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1.Introduction to Digital System Design Specifications 

1.1 Introduction 

A digital system is conventionally divided into 

hardware, i.e., the part which implements the basic 

characteristics of the system using electronic or 

mechanical building blocks and which is relatively 

difficult to modify, and software which forms a 

superstructure on the hardware and assigns a set of 

different characteristics to the digital system for 

the final applications. The design processes of 

the two parts physically different in that they 

rely on different building blocks and consequently 

employ different criteria. For example, hardware 

design is influenced by the types of electronic 

switching elements available, fan-in and fan-out 

factors of gates, i.e., the number of inputs and the 

number of outputs that may be connected to a gate, 

packaging of the switching elements, interconnection 

methods and problems of fabrication of sub-units and 

units; whereas the software design is based on the 

repertoire of instructions executable by the hardware, 

memory accessing and information management techniques 

and the input-output device handling techniques 

employed by the hardware, and the communication 

between various sections of software. 

Conceptually however, the design phase for both 

hardware and software is identical and can be 

characterized by the following steps: 



a. Define the system in a natural language 

describing its overall characteristics, such as 

input-output behaviour, performance, etc. 

b. Convert the description in a. to formal 

specifications. 

c. Implement the formal specifications in terms of 

appropriate building blocks with due regard to 

physical constraints such as speed, cost, 

reliability, testability and to a lesser extent 

future modifiability. 

Despite the identical nature of the design procedures 

for hardware and software, £t is a current practice 

to treat the two aspects completely differently, 

especially in steps b. and c. Often step b. is 

completely bypassed in the design process. This is 

due to several reasons, the main ones being the 

designers' reluctance to conform to any formalization 

of the design process since it could be regarded as 

reducing the scope for exercising their skill and 

ingenuity, and the distinct lack of standard formal 

techniques which could cover a wide range of problems. 

Obviously then, the design process relies heavily on 

the designers' past experience and ingenuity, is 

extremely time consuming and prone to errors. Such 

a process is also subject to inaccurate and inadequate 

documentation. In many cases the documentation is 

based on the final design with no trace of the 

intermediate steps taken by the designer. 

This means that there is a proliferation of many 

different techniques currently employed in the design 



of a digital system. While this practice does not 

cause many problems when small systems are being 

implemented'\i presents more and more acute problems 

•when digital systems of large sizes, such as modern 

computers are designed. ...Were, of necessity, the 

design process must be divided up and the need for 

suitable formalization of overall design techniques 

good documentation jfor intercommunication between 

numerous designers and for the subsequent 

manufacturing^becomes more urgent. 

1.2 Design Automation 

In the last application mentioned above, the data 

required particularly for large system implementation 

is very indeed and in most cases certainly 

too large for manual handling. Fortunately, however, 

large and powerful computers have recently become 

available and these can be efficiently employed to 

handle the mechanical tasks in system implementation. 

In fact, most manufacturing concerns already use 

digital computers to perform component layout, back 

panel wiring, and cable connections - also providing 

a check on circuit completeness. Additionally, 

useful tasks of documentation of parts-lists and 

drafting are also relegated to the computer. Both 

these factors assist and improve the production 

process. 

It is, therefore, natural to extend the scope of 

design automation and consider the possibility of 

employing the digital computer in the design process. 



Apart from the obvious advantages of documentation 

facilities and automatic logic generation, as 

required in step c, the digital computer can also 

provide to the designer some powerful facilities, 

which, in most cases, otherwise would be beyond the 

time and effort available. These are; 

1. minimization, i.e., removing redundancies; 

2. simulation to check the design completeness 

and to obtain performance figures; 

3. generation of test sets which would allow the 

detection and location of faults if and when 

they arose. 

The results obtained by invoking the above facilities 

can provide very valuable feedback to the designer 

allowing him to modify the design specification or 

the design itself as necessary,«»«kioreinitiate the 

design cycle until an optimal, i.e., economically 

satisfactory, solution is reached - a process which 

normally should be executed before any expensive 

manufacture is initiated. If the designer had 

facilities to communicate directly with the computer, 

e.g., via a teletype unit or a visual display unit, 

the feedback cycle could be made much shorter. 

The designer then would be in a position to 

experiment with various designs, increasing 

considerably his scope for ingenuity and exercising 

his skill. 

Unfortunately, however, in view of the current state 

of the art, the above procedure has major drawbacks. 



The data generated during the design phase is large 

and the resulting computation is very complex even 

when performed on large computers. Switching theory, 

[l] , [2] , [3] the only tool available for rigorous 

design, is still mainly applicable to small systems 

and its application to large systems' design, both 

hardware and software, is still at an infancy stage. 

Nevertheless, the potential advantages of the above 

approach are unquestionable. 

The designer then,must be provided with a 

communication interface with the computer, i.e., a 

language. This language must be such that it is of 

a high enough level so that too much time is not 

spent specifying routine duties, yet at the same 

time must be of a low enough level to be flexible. 

It must also be relatively easy to learn to be of 

practical value, e.g., in documentation, teaching 

its use to new designers etc. And of course, the 

language must be translatable into a format so that 

tools provided by switching or similar theory may be 

applied. 

In the following chapters we examine the various 

languages proposed so far and discuss their relative 

merits and disadvantages. A comprehensive set of 

examples is also provided in the appendix to complement 

the discussion. 



2. REGULAR EXPRESSIONS 

2.1 Introduction 

Regular expressions [4 - 30j describe the input-output 

behaviour of a clocked or pulse mode system in a way which is 

independent of its internal structure. As such,regular expressions 

provide a method of representing a system as an abstract automaton 

and of deriving a mathematical model for it. ^Iso, since all 

clocked or pulse mode systems are covered, regular expressions can 

handle a large class of sequential systems. The language of regular 

expressions is precise and since the description is in a single-line 

type of format it is much easier to process than, say, state tables 

or state diagrams, Furthermore, because of their characteristics, 

regular expressions sometimes closely resemble natural language 

description. It appears, therefore, that the language of regular 

expressions is a very useful tool for analysis, Sowevcr, the regular 

expression describing a system can vary considerably depending on the 

way it is derived and to the author's knowledge, no satisfactory methods 

yet exist to discover the identities «f ^ . 

The limitation of the language of regular expressions is 

that it can only apply to a finite state system. A computer is 

essentially a finite state machine with a separate large memory and, 

therefore, regular expressions cannot be used for syntheg^&of 

computers. Secondly, the regular expression representation is such 

that when the expression becomes valid, i.e. when the system "accepts" 

the regular expression the ouput is made equal to 1; otherwise the 

output remains at 0, Therefore, for multiple outputs the only way 

to use this language is to consider each output separately and 

derive the relevant regular expression for each. Thus this method 

is mostly suited for single output systems. 



These disadvantages restrict the use of regular expressions 

and designing digital computers using regular expressions only would 

be an extremely long and laborious, if not an impossible process. 

The matlimematical nature of regular expressions, however, has roused 

considerable interest and a wealth of papers have appeared since 

Kleenejjsj first introduced their use in connection with automata. 

The following discussion, therefore, is included as an Illustration 

of the language of regular expressions and a rigorous and complete 

coverage is not included. 

2,2 Historical Survey 

The theory of regular expressions dates back to 1943 when 

McCulloch and Pitts [2# developed a logical theory to describe the 

behaviour of nerve nets. In 1956 Kleene {jsj extended the ideas to 

describe abstract automata by regular expression and also showed that 

every finite state deterministic automaton can be defined by a regular 

expression and that every regular expression can be realised by a 

finite state, deterministic automaton. The theory he developed, ' 

however, was mainly in terms of nerve nets and was rather complicated. 

. Later Copi, Elgot and Wright [l2j, in their expository paper, simplified 

the discussion but restricted themselves to instantaneous logic. 

In 1960 McNaughton and Tamada added to the theory by providing 

algorithms for deriving regular expressions from state diagrams and 

vice versa. Some other treatments of regular expressions were also 

. developed by Lee Q&J, Arden [4], Mayhill [25] and. Ek&in and Scott [28j ; 

but their terminology and presentation varied widely. In 1962 

Brzozowski published an expository paper giving a unified account 

of all the theory published until then; and around the same time 

Ghiron j _ ' ' 5 j independently published a correspondence enumerating rules 

to manipulate regular expressions. Since then Brzozowski has 

published a number of papers on this subject. He and HcOlusky 



furthered the Ideas of Arden [4] and applied signal flow graph 

techniques to regular expressions. Ee also overcame one of the major 

disadva.n'ta.g'ss of the tschniô ue by McHa.ugh.toii & laoiada which requires 

very lengthy manipulation, by developing the concept o-f derivs-tives 

of regular expressions I 7 ] and the techniques to obtain state 

diagrams from regular expressions using derivatives. Splvak [29] also 

independently developed these techniques of derivatives, but he 

referred to a derivative as "the quotient of division". Udagawa 

et al [30J, in I965, unified the derivative approach and Arden's 

linear equation method into a matrix form, 

The more recent work in this field has been mainly on the 

algebra rather than applications of regular expressions [$,11,27J . 

2.5 Definitions and Properties 

Consider a set of n inputs to a machine M as shown in 

Figure 1, such that each input can talce up a value of logical 0 or 1. 

These binary variables are called in-nut sifnials. A particular 

ordered arrangement of the input signals is called an input configuration. 

Assuming the input configuration represents a binary string with a 

as the most significant bit and as the least significant bit, the 

value 01 the string is called an input S7/mbol. and the set of input 

symbols is called an input alphabet. It follows that the input symbols 

can talce values between 0 and 2^-1 and the input alphabet contains 2^ 

symbols. Only synchronous machines are considered and the values 

assumed by the input symbols at successive clocking times denote an 

input sequence. 

For the present discussion we restrict ourselves to a limited 

set of regular operators containing +,.,*,(*) namely the disjunction, 

concatenation and star operators and parenthesis. The regular 

expressions are recursively defined as follows: 



^0 
&1 

%1-1 

FIGURE I. MACHINE M 
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1) Any symbol of the input alphabet, a 0 or a Xis a regular 

expression. 

2) If A and B are regular expressions then A+B, A.B (sometimes 

written AB) and A* are also regular expressions, 

3) Only expressions derived by application of rules 1 and 2 a 

finite number of times are regular expressions. 

Parenthesis are used to group sequences of regular expressions, 

The symbol X is an input sequence of zero length and 0 is the null or 

empty set of sequences, the difference being- that X is a set with one 

symbol and ^ is a set with no symbols. The star operator is defined 

as follows: 

A* = X -i- A -f M + AAA + AAAA + ... 

2 3 4 
= X + A + A 4- A + A 

An automaton realises a regular expression or it is said to 

accept a regular expression if when a valid sequence contained in that 

regular expression is applied to the machine an output of 1 is 

produced, and such a regular expression defines the machine. Before 

attempting to derive any regular expressions for a given machine and 

vice versa, it will be useful to consider some of the basic properties 

which are enumerated below. 

If A, B and jC are regular expressions, then 

i) A ™ ~ B + A Commutative 

ii) (A + ̂  f C = A + (B + Associative 

iii) (AB)0 A(BC) Associative 

iv) + AC = + c) Distributive 

v) (A + B)C Distributive 

vi) A + 0 = 0 + A = 
- ) 

vii) 0A 0 I Properties of 

viii) 0 - x - = X 
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ix) AX = 

X* = X 

xi) A + A = A 

xii) (A + 

Properties of X 

In some cases the knowledge of sequences from time zero is 

not required or available. In such cases a don't care symbol is 

useful. 11 is called i. meaning any sjmbol of the alpliabet and is 

a don't care sequence* 

2.4 Regular Expression from Natural Ianmiaf?e Description 

As we stated in the preceding section,^regular expression 

is essentially a sequence of inputs accepted by an automaton. Thus 

the language of regular expressions can be used for describing sequence 

recognisers and it is this kind of description that the language suits 

most. If the set of input strings accepted by the automaton is* known 

or alternatively if an automaton has to be designed with a known set of 

input strings, then it is a simple matter to convert this description 

into a regular expression. (The task of discovering the set of all-

input strings accepted by an automaton, however, is a very complex 

one and in practice, except in a few oases, is impossible. 

Suppose that it is necessary to generate an output if the 

input string contains the sequence 1011 then the regular expression 

describing this automaton would be simply 

R = i*101l(i*101l)*, i = 1 + 0. 

A better example would be one containing the Boolean 

operators & (AIIo) and ' (negation). Per example, an automaton 

accepting an input sequence containing groups of 11 followed by 

groups of 00 but not ending in 01 or accepting an input sequence 

containing groups of 101 would have the regular expression 

R = (i*ll(ll):^00(00)*) & (i*Ol)' + i*10l(l0l)* 
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Another, useful, example is a divide-ty-two automaton 

which accepts all sequences containing an even number of I's, 

This automaton is defined completely and precisely by the regular 

expression 

R = 0*10*1(0*10*1)* 

2.5 Regular Expressions for Combinational Loaio 

As was stated before, a regular expression decribes a 

sequence of input symbols at successive clock times necessary to 

produce an output of 1. It follows, therefore, th&t the regular 

expression for a unit delay is 

% = ( 1 ) 

This expression is valid for a machine containing 

instantaneous logic. ' If, however, a unit delay is inherent in the 

logic then the required expression is 

R = i*l (2) 

Regular expressions for combinational logic devices can be 

similarly derived and some examples are given in figure 2. 

2.6 Re&ular Expressions from State 

The technique illustrated below is due to Arden^4], 

Each state has a regular expression associated with it which 

describes all the sequences necessary to bring the machine into that 

state from a starting state. This regular expression is obviously 

equal to all the regular expressions associated with the adjacent 

states, i.e. the states from which the state under consideration can 

be reached by inputting a single symbol, followed by the symbols 

which will cause the transitions. This equation can be written as: 

2sl = + Dggagi + ... + Dg^a^^ (3) 
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AN AND GATE R = T 3 

AN OR GATE R= /U+2+3 ) 

AN INVERTOR R= i*0 

FIGURE 2 
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where is the regular expression describing all the sequences 

taking the automaton from the starting state to the state and 

^21 input symbol causing a direct transition from state to 

state q^, etc, 

Regular expressions associated with other states can be 

written down similarly; 

^ 2 ^sl^l2 ^2^22 + + ̂ n^n2' 

4 s - ^sl^ls + 42^2s + ' - + ^ 

4 n 4l^ln 42^2n + *" + (4) 

where X is the starting symbol. 

(These can then be solved as simultaneous equations. 

As an example consider the state diagram shown in figure 3, 

of a machine with only one input. If A,3,0, and D represent the 

regular expressions associated with the'states A,3,C and D respectively, 

then the relevant equations are 

A = m + X (5) 

B = AO, (6) 

c = m + M + CO (Y) 

D = CI + BO + DO (8) 

Then substituting for S in (7) 

C = A(01+l) + CO (g) 

[This is an equation of the type 

X = 201 + B 

which suggests that a sequence 3 is required to arrive at state X 

and any further occurrence of sequence A will cause transition back 

i 



o 

FIGURE 3 



to X, i.e. the solution to the equation is 

X = 

In fact it can be shown that this is the only solution to this type 

of equation proTiding A does not contain aJ' 

Thus the solution to ($) is 

C = A(01+l)0* (IG) 

Prom (lO) and (6) 

D = AX(01+1)0*1 + 00) +.Dp 

= AX(01+1)0*1 + 00)0* (11) 

and from (5) and (ll) ve get 

.A = AX(01+l)0*l + 00)0*1 +A . 

= x ( ( ( o i + i ) o * i + 0 0 ) 0 * 1 ) * . 

= ( ( ( 0 1 + 1 ) 0 * 1 + 0 0 ) 0 * 1 ) * . ( 1 2 ) 

Hence 

B = ( ( ( 0 1 + 1 ) 0 * 1 + 0 0 ) 0 * 1 ) * 0 . ( 1 3 ) 

c = ( ( ( 0 1 + 1 ) 0 * 1 + o o ) o * i ) * ( o i + i ) o * . ( 1 4 ) 

D = ( ( ( 0 1 + 1 ) 0 * 1 + 0 0 ) 0 * 1 ) * ( ( 0 1 + 1 ) 0 * 1 + 0 0 ) 0 * ( 1 5 ) 

If the machine produces an output in state D then the 

regular expression defining the machine is D. 

2.7 State Diagrams fron Regular Expressions 

The method described below is due to McBaughton and Yamada 

[22]. It is illustrated with a running example which uses the 

regular expression obtained in the last section. 

Step 1. Associate a position 1 with the leftmost symbol 

in the regular expression. Associate a position 2 with the next 

occurrence of the same symbol to the right and so on until the last 

occurrence is suitably identified. Repeat this procedure for all 

f sae Appendix III. 
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the other symbols in the alphabet. These identifications appear as 

subscripts to the symbols in the regular expression. 

Applying this step to the expression D we get 

B = (((Oill+lgjOgl;* 050pO|l^)»({05l5+l6)0|YOg(^OJj,. (l6) 

A position is termed initial if a valid sequence is contained 

in the regular expression which begins with that position and 

similarly a position is terminal if a valid sequence can terminate 

in that position. In the above regular expression these positions 

are 

Initial 0^, Ig* lg» Og, 

Terminal 1^, 0^, 0^^, 

Step 2, In this step, we determine all the allowable 

transitions. These are ordered pairs of positions which a valid 

sequence can follow. The meaning should be clear from the ordered 

pairs in the example which are 

(°2 

(04.05). ("4 

(cy,o^), (O5 'Ij) 

(Og.i^); 

(Oy.Oy), ,1?) 

5 

(°9*°lo)' 

(°io'°io) 5 

(1], fOg)' ,13) 

(ig: 

(1^,0^), (I,, '14) 

(I4' '^2) 
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(1^,0^q); 

Step 3, The state diagram is then built up using the 

following procedure. Assume a present state q corresponding to 

position set 

1 ^ is azi integer j 

of the symbol i. Suppose a symbol j is received then the next 

state q. is the largest set {?.( such that there is at least one 

t 
allowable transition to each position of the set ) P. ( from the set 

r 1 L J J 

"there is no such set, i.e. it is an unallowable transition, 

then the ne%t state is a fault state and all the transitions from this 

state terminate in this state. This process is continued until all 

positions are covered. An initial starting state S is also assumed. 

Applying this procedure to the example we obtain the state 

diagram shown in figure 4. This appears quite different from the 

state diagram in figure 3» for wliich the regular expression ̂  was 

derived; however, using usual minimisation techniques the diagram in 

figure 4 reduces to the same as in figure 3. 

2.8 Derivatives of Regular Expressions 

A far more elegant method to obtain the minimal state 

diagram is the use of derivaties of regular expressions, a method 

developed by Brzozowski [,7 J and independently by Spivak ^29]. The 

derivatives simply give an indication whether a particular sequence 

is contained in the regular expression or not. They also handle 

multiple occurrences simultaneously; hence repeats, corresponding to 

loops in the state diagram are recognised and identical loops merged, 

The state diagrams thus obtained, therefore, are minimal. 
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FIGURE 4 
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There are two kinds of derivatives: a) the left derivative 

L- -1 

denoted "by D^IE j where E is t^e regular expression whose derivative 

is taken with respect to the- sequence s, and d) the ri^t derivative 

which is denoted by 2hey "both caa be nsea identicqUj to 

develop state diagrams. Por the discussion below, we restrict 

ourselves to the left derivative and omit the superscript. 

The derivative of a regular expression B with respect to a 

sequence s is defined as 

\L~J [tjst EE 

Before going into the details of this method, a function 6 

has to be defined and rules of derivatives given. The 5 function is 

defined by 

5[s] = i if * £H 

= 0 if X ifR 

and the rules of derivatives, given without proof, are listed below, 

= A :#ai = a2 

= ^ otherwise (l9) 

where a^ and a^ are symbols of the input alphabet. 

If a is a symbol of the input alphabet, f is any function 

of the two regular expressions E and then 

Da[RQ] = CDa[R])& +6 [gjaalo] (20) 

(21) 

Da[a\] = Da[g" (22) 

= f(Da[k], %&[&]) (23) 

and finally D = E 

where » is used to indicate negation, 

From the above rules it follows that 

V 2 M ° % [ \ H ] (24) 
•••='n[S]= (25) 
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Also from the definition of derivatives it follows that a 

regular expression can be written in the form 

R = 5 R + eD R (26) 
— — aeA a — ^ 

vhere 5 R is introduced if R contains A. 

2.9 State Diagrams from Regular Expressions using Derivativ tsf 7.1 •, r29l. 

In section 2.7, an elementary state diagram was obtained from 

a regular expression and then switching theory was used to reduce it to 

a minimal form. The algebra of regular expressions can also be used to 

obtain a minimal state diagram directly. To do this, first the rules 

and properties of identical, or more correctly indistinguishable, states 

must be noted. Indistinguishability is defined as follows: two states 

of an automaton are said to be indistinguishable if the behaviour of the 

automaton is identical in each of the two states. 

Assume aji automaton M, defined by a regular expression R. It 

follows from the definition of regular expressions that if the automaton 

is in the starting state then a valid sequence s, contained in R will 

be accepted by M. Similarly a state q^ is said to accept a sequence s 

if M is in state q^ and if the sequence s is applied to M, an output of 

1 is produced at the end of s. Quite clearly, then, two states q^ and 

and q. are indistinguishable if all the sequences accepted by one are 
J 

also Accepted by the other and vice versa. 

Now, if a sequence s^ takes the automaton from the starting 

state q to a state q., it follows from the definition of derivatives 

-that the derivative of the regular expression R with respect to s^ is a 

regular expression which contains all the sequences accepted by q^. 

Therefore the definition of indistinguishability can be modified to read 

"that two states q. and q. are indistinguishable if the with 
^ J 

respect to s. and s. are equivalent where s. is the sequence taking M 
^ J J 

fTom startins state to the state 5. 3 also smilarly defined." 
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This provides the criterion for minimality. 

The state.diagram then is obtained by the following procedure* 

which applies to an automaton M defined by the regular expression R 

and whose input alphabet is containing the input symbols a^, a^ 

Step 1. Begin by talcing R which will be R. 

Step 2. Determine all R .and associate a new state with each 
i 

distinct D R .. This will give all the derivatives to 
&i 

sequences of length 1. 

Step 3. Continue step 2 for sequences of length 2 axid beginning with 

each a. for which D R were different. 
1 a. — 

1 

step 4. Repeat step 3 for higher length sequences until no further 

distinct derivatives are obtained. 

Step 5. Determine the outputs associated with each of the states 

generated by the above steps. The output is 1 if the <5 

function of the corresponding derivative is equal to X. 

This follows directly from the rules of derivatives and the 

definition of 6 function. 

The above function is illustrated by the same example in the 

previous sections where the input symbols are {0,1} and the output is z. 

' 
D = = ( ( ( 0 1 + 1 ) 0 * 1 + 0 0 ) 0 * 1 ) * ( ( 0 1 + 1 ) 0 * 1 + 0 0 ) 0 * ( 1 5 ) 

D : = ]D 5 ( 1 0 = 0 . Z = 0 . ( 2 7 ) 

^ 0 
D : = ( 1 0 * 1 + 0 ) 0 * 1 D + ( 1 0 * 1 + 0 ) 0 * 6 ( D q D ) = 0 , z = 0 ( 2 8 ) 

^ 1 
D : = 0 * 1 0 * 1 D + 0 * 1 0 * S (D^ D ) = 0 , z = 0 . ( 2 9 ) 

^ 0 0 
D : = 0 + l D + 0 * 

" " o o 
D ) = X z = 1 . ( 3 0 ) 

®01 D : = 0 * 1 0 * 1 D + 0 * 1 0 * - D, D 
— 1 — 

( 3 1 ) 

' ^ 1 0 
D : : 0 * 1 0 * 1 D + 0 * 1 0 * = &, D 

— 1 — 
( 3 2 ) 

®11 
D = : 0 * 1 D + 0 * = D 

— 0 0 — ( 3 3 ) 

^ 0 0 0 
D = : 0 * 1 D + 0 * = Dqq D ( 3 4 ) 

^ 0 0 1 
D = : D = D, D 

— X — ( 3 5 ) 
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Thus there are only four distinct states corresponding to 

D , Dq D , D , and D and the state diagram is as in figure 

5 which is the same as in figure 3 with states A,B,C,I) replaced by 

states q.^,qQ,q^ and respectively. 

In the examples so far the outputs are associated with states 

only, i.e. only Moore machines are considered. Another type of 

machine, called a Mealj ; type, has its outputs associated with 

transitions, i.e. they depend on the present state and the input. 

The above procedure is easily amended to produce Meal^^ type machines. 

In the Moore type of machines a distinction is made between 

two derivatives differing only by X as one of these has an output 

associated with it and the other one does not. In deriving Meal^ 

machines this distinction is omitted and the outputs are associated 

with transitions. The Healey machine diagram corresponding to the 

example is shovn in figure 6. 

2,10 The State Characteristic Equation 

Prom its definition a derivative of a regular expression with 

respect to a sequence s is a regular expression accepted by the state 

q, , where the sequence s takes the automaton from the starting state 

qĵ  to q , Thus, it follows that a technique similar to Arden's can 

be applied with derivatives to state diagrams to obtain regular 

expressions. Udagawa et al [30J unified Brzozowski's derivative 

method and Arden's simultaneous equations method into a matrix form 

to do this giving the state characteristic equation. 

Consider a set of states {q^, q , ..., q^}. We define a 

matrix D 
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FIGURE 5 

FIGURE 6 
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D 

" V \ l "̂ 12 *ln 

^21 "̂ 22 *2n 

• • • • 

• • • • 

. V _̂ nl '̂ n2 

(36) 

such that d.. is a regular expression which describes the class of 
1J 

sequences causing a transition from the state to 

define a matrix A 

We also 

A = 

n 

^ 1 ^ 2 ^13 " ' 

^21 *22 *23 
a, 
2ii 

&n2 

(37) 

where a.. is ah input symbol causing a transition from the state q. 

to qy And finally we define ail n by n matrix E whose diagonal 

elements are X and all the other elements are 

Now if the starting state of the automaton is q^, using 

Arden's method we get 

11 

12 

^11*11 * *123^1 * + *ln*nl ' 

^11*12 + *12*22 + ... + d_ a 
In n2 . 

Then if we write d^^, d^^, . 

= V + Ei. 

Similarly = D^A + B etc. 

Hence D DA + E. 

. + a, a 
In mi. 

as D^, we get 

(38) 

(39) 

By similar procedure the derivative form can be written as 

D = ilD 4- E. (40) 

Equations (39) and (40) are called the characteristic equations, 
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The matrix A.is simply another way of stating the state 

table and the matrix E expresses the output states. Given that an 

equation of the form X = AX + B has a solution X = Â B"!" and the 

equation of the form X = XA + B has solution X = BA*1", usual matrix 

techniques can be extended to solve the equations (39) and ( 4 0 ) , 

2.11 Minimal State Biagraras for Multiple Out-puts 

As was stated before, one regular expression has to be 

associated with each output;an,d therefore one way to obtain state 

diagrams for multiple output automata is to derive a separate state 

diagram for each output. However, this does not necessarily produce 

an overall minimal machine. Brzozowski gave the following method 

which is an extension to the derivative method. 

The set of n. regular expressions associated with the n outputs 

is written as a vector 

S = ^2' •••» (41) 

Then using methods described above a vector of derivatives and another 

of outputs are generated, i.e. 

. Da. . .... 3a. (42) 

~ ^ ~ Z2» •••> }• (43) 

As before, the state diagram is built up by associating a new state 

with each new vector. The output vector is also taken into account 

if a Moore machine is required» 

2.12 Transition Graphs 

A state diagram describes a deterministic type of system. 

By this we mean that if an input is applied to the system in a state, 
« 

then the next state can be uniquely determined; and also that the 

system at any given time can exist in only one state. These 

restrictions are necessary to make a physical realisation of the 

system possible. 
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In the preceding sections we developed state diagrams from 

regular expressions adhering to the above constraints. However, 

regular expressions can describe very complex sequences and while it 

is possible to obtain a state diagram of the system to accept a given 

regular expression it is sometimes easier to lift the restrictions 

and consider only the sequences or sets of sequences described by the 

.regular expressions.^ The diagram we then obtain is called a 

transition graph, 

A transition graph consists of suitably identified nodes 

and directed arcs which are labelled by the input symbols connecting 

them. At least one of the nodes is termed as a starting node, 

identified by a short unlabelled arrow , going into it, and at least 

one of the nodes is an accepting or terminal node indicated by a 

double circle. It is not necessary to have an arrow leading out of a 

node for every input symbol; also there can be more than one arrow 

from a node labelled by the same input symbol. 

A sequence of directed arcs of a transition graph is called 

a path and every path describes a sequence of input symbols determined 

by the symbols associated with the directed arcs, A sequence is said 

to be accented if there exists at least one path between a starting 

node and a terminal node which describes the sequence; otherwise, it 

is said to be rejected. 

A regular expression describes all the sequences accepted by 

an automaton. Thus, from above, it is clear that to construct a 

transition graph for a given regular expression, it is only necessary 

to generate nod^and arcs to contain paths describing the sequences 

in the regular expression in the simplest way, 

For example, consider the regular expression .R = 10*1+00. 

To construct a transition graph fo- this, assume a starting node A. 
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An input of 1 will cause a transition to a node B, Any number of 

O's following this 1 will cause a transition back to B and finally 

a second 1 will lead to the terminal node C, Similarly, a 0 in the 

starting node will lead to a node D and a second 0 will lead to the 

terminal node C, This transition graph is shown in figure 7, 

This procedure can be extended to more complicated regular 

expressions by merely segmenting the sequences in the expression and 

suitably coalescing their transition graphs. As an illustration the 

transition graph for the regular expression D in (ig) is shown in ' 

figure 8 which was obtained by straightforward inspection only. 

2.13 Conversion to a Deterministic form 

In general a transition graph is non-deterministic and the 

automaton described by it cannot be directly realised. Eowever, a 

systematic procedure does exist to convert any non-deterministic ' 

graph to a deterministic graph which means that where it is easier 

and more convenient a non-deterministic graph may be derived with the 

certainty that a deterministic graph may be obtained. The procedure 

is given below and is illustrated with the transition graph of 

figure 8, 

Step 1. Begin by establishing a node to represent the set of all 

starting nodes. 

Step 2. Find all the -successors of the starting node for each input 

symbol and create a new node for each distidct set of 

successor nodes. If a particular (new) node does not have 

any successor for a particular input symbol then a successor 

node ^ is generated. This node represents the condition 

when a non-acceptable string is applied to the automaton. 

In state diagrams this would be equivalent to the "don't care" 

or "can't happen" conditions. Once the automaton has 
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reached the 0 node any ftirther input sequences cause 

transitions back to this node, Tor this reason this 

condition is sometimes called a fault state. 

Step 3. . Repeat step 2 for every new node generated until all distinct 

sets of successor nodes of the non-deterministic graph are 

covered. 

Step 4. Any new node representing a set of nodes which contains a 

terminal node is also made a terminal node of the 

deterministic graph. 

The above procedure is simplified by building up a successor 

table using the results of steps 2 and 3, in which the columns 

represent the input symbols and the rows the nodes of the deterministic 

graph. 

Applying the above procedure to the transition graph in 

figure 8, we obtain the following: 

Step 1. There are two starting states, A, H. We create a node AH 

to represent the set of nodes 

Step 2. The 0-successors of A are S and P and of H are J and B. 

Let us name the set of nodes as BFJIJ, Similarly, 

the 1-successor of the set {A,H} is the set {C,K} 

represented by the node CK, 

Step 3» By repeating step 2 for nodes BFJlf and CK and so on we 

construct a successor table shown in figure 9o 

Step 4« Since H and P are terminal nodes in the non-deterministic 

graph, the nodes SI and GP of the deterministic graph are 

also made terminal nodes and this is indicated by making 

the outputs in these nodes equal to 1, 

Clearly, since each node has only 1 successor for each input-

symbol and there is only one starting mode, the successor-table defines 
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a aetorministic automaton. The descrijition in figure therefore, 

is identical to a state table, with the node AH representing the 

state AH, etc. By inspection we note that the nodes CK and DL are 

equivalent and also that the nodes EM and GP are equivalent. Thus 

we can derive a state table with 4 states to accept the regular 

expression D in (15) by using the conversion procedure. This state 

table and the corresponding state diagram are shown in figures 10 

t 
and 11 respectively, 

2.14 Conclusions 

In this chapter we have briefly introduced the language 

of regular expressions and discussed its applications to finite state 

systems. We note that an algorithmic procedure does exist for 

obtaining a regular expression for a given state diagram [63 . It 

is obvious that the complexity of the regular expression increases 

rapidly with the number of states; it increases even more when the 

size of the input alphabet increases. We also note that the final 

regular expression depends very much on the intermediate steps taken 

and several regular expressions seemingly completely different may 

represent the same system. Some theorems do exist to manipulate 

regular expressions [1^ ,[13] , but since no canonical form is 

available foriBgular expressions^ no algorithmic procedure exists 

to prove the identity of equivalent expressions. 

In some cases regular expressions for a particular system 

can be written down directly. However, this is certainly not the 

general case and we find little justification in statements, such as 

that byOglesbylja^ , "... then the logic designer has only to 

' Compare figure 11 with figure 3 from which the regular expression 
jD was originally obtained. 
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3 3 4 O 

4 4 1 1 

FIGURE 10 

STATE TABLE FOR D 
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FIGURE II 

STATE DIAGRAM FOR D 
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transform the word statement into a regular expression - an extremely 

simple task."! The problem of explaining a given regular expression 

by a word statement is even more difficult and this may be readily 

verified by examining the regular expressions from this chapter. 

The problem of deriving a finite state system to accept a 

given regular expression has been tackled in three ways. The last 

technique, that of transition graphs, is the simplest and is 

algorithmic in nature and consequently may be programmed for a 

computer fairly easily. This still leaves us with the problem of 

obtaining a regular expression describing the system; the difficulty 

becomes more acute if multiple outputs are handled and impossible 

when the system to be described is non-finite, i.e. where an Infinite 

or very large memory is coupled to a finite state system. 

We conclude from the discussion so far that the language of 

regular expressions, by itself, is inadequate to describe most practical 

systems. Their best use is when describing sequence detection, and 

thus may be ideally employed in syntax checking of programmes [13] . 



Lan^ua^es Describin% Micronro#rammed Systems and Their A^plicationg 

5.1. Introduction 

In general any digital system may be considered as a finite 

state machine and techniques of switching theory described in [ijfLzJ, 

or regular expressions discussed in Chapter 2 may be applied in the 

design of such a system. However, in large systems, such as the 

present-day computers, the number of states is so large that the theory 

of finite automata tends not to be very useful. On the other hand, 

no formal theory similar to switching theory yet exists for a large 

system which has provisions to exclude unnecessary detail and still be 

rigorous enough to define the behaviour of such a system concisely and 

precisely. An attenpt can, however, be made towards a formalism by 

examining the present-day large digital systems. 

Large digital systems are essentially instruction execution 

machines. The design of these systems involves providing for the 

facilities to store the data and the way the data is manipulated to 

execute a given set of instructions. The system can, therefore, be 

partitioned into two parts and we obtain the classic model, figure 1, 

suggested by Glushkov fgG) which consists of an operational part 

containing the data storage and manipulative facilities, and a control 

part which provides signals to the operational part in a certain 

sequential mode to activiate the manipulation within the operational 

part. The control part can also specify certain tests, the results of 

which in turn can alter the sequencing of the control part. 

The data, which is usually a string of O's and I's, is stored 

in memory units called registers. The operational part contains a 

collection of registers, and combinational logic to create data paths 

between the registers and to perform logical functions on this data. 

The flow of data in such a configuration is referred to by Register 
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Transfers; and the function of each instruction may be expressed in 

terms of register transfers in an algorithmic manner« 

Obviously it is possible to produce one set of registers and 

register transfers for each instruction in the machines repertoire; 

however, this will inevitably result in a large amount of redundancy. 

The logic designer, therefore, proposes an intuitively derived set of 

Registers sufficient for the instruction execution, and also limits the 

operations to an optimal number determined by the size and speed 

requirements and the instructions themselves. These operations are 

called elementary operations. Elementary operations are also constrained 

so that once initiated, they do not need further inputs from the control 

part for completion, and typically reflect the available resources. 

For example, with integrated circuit hardware technology the elementary 

operations on data may include logical AND, logical OR, negation, etc, 

but may not include addition or subtraction, whereas in Large Scale 

Integrated systems addition and subtraction may easily be treated as 

elementary operations. 

The signals from the control part initiating the operations in 

the operational part are called micro orders, and the algorithm of an 

instruction in tezms of these micro orders is called, a microprogram'*'. 

Thus the control unit contains a collection of microprograms for the 

instructions in the machines instruction set. 

* Husson's 16?, p.20] definition states that a microprogram is a 
set of micro-orders stored, in a control store on a word basis. 
We remove this restriction and hence, generalise the definition 
to cover other methods of implementing the control part including 
the "hard-wired" method. 
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The design of a digital system with the structure described 

above consists of defining the storage and manipulative facilities, 

writing suitable microprograms to interpret the instructions in the 

instruction repertoire, and obtaining a suitable control part to 

execute the microprograms. Clearly then, the functions of such a 

. system can be expressed by the microprograms and this suggests a method 

of formalising the design procedure for a large system. 

With the above approach the configuration of the operational 

part is fixed and microprograms are written in terms of the available 

facilities, A microprogram can also be viewed from another angle 

and used to determine the manipulative facilities in terms of elementary 

operations that are necessary to execute the instructions. In this 

way the control part and a section of the operational part can be 

synthesized from the microprogram specifications. 

Projecting even further, a microprogram can be assumed to be 

an algorithm interpreting an instruction. It should then be possible 

to extract sufficient data to determine what storage facilities are 

required and how they are manipulated, i.e. a fuller synthesis approach 

can be taken based on a microprogram type specification. 

Microprogram specification, we therefore believe, is an 

important step in the formalisation of design of large systems. 

The next step obviously is to construct a suitable language 

to specify microprograms in a way that is easy to comprehend, precise 

and concise. The requirements on the language become more acute in 

a Computer-Aided-Logic-Design (CALD) environment since the specifications 

must be sufficiently low level for automatic interpretation, and at the 

same time, high level yet flexible for the designer to work at his own 

level without necessitating detailing. 
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Several languages have been devised to specify microprograms 

and the associated architecture of the operational part with varying 

degrees of success. We discuss these languages below, 

5«2 Reed's Register Transfer Language 

A language to describe the transfers between registers was 

first proposed by Reed in 1952 ]78l • An account of this language is 

also given in • This language is simple and has a small vocabulary; 

however, we shall examine it in detail here to elucidate the concepts 

involved before progressing to the more complex and higher level 

languages. 

In this language a register refers to a hardware block 

consisting of an array of memory elements.each capable of storing one 

bit of data, i.e. flip-flops. -It is identified by an alpha character 

or a string of alphanumeric characters beginning with an alpha character. 

The register may be indexed suitably to identify individual flip-flops 

if necessary and this also provides a facility for using registers of 

different lengths. Operations are usually specified between the full 

registers; however, the individual flip-flops may also be selected if 

required. In the former case, the expansion in the translation process 

produces the latter form. 

Consider a machine consisting of three registers, A, B and C, 

each 16 bits long. Let the operations to be .performed depend on bit 

16* of register C: if this bit is 0 then a logical AlID is performed 

with the contents of the registers A and B, otherwise a logical OB. is 

performed. The result then is placed in register C, The register 

* The convention adopted here is to consider the contents of each 
register as a binary representation of a number and to refer to 
the leftmost bit as the most significant bit. The least 
significant bit, unless otherwise specified, will always be bit 1, 
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transfer statements to describe this action would be written as 

: A & B * C (1) 

|c(l6)| : A + B-rC (2) 

where &, + and ' represent the logical Aim, logical OR and negation, 

respectively. The vertical bars is a shorthand notation to indicate 

that the action on the right hand side of the colon is to be executed 

if the logical value of the variables between the bars is 1, i.e. 

I I : can be translated to the Algol statement î f ... then. The 

variable may be substituted by a boolean function if necessary. The 

arrow is a short form notation to indicate the replacement of the 

contents of the register at the head of the arrow by the variable or 

boolean function specified at the tail of the arrow. Therefore, 

transfer 1 correctly translated means "provided that bit 16 at register 

C at a tineiis not 1 replace the contents of register C at time t+1 by 

the AIU) of the contents or egisters A and B at time t, assuming that 

the transfer requires a unit time". 

The transfers 1 and 2 may be expanded to 

^(16)'I : A(i) & B(i)^»c(i), i = 1,2,...16 (3) 

and p(l6) I : A(l) + B(i)^C(i), 1 = 1,2,...16 ( 4 ) 

In this example all the elements of the registers were 

Involved in the transfers simultaneously, but it is quite possible that 

only a part of each register is affected. Suppose that only the last 

three significant bits were used in the transfer and the others were 

unaffected, then this could be writen as 

I C (16) ' I : A(l) & B(i)^rc(i), i = 1,2,5 (5) 

and I C(16)| : A(i) + B(i)<rc(i), i = 1,2,3 (6) 

C(j)-rc(j), j = 4,5, ... 16 (7) 

but it would be sufficient to write only transfers (5) and (6) 

without losing clarity. 

In all the above cases the value of C(l6) determined the 

operation on each element of the registers and it can be considered as 

a scalar multiplier. For example, transfers (l) and (2) can be 
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rewritten as 

C(16)'(A & B) + C(l6)(A + B)^»C (8) 

It is easy to see that the operations described above have 

a direct correspondence with hardware elements. In Reed's original 

language other operators, such as shifting and addressing were also 

included again having direct hardware counterparts, 

Schorr [82], [93], used this language and developed algorithms 

to generate the necessary boolean equations for the set and reset 

terminals af the flip-flops, i.e. the synthesis procedure. This 

translation process is in two steps; a) each statement is converted 

to produce the required set and reset equation, and b) all the 

individual boolean equations for each set and reset terminal are OR'ed 

together. Thus from transfer (l) we get 

C(i)/l = C(l6)'.A(i).B(i), i = 1,2,...16 ( 9 ) 

and G(i)/0 = ( c ( l 6 ) ' . A ( i ) . B ( i ) ) ' , i.= 1,2,...16 ( l o ) 

where C(i)/1 is interpreted as bit C(i) is set to 1 if the logical 

value of the expression on the right hand side equals 1, i.e. the 

boolean equation for the set terminal. Similarly from transfer 2 

we get 

C(i)/l = C(l6)(A(i) + B(i)), i = 1,2,...16 (ll) 

G(i)/0 = (c(l6)(A(i) + B(i)))',l = 1 , 2 , . . . 1 6 ( 1 2 ) 

Grouping these boolean equations we get 

C(i)/1 = C ( l 6 ) ' . A ( i ) . B ( i ) + c ( l 6 ) ( A ( i ) + B ( l ) ) , i = 1,2,...16 (13) 

and C(i)/0 = ( c ( l 6 ) ' . A ( i ) . B ( i ) +(C(l6)(A(i)+B(i)))', 1=1,2,..16 ( I 4 ) 

In Heed's original language the sequencing was implied by the 

order in which the transfers were written; however this had limitations 

when branching or repeats had to be specified. Schorr included timing 

pulses as part of the boolean functions of the conditions and introduced 

a type of 'goto' transfer. By this method the above example could be 
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written as a sequence of transfers as 

Start : 1-̂  t^; 

I t^.C(l6)'' j : A & B-v G, l-> tgj 

It .0(16) I : A + C, 1+ tgi (15) 

where start initiates the sequence of transfers in the machine and 

tg is a condition specifying the next transfer. t^ and t^ therefore 

are the outputs of the circuitry controlling the transfer and start 

and C(l6) are the inputs to it. It is a simple matter from the above 

description to extract the logic for the control circuitry, 

Schorr also suggested a method for analysing digital systems 

by converting boolean equations into register transfers. It requires 

that all the registers and control variables are declared as such and 

that the boolean equations specify set-reset conditions and that they 

are in a sum-of-proaucts (SOP) form. The analysis program makes 

successive compilation passes, first separating out the control and 

register transfer expressions and then building up the register 

transfers. The transfers so obtained, obviously reflect the hardware 

structure and operation, Schorr did comment on the difficulty of 

obtaining the transfers in terms of composite events, i.e, involving 

non-logical operations, Nevertheless, the procedure does allow a 

concise and formal description to be obtained for an already existing 

. system which then can be used for re-synthesis or simulation. 

The language described so far is simple, symbolic and easily 

learned; and there is' a direct correspondence between it and the logic 

hardware. However, since it has a small vocabulary, a complete 

description is lengthy. Another disadvantage is that the language 

is too symbolic to be suitable for communication between the logic 

designers and members of other disciplines, 

Gorman and Anderson [57] enhanced this language slightly by 

introducing simple arithmetic operators, facility for subroutines and 
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declarations of special hardware blocks, such as a parallel adder or a 

oornter, whose internal functions may not need detailing, particularly 

if it is to be implemented with L.S.I, circuits. Algol type operators, 

such as j^, then, else, goto, allowed a more concise description and 

made it more "readable". 

The translation process with this language, due to Proctor {T?!, 

generated a comprehensive table specifying all the registers Involved in 

each transfer, the operations, any additional components used for the 

transfers and the timing. The table was filled as far as possible 

with the data from the register transfer description and then completed, 

particularly with regards to timing, by the designer. The table was 

then analysed to achieve the shortest possible execution time. The 

table then contained data in similar format to that used by Schorr, 

from which boolean equations could be generated, 

Ilovaiski and Lozowskii [63] described a method to synthesize 

logic for a computer from a formal specification which was not too 

unlike Gorman and Anderson's method. The formal description was 

divided into two parts, a) a declaration part, and b) an operational 

part. The declaration part declared facilities pertinent to data 

storage and address mechanism, namely i) storage devices and their bit 

capacities, ii) methods of representing numbers with their formats, 

111) address formats, iv) methods used to modify addresses, v) 

instruction system, vi) principles used to organise the data, and 

vii) a table defining the durations of all standard operations 

expressed in arbitrary units. 

The operational part consisted of register transfers and 

branching information in a similar way to Schorr's and organised with 

a single elementary operation per line each with a unique label. 
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The synthesis algorithm first assigns the time durations to 

each step in accordance with the initial declarations. Consecutive 

operations are then merged to occur in the same "time slot" unless a 

ŷ Jî iable on the left hand side of one operation is used on the right 

hand side of the other, or if conditional transfers in some way are 

affected by the operation to be merged. This results in several micro 

operations to be grouped together to form new larger micro operations. 

The subsequent steps are identical to those discussed previously. 

3*3 languages based on Programming Iianguages 

One of the goals of a design language for describing logic 

is that • f, the language may be used in a computer-aided—design 

environment. Consequently, a description in such a language is to 

be processed by a computer and in effect constitutes a program for a 

computer. It would be natural to ask the question "why not an already 

existing programming language?" as the designer then would be able to 

use currently developed software providing good flexibility. Another 

advantage is that it reduces the overheads of "learning" a new language 

which also means that the language could be used easily as % standard 

language for communication between members of different disciplines. 

On a closer ezmination, however, it is found that the capabilities 

of programming languages tend to be more numerically oriented and 

features pertinent to logic design, including synthesis and simulation, 

are not handled efficiently. Nevertheless, it should be possible to 

augment a programming language to make it suitable for microprogram 

definitions and still retain its overall structure. 

Several languages have been proposed, based on FORTRAN, 

ALGOL, IVERdON and P I / 1 . These are discussed below. 

3.3.1 FORTRAN 

The only language based on Fortran was proposed by Motze 
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and Seshu in I966 [74]* A competing system is viewed as consisting 

of separate automata each possessing its own controls and sub-controls* 

With this type of modelling.it is possible to describe parallel and 

asynchronous operations and as such represents the first real attempt 

at describing large systems with realistic properties. 

The description in this language is given in two blocks. 

In the first, the system constraints such as the channel capacities, 

simultaneity of automata, a measure for cost-effectiveness and global 

constraints and variables are given. The second block defines each 

automaton with its declarations and register transfers. The transfers 

themselves were restricted to boolean operations; the other operations 

such as arithmetic functions were called as subroutiam&which in turn 

were detailed as boolean operations. 

One of the reasons behind using subroutine call structure 

is that each subroutine could be detailed in several different ways 

all producing the same result but having different overheads and 

which could be stored in a back-up library. The "compiler" then 

could search the library to choose one of the routines best suited 

for the application. This concept is very useful and will be 

explored further later on. 

The language allows simultaneous operations and if an 

interdependence is encountered a method of waiting to allow correct 

sequencing is defined. Another facility included allows the global 

conditions to be over-ridden for a particular operation. These 

suggest that any general asynchronoua machine may be defined using 

this language. A language proposed by Schlaeppi (discussed later) 

had a limited facility of this type but the concept developed by 

Ketze and Seshu was a significant improvement over the earlier ones. 

However, to the author's knowledge, no translator; was 

constructed for this and no further references have been available. 
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3.5.2 AlGOIj 

Schlaeppi proposed a language based on Algol in 1964 {8(1, 

which was one of the first to be capable of describing a computing 

system in a hierarchical manner. He introduced four notions for 

this, namely a step, a sequence, a function and a group, A step 

was defined as a set of elementary operations which are explicitly 

declared to be executed in parallel and a succession of steps constitute 

a sequence. In cases where the internal structure of a particular 

section was not known or need not be known, then its terminal behaviour 

was called a function; and finally a group represented a collection 

of sequences or functions under a common control. Thus a degree of 

partitioning of the system could be indicated in the description. 

Secondly, the function facility allowed the machine organisation to be 

described with broad structural features; the subsequent expansion, 

as would be necessary in synthesis, could be done by refining the 

description. 

Schlaeppi also introduced time indication in description, 

firstly by declaring time for standard operations in advance - in a 

way similar to that adopted by Ilovaiski and Lozowskii - then by timing 

each step either in units for synchronous operations or by making a 

transfer conditional upon a ready signal and thus setting up an inter-

lock for asyncnronous operations. In addition each group contained 

an "availability indicator" which if set implied that the group was 

busy, and which could be used to augment timing interlocks. 

The transfers within the steps were written in an Algol-like 

form and usually were between registers. However, Schlaeppi introduced 

a distinction between permanent signals such as the contents of registers 

transient signals such as busses. The transients could also be 

used- in the transfers without being explicitly declared. 



Chu published a language CDL in 1965 which had a 

closer resemblance to Algol. A description in CDL begins with the 

usual declaration of registers, sub-registers, memories, terminals 

and operations, A terminal is useful in describing signals which 

are not stored in registers but can be accessed from the outside 

world; it is in some ways similar to a bus mentioned previously. 

Labels corresponding to the state of the control part are 

attached to the transfers. Parallel transfers are indicated by 

attaching the same label to the relevant transfers. However, no 

facilities are available for indicating asynchronous operations 

thwis a drawback. 

The language allows the inclusion of special operators 

whose definitions may be separately detailed and sequences in a 

similar way to sub-routine calls. The control, however, is still 

common and the decentralisation of control extensively used in real 

system cannot be indicated, which also means that a hierarchical 

type of description is not possible. 

This language, therefore, forms only an extension to Reed's 

language with a different syntax. 

GDI wae later improved by Chu, McCurdy and Mesztenyi 

[40-42, 71, 73], who also Illustrated methods of boolean translation 

and simulation. The translation process consists of four phases 

which are as follows. 

i) ihe design specification is scanned to produce a table 

with as many rows as microoperations. 

ii) The table is analysed to generate in effect two tables, 

one for control part and the other for operational part showing the 

input output conditions for each step. 

iii) Boolean products are generated from these tables, and finally 
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iv) Ihese ai'e sorted and combined to produce boolean equations 

for the register inputs and the outputs. 

In 1966, Pamas [7^ also published a version of Algol to 

describe synchronous logic in which he introduced a notion of time 

block to describe parallelness of operation in a similar way to 

shared labels in CDL, The methodology of the language views the 

system to be described for its behavioural properties only and as such ^ 

neither the structure of the system nor the "how" may be described. 

The latter restriction could lead to difficulty when synthesizing 

large systems. Secondly, as with CDL, only synchronous systems may 

be described with this language, 

This language, however, could be used quite well for simulation 

of synchronous systems, 

Darringer ĵ 45] modified this language to include structured 

information. A designer using this language could specify registers 

of different type such as octal, binary, character, etc. which in 

some cases would oe useful. However, the type declaration of a 

register fixed its usage and dynamic interpretation was not possible. 

For examplte a binary interpretation of a decimal register may be 

desirable and even necessary in certain oaaes. 

As in CDL, the operations in this language are synchronous 

and limited to one clock pulse; however, it is possible to indicate 

an operation over multiple clock pulses. An "if ever" operator 

similar to the "on condition" operator of PL/l allowed certain 

operations to occur asynchronously and in parallel with the main 

program. The simulation programs, however, did not handle the 

semantics of these statements correctly. For synthesis, Darringer 

offered some comments on the translation into hardware but did not 

suggest any concrete algorithms. 



Wilber [87J also gave a version of Algol which was very 

much similar but in addition provided a facility for implicit timing. 

Okada and Motooka [75] proposed a highly hardware oriented 

language also based.on Algol which unlike the languages described so 

far fully exploited its block structure. The description in this 

language is divided into five levels. At the lowest level, level 1, 

a hardware definition in terms of primitives such as gates, flip-flops, 

and delays is given. It is also possible at this level to include 

black boxes whose internal structure need not be detailed but which 

can be used as primitives. The description at level 2 is a functional 

relation corresponding to the description at level 1. 

The description at level 3 shows the system behaviour at each 

clock pulse including simple explicit sequencing which may be used 

directly to implement the hardware configuration and control. 

Finally an algorithmic description may be given at levels 4 aad 5, 

the difference between them being that at level 5 it is more Algol-

like and IS similar to that by Chu and the description at level 4 is 

more hardware related as in Reed's language. 

The system to be described is modelled as a module containing 

sub-modules, each of which in turn may contain sub-submodules and so 

on. This is reflected in the block structure used in the language. 

In addition a change of block also allows a change of level; thus a 

desired detailing may be achieved by suitable nesting of blocks. 

The above modelling is very useful since it allows the 

designer to choose to detail the parts he wants specifically defined 

and leave the rest as default options, and is a good design aid. 

A limitation, however, is that modules operating in parallel cannot 

be described. 
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The proposed tranalation process involved the changing of 

levels with the help of library definitions of arithmetic operators, 

macros, hardware items and modules in an interactive mode, No 

results were available on the efficiency of this process; however, 

we feel that the interactive approach with suitable recourses to a 

library is a right approach and will be exploring this further, 

5 . 5 , 3 I v e r s o n ' s A P L j ^ 4 9 » 5 9 , 6 4 , 6 6 , 7 0 J 

A register transfer language essentially describes the 

hardware layout and the interconnections between them. The micro-

programs written in such a, language therefore, reflect the hardware 

constraints placed upon the system, A register-transfer-like 

language can also be developed for software which will similarly 

reflect the constraints put on it, namely the capabilities of the 

hardware processor. However, in both cases the algorithmic 

description is not sufficiently abstract for "evolving" a design 

and merely provides a means for mechanisation of routine tasks, 

A formal description independent of such constraints is required in 

the design stages, 

Iverson proposed a language, APL, which was meant to be 

universal in a sense that it has a built-in hierarchy to express 

functions which are usually considered to be hardware oriented as 

well as those which are usually software oriented. This is in 

direct contrast with the other programming languages since either they 

are tad kow . and are strongly machine dependent or 

they are of too high a level to have sufficient resoltuion for, say, 

bit operations. The operations in APL can be specified at a bit 

level, an array level or a matrix level without loss of detail and 

thus offer facilities for a precise and concise notational description 

of algorithms which is machine independent, and consequently ideal for 

a wide range of uses. 
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A rigorous and full account of the language is given in 

[̂ 66J5 however, a ordef description of some of the operations, which 

are likely to be more useful, is given below. 

The variables in the language are defined as either soalara 

or arrays which are one dimensional (vectors) or two dimenaional 

(matrices). The scalar operations are expressed in much the same 

way as in other programming languages; these are extended on an 

element by element basis to apply to array operations. 

For example, 

o + a @ b where @ is any operation 

is a scalar operation and of course all the variables are scalars; 

whereas 

_c a @ ^ 

is a one dimensional vecoor operation and it is interpreted as 

% @ j2.j_ i = 1,2,..., 9(c)* 

and obviously the dimensions of each of the three variables must be 

the same and its magnitude is determined by (c). The matrix 

qpoMaion of the same form is written as 

C + A @ B 

meaning 

-j ® -j ^ " 1,2,..., (A), j = 1,2,..., li (A) . 

where 4(A) andw(Aj are the column and row dimensions respectively 

of the matrix A. 

The elements of the vector can be any numeric or logical 

quantities or even any alpha-numeric or other characters. The one 

dimensional vector operations are particularly important in digital 

system design since they can be used to indicate register operations 

diioccly, aiid the matrix operations can be very useful in data 

manipulations as in symbol processing applications, 

a 1 origin indexing is used here and the leftmost element is element 1 
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The langiiage comprises all the umial arithmetic operators, 

such as addition, subtraction, multiplication, division and exponentiation, 

and the logical and relational operators. Shifting type of operations, 

which are of significant importance in digital system design, are 

also included. However, the particularly strong powers of the 

language come from the special operators, such as reduction, masking, 

expansion and compression of arrays. The reduction of a vector is 

defined as 

y +- (8/̂  

where y is a scalar quantity and is set to . 

—1 —2 — i)(2c) 

Extending' this to ciatrices, we have: 

Z columns are reduced 

X ©//X rows are reduced. 

If the operator is replaced by a binary vector, we get a 

selection operation by which the elements specified by a 1 in the 

selection vector are picked out to form a new vector. For example, 

if X = (D,I,K,E,S,n,P,A,l) 

and u = (1,0,0,0,0,0,1,0,0) and ;(x) must be the same as v(u) 

then 2 u/x 

will make ^ = (l),P) 

A more practical example is when certain bits of the 

instruction word are used as the instruction code etc. this type of 

Operation can be used effectively. 

Masking is shown as follows 

and it means = ^/x and and obviously 

f(u) = V(x) = V(y) = j(z), 

A related operation and of considerable importance in file 

sorting is the meshing operation shown as 
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and u/z = z and 2 ^ = 2* It follows that +/^ = and +/|i = y(%), 

Another very useful operator is the base 2 value operator, 

which is particularly important in memory addressing type operations. 

Suppose r is a register and contains the address of a word in the 

mam memory M and it is necessary to extract this word and put in into 

the register then this is written as 

a 

There are some special vectors which are very useful in 

digital system design and they are listed below. 

full l(n) 

unit 

prefix :;^n) 

suffix wj^n) 

interval ij(n) 

These 

mentioned before can be uaed in a very versatile manner allowing a 

concise yet precise description. An example of a microprogramme in 

this notation has been included in the appendix, 

3^3*4 APL as a Design Lan,̂ a,Ê fi 

API may be use^ and has been used [4^,5%], to specify the 

microprograms of an existing computer but it becomes just another way 

of writing register transfers and useful for analysis only. However, 

the main flexibility of APL lies in being able to describe algorithms 

in.a machine-independent way. Thus it should be possible to use it 

as design language. 

In Its full form the language is very general and contains a 



57 

comprenenaive set of operators. A hardware realization of a machine 

capable o f executing all the operations and facilities would he very 

large indeed; on the other hand, a suitable subset of the language 

could be easily and directly implemented into hardware and the 

remaining facilities translated in terms of this subset. Since there 

is a natural hierarchy in the language, the higher level operators may 

be expressed in terms of the lower level without much difficulty and 

the translation process can be fairly straightforv/ard. The system 

developed [51,86] would be very general and be capable of e x e c u t i n g 

most, if not all, statements written in API. 

One Oi. the drawbacks of APL in a computer environment is 

the large number of special symbols which are required, to express the 

operations correctly. Iverson [65] suggested a scheme for transliterating 

these symbols in which one line of APL program is converted into two 

lines of program written with the more conventional alphabet, with 

vertical correspondence between them. Obviously this is not only 

inconvenient and inefficient but also leads to loss of visual clarity, 

Friedman and Yang [51,52,53] have developed a design suite, 

ALERT, which accepts a microprogram description written in a modified 

subset of APL and converts it into hardware logic design. In this 

system a physical device, such as a flip-flop, is associated with each 

variable. Simple logical operators are implemented directly into 

hardware and the others are converted ysing library routines in much 

the same way as suggested by Okada and Hotooka. In the subsequent 

processing the redundancies are removed and hardware expanded where 

necessary, followed by a sequence analysis. The output of the 

program is in the form of boolean equations for the input terminals 

of flip-flops and can be used by synthesize logic with gates. 

ALERT also represents the first real attempt of synthesizing 

hardware logic automatically via a high level design language on a 
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.large scale. A synthesis of an existing computer (IM 1800) was 

attempted via ALERT and the results then were compared with " hvw,**," 

design [gl]. Using the gate count as a criterion for the "goodness" 

of design, the initial design obtained via ALERT v/as very much worse 

(about I6O/0) than the human design; however, an approach was 

suggested which would improve this considerably (about worse). 

Another weakness of APL as a design language is that timing 

of an operation cannot be indicated. Friedman and Yang defined a 

clock rate outside the main microprograms, thus they were not able to 

indicate asynchronous operations, Senzig %_84] proposed two separate 

notations to indicate timing with APL, The first, for synchronous 

operations, is similar to several mentioned earlier. The second 

for asynchronous operations, uses three timing states, namely idle, 

active and standby. A statement is normally idle unless activated 

by a previous statement in the sequence and it is then said to be 

acti^. After completion it activates the succeeding statement(s) 

and goes into a standby state and if the succeeding statement(s) does 

become active then the current statement reverts to the idle state. 

The method described here allows asynchronous operations to be indicated 

with respect to statements rather than quantities. Per example, a 

statement of the type "whenever Do " cannot be indicated. 

The method is also unsuitable for showing operations in independent 

but parallel modules. 

Another important consideration of a design language for 

digital systems is that the designer should be able to specify the 

choices of hardware, modules and procedures which are available along 

with their speeds and criteria to be used for optimality of the design. 

APL does not provide for this. 

We may conclude by noting that APL is very effective in 
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expressing algorithms but in its basic form is not suitable as a 

complete design language. An augmented, version, however, may prove 

a powerful design tool, 

3.4 Partitioned Systems 

ITlie languages discussed so far tend to use a Glushkov model 

for a computer, i.e. one having a single control part and a single 

operational part, wnich is quite adeq_uate for describing relatively 

simple systems or subsystems. ' However, when dealing with a larg-e 

system it is natural to partition it into several subsystems each of 

which is characterised by a Glushkov model and all in turn responding 

to a common control. The complex control mechanism of such an 

organisation cannot be suitably handled by the earlier languages which 

were based on a simpler model; only the language proposed by Metze 

and Seshu had some facilities for this. A formal approach, however, 

was given by Duley and Dietmeyer in their language DDL [46,47]. 

In DDL, a system is viewed as a collection of several subsystems 

or automata each containing "private" facilities and having access to 

the public facilities, the latter being used for intercommunication 

between the automata. This corresponds almost exactly to the earlier 

mentioned concept except that the common control is diffused through 

the subsystems via the "public" facilities and hence is slightly more 

general. An almost identical approach was also used in CASSAt JURE 

[32,33,58,69,72] which was published (independently) about the same 

time as DDL and in project GAoD [ 4 3 , 4 4 ] in 1970. The major differences 

between these are the use of different base languages: DDL is built 

uppn Eeed's language, CASSAIiDRZ is very heavily Algol derived and the 

OASD language is a version of Pl/l. Ms shall consider these languages 

in a little more detail below. 
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A description in DDL is a description of a collection of 

automata in a block structure format. It begins with an identification 

of the outermost block, corresponding to the overall system, and the 

declaration of common highways, global variables and common registers. 

Each automaton is represented as a block within the outer block and is 

described in berrns of its registers, terminals, segments and states 

along with o.ne global variables. The notion of segments allows each 

automaton to nest further sub-automata and the states are used to 

specify the sequencing. 

The statements are written in a way similar to that by Reed 

but a larger vocabulary is employed and the description tends to be 

somewhat ideographic; nevertheless it is relatively simple to interpret 

with a little practice. The automata indicated are usually synchronous 

but it is also possible to show asynchronous automata. An important 

omission, however, is that synchroni.sation of asynchronous events, as 

in the WAIT facility proposed by iietze and Seshu, cannot be indicated. 

On the Ovher hand, it is possible to indicate jump to a specified 

state in a segment and the return state; this could be employed to 

define a complex control of shared segments. 

The translation process is performed in several passes, 

ultimately producing a set of transfers in a Reed-like form for the 

whole system subsequent realisation into hardware from which has been 

described earlier. The segments are "removed" first. Each 

segment is checked to see if it has any segment calls in it; if it 

has, then all the states of the called segment are included in the 

calling segment, with suitaole adjustment for next state and return 

state specification, and the declarations associated with the called 

seyments are also added to the declarations of the calling segment. 

The states and the transfers are checked to remove duplication, and 

redundancies, and the remaining states suitably renamed to distinguish 
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between them. The resulting description is then that of an 

individual automaton, 

The next step is to create a state register (unless already 

declared) such that there is a unic[ue state of the register for every 

unique state of the automaton. The transfers then can. be relabelled 

to make them conditional upon the contents of the register and the 

transitions are indicated as a change in the state of the state 

regis uer» Obviously xhe size of the register and the coding required 

to map each state of the automaton into the register will be determined 

by the laode of operation, i»e« asynchronous or synchronous, etc. 

Another task at this stage is to exj3ress the special operators, 

shii ting uut excluding time shared operations, into a more 

register—transfer form. The shifts, for example, may be translated 

into single shiit register transfers by associating a counter with it 

to control the shifting loop. The time shared operators are assumed 

to be realised only once with suitable gating to control the time 

sharing. The sequencing logic may be derived by methods already 

described along with the boolean equations for input terminals of 

flip-flops and the outputs. 

DDL is essentially for hardware representation of partitioned 

systems. Synchronous systems may be specified precisely using this 

language5 asyncnronous systems, however, cannot be very well hajidled. 

Another observation is that the philosophy behind DDL suggests that 

the system to be "designed" has already gone through a design phase 

and that the language is used merely to describe, in^shorthand way, 

a pre-fixed structure for computer interfacing. Thus the language 

foiras an extension, albeit a complex one, to the Register Transfer 

Language initially formed by Reed, We feel that the interactive 

method through which modules may be selected from the backing library 

is to be strongly recommended. 
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Aa stated before, the structure of CASSAMDRE is almost 

identical to that of DDL. The use of standard language, Algol, as a 

base language, however, makes CASSAKDRE far easier to use than DDL, 

The block structure of Algol is also perfectly fitting to the 

partitioning concept where each automaton - or unit as it is called 

In CASSAHDE3 - can be represented by a block. CASSANDRE also has 

some mmAY jvariationa which are discussed below. 

A unit in CASSANDRE is assumed to be completely independent 

from all other units and the communication between the units is done 

through the inputs and outputs only. Thus a block corresponding to 

a unit appears similar to a procedure definition with the inputs and 

outputs as parameters* The declarations following the header contain 

all the facilities special to the unit as well as any other units used 

in the description; the latter are declared as external since they are 

detailed elsewhere. No global variables are employed since such 

variables may always be included in the input-output list; however 

this could obviously lead to a long input-output list. 

The unit is defined by a set of transfers which may be 

- either boolean coanections or synchronous transfers, the latter always 

being conditioned by a clock-pulse. A repeat operator "for equal 

is. I2." is also Included to allow iterative arrays to be set 

up» The sequencing is achieved by labelling the discrete steps as 

done in DDL, and explicitly indicating a transfer to that label; 

implicit sequencing is not allowed. The sequencing algorithm 

extracts this information to set up a table with a correspondence 

between the labels representing a set of transfers and the conditions 

necessary to branch to the label, and organising the sequence control 

to allow execution of the transfers corresponding to all the labels 

whose conditions are satisfied. Thus explicit and implicit 

parallelism may be attained. However, it is not very clear how the 
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Figure 4 : Structure of a typical CASSANDRE dAsnrintinn 
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sequencing algorithm handles cases where the results of one transfer 

are directly relevant in the next, particularly if some amount of 

timing discrepancies occur, 

The translation process is quite different from that used 

in DDL, A table is set up with the declared items along with their 

scopes. The source description is then converted into a reverse 

polish notation with pointers replacing the occurrences of variables. 

An important point about the philosophy of the translation process is 

that the partitioning defined by the designer is not altered (as was 

done in DDI). The resulting strings may be used directly for 

simulation. it is also stated that these may be used for microprogram 

generation and hardware synthesis; however, no results have been 

available. 

Kuch of the above description, especially regarding the 

translation procedure, may also be applied to OASD language. Apart 

from the change of the base language to PL/l, & few useful additions 

are also proposed in this system. In particular, these include 

multi-tasking facilities for explicit parallelism and the WAIT 

facility acquired from Ketze and Seshu. The CASD system, therefore, 

seems to be more general than the CASSAKDRE system. However, at the 

time of writing this report no results were available regarding the 

algorithms for translations, especially the translation of asynchronous 

systems. 

3*5 Sequence Chart Analy. se: 

By definition a microprogram^is a collection of micro-orders 

la a particular sequence to utilise the available facilities of hardware 

or software and also, since it is impossible to achieve instantaneous 

logic, each micro-order will require a finite time for its execution. 
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For ease of c oris "true t ion, it is usual to consider a microprogram in 

terms of a block diagram in which each block represents a micro-order* 

However, this type of format is difficult to process by a computer and 

the languages considered so far convert this information to a linear 

format, which allows ease of processing but loses the visual clarity 

of sequencing. 

Roth [79J puDlished a paper in I965, giving a method used by 

IH-I which still maintains the visual clarity of a block diagram, and 

is not as difficult to process. ' In this method, the block diagram 

is represented by a sequence chart which is a grid with horizontal 

divisions as units of time, and the vertical divisions to be used to 

separate operations. Each transfer is shown as a horizontal bar 

extending for the length of time of its execution and the corresponding 

transfer is written over this bar. Conditional transfers are 

indicated by writing the conditions immediately to the left of the 

bar; branching is indicated by broken lines and arrows. An entry 

into the chart is shown a box named chart entry and containing certain 

conditions, V/hen these conditions are satisfied the chart is 

initiated. Similarly an exit is shown by a box containing HvDOP, 

The sequence chart essentially is a method of presenting a 

completed design and as such is difficult to be used in design stages. 

However, in common with the register transfer l-nguages it can be 

used to syntheisi,* logic and the associated control, but since it is 

more difficult to use than the transfer languages, despite its 

resemblance to block diagrams,it is less likely to be favo-red. 

5*6 state Tables from Microprograms 

It was pointed out earlier that if an abstract description 

of a digital system can be gtven or generated within a computer then 
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it would oe possible to make use of the well developed switching 

theory and an overall optimisation can be achieved. But, for even a 

reasonably sized machine, this is an iinmense task and conseq^uently 

some partitioning has to be made. Obviously the abstract 

description and its subsequent processing will greatly depend on the 

partitioning used; however, it should be possible to combine the 

partitioned machines [6o] and to tr̂ r other partitions as a check for 

optimality. 

All the transfer languages considered so far were suitable 

for an already structured organisation and the translation process 

generated this boolean equations for the terminals, the outputs and 

the inputs to flip-flops. The structure assumed is tliat of several 

registers, eacn usually niore than one element long, interconnected to 

"khe various register transfers, Gerace [̂ 54j suggested clianging 

this structure to that of several iteratively connected smaller machines 

and deriving the state-table for each. The structure appears as shown 

in Figure 5 , An account of his method follows, 

To illustrate the method let us consider a simple example 

where the machine benaviour is expressed by a single tr^sfer only, 

such as a parallel adder. Let one operand be contained in the 

3nd when an external operand is input to it let its memory 

be overy/ritten by the answer. The usual structure of the machines 

to achieve this would be as shown in Figure 6 , The operand length 

is assujned to be 16 bits, register A contains the first operand and B 

is the second operand. This representation assumes that the outputs 

of register ii remain unchanged (fespite the changes via the combinational 

lo^io; only when the operation is complete that these are allowed to 

vary. In practice this is done by using clock pulses in the input-

output gating or using special flip-flops such as the J-K type. 

Figure 7 shows the structure in Gerace's method where A(i) is an 
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A(16) A ( 1 ) 

COMBDIATIOmi, LOGIC 

Y V 

A(16) A(15) 

y 

A(1) 

Figure 6. Conventional Structure for an Adder 
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Figure 7. Iterative Structure for an Adder 
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individual cell of the machine. 

Let the register transfer description be 

A ADD B + A (16) 

Expanding- this to a bit level, we get 

A(i) e 3(i) @ G(i-1) + A(i) ( 1 7 ) 

A(i).B(l) + C(i-l)(A(i) + B(i)) = C(i) (18) 

i = 1,2,,..,16, and C(0) = 0, 

Generally each.fth cell will be desoribea by register 

transfer and. boolean equation statements similar to those in ( 1 7 ) 

and (18). The transfer statement describes the way the memory of 

the cell is modified, i.e. state variable behaviour, and the boolean 

equations define the outputs. Thus (a) the variable on the right 

hand side of all the transfer statements are taken to be state 

variables; consequently all the variables on the left hand side except 

those already present on the r.h.s, are inputs to the cell, and (b) 

the outputs are those defined by the boolean equations and also the 

state variables. 

In the example there is only one state variable,A(i); the 

inputs are B(i) and G(i-l), the latter being derived from the previous 

cell, and the outputs are A(i) and C(i). It follows that for a 

circuit to function satisfactorily all C(i) must be propagated before 

the operation is completed. Gerace, therefore, imposed two 

conditions: 

1) that the machine will not change its internal state during 

the absence of the clock pulse but the outputs may change according 

to the inputs and as defined by the boolean equations, 

' 2 ) during the presence of the clock pulse the outputs and the 

state variables will remain unchanged and only when the pulse is 

removed that the change may be affected. 
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A next-state table may now be constructed. The right hand 

side of each transfer statement is replaced by a next-state variable, 

say and any occurrence of the state variable of the l.h.s. is 

replaced by the corresponding present-state variable y^. A table is 

constructed such that the rows correspond to all the combinations of 

the input variables and the entries are the values of the next-state 

variable defined by the transfer equations where the arrows are 

replaced by equal signs and with the above conditions, The output 

table is similarly constructed. 

Applying this procedure to the example , we get, 

B(i) C(i.l) 

Clock = 0 Clock = 1 

^i \ 
00 01 11 10 00 01 11 10 

0 0 0 0 0 0 1 0 1 

1 1 1 1 1 1 0 1 0 

"i 

"X B(i) C(i-1) 

Clock = 0 Clock = 1 

^i \ 
00 01 11 10 00 01 11 10 

0 00 00 01 00 00 00 01 00 

1 10 11 11 11 10 11 11 11 

Table 1, 
Next-state 
table. 

Table 2, 
Output 
table. 

A(i) C(i) 

These two tables give the behaviour of the individual cell 

in "terras of state tables; however, it is not completely abstract as 
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binary values have been aspigned to the state variables. By a simple 

modification and combining the two tables together we obtain a flow 

table which gives the complete abstract behaviour of the i'th cell. 

B(i) C(i-1) 

Clock = 0 

00 01 11 10 

Clock = 1 

11 01 11 10 

1 

2 

I /OO 1 / 0 0 l / O l 1 / 0 0 1 / 0 0 2/OC 1 / 0 1 2 / 0 0 

2 / 1 0 2 / 1 1 2 / 1 1 2 / 1 1 2 / 1 0 1 / 1 1 2 / 1 1 l / l l 

Table 3. 
The abstract 
state table. 

Next state, outputs A(i) C(i) 

The state behaviour during the presence of the clock pulse 

la considered unstable owing to the definition of the circuit, stable 

otherwise, and it is usual to circle the stable entries, 

Note that the cell corresponding to i = 1 has only one input 

and its state table will be much simpler as shown in Table 4, 

state 

Clock = 0 

0 1 

Clock = 1 

0 1 

1/00 l/OO 1/00 2/00 

2/10 2/11 2/10 1/11 

Table 4. 
Machine for 
i = 1. 

Kext state, outputs A ( i ) , C ( i ) , 

5*7. Multiple Transfers 

Generally a microprogram will consist of several transfers 

and therefore the system can usually be broken dora into two parts, 
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l) the control unit, and 2) the operational part; the procedure 

detailed above can. be extended to obtain the abstract behaviour of 

the operational part as well as the control ixnit. 

A typical transfer statement in a set of microprograms 

would be written as 

S%;|X(1)|: fg+Bfi); Ŝ . + 

| X ( 2 ) | : f ^ + A f i ) , + ( 1 9 ) 

S^+l: 

* # 

where S's directly correspond to the state of the control part and 

govern the transfers in the operational part, X's are conditional 

expressions, A(i) and B(i) are the state variables in the operational 

part and the f's are boolean expressions. 

The transfers refer to each element of the register arrays; 

however, it is quite possible and usual that a large number of the 

elements behave identically and some, especially the terminal elements, 

require separate description. Thus the first step in obtaining the 

abstract description from microprograms is to recognise the number of ' 

different machines that are described. The next step is to enumerate 

all the non-simultaneous transfers and identify each with a different 

label with a view that the control part will generate one signal per 

each different label and each set of simultaneous transfers will require 

only one signal. 

In fact, the number of separate labels can be far smaller 

since the same transfer, but identified by a different S label, can 

be given the same label. The labelling process, therefore, is as 

follows: 

i) separate out each transfer and the associated conditional 

expressions and the transfers in S, 
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il) if two transfers are identical but have different 8 

transfers associated with them they are given the same 

label, 

iii) after (ii) all transfers not labelled and having cdmmon 

8 behaviour are given the same label. 

iv) provision has to be made to allow no transfers in the 

operational part. 

If we examine the transfers we find that each set of 

transfers is associated with a state of the control unit and it also 

gives the transfer of state, i.e. the present state and the next 

state are defined; since the conditional expressions effectively 

modify the state transfers, these must be the inputs to the control 

unit and obviously the outputs of the control unit correspond to the 

labels obtained above. Prom this information, it is a fairly 

straightforward routine to obtain the state table for the control unit. 

The state tables for the operational part are obtained in 

the same way as described in the last section, with the signals 

-corresponding to the labels acting as further inputs. 

An example is included in the appendix to illustrate the 

above procedure. 

).8 Extension to include Read Only Memory 

In large systems the number of different transfers is quite 

large and consequently the state table for the control unit of such 

a system is very complex. To reduce this complexity, a separate 

memory, which has a non-destructive read-out* and is at least an 

* The discussion here is deliberately limited to read only type 
memories, however, it is accepted that a read-write memory may 
be successfully employed to achieve a better flexibility. 
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order faster than the main memory, is used to contain the details 

about transfers, tests and the sequencing in a coded form, These 

memories are usually called Read Only Memories (ROM's) or Read Only 

Stores (ROS'S), The control unit behaviour with an ROM can, in 

many ways, be likened to the state tables as generated in the last 

section; however, there are some differences. 

In a state table, it is possible to have many next states 

for a present state; whereas when using an ROM it, is usual to have 

only two next-word addresses, an address having a direct correspondence 

to a state in the state table. The selection of the next address is 

done by checking the result of the test specified in the word, or if 

multiple tests are specified, then by collating the results of these 

tests, and extracting the true-false value from it. The next 

addresses are, therefore, sometimes called the true address and the 

false address. The more complex ROM systems have facilities for 

more alternative addresses. 

To implement the state table for the control unit in terms 

of ROM, the state table is first reorganised to have only two columns, 

adding if necessary some dummy transfers to allow for multiple teats. 

The states thus obtained can be coded to give the addresses of the 

words in the ROM. The outputs defined in the state table are 

analysed and a coding generated such that the number of bits required 

in the coding is the smallest without losing the flexibility to 

indicate parallel transfers where necessary. The contents of the 

words in the ROM are then determined by this coding, the coding used 

to specify the tests and the next-word addresses derived from the 

state table, 

3*9 Different typos of ROM Implementations 

In the last section, we considered a simple implementation 



7 6 

of a state table describing a control ijnit by an ROM in which the 

number of alternate addresses were restricted to two, corresponding 

to the true and false results, only. The state table, however, is,., 

in an ideal form for manipulation for different types of implementations 

to allow more efficient utilization of the available resources. 

One obvious parameter is the word length. Usually as the 

word length is increased the length of the microprogram reduces, 

assuming,-of course, that sufficient facilities are available in the 

operational part to allow the necessary parallelism; but the associated 

cost, due to increased highway size and decoding networks, increases. 

In the converse case, the control becomes very much simpler but at the 

expense of speed measured in terms of number of control cycle per 

instruction. It is easy to see that a state table may be reorganised 

to reflect the two* types of implementation requirements, 

A different type of reorganisation was suggested by Gerace 

et al [553 in which the change in the state table format rather than 

the dimensions is utilized. Before exposing the method, however, let 

•us first reconsider the structure of a microprogram description, 

¥e have already noted before that a register transfer type 

description of a microprogram is a description of a set of control 

states each of which Was associated with it, the operations to be 

executed when the state is reached, and a branch to the next state 

determined by the tests, A typical control state description in 

accordance with this is shown in (20), 

S. ; 0., if Xt goto S . else if X goto S, 
X x' — 1 J — m ̂  k 

Sj : (20) 

where the S's refer to the control states, 0. are operations to be 
1 

* These two forms of implementations are commonly called horizontal 
microprograming and vertical microprograming respectively. 
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executed in State and. X's are the tests. In state tabl^ tenns 

the expression (20) can be restated with as the present state, 

0^ the outputs, X's as the inputs. Clearly then a description in 

a form similar to (20) translated into a state table of the Moore 

typo [5, KlO?]. 

Ve stated earlier that an ROM implementation of a state 

table may be achieved by creating an image of each row of the state 

table into a word (or a set of words) into th^ ROK. For convenience 

let us call the EOK implementation of a Moore state table as a Moore 

typo ROM. Each word in a Moore ROX must contain the information 

regarding the operations and branching; therefore the number of 

conditions tested in a single ROM cycle must be kept down to limit 

the size of ROM words*. Another important factor associated with a 

Moore ROM is that the address selection for the next control word is 

performed by selecting one of the addresses specified by the ROM word. 

Thus the complexity of the address generation networks increases with 

the number of alternate addresses-*-*. 

A microprogram description may also be written such that the 

operations performed in a control state are not only functions of the 

control states but also of the results of tests as, for example, shown 

in (21) 

S. : if X_ then do 0,, goto S 
1 — 1 1? J 

else if X then do 0 , goto 3, ; (2l) 
— — — —- m — — m K -

where the symbols have similar meanings as before. 

* The word length nay be kept down by restricting the tests to two 
as suggested in the last section. However, a nunber of dummy 
transfers may have to be introduced to multiple tests 
resulting in inefficient usage of memory and a reduced computational 
speed. The argument here is more concerned with the iway the 
branch information is stored. 

** Addressing relative to the present control word address or an 
address specified by a base register is often employed to reduce 
the inputs to the address generation networks. Nevertheless, 
the statement above is still valid. 
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The state table derived from this type of description may 

be easily seen to be of a Mealy type [3, p.lO?]* Now each entry 

in a Mealj uate table figure specifies the outputs (operations to 

be done) ana the next state (address of the next control word), 

Gerace suggested that this duple may be coded into a single ROM word 

thereby creating a word image for every entry in the Healey state 

table. Obviously then the number of conditions to be tested is not 

restricted by the length* of the EOH word but only contributes to the 

complexity of the address generation network. Since the generation 

network only handles one address data its complexity in general may 

be shown to be less than the network in an equivalent Moore type of 

realisation. 

Cadden |g7j has shown that every Moore state table can be 

converted into an equivalent Mealy - state table and vice verua, and 

that the number of internal states (rows) in the Moore state table is 

equal to th^ number of different pair entries (next state, output) in 

a Mealy state table. Thus a Koore BOM can always be converted to a 

Mealy. ROM, i.e^ an ROM implementation of a Meal%, state table, such 

that the number of words in both is the same, A word in a Moore ROM, 

however, is longer than in the equivalent Mealey ROM fo^ reasons 

already discussed. AiMealg^ relisation, therefore, is to be favoured 

giving a smaller memory, requiring less complex supporting networks 

and a higher computational speed, 

5.10 Microprogram Transformations 

It is usual to consider a microprogrammedcystem to be 

characterised by a Glushkov model [5^^, Figure 1, conpistin^ of an 

* This is not strictly true since often the conditions ̂ o be tested 
are specified as a part of a microinstruction, thus reduc he 
number of inputs to the state tabl", but increasing the ] of 
the ROM word. The proposition here, however, is valid ii cms 
type of coding is not used. 
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operational part which contains the register structure and a control 

part, which is a finite state machine controlling the operational 

part. It is, of course, theoretically possible to merge the two 

parts and design the systen as a singl" finite state machine; but for 

practical reasons a division must be made. The position of the 

dividing line, however, is questionable and usually is set by the 

designer through his experience, intuition, and the knowledge of available 

resources. Obviously, in doing so, the designer will experiment with 

different structures and weigh the relative advantages before deciding 

upon the final structure. 

Bemdt suggested a concept of status level diagrams, 

which he described as functional microprogramming, to help this.The 

diagrams depict the control states and the sequencing in a diagrammatic 

form rather like state diagrams. The operations associated with each 

'state* will obviously depend upon the resources employed in the 

operational part and the timing. 

An approach similar to this was also used iPr&hke ' 

Mergler [50] to develop a state table-like description of the control 

system. This state table description and the status level diagram 

both provide an overall functional description of the control section 

which can then be manipulated, say, to merge common control states or 

to split the states. The resources in the operational part can also 

be re-examined with regard to the effect on the status level diagrams. 

The manipulations indicated here are commonly called microprogram 

transformations, 

A formal presentation of microprogram transoformations was 

made by Stabler Ee...suggested five goals to achieve this which 

are as follows. 
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1) Remove a register from the operational part and adjust the 

microprograms to allow for this. The latter amo-unts to adding a 

register (or an image of it) to the control part, 

2) This is the converse of 1, and adds;, a register to the 

operational part. 

These two goals achieve the shifting of the dividing line 

between the operational part and the control part. 

3) The resources in the operational part can be modified to 

allow two or more" operations to occur in parallel. The microprogram 

control is then modified to produce one signal for the parallel 

cp-rations instead of the individual ones before the transformations. 

Conversely, 

4 ) Split the parallel operations into serial operations thereby 

reducing the complexity of the operational part. 

3 and 4 clearly indicate that a s^eed/resource trade off 

is possible, Finally, 

5 ) Reduce the input variables to the control unit and modify 

the two parts accordingly to preserve the overall behaviour. 

The last transformation is particularly important where 

cable and highway sizes between control part and operational part as 

well as the rcOIi size are important, A common application of this 

was described earlier where the conditions of the operational part to 

be tested are specified in the microinstruction in a coded form, and 

the results are returned on a relatively few lines. Obviously 

decoding delays are introduced causing a loss of performance. 

The goals 3 and 4 directly contribute to the number of ROM 

cycles required to execute a set of instructions which can be related 

to the execution time. However, an important way of achieving an 



82 

improvement in the execution time is to overlap EOH cycles and the 

executions in the operational part. This method is widely used in 

present day computers and is of partic^ilar importance in large 

computers. Stabler does not deal with this aspect of micro-

programming. 
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3.11 structure Descriptive Languages 

The languages so far considered impose a certain 

structure on the system and describe its operation 

in terms of algorithms. This description may be 

given with varying degrees of conciseness and 

manipulated using a computer to produce the necessary 

amount of expansion and/or minimisation, and also 

generate the logic for the control part governing 

the system. Thus these languages satisfy certain 

design* requirements. The important point to note 

is that a part of the structure is defined and the 

remaining generated through computer assistance. 

There exists another class of languages which are 

more closely oriented towards describing an already 

completed design. Using these languages a system 

may be described in terms of its structure, i.e., 

the implementational detail, or in terms of its 

functions, i.e., describe the "what" rather than 

"how" of the system. The application of these 

languages for design is rather limited, nevertheless 

they have a wide range of uses, such as, documentation, 

input to implementation programs in a design 

automation suite, structural and functional 

simulation and fault diagnosis**. 

* The term design is used here to mean logic (or 

program) design rather than implementation design. 

** See Appendix IV. 
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Most digital system manufacturers employ design 

automation techniques in production of the systems 

for some or all of the application suggested above; 

and there must be of necessity at least one structure 

descriptive language associated with each. However, 

there is very little published material regarding 

either these languages or t)^ suites; and it is rK)t 

possible to gauge the proliferation of versions, 

differing mayb* only slightly, of such languages. 

Examples of typical commercially used languages are 

in the L0G8IM system developed by the Marconi Company 

j&nd the RADD8 system [lOO, 10^ developed by the 

Raytheon Company. The usual method of description 

±8 to describe each gate or on available primitive 

module in terms of its inputs, outputs and attributes 

(e.g. delay)(cf Okada & Motooka [75]). It is also 

possible to create new blocks out of the available 

primitives and treat these blocks as primitives, 

i.e. nesting is possible. Despite this facility 

however, the description of a large system tends 

to bo very large and consequently the effort required 

fof Manually producing these, as is still the normal 

practice, is also large. 

Stabler proposed a System Descriptive Language[ 106] 

which was basically on extension of Reed's Language [78l|, 

The main additions were on Algol-procedure-type 

construct to describe a gating network and on Algol-

iterative - type construct to handle iterative net-

works - a common feature in digital computer logic. 

A/ 



A serious omission is that neither primitive elemental 

delays nor explicit delays such as of delay elements 

and cable delays can be described which would be 

required in structural simulation. Nevertheless with 

the construed suggested and by nesting the description 

as necessary, it is possible to describe computer logic 

in a very concise manner. A digital computer can be 

then employed to remove the linguistic intricacies and 

produce a structural description in a much more primitive 

form. 

Bell and Newell [89, 90, 911 proposed a much more 

comprehensive method of describing a computer structure. 

Using their method, a computer system is described at 

two levels, namely 

i) The PM8 (Processor-Memory-Switch)Level and 

ii) The ISP (Instruction-Set-Processing) Level. 

At the PMS Level the organisation of the whole system 

is described in terms of its constituent (PMS Level) 

components and their attributes, including the types, 

throughput and size, in a diagrammatic form. The 

main components at PMS level are units such as 

(a) Memory, M - component which stores 
information 

(b) Link, L - component that transfer 
information between two 
components of a system, 
i.e. data highway 

(c) Control, K - a component that e v o k e s an 
operation or set of operations 
in other components -
effectively the control state 
of a system 

(d ) / 
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(d) Switch, S - component to switch between 
links 

(e) Transducer, T - component that transforms 
one type of information into 
another, e.g. voltage levels 
into characters on paper, 
light input voltage levels 

(f) Data operation, D - the data manipulation part 
of a computing system 

(g) Processor, P - component to execute a (user) 
defined program 

Each component in turn may be further qualified depending 

on its rate and application within the system, e.g. 

Pc to mean central processor, Ms to mean secondary 

memory. 

At the ISP level the processor itself is detailed in 

terms of its ISP level constituents such as registers, 

memories, processor control states and data operations. 

The description is similar to that in Parnas's language 

in that the effect of the data operations rather than 

the step taken in achieving them are indicated. This 

level does not detail the logic structure of the 

system. 

The method proposed by Bell and Newell is quite 

comprehensive at the PM8 level for describing system 

configuration, particularly since it allows in a 

natural manner the scope of the language to increase 

cover any future concepts. The two levels of 

description together provide a good means of documenting 

the architecture of a computing system [90^. 

It has been stated above that a description in ISP 

essentially describes the "what" rather than the "how" 

of/ 



of the system and in this respect is different from 

a design langauge specification. The basic approach 

for design, so far considered, involves extracting the 

structural information, abstract behaviour of the 

control part and determining the data and control paths -

one of the main aims in this process being the 

minimization of resources. 

Bell et al [ 92, 96, lOSj argue that with the availability 

of circuit modules implemented in large scale integration 

(LSI) technology this constraint may not be so relevant. 

Ttiey propose a concept of register transfer modules 

(RTM) which implement directly the operations evoked 

by the processor state, e.g. an arithmetic operation 

between memory bars and a processor register, so that 

for every different operation a different RTM is 

employed. Simultaneously, control type are 

employed to execute the boolean testing and branching 

involved without first going through the exercise of 

extracting the complete behavioural specification of 

the control part. Obviously as the numbers of different 

operations, and of different types of controls, increase, 

the number of different RTM's required increases. 

However, the approach has the elegance and neatness 

of being simple for a novice to understand and cutting 

the time and effort required to implement a design. 

This concept will certainly prove very useful in 

teaching. 

In/ 
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In SDLl, the language proposed by Gorman (94, 95^ 

and in CDLl, the language proposed by Srinivasan 

^104, lOsl, the system may be described at four 

different levels. These are as follows. 

(1) Behavioural - In a behavioural description a 

system is viewed as a black box with no 

knowledge of the internal structure and its 

behaviour is described entirely in terms of 

the inputs and outputs. 

(2) Functional - The black box representing the system 

is segmented into major functional units such that 

a behavioural description of each unit is possible. 

This represents a coarse breakdown of the overall 

system. The functional description then describes 

the interconnection between the units and an 

algorithm in terms of these units to achieve the 

required behaviour. 

(3) Structural - At this level, the authors suggest, 

the description should be sufficient^ precise so 

that (at least conceptually) the design can be 

put together by using "off-the-shelf" components, 

which may be hardware or software. 

(4) Implementational - A description of this level 

defines the method of implementing the system 

physically either in terms of actual gates and 

registers for hardware, or machine instructions 

for software. 

The/ 
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The statements within a description at a certain level 

are grouped together to give a hierarchical description 

where the hierarchy is determined by the scope of the 

facilities used in the statements. The scope however, 

is not limited to within the bounds of the hierarchy 

and may be extended to a higher level by explicit 

statements. This concept is slightly better than the 

global and local variable concept. 

These languages contain a comprehensive set of facilities 

to allow variable interpretation of any entity which is 

a very useful facility when large systems are considered. 

The language also allows an extension of the syntax and 

modification of semantics. 

The common syntax for all the levels is particularly 

useful in system modelling since a common simulator can 

be constructed to handle description at all levels. 

As the design progresses it is only necessary to change 

description to a different level within the same 

language. 

In general however, structure descriptive languages 

serve on intermediate, and a very useful stage between 

the design process and the implements ion. Their scope, 

especially when defining the control part of a system, 

to..ds to be restricted. Our basic aim to study the 

possibilities of describing a system without, as far 

as possible, any structural constraints. To this end, 

structure descriptive languages are of an indirect 

interest only. 
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3.12 Conclusions 

Most large digital systems can be regarded as instruction, 

executing systems and consisting of an operational part 

which contains the data storage facilities, i.e. registers, 

and the data manipulation, i.e. register transfer, 

facilities, and a control part which provides the 

necessary signals to activate the register transfers in 

a correct manner. We have noted in the discussions in 

this chapter, that the behaviour of the operational part 

can be described, in terms of microprograms, in a register 

transfer language and that it is possible to extract the 

behaviour of the control part from this description. 

However, the flexibility offered by the various languages 

to describe any complex modes at microprograms varies 

widely. 

Earlier register transfer languages were simple and could 

be directly mapped and thus were good tools for analysis 

of already designed systems and for automation of 

implementation. They had their limitation such as, 

inability to indicate segmentation, multiple operations, 

mixed synchronous and asynchronous operations etc., and 

their timing notation was particularly poor. Roth's 

sequence chart analyser [ 7 9 ] expressed microprograms in 

a graphical manner which indicated timing and multiple 

operations, but owing to its graphical nature it is 

difficult to automate. 

Further languages were developed to increase the 

flexibility and specification ability for which notational 

and operational conciseness was introduced by using 

complex/ 
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complex operators and macro calls etc. Some of these 

languages were based on the structure of existing 

programming languages, e.g. Metze and Seshn's language 

based on Fortran [743 and Chu's CDL [39 - 42] 

and Cassandr* [32, 33, 58] based on Algol. Segmentation 

facilities were introduced in DDL by Duley & Dietmeyer 

[4^^ 47] and in Cassandrg. 

The Iverson notation [64 - 66] provides a means of 

describing the logical functions of a system at various 

levels of detail including elemental bit levels, 

independent of the machine structure and in an algorithmic 

manner lending itself to a good interpretation in terms 

of hardware realization. However, the designer usually 

defines the system in terms of functional blocks first 

before attempting an algorithmic solution of the problem. 

The Iverson notation unfortunately, does not have a 

sufficiently high level of functional descriptive 

ability. Secondly, at the algorithmic level the language 

does not contain adequate facilities to express control, 

particularly timing. 

Since all the languages use a predefined register 

structure, the automatic part is still limited to 

deriving the controlling circuity and the combinational 

logic driving the register structure. Gerace [54] 

d^^cribed a method by which the register structure 

implied in the register transfer description may be 

reformulated into an i t s f c l t i v e h^-connected-machine 

structure and obtain a formal abstract definition for 

each. A more pertinent application of register transfer 

language/ 



language description is however, in producing a ROM 

implementation of the control part. ROM implementations 

are somewhat more flexible in that it is possible to 

change the characteristics of a given operational part 

relatively easily by changing the ROM part of the 

control part and thus by using, say, plug in ROM modules 

an effectively different system may be obtained. Gerace, 

et a l [ 553 have described methods of different ROM 

implementation and minimisation. 

Another interesting, and potentially very useful result 

noted ^85] was that the dividing line between the 

operational part and the control part is somewhat 

arbitrary and that certain rules can be applied to 

shift this line one way or the other. This also 

exemplifies the artificiality of dividing a system into 

two arbitrary parts. It should be possible to view a 

digital system from an overall system view point and 

describe its behaviour in some manner that is 

independent of the internal structure and then either 

algorithmically or via some interaction with the 

designer evolve the necessary structure. 

Finally, the usefulness of a register transfer type 

language for documentation of system cannot be emphasized 

too greatly; Its value is further enhanced if a 

methodology is developed by which a system can be 

detailed, at the various levels necessary, as it 

progresses through the design stage. Such a methodology 

^ 9 0 J also allows a suitable comparison of various 

systems to be made in uniform manner. 



4* Methods based.on Swltohlnfr Theory and Information Theory 

4*1 Introduc tion 

One of the advantages of using switching theory in logic network synthesis 

.is that it provides algorithmic, and hence programmable,techniques for 

producing logic designs from input-output specifications. Gliese programs 

may be then used by even a relatively inexperienced designer to produce 

complex, error free logic designs, providing of course the specifications 

of the network are input to the program in suitable forms, 'ihe latter 

constraint however, represents a serious disadvantage in that large 

amounts of data corresponding to truth tables, state tables or flow 

tables have to be input and obviously this, apart from being tedious, 

could lead to errors which may be hard to detect. The specifications 

therefore, have to be input in a way that the chore of the tables may be 

relegated to the computer, 

4.2 Uarroll and Mott's Method 

An approach to this was suggested by Carroll and Mott ^9^ in which the 

inputs and outputs are considered to be related by some continuous function(8) 

which may be input directly into the program. Carroll and Mott distinguished 

between ) types of logic networks. If n is the number of inputs and m is 

the number of outputs, then these three types are a) those having n=1,m>1 

b) those with n"̂ !, m^1 and o)where n:>1 and m^l. A single input network 

as in type a is a special case in that it represents a counter in which 

the input itself is the clock input and the outputs are coded in the 

required form, The input-output relation in such a case is cyclic repeating 

after p pulses where 

0 ̂  p ̂  2'̂ -1. 

The other two cases are more general froms of logic networks and could 

represent combinational or sequential networks; the concept of sjmple 

input-output functional relations however, is only applicable to combinational 

networks. Nevertheless if these are known, the production of truth tables 

is fairly straightforward. A difficulty arises when these functions are 



to be determined,especially if they are limited to be numerical, as implied 

by Carroll and Mott, and in many cases it is not possible to determine them. 

One way to overcome this is to extend the types of functions that mqy be 

specified and to include algorithmic descriptions, particularly where 

iterative relations are invol/ed. Another useful addition is to complement 

the relational description with the input-output pairs where necessajry. 

4') Smith and Tracy's Method 

The specification of a sequential network behaviour introduces another 

dimension to the problem, i.e« that of time dependence. 'Ibe method 

suggested above cazmot be used for sequential networks except in the special 

case of counters. Wmith and Tracy [_102] proposed a method whereby the 

behaviour of asynchronous networks may be specified in a short form and 

converted into normal flow tables. 

The method relies on being able to specify the output responses to a series 

of input sequences as, for example,in pattern recognizers »r counters. 

'Ihe series may contain several individual sequences; and the ordering, 

either to create loops ( as in counters) or to indicate branching (tests), 

is shown by attaching notes goto and follors. The sequences themselves 

may be defined in terms of either all inputs or a subset of inputs. 

AS an illustration, consider a network with two inputs a,b and two outputs 

y,z. y becomes equal to 1 if a=1 and b follows the sequence 10 and 

providing that a has followed the sequence 010 immediately prior to this, 

z becomes equal to 1 under the same conditions except that b follows the 

sequence 01. 

Ihe output response type description for the above problem is s^own in 

figure 1. 

In the trajislation of this type of description to a normal flow table, 

Although the steps described here are taken directly from Smith and Tracy'; 
paper, they are slightly modified in the illustration by.introducing the 
restriction that only one input variable may change in a transition. 
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an intermediate flow table, called a module flow table (MPT) is first 

generated. This flow table indicates the ordering of the sequences and in 

effect is a mapping of the goto and follows notes. Next, a preliminary flow 

table is generated for each sequence such that firstly stable state entries 

are made where input-output response pairs are specified and then unstable 

state entries are made corresponding to the next stable states. JMo unstable 

entries are made at the tail of the sequences, i.e. at the end of the 

sequences. The individual flow tables are then concatenated together using 

the information contained in the MPT and adding unstable entries at the tails 

of the individual flow tables to correspond to the next stable states. These 

steps are Illustrated in figures 2,3, and 4» The final flow table, obtained 

algorithmlcal^y, is shown in figure 4 a^d may be compared with the state 

diagram obtained directly from the initial specification and the corresponding 

flow table shown in figures 5 and 6 respectively. 

The procedure illustrates some interesting points. Firstly the description 

is almost a state diagram type description but it is in a form, which is 

much more allied to the approach likely to be taken by a designer who 

is unfamiliar with switching theory methods. Secondly the method does not 

require a full specification and can be completed in stages; and it seems 

ideally suited for generating a flow table in an interactive mode* Finally, 

although the method haa been illustrated only with an asynchronous design 

example, it may be possible to generalize it to include synchronous 

designs. 
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inputs outputs notes 

a b y z 

seq. 1 1 0 — 0 0 

2 1 — 0 0 

seq 2 5 0 — 0 0 follows 2 

seq 3 4 1 1 0 0 follows 3 

seq 4 5 1 0 1 0 follows 4, goto 1 

seq 5 6 1 0 0 0 follows 3 

seq 6 7 1 1 0 1 follows 6, goto 1 

seq 7 8 0 — 0 0 follows 4,6, goto 3 

seq 8 9 1 0 0 follows 5,7, goto 1 

Figure 1, Input--output % 'esponse scecifioation 

inputs 

seq. nimber 1 

2 

3 

4 

5 

6 

7 

00 01 11 10 

- , 2 - , 2 

5 5 

7 7 4 

1 1 8 8 

7 7 6 

1 1 8 

2 2 

1 1 

The dash indicates 

the starting inputs 

of the sequence 

Figure 2. MPT corresponding to the example in figure 1 



inputs = ab 

00 01 11 10 

97 

(T)/00 (3)/00 2 2 

(^/OO 0/00 

g)/00 Q/oo 

0/00 

CD/10 

^D/00 

0 / 0 1 

(8)/00 0 /00 

© / o o 0/00 

sequence 1 

sequence 2 

sequence ) 

sequence 4 

sequence 5 

sequence 6 

sequence 7 

sequence 8 

Figure 3. Individual flow tables corresponding to the 

example in figure 1. 



inputs = ab 

00 01 11 10 

(Dvbo CD/00 2 2 

3 3 (2)/tW ^gl/W 

(^U^O (^/OO 4 6 

8 ^0/00 5 

1 9 GD/10 

8 7 GD/tW 

1 G&/01 9 

GD/OO 4 6 

1 1 (^/%0 ggvoo 

Fimzre 4« Concatenated, flow table 



01/00 

00/00 

""IT/OO 

Figure 5. State Dia^aa for the Network 
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inputs = ab 

00 01 11 10 

CD/00 Q)/00 2 2 

5 3 Cb/oo ^D/00 

CD/00 4 6 

3 (3)/oo 5 

1 8 g)/l0 

3 7 (gvoo 

1 CD/01 8 

1 1 Gb/bo ̂ D/00 

Figure 6. Flow table corresyondinK to fi&ure 5, 
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4.4 P e t r i Nets 

The importance of considering the behaviour of the overall system rather 

than segmenting it prematurely into hardware and software was also 

emphasized by Holt et al ̂ 97,9^ in their work on Petri Nets. Using these 

nets, which were first conceptualized by C.A.Petri as transition nets, 

it is possible to indicate the behaviour of a system in terms of information 

jTLow through hardware processes or software processes in a precise and 

concise manner. Thus these nets provide a method for describing a system 

In a unified way and is a significant step towards the required goal. 

The basic unit of Information flow in a Petri Met Is an event, A system 

can be described by a set of events joined together in a loop,allowing 

repetition of events. The term event therefore, is generally taken to 

imean a repeatable event and an Individual repetition of an event Is called 
t 

an occurrence. 

an event in a Petri Met is represented as a transition and is depicted by 

a Ibar with a suitable number attached to it so as to distinguish it. The 

transitions are connected together by arrows via places or conditions which 

are depicted by circles. The entries in the places specify the conditions 

necessary for the transitions. 

The arrows establish the relations between the transitions and places: 

i&n i&rrow from a place to a transition means that the place is an input 

condition for the transition and an arrow from a transition to a place 

indicates that the transition generates the condition. 

A simple example of a repeatable event is a computer in a user environment. 

Initially let the computer (C) be in an idle state (CI). A user (U) 

accesses the computer via a teletype unit (T) and inputs a program (P). 

The computer the computes the program (OP) while the user is waiting at 

the teletype unit (UT^Q. When the computer has finished the computation (CP') 

the results are passed on to the uaer (UTR) who leaves the computer in an 
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idle state (Cl) and the teletype unit free (TP). 

The Petri Net for the above is shown in figure J. iwent 1 in this diagram 

shows that it will take place only if the two conditions CI and UTP are 

satisfied. As soon as the event takes place the conditions CP and UTW are 

generated. The conditions for transition 2 are thereby satisfied and the 

condition CP' is generated. This in turn, along with UTi¥, allows 

transition 3 to take place. 

Ihe Petri Net considered here clearly indicates the Information flow through 

the system in a concise and precise way. These nets can also handle 

concurrent or parallel and independent events particularly well. Thus they 

can be used to describe the behaviour of a variety of systems with a 

varying amount of detail. 

The history of a system can be recorded by performing a simulation on the 

Petri Net, Conventionally this would be done as a record of states and 

the associated conditions generated by them. However, this requires that 

every distinguishable state be recorded as a separate entry. Holt introduced 

a notion of occurrence graphs which illustrate the simulation In a graphical 

way and are able to handle concurrent events more easily than by the 

conventional approach. An occurrence graph for the Petri Net considered 

here is shown In figure 8, where the nodes Indicate the transitions and 

the arcs indicate when the conditions specified by the labels associated 

with the arcs are true. 

Petri nets offer some exciting applications. Firstly, concurrency can be 

relatively easily and concisely depicted. They can be used to describe the 

input-output behaviour completely,and entirely in terms of its environment 

without imposing any constraints of implementation technology. The latter 

application Is particularly useful in design. For example, an algorithm 

may be depicted using Petri Nets containing as much concurrency as is 

allowed by the constraints due to environment. Wow the designer can choose 



i'J/. 

OP' UT* 

TITR 

UTP 

UTW 

CI UTK 

Figure 8. An Occurrence Granh 
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a particular implementation such that "parts" of the algorithm can correspond 

directly with the "parts" of implementation. Conversely the designer can 

modify the algoi^thm with the constraints of an existî ng implementation in mind, 

tn best use the implementation. 

4.5 Conolusions 

Switching theory provides ua with methods to describe the behaviour , i.e. 

the input-output mapping, of a system in a precise manner. Unfortunately, 

the amount of data required to do so and the data generated in the subsequent 

phases of design tend to be very large indeed, 'fhis does not however, mean 

that switching theory should be ignored for practical design and in fact 

switching theory is a very effective means of producing error free designs, 

The methods of generating truth tables or state tables described here,go 

some way towards bridging the gap between the concepts specified by switching 

theory and practical methods likely to be adopted by a designer. However, 

there is a strong reluctance among designers to assmne switching theory 

techniques in their design processes and a considerable support is still 

necessary before these techniques are in general use. 

One of the drawbacks in switching theory is that at present it is somewhat 

inadequate to handle large systems with parallel processing. Petri nets 

however, handle such systems neatly and also offer some additional useful 

applications, such as optimization and simulation. The Petri nets seem to 

offer real potential towards a unified method of system behaviour description 

and system architecture design. 



5. AN APPROACH TO COMPUTER AIDED LOGIC DESIGN 

5.1 Development 

It is clear from the foregoing discussion that the logic 

designer acting in a computer aid environment, and 

especially in an interactive mode, has a language problem. 

Many languages have been devised and utilised to a varying 

degree of success. It is also clear that the main draw-

back comes from the correlation, or the lack of it, 

between the language and the designer's natural methodology, 

and also the "design" aspect rather than just the simulation 

capability of the language. To surmount these drawbacks 

and to devise a new language, it would be helpful to 

examine what we are trying to design and how we, as human* 

designers, tackle the problem intuitively. 

The system under consideration is a digital processing 

system, by which we mean that the system will accept 

information on lines which carry one of only two values 

and that after processing produce outputs on similar 

lines. Typical examples of such systems are traffic 

light controllers and digital computers. It is also 

envisaged that these systems will, in general,process 

the inputs in more than one way, i.e. they will have a 

certain instruction repertoire and that the required 

instruction would be selected by an external input, 

such as a program. This definition allows the inclusion 

a general class of digital processors, since if only one 

function/ 
106 
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function is executed, the repertoire will include only 

one instruction and the external input would be, say, an 

on/off switch® 

5.2 Intuitive Approach 

To understand the steps which a designer is likely to 

follow, it will be useful to consider an example. The 

example we choose is a simple one, yet adequate to 

illustrate the steps taicen. Two numbers each seven bits 

long are coded with Hamming distance code * and are 

accepted in a serial mode. Their parity is checked and 

a correction is applied if necessary. If the first 

number is greater than the second then the two numbers 

are multiplied otherwise they are added together. 

Finally, the output is correctly coded with Hamming code 

and put on an output line, again serially. 

This itself defines the first step in any design: that 

of a description of what the overall system is expected 

to do. There is no mention as to how the parity is 

checked or how the multiplication or addition is achieved, 

or for that matter, whether the operation within the 

system is conducted serially or in parallel. The 

abstraction we can derive from the above description is 

that it is a black box with one input line carrying the 

input data, another one to validate (synchronize) that 

data and one output line for output data. 

* Appendix III 
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start/stop 

> 

clock 
-Ttrr • • 

ready 

SYSTEM 

input output 

figure 1. A Small System 

Although the clock was not explicitly expressed we deduce 

that it is necessary. We would also need to provide 

another output line to indicate when the output is ready 

emd obviously a start/stop line. Since the output is 

also serial, we would need to know whether a clock line 

for this has to generate or if the input clock is running 

continuously and consequently can be used for the output, 

let us assume the latter. 

It is clear that at this level we are only concerned with 

outlining our system in terms of the input and the output 

and the system behaviour is described. We call this type 

of description a 'behavioral description'. Ideally, we 

would like to input just this much information into em 

automation programme and let the design be evolved with 

respect to some pre-defined cost-effective measures 

which the designer specifies. But would be naive to 

attempt to obtain a solution, let alone an optimal 

solution. 

The/ 
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start 

accept first 7 blta serially number a 

check code and correct if necessary 

V 
discard parity bits 

i 
repeat the laat 3 steps for number b 

yes 

Y 
multiply a and b 

no. 

add a and b 

generate correct Hamming code parity bits 

merge output bits and parity bits 

put ready = 1 and output 

end 

Figure 4. Functional algorithm 
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The next step is to break down the black box, called 

system, into eub-systems, each designated certain functional 

capabilities. This would start on a. coarse breakdown 

extending to a finer detail as necessary. The functional 

breakdown for our system is shown in figures 2 and 3. 

The description of the architecture based on this type of 

breakdown is called 'functional description' of the system. 

We would also draw up a flow diagram of how we utilise this 

architecture and this is shown in figure 4. 

The flow diagram gives us the sequence in which each 

function has to be performed. We still cannot translate 

this information directly into hardware or software 

routines until the how of each function is specified* 

However, since the flow diagram is not related to any 

machine structure, it is still abstract and independent 

of the final machine and acts as an overall reference. 

The next step is to detail each function in an algorithmic 

manner. The human designer at this stage, owing to his 

experience and intuition, may resort to hardware blocks 

a.Ed express the algorithms with these hardware constraints. 

However, we feel that this is "jumping the gun'\ as this 

process may lead to quick hardware realisation but will 

not allow any logical process of overall minimization. 

For example, the designer may allocate J-K flip-flops for 

memory elements to minimize hazards due to asynchronous 

signal*but the overall system may be such that only E-S 

flip-flops, which are cheaper, may be adequate. Another 

example/ 
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example is that the desi gner may allocate separate 

registers and a parallel adder whereas a serial citcwitv^ 

may be sufficient. 

It can be safely said that a designer will normally derive 

a flow diagram similar to the one in figure 4, from the 

description of the system in a natural language which is 

sufficiently formal for the logic designer yet it is quite 

comprehensible to the members of other disciplines. Since 

we wish to devise a language that can be used as a general 

purpose design language, we feel that at the highest level 

the language should incorporate information of this type. 

It must bef6«n@m»bey6d^ however, that the statements in the 

flow diagram indicate the flow of data and the operations 

performed upon it, and that the logical operations for 

each statement have still to be defined. Therefore, it 

will be useful to think of these steps as macro functions 

and each of these is detailed in a logic design language. 

Returning to the example, we consider the regiiired trans-

lation of the functional macros. We have established a 

data flow through the functional boxes, the data being a 

collection of strings or bit patterns. The input data 

may be sustained long enough for the functional boxes to 

perform the necessary operations; on the other band, 

especially in the caseof serial transfers, it may not be 

present long e n o u g h q w j w k o W o f the data may require 

"memorizing". 

The Hamming code used here has 3 check bits and 4 

information bits and since the validity of the number 

cannot/ 
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cannot be checked until all the 7 bits are present, all 

these will have to be memorized. Let this functioa be 

denoted by a register and since seven bits of each number 

have to be registered and that they appear serially, a 

counter has to be introduced. The functional breakdown, 

then would be as follows. 

1« set counter to 0 

2. increment counter by 1 

3« if the clock pulse is present then register input 

into a vector, the position being determined by the 

iraliie ()f tlie counter. 

4. if the counter has a value 7 then go to ^ else go to 

2. 

5. .. * 

This is an algorithmic description of the functional break-

down and the Iverson notation is most useful here. The 

algorithm is re-written below using this notation, where 

the counter is k, the clock is c, and the first seven bit 

number is a. 

1. k ^ 0 

2. k ^ k + 1 

3. c:0, ( = ) -iP" 3; (/) input; 

4. k:7, ( = ) (/) 2; 

5e « . * 

The error checking and correcting steps are expressed 

algorithmically as follows. 

5* el ^ ^ / ( ( 7 ) T 8^)/a ( -V- a exclusive or) 

6. e2 V/((7)T51)/a 

7. e4 ^ -V/((7)Tl5)/a 

8./ 



8» n <- —L. 6^,62,el 

9. n:0, (=) 10; (/) <-

10. ... 

el,e2 and e4 are three scalar quantities corresponding to 

the three error bits. Statement 5 is interpreted as: mask 

the vector a by a binary pattern whose value is 85, i.e. 

select the odd bits of a and if the sum is odd then there 

is an error; similar interpretation is used on statements 

6 and 7. The statements 8 and 9 define a single error 

correction. The masking patterns can be generated using 

special Iverson operators and ^,6 and 7 can be re-written 

as 

5. el V/(2 I il(7))/a 

6. e2 y/(4 I ̂ 1(7))/a 

7. e4 V/(il(7) :$)/a 

Without going through the remaining steps it is easy to set 

tlie general format of the algorithmic description and that 

it can be similarly applied to the remaining functions of 

the machine. 

The hierarchy in the description is already apparent as 

the functional macros are at a higher level than the 

algorithmic description, and it can be extended so that 

each operation is further simplified to a lower level and 

so on. In an intuitive approach, the hierarchy is extended 

until the description has almostdone to one correspondence 

with some structural elements. Thus the vectors are 

immediately translated into registers, the steps into 

timing cycles and the remaining operations performed by 

clever/ 
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clever manipulation of interconnecting logic to minimise 

delays, elements and, in the case of parallel processing, 

hazards. This process can be largely automated and has 

indeed been demonstrated by Fri edman et al [5^1. The input 

to their program , ALERT,is in the form of Iverson state-

ments and the outputs define the excitation equations for 

the flip flops, and these are subsequently processed to 

obtain the logic diagrams, wiring diagrams etc. 

It may be recognised that the Friedman approach is to 

assign hardware blocks to achieve the various operations; 

however, this in the same as in the case of register 

transfer languages and the only functions that the 

computer provides is to assign these blocks automatically, 

and to remove redundancies. We feel that a better approach 

is to derive the behaviour in terms of,say, truth tables 

and state tables from the functional description and then, 

process this by a logic assignment programme. 

There are two ways of obtaining this information, the first 

is to use the functional description and converting this 

directly to state tables by a method similar to Gerace^s [^4] 

and the second is to use the allocations obtained by a 

programme similar to Friedman's and then from the excitation 

equations obtain the state tables. 

Clearly then, a library of available and usable physical 

objects has to be created and for this a flexible and 

comprehensive declaration facility is needed. As new 

objects/ 
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objects become available they should be readily added to 

this library without affecting either the flow 

or the structure of the language using this library and 

hence the declaration facility should be expandable 

naturally. It should include sufficient information to 

determine its applicability completely. For example, a 

software routine will require in its declaration, its 

name, input and output parameters, how it is called in the 

main programme, its size and speed. Further information 

which may be necessary is how the routine functions and 

any illegalities either in operation or interaction with 

another routine. Another useful parameter would be a 

cost figure, which is particularly useful in cases where 

the designer wishes to trade cost with speed or vice 

versa. 

The Computer Aided Approach 

From the previous discussion we deduce that the designer 

needs to specify a system at thre* different levels. At 

the first, the system is defined entirely in terms of its 

input and output behaviour, i.e. the specification at this 

level describes the system as a whole without any indication 

as to its internal structure. At the second level, the 

system is decomposed into several sub systems, each as 

which may be defined 

(a) in terms of its input-output behaviour, or 

(b) by algorithm specifying its functions 

Finally at the third level the designer may specify a 

structural detail and the operations constrained by this 

structure. 
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To apply any of the minimization programs the data in 

the computer must be obtained either in terms of truth 

tables or tl^ equivalent forms thereof, or terms of 

state tables or their equivalent forms. If the designer 

inputs the data in terras of behavioural specification then 

the subsequent manipulation is straightforward. However, 

the data to be input becomes enormous and a short form 

method must be considered. Such a method for inputting 

behavioural specification for combinational networks is 

proposed later. 

The structural definitions can be given by register 

transfer languages or in a form of Iverson notation [5^]. 

This type of description is very useful for analysis work 

and, in the design process, can be used to generate the 

boolean equations for the logic interconnecting the 

registers. The bodean equations can be manipulated to 

minimize the combinational logic; however, the registers 

themselves are not minimized, mainly because no formal 

methods yet exist to minimiae sequential logic without 

returning to a state-table-type specification. Furthermore, 

a large part of the design is already complete before use 

of- computers is sought. A method to automate the earlier 

parts of design, namely the functional detailing, must be 

considered. 

The Iverson notation is very useful kere since it can be used lb 

detail design information at this functional level, i.e. 

without resorting to structural constraints,and has 

sufficient flexibility to detail at different levels of 

parallelness at operations. It also can be easily 

extended to describe the operations within a structural 

definition but has no provision for defining this 

structure nor fnr m n v mynlirif t \ r: 4 n i? _ 



6 . THE LOGIC DESIGN LANGUAGE 

6.1 Introduction 

A logic design language is primarily a language to 

describe the algorithms for .lQ,.gical processing sY&tGfM. 

Its main uses are in the (bsign of logic systenis; howeYer, 

the language should also be capable of documenting existing 

systems. Furthermore, it is to be used by members of 

other disciplines also, as a common reference language and 

thus should be lucid, sufficiently descriptive, yet without 

too much detail. Conversely however, a description in this 

language must be interpretable by a computer as a program 

to produce abstz^ct data for subsequent manipulation, and 

this requires tkat the language is highly structural, highly 

symbolic and that the description contains a considerable 

amount of detail. 

As noted in the previous discussions a program in a 

conventional programming language tends to define a set of 

processes to be executed sequentially, where as a logic 

system in general contains facilities to execute processes 

in parallel and the necessary synchronization, The 

language must reflect this clearly. Also, the structure 

of the language should be such that undue restrictictions 

are not imposed on the designer's mode of design, but 

rather is adaptable to the different methodologies used by 

different designers and cater for the different aspects ojT 

a design process. 

In/ 
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In the following sub-sections we discuss the various 

facilities demanded the language^ how they are catered 

for, and the structure of the language. 

6.2 Structure of the Description of a System 

The system under consideration must be of a nature such 

that a set of abstract data, the level of which is decided 

by the designer, may be generated from its description. It 

should therefore be either constrained to a certain size 

(in terms of, say, an algorithm) or segmented down to produce 

manageable sub-systems* It is suggested that this segmentation 

is based on a functional division within the system, as . 

discussed earlier. 

The system can then be described in the following ways: 

(1) Entirely by its input-output behaviour 

(2) In terms of the inputs, outputs and an algorithm or 

algorithms defining the functions within the system 

(i$) In terms of the inputs, outputs, a predefined structure 

and the data flow 

Despite the distinctions in the different ways however, the 

basic structure of the description must necessarily be 

common. A designer may wish to use any one or more of the 

abovenethods to describe a system depending on the size of 

the system and the detail available. 

The description therefore, is organized in a block structure 

similar to Algol; however, there are some important 

differences. In Algol, a block introd'uces a new level of 

variables,/ 
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en, labels etc., or it aay be an independent entity, 

in the fort;) of a - , re, which may be accessed by program 

with actiial parameter substituting the dummy parameters of 

the procedMre. 'Owing to the sequential nature of Algol, as 

any other programming language, only one copy of each 

procedure needs to be maintained. In the logic design 

language however, a 'procedure*, or in the general terms, 

a syatem or a Bub-system, may be one of two types, namely, 

one which is shared, in the same way as an Algol procedure, 

and one which is duplicated. 

We define FACILITY as being a system or a sub-system which 

is shared, with different arguments as necessary, and a 

MODDIjE as being a system or a sub system which is duplicated 

for each separate use. Of course, a module or e. facility in 

turn may contain, within it, additional modules ot facilities. 

In the logic design language (LDL) therefore, a system i& a 

Module containing various other modules and facilities and 

the description in the LDL in a program defining the inter-

relation between the inputs, outputs and any facilities and 

modules contained in the System Module. In a programming 

language this Interrelation is always defined by an 

'algorithm; however, in LDL it could be in one or more 

forms as selected by the designer. For exaaple, the 

description may be a truth table, a state table, flow table, 

wave form description, functional algorithm or an algorithm 

in terms of predefined structure. The designer specifies 

the/ 
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the type of data involved by succeeding the BEGIN at the 

start of the block by the appropriate type name and when 

the type of information is to be changed, this is done by 

introducing a new block, 

A module or a facility in general must be declared before 

it is used. However, two other forms are also allowed, 

A block may be declared as FORWARD in which case the 

declaration is expected later on in the description. 

Alternatively a module or a facility may be declared as 

LIBRARY where a library of previously designed modules or 

facilities has been set up and is to be used when completing 

the description. The library facility is particularly useful 

when a team of designers design different sections of a 

system separately i&nd compile a library in the process 

which is then accessed to complete the overall design. 

As mentioned earlier a block introduces&new level of 

variables, label etc. thus an identifier declared in an 

outer block is accessible to an inner block except when an 

identifier with the same name is declared in the inner 

block. The identifiers declared in the inner blocks are 

never accessible to the outer block. Similar restrictions 

also apply to labels. 

The/ 
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The ey.ntaz for a 'progreun' iia the LDL is given below in 

the Backus-Naur form 

^progran^ 

^lock^ 

^(unlabeled block^ 

<(block 

^ l o c k head^ 

<^block name^ 

^nput liat^ 

<QLdentifier list)) 

^utput liet^ 

(^alue part")> 

Specification part)> 

<(type^ 

description^ 

description head^ 

(block^ FINISH. 

'2 Unlabeled blocki^ | ̂ abel')^ I <^lock)> 

» ^block type^ ^block head^ <(deGcriptioi:i^ 

END.I 

(^block typ^ ((block head)> FORWARD| 

^lock typ^ 4[̂ block head^ LIBRARY 

- MODULE I FACILITY 

- name^ ( ^nput liel^.^utput list^ ) 

^alue part^ dpGcification part^ 

^dentifier^ 

^identifier list^} <empty)" 

<identif ier"^, j^identif ier"^ . 

identifier list^ 

identifier list^ j <empty^ 

VALUE identifier list^ j <empty')> 

(^identifier liGt^.|<(type^ 

^identifier liet^ • 

^Pacification part^ 

SCALAR I VECTOR |MATRIX |CLOCK | PULSE 

^description head^ « description tai]^ 

BEGIN description type^ « 

declaration^ 

description type"))- ^ TRUTH TABLE |STATE TABLE | FLOW TABLE | 

BOOLEAN EQ.! 

WAVEFORMj REGULAR EXPRESSION] 

FUNCTIOTiALj STRUCTURAL 
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^declaratior^ ^identifier likt^ -

^eclaration^ 

GLOBAL CONDITION ^ B o o l e a n e x p r e s s i o n ' ) ' 

^eclaratioa)> 

description tail^ 22 ^block^.description tail^ 

{description in the appropriate format j 

A typical example of an adder would be as follow: 

MODULE ADDER ( A . B . K 1 . I . . C , K . ) . 

VECTOR A.B . C { [ O : ! ] . SCALAR K l . I . K . 

BEGIN S T R U C T U R A L . 

SCALER J . VECTOR KP [ o : I + l ] . 

LABEL L . 

MODULE ADD ( A . B . K 1 . . C . K ) . 

SCALAR A . B . K l . C . K . 

BEGIN TRUTH TABLE . 

ABKl CK 

000 00 

001 10 

010 10 

Oil 01 

100 10 

101 01 

110 01 

111 11 

END . 



125 

0 K [o] 0 . 

1 L; J 0. 

2 ADD (A [j].. C [j] . KP [j + l] ), 

3 J J + 1 . 

4 IF J6l GOTO L. 

5 K < - KP [j + i] , 

END. 

6.3. P^iBcriptioa 

The description of a system may be in an abstract form, e.g. 

when the system is defined entirely in terms of its inputs-

output behaviour. Common forms of such descriptions i&re 

truth tables, state tables, flow tables, boolean equations, 

regular expressions etc. A description in one of these 

forms has neither a provision of any kind to include 

algorithmic type of description nor to introduce named 

modules or facilities other than those determined by the 

subsequent manipulation programs. The advantage of such 

a description is that the full power of automation may be 

applied to produce an optimal design. The disadvantage 

however is that the description tends to be very lengthy; 

and an interactive mode of operation to develop it is 

preferred and this in turn requires a versatile command 

structure. A suitable command structure to develop an 

abstract description of a combinational network is given 

in the following section. 

A major part of the description in LDL however, will be in 

the form of an algorithm either at an abstract level or in 

terms/ 
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terms of structural constraints of the system. In both 

cases the description is given by statements. At an abstract 

level a statement may be a data transfer as in a programming 

language, or at a structural level it may be a register 

transfer type of statement. 

In general a statement defines a sequence of actions to be 

performed and once initiated, the execution of tHe 

cannot be interrupted. A set of statements may be grouped 

together to foj^ a compound statement where again once 

initiated the execution of the statement cannot be interrupted 

unless a global condition declared within the compound state-

ment becomes false. A compound statement is distinguished by 

enclosing statements between BEGIN and END. The enclosed 

statements themselves may be any statements including compound 

statements. A compound statement may also introduce new 

global (global to the compound statement) conditions and new 

variables. 

Sequencing is implicit in the order in which the statements 

are presented except when modified by either explicit or 

implicit parallelness or by branching. Labels may be 

associated with each statement for branching. 

Each statment can also be made subject to a condition or a 

set of conditions, in the same way as in Algol as long as 

the evaluation of the conditions produces a logical value of 

true or false. These conditions can be any relational tests. 

A statement may also contain several sets of conditions and 

the corresponding actions for each condition similar to the 

Algol conditional statements. In addition we introduce a 



notion of global conditions which are tested prior to 

commencement of execution of each statement. For pie 

a clock signal or an interrupt signal frocoperirhoi-al unit 

may bewglobal condition. The scope of global signals 

also be controlled by declaring it at the appropriate level 

that is if a signal X is declared, as global in block A then 

it influences all the statements and blocks contained in 

block A but if block B cortains A then signal X will not 

influence the execution of block B. 

We also introduce additional conGtructs tcr indicate 

Bynchronism and parallel execution, namely the until state-

ment, when statement, the while statement and the in 

parallel statement. In the first three cases a condition^ 

as defined by a boolean expression or a relational test is 

monitored continuously. In the until statement the state-

ment following the test is executed, repeatedly if necessary, 

until the condition becomes true , the converoe is true in 

the while statement if when the condition become false 

control is passed to the next statement after the while 

statement. The when statement effectively requires the 

system to halt until the condition tested becomes true. 

The in parallel statement initiates the execution of all 

the statements defined in the scope of the in parallel 

statement together. The statements defined to be executed 

in parallel may themselves b$ any statements including in 

parallel statements. This facility we feel is particularly 

important when asynchronous processes are executed in 

parallel. 

The/ 
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The operations within a statement are evaluated using 

right to left (N,B.) procedure as required by the Iverson 

notation. This however, may be modified by parenthesis. 

The syntax for a description is given below in the 

Backus-Naur form. 

description)* 

^statement)* 

^unconditional 
statement^* 

^until statement/ 

Statement")), ^descriptiori^l 

^tatement^ 

^unconditional statement!<(condltion)> 

.(unconditional statement)^ ^(alternative 

^ntil statement^ | (while statement]))! 

^vhile statement^ .,^ 

^when statement^ « -

^in parallel 
statement^ 

^simple statement^ 

^branch statement^ ; 

^ r a n c h pointy J 

^ssignment^ ; 

{/compound statemen^^ 

^when statement^ 

^ n parallel statement^ | pimple statement^ | 

(^lompound statement^ ̂  

facility call statement^ | 

^odule call statement^ 

UNTIL (boolean expression^ 

DO (^^^statement^ 

WHILE ((boolean expressior^ 

DO ^tatement^ 

WHEN ^oolean expression^ 

DO (^statement^ 

IN PARALLEL DO BEGIN <$escriptioz(> . END 

^ranch statement^x | ̂ assignment)) 

GOTO ^(branch point)) 

<^abel)> 

^assignment written in Iverson notation^ 

BEGIN declaration)) <(^escription^ END 
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^boolean expressioi^*-^ ^an expression when evaluated returns 

a true or false value^ 

^facility call •«« <narae of facility^ ( ̂ 'input parameters^ 
statement"^ 

<putput parameters^ ) 

<^name of facility^ «•» <^identifier> 

<^nput parameter^ ^parametei^. |^parameter^ 

^input parameters^ 

^utput parameter^.^- ^arameter^ . | ̂ parametez^ 

^utput parameter;^ 

^arameter^ ^dentifiei^ j^xpreBsion^ 

<̂ raodule call , •- ^lame of module^ ( /input parameters^ • 
Btatement)> ' ^ 

^output parameters^ ) 

^name of module^ •«- <^ideiitifier^ 

^ondition^ IF ̂ boolean expresGion^ I'HEN 

^alternative^ ^«- ELSE ^tatement^ | ^empty^ 

6#4 Variables 

The variables in the description are interpreted ae in 

IverBon notation, i.e# they can be logical* integer or real 

variables either in a scalar form or vector form. Matrix 

manipulation is not envisaged at present but a reference may 

be made to any vector (row or column) of an array. A variable 

must be declared (at the head of the block) before it is used. 

However, it is not distinguished by any particular terminology 

as is inherent in the Iverson notation but is implied in the 

usage. For example, a vector quantity when used as a scalar 

will refer to the right most scalar quantity. Similarly a 

numerical quantity used as a logical quantity will be 

interpreted as true if it is non-zero or false if zero. 



7. CCmMAND STRljCTUEE 0? ^ , TRUTH GENERATCR 

In the following section the facilities and the coamaad 

structure which will be imed to input and complete a truth-

table in an interactive mode are presented. The account is 

divided into three subsections: the types of combinational 

networks and their requirements from a designer's viewpoint 

are given in the first, and the command structure and the 

proposed method of implementation using the Honeywell $16 

computer in the department are given in the second and third 

subsection respectively* 

7.1 The Requirements 

The behaviour of a combinational network may be known to 

the designer in different forms. These are broadly 

categorised into the following types which are not 

necessarily exclusive but provide convenience of detail-

ing. 

i) The full truth table. The designer knows and wants 

to input the output behaviour for each input 

configuration*. 

ii) The truth table with incompletely specified I.C* 

This is similar to i) above except that the designer 

only knows a subset of the I.C. and the remaining 

are either 'don't cares' or a fault condition* 

In both the above cases the ̂ signer can specify each input 

or output variable as being one of three values, viz. 

* Here after referred to by I.C. and similarly an output 

configuration will be referred to by O.C* 1 % 
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on or a 1 condition, off or a 0 condition and a 

* don't care' condition. If the entries are specified 

in binary notation, value of each variable can be 

explicitly indicated as a 1, a 0, or a - respectively® 

However, with up to 20 input and 20 output variables 

the full configurations in binary form are tedious and 

lengthy to input. A shortened version is often used 

where three bit groupings from the least significant end 

(the right hand end) are expressed by their equivalent 

octal value. A slight difficulty arises when the don't 

cares have also to be specified and to overcome this the 

following two* methods are often used. 

1) Each configuration is specified as an octal duple 

with the first element set equal to the octal value 

when all the non-on conditions, i.e. the off's and 

the don't care's are set to 0 and the second element 

similarly specifying the off conditions. 

2) The second method is similar but specifies the on and 

the don't care conditions. The choice between the two 

is arbitrary and entirely depends on the designer* 

In some cases, it is easier to input the entries with their 

equivalent decimal forms. The don't care conditions are 

then treated in the same way as above* 

iii) Routing Networks. This does not actually involve 

real 'design' but as it is one of the commonly 

used types it is included in the discussion here* 

I V 

* Others are possible but they are only different combinations 

of the ON, OFF, and DON'T CARE conditions and are not 

considered here. 
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It is characterized by the fact that inputs can 

be divided into controlling variables and the 

routed variables. 

Functional Relation. Î at s&l truth tabks j&M known 

in their abstract form and in fact, the most common 

mode is when the I.C. 's have a mapping into the O.C.'s 

and this mapping is known* The designer may wish to 

specify this mapping as a logical or numerical function, 

v) Iterative Combinational Networks. These fall between 

the combinational and sequential networks. In practice 

sequential techniques are often used to solve problems 

of such networks and a combinational treatment tends 

sometimes to be academic. However, these networks 

will be included in the programmes where they may be 

specified by DO loops similar to the FORTRAN DO loops. 

7.2 The UsaRe of The Programme 

The first essential set of parameters required for the 

programme is the input output size. The present minimization 

programmes at the Southampton University operate on up to 

20 input and 20 output variables, and this same limit will 

be adhered to in the truth table generation programme. 

The variables can be sepGurate identifiers or members of 

arrays or a combination of both, subject to the condition 

that the input and output names may not be common. These 

will be declared in response to requests generated by the 

programme immediately on initiation. 

During the process of generating the truth table in an 

interactive mode, it may be necessary to be able to type 

headings/ 
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headings out and the truth table filled in a column 

foria. Since there are only 72 character positions per line 

available on the tele-type unit, a severe restriction has 

to be placed on the length of each identifier. A maximum 

of two characters, both alpha characters, per identifier 

and in the case of array identifiers the first character 

v;ill be assumed to be the name of the array and the second 

character, a digit, will specify the relative address. 

The latter constraint allows only 10 variables in an array; 

however, it is felt that this limit will still be quite 

adequate and if larger arrays are necessary they can be 

specified as two arrays. 

The generation of truth tables is achieved in two ways: 

&) by inputting a truth tdale via the console by an inter-

active process or 

b) inputting a functional description and letting the 

program; generate the truth table. 

These two methods are distinguished by the directives 

immediately following the input-output declaration. If a 

functional description is put in, the program: will fill 

up as much of the truth table as possible and the remainder 

will need to be completed by method a). 

The completion process, a), is executed in two modes: 

i) the program cycles through each unspecified I.e. 

and the designer fills in the appropriate O.C. and 

ii) the designer specified both I.C. and the correspond-

ing O.C. 

A/ 
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A mode indicator is used to identify each mode: it is set 

to zero, also the default mode, for the former and set to one 

for the latter. 

a) Fully specified truth table in binary form. 

In. this case, immediately after the input output declaration, 

and when the programme is in an awaiting state, the designer 

iaputa a command Since there are no other commands 

programme will recognize this as a fully specified truth table 

input in mode 0, and will print out two headings INPUTS and 

OUTPUTS followed by a list of th^ input and output variables 

in the same order as in the declarations. It will then print 

out the I.e. 000...0 and invite the user to type by displaying 

a question mark (?). The designer then enters the corresponding 

O.C. with I's, 0 s or a blank or hyphen to denote a don't care. 

The teletype will be automatically aligned fcr columnizing but 

if the inputting is prematurely terminated by a carriage 

return, line-feed or a semicoln, the remaining entries are 

agGumed to be don't care's. After carriage return the programme 

will line feed and print out the next O.C. and so on. Any 

additional carriage returns or line-feeds will be ignored. 

b) Fully specified truth table in octal or decimal form. 

If a decimal or octal print out or if the designer wishes to 

input in decimal or octal the following commands are used: 

6TY OC,OF carriage return for octals with OFF's specified 

see 7.1.ii 

@TY 00,DC " for octal with DON'T CARE'S 

@TY DE,OF " for decimal with OFF'S 

and @TY DE,DC " for decimal with DOH'T CARE'S 

These/ 
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These commands instruct the programme to type out in the 

appropriate format and also inform the programme as to which 

type of inputting should be expected. They can be used 

before the initial @G0 command in which case the list of 

variables as headers will be suppressed or if in the middle 

of the programme, the last line will be reprinted and the 

subsequent output will be in the required format. A return 

to the binary format is made by the command 

the headers then will be displayed again. 

The designer on the other hand can override thtk specified 

format while inputting by typing in 00 (the letters 0), OD, DO* 

DD and BI before the actual inputting to mean octal with off's* 

octal with don't care's,decimal with off's, decimal with don't 

care's and binary respectively. 

c) Truth table with incompletely specified I.C.'s 

As indicated above a set mode command, 6M0 e can be used to 

set the mode to 1 to allow the designer to input the whole or 

the required amount of the truth table himself. A more common 

usage, however, is when a subset of the inputs need to b* 

given a value and the others are cycled through. The set 

variable commands, @SV are used for this, the format of which 

is shown below. 

@SV variable list a logical value 

For example, in a 4-input, 2-output combinational network the 

first two inputs never occur together. A possible method for 

this is as follows: 
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INPUTS ? a,b,c,d 

OUTPUTS ? e,f 

@sv a=0 

@sv bsl 

@go 

The programme messages are in 

capitals 

INPUTS 

A B C D 

0 1 0 0 

0 1 0 1 

OUTPUTS 

E P 

? 1 -

? 0 0 

? 1 1 etc. followed by 0 1 1 0 

a=l 

@i8v b=0 

©go 

and filling in the next part. The other O.C.'s are get to 

DON'T CARE'S by entering 

@ot = — 

8go 

and finally terminating the input process by 

@fi 

In the above example the 'others' were set to DON'T CARE'S, but 

they could just as well have been set to a required O.C. to 

indicate a fault condition. If the input variable assignation 

was to be done in decimal or octal then the VALU operator, 

corresponding to the Iverson operator, could be used as 

@sv valu Variable list^ = ^ecimal valued 

and @8V valu Variable list^ = '^ctal value^ 

respectively v;here a variable list is a list of variables 

separated/ 



separated by commas acting asceo.tAienatian'* operatore. 

d) Routing Networks 

the inputs are divided into controlling signals and 

routed signals. In theinput specification routed signals 

are set to DON'T CARE's and the remaining cycled through* 

The O.C.'s then could be inserted as in formal programming 

languages, i.e. by enclosing literals in quote marks or 

preceding them by'equal to' signs; however, as tlbs number of 

characters in a line is necessarily limited, a non-p]rinting 

character, CTRL L, will be used. The choice of the character 

is such that it does not conflict with any of the control 

functions of the tele-type unit; the letter 1 is chosen to 

stand for literal. 

e) Functional Relation 

A ©FUNCTION directive is used to instruct the controlling 

program to accept the subsequent input in functional format; 

however, since the translation on the HONEYWELL $16 computer 

is to in conjunction with the Fortrem Compiler, differences 

have to be introduced. The usage of the format is given 

below* 

i) No segment declaration is made since the functional 

specification will consist of only one segment; 

however, this segment may be processed in several 

steps each initiated by ©GO directive, providing that 

the specification until then is complete within itself, 

i.e. it does not refer to a non-existing lab6t etc. 

* defined later 
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ii) For every new instruction, the controlling 

programme will type out a sequence number which 

may be used for deletion etc. 

iii) All quantities will be assumed to be of either logical 

or unsigned integer type and the operations between 

them will determine their type. The operations for 

the time being will be limited to those listed below 

with their trans-literation, but it is hoped that the 

entire vocabulary of the Logic Design Language 

connected with combinational networks will be imple-

mented. 

iii.a.) Each single variable may have two logical values: 

True and False represented by a 1 and a 0 respectively, 

Arrayed variables will be considered to be strings 

with logical values for each elements If in an 

assignment the quantity on the right hand side is 

greater than the capacity of the variable on the 

left hand side, then only the right hand portion 

will be preserved and the rest will be lost; on 

the other hand if reverse is the case then the 

left hand side will be filled by O's. Similar 

arrangements will be employed in arithmetic 

operations. 

iii.b.) In string operations the variables may be 

1) whole arrays in which case the arrays are 

referenced by their names only, i.e. without 

indices, 

2)/ 
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2) parts of arrays in which case the first and 

the last indices are given in parenthesis 

separated by a comma and following the names 

of the arrays, and 

3) Get up using concatenation operators (,). A 

new variable may be introduced to assume the 

value of the concatenated array. 

Examples of 2 and 3 arc A (1,4) and A1,A2,A3,A4 

where each refers to the sub—array formed out of 

the first four elements of the array A. In the 

latter case an assignment 

N = A1,A2,A3,A4 

may be used where N is a new variable which may 

be used in subsequent manipulations. 

iii.c.) The processing order will be from the right to the 

left unless modified by parenthesis. 

iii.d.) Unpredictable results will occur if any of the 

variables on the right hand side have been set to 

DON'T CARE'S before the instruction is executed. 

iv) The following operations will be implemented. 

Function Symbol Example 

Logical Not 1' complement ' A' 

logical Or A t B 

Logical And « A.B 

Logical Nor ( ̂  )' (A t B)' 

Logical Nand ( . )' (A.B)* 

Addition + D+E 

Subtraction/ 
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Function 

Subtraction 

Equals or assignation 

Catenation. 

Greater than 

Greater than or equal to 

Equal to 

Not equal to 

Less than or equal to 

Less than 

Conditional 

Branch 

Symbol 

t 

> 

> = 

< = 

< 
IF 

GOTO 

Example 

D-E (D E) 

A = D+E 

A = D,E 

IF (A >B) A= C 

]# (A>= B) A = B' 

IF (A=.B) GOTO 10 

IF (A='B) GOTO 20 

IF (A <^=B) D= D' 

IF (A <300) B=0 

IF(G) A=B' 

IF(A='B) GOTO 20 

v) Transfer of control from normal execution is achieved 

by GOTO, IF and DO statements. In the present case 

only ordinary GOTO statements will be implemented,i*e, 

computed GOTO and ASSIGN statements will not be 

considered. The DO loops will be the same as in Fortran 

except that the terminal statement for each DO loop 

must be a GO (without the @) statement. 

vi) There will be no DATA statements. 

vii) When typing the specifications in^the first characters 

following the sequence numbers m;%y be a C to indicate 

a comment line or a digit to start a label which should 

be all numeric, or a form character to skip the label 

field. There will Le no column for continuation lines 

but instead a delimiter (;) is to be used to indicate 

the end of a program line. Comments may be introduced 

following this semicolon and the next carriage return. 

viii)/ 
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viii) There will be no instructions similar to the FORTBAN 

input-output instructions and all outputting will 

have to be done in the format specified elsewhere. 

However, a print-out of the programme written so far 

may be obtained by introducing a 1 after the terminal 

©GO statement and it takes the form 

©GO 1 CR for a print out 

@G0 CR for no print out 

f) Iterative Functions 

This is a special category of e) above and the DO loop 

format defined above will be used for this type of 

function. 

The above instruction define the commands used to partially 

or completely fill the truth table. The remaining 

instructions deal with modifications or subsequent manipulation 

such as displaying or paper-tape output etc. Present plans 

do not include visual display using the graphics terminal, 

but since this will provide a very rapid and useful means 

of checking the truth table contents serious consideration 

will be given to its use later on. 

i) Set up a mask. An assignment is used to setup a mask 

for deleting purposes. Upto 10 masks will be allowed 

at any one time and are set up by the command 

©SMn = ^mask pattern^ 

where n is a decimal number 0 to 9 inclusive. The mask 

pattern can be of any of the five types used in input 

output/ 
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output specification discussed earlier. If the 

pattern is specified in binary and not all entries 

(each entry corresponding to an input variable) are 

specified, the mask will necessarily be left justified 

and in the same order as the input declaration5 the 

unspecified entries will be set to DON'T CARE's. 

ii) The delete instruction. The delete instruction is 

@DL and can take one of the following forms. 

a) @DIj Mn where n is a decimal number 0 to 9 inclusive 

and Mn specifies a mask previously set up* On 

execution the instruction causes the O.C.t's) 

corresponding to the I.G. specified by the mask 

to be deleted. 

b) @DIj Mn2^,Mn2 where Mn^ and Krt2 specify a mask each 

as before. This instruction causes all the O.C.'s 

corresponding to the I.C.'s between those 

apeeified by the masks to be deleted. Mng niay 

replaced by a decimal number in which case this 

instruction will be executed as in a), and repeated 

for the entries in the table the number of which is 

specified by the decimal number. Note that if 

VALUE Mn^ = VALUE Mn2 + 1 the deletion process will 

cycle until all the truth table is deleted. A 

better method is to use the following form. 

c) @DL AL This instruction deletes all, i.e. 

effectively restarts the programme. 

d) / 
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d) Using the format of a) and b) above the masks can 

be set at the time the delete instruction; the 

Mn's then are replaced by binary, octal or decimal 

patterns® 

e) If the input format is of functional type a delete 

instruction should refer to a line by its sequence 

number in the functional specification. The format 

for the delete instruction then is 

@DL a 

where n is the sequence number 

A line following this command may be 

1. another delete command 

2, start of additional functional specification, 

in which case the updating specification until 

the next delete command or ©GO command will be 

inserted after the^lete line, or a 

3* 8G0 directive to execute the updating and 

reprocessing, A 1 is introduced after the ©GO 

directive if a listing of the updated file is 

also required. 

iii) The entries may be changed instead of being deleted by 

the @CE (change) instruction. It is used as follows. 

@CH Mn,Mm 

Mn specifies a mask as in ii.a.) above, and Mn is a 

binary, octal or decimal pattern of the usual format 

which should replace the O.C.('B) corresponding to 

the I.e. specified by the mask Mn* 

iv)/ 
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iv) Since the programme is on an interactive basis, it is 

quite possible that part-way through a need for a new 

input or a new output may arise or that an input or 

output may be found redundant. Rather than starting 

the programme all over again the following four 

instructions may be used. 

@RM IP, ^input variable lisi^ 

@RM OP, <^utput variable list)> 

IP, ^nput variable li8t)> 

@NW OP, ^utput variable list^ 

where RM, NW, IP and OP refer to remove, new, input and 

output respectively* Usually an input should be removed, 

only if it is redundant; however, if on its removal 

conflictions are encountered then these will automatically 

be brought to the designer's attention. Similarly if a 

new input is introduced then the two O.C.'s 

'distinguished' by this input will be set equal to the 

same value as when it did not exist and the subsequent 

entries of course will be correctly treated. The out-

put entries corresponding to the new outputs prior to 

their introduction will be set to DON'T CARE'S. 

For convenience of implementation, problems with upto 

12 input or output variables are treated differently 

from those with greater inputs or outputs. Thus care 

should be taken to see that these boundaries are not 

crossed with the above instructions. 

v)/ 



145 

v) The @EQ instruction. This instruction is used to 

equate the O.C.'s corresponding to two or more I.C.'s 

and may have two, three or four arguments according to 

the function required. Each argument specifies an 

I.e. and can be defined directly or by masks set 

previously set as with @DL or @CH instructions. If 

two arguments are specified then the O.C. corresponding 

to the second I.C. is set equal to the O.C. correspond-

ing to the first; if three are specified then the 

second two refer to the limits between which the equate 

operation has to be repeated; and if four arguments 

are specified then, the block specified ihthe last two is 

equated to the block specified by t]^ first two. Errors 

such as conflictions or unequal length blocks will be 

brought to the designer's attention. 

vi) Mode setting. The mode is set by the directive 

@M0 = 

A '1' or a '0* is entered on the right hand side to 

set or reset the mode respectively. 

vii) Inputting via the paper tape reader. To enable the 

paper tape reader for command and data input the 

directive @PR will be used. The last instruction on 

the tape must be @AK to return the control back to 

the tele-type unit key-board. 

viii) File* Input. If a file of the truth table is to be 

input the instruction @FI n will be used, where n is 

a decimal number identifying the file or if it is 

preceded by ' then it is an octal number. 

* see following subsection 
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ix) Output, At present only two output media are 

considered, namely the tele-type unit and the paper 

tape punch; however, it is hoped that the graphics 

terminal could also be used at a later data. The 

corresponding instructions are 

@AP PLi, PL2 for output on the tele-type unit and 

@PP P L i j PLg for output on the paper tape punch 

PL% is a parameter list to define the scope of output 

which can be one of the following three: 

a) A small section of the truth table whose start 

and finish are specified in the same way as in 

@DI, instruction. 

b) A file is output in which case PLi is specified 

as FN= followed by a decimal or octal number as 

in viii) above. 

c) The entire truth table is output in which case 

a hyphen (-) is written for PL^. 

PLg is a parameter list to indicate the format 

of output and same abbreviations as in the @TY 

instruction will be used. 

Note 1: The paper tape output is to be compatible 

with the input requirements of the sub-

sequent minimization programmes and it 

should be remembered that the binary 

format is not used. 

Note 2: If the file number is entered as a 

hyphen (-) then the file currently being 

processed will be output. 

x)/ 
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x) Return to B.O.S. The programme will normally be run 

under the auspices of the operating system B.O.S. 

controlling the computer. A return to the operating 

system will be made if at any time @SB is typed in. 

xi) Error Corrections 

i) Errors while typing in. The same conventions 

as those being currently used with B.O.S. will 

be employed, viz. 

a) Delete the last character. This is done 

by one CTRL H per character to be deleted 

with the modification that spaces will be 

ignored and one deletion per character 

other than space should be input. 

b) Delete the whole line. A left pointing 

arrow is input to delete the whole line, 

ii) Interruption during execution. It will be 

necessary to include a facility to interrupt 

the execution phase; however the exact format 

will be defined at a later date. 

xii) Comments. Comments may be included any time between 

quote marks These will only be useful at input 

time as these will not be stored and cannot be retrived 

except in the case of functional specification, where 

they are introduced by a C in the first column of a new 

instruction line or following the terminating semicolon 

and the subsequent carriage return. 

7 .3 / 
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7.3 Proposed Implementation 

The programme is required to deal with upto 20 input and 

20 output variable problems. If a full truth table is 

generated for a problem of this complexity then it would 

contain of 2^0 rows and 40 columns or putting it another 

way 2 words of storage, assuming that each word can hold 

all the 40 columns, will be required. The constraint demands 

that the word length be 40 if only O's and I's are to be 

stored or 80 if the DON'T CARE's have also to be stored. 

Using a 16 bit word therefore, 2^^ x $ words of storage 

space will be necessary. 

However, in practice, no designer is likely to generate a 

truth table of such a size or if he does not all the entries 

are likely to be completely distinct and this could lead to 

a saving of storage space. In any case, the storage and the 

manipulation has to be severely scrutinized to keep the problem 

within manageable size. Various schemes for storage are 

considered below. 

1) The address of each computer word is made to match with 

an input configuration. This immediately has an advantage 

that the input configurations do not have to be stored 

thus on an average the storage space is halved. This also 

has the disadvantage that if the inputs contain any DON'T 

CARE 'S then the corresponding outputs have to be repeated 

and this means that for every DON'T CARE input two 

identical output entries have to be defined. Thus if 

there are a large number of BDN'T CARE input configurations 

a large amount of redundancy results. 

2) / 
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2) The I.e. is stored along with its mask* and the 

corresponding output entries which will require only 

the conditions specified by the designer to be stored; 

however, again DON'T CARE conditions have to be expanded 

and secondly, since this data will be stored sequentially 

as it is input . the order of the I.G.'s will be lost 

and consequently, no indication will be available as to 

which I.C.'s are not specified other than by placing an 

end marker and cycling through the memory to teat for an 

I.e. 

A third method is to store the I.C.'s in the same way as 

above, but in an order according to their values. To keep 

a tab on the relative position of the entries they could 

be either 

a) stored consecutively in an ascending order but in 

which case a later addition or deletion means pushing 

down or raising the later entries or 

b) attaching a link word to point to the successor, i.e. 

to use a list structure. 

The list structure method requires one more word per entry; 

however, it offers two major advantages: 

i) it is very flexible since the size of the list 

can be altered very easily by altering the links 

and 

ii) it offers a concise and precise way of storing 

data. 

It is proposed, therefore, that a type of list structure 

be adopted. 

* defined overleaf 
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Each block of data, or cell, will require to hold three 

items of data, namely the I,C« in an expanded form, the 

O.C, and a mask. The mask defines which of the entries 

in O.C. contain valid OFF's or ON's and which are to be 

taken as DON'T CARE's 

Input More sig. Mask for Less sig. Mask for 
Link 

L.S.p/P. Gonfig. output M,S.O/P. output L.S.p/P. 

Figure 1. A cell in a list structure. 

The I.C.'s are the same as inputted by the designer if 

they have been specified in full, or fully expanded by the 

programme based on the specification provided by the 

designer. The full expansion is necessary since for 

subsequent manipulation the truth table must contain all 

the input configurations for which a non-trivial output 

configuration exists. In storage the two trivial output 

cases which will be omitted are as follows: 

1) when a large number of I.C.'s exist for which the 

outputs are all DON'T CARE's or 

2) when a large number of I.C.'s exist for which the 

outputs are either all 0 or some other specified O.C. 

Both these cases are defined by the directive @0T = 

and the programme will check against this before outputting 

the truth table* 

The Data Words. The programme will handle upto 20 input and 

20 output variables. Since the computer word is only 16 bits 

long at least 2 words will have to be used for each output 

configuration/ 
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configuration, however, allowing for the relevant masks 2 

more words will be required. Hence in a full sized problem 

each block of data must contain at least 4 computer words per 

O.C. Similar considerations for the inputs show that 2 words 

per input configuration are necessary. Thus, 7 words including 

the link word per block corresponding to each row of the truth 

table will be necessary, i.e. in l6k store (that of the 

Honeywell $l6 computer) only about 2k entries will be possible 

without leaving much roim for the programme itself, "rhis is 

overcome by dividing the data into files, the number of each 

file is determined by the value of the more significant bits 

(the first inputs during declaration), and the address within 

a file by the value of the less significant bits. The division 

between the less and the more significant bits is, therefore, 

dictated by the constraint that within each file each entry is 

directly addressable. This in the worst case means that all 

20 outputs are specified for each I.C. and the whole file can 

be held in the computer store or within about 12k, allowing 

the number of I.C.'s per file of upto about 2k or 12 input 

bits. The less significant half will therefore be with 12 

input variables and the remaining 8 inputs will generate upto 

256 files which also will be linked in a list format and stored 

in backing store. Access to a file in the backing store is 

obtained by dumping the|-i^^P*^entMstcire into the backing store 

and reloading the store with the named file. 

For economy of storage the programme in core will be limited 

to instructions to call the relevant routines from the disc 

store/ 
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store and the current programme operating on the data. Thus 

the area in store will appear as a small executive to which 

the user communicates. 

Most of the routines will be in DAP, the low-level language 

for the Honeywell $16 computer but for functional specification 

the Fortran Library and some subroutines in Fortran will also 

be ueed. 



8. CONCinSIONS 

8.1 Summary 

In the design of any logical system: , the behaviour is 

usually expressed in a natural language first, the designer 

then extracts the relevant information and puts it into 

formal terms and then proceeds to the final design. Various 

techniques of abstraction are investigated here; and their 

applications to large system design are studied and tl^ 

conclusions summarized below. A pertinent factor involved 

is that the human designer has relatively little patience 

to learn new techniques and abandon his usual methods, 

particularly if the new techniques are rather remote from 

his way of thinking. 

For a small scale design, the natural language specification 

is easily converted into a flow table, state table or a 

state diagram, and switching theory can be used extensively 

to obtain an optimal design. However, large amounts of 

store are used in the process especially in the last case 

where graphical inputting is required. 

The algebra of regular expressions has been developed to 

express the above information in a linear form and in 

mathematical terms allowing easier computation. It is 

precise and can apply to aJll synchronous and pulse mode 

systems; it is also closer to a natural language 

description them., say, the state table approach. However, 

the use of regular expressions as a design tool has several 

problems. The major ones are 

1) It/ 
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1) It is highly mathematical and as such the designer 

will have to be educated sp0cially« 

2) Different methods used to obtain the regular expressions 

tend to produce different answers and which usually bear 

little or no resemblance to each other, despite the 

advances; in the algebra, their identity is still cumber-

some to prove* 

3) As in the case of the state table approach, it is only 

applicable to finite state machines. 

The last objection is particularly relevant, since large 

scale systems cannot, in general, be represented as finite 

state machines, or conversely, if they are so specified, 

the description in terms of, say, state tables would be 

t^itronomical in size. 

The large scale systems of interest to us are essentially 

instruction execution machines; the instructions may be 

known at a high level but their detailing, if any, is not 

known. The designer, designing intuitively, defines a 

structure with known capabilities and limitations. He 

then decomposes the instructions into low level commands 

which lie within the scope of this structure. The 

decomposition merely defines the way data is transferred 

between registers and the necessary control for it. 

Earlier register transfer languages, devised to express 

micro program were simple and could be directly mapped 

into/ 
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into hardware; and. time were good tools for analysis of 

already designed Gyetems and for tb: automation of imple-

mentation. %hey were however, limited in their Gcope of 

epecification which, tended to be lenwrthY. 

Further languages were developed to increase the flexibility 

and the epecific.ation ability to which notational and 

Operational conciGeness was introduced by using complex 

operators and macro cells. Some were usefully developed 

based on the structure of existing progreunming languages, 

such as DDL based on Reed's language [78] and Gas sandre based on Algol. 

Since all the languages used a predefined structure, the 

automatic part was still limited to deriving the controlling 

circuitry and the combinational logic driving the register 

structure. Gerace[ 54, $$] gen^ methods by which the 

register structure implied in the register transfer descript-

ion may be reformulated into an iteratively - connected -

machines structure and the formal abstract definition for ' 

each may be derived. 

He also gave methods of implementing the control part of a 

Bystem using read—only—memories* Another useful technique 

was given by Stabler [,6$] for microprogramme transformation* 

that is, to modify the structure and shift the line dividing 

the register structure and control structure. 

The Iverson notation [66] provides a means of describing 

the logical functions of a system at various levels of 

^detail, including elemental bit levels, independent of the 

machine/ 



machine structure and in an algorithmic manner, lending 

itself to a good implementation in terms of hardware 

realization. While providing excellent facilities for the 

description of an algorithm however, Iverson notation is 

particularly lacking in high level functional description 

and in timing. 

At the other end of the spectrum, some langauges were 

specially developed to d^iscribe the structure of a systemo 

The application of these languages in the early stages of 

design is limited, nevertheless they have a wide range of 

applications, including implementation in a design automat-

ion suite, structural simulation, documentation and fault 

diagnosis. 

Ideally we would like to employ techniques offered by 

switching theory in our design, since only these otr* 

enough to produce error free designs and also allow us to 

interface with the other aspects of design such as fault 

diagnosis in a consistent manner. Unfortunately however, 

switching theory is still at an infancy stage as far as 

large scale system design is concerned. 

The Petri Nets and occurrence graphs[ 97 jshow a promise 

of dealing with large scale systems in an abstract manner, 

with these it may be possible to produce a uni ed theory 

of system behaviour description and system architecture 

design. 
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8.2 Current Work 

One of the most important aspects of a design language is 

that it should cater for the different methods of design 

used by designers in a consistent and natural manner. It 

also should be easy to learn and be concise and precis® yet 

flexible. 

The structureof such a language has been proposed. We feel 

that this language allows a designer to express the design 

specification in a manner similar to his own thinking. It 

is block structured so that at the system level the blocks 

in the language correspond closely to the functional blocks 

making up the system. The control and timing interrelation 

between the functional blocks can be expressed at the block 

level. The blocks in turn can be detailed into further 

blocks as necessary. 

At the low level the description normally would be in an 

algorithmic form; alternatively the designer may choose to 

detail in a different form and use an interactive process 

to develop this detail. The library facility in the 

language allows this to be done without modifying the 

general structure of the description. 

A command structure to develop a description of combinat-

ional networks is defined to be used with the Honeywell ^l6 

Computer at the Southampton University. The main description 

however is related to the ICL 190? at the University. 

The/ 
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The language also provides a means of uniformly describing 

the processes of a logical system for design, simulation 

and documentation® 

8.3 Future Work 

The LDL language can be used to describe the design 

specification of a logical system. However, it is largely 

biased towards hardware systems, but is sufficiently flexible 

to include software specifications. The necessary extensions 

need to be defined. 

The command structure described herein also is limited to 

combinational network design. Additional command structure 

needs to be defined, say, similar to the one developed by 

Smith & Tracy TlOZj, and in particular for using a graphics 

terminal for this. 

The current scope of the language as a whole is necessarily 

limited for batch processing type of operation on the ICL 190? 

computer at the University. However, techniques need to be 

developed to suggest alternative functional blocking to the 

designer which he may choose to accept or ignore. This 

necessarily means that a suitable system design theory needs 

to be developed and the language used in context of this. 
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APPENDIX I 

Al-1 

Several languages have been described in the preceding sections and a 

comparison made; however, it is felt that an example of each would be helpful 

to illustrate their differences. Strictly speaking an example should be included 

for each language, but in some cases where the differences are small it would be 

pointless to do so; also for ease of comparison the same example is used throughout. 

Most of the languages only apply to digital computers and as such the example 

taken is a small, fictitious, 12 bits/word digital computer. It is not meant to be 

exhaustive of the capabilities of the languages but will be used to bring out any 

pertinent features. The block diagram of the computer and the instruction formats 

along with the instructions are shown in figs. A1 and A2 respectively. The description 

below, however, is limited to the multiplication algorithm only, and its flow 

diagram is depicted in fig. A3. 

Al-2 Regular Expressions 

The computer described here cannot easily be represented as a finite state 

machine and hence regular expression techniques cannot be applied. On the other 

hand if the multiplier was represented as a finite state machine then a description 

would be, albeit large, possible and this can be illustrated fairly simply. 

Regular expressions essentially describe the valid sequences to produce an 

output; if the two twelve bits are available in parallel then the minimum sequence ' 

length is one and the input alphabet will consist of 2^^ symbols and there will be 

23 regular expressions for the 23 bits of the answer. This then becomes a 

straightforward table look-up method. On the other extreme, if the multiplier is 

a serial multiplier then the input alphabet will consist of two symbols only but 

the minimum sequence length will be 24. 

Since each output symbol can assume only one of two values, its regular 

expression will contain all the sequences of length n, where n is the length of 

the smallest -sequence producing an output, which do produce the output as well 

as all the sequences of length n which do not produce an output followed by any 

of the sequences of length n producing an output. Hence, if P contains all the 

sequences producing an output but does not contain the star operator then the 

regular expression describing the machine is 

R = (P)* P ((P')* pf 
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n 

A 

B 

0 

A 
D 

8 
h 

PC 

V 

I 
\r 

11 

£ 

T~ 

^0" "II ' irCi 

4/ 11 

— 

8 

...g3»»>.i 

Combinational 

loRlc 

r — 

K 

+ 1 

1 
Q 

11 

Start 

M : Memory $12 12-bit words, B : Memory buffer, 

•A : Accuimilator, Q : Multiplier register, 

1 ; Instruction register, K ; Counter, 

AD: Address register, PC: Programme counter, 

OV; Overflow, S ; Sign register. 

Stop 

ifeset 

The Register Structure of the Machine FIGURE A 
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OP, ADDRESS = ADDl 

2 3 11 

Group A Operation Code (OP^) 

001 

010 

Oil 

100 

101 

110 

111 

Instruction 

Add to Accumulator 

Jump Unconditionally 

Jump if Accumulator zero or positive 

Store Accumulator 

Multiply Accumulator 

Load Accumulator Indirectly 

Decrement Store by 1„ 

OP^=000 OP, SHIFT COUNT = ADD2 

2 3 5 6 11 

Group B OP^ = 000 OP^ 

000 Halt 

001 Clear Accumulator 

010 Complement Accumulator 

oil Spare 

100 Right Circulate 

101 Left Shift 

110 Right Circulate Double Length 

111 Left Shift Double Length 

FIGURE A-2 

The Order Code Formats 
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. Start 

Is Instruction Multiply >— N o — 9 - — Out 

I 
Load Multiplier into Q 

and Multiplicand into B 

Set Counter to 12 

Check least significant bit of Q 

Is it 1 

Yes^,/^:^^ No 

Add B to A 

Shift A,Q 1 bit right 

bypass sign bit of Q 
• 

Copy sign of B into sign bit of A 
* 

Decrement count by 1 

t 
Is count = 1 P - — No 

I Yes 

Is sign of Q = 1 

Yes ^ No 

Subtract B from A Add B to A 

Store Answer 

i 

END 

FIGURE A-3 

The Multiplication Algorithm 



This expression will realise a Moore machine and the corresponding Mealey 

machine is described by 

R = ((P')* P)* 

As an example the regular expressions for a two bit multiplier, without the 

sign bit, are obtained as follows. The expressions for each P derived from fig. 

A4 are 

P, = 0101 + 0111 + 1101 + 1111 
—1 

P. = 0110 + 0111 + 1001 + 1011 + 1101 + 1110 
—2 

P^ = 1010 + 1011 + 1110 

p, = 1111 
—H 

The state diagrams for each machine or a composite machine can be obtained 

using the techniques shown in section 2; however, to complete the illustration 

here, the state diagram for the Mealey machine corresponding to P^ is derived. 

State (((Pj)')* P J * 

1 
^3 

2 ((0)'(Pp* P3 + 0) 

3 (00+01+10+11) (pp* 

3 »0l[%3] = D0(&j 

4 ^000 [-3]'' (0 + DfP^itPjRg 

4 
^000 [-il 

5 
^0000[-3] ̂  P3R3 

5 
^boool^g] 

6 ^ i k ] = (010+011+110)'(pp 

7 
^lo[-3]" (10+11)'(P!)* P.R. —J —J—J 

8 » l l k ] = (10)'(P^)* PgRg 

4 
^100 [-3]" (0+1) (P;^* PgRg = 

9 (0+1) Rg 

4 »110[%3] = (0+l)(P:)*P.R_ = 
—3 —3—3 

10 1(P;)*P3R3 + OR, 

1 Dioio[53] = &3 
1 » i o i i N = % 
1 

^llloLSs]- -3 
5 °llllfe]" 

2 

6 D00001[23]= Oil;,] 

-3 
% 

-3-3 

+ (10+11% 

+ (lO)R^ 

^000 [-3] 

^000^3] 

00001 

The corresponding state diagram is shown in figure A5. 

Output 

Z = 0 

z = 0 
z = 0 
z = 0 
z = 0 
z = 0 
z = 0 
z = 0 

0 

z = 0 
z = 0 
z = 0 
z = 0 
z = 0 
z = 0 
z = 1 
z = 1 
z = 1 
z = 0 
z = 0 
z = 0 



Input Sequence Outputs 

0 0 0 0 4 3 2 1 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 1 0 0 0 1 

0 1 1 0 0 0 1 0 

0 1 1 1 0 0 1 1 

1 0 0 0 0 0 0 0 

1 0 0 1 0 0 1 0 

1 0 1 0 0 1 0 0 

1 0 1 1 0 1 1 0 

1 1 0 0 0 0 0 0 

1 1 0 1 0 0 1 1 

1 1 1 0 0 1 1 0 

1 1 1 1 1 0 0 1 

FIGURE A-4 

Input/Output Behaviour for the Two-Bit Multiplier 
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FIGURE A - 5 

STATE DIAGRAM FOR THE 

TWO-BIT MULTIPLIER 



AI-3 Reed - Schorr Laneuaee 

Reed's language was basically an algorithm description language and had no 

formal declaration facilities; let the various registers be somehow declared in 

the programme as per fig. A-1. Schorr used a notation 

(A) B Al-3-1 

to mean that the contents of A were transferred to B and 

((A)4 B Al-3-2 

to mean that the contents of the register specified by A were transferred to B. 

Here to avoid a large number of brackets, the brackets in a transfer of type 

Al-3-1 will be omitted as done by Reed and leave out the angular brackets from 

the second type of transfer, 

as 

Thus the transfers Al-3-1 and Al-3-2 will be written 

and 

respectively, 

j Start, tj 

I Stop 1 

I Reset} 

itji 

| t j 

Multiply 

A 

(A) 

B 

B 

1 

1 

0 

0 

PC 

Al-3-3 

Al-3-4 

t^; stop 

I t^.0P.(0).0P.(l)',0P.(2)j ; 

|L I 

' ̂ 6 ' 

I t^Q ( l l ) I 

11, 

8 ' 

I 
tlO.K(0) 

t^Q.K(0)'.Q(0)| 

t̂ Q.K(0)'Q(0)'| 

'12I 

1̂3| 

'14 

h i 

A; 0 B; 0 Q; 0 

I; 0 K; 0 S; 0 

AD; 1 t^; 

(AD;M)-^B; PC+l^PG; l-> t^ 

B I; 1-^ tj. 

ADDl —^AD; A —>• Q; 1 —^ t^ 

(AD:M)-^B; -ll^K; 1 t . , 

AD; 0 

OV; 1 

OC; 

t. 

8 
1 t 8 

A(0); 

B + A A; 1 —^ t 

Rl(A,Q(l:ll)); B(0) 

K + 1 ̂  K; 

A - B — A ; 

A B; 

B-^ (AD;M); ADDl + 1 ADDl ; 

Q B; ADDl AD; 

B -y (AD:M); 

start next instruction 

1 —V t̂  

1 -

1 -

1 —7®" t 

1 -

1 -

1 - > t 

1 —>• t 

1 t, 

10 

11 

'11 

'12 

13 

14 



A-9 

The addition and subtraction operations are specified by the use of, what 

Schorr calls, a virtual register, which is used to represent the carry bits. 

Hence the addition operation A + B -9- A is written as 

A(i) mc(l) A(i) i = 0.1,...,11 

A(i).B(i) + A(i).C(i) + B(i).C(i) C(i-l) 

0 - ^ C(ll) 

Al-4 Schlaeppi's Language LOTIS 

This is more a simulation language than a synthesis language and some figures 

for timing are introduced which are all in microseconds» Let the memory access time 

be 2 units and the cycle time 5 units. 

CPU DP/ 

M(9b,12); AD(12); B(12); 1(12) = 0P^(3),ADD1(9) = 02^(3), OP^CS), ADD2(6) 

K(5); A(12); Q(12); PC(9); 0V(1); S(l); ready(l); +(2); -(2); 

Comment The store cycle is asynchronous and when the cycle is finished 

a Ready signal is produced. 

fct Read, Memory/ 

1. 2: Ready : = 0; B : = M(AD)/ 

2. 3: Ready ; = 1/fin 

fct Store, Memory/ 

1. 2: Ready ; = 0; M(AD) ; = B/ 

2. 3; Ready : = 1/fin 

seq begin, Control/ 

1. Start; i^ not (Stop or Reset) then call fetch else goto fin/ 

2o Stop ; goto fin/ 

3. Reset; A,B,AD,I,Q,PC,OV,S,K ; = 0/fin 

seq fetch. Control/ 

1. Ready; AD : = PC; PC : = PC + 1/ 

2. Memory; call Read/ 

3. Ready ; I ; = B/ 

4. Goto CP/fin 

seq Multiply, Arit/ 

1. AD ; = ADDl; Q ; = A; K ; = -11/ 

2. Memory; call Read/ 

3. Ready ; (Q(ll)=l) then A ; = A + B else goto 4/ 

4. A : = (B(0),A(0,10)); Q : = (Q(0);A(ll),Q(l,10)); 

K ; = K + 1/ 

5. if K(0)) then goto 3 else if (Q(0)) then A ; = A - B/ 

6 „ B ; = A/ 

7. Memory; call store/ 

8. Ready ; ADDl ; = ADDl + 1/ 
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£ Address register for the memory 

£ Accumulator Register 

£ Memory interface and arithmetic reg. 

£ Instruction Register 

£ Multiplier Register 

£ Instruction Counter 

£ Counter 

£ Overflow Register 

£ Sign Register 

£ Group A Operation Code Bits 

£ Group B Operation Code Bits 

£ Group A Address Bits 

£ Group B Address Bits 

£ Main Memory 

9. AD : = ADDl; B ; = Q/ 

10 Memory: call Store/fin 

Al-5 Language of Chu et al 

Register AD(O-ll), 

A (0-11), 

B (0-11), 

I (0-11). 

Q (0-11), 

PC (0-11) 

K (0-4), 

OV (1), 

S <1), 
Sub-register OP^ (0-2)=I(0-2) 

Op2(0-2) =1(3-5) 

ADD1(0-8)=I(3-11) 

ADD2(0-5)=I(6-11) 

Memory M (0-511, 0-11) 

Switch Start 

Stop 

Reset 

Clock T 

/Start/ T <- 1 

/Stop/ T <- 0 

/Reset/ AD<r 0, A<- 0, B«- 0, I 0, Q <- 0, K 0, 0V<~ o, 

S <£- 0, T <- 0, 

Sequence fetch 

Comment begin when the clock has been set to 1 it automatically steps 

itself at the end of each step in the sequence unless reset at the end of an 

instruction or by external switches, end; 

AD PC 

B ̂  M(AD), PC <- PC ADD 1 

I 4- B, end of fetch sequence 

AD«- ADDl, Q A, K e -11 

B M(AD), 

^ ADDM 

^ RIGHTSHIFT 

ij[ K f 0 then P <- 6 else if Q(0) = 1 then 

B ̂  A SUB B else B A 

/P,/ 

/?%/ 

/P^.(0P^=5)/ 

/P2.(0Pi=5)/ 

/P^.(0Pi=5)/ 

/P^.(0P^=5)/ 

/Pg.(0Pi=5)/ 

comment begin ADD and SUB are addition and subtraction routines, end; 

M(AD) ̂  B, ADDl ADDl ADD 1 

AD -e ADDl, B Q 

/Pp.(0*1=5)/ 

/PlO'(0*1=5)/ 
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/P (0P^=5)/ M(AD)<^ 6, P <- 1 

ABDM : if. Q(ll) = 1 then A A ADD B; 

RIGHTSHIFT: A&Q(1-11) «- shr B(0) & A & 0,(1-10), 

if K ^ 0 then K <- K ADD 1; 

Al-6 Okada & Matooka 

The language proposed by Okada and Motooka has five levels of descriptions; 

the 5th level corresponds to the algorithmic description and is quite similar to 

Chu's language. At level 4 the sequencing is shown more formally as is done for the 

multiplication sequence below. 

Level 4 

Ml : AD := 1(3-11), Q := A, K s=-ll; 

M2 ; B := M(AD) : M2(READY'), M3(READY); 

M3 ; : M4 (Q(ll)), M5(Q(ll)'); 

M4 ; A := A + B; 

M5 : A(0);=B(0), A(l-11) :=A(0-10), Q(1-11);=A(11)&Q(1-10); 

M6 : K. := K + 1 

M7 : : M3(K(0)), M8(K(0)'); 

MB ; : M9(Q(0)), M10(Q(0)'); 

M9 ; B := A - B; 

MIO: M(AD) := B :N10(READY'), Mil(READY); 

Mil: 1(3-11):= 1(3-11) + 1; 

M12: AD := 1(3-11), B := Q; 

M13: ,(AD) := B, :M13(READY'), END(READY); 

END; 

At level 3 the sequencing is described with single unit timings and it is 

more explicit. Therefore operations such as additions have to be detailed. At 

level 2 the operations are shown as in level 3 but the sequencing is omitted and 

at level the interconnections of gates etc. along with declarations of delays of 

the gates are enumerated. For the present these are omitted from here. 

Al-7 Metze and Seshu 

C Declaration of the name of the system 

MACHINE COMPUTER DP 

C Global Headers 

SYN (Wl, 12), (DWL, 23), (AL, 9) 

PARALLEL (MEMORY, CP) 

OPTIMISE (SPEED) 

C The^e headers declare global quantities such the word length, WL, 

C Double word length, DWL, and Address Length, AL, as well as the modules 

C which can operate simultaneously and the criterion for optimality. 

MACRO READ (M, AD, B) 

C This declares the read routine of the main-memory which is assumed to have an 
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C independent control within itself. The control unit activates an access line 

G ACC and waits till a READY signal becomes true. 

CALL MEMORY (ACC) 

WAIT (READY=1) 

B= (AD) 

ENDC 

ENDM 

MACRO WRITE (M, AD, B) 

CALL MEMORY (ACC) 

WAIT (READY=1) 

(AD)=B 

ENDC 

ENDM 

CONTROL CP 

C Start Description of main computer 

REGISTER A(WL), B(WL), Q(WL), I(WL), PC(AL), AD(AL), K(4), OV(l) , S(l) 

EQUIV (0P1)= 1(0,2)),(0P2 = 1(3,5)), (ADDl = 1(3,11)), 

1 (ADD2=I(6,11)) 

INTERFACE(MEMORY) AD,B 

DECODE(OPl) DEC,ADD,JMC,JMZ,ST0,MPY,LA1,DS1 

DEC DEC0DE(0P2) HLT,CLA,COA, ,RSC,LSS,RCD,LSD 

C Main Programme 

MPY AD= ADDl 

CALL READ 

(f=A 

A=B 

K=-ll 

LI IF(Q(11)=0)L2 

.ADD(A,B,OV) 

C The prefix . requests a library routine 

L2 Q(2,11)=Q(1,10) 

Q(1)=A(11) 

A(1,11)=A(0,10) 

A(0)=B(0) 

.ADD(K,1, ) 

IF(K(0)=1) LI 

IF(Q(0)=0) L3 

.SUB(A,B,) 

L3 B = A 

CALL WRITE 

.ADD(ADD1,1, ) 



AD= ADDl 

B = Q 

GALL WRITE 

GOTO NEXT 

C This fetches the next instruction 

ENDM 

Al-8 Duley and Dietmeyer DDL 

In the description using DDL the system model is assumed to be a collection of 

automata' normally functioning independently and communicating via a common 

highway. In our system let the memory unit be one automaton, switches and the cetral 

processor itself being the other automata Let the timing be a global variable and 
be controlled by the switches. 

<^SY^ Computer 

<TS> START, STOP, RESET, SW[l;3] 

<fL> THREE SWITCHES (S[l:3]). 

<1bO> START = SW['l], STOP = SW [z], RESET = SW [3]. 

<^U> INTERLOCK 

<sST)'- AO;rs[l]. SL2], s[3j. -»A0. )j. A1. 

10.3.5.6.7. 
, -^A2. ~^A3 .. 
[2 14 

Al; SW[3]= 1.. 

A2; SW(2]= 1.. 

A3: Sw[l]= 1 . . . 

<AU> CP:START: 

<RE> A[0;il], B{0:llj , q[0:H], l[0:lg , A D [ 0 : ^ , PC[0:8j, k[0;4], 

OV, S. 

<Jci) P(lE-6) 

ADD(A,B)[0:llJ 

A[0;li], B[0:li], CfOill), oV 

^P>' ADD = A ft) B ffi C, 

C[0: 1^ = A[l:li].a[i:ii]V(A[i.ii]\/a[i,ig) 
cCig = 0, 

OV = A[q]. B [ o 3 V ( A G ] V B ) .c [6] . . 
<bp> SUB (A,B)[0:i;] 

<?E> A(p:l3 , B[p:l3 , c[p:l^ , oV 

<bq> SUB = A'@B @c, 

C[p:iq] = A[l:lg '.B!l:ll)y(Ajl:ig'VB[l:l#).c[l:in, 
C[ll] = 0, 

OV = Aldr.B[0]y(A[Q]VB[Q]).C(0].. 

<SEG> FETCH 

<ST)> FO: AD "4- PC, | PC, F1 

F 1 : I R E A D Y ' J MEMORY ( R E A D = 1 ) F 2 ; - ^ F 1 ; 

F 2 : I READY I I <— B , — ^ F 3 ; — > ' F 2 O . 



P3 : MPY(^FO); -^F3... 

-CCĈ ^ The above step assumes that multiplication is the only instruction 

<SEG> 

MO ; 

Ml; 

M2 

M3 

M4 

M5 

M6 

M7 

M8 

M9 

MIO 

<AU> 

6:i> 

<ftE> 

<ST) 

Ml. 

- p - W t . 

to be interpreted and the others cause a restart of instruction 

fetching sequence. 

MPY ; 

AD <S- I[3;lp , Q A, K <- 11D5, 

READY' ; MEMORY (READ= 1), -^M2. 

READY : ̂  

I QL^O I A ADD(A,B) —9-M4; 

B[0loA[0ril]oQ[l:ig , ^ K,-^M5; 

jK=0 |—^M6; -^M3. 

|Q[0] I B SUB(A,B), B A, ^»M7. 

READY': ^ MEM0RY(WRITE=1), -9-M8. 

READY ; AD <- l[3;ll], B-e- Q, -^M9. 

. READY': MEMORY(WRITE=1), -9-MIO. 

READY : .. 

MEMORY;?; 

MEM(RD[12], READY; READ,WRITE,WD , AD[^). 

AD[9], BflgL 

DLY(2E-6). 

LO ; [READI -$> RDO; jwRITE | -^WRO; -s-LO. 

READY <-0, DLY = 1, -^RDl. 

B ^ RD, READY 1, =^> 

READY <-0, ->• WRl,. 

WD <- B, DLY = 1,^WR2.. 

READY <- 1, ... 

RDO 

RDl 

WRO 

WRl 

WR2 

(END OF SY) 

Al-9 Cassandra 

This language is in many ways similar to DDL and is based on Algol. 

UNIT Computer (INPUT (0:11), START, STOP, RESET; OUTPUT(0;11)) 

REGISTER A(0;11), B(0;11), Q(0;11), 1(0-11), PC(0;8), 

AD(0:8), 0v(0:0), S(0:0), K(0:4); 

SIGNAL READ, READY, START,STOP, RESET; 

EXTERNAL ADM(AD(0;9). B(0;11), READ; READY(1:1), OUT(0;11)) 

AD (A(0:11), B(0;11); C(0:ll), 0v(0;0)); 

COMMENT These external units are memory addressing and addition; 

P; 

OUTPUT := A; 

<P> AD OC; 

AD(PC, 1; PC, ), READ := 1; 

CLOCK 

SI; 

S2; 
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S3: <P> , ADM(AD, , READ; READY,B); 

S4: <P> IF READY THEN I B; 

S5; IF 0P(0:2) EQUAL 5 THEN GOTO MP ELSE GOTO SI; 

MP; AD <- 1(3:11); 

MPl; ADM(AD , , READ; READY,B); 

MP2; Q Af K < - -11; 

MP3: IF Q(ll) THEN AD(A,B;A,OV); 

MP4: <p> AD(K,1; K, );%A(0:11)&Q(1:11), A(0) <- B(0); 

MP5; IF K NOT EQUAL 0 THEN GOTO MPS; 

MP6; IF Q(0) THEN AD(1,B';B, ) ELSE GOTO MPS; 

COMMENT This comolements B; 

MP7; AD(A,B; A,OV); 

MPS; B A, READ ;=0; 

MP9; ADM(AD,B,READ; READY, ); 

MPIO; IF READY THEN AD(AD,1;AD, ), B ̂  Q; 

MPll; ADM(AD,B,READ;READY, ); 

MP12; IF READY GOTO SI; 

END 

UNIT ADM(P,AD(0;8), IN(0;11),READ; READY, OUT(0;ll)); 

REGISTER M(0;11.0:511): 

SIGNAL AD(0:8), IN(0;11), READ(1;1), READY(1;1), OUT(0:11); 

PULSE P; CLOCK P; . 

Al; <P> READY:=0, IF READ NOT EQUAL 1 THEN M( J.AD) 

ELSE OUT <- M(, JLAD); 

A2; <P> READY;=1; 

END 

UNIT AD(A(0; 11), B(0:11), C(0:11), 0V(1:1)); 

SIGNAL A(0:11), B(0;11), C(0:11), D(0;11), 0V(1:1); 

C := AVBV-G; 

C(l:ll) & OV := A/\B\/(AVB)/^C, 

C(0) := 0; 

END 

Al-10 Iverson 

The Ivers DM notation is capable of describing algorithms only and has no 

formal declaration facilities for registers etc. Assume these are declared as in 

fig. A-1. 

1 start A stop'a reset' : 1 (f , *) (1,6) 

2 ' Ztart : 1 (f , =) (2,6) 
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3 stop 

4 reset 

5 a, b. 

: 1 (f , =) (4,3) 

: 1 (f , =) (6,5) 

i_, ov, £ ^ 0 -9̂  2 

6 M -s- ££ 

I (J 
j_ad 

7 JL 2^^ I (-i-gc + 1) 

8 b M 

9 i ^ b 

10 Jl iê /i_) : 5 4 (other instructions) 

11 k ^ 2 ( 5 ) T 1 1 

JLad 
12 ad <- uD̂ /i 

13 b <_ M 

14 3. £ 

15 (O^/a. : 1 (17,16) 

16 J. a 2̂ |̂( J_ a + J_b ) 

17 X k . e - ± k - l 

18 a, ^ c<^/b,a, (I4"^^^)/SL 

19 k ; 0 (f , -) (15,20) 

20 c<^/£ : 0 (f , =) (21,22) 

21 j _ a < - J L a - 1 - b 

22 M-*-— «- b 

23 i- + 1 
9 

24 ad Ct) /i 

25 b <c-

26 M-^— b - 9 - 3 . 

Al-11 GERAGE's method 

Gerace's method converts register transfer type expressions to state tables, 

but this description must be written to indicate bit by bit operations. The 

multiplication algorithm, thus, should be written as follows. 

The indices are i = 1,2...,10. j = 2,3,...,10. m = 0,1,2,3. 

Itgl (1(0)1(1)1(2):101) tg t^; 

(1(0)1(1)1(2): 101) • tp t^; 

|ti|. A Q, M B, C K tg; 

Itgl (Q(ll):l) A(i)(B B(i) es(i+l) A(i), 

A(ll) eB(ll)(5js(12)=q̂ 9» A(ll), t2 

(Q(11):0) tg; 

jtgl A(i-l) --?• A(i), B(0) —> A(0), 

A(ll) —9" Q(l), Q(j-l) -> Q(j), 

K(m)©r(m+1) K(m), 

K(4) e[r(5)=g-^» K(4), t ; 
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X y s ( i + l ) s ( i ) 

0 0 0 - 0 -

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

X r(i+l) r(i) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Figure A-6 

Definitions of the carry functions s(i) & r(i) 



(K(O)q'(O):0i) A(i) ©B'(i) ®s(i+l) -^A(i), 

- A ( L L ) €-> B'(ll) ® [ S ( 1 2 ) = ] L ] - ^ A ( 1 1 ) 

A(0) 6^?B'(0) ® s(l) A(0) 

(K(0)Q(0):00) 

(K(0) ; 1) t,. 
0' 
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Note C contains the-constant -11, and the functions s and r are defined by the 

tables in fig. A-6. 

There are four sets of machines corresponding to A,B,Q and K and it would be 

possible to derive the state tables for each separately; however, the machines 

corresponding to A and Q are clearly connected and the partition 

would be preferable. The first step is to identify the distinguishable submachines 

of each of the machines and list the transfers associated with them. There are four 

distinguishable sub-machines of the A,Q machine corresponding to bit 0, bit 1, bit j 

and bit 11 and their lists are as follows. 

A , ) A , Q 

(1,) A,Q 

(K(0)Q(0):01) t, t 

(Q(ll):l)t 

A(0) Q(o); 
A(0) $ B(0) © s(l) 

B(0) A(0); 

A(0) © B'(0) e s(l) 

A(0); 

A ( 0 ) ; 

(Q(ll);l) t t 

(K(0)Q(0):01) t 

A(l) Q(1); 

A(l) B B(l) e s(2) 

A(0) A(l); 

A(11) Q(l); 

A(l) B'(l) G)s(2) A(l); 

A(l); 

(K(0)Q(0):01) t. t 

(Q(ll):l) t 

A(j) e B'(j) @ s(j+l) 

A(j) Q(J); 

A(j) 4 B(j) ® s(j+l) 

A(j-l) A(j); 

A(j ); 
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A(11) Q(ll); 
^1 

A(11) Q(ll); 

^2 
(Q(ll):l) tg .4^ tg A(ll) ® B(11) ©[S(12)«Q] ->• A(ll); 

^3 
A(10) -y A(11); Q(10) 

(K(0)Q(0):01) t^-» tg A(11) e B'(ll) ̂ s(12)=ll A(ll); 

Similarly the lists for B and K are; 

(L̂ ) B n = 0,1,...,11 

^1 ^2 
M(n) -3- B(n); 

tl ^2 

' ̂ 3 ^4 

C(m) K(m); 

K(m) ® r(m+l) K(m); 

(L*) K 

^3 ^4 K(4) ®[r(5)=ll K(4); 

and finally 

^0 
(1(0)1(1)1(2):101) t^ t^ 

(1(0)1(1)1(2):101)'tQ t^ 

(Q(11):0) t^ tj 

(K(0)Q(0):00) t^ t 

(K(0) : 1) t 

From the listing above it is apparent that the inputs to the control part are Q(11), 

K(0), Q(0) and the three instruction bits 1(0), 1(1) and 1(2); hence the state table in 

fig. A7 for the control unit can be derived. For the sake of simplicity some combinations 

of the inputs have been omitted as these do not provide any additional information. 

The entries in this table correspond to the next state of the control unit and the 

outputs which initiate the transfers in the operational part; it is in an abstract form 

and can be synthesized in terms of hardware or software as necessary. 

Seven different state tables have to be generated to specify the operational part 

completely; however since this example is for illustrative purposes only, the state table 
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for A(0), Q(0) machine only will be derived here. 

The external inputs to this machine are s(l), B(0) and the a outputs from the control 

anit; the present state variables y^, y replace A(0) and Q(0) respectively on the left 

land side of the transfer expressions and Y , similarly on the right hand side. The 

State table derived using the procedure described in the main text is shown in fig. A-8 

tn fig A-9 the corresponding output table is depicted. Finally the abstract state table 

Including the output behaviour is shown in fig A-10. 
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Al-13 PMS Level Description 

In the machine considered here, only the register structure is shown. The PMS 

level description is more concerned with the way the system is configured. Let us 

therefore assume that there-are two peripheral controllers on the system, first one 

handling some magnetic devices and the second one handling devices such as printers 

and card equipment. 

M PC T.START (Push button; console) <-

T.STCP (push button; console) <-

T.RESET (push button; console) <-

T. (card;reader; 100/300 cards/min)<-

T (card; punch; 50 cards/min) 

T (printer; 100 lines/min) -> 

T r Disk; fixed head; delay 10ms H 
100 jis/w; 32k w; 12 b/w J 

TI ^ 0:3; magnetic tape; 66 in/s;l 
L 800 b/in; 6L/char J 

Al-14 ISP Level Description: 

Pc State 

AD 

PC <0;8> 

I <0:U> 

K <p:5> 

B <p:ll> 

A 

Q <0:11> 

ov 

memory address register 

program counter 

Instruction register 

Multiplication counter 

Memory buffer 

Accumulator 

Multiplier 

overflow registers 

sign register 

Mp state 

M ]lO : 5li3<lp: 11^ main memory 

Pc Console State 

START 

STOP 

RESET 

start switch 

stop switch 

reset switch 
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Instruction format 

OP <p:%> := <0:2) opcode 

MAD<p:8) :=I address 

Start process 

START An (stop V reset) -V fetch; 

Fetch process 

fetch (B.* MtAp] ; next I-* B; PC * PC + "9; -* execute 

execute process 

execute ( 

multiply (:= OP = S V C Q * - A ; B M MAD ; K 4- 12; Loop); 

Loop ;= (Q<11>= 1-*A«*- A + B; next 

A<0:1!>Q Q 

K*- K - 1; next K ¥ l-» loop; K = 1 fin); 

fin := (Q<0> = 1 A A + B; qrCdf = OfPA*^ A - B; next 

M tAO} <• A; next AD *- AD + 1; next M^AD^ ̂  Q) 

)•-=? fetch 
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APPENDIX II 

A2-1 I'he Hamming Code 

The Hamming Code is a special form of parity checking and is used for single 

error correction. The number of check bits is determined by the number of data bits; 

if there are m data bits, k check bits will be required such that 

2**̂  m + k 

and these check bits are placed in the positions corresponding to the powers of2, the 

lowest, 2°, being the leftmost. 

The 2^th check bit is used as a parity check, for even parity, on those positions 

whose checking numbers contain a 1 in the ^^th column. For example, the 2 check bit 

Is used to check the parity of positions 1,3,5,7,..., the 2^ check bit is used to check 

the parity of positions 2,3,6,7,10,11... and so on. 

When error detecting and error correcting, if the check is successful, then a 0 

is placed in the column corresponding to the check bit and a 1 if it fails. For single 

error correction, the bit in the position indicated by these check bits is inverted. 

For example, consider a 4 bit data message 1011, which requires 3 check bits and 

the encoded message is 0110011. Let us suppose that during transmission bit four is 

Inverted and the received message Is 0111011. Applying a parity check to the positions 

1,3,5,7, we get an even parity and therefore the check bit 0 is set to zero. Parity 

check on bits 2,3,6,7, is also successful and the check bit 1 is also set to zero. The 

final check, however, is unsuccessful and the check bit 3 is set to 1. Thus the bit 

corresponding to the position 100, i.e. bit 4 is in error. Therefore the corrected 

message is 0110011. 



A.)0 

Appendix III 

a) Proof that X = BA* is the solution of the equation 

X = (l) 

This proof was given in a theorem by Arden and is 

reproduced below. 

Ihe fact that X = ̂  is a solution of equation (l) can 

be verified by direct substitution, and we get 

^ + 3 = + B ' 

~ ^ { A"'̂A4- X} 

= m * 

= X 

low suppose X = is not the only solution of equation (l) 

and there exists a solution X = + £ such that CfLBA* = / 

Then 

XA + B = (3A% + C)A + B 

= M * A 4- CA + B 

= + + GA 

= 

but XA + B = X = BÂ '+C 

therefore BA*+0 = 3A-%- + OA . (o) 

Intersecting both sides of equation (2) by iC we get 

+.C%C = :BA*%3 + 

therefore _C = CAflG 

implying C c OA 

e 

But since the assumption is that A does not contain X, the 

shortest sequence of OA must be longer than the shortest sequence of 

C unless C is empty, thence 2 9: CA^ Therefore X = ,BA*+C is not a 
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solution of equation (l), smd since thi^ is true for all cases at C_ 

when ̂  and are die joint, the onl̂ ^ solution of equation (l) is 

X = M * . 

B) Proof that X = A*B is the solution of the equation 

X = ja + B ,X4A (3) 

This proof follows from an identical procedure used in the 

last proof. 
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Abstract 

Incthe analysis and simulation of sequential circuits, 

and in particular asynchronous sequential circuits, the 

automatic location of feedback loops within the network often 

presents, serious problems. 

This paper presents an algorithm, based on an analytical 

approach, which will isolate the true feedback loops in a 

network, that is those paths which correspond to the actual 

secondary variables of the circuit. 
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1. Introduction 

A logic circuit can usually be defined in a formal mathematical 

manner using truth-tables, state or flow-tables or some such model [ij. 

An abstract definition of this type is often used in digital systems 

design, for example: 

(a) for the economical implementation and re-configuring 

of circuits; 

(b) to obtain a true logical simulation; 

(c) to enable fault testing and diagnosis procedures to 

be evaluated; 

(d) for the concise documentation of logic circuits, etc. 

Often, however, especially if the circuit has been designed intuitively, 

this type of description is not available; the circuit then has to be 

analysed in order.to derive a formal model. 

The problem of analysing cominational circuits (in order, for 

example^, to generate a truth-table) is relatively simple, and can 

be solved by using conventional simulation techniques or by tracing 

the paths between the inputs and the outputs.' When analysing sequen-

tial circuits, however, the presence of feedback loops in the 

network means that these techniques are no longer applicable. The 

normal method of proceeding in these cases is to isolate the 

feedback loop in some manner (often intuitively) and then apply 

the standard combinational techniques. In the case of clocked 

sequential networks or relay circuits the problem is trivial, since 

the feedback loops are clearly distinguishable. The/ 

I 



The major problem lies with asynchronous networks, that is, 

circuits containing interconnected MAND or KOR gates, and it is this 

aspect of analysis which is considered in this paper. 

Sequential circuits can be divided into two main categories 

(i) synchronous and (ii) asynchronous. Synchronous circuits are 

characterised by the fact that in the absence of a sampling•signal, 

i.e. the clock signal, changes in the inputs do not alter the 

internal state of the circuits (although of course the outputs may 

change. To achieve this, storage elements (bistables) with pre-

defined feedback loops (i.e. secondary variables) are employed in 

the circuit and driven by combinational logic ; thus all the 

feedback loops are consequently restricted to these storage elements. 

The analysis of synchronous sequential circuits therefore reduces 

to an analysis'of combinational circuits and is a straightforward 

2 
procedure . 

Asynchronous circuits in many cases are implemented using relays 

which act as the storage elements. The analysis of these circuits is 

similar/ 

1. The outputs of the storage elements may be fed back to the 
inputs of the storage elements. In this case these storage 

elements are such that the outputs do not change during the presence of 
the clock signal; hence, for the purposes of analysis they may be 
considered as independent variables and the circuit feedback-free. 
If the outputs do change during the presence of the clock pulse the 
circuit will malfunction, 

2. The algorithm to be described in this paper is equally applicable 
to combinational circuits. , 



/similar to the analysis of synchronous seq.uential circuits and it is 

only necessary to derive the excitation equations for the cojabin-

ational circuits driving the relay coils. 

In the more usual case however, when the circuit is 

implemented using standard logic modules (such as NMD gates), the 

feedback loops are not so clearly defined. The method adopted so 

far Clj, [2], [3], fUl is to assume a feedback loop, break this 

loop and through simulation find out if it is possible to fully define 

the behaviour of the circuit. This method, though usable, is not 

algorithmic and does not lend itself to computer programming for 

automatic analysis. 

In this paper we present a more systematic approach for 

locating these feedback loops and hence the secondary vajriables. 

2 . Algorithm 

The analysis of asynchronous sequential circuits involves 

(i) detecting the feedback loops, and 

(ii) selecting only those feedback loops which correspond 

to the secondary variables. 

Before we proceed with the description of the algorithm let 

us examine the condition implied in the second step. If 

2 1 = £set of all the secondary variables_^ 

then/ • , 



then for all i if y is the value of the ith secondary variable at 

time t and if is the value of the same variable at time t+&t 

where St is a function of the logic delays then it is a necessary 

condition £1] that 

Y i = f i ( y i ) " — 2 . 1 

such that f\(y^) contains at least one positive y^ term and that this 

term is not redundant. If this condition is not met y^ is .redundant 

and the corresponding loop can be removed. We shall not concern 

ourselves with the proof of this statement which can be found in [1] . 

"The behaviour of a general logic circuit can be expressed as 

= gj 2.2 

where Zj is the jth variable • in the set Z, the set of all outputs, 

and X is the set of all inputs; .if the circuit is combinational then 

the set X is empty. In the algorithm described below the circuit 

being analysed is assumed to be combinational until found otherwise. 

The algorithm requires a topological description of the circuit 

in which each gate is defined in terms of its inputs, Output^ and the 

function [3] . It is also necessary to distinguish the external/ 

3. It is assumed that each gate produces only one output. If gates 
generating multiple outputs, e . g . ECL gates with complementary 

outputs, are employed, then each of these outputs must be specified 
by a separate gate with identical inputs but with different functions 
and different outputs. If wired functions are used it is necessary to 
also specify these by additional gates with wired outputs acting as 
inputs to these gates and their outputs feeding the next stages. 



/external inputs and outputs, i.e. through which the circuit is accessed, 

from the connections internal to the circuit. A convention adopted 

here is to label outputs by Zj, inputs by and the internal 

connections by C where j, k and n are all integers. Thus for a 

circuit containing k inputs, j outputs and n internal connections 

the description is given as 
• 

Z* = fa(X^C^2) a = 1,2 j 

and b = 1,2 n 

where C_ is the set of all internal connections. 

In the following discussion we shall refer to the inputs, 

internal connections and the outputs by X-types, C-types and Z-types / 

respectively. 

The algorithm is based on tracing the logic path of a Z-type 

backwards, i.e. towards the inputs, so as to finially obtain an 

equation forZ in terms of X and the secondary variables (if any), 

only. Thus, starting from the topological description of a circuit, 

the terms in an output equation,Z are expanded (unless it is a 

primary input) by substituting the inputs of the corresponding gate 

which generates that term; we shall call the equation produced 

in this way a Z-equation. 

Further/ 
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Further substitutions are made in successive passes for each 

of the C-types and Z-types in the Z-eguation. Clearly this will 

either lead to a Z-eguation in terms of X-types only, or feedback 

loops vill be encountered; in the latter case the process will 

never terminate. During the iteration process a note is kept in 

a list, called the C-list, of each C-type and Z-type encountered 

during the substitutions. The presence of a feedback loop is 

detected by noting if during the iteration the Z-equation contains 

a C-type or a Z-type for which a substitution was already made in the 

previous iteration(s), since this implies that the particular 

signal is a function of itself. Any variables which are"detected 

in this way are entered into a feedback variable list, the F.V. list. 

If during a pass one or more new F.V's are detected then the 

C-list and the Z-equation so far generated are deleted and the prcedure 

restarted with the modification that substitutions are not allowed for 

any variables contained in the F.V. list (except when it is necessary 

to obtain an initial equation) and that these variables are not entered 

into the C-list. The sequence is repeated until all the feedback 

variables between the Z and the inputs are located and a Z-equation 

is obtained in terras of X and the feedback variables only. 

At the conclusion of the algorithm the F.V. list contains those 

variables which re-occurred after an initial substitution was made, 

thereby implying that feedback loops may be present. However, it is 

necessary to ascertain that all the variables in the F.V. list do 

in fact correspond to loops (and hence to secondary variables) that 

is their characterising equations must satisfy the condition specified 

in 2.1. The next step therefore is to obtain an excitation equation 

for each F.V. and the procedure for this is identical to that used 

to obtain a Z-equation. The resulting equation is checked to see 

that condition 2.1 is met. If the condition is not met then the 

corresponding variable is deleted from the F.V. list and the whole 

procedure restarted. 

It/ 
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It then only remains to apply this procedure to the remaining 

Z-types and any other feedback variables that are detected. The 

final F.V. list corresponds to the list of secondary variables, 

the equations for the F.V.s to the excitation equations and the 

Z-eq.uations to the output equations. The flow diagram for the 

above procedure is depicted in figure 1. 

The output equations and the excitation equations obtained 

from the algorithm completely define the asynchronous circuit, and 

may be expended to generate the flow tables. 



8 -

34 Examples 
will'now be 

The above procedure _/ illustrated throti^ a number of examples. 

First v.'e)consider a Texas Instrument D-type bistable the circuit for 

which is given in figure 2 and the corresponding topological 
4 

description in table 1 . 

Let us start by taking Z-|. 

G-list F.V.list Equation 

- 2-]= X"! + C2 + 22 

Z^,02,22 - - Xl + + Xg'C^'Z-i -

Now Z-j is already in the C-list; hence we add Z^ to the P.V.list, 

— 2^ Z-|= + G2 + Z2 

Cg.Zg + Ci'Xg'X) X^'C^'Zi 

Cg^Zg.Ci.C; Zi - Xi + (X^ + C4 + 

+ (C2 + Xj + C^^"X2"Z^ 

Cg is therefore added to the P.V.list. 

- Z^.Cg Z-= X- + C2 + Z2 

Zg Zi.Og = Xi + C2 + Cj'Xg'Z^ 

Zg.C^ Z^.Cg = X^ + Cg + (C2 + Xj + G^)'X2'2i 

^2*^3*^4 Zi'Cg, = X^ + Cg + (Cg + Xg + %2'%4'G))'*2'Zl 

is added to the P.V.list. 

Z 
2 

^ • ^ t ^ 2 ' ^ 3 ^ 1 ~ * ^ 2 * ^ 2 

Zyc^ ,c - T , + ^ + Xj-Cj-z, .(3-1) 

Applying the procedure to Cg ezid C- we get 

— ^^#02*0^ ^2~ ^2 X^ 

C.J ZifCg.C^ = Xi'C^'Cg + Xg + Xg 

4. The algorithm has already been programmed. The inputs to this '-
program are in Polish form; however, a standard form is used 
here for illustration purposes. 



C-list P.V.list Equation 

C^,C^ Z^,C2;Cy = X-j • (x^ + X2 + C^)*C2 + Xg + X^ 

— Z^,C2>C^ Cj= ^2 + Xj + 

= C2 + Xj + x^'Xg'C^ (5*3) 

and finally 

z^.cg.c^ +"z^ (3-4) 

Z^, Cg and are the secondary variables and "•, equations 3'1,5-2 

and 3*3 represent the corresponding excitation equations. The output 

equation for Zg is given in 3-4 and since Z^ is an output as well as • 

a secondary variable a dummy output equation is generated for Z^^ i.e.: 

z, . 2, . . . . . . . . . . ( 3 - 5 ) 

Example 2. > 

Consider the circuit given in f i g u r e 3 the topological description 

for which is given in table 2. 

Starting with Z^ we get 

C-list F.V.list Equation 

Z^ — "̂ 1 ̂  ^3 

Z^,C^ • - = + Cg'Z^'C^ 

— Z-] Z - ] = X-^ + C j 

Cj Z^ a X-| 4- C2*Z^*C^ 

C 2 . C j , C ^ Z ^ = X ^ + ( C ^ + X 2 ) ' Z i ' ( C y + X g ) 

— Z^jCj Z-j— 
thus 

is in the P.V.list and the substitution for it is/complete;' 

however, since:; 

Zl^ g(Zi). 
Z^ is therefore removed from the P.V.list. 

Cg Z^. ( 3 ' 6 ) 

— Cj Cj= C2 + Z-| + C^ 
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C-list P.V.list Eq_iia.tion 

^2*^1'^4 ^3 ~ C-j•X2 + X^*C^ + ^2*^3 

= X^'Xg + X^*C^ + X2*G^ ,,....,»i..,(3*7^ 

-Therefore C is the only secondary variable, and the corresponding 

excitation' and output equations ^ _ are given "by 5*7 and 3*6 

respectively. 

Example 5. 

We finally consider a circuit which Unger j3X' bas ..analysed by identifying 

and breaking feedback loops using a trial and error process.,The circuit and 

the topological description are'given in figure 4 and table 3 respectively. 

C-list P.V.list Equation 

Z — Z = Gg 

Z,Cg - . 

2»Cg,C-jQ - = X-j • (C^+G^+C^+Cg) 

Z Cg 2 . % 

Cg X1+C10 

C10 Cg = Xi+C^'Cj/C^'Og 

^So'^3*^4*^5 ^6 - %i+(CY+Gg)'(X2+G^)*(C^Q+C2)'Cg 

Cg is removed from the P.V.list. The equation for Z now reads 

Z = Xy C^Q ...........(3'8) 

Restarting the substitution process for C^q we get 

. _ 
^10 ClO= Gj+C^+G^+Cg 

3̂»*̂ 4»̂ 5» (̂ 10 Gy' Ĉ -fX2* Gy+G-jQ • G^+X^ * '̂ 10 

C6 

63,04,0^, ^10 X-j • (C-j+G2+Gj+G^)+X2*X^+ 

C5, , Cg ^10 ^10' (G-j+C2+Cj+G^)+X^ 'O^Q 

— C-j0»G^, C4 0^0= cy+c^+c^+Gg 

Go C-^Q,GJ, C4 , = cy+c^+c^Q'Cg+Xi'CiQ 

^10*^3' ̂4 

C-jQjCy ̂ 4̂ Cj+Ĉ -J-Ĉ Q* (C^*CQ+X2'Gg+Cj+C^)+X^ •C.JQ 

'2*C6 
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C-list P.V.list Equation 

C^Q= C^+C^+G^+C^ 

CjiCg C-jQ, - = Gj+C^+G^o'C^+X-j'C-iQ 

,~ ^10'^3''^4'^9 ^5~ 

Gy C^q,CJ,G^,C^ = X^+C^ 

G^ is also removed from the P.V.list. Substituting for Gj in the 

equation for C^Q we get 

C-jQ= X-] •G^+G^+C-jQ'G^+X-j'G^Q 

Next we obtain an equation for G^. • 

C-j G^q,C^,C^ = X2+X^ 

eliminating G^ also from the P.V.list. Tne equation for C-]q now reads 

Ĉ Q= X-[ •C^+X2'X^-fC^Q*C^+X^'C^Q (5*9) 

Similarly for G^ we get 

G^qjG^ C^= C^+Cg+C^+C^ 

C-],C2,Cj, C^QjC^ = C^'Cq+X2*GQ+CY'CJ+X2*CY 

C4 • 

C-^,C2,G^, G^q,C^ = Cg'Gi0+X2'Cio+Xi*C2+X2«Xi ...(3«10) 

C4»CY,CQ 

The circuit shown in figure 4 therefore is characterized by 

equations 3-9 and 5«10 which are the excitation equations for the two 

5 

secondary- variables and the output equation 3*8 . 

5. The equations obtained here are idential to those obtained by 
linger [$] where y^ and y^ refer to and respectively. 
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^. Conclusions 

Thp algorithm presented here detects feedback loops analytically 

from a topological description. However, the following points should 

be noted. 

a) The procedure concerns itself only with the terminal behaviour 

of the circuit. Hence, variables which have no effect on the external 

behaviour of the circuit, e.g. a redundant feedback loop, will be 
& 

ignored. . 

b) The resulting excitation equations may be different to those 

used during the design of the circuit.' In this case the behaviour 

obtained using this procedure will be equivalent to the original 

behaviour. 

c) The algorithm does not accept explicit delays. It is assumed 

that the logic circuit being analysed is made up using real gates with 

inherent delays and that the circuit functions correctly. It is 

envisaged that the algorithm will be extended to include explicit 

delays and predefined gate delays. 

d) The algorithm is equally applicable to the analysis of 

combinational circuits, in which there are no feedback loops. Thus 

the method is quite general and useful in general logic network analysis. 

A preliminary version of this algorithm has already been programmed 

using a list processor imbedded in FORTRAN. We hope to include this 

algorithm as part of the facilities offered by the Computer-Aided-Logic-

Design suite currently being developed at Brunei and Southampton 

n ' iGj 
Universities. 
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