '

166

[88] Barbacci, M., Bell, C.G., Newell, A.,

ISP; A Language to Describe Instruction Sets and Other

Register Transfer SyBtems,

Digest of the Sixth Annual IEEE Computer SocietT

International Conference, September 1972. p.p. 219-222

Bell, C.G., Newell, A.,

The PMS and ISP Descriptive Systems for Computer Structures,

Proceedings of the Spring Joint Computer Conference, 1970.

p.p. 251-374

[90] Bell, C.G., Newell, A.,

Computer Structures, Readings and Examples.

McGraw Hill, I970

[91J Bell, C.G., IChudsen, M., Siewiorek, D.,

PhS: A Notation to Describe Computer Structures 1

Digest of the Sixth Annual IEEE Computer Society

International Conference. I972 p.p. 227^2:$0

[92] Bell, C.G.,

-Ciggert, J.L., Grason, J,, Williams, P.

The Description and Use of Register Transfer Modules,

(RTM's), Short Notes, IEEE Transactions on Computers.

May 1972 p.p.495-500

[93] Carroll, C.C., M tt, H.,

Procedures for the Automated Synthesis of Logical Networks

IEEE Transactions on Education. Vol. E-10 No.2 June I967

P» P e 77 — 81

167

^9^3 Gorman, D.F.,

Systems Level Design Automation: A Progress Report on

the System Descriptive Language (SDL II)

IEEE 1st Computer Conference, I968 p.p.131-13^

[95] Gorman, D.F.,

A SyetemG Descriptive LanRua^e and its Uses ,

Ph.D. Thesis, University of Pennsylvania, I968

[96J Grason, J., Bell, C.G., Eggert, J.,

The Commercialization of Register Transfer Modules

Computer October 1973 p.p.23-27

[97] Holt, A.W., et al,

Information System Theory Project

Contract A? 30 (602) - 4211, Project 4594, Task 459403

22nd October I968

[98] Johnson, R.R.,

Measures and Evaluations,

Transcript of Lecture given at Grenoble 1969 p.p.11, 22-39

[99] Patil, S.S., Dennis, J.B.,

The Description and Realization of Digital Systems,

Digest of the Sixth Annual IEEE Computer Society

International Conference, September 1972 p.p.223-226

[looj Scheff, B.E., Kronstadt, E., Young, 8.,

The Role of a Computer Machine Aids System in the Digital

Design Process

Joint Conference on Methematical and ComputinR Aids to

Design, I969

168

[101] Sedlak, J.,

Language for Modelling Logical Sequential Circuits (SELOB),

Information Processing Machines No.l4, 1968 p.p.193~212

[102] Smith, R.J.II, Tracely, J.H.,

A New Method for Sequential Circuit Specification,

Proceedings of the SW lEEESCO, p.p.458-462

[103] Spruel, A.H.,

Construction of Digital Computers using Register

Transfer Modules,AD 733 201, Sept., 1971

[104] Srinivasan, C.V.,

CDL]: A Computer Description Language,

AD 693555, July 1969

[105] Srinivasan, C.V.,

Introduction to CDL1, A Computer Description Language,

AFCRL-67~0565, Report 1, September 196?

[106] Stabler, E.P.,

System Description Languages,

Transaction on Computers, Vol. C-19 No.12, p.p.1160-1173

[107] Varian, H,, Kronstadt, E., Scheff, B.H., Young, S.,

RDDL: A Versatile Computer Design Language based on a

P'recedence Grammar Compiler

Joint Conference on Mathematical and Computing Aids to

Design 19̂)9

169

[108] Wendt, S.,

A Method for the Design of Synchronous Digital Hardware

Systems,

Elektron Reohenanl,Vol.12, December 1970, p.p«31^'523

[109] Wendt, S,,

On Structures of Micro Program Control Units ,

Elektron Rechenanl, Vol.15, February 1971, p.p.22-26

A-1

APPENDIX I

Al-1

Several languages have been described in the preceding sections and a

comparison made; however, it is felt that an example of each would be helpful

to illustrate their differences. Strictly speaking an example should be included

for each language, but in some cases where the differences are small it would be

pointless to do so; also for ease of comparison the same example is used throughout.

Most of the languages only apply to digital computers and as such the example

taken is a small, fictitious, 12 bits/word digital computer. It is not meant to be

exhaustive of the capabilities of the languages but will be used to bring out any

pertinent features. The block diagram of the computer and the instruction formats

along with the instructions are shown in figs. A1 and A2 respectively. The description

below, however, is limited to the multiplication algorithm only, and its flow

diagram is depicted in fig. A3.

Al-2 Regular Expressions

The computer described here cannot easily be represented as a finite state

machine and hence regular expression techniques cannot be applied. On the other

hand if the multiplier was represented as a finite state machine then a description

would be, albeit large, possible and this can be illustrated fairly simply.

Regular expressions essentially describe the valid sequences to produce an

output; if the two twelve bits are available in parallel then the minimum sequence '

length is one and the input alphabet will consist of 2^^ symbols and there will be

23 regular expressions for the 23 bits of the answer. This then becomes a

straightforward table look-up method. On the other extreme, if the multiplier is

a serial multiplier then the input alphabet will consist of two symbols only but

the minimum sequence length will be 24.

Since each output symbol can assume only one of two values, its regular

expression will contain all the sequences of length n, where n is the length of

the smallest -sequence producing an output, which do produce the output as well

as all the sequences of length n which do not produce an output followed by any

of the sequences of length n producing an output. Hence, if P contains all the

sequences producing an output but does not contain the star operator then the

regular expression describing the machine is

R = (P)* P ((P')* pf

A-2

n

A

B

0

A
D

8
h

PC

V

I
\r

11

£

T~

^0" "II ' irCi

4/ 11

—

8

...g3»»>.i

Combinational

loRlc

r —

K

+ 1

1
Q

11

Start

M : Memory $12 12-bit words, B : Memory buffer,

•A : Accuimilator, Q : Multiplier register,

1 ; Instruction register, K ; Counter,

AD: Address register, PC: Programme counter,

OV; Overflow, S ; Sign register.

Stop

ifeset

The Register Structure of the Machine FIGURE A

A-3

OP, ADDRESS = ADDl

2 3 11

Group A Operation Code (OP^)

001

010

Oil

100

101

110

111

Instruction

Add to Accumulator

Jump Unconditionally

Jump if Accumulator zero or positive

Store Accumulator

Multiply Accumulator

Load Accumulator Indirectly

Decrement Store by 1„

OP^=000 OP, SHIFT COUNT = ADD2

2 3 5 6 11

Group B OP^ = 000 OP^

000 Halt

001 Clear Accumulator

010 Complement Accumulator

oil Spare

100 Right Circulate

101 Left Shift

110 Right Circulate Double Length

111 Left Shift Double Length

FIGURE A-2

The Order Code Formats

A~4

. Start

Is Instruction Multiply >— N o — 9 - — Out

I
Load Multiplier into Q

and Multiplicand into B

Set Counter to 12

Check least significant bit of Q

Is it 1

Yes^,/^:^^ No

Add B to A

Shift A,Q 1 bit right

bypass sign bit of Q
•

Copy sign of B into sign bit of A
*

Decrement count by 1

t
Is count = 1 P - — No

I Yes

Is sign of Q = 1

Yes ^ No

Subtract B from A Add B to A

Store Answer

i

END

FIGURE A-3

The Multiplication Algorithm

This expression will realise a Moore machine and the corresponding Mealey

machine is described by

R = ((P')* P)*

As an example the regular expressions for a two bit multiplier, without the

sign bit, are obtained as follows. The expressions for each P derived from fig.

A4 are

P, = 0101 + 0111 + 1101 + 1111
—1

P. = 0110 + 0111 + 1001 + 1011 + 1101 + 1110
—2

P^ = 1010 + 1011 + 1110

p, = 1111
—H

The state diagrams for each machine or a composite machine can be obtained

using the techniques shown in section 2; however, to complete the illustration

here, the state diagram for the Mealey machine corresponding to P^ is derived.

State (((Pj)')* P J *

1
^3

2 ((0)'(Pp* P3 + 0)

3 (00+01+10+11) (pp*

3 »0l[%3] = D0(&j

4 ^000 [-3]'' (0 + DfP^itPjRg

4
^000 [-il

5
^0000[-3] ̂ P3R3

5
^boool^g]

6 ^ i k] = (010+011+110)'(pp

7
^lo[-3]" (10+11)'(P!)* P.R. —J —J—J

8 » l l k] = (10)'(P^)* PgRg

4
^100 [-3]" (0+1) (P;^* PgRg =

9 (0+1) Rg

4 »110[%3] = (0+l)(P:)*P.R_ =
—3 —3—3

10 1(P;)*P3R3 + OR,

1 Dioio[53] = &3
1 » i o i i N = %
1

^llloLSs]- -3
5 °llllfe]"

2

6 D00001[23]= Oil;,]

-3
%

-3-3

+ (10+11%

+ (lO)R^

^000 [-3]

^000^3]

00001

The corresponding state diagram is shown in figure A5.

Output

Z = 0

z = 0
z = 0
z = 0
z = 0
z = 0
z = 0
z = 0

0

z = 0
z = 0
z = 0
z = 0
z = 0
z = 0
z = 1
z = 1
z = 1
z = 0
z = 0
z = 0

Input Sequence Outputs

0 0 0 0 4 3 2 1

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

FIGURE A-4

Input/Output Behaviour for the Two-Bit Multiplier

A-7

FIGURE A - 5

STATE DIAGRAM FOR THE

TWO-BIT MULTIPLIER

AI-3 Reed - Schorr Laneuaee

Reed's language was basically an algorithm description language and had no

formal declaration facilities; let the various registers be somehow declared in

the programme as per fig. A-1. Schorr used a notation

(A) B Al-3-1

to mean that the contents of A were transferred to B and

((A)4 B Al-3-2

to mean that the contents of the register specified by A were transferred to B.

Here to avoid a large number of brackets, the brackets in a transfer of type

Al-3-1 will be omitted as done by Reed and leave out the angular brackets from

the second type of transfer,

as

Thus the transfers Al-3-1 and Al-3-2 will be written

and

respectively,

j Start, tj

I Stop 1

I Reset}

itji

| t j

Multiply

A

(A)

B

B

1

1

0

0

PC

Al-3-3

Al-3-4

t^; stop

I t^.0P.(0).0P.(l)',0P.(2)j ;

|L I

' ̂ 6 '

I t^Q (l l) I

11,

8 '

I
tlO.K(0)

t^Q.K(0)'.Q(0)|

t̂ Q.K(0)'Q(0)'|

'12I

1̂3|

'14

h i

A; 0 B; 0 Q; 0

I; 0 K; 0 S; 0

AD; 1 t^;

(AD;M)-^B; PC+l^PG; l-> t^

B I; 1-^ tj.

ADDl —^AD; A —>• Q; 1 —^ t^

(AD:M)-^B; -ll^K; 1 t . ,

AD; 0

OV; 1

OC;

t.

8
1 t 8

A(0);

B + A A; 1 —^ t

Rl(A,Q(l:ll)); B(0)

K + 1 ̂ K;

A - B — A ;

A B;

B-^ (AD;M); ADDl + 1 ADDl ;

Q B; ADDl AD;

B -y (AD:M);

start next instruction

1 —V t̂

1 -

1 -

1 —7®" t

1 -

1 -

1 - > t

1 —>• t

1 t,

10

11

'11

'12

13

14

A-9

The addition and subtraction operations are specified by the use of, what

Schorr calls, a virtual register, which is used to represent the carry bits.

Hence the addition operation A + B -9- A is written as

A(i) mc(l) A(i) i = 0.1,...,11

A(i).B(i) + A(i).C(i) + B(i).C(i) C(i-l)

0 - ^ C(ll)

Al-4 Schlaeppi's Language LOTIS

This is more a simulation language than a synthesis language and some figures

for timing are introduced which are all in microseconds» Let the memory access time

be 2 units and the cycle time 5 units.

CPU DP/

M(9b,12); AD(12); B(12); 1(12) = 0P^(3),ADD1(9) = 02^(3), OP^CS), ADD2(6)

K(5); A(12); Q(12); PC(9); 0V(1); S(l); ready(l); +(2); -(2);

Comment The store cycle is asynchronous and when the cycle is finished

a Ready signal is produced.

fct Read, Memory/

1. 2: Ready : = 0; B : = M(AD)/

2. 3: Ready ; = 1/fin

fct Store, Memory/

1. 2: Ready ; = 0; M(AD) ; = B/

2. 3; Ready : = 1/fin

seq begin, Control/

1. Start; i^ not (Stop or Reset) then call fetch else goto fin/

2o Stop ; goto fin/

3. Reset; A,B,AD,I,Q,PC,OV,S,K ; = 0/fin

seq fetch. Control/

1. Ready; AD : = PC; PC : = PC + 1/

2. Memory; call Read/

3. Ready ; I ; = B/

4. Goto CP/fin

seq Multiply, Arit/

1. AD ; = ADDl; Q ; = A; K ; = -11/

2. Memory; call Read/

3. Ready ; (Q(ll)=l) then A ; = A + B else goto 4/

4. A : = (B(0),A(0,10)); Q : = (Q(0);A(ll),Q(l,10));

K ; = K + 1/

5. if K(0)) then goto 3 else if (Q(0)) then A ; = A - B/

6 „ B ; = A/

7. Memory; call store/

8. Ready ; ADDl ; = ADDl + 1/

A-10

£ Address register for the memory

£ Accumulator Register

£ Memory interface and arithmetic reg.

£ Instruction Register

£ Multiplier Register

£ Instruction Counter

£ Counter

£ Overflow Register

£ Sign Register

£ Group A Operation Code Bits

£ Group B Operation Code Bits

£ Group A Address Bits

£ Group B Address Bits

£ Main Memory

9. AD : = ADDl; B ; = Q/

10 Memory: call Store/fin

Al-5 Language of Chu et al

Register AD(O-ll),

A (0-11),

B (0-11),

I (0-11).

Q (0-11),

PC (0-11)

K (0-4),

OV (1),

S <1),
Sub-register OP^ (0-2)=I(0-2)

Op2(0-2) =1(3-5)

ADD1(0-8)=I(3-11)

ADD2(0-5)=I(6-11)

Memory M (0-511, 0-11)

Switch Start

Stop

Reset

Clock T

/Start/ T <- 1

/Stop/ T <- 0

/Reset/ AD<r 0, A<- 0, B«- 0, I 0, Q <- 0, K 0, 0V<~ o,

S <£- 0, T <- 0,

Sequence fetch

Comment begin when the clock has been set to 1 it automatically steps

itself at the end of each step in the sequence unless reset at the end of an

instruction or by external switches, end;

AD PC

B ̂ M(AD), PC <- PC ADD 1

I 4- B, end of fetch sequence

AD«- ADDl, Q A, K e -11

B M(AD),

^ ADDM

^ RIGHTSHIFT

ij[K f 0 then P <- 6 else if Q(0) = 1 then

B ̂ A SUB B else B A

/P,/

/?%/

/P^.(0P^=5)/

/P2.(0Pi=5)/

/P^.(0Pi=5)/

/P^.(0P^=5)/

/Pg.(0Pi=5)/

comment begin ADD and SUB are addition and subtraction routines, end;

M(AD) ̂ B, ADDl ADDl ADD 1

AD -e ADDl, B Q

/Pp.(0*1=5)/

/PlO'(0*1=5)/

A-11

/P (0P^=5)/ M(AD)<^ 6, P <- 1

ABDM : if. Q(ll) = 1 then A A ADD B;

RIGHTSHIFT: A&Q(1-11) «- shr B(0) & A & 0,(1-10),

if K ^ 0 then K <- K ADD 1;

Al-6 Okada & Matooka

The language proposed by Okada and Motooka has five levels of descriptions;

the 5th level corresponds to the algorithmic description and is quite similar to

Chu's language. At level 4 the sequencing is shown more formally as is done for the

multiplication sequence below.

Level 4

Ml : AD := 1(3-11), Q := A, K s=-ll;

M2 ; B := M(AD) : M2(READY'), M3(READY);

M3 ; : M4 (Q(ll)), M5(Q(ll)');

M4 ; A := A + B;

M5 : A(0);=B(0), A(l-11) :=A(0-10), Q(1-11);=A(11)&Q(1-10);

M6 : K. := K + 1

M7 : : M3(K(0)), M8(K(0)');

MB ; : M9(Q(0)), M10(Q(0)');

M9 ; B := A - B;

MIO: M(AD) := B :N10(READY'), Mil(READY);

Mil: 1(3-11):= 1(3-11) + 1;

M12: AD := 1(3-11), B := Q;

M13: ,(AD) := B, :M13(READY'), END(READY);

END;

At level 3 the sequencing is described with single unit timings and it is

more explicit. Therefore operations such as additions have to be detailed. At

level 2 the operations are shown as in level 3 but the sequencing is omitted and

at level the interconnections of gates etc. along with declarations of delays of

the gates are enumerated. For the present these are omitted from here.

Al-7 Metze and Seshu

C Declaration of the name of the system

MACHINE COMPUTER DP

C Global Headers

SYN (Wl, 12), (DWL, 23), (AL, 9)

PARALLEL (MEMORY, CP)

OPTIMISE (SPEED)

C The^e headers declare global quantities such the word length, WL,

C Double word length, DWL, and Address Length, AL, as well as the modules

C which can operate simultaneously and the criterion for optimality.

MACRO READ (M, AD, B)

C This declares the read routine of the main-memory which is assumed to have an

A.-12

C independent control within itself. The control unit activates an access line

G ACC and waits till a READY signal becomes true.

CALL MEMORY (ACC)

WAIT (READY=1)

B= (AD)

ENDC

ENDM

MACRO WRITE (M, AD, B)

CALL MEMORY (ACC)

WAIT (READY=1)

(AD)=B

ENDC

ENDM

CONTROL CP

C Start Description of main computer

REGISTER A(WL), B(WL), Q(WL), I(WL), PC(AL), AD(AL), K(4), OV(l) , S(l)

EQUIV (0P1)= 1(0,2)),(0P2 = 1(3,5)), (ADDl = 1(3,11)),

1 (ADD2=I(6,11))

INTERFACE(MEMORY) AD,B

DECODE(OPl) DEC,ADD,JMC,JMZ,ST0,MPY,LA1,DS1

DEC DEC0DE(0P2) HLT,CLA,COA, ,RSC,LSS,RCD,LSD

C Main Programme

MPY AD= ADDl

CALL READ

(f=A

A=B

K=-ll

LI IF(Q(11)=0)L2

.ADD(A,B,OV)

C The prefix . requests a library routine

L2 Q(2,11)=Q(1,10)

Q(1)=A(11)

A(1,11)=A(0,10)

A(0)=B(0)

.ADD(K,1,)

IF(K(0)=1) LI

IF(Q(0)=0) L3

.SUB(A,B,)

L3 B = A

CALL WRITE

.ADD(ADD1,1,)

AD= ADDl

B = Q

GALL WRITE

GOTO NEXT

C This fetches the next instruction

ENDM

Al-8 Duley and Dietmeyer DDL

In the description using DDL the system model is assumed to be a collection of

automata' normally functioning independently and communicating via a common

highway. In our system let the memory unit be one automaton, switches and the cetral

processor itself being the other automata Let the timing be a global variable and
be controlled by the switches.

<^SY^ Computer

<TS> START, STOP, RESET, SW[l;3]

<fL> THREE SWITCHES (S[l:3]).

<1bO> START = SW['l], STOP = SW [z], RESET = SW [3].

<^U> INTERLOCK

<sST)'- AO;rs[l]. SL2], s[3j. -»A0.)j. A1.

10.3.5.6.7.
, -^A2. ~^A3 ..
[2 14

Al; SW[3]= 1..

A2; SW(2]= 1..

A3: Sw[l]= 1 . . .

<AU> CP:START:

<RE> A[0;il], B{0:llj , q[0:H], l[0:lg , A D [0 : ^ , PC[0:8j, k[0;4],

OV, S.

<Jci) P(lE-6)

ADD(A,B)[0:llJ

A[0;li], B[0:li], CfOill), oV

^P>' ADD = A ft) B ffi C,

C[0: 1^ = A[l:li].a[i:ii]V(A[i.ii]\/a[i,ig)
cCig = 0,

OV = A[q]. B [o 3 V (A G] V B) .c [6] . .
<bp> SUB (A,B)[0:i;]

<?E> A(p:l3 , B[p:l3 , c[p:l^ , oV

<bq> SUB = A'@B @c,

C[p:iq] = A[l:lg '.B!l:ll)y(Ajl:ig'VB[l:l#).c[l:in,
C[ll] = 0,

OV = Aldr.B[0]y(A[Q]VB[Q]).C(0]..

<SEG> FETCH

<ST)> FO: AD "4- PC, | PC, F1

F 1 : I R E A D Y ' J MEMORY (R E A D = 1) F 2 ; - ^ F 1 ;

F 2 : I READY I I <— B , — ^ F 3 ; — > ' F 2 O .

P3 : MPY(^FO); -^F3...

-CCĈ ^ The above step assumes that multiplication is the only instruction

<SEG>

MO ;

Ml;

M2

M3

M4

M5

M6

M7

M8

M9

MIO

<AU>

6:i>

<ftE>

<ST)

Ml.

- p - W t .

to be interpreted and the others cause a restart of instruction

fetching sequence.

MPY ;

AD <S- I[3;lp , Q A, K <- 11D5,

READY' ; MEMORY (READ= 1), -^M2.

READY : ̂

I QL^O I A ADD(A,B) —9-M4;

B[0loA[0ril]oQ[l:ig , ^ K,-^M5;

jK=0 |—^M6; -^M3.

|Q[0] I B SUB(A,B), B A, ^»M7.

READY': ^ MEM0RY(WRITE=1), -9-M8.

READY ; AD <- l[3;ll], B-e- Q, -^M9.

. READY': MEMORY(WRITE=1), -9-MIO.

READY : ..

MEMORY;?;

MEM(RD[12], READY; READ,WRITE,WD , AD[^).

AD[9], BflgL

DLY(2E-6).

LO ; [READI -$> RDO; jwRITE | -^WRO; -s-LO.

READY <-0, DLY = 1, -^RDl.

B ^ RD, READY 1, =^>

READY <-0, ->• WRl,.

WD <- B, DLY = 1,^WR2..

READY <- 1, ...

RDO

RDl

WRO

WRl

WR2

(END OF SY)

Al-9 Cassandra

This language is in many ways similar to DDL and is based on Algol.

UNIT Computer (INPUT (0:11), START, STOP, RESET; OUTPUT(0;11))

REGISTER A(0;11), B(0;11), Q(0;11), 1(0-11), PC(0;8),

AD(0:8), 0v(0:0), S(0:0), K(0:4);

SIGNAL READ, READY, START,STOP, RESET;

EXTERNAL ADM(AD(0;9). B(0;11), READ; READY(1:1), OUT(0;11))

AD (A(0:11), B(0;11); C(0:ll), 0v(0;0));

COMMENT These external units are memory addressing and addition;

P;

OUTPUT := A;

<P> AD OC;

AD(PC, 1; PC,), READ := 1;

CLOCK

SI;

S2;

A.-15

S3: <P> , ADM(AD, , READ; READY,B);

S4: <P> IF READY THEN I B;

S5; IF 0P(0:2) EQUAL 5 THEN GOTO MP ELSE GOTO SI;

MP; AD <- 1(3:11);

MPl; ADM(AD , , READ; READY,B);

MP2; Q Af K < - -11;

MP3: IF Q(ll) THEN AD(A,B;A,OV);

MP4: <p> AD(K,1; K,);%A(0:11)&Q(1:11), A(0) <- B(0);

MP5; IF K NOT EQUAL 0 THEN GOTO MPS;

MP6; IF Q(0) THEN AD(1,B';B,) ELSE GOTO MPS;

COMMENT This comolements B;

MP7; AD(A,B; A,OV);

MPS; B A, READ ;=0;

MP9; ADM(AD,B,READ; READY,);

MPIO; IF READY THEN AD(AD,1;AD,), B ̂ Q;

MPll; ADM(AD,B,READ;READY,);

MP12; IF READY GOTO SI;

END

UNIT ADM(P,AD(0;8), IN(0;11),READ; READY, OUT(0;ll));

REGISTER M(0;11.0:511):

SIGNAL AD(0:8), IN(0;11), READ(1;1), READY(1;1), OUT(0:11);

PULSE P; CLOCK P; .

Al; <P> READY:=0, IF READ NOT EQUAL 1 THEN M(J.AD)

ELSE OUT <- M(, JLAD);

A2; <P> READY;=1;

END

UNIT AD(A(0; 11), B(0:11), C(0:11), 0V(1:1));

SIGNAL A(0:11), B(0;11), C(0:11), D(0;11), 0V(1:1);

C := AVBV-G;

C(l:ll) & OV := A/\B\/(AVB)/^C,

C(0) := 0;

END

Al-10 Iverson

The Ivers DM notation is capable of describing algorithms only and has no

formal declaration facilities for registers etc. Assume these are declared as in

fig. A-1.

1 start A stop'a reset' : 1 (f , *) (1,6)

2 ' Ztart : 1 (f , =) (2,6)

A~ ID

3 stop

4 reset

5 a, b.

: 1 (f , =) (4,3)

: 1 (f , =) (6,5)

i_, ov, £ ^ 0 -9̂ 2

6 M -s- ££

I (J
j_ad

7 JL 2^^ I (-i-gc + 1)

8 b M

9 i ^ b

10 Jl iê /i_) : 5 4 (other instructions)

11 k ^ 2 (5) T 1 1

JLad
12 ad <- uD̂ /i

13 b <_ M

14 3. £

15 (O^/a. : 1 (17,16)

16 J. a 2̂ |̂(J_ a + J_b)

17 X k . e - ± k - l

18 a, ^ c<^/b,a, (I4"^^^)/SL

19 k ; 0 (f , -) (15,20)

20 c<^/£ : 0 (f , =) (21,22)

21 j _ a < - J L a - 1 - b

22 M-*-— «- b

23 i- + 1
9

24 ad Ct) /i

25 b <c-

26 M-^— b - 9 - 3 .

Al-11 GERAGE's method

Gerace's method converts register transfer type expressions to state tables,

but this description must be written to indicate bit by bit operations. The

multiplication algorithm, thus, should be written as follows.

The indices are i = 1,2...,10. j = 2,3,...,10. m = 0,1,2,3.

Itgl (1(0)1(1)1(2):101) tg t^;

(1(0)1(1)1(2): 101) • tp t^;

|ti|. A Q, M B, C K tg;

Itgl (Q(ll):l) A(i)(B B(i) es(i+l) A(i),

A(ll) eB(ll)(5js(12)=q̂ 9» A(ll), t2

(Q(11):0) tg;

jtgl A(i-l) --?• A(i), B(0) —> A(0),

A(ll) —9" Q(l), Q(j-l) -> Q(j),

K(m)©r(m+1) K(m),

K(4) e[r(5)=g-^» K(4), t ;

A-17

X y s (i + l) s (i)

0 0 0 - 0 -

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

X r(i+l) r(i)

0 0 0

0 1 0

1 0 0

1 1 1

Figure A-6

Definitions of the carry functions s(i) & r(i)

(K(O)q'(O):0i) A(i) ©B'(i) ®s(i+l) -^A(i),

- A (L L) €-> B'(ll) ® [S (1 2) =] L] - ^ A (1 1)

A(0) 6^?B'(0) ® s(l) A(0)

(K(0)Q(0):00)

(K(0) ; 1) t,.
0'

A-18

Note C contains the-constant -11, and the functions s and r are defined by the

tables in fig. A-6.

There are four sets of machines corresponding to A,B,Q and K and it would be

possible to derive the state tables for each separately; however, the machines

corresponding to A and Q are clearly connected and the partition

would be preferable. The first step is to identify the distinguishable submachines

of each of the machines and list the transfers associated with them. There are four

distinguishable sub-machines of the A,Q machine corresponding to bit 0, bit 1, bit j

and bit 11 and their lists are as follows.

A ,) A , Q

(1,) A,Q

(K(0)Q(0):01) t, t

(Q(ll):l)t

A(0) Q(o);
A(0) $ B(0) © s(l)

B(0) A(0);

A(0) © B'(0) e s(l)

A(0);

A (0) ;

(Q(ll);l) t t

(K(0)Q(0):01) t

A(l) Q(1);

A(l) B B(l) e s(2)

A(0) A(l);

A(11) Q(l);

A(l) B'(l) G)s(2) A(l);

A(l);

(K(0)Q(0):01) t. t

(Q(ll):l) t

A(j) e B'(j) @ s(j+l)

A(j) Q(J);

A(j) 4 B(j) ® s(j+l)

A(j-l) A(j);

A(j);

(Lll) A,Q
A~19

A(11) Q(ll);
^1

A(11) Q(ll);

^2
(Q(ll):l) tg .4^ tg A(ll) ® B(11) ©[S(12)«Q] ->• A(ll);

^3
A(10) -y A(11); Q(10)

(K(0)Q(0):01) t^-» tg A(11) e B'(ll) ̂ s(12)=ll A(ll);

Similarly the lists for B and K are;

(L̂) B n = 0,1,...,11

^1 ^2
M(n) -3- B(n);

tl ^2

' ̂ 3 ^4

C(m) K(m);

K(m) ® r(m+l) K(m);

(L*) K

^3 ^4 K(4) ®[r(5)=ll K(4);

and finally

^0
(1(0)1(1)1(2):101) t^ t^

(1(0)1(1)1(2):101)'tQ t^

(Q(11):0) t^ tj

(K(0)Q(0):00) t^ t

(K(0) : 1) t

From the listing above it is apparent that the inputs to the control part are Q(11),

K(0), Q(0) and the three instruction bits 1(0), 1(1) and 1(2); hence the state table in

fig. A7 for the control unit can be derived. For the sake of simplicity some combinations

of the inputs have been omitted as these do not provide any additional information.

The entries in this table correspond to the next state of the control unit and the

outputs which initiate the transfers in the operational part; it is in an abstract form

and can be synthesized in terms of hardware or software as necessary.

Seven different state tables have to be generated to specify the operational part

completely; however since this example is for illustrative purposes only, the state table

A-20

for A(0), Q(0) machine only will be derived here.

The external inputs to this machine are s(l), B(0) and the a outputs from the control

anit; the present state variables y^, y replace A(0) and Q(0) respectively on the left

land side of the transfer expressions and Y , similarly on the right hand side. The

State table derived using the procedure described in the main text is shown in fig. A-8

tn fig A-9 the corresponding output table is depicted. Finally the abstract state table

Including the output behaviour is shown in fig A-10.

A - 2 1

X =0°

IT)

X cd n-l
cd

r-4 N u 4->

cy
o

o
c y

o

o

c y

3

t cy

<0

(M

(N

(0
CM

N

a»
q)
m

CM
0

CO

m O
(0 0

o
4-J

m
(0

cn
(0

CM cn

CO
(0 CO

O jj u

CO o
<a qf

CM
4J 4J

w
a
•H
t—j
A
UJ

a

Q)

44
O

4J

:§
o
w
C
a
o
JG
4J
W
o

,o
<0
H
0)

4->
GO
0)
g

- k

<D
U
3
6C
"H

A-22

01

f—4
o

o
o

o
« /•

03 ,—
o
cq

O

\o

to
4-1

a'

o f—{ r-H O o o .—1 r-J

o r4 «—4 O
1—1 1—4 o o

o M 1-4 o
o O f—4 rH

o «—4 r-4 o
r-4 1—1 o o

o r-4 o
.—4 t—4 1—4 1-4

o rH r—1 o
o O o o

o f—1 o
•—1 r-4 o o

o 1—4 o
o o f—4 r-4

,

o r-4 o
f—4 o o

o f—4 r-4 o
o o 1-4 r-4

o o r-4 r-4 o o r-4 r-l

o f—H f—4 O o o r-4 r-4
—

s cfl

O
o
o
<

(U
c

• H

u
E
0)
5
M
O

(0

Q)
4->
CO
4J
CO

o;
s

• H
CO
(0
CO
0)
g

00

4)
w p
b l

•H

(N

O
o

A-2)

o
o-
o
<

o
o

o

/ o

<
o

o
o

o
«

to

o" <
«

o
o

p-4 •-4 o o

r—4 r-H r-4 i - i

f—4 •—t o o

o o o o

' 1 1 1

1 1 1 1

o o rH 1—4

1—4 *—4 1-4

o o t-H r-4

o o O o

1 1 1 1

• 1 1 1

V,

sr o
to

CO

o
(SI — "
CO (/)

o
CO

o
o
o
c
w
c
•H
x i
0

1
0)

X i
4J
u
o
M-i

0
6-

3 a

Q)
w
3
AC
•H

o
o

A~24

o
c y

o
<

o
o

CO

O <
«

o
«

o
o

m
o
N — '

CQ

O
O

o
-CL.

C

f—< r-4 O o
.—1 (N cn

r-4 1—4 t—J 1—4
rn CN »-<

r - i •—1 O o
1—4 CsJ m

o o o o
<r CO <N rH

1 1 1 i
<± m cn < -

1 1 1
1—1 CN r4 1—1

o o f—i *—4
<r cn CS

p-4 f—4
1—i CM cn

o O 1—4 r-J
(N .-4

o o O O
1—1 (N

, 1 1 1
1—4 CNi

e« L
p-4 CM 00 <r

CM
. (0

o
(0

o

<u
4J
(6

4J
CO

o
o-
o
c
(U
c
•H
x;
o
CO
e
0)
5
M

0
4J
0)
0

Q)

<u
u
D
M
•H
fa

4J
c
Q) 0)
%
Q) (d
M 4J CM (A

CO

A-25

CO
-i

o\

CO

en

CM

•H
J U .

2
A
T)

i J

0

1
P i

0
u

4J

•H < y

o
<

< C f
o
4J 2

u 4J
(44 <w
•H •H r-H o

r C
~ U L ^ _Ln jzL-- C O —

o

T)

o
II

o
II

o o

o o
&

t)
0)
CO

cy

A

Q)
0]

g

cy

AJ
M
ca

XI
o
0)
o
g
3
a
Q)
CO

CO

' h 4J
(§

(N
p—4

i

0" cy

X X
M r-t
4J Q. c •H M 4-1
*—4

4J P
M %
CO

X. o

A-26

CM

(S

CM

CO w

CM
CM

o

Q)
JJ
•H

w
0)
u
o

c5

Q o o
0̂ *J gq

O
CNl

a\

CO

s
TS

A

o
>,
u

T3
Q) §
•H
AJ
C
O
u

CM
1-̂

I

Q)
U
S
(0

CO u

cn CQ

A-27

Al-13 PMS Level Description

In the machine considered here, only the register structure is shown. The PMS

level description is more concerned with the way the system is configured. Let us

therefore assume that there-are two peripheral controllers on the system, first one

handling some magnetic devices and the second one handling devices such as printers

and card equipment.

M PC T.START (Push button; console) <-

T.STCP (push button; console) <-

T.RESET (push button; console) <-

T. (card;reader; 100/300 cards/min)<-

T (card; punch; 50 cards/min)

T (printer; 100 lines/min) ->

T r Disk; fixed head; delay 10ms H
100 jis/w; 32k w; 12 b/w J

TI ^ 0:3; magnetic tape; 66 in/s;l
L 800 b/in; 6L/char J

Al-14 ISP Level Description:

Pc State

AD

PC <0;8>

I <0:U>

K <p:5>

B <p:ll>

A

Q <0:11>

ov

memory address register

program counter

Instruction register

Multiplication counter

Memory buffer

Accumulator

Multiplier

overflow registers

sign register

Mp state

M]lO : 5li3<lp: 11^ main memory

Pc Console State

START

STOP

RESET

start switch

stop switch

reset switch

A-28
Instruction format

OP <p:%> := <0:2) opcode

MAD<p:8) :=I address

Start process

START An (stop V reset) -V fetch;

Fetch process

fetch (B.* MtAp] ; next I-* B; PC * PC + "9; -* execute

execute process

execute (

multiply (:= OP = S V C Q * - A ; B M MAD ; K 4- 12; Loop);

Loop ;= (Q<11>= 1-*A«*- A + B; next

A<0:1!>Q Q

K*- K - 1; next K ¥ l-» loop; K = 1 fin);

fin := (Q<0> = 1 A A + B; qrCdf = OfPA*^ A - B; next

M tAO} <• A; next AD *- AD + 1; next M^AD^ ̂ Q)

)•-=? fetch

A - 2 9

APPENDIX II

A2-1 I'he Hamming Code

The Hamming Code is a special form of parity checking and is used for single

error correction. The number of check bits is determined by the number of data bits;

if there are m data bits, k check bits will be required such that

2**̂ m + k

and these check bits are placed in the positions corresponding to the powers of2, the

lowest, 2°, being the leftmost.

The 2^th check bit is used as a parity check, for even parity, on those positions

whose checking numbers contain a 1 in the ^^th column. For example, the 2 check bit

Is used to check the parity of positions 1,3,5,7,..., the 2^ check bit is used to check

the parity of positions 2,3,6,7,10,11... and so on.

When error detecting and error correcting, if the check is successful, then a 0

is placed in the column corresponding to the check bit and a 1 if it fails. For single

error correction, the bit in the position indicated by these check bits is inverted.

For example, consider a 4 bit data message 1011, which requires 3 check bits and

the encoded message is 0110011. Let us suppose that during transmission bit four is

Inverted and the received message Is 0111011. Applying a parity check to the positions

1,3,5,7, we get an even parity and therefore the check bit 0 is set to zero. Parity

check on bits 2,3,6,7, is also successful and the check bit 1 is also set to zero. The

final check, however, is unsuccessful and the check bit 3 is set to 1. Thus the bit

corresponding to the position 100, i.e. bit 4 is in error. Therefore the corrected

message is 0110011.

A.)0

Appendix III

a) Proof that X = BA* is the solution of the equation

X = (l)

This proof was given in a theorem by Arden and is

reproduced below.

Ihe fact that X = ̂ is a solution of equation (l) can

be verified by direct substitution, and we get

^ + 3 = + B '

~ ^ { A"'̂A4- X}

= m *

= X

low suppose X = is not the only solution of equation (l)

and there exists a solution X = + £ such that CfLBA* = /

Then

XA + B = (3A% + C)A + B

= M * A 4- CA + B

= + + GA

=

but XA + B = X = BÂ '+C

therefore BA*+0 = 3A-%- + OA . (o)

Intersecting both sides of equation (2) by iC we get

+.C%C = :BA*%3 +

therefore _C = CAflG

implying C c OA

e

But since the assumption is that A does not contain X, the

shortest sequence of OA must be longer than the shortest sequence of

C unless C is empty, thence 2 9: CA^ Therefore X = ,BA*+C is not a

A-31

solution of equation (l), smd since thi^ is true for all cases at C_

when ̂ and are die joint, the onl̂ ^ solution of equation (l) is

X = M * .

B) Proof that X = A*B is the solution of the equation

X = ja + B ,X4A (3)

This proof follows from an identical procedure used in the

last proof.

APPENDIX IV

Proof copy of

Analysis of Sequential Logic Circuits

to be published in

Oomputer Journal. February, 1974.

A-32

ANALYSIS OF SEQUENTIAL LOGIC CIRCUITS

D. Pai* B.Sc.

and

Professor Douglas Levin** B.Tech., M.Sc., C.EnR., M.I.E.R.E.

*

* *

Burrough Machines Ltd., formerly
Dept. of Electronics, Southampton University.

Dept. of Electrical Engineering and Electronics,
Brunei University.

Index Terms

Feedback loops, secondary variables, asynchronous

sequential circuits-, logic circuit analysis.

Abstract

Incthe analysis and simulation of sequential circuits,

and in particular asynchronous sequential circuits, the

automatic location of feedback loops within the network often

presents, serious problems.

This paper presents an algorithm, based on an analytical

approach, which will isolate the true feedback loops in a

network, that is those paths which correspond to the actual

secondary variables of the circuit.

1 -

1. Introduction

A logic circuit can usually be defined in a formal mathematical

manner using truth-tables, state or flow-tables or some such model [ij.

An abstract definition of this type is often used in digital systems

design, for example:

(a) for the economical implementation and re-configuring

of circuits;

(b) to obtain a true logical simulation;

(c) to enable fault testing and diagnosis procedures to

be evaluated;

(d) for the concise documentation of logic circuits, etc.

Often, however, especially if the circuit has been designed intuitively,

this type of description is not available; the circuit then has to be

analysed in order.to derive a formal model.

The problem of analysing cominational circuits (in order, for

example^, to generate a truth-table) is relatively simple, and can

be solved by using conventional simulation techniques or by tracing

the paths between the inputs and the outputs.' When analysing sequen-

tial circuits, however, the presence of feedback loops in the

network means that these techniques are no longer applicable. The

normal method of proceeding in these cases is to isolate the

feedback loop in some manner (often intuitively) and then apply

the standard combinational techniques. In the case of clocked

sequential networks or relay circuits the problem is trivial, since

the feedback loops are clearly distinguishable. The/

I

The major problem lies with asynchronous networks, that is,

circuits containing interconnected MAND or KOR gates, and it is this

aspect of analysis which is considered in this paper.

Sequential circuits can be divided into two main categories

(i) synchronous and (ii) asynchronous. Synchronous circuits are

characterised by the fact that in the absence of a sampling•signal,

i.e. the clock signal, changes in the inputs do not alter the

internal state of the circuits (although of course the outputs may

change. To achieve this, storage elements (bistables) with pre-

defined feedback loops (i.e. secondary variables) are employed in

the circuit and driven by combinational logic ; thus all the

feedback loops are consequently restricted to these storage elements.

The analysis of synchronous sequential circuits therefore reduces

to an analysis'of combinational circuits and is a straightforward

2
procedure .

Asynchronous circuits in many cases are implemented using relays

which act as the storage elements. The analysis of these circuits is

similar/

1. The outputs of the storage elements may be fed back to the
inputs of the storage elements. In this case these storage

elements are such that the outputs do not change during the presence of
the clock signal; hence, for the purposes of analysis they may be
considered as independent variables and the circuit feedback-free.
If the outputs do change during the presence of the clock pulse the
circuit will malfunction,

2. The algorithm to be described in this paper is equally applicable
to combinational circuits. ,

/similar to the analysis of synchronous seq.uential circuits and it is

only necessary to derive the excitation equations for the cojabin-

ational circuits driving the relay coils.

In the more usual case however, when the circuit is

implemented using standard logic modules (such as NMD gates), the

feedback loops are not so clearly defined. The method adopted so

far Clj, [2], [3], fUl is to assume a feedback loop, break this

loop and through simulation find out if it is possible to fully define

the behaviour of the circuit. This method, though usable, is not

algorithmic and does not lend itself to computer programming for

automatic analysis.

In this paper we present a more systematic approach for

locating these feedback loops and hence the secondary vajriables.

2 . Algorithm

The analysis of asynchronous sequential circuits involves

(i) detecting the feedback loops, and

(ii) selecting only those feedback loops which correspond

to the secondary variables.

Before we proceed with the description of the algorithm let

us examine the condition implied in the second step. If

2 1 = £set of all the secondary variables_^

then/ • ,

then for all i if y is the value of the ith secondary variable at

time t and if is the value of the same variable at time t+&t

where St is a function of the logic delays then it is a necessary

condition £1] that

Y i = f i (y i) " — 2 . 1

such that f\(y^) contains at least one positive y^ term and that this

term is not redundant. If this condition is not met y^ is .redundant

and the corresponding loop can be removed. We shall not concern

ourselves with the proof of this statement which can be found in [1] .

"The behaviour of a general logic circuit can be expressed as

= gj 2.2

where Zj is the jth variable • in the set Z, the set of all outputs,

and X is the set of all inputs; .if the circuit is combinational then

the set X is empty. In the algorithm described below the circuit

being analysed is assumed to be combinational until found otherwise.

The algorithm requires a topological description of the circuit

in which each gate is defined in terms of its inputs, Output^ and the

function [3] . It is also necessary to distinguish the external/

3. It is assumed that each gate produces only one output. If gates
generating multiple outputs, e . g . ECL gates with complementary

outputs, are employed, then each of these outputs must be specified
by a separate gate with identical inputs but with different functions
and different outputs. If wired functions are used it is necessary to
also specify these by additional gates with wired outputs acting as
inputs to these gates and their outputs feeding the next stages.

/external inputs and outputs, i.e. through which the circuit is accessed,

from the connections internal to the circuit. A convention adopted

here is to label outputs by Zj, inputs by and the internal

connections by C where j, k and n are all integers. Thus for a

circuit containing k inputs, j outputs and n internal connections

the description is given as
•

Z* = fa(X^C^2) a = 1,2 j

and b = 1,2 n

where C_ is the set of all internal connections.

In the following discussion we shall refer to the inputs,

internal connections and the outputs by X-types, C-types and Z-types /

respectively.

The algorithm is based on tracing the logic path of a Z-type

backwards, i.e. towards the inputs, so as to finially obtain an

equation forZ in terms of X and the secondary variables (if any),

only. Thus, starting from the topological description of a circuit,

the terms in an output equation,Z are expanded (unless it is a

primary input) by substituting the inputs of the corresponding gate

which generates that term; we shall call the equation produced

in this way a Z-equation.

Further/

6 -

Further substitutions are made in successive passes for each

of the C-types and Z-types in the Z-eguation. Clearly this will

either lead to a Z-eguation in terms of X-types only, or feedback

loops vill be encountered; in the latter case the process will

never terminate. During the iteration process a note is kept in

a list, called the C-list, of each C-type and Z-type encountered

during the substitutions. The presence of a feedback loop is

detected by noting if during the iteration the Z-equation contains

a C-type or a Z-type for which a substitution was already made in the

previous iteration(s), since this implies that the particular

signal is a function of itself. Any variables which are"detected

in this way are entered into a feedback variable list, the F.V. list.

If during a pass one or more new F.V's are detected then the

C-list and the Z-equation so far generated are deleted and the prcedure

restarted with the modification that substitutions are not allowed for

any variables contained in the F.V. list (except when it is necessary

to obtain an initial equation) and that these variables are not entered

into the C-list. The sequence is repeated until all the feedback

variables between the Z and the inputs are located and a Z-equation

is obtained in terras of X and the feedback variables only.

At the conclusion of the algorithm the F.V. list contains those

variables which re-occurred after an initial substitution was made,

thereby implying that feedback loops may be present. However, it is

necessary to ascertain that all the variables in the F.V. list do

in fact correspond to loops (and hence to secondary variables) that

is their characterising equations must satisfy the condition specified

in 2.1. The next step therefore is to obtain an excitation equation

for each F.V. and the procedure for this is identical to that used

to obtain a Z-equation. The resulting equation is checked to see

that condition 2.1 is met. If the condition is not met then the

corresponding variable is deleted from the F.V. list and the whole

procedure restarted.

It/

- 7

It then only remains to apply this procedure to the remaining

Z-types and any other feedback variables that are detected. The

final F.V. list corresponds to the list of secondary variables,

the equations for the F.V.s to the excitation equations and the

Z-eq.uations to the output equations. The flow diagram for the

above procedure is depicted in figure 1.

The output equations and the excitation equations obtained

from the algorithm completely define the asynchronous circuit, and

may be expended to generate the flow tables.

8 -

34 Examples
will'now be

The above procedure _/ illustrated throti^ a number of examples.

First v.'e)consider a Texas Instrument D-type bistable the circuit for

which is given in figure 2 and the corresponding topological
4

description in table 1 .

Let us start by taking Z-|.

G-list F.V.list Equation

- 2-]= X"! + C2 + 22

Z^,02,22 - - Xl + + Xg'C^'Z-i -

Now Z-j is already in the C-list; hence we add Z^ to the P.V.list,

— 2^ Z-|= + G2 + Z2

Cg.Zg + Ci'Xg'X) X^'C^'Zi

Cg^Zg.Ci.C; Zi - Xi + (X^ + C4 +

+ (C2 + Xj + C^^"X2"Z^

Cg is therefore added to the P.V.list.

- Z^.Cg Z-= X- + C2 + Z2

Zg Zi.Og = Xi + C2 + Cj'Xg'Z^

Zg.C^ Z^.Cg = X^ + Cg + (C2 + Xj + G^)'X2'2i

^2*^3*^4 Zi'Cg, = X^ + Cg + (Cg + Xg + %2'%4'G))'*2'Zl

is added to the P.V.list.

Z
2

^ • ^ t ^ 2 ' ^ 3 ^ 1 ~ * ^ 2 * ^ 2

Zyc^ ,c - T , + ^ + Xj-Cj-z, .(3-1)

Applying the procedure to Cg ezid C- we get

— ^^#02*0^ ^2~ ^2 X^

C.J ZifCg.C^ = Xi'C^'Cg + Xg + Xg

4. The algorithm has already been programmed. The inputs to this '-
program are in Polish form; however, a standard form is used
here for illustration purposes.

C-list P.V.list Equation

C^,C^ Z^,C2;Cy = X-j • (x^ + X2 + C^)*C2 + Xg + X^

— Z^,C2>C^ Cj= ^2 + Xj +

= C2 + Xj + x^'Xg'C^ (5*3)

and finally

z^.cg.c^ +"z^ (3-4)

Z^, Cg and are the secondary variables and "•, equations 3'1,5-2

and 3*3 represent the corresponding excitation equations. The output

equation for Zg is given in 3-4 and since Z^ is an output as well as •

a secondary variable a dummy output equation is generated for Z^^ i.e.:

z, . 2, (3 - 5)

Example 2. >

Consider the circuit given in f i g u r e 3 the topological description

for which is given in table 2.

Starting with Z^ we get

C-list F.V.list Equation

Z^ — "̂ 1 ̂ ^3

Z^,C^ • - = + Cg'Z^'C^

— Z-] Z -] = X-^ + C j

Cj Z^ a X-| 4- C2*Z^*C^

C 2 . C j , C ^ Z ^ = X ^ + (C ^ + X 2) ' Z i ' (C y + X g)

— Z^jCj Z-j—
thus

is in the P.V.list and the substitution for it is/complete;'

however, since:;

Zl^ g(Zi).
Z^ is therefore removed from the P.V.list.

Cg Z^. (3 ' 6)

— Cj Cj= C2 + Z-| + C^

10

C-list P.V.list Eq_iia.tion

^2*^1'^4 ^3 ~ C-j•X2 + X^*C^ + ^2*^3

= X^'Xg + X^*C^ + X2*G^ ,,....,»i..,(3*7^

-Therefore C is the only secondary variable, and the corresponding

excitation' and output equations ^ _ are given "by 5*7 and 3*6

respectively.

Example 5.

We finally consider a circuit which Unger j3X' bas ..analysed by identifying

and breaking feedback loops using a trial and error process.,The circuit and

the topological description are'given in figure 4 and table 3 respectively.

C-list P.V.list Equation

Z — Z = Gg

Z,Cg - .

2»Cg,C-jQ - = X-j • (C^+G^+C^+Cg)

Z Cg 2 . %

Cg X1+C10

C10 Cg = Xi+C^'Cj/C^'Og

^So'^3*^4*^5 ^6 - %i+(CY+Gg)'(X2+G^)*(C^Q+C2)'Cg

Cg is removed from the P.V.list. The equation for Z now reads

Z = Xy C^Q(3'8)

Restarting the substitution process for C^q we get

. _
^10 ClO= Gj+C^+G^+Cg

3̂»*̂ 4»̂ 5» (̂ 10 Gy' Ĉ -fX2* Gy+G-jQ • G^+X^ * '̂ 10

C6

63,04,0^, ^10 X-j • (C-j+G2+Gj+G^)+X2*X^+

C5, , Cg ^10 ^10' (G-j+C2+Cj+G^)+X^ 'O^Q

— C-j0»G^, C4 0^0= cy+c^+c^+Gg

Go C-^Q,GJ, C4 , = cy+c^+c^Q'Cg+Xi'CiQ

^10*^3' ̂4

C-jQjCy ̂ 4̂ Cj+Ĉ -J-Ĉ Q* (C^*CQ+X2'Gg+Cj+C^)+X^ •C.JQ

'2*C6

11 -

C-list P.V.list Equation

C^Q= C^+C^+G^+C^

CjiCg C-jQ, - = Gj+C^+G^o'C^+X-j'C-iQ

,~ ^10'^3''^4'^9 ^5~

Gy C^q,CJ,G^,C^ = X^+C^

G^ is also removed from the P.V.list. Substituting for Gj in the

equation for C^Q we get

C-jQ= X-] •G^+G^+C-jQ'G^+X-j'G^Q

Next we obtain an equation for G^. •

C-j G^q,C^,C^ = X2+X^

eliminating G^ also from the P.V.list. Tne equation for C-]q now reads

Ĉ Q= X-[•C^+X2'X^-fC^Q*C^+X^'C^Q (5*9)

Similarly for G^ we get

G^qjG^ C^= C^+Cg+C^+C^

C-],C2,Cj, C^QjC^ = C^'Cq+X2*GQ+CY'CJ+X2*CY

C4 •

C-^,C2,G^, G^q,C^ = Cg'Gi0+X2'Cio+Xi*C2+X2«Xi ...(3«10)

C4»CY,CQ

The circuit shown in figure 4 therefore is characterized by

equations 3-9 and 5«10 which are the excitation equations for the two

5

secondary- variables and the output equation 3*8 .

5. The equations obtained here are idential to those obtained by
linger [$] where y^ and y^ refer to and respectively.

12

^. Conclusions

Thp algorithm presented here detects feedback loops analytically

from a topological description. However, the following points should

be noted.

a) The procedure concerns itself only with the terminal behaviour

of the circuit. Hence, variables which have no effect on the external

behaviour of the circuit, e.g. a redundant feedback loop, will be
&

ignored. .

b) The resulting excitation equations may be different to those

used during the design of the circuit.' In this case the behaviour

obtained using this procedure will be equivalent to the original

behaviour.

c) The algorithm does not accept explicit delays. It is assumed

that the logic circuit being analysed is made up using real gates with

inherent delays and that the circuit functions correctly. It is

envisaged that the algorithm will be extended to include explicit

delays and predefined gate delays.

d) The algorithm is equally applicable to the analysis of

combinational circuits, in which there are no feedback loops. Thus

the method is quite general and useful in general logic network analysis.

A preliminary version of this algorithm has already been programmed

using a list processor imbedded in FORTRAN. We hope to include this

algorithm as part of the facilities offered by the Computer-Aided-Logic-

Design suite currently being developed at Brunei and Southampton

n ' iGj
Universities.

13 -

Bef&r

p]. 8«E.Unger, Asynchronous Sequential Sr/itehin-? Circuits,

J.Wiley & Sons, New York, 19^9»

j2j. A.A.Kaposi and D.R.Eolmes, Logic Network Analysis,

CornriTiter Aided Design, Autumn 1970 pp 9-18.

[5j. D.Cunningham, Tne Generation of Diagnostic Testing Procedures for

Sequential Circuits, lEE Colloouium on Computer Apnlica-tions to

Design, Simulation and Testing of Logic Circuits and Systems,

16 November, 1971.

Q).]. E.Y.Chang,C.G.Manning and G.Metze, Fault Diagnosis of Digital

Systems. J. Wiley and Sons, 1970, P'95«

[5]. S.E.Unger, ibid, pp. 174-177.

[6J D.W.Levin, E.Purslow and R.G.Bennetts.

Computer Assisted Logic Design - The CALD System

I.E.E. Conf. on C.A.D. Pub.No.86 p. 3^3-351 1972.

— 1̂4

Acknowledgement

One of the authors (Pal) wishes to acknowleigo the financial

support given b y the Science'Research Council aa& International

Computers Limited for part of the wor̂ c.

BaGIM

Obtain X,C,7 , from
topological description
Set PV & C] ist emptv

FIGUBE 1

Select a Zxype

Ootain xnitx

Add to C list

only?

Remove this
variable from
F.V. list Note ail _C,Z

types on Tiks

add dup.var
to PV list,
erase C list Add to C list

I

subst. using
eq, obtained

here

i n eq.. S U D S X

for each of
these

erase eq.

neiete tne Z
eqs, add the
Zs to ?V list erase C list,

select next F*

erase C list,

select next Z YES

tain as Z ec erase eo

erase eq.

1

obtain initio

FV=f(X,C,z)

X(

16

V

J "

1 Y C i

X2

FIGURE

I T

X

y

F iGURa 3

lU

f

f

• ^4 ' ^2

"2 = S • ̂ 2 • ̂ 5

C2 . ̂ 3 • ^4

C4 =
^ 4 - ^2 • C3

^1 ' C2 . Z2

^2 = 4 • S- ^1

Table 1

20

Cl - Xl

02= Ci ' Xg

G) " Gg ' Zi C4

C4 = ' ̂ 2

. cy

T a b l e 2

z Cg

Cl s • (̂ 8

^2 X2 • ̂ 8

°7 *

Xg . G?

8
^10 • %

SS ^ ' Cio

^7
ss ^1

^8 °10

ar Cl • C; . C

°10 m ° 4 \ C5' c,

Table . 3

Titles for Tables

Table 1 . Topological Description tor Circuit

Table 2 . Topological Deacription for Circuit in

Table) . Topo log i ca l D e s c r i p t i o n for C i r c u i t i n f i g u r e 4.

Titles for

Figure 1 . Plow for the Analysis Algorithm.

Figure 2 . Logic Diagram of a T^xas In^truMont D-type ^i-sta&ile,

Figure 3 . Logic Diagran for bxa^ple 2.

Figure 4 . logic Diagram of Ungcr'o E%a%#le.

