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Nonparametric regression provides an intuitive estimate of a regression function

or conditional expectation without the restrictions imposed by parametric mod-

els. This is a particularly useful property since the rigidity of such parametric

models is not always desirable. The application of nonparametric regression, in

the univariate setting, is investigated in the context of predicting a finite popula-

tion total. We propose, instead of parametric estimators of the finite population

total, nonparametric regression estimators obtained by smoothing the data and

interpolating the smooth to predict nonsample values. It is shown how such

estimation can be more robust and efficient than inference tied to parametric

regression models. The nonparametric regression estimators considered are clas-

sified as operational and model-based. They require the selection of a smoothing

parameter which controls the smoothness of the resultant curve. Methods of

choosing the smoothing parameter are discussed.

One important property that some of the estimators are shown to possess is

'total preservation'. Suppose y = Sy, where S is a smoother matrix and y and y

are vectors of estimated and observed y respectively. Then an estimator is said to

be 'total-preserving' if l T y = I1 Sy = l T y. It is shown how, under repeated sam-

pling, 'total preserving' nonparametric regression estimators are design-unbiased

or approximately design-unbiased and how they remain more efficient than stan-

dard parametric methods, for a suitable choice of the smoothing parameter.
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Chapter 1

Introduction

Xonparametric regression provides an estimate of a regression function or condi-

tional expectation without the restriction imposed by parametric models. Non-

parametric regression allows the data to decide on the best functional form. Meth-

ods for iionparametric regression range trom simple ideas such as moving averages

or kernel smoothing to the more complex spline smoothing, thus providing a flex-

ible family of approaches to choose irom.

In this thesis we consider the use of nonparametric regression methods in the

context of finite population prediction. The data of a finite population are made

up of units usually consisting of a response variable, y. which is the variable of in-

terest, and possibly other auxiliary or explanatory variables, in some way related

to the response variable. In the univariate setting, which we are mainly con-

sidering, there is just one explanatory variable, x, associated with the response.

One may be interested in determining a population quantity of interest, which

is typically some function of the response. Linear functions include the mean or

population total and quadratic functions include the population variance. If a

sample of the response variable is all that is available, because of possible cost

or time constraints, an estimator of the population quantity of interest will be

required. The estimator will typically rely on some implicit underlying paramet-

ric model, for example, the ratio estimator for the population total is based on

a linear regression through the origin with the variance proportional to x. The

parametric models used tend not to be robust to misspecification of the true

underlying curve because of their rigidity to a specific form. If, instead, non-

parametric regression is used to model the functional relationship between x and
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;/, the strict rigidity is removed often leading to more efficient estimation. Es-

timating "parameters' of the finite population from the sample is now based on

smoothing the sample data and interpolating this smooth to predict nonsample

values. A description of the problem is given below.

1.1 Description of the problem

A population of interest consists of A" units labelled i = 1 , . . . . N. Associated with

unit k are two numbers {x^.ijk): xu known, y^ fixed but unknown for the whole

population (usually known for a sample of the population only). Here Xk may be

some measure of size, for example size of hospital A: in a population of hospitals,

and i)k some characteristic of interest, say the number of patients discharged from

hospital k. The quantity or interest is the population total

.v

E
We assume that the explanatory variable, x, is in some way related to Y and is

known for the entire population. However, the response variable Y is only known

for a sample of n units from the population. A popular choice as an estimator of

the population total has been the ratio estimator.

J-RE =

i = l ^ J = l J

This estimator could have been derived in two different ways:

1. Quasi-likelihood, a generalisation of the weighted least squares approach.

This approach does not specify an error distribution for the observations,

only a mean-variance relationship. In this case with variance proportional

to the mean, we arrive at the ratio estimator. For example, in terms of

weighted least squares estimation, the ratio estimator is the best linear

unbiased estimator (B.L.U.E) of the population total, when we assume a

superpopulation model with the following first and second moments:

E(yt) = m = ,rfxi

var(yt-) = a2xz.
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The estimator is best in the sense of minimum variance (Gauss-Markov

Theorem).

2. Maximum likelihood estimation. Here we assume a likelihood for the data,

in this case Poisson likelihood, with mean /̂ ,- = (3x{. The log-likelihood for

the Poisson distribution can be written as :

Maximising this gives

hence

" , E?=i
-1 11 il / tU2 X—Ml

Z * \ '£ -

This approach applies to any generalised linear model. Generalised linear

models are briefly introduced in Chapter 3, and are considered in more

detail in McCullagh and Nelder (1989).

Royall and Herson (1973a) consider some robustness and efficiency properties of

the ratio estimator. In particular they introduce i) balanced samples with respect

to the population to overcome the problem of a misspecified superpopulation

model, and ii) stratification on the size variable x,-. Let X{j,yij be the values of

xt,yt in stratum j . The stratification is based on the x variable. By estimating,

for each stratum, a separate slope through the origin, $j = ^2n
=1 yij/ E"=i xii-> a

within stratum estimator is derived as:

where I\j is the number of population units in stratum j . The population total

is then estimated by the .separate or stratified ratio estimator

This approach provides some robustness to failure of the assumption of an under-

lying superpopulation model. Royall and Herson (1973b) also consider balanced

sampling in ensuring robustness. Balanced samples are defined for a Pth degree



Chapter 1

polynomial as the pth sample moment of x's equalling the pth population mo-

ment, for all p = 1.. . . . P. When stratification is used in an optimal manner

under balanced sampling it is more efficient than the simple balanced strategy.

However, the global superpopulation model underlying this method is discontin-

uous at the boundaries of the strata, with consequent loss of efficiency when the

true regression is a smooth function of x. The stratified approach will be sub-

optimal when the true curve is smooth, because of the discrete 'jumps' at the

boundaries. Figure 1.1 has been included to illustrate this. Other estimators of

the population total exist, with different underlying parametric regression mod-

els, to adapt to differing situations. Some of these are discussed in Chapter 2,

and are referred to again in Chapter 6 when we address robustness within the

sampling framework by incorporating the inclusion probabilities.
i

We propose to consider alternative estimators using the method of local like- j

lihood estimation suggested by Hastie and Tibshirani (1986): see also Tibshirani |

and Hastie (1987) and Buja. Hastie and Tibshirani (1989). This new approach :

to the robustness problem allows a different coefficient vector 3(x[) for each xt j

in the population and is a generalisation of kernel smoothing to be introduced in |

Chapter 3. Here we replace the locally weighted means in kernel smoothing with

locally weighted regression curves. This greatly reduces the well-known "edge

effect' bias present in ordinary kernel smoothing and removes the need to use

boundary modifications.

One representation of a nonparametric regression estimator of the population

total can be written as:
T =

For example.

where

and j G * denotes the values in the sample, etc. The /i(x,-) is derived from

a set of "local" quasi-likelihood estimating equations, assuming a model with a

single explanatory variable, no intercept and variance proportional to the mean,

as in the case of the ratio estimator. The motivation and derivation is given in

Chapter 4 along with other possible nonparametric regression estimators. In this
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case 3(xi) is an estimate of a local slope at x,- and the weights Wf,(xi,Xj) are

derived from a suitable kernel, for example, the Gaussian kernel

2b2

Figure '•].! gives a plot of a Gaussian kernel estimator with varying bandwidths,

including b = oc. The b appearing in the weight is the smoothing parameter or

bandwidth. It determines how wide to make the "window' for weighting observa-

tions around a target x,. If the window is large, i.e. b —> oc, then most or all of the

sample observations will be included in the estimation at x,-, with approximately

equal weight. As b becomes smaller more weight is given to observations close to

xt and less weight to those far away: the fitted curve becomes local. As b —• 0

the curve will come close TO every data point thus becoming quite 'wiggly' in

appearance. The role of b is therefore important, more so than the actual choice

of kernel function used, since it determines how smooth the resulting curve will

be.

This smoothing approach does not create the artificial discontinuities apparent

in the separate ratio estimator. It assumes a smooth curve for the underlying

superpopulation model which is more realistic, and in most practical situations

will lead to increased efficiency, for an appropriate choice of smoothing parameter.

The local quasi-likelihood equations mentioned above can be extended to any

number of auxiliary variables and any type of data, provided the first two mo-

ments of the response variable y are specified. Thus the scope for application as a

general approach to smoothing is large; some of these applications are discussed

in Chapter 7. For more on quasi-likelihood in general see McCullagh and Nelder

(1989. Chapter 9) or Firth (1993).
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1.2 Notation

This section will explain the notation used throughout.

The random variables X and Y are the explanatory and response variables

respectively. Observed values are in lowercase indexed by the unit number, for

example [Xi.yt). The sample size is denoted by n and the population size by A".

The sampling fraction is denoted by n/N = j .

A vector of random variables is written in boldface as y = (?/i,.. . . yn). Matri-

ces are also represented in boldface, for example S, with elements denoted by StJ

for example. The trace of a matrix is denoted by tr(.). The marginal density of x

is denoted by f(x) and fix) is an estimator for f(x). The joint density of x and

y is f(x.y). The regression curve of Y on x is m(x) = E(Y\X = x) and rh(x) is

an estimator of mix). Expectation is denoted by E: with a subscript £ to denote

with respect to the superpopulauon model, and with subscript IT to denote with

respect to the sampling plan. The conditional variance of Y\X = x is denoted by

var(Hc) = cr2[x) = [E(Y2\X) - m'2(x)] and the bias by bias(f )=E(f - T). The

mean squared error is given by MSE = E \T — X];=i m(xi)\ and the predictive
L J

r » i 2

mean souared error bv PMSE = E \T — T\ .

The distribution of Y is sometimes indexed by fi = E(Y) or 77 = g(fi), where g

is a monotonic function known as the link function. The hat notation denotes an

estimator of a population characteristic made from the sample. The various esti-

mators of the population total are denoted by T with an abbreviated subscript to

describe the type of estimator: T denotes the true population total. Observations

in the sample are denoted by j £.s and those not in the sample by j ^ .s. Other

notation used is explained wherever necessary.

1.3 Rest of the thesis

The rest of the thesis is organised as follows. In Chapter 2 an introduction to

finite population prediction inference is given with emphasis on the two main

approaches that are frequently used: the superpopulation model approach and

the sampling theory approach. Some standard parametric estimators of the fi-

nite population are given and the role of 7r-weighting introduced. Chapter 3
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will consider smoothing and nonparametric regression generally in order to give

some background to this area, before looking specifically at nonparametric re-

gression in predicting totals in Chapter 4. Also in Chapter 3 a brief introduction

to generalised linear models is given. In Chapter 4 motivations and derivations

for our class of nonparametric regression estimators are explained and an impor-

tant 'total-preserving' property that some estimators have is introduced. This

is a beneficial property for any estimator to have and it is later established in

Chapter 6 that estimators with this property have good design-based properties.

The nonparametric regression estimators described in this chapter are classified

as operational (or automatic), and model-based estimators. The model-based

estimators are based on generalised linear models with the introduction of non-

parametric regression components, for example regression splines in the linear

predictor. The bias, variance and mean squared error of these estimators, under

the superpopulation model, are also given. In Chapter 5 the question of the choice

of smoothing parameter is addressed: a review of some of the methods that al-

ready exist is given, including crossvaiidation and methods based on asymptotics

of estimators such as the Gasser-Mu'ller and Nadaraya-Watson estimators. These

are introduced with a view to modifying them to the specific problem of finite

population prediction. Some asymptotic bias and variance properties, i.e. as

n —+ oc. /) —f 0. of the nonparametric estimators are also given. Examples are in-

cluded to illustrate the use of crossvaiidation as a bandwidth selector method and

the application of approximate asymptotic methods. In Chapter 6 we introduce

~t, the ith inclusion probability, as a weight into the estimators. This ensures,

in some cases, design unbiasedness or approximate design unbiasedness under

repeated sampling. We also consider the approximate design-variance of one esti-

mator, the locally weighted ratio estimator. Numerical simulation results confirm

that --weighting is beneficial in nonparametric regression estimators. When we

include 7r-weighting it can be shown that nonparametric regression estimators

are often more efficient than their parametric counterparts. Finally in Chapter

7 we state the conclusions from this work and indicate areas of possible further

research. Where appropriate, examples are used throughout the thesis.
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1.4 Datasets used

In this section details of the datasets used in this thesis are given, since some of

the datasets are used more than once. The datasets described here have been

associated with the ratio estimator in the published literature and make for a

good comparison with the nonparametric regression estimators. We draw random

samples from the population. The method of selecting these samples is explained

in Chapter 2.

1.4.1 Hospitals

This is referred to in Royall and Herson (1973a) and Herson (1976). It is the

population that fell into the January 1968 sample of the National Center for

Health Statistics hospital discharge survey, and consists of N = 393 short-stay

hospitals as the population units. Each unit or hospital consists of two variables,

xk and yk:

• Xk is the known number of beds in hospital k

• jjk is the number ol patients discharged from hospital A; in January 1968.

These data were kindly supplied by Richard Royall.

1.4.2 India

This dataset appears m Hanurav (1967) and consists of population sizes of N = 72

districts in four states of India. The population unit is the district and for each

unit there are two variables:

• Xk= population size of the district (rounded to nearest thousands) as per

1951 census.

• JJk— population size of the district as per 1961 census.
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1.4.3 Wheat

This dataset was obtained from Sukhatme (1954). The population consists of

.V = 32 observations, and for each unit:

• Xk= number of wheat acres in 1936

• j/yfc=number of wheat acres in 1937.

1.4.4 Family Expenditure Survey, 1968-1983

This data is available from the ESRC Data Archive at Essex University. The orig-

inal population consisted of A = 7058 observations; each unit in the population

referred to a particular household in the survey. Several variables were recorded

for each household: some useful measures include total expenditure, expenditure

broken down by housing, fuel, food and transport and gross household income.

For each population unit we have considered:

• ,rt=known gross household income (pounds)

• !lk— total expenditure (pounds).

A random sample of 500 units was selected from the original population of 7058

units and this was used as the 'population'.
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Chapter 2

Basic ideas and principles of

finite population prediction

2.1 Introduction

In this chapter we consider the different approaches to inference in finite popula-

tions in more detail. The aims are to introduce the principles behind the selection

of a sample from a finite population and the inferences based on characteristics

of interest of the target population. As an introduction, some basic terminology

and notation that is used in this chapter is given.

A finite population is a collection of N units, where A" is called the size of the

population. Associated with the ith unit there may be one or more variables. The

variable of interest for the population, yt, i = 1,. . ., JV, is known as the response

variable. There may be other variables, £„•, r = 1,.. . , p, i = 1,. . ., A associated

with unit z, which may be used to describe the variable of interest by a particular

regression function. These are known as auxiliary or explanatory variables. In

order to gain information about a function 0(y) of y = (?/!,... , yw), a sample of

size n (< N) is selected from the population and the y-values observed. The x

variables are assumed known for the whole population.

Functions of the response variable that one may be interested in include linear

functions, such as the population mean or total.

The design (or sampling plan) is represented as a probability function defined

on the sample space of all possible samples s of size n. A wide variety of stan-

15
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dard selection schemes are available including simple random sampling, stratified

sampling, systematic sampling, cluster sampling, etc. A detailed discussion of

the properties of designs can be found in Cassel et al. (1977).

After s has been chosen, we denote by ys and yr the observed and unobserved

parts of y respectively. An estimator, 8(ys) is a function of ys, thought to produce

values that lie near unknown population quantities of interest for most samples.

Estimators can be functions of study variables x and y. An estimate is produced

from an estimator after a specific outcome from a sample has been observed.

Properties of estimators such as expected value, variance and mean squared error

can be found with respect to the sampling design. This is discussed further in

Section 2.2.

2.2 Two methods of inference

2.2.1 Superpopulation models

This more recently developed prediction approach, e.g. as in Brewer (1963) and

Royall (1970), views yu .. ., y^ as realisations of random variables Yi,. . ., Yjy. Af-

ter the sample has been observed, an estimate of the population function requires

predicting the function of the unobserved Vs. Relationships among the variables

are expressed in an assumed model of their joint probability distribution, and pre-

dictions are made with reference to this model; randomisation probabilities play

no role in this inference. The assumed model is known as the 'superpopulation |

model', and this approach is referred to as model-based.

The superpopulation model, from which the finite population was drawn, is

denoted by £.

The model for the superpopulation may, for example, be a generalised linear

model with

3=0

The link function, #(•), is typically known and describes the transformation of the

/x's to the linear predictor. The ftj are the parameters that are to be estimated

in the model, e.g. in a, polynomial regression model. A generalised linear model
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can be specified in terms of the mean and variance of the response variable:

) = <t>V(fn), c o v t ( Y i , Y:) = 0 , (i / j ) .

The parameters in the model are estimated by maximising the likelihood asso-

ciated with the generalised linear model. The monograph by McCullagh and

Nelder (1989) gives a detailed account of generalised linear models.

The representation, in terms of mean and variance, described above is also

useful in defining a class of estimators. Parameter estimates obtained by max-

imum likelihood define a particular estimator, when their values are replaced

or 'plugged back' into the model. When V(fii) does not depend on the mean

Hi, weighted least squares can be used to obtain parameter estimates and hence

estimators from the specified model. When V (/•*«') depends on //,-, then quasi-

likelihood estimating equations can be used to obtain parameter estimates and

hence an estimator.

The inference in this setting is tied to the particular sample s that was realised,

and not to other samples.

Consider 'Hospitals' (Section 1.4), where x is the number of beds and y the

number of patients discharged during one month. From the population of iV=393

observations a sample of size n is selected and the y variable observed; the x

variable is known for the whole population. To estimate the total number of

patients discharged
N

we write it first as

where ,s is the sample of n hospitals. If yt is a realisation of the random variable Y{,

i = 1 , . . . , N, then estimating T is equivalent to predicting Ylias ^ °^ unobserved

values. The first and second moments for the joint probability distribution of the

K's might be

and

y,) = { f ' <!.= J): (2.1)
U otherwise.
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This seems a reasonable model for this set of data, and is the model most used

in the literature. Robustness to failure of the working model is also an important

consideration. This is usually understood to mean that inferences made from

a sample are insensitive to violations of the assumptions that have been made.

Royall and Herson (1973a,b) have given special attention to robustness and rec-

ommend the use of balanced samples. They also recommend disproportionate

sampling with optimum allocation of sample to strata, to ensure bias-robustness.

Simple random sampling (SRS) can be a valuable tool for choosing approximately

balanced samples, and hence protecting against bias incurred when, for example,

we have overlooked a regressor. If the x variable is used to divide the population

into H strata, then a 'separate' estimator can be used. For example, suppose

Xk is the average size of N;x hospitals in stratum h, and ysib and xsh are sample

averages in stratum h; then an estimator of the population total is

H _

TSRE = } —MhXh-
Xsh

h=l

This is known as the separate ratio estimator or stratified ratio estimator. As-

suming model (1.1) described above, but with different parameters (/i/Mo";
2J in

each stratum, this estimator is the best linear unbiased estimator (BLUE) of

the population total T. When the sample from each stratum is balanced, i.e.

xsh = Xh, TSRE becomes simply Y2k=\ ̂ hVsh- Even when balance is not achieved

within each stratum, stratification itself limits the degree of imbalance possible,

so that TSRE is protected from extreme bias by using piecewise linear models (see

Figure 1.1).

Model based quantities such as bias, variance and mean squared error can be

obtained. An estimator is said to be model-unbiased if, given ,s,

= 0.

Quantities measuring variability are the model variance

or the model mean squared error

respectively. Model-based or prediction intervals can be derived if we use an

estimator of variance or mean squared error obtained from the sample data.
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In order to arrive at estimators of the bias and variance described above we

may need to estimate parameters such as a2 and coefficients appearing in the

superpopulation model. This is performed based on the sample observations, for

example, an unbiased estimator of a2 under a model with var^V;) oc x,- is

n — 1 ^-^ Xk

This can however be severely biased if some other model holds. Roy all and

Eberhardt (1975) consider robust model-based variance estimators for the ratio

estimator when proportionality to x does not hold. Model-based properties such

as these are given in Chapter 4 ior a variety of finite population total estimators.

Departures from the superpopulation model covariance matrix are also discussed

in Royall (1988) but have not been considered further in the work presented in

this thesis.

A thorough account of superpopulation models can be found in Cassel, Sarndal

and Wretman (1977).

2.2.2 The classical, design-based approach

A probability sampling plan or design is a scheme for choosing the sample such

that there is a known probability TT(,S) of selecting a subset of units s.

The properties of 0(ys), the random quantity calculated from the sample, are

expressed in terms of its expected value, variance and mean squared error with

respect to the design vr(s). The design bias can be written as

where summation is over all possible samples s. The design variance is similarly

defined as

vaiv

and design mean squared error as the sum of design variance and squared design

bias.

Definition 2.1 A design unbiased (or vr-unbiased) estimator is one satisfying
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Design-unbiasedness guarantees robustness of inference to misspecification of the

stochastic process underlying the population. Design unbiasedness and approx-

imate design-unbiasedness are particularly good features for any estimator to

have.

Definition 2.2 The %{, i = 1,..., N denote the inclusion probabilities of the ith

unit of the population in the sample and depend on the given sampling design.

If

I 0 otherwise,

is a random indicator for whether a given unit is in the sample, then

ses

The h{s) is the sample membership indicator of unit i. We also have second order

inclusion probabilities which are the probability of inclusion of the ith and jth

unit of the population in the sample. These are defined similarly to the above.

Let

1 0 otherwise

then

The following relations hold: j ;5 ,'

E N ..I

Next we describe examples of two designs commonly used in survey sampling:

simple random sampling without replacement (SRS) and stratified simple random

sampling (SSRS).

Simple random sampling

In simple random sampling, each of the possible NCn samples has an equal prob-

ability of selection. The sampling design is:

if s has n units
otherwise.
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This type of design is known as an equal probability design, because the inclu-

sion probabilities are all equal. For SRS the first and second order inclusion

probabilities are

n(n — I)
ft a =

This design is often taken as a point of reference when comparing other designs.

Stratified SRS

Most designs in practice are unequal probability designs because they are often

more efficient. For instance, stratified simple random sampling with proportional

or optimal allocation is an unequal probability design. Here the population is di-

vided into non-overlapping subpopulations, or strata. Stratification nearly always

leads to a smaller variance for the estimator than the comparable SRS, if optimal

allocation is used. This method of selection requires the population stratum sizes

Nh to be known so that, once the strata have been determined, simple random

samples of size n/t from Nk can be selected within strata independently.

Before stratification can be performed a number of questions are required to

be answered:

1. Which stratification variable should be used?

2. How should the stratum boundaries be chosen?

3. How many strata should be used?

The answers to these are normally related and can depend on the precision of the

estimates required, cost considerations and administrative restrictions.

If the sampling design is stratified sampling, then a sample n/t is selected

from Nh according to a design 7T/1(.), h — 1 , . . . , / / and selection in one stratum

is independent of selections made in other strata. The Nh are assumed known

and Xwi=i ^ii ~ N. The inclusion probabilities here are

Kht = 1^- (i = l , . . . , N h ) ,

Nh(Nh -
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If i and j belong to different strata then vr̂  = 7T,-7rj. With stratification the vari-

ance is usually reduced and may be reduced even further if optimal allocation of

sample units to strata is made. This allocation, also known as Neyman allocation,

is achieved by minimising the variance subject to some fixed constraint such as

cost or sample size. The form of the optimal allocation is

NhSyh
= n- Nh.S,,

where Syh is the standard deviation associated with y's in stratum h. It indicates

that the larger the variation within a stratum, the larger the n^ allocated to that

stratum should be.

An alternative allocation that is used is proportional or equal allocation, where

Nh

If stratum standard deviations are the same then proportional allocation is opti-

mal.

2.2.3 Summary

The fundamental difference between these two approaches (model and design

based) is that model-based inferences are based on the actual sample observed

(conditional), and an assumed model of the superpopulation from which the finite

population was drawn, while design based inferences are based on the randomisa-

tion plan used to select the sample ,s, and averaging over the set of samples from

which s was drawn (unconditional).

The paper by Hansen, Maddow and Tepping (1983) gives an evaluation and

contrast of the design and model-based approaches to inference in survey sam-

pling. They give a summary of principles they think should be used in practice

and an example where the model-based approach can lead to serious biases when

the assumed superpopulation differs from the true population.

A useful introduction to finite population inference is given by Bolfarine and

Zacks (1991), with emphasis on Bayesian methods, and by Sarndal et al. (1992).

In this thesis both approaches described above are considered in the prob-

lem of predicting a finite population total. Properties such as bias, variance

and mean squared error under an assumed superpopulation model are given for
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some alternative estimators in Chapter 4. There it is shown how the alternative,

nonparametric regression estimators are often more efficient than the standard

methods. In Chapter 6 we consider the design-based approach. Again we are

interested in bias, variance and mean squared error but under repeated sampling.

We highlight the gains to be found when using 7r-weighted estimators.

The model and design-based approaches are different and important and re-

ceive separate attention in this thesis. A recent paper by Smith (1994) reviews

both these approaches.

2.2.4 Design-model based approach

It is also of some interest to consider the combined expectation under the design

and superpopulation models. One aim might be to find an estimator which is

design and model unbiased, i.e. such that

E^ \Et(T-T)\ =0,

or to find the expectation under repeated sampling of var^(T), the variance of T

under some superpopulation model, in order perhaps to minimise it. This type of

approach has been considered by Godambe and Joshi (1965), and more recently

by Godambe and Thompson (1986). In their paper, Godambe and Thompson fo-

cus on estimating equations which define the target population quantity, assumed

to be linear. They derive a design unbiased estimator, which is optimal under

the joint superpopulation and design model. This estimating equation is just a

sample based version of the population estimating equation, inversely weighted

by the inclusion probabilities. An estimate 0(ys), is then obtained by solving the

vr-weighted sample estimating equation. For more on the role of sampling weights

see Pfeffermann (1993).

Robustness of model and design-based inference in complex surveys using

smoothing is discussed in Njenga (1990) and Smith and Njenga (1992).

Joint design-model based approaches are referred to again in Section 6.6, when

specific examples are considered.
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2.3 Some standard estimators

2.3.1 Introduction

As mentioned in Section 1.2.1, estimators of population quantities are often based

on a specific parametric model. We focus on estimators of the population total,

but the same approach can be extended to any population quantity of interest.

The classical estimators used to predict the finite population total have been

the expansion estimator, ratio estimator, separate and combined ratio estimators

and regression estimators, all of which are described below. These estimators are

based on implicit underlying parametric regression models, where the parameter

estimates are obtained by weighted least squares or quasi-likelihood estimating

equations. This is in contrast to the nonparametric regression models which are

introduced in Chapter 3, where the 'parameter estimates' are based on 'local'

quasi-likelihood estimating equations.

2.3.2 The simple location model

This model can be specified by:

where 0 is the location parameter. The expansion estimator

TE = Nys,

is the best linear unbiased estimator of T under this model. Under other models

this estimator may be biased; in some cases the estimator may be made unbiased

by choosing a balanced sample.

2.3.3 Linear regression through the origin

The model specifying this relation is:

va,r t(Yi) = a2xt.

Under this model the ratio estimator,
N

i=\
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is the best linear unbiased estimator (BLUE) of T. The relationship of this

estimator with weighted least squares and quasi-likelihood was introduced in

Chapter 1. The ratio estimator can be biased under other regression models.

For example, the ratio estimator is biased for a polynomial regression model,

unless the sample moments are balanced with respect to the population moments.

Royall and Herson (1973a) describe balanced sampling with respect to the ratio

estimator in more detail.

2.3.4 Separate linear regressions through the origin

Suppose now the population has been stratified into H strata of size N^ (h =

1,. . . , H). One model is to consider separate linear regressions through the origin

within strata, i.e.

Ei(Ylu)= [ihi{ph)= fhxlu; (2.2)

var?(y/u) = a2xhl (h = l,...,H).

The best linear unbiased estimator from this model, the separate ratio estimator,

can be written as:
H Nh V v, •

ISRE ~ l ^ l ^ x'uV ^ ~ '
/ i = 1 3 = 1 l^jeshxh

where sh denotes the sample values in stratum h. Royall and Herson (1973b)

consider balanced sampling in conjunction with the separate ratio estimator.

2.3.5 Linear regression with an intercept

The relation between x, and y,- may not be restricted to be linear or to go through

the origin but may be based on linear or polynomial regression with an intercept

term. For example, the linear regression with intercept model may be written as:

E(Yi) = M = p0 + fax,; (2.3)
vaxc(Yi) = a2.

The BLUE of T from model (1.3) is:

fLR = N(y + 0(X - x)) ,
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where 0 is an estimate of the change in y value when x is increased by one unit.

The ratio estimator, in this case, corresponds to using y/x for /3. It is also possible

to have separate regression estimators within each stratum and then to sum the

separate estimates to obtain a separate regression estimator. These regression

estimators can be extended to any class of polynomial regression equation.

Regression estimators are not covered extensively in this thesis, but many of

the ideas that are considered can be applied to the regression setting quite easily.

2.4 The role of 7r-weighting

An important and widely used 7r-unbiased estimator of the population total is

the Horvitz-Thompson estimator

f
J-HT —

due to Horvitz and Thompson (1952). When we assume simple random sam-

pling, this 7r-weighted estimator is just the expansion estimator. A IT-weighted

estimator is defined as any estimator where the sample values appearing in the

estimator are divided by their corresponding inclusion probabilities. This ensures

good design properties such as design unbiasedness, or in some cases approximate

design unbiasedness.

The --weighted ratio estimator with TTJ-'S from stratified simple random sam-

pling is known as the combined ratio estimator and is defined as:

TV
rf,
J-CRE =

8=1 /-~ih=\

with 7T/i; = rihlNhi hence

N s-

TORE = V xX

The difference between TORE
 a°d the separate ratio estimator, TSRE, lies in

the way the sample strata x and y means are utilized. The TORE is based on

the ratio of the sum of sample strata x means to the sum of the sample strata y

means. The TSRE is based on the ratio of the individual sample strata x and y

totals, summed over the strata.
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For more on these models and estimators also refer to Cochran (1977), or

Bolfarine and Zacks (1991).

Some vr-weighted estimators are described in Chapter 6, where we consider

properties under repeated sampling in more detail.
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Smoothing and nonparametric

regression

3.1 The idea of nonparametric regression
i

A regression curve describes a general relationship between an explanatory vari-

able x and a response variable y. At each value of x, the average of Y is given

by the regression function; the relationship can be written as

y = m(x) + e

with unknown regression function m and observation errors e,-, having zero mean. ,•;.

Regression analysis aims to produce a reasonable approximation to the true re- ••->

gression function m. A parametric approach would be to give m in some prespec-

ified form, described by a finite set of parameters; in nonparametric regression

there is no specific form, thereby offering a flexible approach.

The related problem of nonparametric density estimation has received exten-

sive attention in the statistical literature since the idea was introduced by Rosen-

blatt (1956). There the proposition was one of smoothing a histogram by aver-

aging kernel functions. Since then and with the pioneering papers of Nadaraya

(1964) and Watson (1964) there is now a growing literature on the problem of

nonparametric estimation of an unknown regression function; see Hardle (1990a)

or Hastie and Tibshirani (1990) for a review and key references in the literature.

The basic idea of nonparametric regression is similar to that in density esti-

mation. For estimating the density at a given x, we consider points in a small

28
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neighbourhood around x, then we weight the frequencies in the neighbourhood.

In regression fitting we are more interested in weighting the response y in a cer-

tain neighbourhood of x. We weight observations j/,- depending on the distance

of Xi to x, i.e. we use an estimator such as

where VFj(.) defines a weight function depending on 6, the smoothing parameter

and the sample of explanatory variables x\,... ,xn. Almost all nonparametric

regression techniques are weighted averages of the response variable y.

If m(x) is believed to be smooth then observations close to x should con-

tain information about the value of m(x) at x. Thus it should be possible to

use something like a local average at x to construct an estimate of m(x). This

type of simple averaging of response values y having predictor values close to a

target value is known as smoothing the data. Local averaging is performed in a

neighbourhood around the target value and primarily depends on two things:

1. how to average the response values around the target values

2. how large to make the spread of contributing values around a target value.

The first decision is the type of smoother to choose, and here kernel smoothing

is a popular choice because of its simplicity.

The second decision is rather more difficult. The size of the neighbourhood

around the target x is typically expressed in terms of the smoothing parameter,

sometimes known as the bandwidth or span. This determines among other things

how far away observations are allowed to be to still significantly contribute to the

estimation of m(x), and governs the peakedness of the kernel in kernel smoothing.

Large values of b produce estimates of low variance, which tend to have high bias,

and which produce smoother estimates. The opposite is true for small values of

6, which produce much 'wigglier' curves. Thus there is a fundamental trade-

off between variance and bias governed by the smoothing parameter; there has

been much literature on the choice of the best smoothing parameter and this is

discussed in more detail in Chapter 5. Figure 3.1 gives a plot illustrating how the

underlying smoothing parameter controls the amount of smoothing performed.
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Figure 3.1: The Gaussian kernel smoother uses the Gaussian density function to

assign weights to neighbouring points (dotted curve). The spread of this weight

function determines the smoothness of the resultant regression curve (solid curve).
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The best known estimators are:

1. Kernel estimators with subtypes

• Priestley-Chao (1972), Gasser and Muller (1979), Cheng and Lin (1981),

Benedetti (1977).

• Nadaraya (1964) and Watson (1964) estimator for random designs.

2. K-nearest neighbour estimators, Buja, Hastie and Tibshirani (1989).

3. Local regression, Cleveland (1979), Fan (1992, 1993).

4. Smoothing splines, which are currently increasing in popularity, Eubank (1988),

Green and Silverman (1994).

Most of the literature on nonparametric regression function estimation deals

with kernel methods and their variants, which are considered in more detail in

Section 3.3. Uses of nonparametric regression for model checking have been con-

sidered by Azzalini, Bowman and Hardle (1989) and further by Firth, Glosup

and Hinkley (1991).

3.2 Basic principles of Generalised linear mod-

els

Kernel regression described above generalises further in generalised linear models;

a brief introduction to these models is now given. The generalised linear model

(Nelder and Wedderburn (1972), McCullagh and Nelder (1989)) consists of a

random component, a systematic component and a link function, linking the two

components. The random component describes the conditional distribution of Y

given X — x and for generalised linear models is assumed to be a member of an

exponential family with probability density function

fY(y; 9, <j>) = exp{[y6 - 6(0)]/a(<£) + c(y, <f>)},

for some a(.), &(.), and c(.), canonical parameter 9 and known <fi, the dispersion

or nuisance parameter. The mean and variance of Y are derived from the log-

likelihood function

1(0, fry) = In fY{y, 9,<j>) as E(Y) = p. = b'(9) and Var(F) = b"(d)a(<f>),
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where b (9) = V{p) is known as the variance function related to the mean func-

tion. The more important distributions of the above type include the Normal,

Poisson, Binomial, Gamma and Inverse Gaussian distributions.

The systematic component of the model, denoted by r), relates the mean to

the known covariates x l 5 . . . , xp, in a linear predictor, e.g.

The link function, g(.), between the systematic component and //, the random

component, may be any monotonic differentiate function:

V =

Some examples include the identity, log, logit, probit and complementary log-log

links. When 6 = rj, each of the distributions described above has what is called a

canonical link; these simplify the algebra and algorithms used to find the param-

eter estimates. Given the random and systematic component, a link function,

a vector of n observations and corresponding predictor variables Xi , . . . ,xp , the

maximum likelihood estimators of /?, the parameters in the linear predictor, can

be obtained. These are defined as the solution to the score equations

where V{ = var(Vi). The Fisher scoring method or adjusted dependent variable

regression are standard methods for solving these equations. See McCullagh and '<•:- ,

Nelder (1989) for more detail on this and other aspects of generalised linear f

modelling. When the random component is not of the generalised linear model

type we have the important class of quasi-likelihood models due to Wedderburn

(1974). Instead the random component is specified in terms of the first two

moments only. A special case of a quasi-likelihood model is weighted least squares

where the weights depend on the current parameter estimates.

3.3 Local likelihood and local quasi-likelihood

estimation

The local likelihood method extends nonparametric regression techniques to like-

lihood based regression models. A simple illustration of likelihood based non-
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parametric regression is now given. Suppose, for each i in a population, a least

squares lines is fitted to the data in a neighbourhood or span around the x value;

here the local likelihood is based on normal distribution assumptions. The esti-

mator derived from this method is known as a running line estimator.

3.3.1 The details of local likelihood

Tibshirani and Hastie (1987) extend smoothing ideas to other kinds of data whose

relationship is expressible through a likelihood function. Consider the general

likelihood setting and suppose (x;, y,-) (i = 1 , . . . , n) are independent realisations

of random variables X,Y and (VjX = x) ~ f(Y,6), where 6 is a function of x.

Then the corresponding likelihood is

where 8{ = fl0 + fl\X{ say after modelling. The likelihood or log-likelihood is

then a function of fl0 and fl\. These parameters are estimated by maximising the

log-likelihood.

Local likelihood assumes that Oi is a smooth function of X{ i.e. 9\ = m(xi).

Here Hastie and Tibshirani define m(xt) = floi-\- fluxi where flO{ and flu maximise

the local likelihood

Li(floi, flli) =

and where A7,- is a neighbourhood of points around a target X{. This can be

applied to the case of generalised linear models (Nelder and Wedderburn (1972)),

where the linear predictor g(fi) = flo-\- flix is generalised to m(x). The estimation

of the fli = (floi, flu) can be performed using a Newton-Raphson search in each

neighbourhood.

The method of local likelihood can be extended to local quasi-likelihood, with

known variance function, V(fi) (McCullagh and Nelder (1989) Chapter 9). The

special case V(/x) = 1 corresponds to least squares. In general the local quasi-

likelihood estimating equations are defined as

/ij) dfij

' dflr
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for the unknown parameters 0 in Hj(/3) = E(YJ\XJ). For any specified value of

x, a local model with parameter vector 0(x) may be estimated by solving the

equations

3 = 1

where Wb(x,Xj) is a kernel weight function. Several forms of weighting are dis-

cussed in Hastie and Tibshirani (1990). Fan (1993) and Fan and Gijbels (1993)

use local likelihood in design-adaptive nonparametric regression. They derive a

type of locally weighted linear regression which adapts to random and fixed de-

sign and without modification at the boundaries of the x value. Fan, Heckman

and Wand (1992) also consider local polynomial kernel regression for generalised

linear models, which has good properties provided the polynomial being used is

of odd degree.

Fitting local lines appears to be worthwhile since it reduces bias at the end-

points, where fitted constants do not (Hastie and Loader, 1993).

3.4 Nonparametric regression smoothing tech-

niques - Local means

3.4.1 Kernel smoothing

Kernel smoothers as local means can be derived from the method of local like-

lihood described above, assuming normal errors, an identity link and a constant

model with no covariates present. The estimating equation would be :

Kernel smoothers used in regression problems have the common form

m{x) =

a locally weighted average of the Y3 about a target point x. This local average

is constructed in such a way that observations close to x contribute significantly,

while those further away contribute less, because of their different means. If K(.)
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is a smooth density function, some examples of weight functions constructed using

A"(.) are :

(a)

Wb(x,Xj) = —-—— K{(x — i

where X\ < ... < xn,

(c)

Wb(x,Xj) = j I K{(x-s)/b}ds,

where tj-\ < x3 < tr The special case tj — Xj has been investigated by Cheng

and Lin (1981).

The kernel function K(.) may be chosen to be, for example, a symmetric

unimodal probability density function. One example is the Gaussian kernel

K{(x-xJ)/b}=exp(-(x-x1)
2/2b2),

but there are various other commonly-used types of kernel function, including

the uniform, triangular, and Epanechiiikov kernels. If K(.) is unimodal then the

heaviest weights are generally assigned to observations near the target x, and

the least weights going to observations near the tails of the kernel function. The

following moment conditions on the function K(.) need to be satisfied

/ K(u)du = 1, (3.1)

i uK(u) du = 0, (3.2)

/ K(ufdu < oo. (3.3)

Condition (3.1) is forcing the weights to sum to 1, under example (b) above the

sum is exactly 1. Condition (3.2) is a symmetry condition that is automatically

satisfied if K(.) is symmetric about zero. Finally (3.3) is needed to ensure that

the estimator has a finite asymptotic variance. The order of the kernel, K, is

defined by

/ K(u)u3 du = 0 ] = 1 , . . . , K - 1, / uKK(u) du = a ^ 0; (3.4)
J J-i
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kernels of order 2 are the most commonly used.

The weight function in (a) above has been used by Priestley and Chao (1972)

in the fixed design setting. In a paper by Benedetti (1977) the asymptotics of

this estimator and the optimal choices of the kernel function are considered. The

weight function in (b) was introduced by Nadayara (1964) and Watson (1964)

and is often referred to as the Nadaraya-Watson estimator. It is commonly used

in the random design case. The weights sum to one exactly in this estimator,

regardless of choice for K.

Finally, the weights in (c) were due to Gasser and Miiller (1979), and were

later generalised to estimating derivatives of regression functions in Gasser and

Mviller (1979, 1984). In these papers the authors also consider boundary value

modifications in order to improve the estimation. Theoretical properties are dis-

cussed by Cheng and Lin (1981) and finite sample results by Gasser, Miiller and

Mammitzch (1985). Jennen-Steinmetz and Gasser (1988) is a useful reference on

estimators closely related to those of Gasser and Miiller above. Also Gasser and

Engel (1990) discuss the advantages of using convolution type weights, such as

these (see Clark, 1980 for more on convolution smoothing), in terms of minimax

optimality, a property also discussed in Fan (1993).

The observations could have been generated in two ways.

1. The Random design setting where ( X J , ^ ) , i = 1,. . . ,n are assumed inde-

pendent, identically distributed random variables, joint density denoted by

/(xj,?/j) and the marginal density of X{S denoted by f(xi). The regression

curve is then defined by:

m(xi) = E(Yi\xl).

2. The fixed design model where the variable is controlled, non-stochastic in

nature, so

Yi = m{xi) + e,-.

In many experiments the a;,- are chosen to be equidistant on an interval

[a, 6].

The weights (a) and (c) above are mostly used in the fixed design model. In

the random design setting estimators based on these weights lead to a different
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Nadaraya- Watson

ams 27w d*

Variance •ihf(x) CK

Gasser-Miiller

^dK

2 nhf(x)

where dK = J u2K(u)du,

and cK = jK2(u)du.

Table 3.1: Asymptotic bias and variance of Nadaraya-Watson and Gasser-Miiller

kernel smoothers

variance to that obtained by using weights in (b). Gasser and Engel (1990) give

more detail on this.

Asymptotic properties of these estimators (i.e. as n —> oo, h —> 0, nh —• oo)

are given in Table 3.1 for the more frequently used Nadaraya-Watson and Gasser-

Miiller estimators (Gasser and Engel, 1990 and Hardle, 1990a).

Table 3.1 pertains to a random design. Note that the bias of the Nadaraya-

Watson estimator is of a more complicated form than that of the Gasser-Miiller

estimator; as well as involving derivatives of the underlying regression function

the bias also involves the design density and its first derivative. However, the

variance of the G-M estimator is 1.5 times that of the N-W estimator which is

not particularly desirable.

Chu and Marron (1991) compare and contrast these two popular choices of

kernel estimators, by presenting a balanced discussion of the differences between

the two estimators in terms of their asymptotic bias and variance. They conclude

that both methods have important advantages and disadvantages which need to

be taken into consideration when deciding which approach to use. Jones, Davies

and Park (1994) give more detailed comparisons.

These smoothers generally perform much worse at the boundaries, where fewer

observations contribute, due to the asymmetry of the data, to the estimation at

that point. This introduces what is known as boundary bias and modifications are

normally required in order to remove it. Modified kernel estimators for boundary
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bias have been investigated by Gasser and Muller (1979) and Rice (1984a). Gasser

and Muller consider modifying the kernel to give a modified boundary kernel,

while Rice (1984a) uses a generalised jackknife approach. Jones (1993) also gives

a review of boundary kernels used in density estimation. Kernels adjusted for

the boundaries have not been considered further here. The problem of boundary

bias is less of an issue if local lines are used instead of local means (Hastie and

Loader, 1993). Local lines are discussed in the next sections and in Chapter 4.

All of the kernel smoothers described above could have been derived from the

local likelihood estimating equations. We look at this is more detail when we

consider alternative estimators of the finite population total in Chapter 4.

3.4.2 Nearest neighbour functions

The construction of the estimators based on nearest neighbours differs from that

of kernel estimators in that kernel estimators involve calculating a weighted av-

erage for a fixed bandwidth around x, while the nearest neighbour estimators are

based on a weighted average with a varying bandwidth or neighbourhood. If we

select an equal number of points, say (k — l)/2, to the left and right of x including

x itself, i.e. a span of k points in all, then this is known as a symmetric nearest

neighbourhood. The neighbourhood is 'nearest' in the sense that equal numbers

of points either side of the target x are included in the span of points, based

on their Euclidean distance from x. We may also chose the (fc — 1) nearest £,-,

i = 1,.. . , n, values to x in terms of Euclidean distance, not necessarily symmet-

ric; these are simply known as nearest neighbours. If an x value is not one of the

sample values then an arbitrary choice may be to take the nearest sample value

to it in terms of Euclidean distance. The smoothing parameter is the span k and

controls the smoothness of the resulting estimate. Assuming the data are sorted

by increasing x,, a formal definition of the symmetric nearest neighbourhood is

Ni = {max(l,i - (k - l ) /2) , . . . ,min(n, i + (k - l)/2)}

and the A;-NN smoother is defined as

rh(Xl) =

In an experiment where the X{ are from an equidistant grid the fc-NN estimator

is equivalent to a kernel approach using a uniform kernel function. The extreme
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case when k = 1 produces a regression function which jumps in a step-function

fashion between two adjacent observations. The smoother fits each data point

exactly. This running mean smoother produces a curve more jagged in appearance

than that produced by a kernel regression smoother. However both curves have

boundary bias problems because of the nature of the smoother.

3.5 Nonparametric regression smoothing tech-

niques - Local regression

3.5.1 Locally weighted regression

Local regression was traditionally used for smoothing time series and scatter-

plots, Cleveland (1979) and later Cleveland and Devlin (1988) developed further

aspects of this method by proposing a locally weighted regression, extending or-

dinary least squares to weighted least squares, and robustifying by iteratively

reweighting. This method then combines the strict nature of running lines with

the smooth kernel function weights and is often referred to as the locally weighted

running line smoother (LOWESS).

Locally weighted regression smoothers can be extended to any class of local

polynomial. Fan, Heckman and Wand (1992) consider a class of locally fitted

generalised polynomials in which

for some specified link function g. These local polynomials are found to have

some good properties including reduced bias near the boundaries of x.

A recent paper by Hastie and Loader (1993) also highlights this fact, by

comparing these 'LOWESS' smoothers with the kernel smoothers. They find

that the local regression smoothers adjust bias without the modifications of the

kernel function. See also Fan and Cijbels (1992).

3.5.2 Running line smoother

The other type of k-NN approach we consider is that based on local regression,

as described in Section 3.2 above. Suppose we have local linear regression within
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the £;-NN setting.

Instead of averaging the response value in a neighbourhood around each £,-,

the running line approach fits a least squares line to the data points in a neigh-

bourhood. The value of the fitted line at x gives the smooth estimate and this is

performed for each x in the population. This type of smoother reduces the end-

point bias. However, the output of the running line also appears jagged because

the weights at x are zero outside the neighbourhood.

Computationally the running mean and line smoothers are more efficient than

corresponding kernel methods as the estimate at any x can be defined recursively,

based on the estimate at the previous x value. This updating formula can be

applied to any local polynomial fit.

Again these nearest-neighbour smoothers can be derived from the local likeli-

hood estimating equations as examples of local least squares estimators; the run-

ning mean is obtained by assuming only an intercept term in the linear predictor,

and the running line smoother by assuming a model with linear and intercept ; ,

terms and an identity link. The parameters of the local fit are estimated and the

value of the fitted line at x gives the smooth estimate.

3.5.3 Regression splines

These consist of less rigid forms of parametric fitting which are closer in spirit to j

the kernel smoothers mentioned above. Polynomial regression has limited appeal ,',: :

due to the global nature of the fit. It is often beneficial to work with polynomials f

of lower degree and divide the interval of interest into smaller pieces.

Regression splines represent the fit as local piecewise polynomials. Regions

specifying the pieces are separated by knots or breakpoints (k knots). In addition

it is useful if we force the piecewise polynomials to join smoothly at the knots,

instead of having a discontinous function with jumps at the knots. Popular

choices have been piecewise cubic polynomials.

The smooth at a point is computed by multiple regression on an appropri-

ate set of basis vectors, for a given knot sequence. Basis vectors are functions

representing the particular family of, say piecewise cubic polynomials, evaluated

at the observed values. To smooth the data pairs (a;,-, t/,-) we would construct a

regression matrix with k + 4 columns each corresponding to a function A,(z),
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linearly independent, evaluated at the n values of x. The smooth is taken as a

linear combination of the Aj(x) at a point x.

There are various forms for the basis functions representing the splines, the

simplest is the truncated power series, however a B-spline basis provides a nu-

merically superior alternative to this. A spline of order r with knots at £1,. . ., £A?

can be defined as any function of the form

r - l

j=0 i=l

where + denotes the value if positive and 0 if negative or zero. This is equivalent

to the specification that

1. s is a piecewise polynomial of order r on any sub-interval [£;, &+i),

2. s has r — 1 continuous derivatives and

3. s has an (r — l)st derivative that is a step function with jumps at £,-,..., £&.

Let s r(£i , . . . ,£k) denote the set of all functions of the above form. This forms a

basis of dimension k + r.

B-Splines

The B-splines are themselves piecewise polynomials and we need &+(degree)+l

of them if we want to span the space. Their algebraic definition can be written

in terms of divided differences of Green's functions and is referred to in more

detail in Schumaker (1981) and de Boor (1978). B-splines are usually defined

recursively and as a result cannot be calculated directly.

The difficulty with using splines is in choosing the number and position of

knots. Several methods for this are known. We can select the number of knots

for each estimator and then place them uniformly over the range of values, or

we could place the knots at quantiles of the predictor variable. The number of

knots, &, is related to the degrees of freedom of fit, to be introduced in Section

3.7, so that if we fix the degrees of freedom we can determine k.

Number and position of knots
Choosing the number and position of knots is similar to choosing a smoothing
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parameter in nonparametric regression. The number of knots to be chosen can be

derived directly by fixing the degrees of freedom of the fit. Increasing the degrees

of freedom increases the number of knots, and the regression curve becomes more

wiggly. Decreasing the degrees of freedom decreases the number of knots and the

curve is more smooth. The important factor here is the placement of knots.

We discuss linear B-splines, defined as divided differences of truncated power

functions as follows:

171= J

k

n rA
U=j,l£m VS

\ x i S?nj+5

where £j is the j t h knot for j = 1 , . . . k. The basis functions can also be repre-

sented in linear form as

Regression splines are incorporated as a component of the linear predictor in

a generalised model in Chapter 4 when we introduce 'model-based' estimators.

3.5.4 Penalised likelihood

The smoothing spline is an exampie of a smoother which minimises a penalised

least squares criterion. A natural measure of fidelity to the data for a curve m is

the residual sum of squares

t=i

The spline introduces a term which penalises too much local variation in m. One

convenient measure is the square of the L-i norm of the second derivative of m,

and the spline smoother is defined as the minimiser of

Sx(m) =

where A > 0 controls the smoothness. Penalised least squares can also be gen-

eralised to penalised likelihood (see Green and Silverman, 1994). A relation

between kernel regression and spline smoothing is detailed in Silverman (1984),
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and Hardle (1990a, §3.4); other references on splines include Wahba (1975, 1990),

Rice and Rosenblatt (1983), Eubank (1988), the review paper by Wegman and

Wright (1983) and more recently Green and Silverman (1994). Smoothing splines

are not, considered in much detail in this thesis, but we do consider another class

of splines already described, regression splines, when we introduce model-based

estimators of the finite population total in Chapter 4.

3.5.5 Other smoothing methods

The methods discussed by Miiller (1987) are in a similar vein to kernel methods

already described. Instead of assuming a fixed bandwidth, the bandwidth is

allowed to vary in proportion to the underlying design density to a power of —a,

0 < a < 1.

Other smoothers include orthogonal series estimators, the regressogram, con-

volution smoothing, median smoothing and many others. For a more compre-

hensive list see Hardle (1990a) or the review article by Collomb (1981).

3.6 Smoother matrices and equivalent kernels

A linear smoother is special in that y can be written in the form y = Sy where

y = (?/},. . . , yn) and S is an n X n smoother matrix, which depends on the x, and

the smoothing parameter b. All of the above smoothers are examples of linear

smoothers of y. Because of their independence from y linear smoother matrices

have some useful properties, some of which are discussed in Buja, Hastie and

Tibshirani (1989) and Hastie and Tibshirani (1990).

One way to compare various smoothers is in plots of rows of their smoother

matrices against x. These are known as plots of equivalent kernels, and help

determine which x values are having an influence on the fit at the target value.

Essentially they give the form of the neighbourhood and the weighting scheme at

any target x value.
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3.7 Degrees Of Freedom

In parametric linear regression, we have the notion of degrees of freedom associ-

ated with the fit to the data. It would be useful to have a similar measure for

nonparametric smooth fits to the data. Buja, Hastie and Tibshirani (1989) gave

three definitions of degrees of freedom analagous to the linear regression case:

1. degrees of freedom=tr(SST).

2. degrees of freedom=tr(2S — SST).

3. degrees of freedom=tr(S).

The motivation for the first method comes about because, for the linear model,

^ J var(yj) = pa2

where p is the degrees of freedom or number of parameters fit, tr(SST). The more

parameters we fit, the rougher the function and higher its variance.

The second form is motivated by the expectation of the residual sum of

squares:

RSS = ( y - y ) T ( y - y )

which has expectation

£(RSS) = [n - tr(2S - STS)]a2 + m(x)T(I - S)T(I - S)m(x).

The last term measures squared bias. The first term defines

dferr =n- tr(2S - STS),

since this is n — p in linear regression. If we were smoothing noise, then a2(n —

dferr) is the expected drop in RSS due to overfitting. Hence Buja, Hastie and

Tibshirani (1989) are motivated to use tr(2S — STS).

Finally the third method of tr(S) can be motivated as the Mallows (1973) Cp

correction for RSS, to make it unbiased for the PMSE by adding the quantity

2 tr(S)cr2/n. This definition of degrees of freedom is popular in smoothing spline

literature, when Srr2 emerges as the posterior covariance of y after appropriate

Bayesian assumptions are made.
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Of the three definitions df = tr(S) is the easiest to compute, since it only

requires finding diagonal elements of S. This provides a reasonable way of cal-

ibrating smoothing parameters across a class of smoothers, and gives a choice

without using alternative methods of smoothing parameter selection (see Chap-

ter 5 ).

Hastie and Tibshirani (1989, 1990) also use these notions of degrees of freedom

when comparing two fits, although this is not discussed further here. For the

nonparametric regression estimators to be introduced, an alternative method for

computing the degrees of freedom is given in the next chapter. This is specific

to the context of predicting a population total, and is motivated in a similar

way to Hastie and Tibshirani's methods. Finally, the degrees-of-freedom forms

described above depend on the explanatory values and the smoothing parameter;

the smoothing parameter is the major determinant for the degrees of freedom.

3.8 Multiple regression and generalised addi-

tive models

The methods described so far assume only one explanatory variable for the re-

sponse Y. We may be interested in considering several explanatory variables

simultaneously, in a multiple regression context. Generalised additive modeling

is multiple regression using smoothing techniques so that dependence on each

explanatory variable is described by a smooth curve and the sum of these smooth

functions gives us the 'additive model'. This can be seen as a further generalisa-

tion of the generalised linear model due to Nelder and Wedderburn (1972). The

additive model may be written as

d

where nij(xij) are separate nonparametric regression functions. This is referred

to as a generalised additive model (GAM) with a specified link function.

Another multivariate smoothing technique is projection pursuit (Friedman

and Stuetzle 1981).

We concentrate on the one explanatory variable case in this thesis, but many

of the methods described could be extended to a multivariate setting also.
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Smoothing in predicting a finite

population total

4.1 Introduction

In the first part of this chapter we focus attention on a class of alternative es-

timators of the finite population total to those described in Chapter 2. The

alternative estimators are based on 'local' quasi-likelihood estimating equations

and are examples of nonparametric regression estimators. These can be defined

as either total preserving or as non-total-preserving estimators, a property which

is discussed further in Section 4.3. The nonparametric regression estimators that

are proposed are often more efficient than existing parametric methods. The

latter part of the chapter is devoted to properties of these estimators under a

superpopulation model. Design-based properties are given in Chapter 6.

4.2 Motivation and derivation of some alterna-

tive estimators

In Chapter 3, nonparametric regression was introduced in its simplest form as a

weighted mean, with reference to the Nadaraya-Watson estimator. This estimator

47



Chapter 4 48

can be derived from an estimating equation such as

an example-of a 'local likelihood' equation as discussed in Tibshirani and Hastie(1987).

These ideas can extend to various kinds of data, whose relationship is expressible

through a likelihood function. Here, a simple parametric function like /i0 + [3-[X2

appearing in the likelihood is replaced with a smooth function, /i(x), and jJ,(x)

is estimated locally. When the mean and variance are specified, 'local' quasi-

likelihood estimating equations are:

- n2)Wb(x,Xj)xjr _ ( , - i )

where Hj stands for fij{fl{x))i a n d $(x) is a different coefficient vector for each x,

obtained by solving the above estimating equations. Here, Wb(x,Xj) is a weight

derived from a suitable kernel function.

This method is used in deriving a new class of estimators which are examples

of operational estimators. They are operational in the sense of being automatic

estimators except, perhaps, for the choice of a smoothing parameter. The auto-

matic nature of these estimators is achieved through the local averaging, so once

we decide which weights to use and the type of estimator, i.e. a local regression or

ratio estimator, etc., the estimator computes the predicted finite population total.

Local regression involves fitting a local curve with attached kernel weights. Local

here means within a neighbourhood of a target x. Important types of operational

estimators include the following:

1. The locally weighted ratio estimator (abbreviated to LWRE). A single ex-

planatory variable, no intercept, identity link and variance proportional to mean

(xi in this case) are defined locally as:

E{yi) = fii = Xif3(x), var (?/,•) = o1x% [a2 constant).

The estimating equation for (3(x) is then

Vk X^± = o,

which leads to
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as the explicit solution of the local quasi-likelihood equations. The predicted

value is then y = x$(x) and thus estimation of the population total is given by

N N

This new estimator is just a locally weighted version of the familiar ratio es-

timator. In this particular case, with mean and variance specified as above,

weighted least squares is equivalent to Poisson maximum likelihood and so local

least squares estimation is local likelihood estimation.

2. The locally weighted regression estimator. Simple linear regression with an

intercept, identity link and constant variance are defined locally as:

E(yt) = m = (3Q(X) + 0i(x)xi, var(yi) = a2.

Now the estimating equations are

Y,, - (Po(x) + fs^x^w^xj) = o,
•? = !

and
n

- (Po(x) + i%{x)xj))xjWb{x,x3) = 0.

Solving these equations simultaneously is similar to solving the estimating equa-

tions for the parametric regression case, except now weights have been included,

and each parameter estimate is a local parameter. Fan, Heckman and Wand (1992)

use an approach similar to this based on local polynomial regression within a

generalised linear modelling framework, but not for prediction purposes. In their

paper, Fan, Heckman and Wand (1992) develop asymptotic theory and discuss

bandwidth selection in terms of the 'plug-in' approach, to be discussed further in

Chapter 5.

Other types of locally weighted estimator can be derived if we know the mean

and variance functions, since any quasi-likelihood is entirely specified by these

functions. A thorough account of quasi-likelihood inference is given in McCullagh

and Nelder (1989, Chapter 9). For easy implementation of such estimators, we

must ensure the parameter estimation is non-iterative, so that the parameters can

be explicitly defined as in the two examples given above. This, however, restricts

the class of models we can use.
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Some examples of weight functions we consider are the Gaussian kernel func-

tion

Vb(xi,Xj) = exp I —— . b

and the Uniform fc-nearest neighbour function, where k is the span

otherwise.

The X{ are assumed ordered. Any estimator based on the Uniform, fc-nearest neigh-

bour function is known as a running estimator. For example, if the Nadaraya-

Watson estimator had been used with this weight we would have a running mean.

If the locally weighted ratio estimator had been used, we would have a running

ratio estimator, etc.

The nearest neighbour estimators are particularly useful since they have the

ability to adapt their bandwidth to the local density of the predictor variable,

something the fixed-bandwidth kernels cannot do. This may be overcome by

introducing a variable bandwidth into the kernel function which is allowed to

vary with the local density and possibly other factors, such as local variance (see

Chapter 5).

4.3 Total-preserving estimators

4.3.1 Introduction

For the purpose of estimating a population total only non-sample values are

predicted, since the sample total is already known. We write

f — T 4- f

where Ts is the known sample total and TT is an estimator of the unknown non-

sample total.

Examples of operational estimators have already been introduced. Although

these have the property of being automatic estimators, not all possess the addi-

tional property of being 'total-preserving'. Next a definition of 'total-preserving'

is given. Recall the definition of the smoother matrix in relation to the fitted
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values:

y = sy-

Definition 4.1 // lTy s = lTSy s = lTy s , then S, the linear smoother matrix,

is said to be 'total-preserving'. This smoother is then associated with a 'total-

preserving' estimator.

Estimators with this property include the expansion estimator, ratio estimator

and combined and separate ratio estimators. It becomes a useful property when

properties of these estimators under repeated sampling are considered in Chapter

6. There it is shown that estimators violating this property can have serious bias

problems under repeated sampling. Total-preserving estimators are shown to have

bias approximately zero. Two types of 'total-preserving' estimator are described

in Section 4.3.2, these being operational and model-based estimators respectively.

Estimators which are not total-preserving include the operational type already

mentioned, with weight functions such as the Gaussian kernel or Uniform k-

nearest neighbour. They can still be more efficient than existing parametric

methods because of the implicit underlying smooth function. Estimators which

are not total-preserving also have the property of being automatic estimators and

are easily interpreted as locally weighted estimators.

4.3.2 Total-preserving operational estimators

These estimators involve taking the average of k running total-preserving esti-

mators at xt. Examples of estimators we may consider in the average running

estimator include means, ratio estimators and linear regression estimators. For

example, the averaged running ratio estimator is

TARRE =

where
W(0+(*-i) „

such that /(?') = {in : mm|x'; — xm\,m G $}. The span k, is the smoothing

parameter associated with this estimator.
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All of the estimators mentioned so far can be written in terms of their smoother

or 'hat' matrix. Smoother matrices are introduced in Section 3.5. In the case of

the averaged running estimators, we can write

\ ' - 1 '

where StJ is the j th row of the smoother matrix, S,- with the following total-

preserving property, ^ X)i'=i ^k ^-^ = inV ^V- Here S,- is a fc X n smoother matrix

for each target xt, and I*., 1,, are vectors of l's of length k and n respectively and

y a vector of sample y values. For example, the j th row of S, for the averaged

running estimator is

Sij = ( 0 , . . . , 0, S(ij(iyk+j),- • • •, %,/(j)-fc+j), 0 . . . , 0) ,

where the first nonzero value is at position min(l(i) — k-\-j, 1) and the last element

at position raax(l(i) + j — 1, n), for j = 1,. . . , k. Each element S\iti(i)-k+j) in the

vector above is an estimate of y,- at a target X{ based on elements in the window:

min(/(i) — k + j , 1) up to max(7(i) + j — 1, ft).

The averaging may be extended to running generalised linear models provided

a canonical link is used and an intercept term included in the linear predictor.

This ensures the total-preserving property holds since

The averaged running estimator is always total-preserving, provided the run-

ning estimator considered is total-preserving itself. This is shown next. Now

TARRE = -^

where S8J is as defined above. If we fix j and sum over the i then we have

If S.jy = l T y , i.e. the smoother matrix used in the running estimator is total-

preserving, then it follows that averaging over all j = 1,. . . , k will also be total

preserving.
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For the running mean it is noted that, at the boundary, there may be some

bias because of the nature of the estimator. This is rectified to a certain extent

by using local lines instead of local means. The averaged running mean estimator

is not a good estimator of the finite population total because of this boundary

bias.

The averaged running estimators have some good properties relative to para-

metric estimators. They compare favorably with the separate ratio estimator but

often have less variability (see Table 5.1 and Tables 6.1-6.3).

One question not addressed here but covered further in Chapter 5 is the choice

of smoothing parameter or span in this case. Since a smoother matrix can be

defined for these estimators, it is possible to find a value of the span relating

to some value of the degrees of freedom (or number of strata if stratification is

used). Other methods such as crossvalidation are computationally cumbersome

in this case.

4.3.3 Model-based estimators

The emphasis here is more on the underlying superpopulation model. Gener-

alised linear models, as described by McCullagh and Nelder (1989), are now

considered in order to find a class of model-based estimators. A large class of

total-preserving generalised linear model estimators exist. For example, a model

for t)i with variance proportional to the mean and regression through the origin

can be represented as :

E{Yi) = log(^) = log(x,-) + /30 + P(xi),

Var(Yi) = cr2fii,

where log(x¥
a) is an offset term, /30 the intercept, and P(xi) may be any function,

e.g. a polynomial or regression spline at X{. With just the intercept in the model

the usual ratio estimator results. A model with a linear explanatory variable and

intercept term is entirely parametric. Nonparametric regression components are

introduced in P(x{) to make the model semiparametric, for example, P(xi) as a

regression spline. Green and Yandell (1987) describe semiparametric generalised

linear models in more detail. Regression splines are discussed in Section 3.4.
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Including regression splines

Changing the knot sequence in the regression spline makes no difference to the

total-preservation of the estimator, since this will just lead to a different set

of basis functions from which to compute the B-spline. The total-preserving

property holds because of the fact that we include an intercept term in our linear

predictor and not because of the form of the regression spline.

In this work B-splines were fitted, initially based on fixing the degrees of

freedom of the fit, and choosing the knots at appropriate equally-spaced quantiles

of the x distribution. When stratification was used, this led to estimators that

consistently under-predicted the true population total. The stratum boundaries

were found to be a more appropriate knot sequence. The reason for this is briefly

outlined below. If we recall the definition for the B-spline basis functions is :

in
where £j is the j th knot for j = 1,. . . , k and for X{ sorted in ascending order,

i — 1 , . . . , N. The basis functions can also be represented in linear form as

A matrix of the basis funtions can be constructed as:

A =

w here

An

An

k f k

*>=EI n

o
o

o
o

0 0 Ak
kN

0

0

. . . A 1 N ( i 0 0 . . . 0
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0 . . . 0 0 A k , ... A k l

,
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for j = 1, . . . , k and i = 1,. . . , N. The structure of the B-spline basis function

is very similar to that of the smoother matrix of the separate ratio estimator

(or any separate estimator). It appears, therefore, that a natural choice for the

knots of the regression spline are the stratum boundaries, if stratified SRS is

employed. The main difference between the separate estimator and the piecewise

polynomials is what happens at the boundaries. The piecewise polynomials are

constrained to join smoothly at the knots where the separate estimator is derived

from a function discontinuous at the boundaries.

If the sample data had been chosen using optimal stratification then assigning

equally spaced knots at the quantiles of the x distribution will generally not ensure

optimal results. The units in the sample will have been chosen such that the

larger the variation within a stratum the larger the n^ allocated to that stratum.

If the knots (boundaries) are defined elsewhere the resulting estimator will be

sub-optimal. This is particularly true if the variation in the data increases with

the x values, say. Optimal stratification will assign fewer observations to the

first stratum and more to the last. Fixing the stratum so that equal numbers

of observations are in each will increase the numbers of observations in the first

stratum and decrease the numbers in the last stratum, where they are needed

most.

If the knot sequence is chosen as the boundaries used in stratified simple

random sampling then the above smoother matrix is very similar to the stratified

ratio estimator, or any separate estimator, smoother matrix. The position of

the knots is, therefore, very important particularly if a design other than simple

random sampling, for example, stratified simple random sampling is used. An

example to illustrate this is given below. When simple random sampling was

considered, the position of the knots was less restrictive, and the estimator based

on a regression spline with knots chosen at equally-spaced quantiles of the x

distribution performed satisfactorily.

The total-preserving property, for the model-based estimator with linear B-

spline, does not hold within strata, as it does for the separate ratio estimator.

This is because any set of linear basis functions used leads to a particular set of

parameter estimates (using IRLS) defining the piecewise polynomial, and there

will be only one such polynomial. This unique function does not ensure the

within-strata total-preservation holds. The way in which the parameters are

estimated could be modified, by constraining on the residuals within each stratum
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Estimator

Ratio estimator

Stratified ratio estimator

GLM with B-spline

(knots=equal)

GLM with B-spline

(knots=strata)

Mean

314095

319863

310860

321875

St. dev.

6612

6692

6402

6309

MSE/107

8.023

4.486

12.70

4.282

Table 4.1: Table comparing estimators including the GLM with B-spline estima-

tor based on equal and stratum boundary placed knots.

summing to zero. This might be performed using a penalised likelihood approach,

possibly solving iteratively using a scheme such as in Green (1985). This has not

been pursued further here.

Example 1
To illustrate the advantage of using stratum boundaries over quantiles an example

is included.

Data is taken from the hospital dataset of Section 1.4. From the population

of 393 observations 100 stratified simple random samples of size 100 were selected

optimally based on 3 strata. The true population total is 320139.

Table 4.1 gives the means, standard deviations and mean squared errors of

the ratio estimator, separate ratio estimator, GLM with regression spline based

on equally spaced knots and knots placed at the stratum boundaries, over the

100 samples. Figure 4.1 has also been included to show how the predicted totals

compare with the true total (solid line) in all the estimators mentioned.

The ratio estimator and GLM with B-spline based on equally placed knots

perform the worst in terms of minimising the design mean squared error. They are

both more variable than the GLM based on knots at the stratum boundaries and

both underestimated the true population total quite considerably. The stratified

ratio estimator is the next best, with the predicted values closer to the true value

but with a larger overall variation. The GLM with stratum boundary knots

performs the best, getting close to the true population total and with reduced
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variability on the stratified ratio estimator. This confirms the importance of

appropriate knot placement for the sampling design in question when the GLM

with regression spline estimator is being used.

4.4 Properties of some nonparametric regres-

sion estimators

The properties considered involve taking expectations with respect to some un-

derlying superpopulation model £. Properties under the other, design-based,

approach are deferred until Chapter 6. The superpopulation model is assumed

as follows:

Yi = mix,) + (,;,

where e, are independent random errors with J3(e,-) = 0 and var(e,-) = <J2(X.).

Using the known data a smooth curve, m(x,-), can be traced. Our estimators

utilise this smooth curve by interpolating (or extrapolating) the smooth to the

unknown sample values.

Interest is in the bias, variance and predictive mean squared error under the

superpopulation model. These are given below for the operational type of esti-

mator mentioned in Section 4.2, and are summarised for the other estimators in

Tables 4.2-4.5 below. Similar properties for the ratio and separate ratio estimators

are found in Royall and Herson (1973a, b).
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Figure 4.1: Plot of predicted totals for 100 samples based on the ratio estimator,

separate ratio estimator and GLM with B-spline (equally placed knots and knots

at the stratum boundaries)
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An example of how the bias, variance and mean squared error are derived for

the averaged running ratio estimator is given below. The tables of results for the

other nonparametric regression estimators are derived in a similar way.

Bias under a superpopulation model The averaged running ratio estimator

is written as:
J L J L I v*n, w- •>'•

TARRE = z^** * z ^ ksrn w-- x•'

for some weight function WZ]m.

Under the general superpopulation model £, the bias can be written as

Et \ TARRE — T) —

N N

/ j xiP\xi) / , Vi

TV

E™ 1 WijmXj

Variance The variance is given by

i = 1 m = 1
 ft Lj=l ^.jm^j

A'

= E- 2^
For example, when a'2(xj) — v2X] and b = oo, then Wtjm = 1 for all i,j and we

have the ratio estimator. Then

M e a n s q u a r e d e r r o r

The mean squared error is

TV

MSE(f) =
8 = 1
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The predictive mean squared error can be written as :

PMSE(f) = Et{f-Tf. (4.1)

A general relationship between the PMSE and the MSE is given below for all

ratio estimators considered. Recall that

PMSE(r) = Et{f - T

E* »=j Wb(Xi,x,)x,

-2E« \7"n , Wb{xl,x1)x, ^3E"=i

Evaluating the terms above gives

x%Wb(Xl,Xj) rr'2(r

Note the extra term that appears in the PMSE.

When all the weights are equal, i.e. Wb(xt, x3) — 1, then the above expressions

agree with the results given by Royall and Herson (1973a) for the ratio estimator.

They show that, in the case of a polynomial m(xi), the bias term is zero whenever

the sample is balanced with respect to the population. What this means is that

for a Pth degree polynomial, the pth sample moment of the x's is equal to the

pth population moment, for all p = 3,. . . , P.

The various estimators described and their properties are given in Tables 4.2-

4.5. The smoother matrix is written in general form below:

/

V

>Si

.S'2l

5Wi

'S(22

'^13

S-23

$N3

\

5/Vn J

For each estimator the elements StJ are also given.
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Estimator

TsRE

p1 (rp rp\

VcLI*£ ( ./ SRE )

PMSE(IW)

Smoother matrix

var(T^) + b

/ S n • • •

5 1 2 . . .

S-iNi • • •

0 0

0 . . .

0

V

1 v^—

asyj-fSRi

Sn

s12

SiNi

0

0

0

(E

0

0

0

• • .

0

0

^keshyh

- k & s h x h

hk) I

.._,„,
keshXhk

- \

0

0

0

0

1

\

. . . 0 \

0

. . . 0

0 0

Shi

• • • ShNh

1 c

where Shk =

Xhk

Table 4.2: Separate ratio estimator and model-based properties
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Estimator

TLWRE

VKdTLWRE)

i JVloEf 1LWRE)

Elements of

smoother matrix

where e.g. Wb{x{,Xj) = exp(-(x, - X3)
2l'2h2)

| V^71 W,(T x )?T)(T ) y^ mix) I

q__ _ x,Wb(x,,Xj) j (f "

s..-{
 l j iJf('? = j )

0, if (i ^ j ) , j G 5

Table 4.3: Locally weighted ratio estimator with kernel weight and model-based

properties
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Estimator

TRRE

P M S E ( T R # £ )

Element of

smoother matrix

y^ v i y^ x 3'V3

1, if \i-j\ <(k- l ) / 2

0, otherwise

— • • i ^ . ^ i i . .- j

i

*•? y^ w ,x }
 J ^ s

Wji as above

q.. - j 1 ? i f (Z = J ' )
0, i f ( i ^ j ) , j G s

Table 4.4: Running ratio estimator and model-based properties
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Estimator

TARRE

E((TARRE — T)

var,(IW)

FMSE(TARRE)

Element of

smoother matrix

J 1, if i — j < ( k — m)/2

I u, otherwise

I

VK,-t-mas above

Table 4.5: Averaged running estimator and model-based properties
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Figure 4.2: Bias, variance and MSE plots against smoothing parameter for the

locally weighted ratio estimator with Gaussian kernel weight function
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In Figure 4.2, squared bias, variance and mean squared error for the locally

weighted ratio estimator with Gaussian kernel weight function are plotted against

smoothing parameter for five different random samples. The assumed underlying

superpopulation model is a quadratic with a linear term. The bias increases

with increasing smoothing parameter. In this example, as the prediction moves

away from fitting points closely, the bias increases. If the estimator fitted the

points too closely, we would have an increased variance which is indicated in

the variance plot. Small smoothing parameter values lead to a larger variance;

the ratio estimator always gives the smallest variance. Thus the mean squared

error or the predictive mean squared error trades off bias and variance, to arrive

at a compromise value of the smoothing parameter. The difficulty is that the

population mean squared error cannot be computed if the population units are

not known. This is where methods for choosing the smoothing parameter such as

crossvalidation are of some use. These methods try to estimate the mean squared

error based on the sample values only and are discussed further in Chapter 5.

4.5 Degrees of freedom

In Section 3.7 the notion of degrees of freedom based on smoother matrices as

given in Tibshirani and Hastie (1987) was introduced. These degree of freedom

formulations provide one way of calibrating between various estimators in terms

of their smoothing parameter. It is particularly useful for comparing estima-

tors with the separate ratio estimator, as a smoothing parameter can be found

corresponding to the number of strata.

Here a new formula for the degrees of freedom is introduced, based on smoother

matrices and derived from a modified residual sum of squares. This method re-

quires some knowledge about the variance function, <72(x;), for y,-.

Recall that y = Sy where S is an n x n smoother matrix based on the known

sample x values alone. As an alternative motivation for the degrees of freedom

consider

(̂MRSS) = î  T[J^4

modified in order to take account of the variance not being a constant in this
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case. Suppose y- = yl/a(xi), and yt = yi/a(xz) then,

^(MRSS) = ^ ( y ' - y ) T ( y ' - y )

= £ c (Ay-Ay) T (Ay-Ay) (4.2)

where A = diag(l/<r(z,-)).

Theorem 4.1 From the expected value of the modified residual sum of squares

the derived degrees of freedom formula is:

df = 2tr(S) - tr(STV(X)~1SV(X)),

where S is the smoother or hat matrix of the estimator and V(X) = diag(o~2(xi)).

Proof of Theorem

We can write

^(MRSS) = ^(Ay-ASy)T(Ay-ASy)

= ^(A(I-S)y)T(A(I-S)y)

= ^(yT(I-S)TATA(I-S)y)

+ tr ((I - S)TATA(I - S) vare(y)) (4.3)

The last line was obtained using the result E^(zTAz) = E(_(z)TAE^(z) +

tr(AS) where £ = var^(z). The first term is the squared bias and the second

term is the analogue of (n — p)o~2 in linear regression.

To derive a formula for the degrees of freedom, consider the second part of

i^(MRSS) in more detail:

tr ((I - S)TATA(I - S) vai^(y)) = tr ((A - AS)T(A -

= tr ((ATA - (AS)TA - ASAT + (AS)TAS) var^

Here var^y) = diag (a'2(x,)),

tr(ATAvar£(y)) = tr(In) = n

tr((AS)TAvar^(y)) = t r (S r A T A var^(y)) = tr(ST)

tr((AS)ATvar£(y)) = tr(SAT var£(y)A) = tr(S)
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So equation (4.3) above simplifies to :

t r ( ( I - S ) r A T A ( I - S ) v a r e ( y ) ) = n - 2 tr(S) + tr((AS)TAS v

tr(STATASvarc(y))

tr(STV(X)~1SV(X))

(4.4)

where V(X) = diag (cr2(x,-)). Again this is the analogue to the [n — p)cr2 term in

linear regression. Hence, the degrees of freedom formula can be written as:

df = 2tr(S) - tr(STV(X)"1SV(X)).D

For the ratio estimator, cr2{xi) = Xi, and the smoother matrix elements consist

of Xi/ XT=i XJ f°r r o w s ? = l,.--,n. From this the new form the degrees of

freedom gives df=tr(S) = l. Similarly, for the stratifed ratio estimator the degrees

of freedom formula leads to df=i/, the number of strata.

4.6 An example

An example is included to compare the different types of estimator.

Data is taken from the Family Expenditure Survey (FES) of Section 1.4.

A random sample of 100 observations are selected from the population using

stratified simple random sampling. To compare our estimators with the separate

ratio estimator, 4 strata are assumed and samples are selected in two ways :

1. Optimal allocation. Assuming equal numbers of population units in each

stratum (125), optimal allocation chooses n^ oc N^x)1/2. In this case the

sample stratum consisted of (14,23,28,35) units in each stratum respectively.

2. Proportional allocation. Equal numbers of sample values in each stratum;

25 sample units were selected from each population stratum.

4.6.1 Results

An underlying snperpopulation model was obtained by fitting models in GLIM

using the population data. The final model was assumed quadratic with a linear



Chapter 4 69

and intercept term E(yi) = 3872 + 0.1665^-3.972 10~7£2, and V(yi) = a2xt with

multiplying constant a2 = 465 calculated from the data using Yli=i (w-i)i-)' ^ s

the intercept was small in relation to the large range of the x and y values, it was

not omitted from the equation. Below are some of the results.

(a) Optimal allocation

Bias

Variance

xlO10

MSE

xlO10

Ratio Est.

-163548

6.0833

8.7581

Strat. RE

-50290

6.5184

6.7713

LWRE

h = 30000

-30799

6.5606

6.6655

Running RE

k = 25

-36333

6.4339

6.5660

Averaged RRE

k = 51

-61940

6.3021

6.6858

Each of the smoothing parameters used in the locally weighted ratio estimator

with Gaussian kernel and Uniform fc-nearest neighbour weight functions and the

averaged running ratio estimator are based on 4 degrees of freedom. The degrees

of freedom formula used is based on the result from Theorem 4.1 of Section 4.5.

In this example, the running ratio estimator and Gaussian kernel weighted

local ratio estimator appear the best in reducing bias. The ratio estimator has

the worst bias as expected, since it is not taking account of the quadratic feature in

the data. The separate ratio estimator and the averaged running ratio estimator

are comparable in this instance. The separate ratio estimator is expected to do

well because of the optimal allocation. All of the estimators are comparable in

terms of variance, except the ratio estimator which has the smallest variance

as expected. These results are only for one sample, and each sample will be

different. Optimal allocation is like using a variable bandwidth in the kernel

smoothing context. It allocates more observations to strata where there is more

variability, in other words the larger the x values become. Global and variable

bandwidths are considered further in Chapter 5.

Now consider the case when we do not assume optimal allocation.
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(b) Equal/Proportional allocation

Bias

Variance

xlO10

MSE

xlO10

Ratio Est.

-169626

6.962

9.841

Strat. RE

-171748

6.680

9.9293

LWRE

b = 35000

-111714

7.449

8.6973

Running RE

k = 27

-122457

7.147

8.6466

Averaged RE

k = 51

-123236

6.977

8.4958

The second example gives different results. Here the locally weighted ratio esti-

mator with Gaussian kernel weight gives a smaller bias than the running ratio

estimator and the averaged running ratio estimator, the ratio and separate ra-

tio estimator giving the worst results in terms of bias under the superpoulation

model.

The ratio estimator is the best linear unbiased estimator (BLUE), when the

sample drawn is balanced with respect to the population, or when the underlying

superpopulation is in fact linear through the origin. It tends to get worse as the

data deviate from these ideal conditions, and this is when an alternative nonpara-

metric regression based estimator performs better. Alternative estimators of the

population total are therefore considered, in an effort to improve on results given

by Royall and Herson (1973a, b). The best alternative estimator depends on the

value of the smoothing parameter chosen. Figure 4.3 is a plot of the various esti-

mators for one sample, calibrated so that each is based on 4 degrees of freedom

(except the ratio estimator). Note the discontinous nature of the separate ratio

estimator, the smooth curve based on the Gaussian Kernel weight and the jagged

appearance of the running ratio estimator. The averaged running ratio estimator

and generalised linear model with regression spline give predicted values close to

the true values. Both are smooth total-preserving estimators.

Figure 4.4 has been included to illustrate the equivalent kernels of the various

estimators already mentioned. Equivalent kernels are introduced in Section 3.4,

where smoother matrices and degrees of freedom are discussed. Equivalent kernels

indicate the shape of the weight function used to weight the response variables

y. The separate ratio estimator has been included; the ratio estimator is very

similar in that a constant weight is applied to all y's. Also included are the locally

weighted ratio estimator with Gaussian kernel weight, the running ratio estimator
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Ratio estimator

71

Stratified ratio estimator

50000 100000 '50000 200000 250000 50000 100000 150000 200000 250000

Gaussian kerne! weighted estimator Running ratio estimator

50000 100000 '50000 SDOOOO 250000 50000 100000 150000 200000 250000

Averaged running ratio estimator GLM with spline

0 50000 100000 - 50000 200000 250000 50000 100000 150000 200000 250000

Figure 4.3: Various smoothers calibrated to 4 degrees of freedom; ratio estimator
based on 1 degree of freedom.
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Figure 4.4: Plots of equivalent kernels; separate ratio estimator, LWRE with

Gaussian kernel, running ratio estimator and averaged running ratio estimator.
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and averaged running ratio estimator. For each type of estimator a target point

is chosen near the boundary and at the centre of the data. The running ratio

estimator weights drop off abruptly outside the neighbourhood, and this accounts

for the jagged appearance of this estimator. In the weighted ratio estimator, the

Gaussian kernel weights are smooth and hence the resultant curve is also smooth.

These kernel weights, however, have the disadvantage of a fixed bandwidth for

all x, unlike the running ratio estimator.
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4.7 Discussion and conclusions

In this chapter some alternative nonparametric estimators of the population total

were discussed and distinguished as operational or model-based, total-preserving

and not total-preserving. Those with the total-preserving property have some

good features, especially under repeated sampling, and this is discussed further

in Chapter 6.

The nonparametric regression estimators are motivated by assuming a smooth

function derived from 'local' quasi-likelihood estimating equations. They can be

extended to any class of generalised linear model, or any model with known mean

and variance functions. In this thesis, emphasis is mainly on locally weighted ratio

or regression estimators. Model-based properties such as bias, variance, and mean

squared error of these nonparametric estimators have been investigated. The

nonparametric estimators are shown to be more efficient than the parametric

methods in certain situations. The separate ratio estimator is an example of a

parametric estimator with a varying bandwidth which adapts, to some extent,

to the local density of x. It is advantageous to have nonparametric estimators

which also take account of this. The running estimators and averaged running

estimators described do, to a certain extent, by varying with the design density of

the x's. In Chapter 5 a local bandwidth for the Gaussian kernel weight function

is discussed, which adapts to the local density and possible other factors. The

estimator with a local bandwidth performs considerably better than that with a

global bandwidth.

Finally, a new form for the degrees of freedom is derived which can be ap-

plied to any prediction setting with heterogenous variance, and is based on the

smoother matrix and the assumed variance of y%. It is a useful measure for cal-

ibrating between the separate ratio estimator and the nonparametric estimators

in terms of their smoothing parameter and is easily calculated for any of the

estimators mentioned.
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Choosing the smoothing

parameter

5.1 Introduction

For some practical purposes, it is sufficient to choose the smoothing parameter

subjectively, by plotting out a few curves with varying bandwidths, and choosing

the one that 'looks best'. In certain contexts choosing the smoothing parameter

'by eye1 may not be the best or most accurate method. This is particularly true

if the curve is to be used for estimation purposes and some of the local structure

is required. This chapter will look at some ways of choosing the smoothing

parameter, first generally and then by applying some of the standard methods to

the specific context of predicting a population total.

5.2 Automatic methods

5.2.1 Introduction to crossvalidation

The automatic methods described are based on approximating some global er-

ror measure which is required to be minimised; probably the most attractive

class is crossvalidation. This method was first introduced by Stone (1974), and

Geisser (1979) and in the nonparametric setting by Clark (1975). The basic idea

is to split the dataset into two parts. The first part is used for calculating the

75
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estimate and the second part is used for optimising the fit of the estimate by

minimising the MSE, PMSE or some other quadratic error measure for the re-

gression curve. In this way we have a method of optimising the window width.

These quadratic error forms depend on variance and bias components, which re-

spectively decrease and increase with the smoothing parameter. Therefore, it is

desirable to have a smoothing parameter which balances the systematic squared

bias with the stochastic nature of the variance.

Suppose yW is the predicted value from a kernel regression estimator, based

on leaving one observation, j , out of the dataset. Then crossvalidation optimises

the smoothing parameter, 6, by minimising

where b is in a suitable range of smoothing parameter values. This criterion

validates the ability to predict ?/,-, j = 1,.. ., n across the subsamples (x,-, ?/,•), i ^

j . The resulting optimal b1 denoted by 6, satisfies

CV = mi{CV(b)\beB}

and is used in y. Crossvalidation, up to a constant term, approximates a quadratic

error measure, usually the predictive mean squared error.

Least squares crossvalidation, as described above, was proposed independently

by Rudemo (1982) and Bowman (1984) for density estimation. Hardle and Mar-

ron (198oa,b) used least squares crossvalidation to choose the bandwidth for

kernel smoothers in the regression model. The drawbacks to this type of cross-

validation are:

1. It tends to have several minima, and so minimisation is best performed

through a grid search, for a sensible range of values for b.

2. It is subject to a great deal of sample variability. This has been quantified

asymptotically by Hall and Marron (1987), for example.

3. It is expensive to compute, especially if a grid search is used.

The crossvalidation criterion, (5.1) above can be written in terms of the

smoother matrix, as given by Hastie and Tibshirani (1990), since y = Sy. Then

n^U- Su
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where Sn = (SS )n, the ith diagonal element of SST . Also

E(CV(b)) =
i&s

Crossvalidation is easy to compute if the diagonal elements of the smoother matrix

can be readily obtained. For smoothing splines this is not such an easy task, and

so the related generalised crossvalidation proposed by Craven and Wahba (1979)

is often used. This replaces the Sn above by its average value tr(S)/n, which is

easier to compute.

A weight function can be introduced into crossvalidation to eliminate or reduce

boundary effects or to allow for variations in the population density etc. This

leads to a weighted crossvalidation criterion as follows:

WCV(b) = n'1 y^Wj{yj - yU))2.

To make crossvalidation a mathematically justifiable device for selecting the

smoothing parameter, it has to be shown that the MSE(6), b minimizing the

crossvalidation criterion, approximates min[MSE(6)], i.e.

MSE(6) a.?
inf6MSE(6)

A data driven bandwidth, 6, satisfying this is said to be asymptotically optimal.

Hardle and Marron (1985a,b) consider this further, to show that data driven

smoothers achieve their optimal rate independently of the smoothness of the

underlying regression model. Hardle et al (1988) study how fast this convergence

occurs.

A number of crossvalidation and other procedures have been reviewed and

used by other authors, including Eubank (1988), Hardle, Hall and Marron (1988)

and Hardle (1990a). Biased crossvalidation as proposed by Scott and Terrell (1987),

is a combination of least-squares crossvalidation and another method, the plug-

in method, which is considered later. A recent survey of automatic smoothing

parameter selection is given by Marron (1988). Park and Marron (1989) look at

a comparison of data driven techniques in the related field of density estimation.

Sheather and Jones (1991) improve on the crossvalidation method as described by

Park and Marron. Titterington (1985) gives a review of several smoothing tech-

niques and work on crossvalidation; in particular Section 7 of his paper is devoted
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to nonparametric regression and curve fitting. Problems with crossvalidation and

other automatic methods are given in Hardle, Hall and Marron (1988).

5.2.2 Penalising functions

If we try to use PMSE(6) as an estimator of the MSE(6), bias occurs, and, as

a consequence, the minimizer of PMSE(fr) leads to too small a choice of b. In

order to compensate for this, PMSE(6) is adjusted by a correction factor, which

penalises values of b that are too small.

Rice (1984b) has shown there is a range of bandwidth selectors (based on work

by Akaike, Shibata and others) including generalised crossvalidation (GCV) and

crossvalidation (CV) which have the following structure:

7 = 1

where ty(n lb 1) is a correction or penalising factor, and G(b) is minimised over

a range of suitable values of b. Up to a constant term, G(b) is approximately

equal to MSE(6).

Simple examples include :

1. Generalised crossvalidation (Craven and Wahba 1979),

2. Akaike's Information Criterion (Akaike 1974)

^Aidn^b-1) = exp(2n-16~1/(r(0))

3. Shibata's (1981) model selector,

\Hs(n-lb^) = (1 +2n-1b-1K{0)).

4. Rice's (1984b) bandwidth selector,
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Each of these functions has the same Taylor series expansion . As nb —> oo,

^(n-H'1) = 1 + 2n-1b-1K{0) + O(n~2b-'2).

All of the above bandwidth selectors are asymptotically optimal, i.e. the relative

loss of a selected bandwidth b to the minimum loss is:

MSE(6) a.s l

mint MSE(6)

With increasing observations we assume b approximates b, however the conver-

gence rate tends to be quite slow (n1/10). Hardle and Marron (1985b) give a the-

orem to show this for crossvalidation, and Rice (1984b) for the fixed design case,

gives a related theorem using penalty functions. Another property of data-driven

smoothers is that they achieve their optimal rate, independent of the smoothness

of the underlying regression model.

5.2.3 Crossvalidation in predicting totals

Some methods of selecting 6, using crossvalidation, are now considered for use

with nonparametric regression estimators of a finite population total. The first

method is motivated by the prediction mean squared error, which we are trying

to estimate; this is the squared difference between the predicted total and the

true total with the predicted values based on the leave-one-out estimator. The

crossvalidation criterion is given as:

L' V\ = > [yj — y

The second method is the usual least squares crossvalidation, based on the sum

of the squared discrepancies between the actual y values and the leave-one-out

predicted y values and is given by:

Note that this crossvalidation criterion is based on sample values only and the

measure we are trying to approximate the CV criterion to, the mean squared

error say, depends on sample and nonsample values.
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A weight may be introduced into the CV criterion, for example, by including

the design density (or an estimator of the design density). From some experi-

mentation, including the weight did not appear to improve the method; however,

a different weight function might be more appropriate.

The criteria, CV\ and CV2 may be simplified by replacing y^> by S'-y, where

Sj is the j th row of the smoother matrix based on the sample values with the jth

element removed, i.e.

For the locally weighted ratio estimator,

- 1

Hence, CV\ is written as:

1 J ' " [ !

Similarly, for CV2 we have:

2

(5.2)

( 5 -3 )

The first crossvalidation criterion may be written in terms of the weighted dis-

crepancy between y and its predicted value, weighted according to smoother

matrix weights. In the case of the second criterion above, we have a weighted

version of the prediction error which is of a similar form to the penalising func-

tions described in Section 5.2.2. The penalising functions described in Section

5.2.2 are for mean functions. The penalising function in our case could be taken

as (1 — Sn)~2. This factor could be changed to take account of other penalising

factors such as (1 — ir(S)/n)~z in the generalised crossvalidation case or any of

the other examples. Recall that

If we replace tf (n^fe"1) by (1 - % ) " 2 then

j = i
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using a Taylor series approximation. Then

G(b) *

and taking expectations we arrive at

E(G(b))

The first term is based on the sample and the last term is the error due to the

bias contributions. A similar expectation for CV\ gives:

n n n

E{CVi.) = MSE(b)

It was found that the first method, CV\ was similar to the sample squared

error, in the examples considered. This crossvalidation criterion tends to be

minimised at small and large values of b but not in between, for all samples.

This is incorrect if the optimal b lies somewhere in between the two extremes.

Returning to equation (5.2), we can see why a large b is often chosen. The weight

applied to (y3 - y3) is

XiWii X

This is small when —XjWj3— ith diagonal element of S, is as small as possible,

i.e. as b gets larger.

The second type of pointwise crossvalidation, CV2, tends to chose small values

of b as the minimising values; it underestimates the 'true' value of b, sometimes

considerably. Again, this is possibly because the squared discrepancy in (5.3) is

minimised when small b is used.

The underlying problem with both of these methods is that they depend

on sample values only to choose the smoothing parameter, for the purpose of

prediction of the population values.

Modified crossvalidation

The modified crossvalidation approach considered is similar to //-fold crossvalida-

tion discussed by Burman (1989). Instead of removing one observation at a time

from the prediction of y., in crossvalidation, a proportion, 1 — p, of the sample
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observations are removed each time and the remaining np observations are used

to predict. This crossvalidation criterion is computed for several subsamples, size

Tip, from the original sample and an average over the subsamples is taken. The

criterion, for the locally weighted ratio estimator, is

where subr is the subsample, size np drawn from the sample, for varying pro-

portions (p = 0.5,0.75,0.9,0.95). Examples of these crossvalidatory methods are

presented in Section 5.5 with the hospital dataset of Section 1.4.

This criterion is extended further to take account of the estimation of the

unknown non-sample part of the population only. This leads to a crossvalidation

criterion similar to C\\ ;

Similarly for a criterion similar to CV-2 we have

When p = (n — l)/n and sufficient subsamples are drawn, (5.4) and (5.5) above

reduce to crossvalidation methods (5.2) and (5.3) respectively. Weighted versions

of (5.4) and (5.5) above were also considered, with weights based on the under-

lying design density of the x3 not in the subsample. The weighted version did

not improve dramatically on the unweighted methods, however a different weight

function could have been considered.

An approximation for the modified crossvalidation criterion

The above forms of modified crossvalidation are a type of averaged crossvali-

dation. Suppose we consider all possible subsamples from the original sample,

calculate the non-subsample squared error for each, and then average these non-

subsample squared errors over all possible subsamples that could have been se-

lected. This can be written as

\ \jgsub
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where E^ is the expectation taken with respect to simple random sampling ns

units from n and where ns is the number of units in the subsample. The averaged

crossvalidation criterion, CV4 above, for the LWRE can be written as

E n - ns

where the IU^ are the usual kernel weights based on the sample values. The

following points should be noted:

1. The first and second terms in the expression above are similar to the sample

squared error (multiplied by a constant). When this type of crossvalidation is

considered for various bandwidths, the shape of the function is similar to that of

the sample squared error.

2. The approximation works best as ns —> n, i.e.as the subsample size approaches

the sample size. From the numerical work carried out on the hospital dataset , it

appears that the shape of this crossvalidation function is similar for the varying

proportions.

An illustration of this modified approach is given in Section 5.5 using the

hospital dataset of Section 1.4. It appears that the modified crossvalidation has

the same problems of smoothing parameter selection as the earlier described

crossvalidation methods, for possibly the same reasons.

5.3 Selector methods based on asymptotics

5.3.1 Introduction

The basis for these methods is the asymptotic expansion of bias, variance and

MSE terms, to arrive at an asymptotically optimal bandwidth, i.e. as n —> oc,

b —> 0 and nb —> 00. In this section the asymptotic properties of nonparametric

estimators such as the Nadaraya-Watson and Gasser-Miiller estimators are out-

lined. The asymptotic properties of the locally weighted ratio estimator are also

given. First some assumptions and definitions are given.

The kernel is chosen to be a continuous, bounded, symmetric real function

(having compact support in an interval) and integrating to one. It is said that a
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kernel is of order K if it satisfies the following moment conditions:

A'(u)uJ du = 0, (j = 1,.. . , AC — V
- l

l

K(u)uh du — a ^ 0.

The use of higher order kernels provides one generalisaton of kernel estimators;

Gasser and Muller (1979) consider these in more detail.

Recall, in Section 3.4, that the form of the weight function proposed by

Nadaraya (1964) and Watson (1964) was

Wb(x,Xi)= KW-*>y

where K is the kernel function and b the bandwidth. Gasser and Muller (1979)

define a related weight

r-s, /x _ u \
Wb(x,Xi) = n I K I —-— J du

J s,_i V W /

where st_i < xt < s,- and x; are the ordered values of the explanatory variable,

but any sequence {si} including the X{ could be used.

There is much literature on the Gasser-Miiller estimator, which, in some re-

spects, is to be preferred. Properties of the convolution type estimators, such as

minimax optimality, are studied by Gasser and Engel (1990). All of the kernel

estimators described so far have similar properties for uniformly spaced xt, but

these properties differ in the random design case.

5.3.2 Gasser-Miiller estimator

Below we consider the asymptotic bias and variance of this estimator, for fixed

and random design densities, but first some assumptions are required (Jennen-

Steinmetz and Gasser, 1988):

1. m(.) is re times continuously differentiate for some K > 2.

2. K{u) = 0 for \u\ > 1, and J K(u)uj du = 1 for j = 0, = 0 for j =

1, . . . , K — 1, and 7̂  0 for j = re.
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3. K(u) is Lipschitz continuous.

4. f(u) > 0 for u e [0,1].

5. f(u) is Lipschitz continuous.

6. 6 —> 0 and ?i6 —> oo as n —>• oo.

Such assumptions are usual in this context. Conditions 1, 3 and 5 above are for

smoothness. Assumption 4 guarantees that there are no gaps in the function,

and moment conditions in 2 define a kernel of order K. The last assumption says

the bandwidth must shrink with increasing sample size, as the number of points

in the smoothing interval increases. The restriction is to univariate X{, but this

may be removed.

The asymptotic mean and variance for the fixed design case are given as:

Et(jh(x)) = - I K [ —-— I m(s) ds

and

K2(x)dx + O
S V \ / / 7

From these, an expression for the mean squared error (or mean integrated squared

error MISE) can be derived; see Gasser and Muller (1979) for proof of above. This

is given by

2

Ef(m(x) — mix))2 = / K(u)2 du -\ I / K(v)u2 du I
no I 4 \ / /

The asymptotically optimal smoothing parameter 6", say, with respect to the

MSE is obtained by taking the first derivative of MSE with respect to b :

'K2(u)du V / 5

Substituting this back into the MSE gives the MSE at the optimal bandwidth

value.

For the random design case, the variance is calculated as above with an

extra f(x) in the denominator and is multiplied by 2 (Jennen-Steinmetz and

Gasser(1988)).
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5.3.3 Nadaraya-Watson Estimator

This is motivated as an estimator of a conditional expectation, suggesting its use

when the explanatory variable is random. Bierens (1987) reviews the asymptotic

properties of this estimator and gives conditions for asymptotic normality. Col-

lomb (1977) also gives an asymptotic evaluation of bias, variance and distribution;

under similar assumptions as above for random x.-, the bias and variance are:

u
2K(u)du + o(b2) + O (±

and

var^(7h(x)) = ° ) ' \ K'\u)du + o I —
nbf(x) J \nb

From these, an expression for the asymptotic MSE is derived and hence the value

of the bandwidth which optimises the MSE. This is shown to be proportional to

n"1/5. The MSE is given by:

K\u)du + - ( m"{xi) + 2"'^:>/'^A2 ( I K(u)u2 du" *
nbf(x)J v 7 ' 4 V f(x)

for fixed kernel K. The optimal bandwidth value, b*, from this is:

b
NW Af(x)(m"(xi) + 2m<(*y>)»(/ K(u)u> du

Note the forms of b*GM and 6^w differ because of their differing bias and variance

terms. This asymptotically optimal value of b* is used in the plug-in method,

whereby estimates of the unknown functions cr2(x), m"(x,-) etc., are substituted

back into the formula above. The estimates may be derived by further smoothing,

leading to a second order bandwidth selection problem. This method achieves

the same efficiency as the crossvalidation methods but it has some disadvantages;

these include the choice of the preliminary bandwidth values and requiring the un-

derlying regression function to be twice differentiable. For these reasons it is not

used as frequently as crossvalidation or the other automatic selection techniques.

The automatic methods are easier to use for those unfamiliar with asymptotics.

Comparison of these estimators was given in Chapter 3, in terms of their

asymptotic properties and is also discussed by Chu and Marron (1991).
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5.3.4 Asymptotic behaviour of the LWRE

In this section, the asymptotic properties of the locally weighted ratio estimator

(LWRE) are considered, where re and N increase together such that n/N —> / ,

the sampling fraction, 0 < / < 1. Below we give a theorem for the asymptotic

bias and variance, but first some terminology and notation are defined.

Suppose sample, nonsample and population densities are generated by fs(x).

fp-s(x) and fp(x) respectively, defined by

fs(u) du

and

AT-1

1\
i=\

etc. It follows that

and if u% — (x,- — Xj)/b, then

TV

J2 H(ut)(ui+1 - Ui) = / H(u) du

for any function H with bounded derivative. We denote

uiK{u)du, K-2 = / K2{u)du.

Theorem 5.1 Let K(u) be a symmetric density function with J uK(u) du = 0;

assume sample and population x are in the interval [c, d] and are, generated by

the densities fs and fp respectively, both bounded away from zero on [c,d], and

assumed to have continuous first derivatives. Let T be defined as

N

TLWRE — / _, xz

i=\

and suppose m(x{) has a continuous second derivative; then

~ T = b*N ( | ) JfP(x) [ 2 ^ j (rn'(x) - ^ ) + m'(x-)] dx

+o{Nb2
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1 <72(x)fs(x)-\fP(x))2dx +o(n).

and

Proof of Theorem

We assume the conditions for the Gasser-Muller and Nadaraya-Watson estima-

tors, given in Section 5.3.2, hold. Now

N

i=\

Suppose the numerator and denominator are written as:

and

Then using the result for any function of two variables, (see Kendall and Stuart

(1972))

Ef

wher

r(xi)
,(5-8)

:e

l[J K^Xt - u)/b)m(u)fs(u) du

and

Ei(s(Xi)) = ±

Then considering the leading term in (5.8) and using a change of variable

J K(u)m(xi — ub)fs(xi — ub) du + o(ra~16~1)
Ef s{xt

But

K(u)(xi — ub)fs(x{ — ub) du + i

K(u)rn(xi — ub)fs(x{ — ub) du

(5.9)
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)fs(xi) du

f f m(r)f(r)
+b u h (u) du fjxi)m (xt) -\ \-

^ f ( -r\ f"('r-\rn(-r-\

by Taylor series expansion for a twice differentiable function. A similar expansion

can be obtained for
f
I K(u)(xi — ub)fs(xi — ub) du.

Then from (5.9),

(5.10)

So an expression for the asymptotic expectation is:

f f rn"(xi)fs(xl)

(5.11)

The term for the asymptotic bias is obtained by taking the first term on the right

hand side above to the left hand side.

The proof for the variance follows a similar line to that given in Dorfman (1993).

We write

ar^(T) = varvar v^i = 1 ^k&a
xkK((xi-xk)/b)

where
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Then the variance

An asymptotic expression for W3 can be extended to one for Wf and hence we can

write down the asymptotic variance. With a change of variable, uk = (xt- — xk)/b,

Y,ke,xkK((xi - xk)/b) = J2kes KM(xi - ukb)

— nYlk£s K(uk)(xi - ukb) (fs(xk)(xk+i - xk) + o(n -1))

= nh [Ekes K(uk){uk+1 - uk)(xi - ukb)[fs(xt) - ukhf's(xi) + ...] + o(l)]

= nb[fs(xi)xi +

xtK((xt - Xj

So

TV

* = E
N

N
du + o(l)\ . (5.14)

n [J bfs(u)

Substituting v for (u — Xj)/b in the above and taking Taylor series expansions we

arrive at, as b —> 0,

Substituting this back into formula (5.13), for the variance, we have

a
l(x)fs(x)-'[fP(x)]2dx + o(n). (5.15)

The bias term above depends not only on the first and second derivatives of

the underlying regression function but also on / s(x) and its first derivative. There

is a dependence on the slope of m(x), in m'(xi), and its curvature, in rn"(xi), in

this bias expression. When m(x\;) = Sxt, the linear regression model with no

intercept term, the bias term is zero, which is what we expect.
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The first term in the bias consists of a b2 term, and the first term in the

variance above is constant. For calculating the mean squared error of this esti-

mator, which involves variance and squared bias, it would be more accurate to

take the variance up to terms of order b4 making it comparable with the squared

bias. This can be done but leads to a complicated expression for the asymptotic

variance, which is of no practical use.

A globally optimal bandwidth, bopt, is normally obtained by minimising the

asymptotic mean squared error. This involves unknown functions of the design

densities fs(x), fp(x), the underlying superpopulation model m(x), the variance

function a'2(x) and their derivatives. A 'plug-in' approach does not seem feasible

here, since the first term in the variance does not involve b.

5.3.5 Local or variable bandwidth

Recently there has been some attention in the literature on bandwidths in kernel

estimation which vary locally with the x values; the running line estimator is an

example of an estimator with a varying bandwidth. The paper by Jones (1990)

makes the distinction between two 'variable' methods that could be employed

in kernel density estimates and which also apply to the regression setting. One

method, specifically referred to as the 'variable' bandwidth approach, reflects

a variable amount of smoothing at each of the sample data points used in the

estimator, e.g. for the Nadaraya-Watson estimator

mv x) =

Hxj)

This type of 'variable' bandwidth is discussed by Abramson (1982), in density

estimation, where it is shown that b(xj) oc f(x,j)~i gives good results. Also Hall

(1990) discusses variable bandwidths in reducing bias in kernel regression and

Fan and Gijbels (1992) in their local linear smoother.

The other, 'local' bandwidth method, relates to the target value itself. In this

case the bandwidth is allowed to vary with the local density at the x value, e.g,

for the Nadaraya-Watson estimator

fzfi
b{x)
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Miiller and Stadtmiiller (1987) consider local bandwidth kernel regression esti-

mators for fixed designs, and show how these are superior to global bandwidth

estimators, in terms of asymptotic mean squared error, for optimally chosen band-

widths. Local bandwidth selection for kernel regression estimators has also been

addressed by Staniswallis (1989).

An intuitive form for the local bandwidth is

b(x) ex

where 0 < a < 1, implying use of a large bandwidth in areas of low density and

large conditional variance. The optimal choice of the local or variable bandwidth

is obtained by minimising the conditional asymptotic mean squared error of the

estimator. A local bandwidth is considered in an example in Section 5.5.

5.4 Other methods of selection

5.4.1 Equating degrees of freedom

This is a simple way of using the sample data to choose a value of the smoothing

parameter. Degrees of freedom forms have already been discussed in Sections 3.6

and 4.4. The formulae for the degrees of freedom depend on the smoother matrix

and, in the case of the alternative form for the degrees of freedom derived, the

diagonal matrix with variances of yt as the diagonal entries.

If we fix the degrees of freedom, say, to the number of strata used in strat-

ification, then for any of the linear smoothers we can calibrate the smoothing

parameter to a particular number of degrees of freedom. This makes it possible,

for example, to compare nonparametric regression estimators with each other and

with the separate ratio estimator. It is necessary to try a range of values of the

smoothing parameter in the degrees of freedom formula in order to arrive at the

one that gives the required degrees of freedom, i.e. to employ a numerical search.

If the purpose of any experiment is to compare between estimators, such as

those described, this is possibly the easiest and most direct method of calibrating

the smoothing parameter.
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5.4.2 Methods specific to the locally weighted ratio es-

timator

A large b approximation

In this section other methods of smoothing parameter selection are briefly de-

scribed. These are specific to the LWRE with a Gaussian weight function. The

first involves a large b approximation of the model mean squared error.

The Gaussian weight function can be expanded. For example, if (7,, = — k{xt —

x3)
2 J2 say, where k — 1/fe2, then

G2

Wb(xi, Xj) = exp(Gij) = 1 + Gij + - ^ + • - • •

Using this expansion, a large b (or small k) approximation to the mean squared

error can be derived. This approximation is considered for terms up to and

including k2 only. The mean squared error is given as: a-i + a^k + a3k
2, where

a\, a-2 and a^ are coefficients obtained from the expansion. These coefficients

are given in Appendix A. Minimising the approximate mean squared error with

respect to b (or k) gives:

b%t = ^ , (5-16)

An approximate method for selecting a bandwidth value in this particular case

requires us to calculate the coefficients a2 and a^.

The denominator term, a2 above, equals zero when either of the following is

true:

(a)

(b)

N N

or

When this is the case, the optimal bandwidth, bopt = 00. The first condition, (a),

is true if the sample chosen is balanced or m(xj) = flxj, the linear model through

the origin. The second condition, (b), is true for rn(xj) = fixj also.
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These conditions indicate that the ratio estimator is the optimal estimator

of the population total when we have either a balanced sample or an underlying

superpopulation which is linear through the origin. We cannot expect to improve

on the ratio estimator in these cases, but when we move away from balanced

sampling and the linear superpopulation model, the optimal b starts to move

away from b = oo to a smaller value. This is when the smoothing approach is of

greatest benefit.

The form of bopt, given in (5.16), is a complicated expression involving the

sample and population x,-; it might, however, prove useful in finding an optimal

value of b for any sample at hand. Other kernel weight functions could be used

and expanded as above, leading to a slightly different bandwidth formula.

Approximating the predicted value by a quadratic.

Here the predicted value, $,-, appearing in the estimator is approximated by a

quadratic in a;,-. This is made possible by the expansion of the Gaussian weight

function, as described above, and then by the expansion of the LWRE as a func-

tion in X{. A better approximation is obtained using the square root of the

predicted value instead; this ensures the &•,• terms appearing in the expansion are

orthogonal to one another. For example,

(5.17)

where all sums are over j 6 ,s and k = l/b2. An appropriate model is fitted,

using the sample data, to obtain the coefficients of xj and xj appearing in

(5.17) above. The coefficients from the fitted model and (5.17) are then equated

to give an approximate bandwidth value. This can be a useful starting point for

the choice of the smoothing parameter.

5.5 Examples

In this section we describe some examples used to illustrate smoothing parameter

selection. The first example is related to the crossvalidation methods we have

described, in particular the total and pointwi.se crossvalidation criteria, C?V\ and

CV-2-, above and the methods based on modified crossvalidation. The second
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example is used to compare some of the nonparametric regression estimators

already described, and in particular to introduce a local bandwidth into the kernel

estimator.

5.5.1 Example 1

The following example is based on the hospitals dataset of .Section 1.4. We

selected 100 samples of size 200 (using simple random sampling without replace-

ment) from the population. For each sample the following quantities were calcu-

lated, using the LWRE with Gaussian weight for a range of bandwidth values:

the squared error for the population total, the squared error for non-sample total,

and the crossvalidation criteria CV\ and CV-2 above. These quantities were then

averaged over the 100 random samples and a plot of these average values can

be found in Figure 5.1. The squared error functions can be very different for

different samples drawn from the population, so by averaging we lose some of the

variability between samples.

Figures 5.2-5.4 give three plots for three separate samples. For each, the

nonsample squared error, crossvalidation criteria CV\ and CV-i and the modified

crossvalidation criterion CV\ for varying proportions are plotted against band-

width. We note that the modified crossvalidation appears to behave the same

way for all samples even though the squared error plots suggest otherwise. The

modified crossvalidation methods based on the crossvalidation method, CV\, all

tend to increase then decrease again with bandwidth, as the sample squared error

would do. The modified crossvalidation method based on CV2 behaves differently,

being minimised at a small value of the bandwidth.
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Figure 5.1: Plots of squared error and crossvalidation criterion 1 and 2, averaged

over 100 random samples
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Figure 5.2: Plots of squared error, crossvalidation criterion 1 and modified cross-

validation for sample 1
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Figure 5.3: Plots of squared error, crossvalidation criterion 1 and modified cross-

validation for sample 2



Chapter 5 99

Squared error Total CV

200 400 SOO 600 1000

Modified CV, p=0.5

400 600

bandwidtfi

Modified CV, p=0.90

SOO 1000

Modified CV, p=0.75

400 600

bandwdith

800 1000

Modified ptwise CV, p=0.50

200 400 600 800 1000 200 400 600 800 1000

Figure 5.4: Plots of squared error, crossvalidation criterion 1 and modified cross-

validation for sample 3
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5.5.2 Example 2

Background

In order to investigate the squared error properties of the estimators described so

far we conduct experiments for two finite populations. It is shown that the non-

parametric regression estimators provide improvements on the ratio and separate

ratio estimator for the two finite populations. A local and global bandwidth are

included for the locally weighted ratio estimator to compare their performance.

The experiment is outlined below.

(i). For each population, 100 random samples of size n were selected from a

population of size Ar following an optimal allocation rule for stratified random

sampling.

(ii). For each random sample drawn we predicted a non-sample total using the

following estimators:

1. a ratio estimator,

2. a separate ratio estimator,

3. a locally weighted ratio estimator (LWRE) with a Gaussian weight function

having global and local bandwidths,

4. a running ratio estimator (RRE) for a range of span values, and

5. an averaged running ratio estimator (ARRE) for a range of spans.

For each the corresponding squared error associated with predicting the non-

sample total was also calculated.

The local bandwidth, in (3) above, was chosen motivated by work on asymp-

totics. If fp_s(xi) denotes the design density of non-sample values and var(?/i|x,-) oc xt

then one might try
u \ f Xi

b[xt) oc

This suggests a bandwidth which increases with increasing x,{ (variance) and m

regions where the design density is low, and decreases in regions where design

density is high. This is an example of a simple version of a local bandwidth. This

simple local bandwidth was found to perform satisfactorily.
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(iii). The average squared error over all 100 samples (and the corresponding

standard error of the mean) was calculated for the various estimators, at the

various smoothing parameter values.

Below are the two examples: the first, an actual dataset of observations from

the hospital survey referred to in Section 1.4, the other based on a simulation. In

each case the smoothing approach improves on the ratio estimator and separate

ratio estimator, for certain values of the smoothing parameter, when averaging

over 100 samples.

The program to perform the above was written in Sun Fortran.

Hospital example

Data from the hospital survey, described in Section 1.4, was used. From the

population of TV = 393 observations samples of size 200 were selected, and 6

strata used. The plots of the average squared error over 100 samples are given in

Figure 5.6, for each of the estimators: LWRE with Gaussian kernel weight using a

global and local bandwidth, running ratio estimator, and averaged running ratio

estimator. Also included on each plot is a line indicating the position of the

average squared error for the separate ratio estimator.

The average squared error for ratio estimator is 6.55 x 107 (standard er-

ror 3.5 x 106), and for the separate ratio estimator 1.12 X 107 (standard error

1.1 x 106).

The density estimate in the local bandwidth was based on a kernel density

estimate with Gaussian weight using a bandwidth of 200.0. The results are also

given in Table 5.1. The values in the brackets are the standard errors associated

with the average squared error. Also given is the ratio of averaged squared error

of the estimator to the averaged squared error of the separate ratio estimator.
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estimator(with bandwidth)

Separate ratio estimator
Ratio estimator

ARRE
1

10

30

40

50

70

90

150

Running ratio est.
1

S

10

20

30

50

70

100

200

LWRE Gaussian wt:
global bandwidth

20

30

50

60

75

100

150

200

300

Local bandwidth
3.0

5.0

10.0
20.0
30.0
40.0
50.0
100.0

Ave squared error/107

1.12(0.11)
6.55(0.35)

1.61(0.18)
1.10(0.11)
1.04(0.11)
1.04(0.11)
1.06(0.11)
1.11(0.12)
1.20(0.13)
1.67(0.17)

1.61(0.18)
1.36(0.13)
1.14(0.11)
1.05(0.10)
1.04(0.11)
1.02(0.11)
1.06(0.11)
1.11(0.12)
2.38(0.20)

1.11(0.11)
1.08(0.11)
1.06(0.11)
1.06(0.11)
1.07(0.11)
1.12(0.12)
1.32(0.13)
1.64(0.16)
2.51(0.21)

1.18(0.11)
1.12(0.11)
1.06(0.11)
1.04(0.11)
1.04(0.11)
1.08(0.11)
1.17(0.12)
2.36(0.20)

ASE(T)/ASE(Ts/eB)

1.00
5.87

1.44
0.98
0.93
0.93
0.95
0.99
1.08
1.59

1.44
1.22 |
1.02
0.94
0.93
0.91
0.95
1.00
2.13

1.00
0.97
0.95
0.95
0.96
1.00
1.18
1.46
2.25

1.06
1.00
0.95
0.93
0.93
0.96
1.05
2.12

Table 5.1: Averaged squared error results for the hospital dataset.
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CD -

CM -

O -

0

Figure 5.5: A plot of the simulated dataset including the true underlying model

Simulated dataset

The second example is a simulated dataset of 500 observations based on the

following model:

yt = m(xi) + et

where x; ~ Gamma(1.6),

and

= ^/x~ + Xi/2
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Samples of size 200 were selected based on 5 strata. A plot of these data

are given in Figure 5.5. Plots of the averaged squared error against smoothing

parameter are given for the various estimators in Figure 5.7.

The averaged squared error for the ratio estimator is 3523.75 (standard error

100.5), and for the separate ratio estimator 186.00 (standard error 16.4).
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Figure 5.6: Average squared error plots for the hospital dataset
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Summary

The plots in Figures 5.6 and 5.7 show that the various nonparametric estimators

are, for some values of the smoothing parameter, more efficient than the ratio

and separate ratio estimators over repeated sampling. The horizontal line on the

plots indicates the averaged squared error of the separate ratio estimator. The

averaged running ratio estimator (ARRE) performs particularly well as does the

running ratio estimator (RRE) and LWRE with Gaussian weight based on a local

bandwidth. This is possibly because of the varying bandwidth used with these

estimators, which takes account of underlying changes in the x variable. The

LWRE. based on a global bandwidth, does not perform as well when compared

with the separate ratio estimator, because of bias problems. This is due to its

lack of 'total-preservation', a property which the ratio estimators and the averaged

running ratio estimator all have (see Section 4.3).

Table 5.1 gives the empirical results of the simulation based on the Hospital

dataset. The second column gives the measure of averaged squared error over 100

randomly drawn samples from the population, and the third column the ratio of

this measure for each estimator with that of the separate ratio estimator. As

figures 5.6 and 5.7 illustrate the nonparametric regression estimators are always

more efficient than the ratio estimator and, for some values of the smoothing

parameter, are more efficient than the separate ratio estimator. The standard

errors associated with these measures for the nonparametric regression estimators

are comparable with the separate ratio estimator but the ratio estimator stands

out as being the worst estimator in this example. There is certainly much to be

gained, in terms of efficiency from using nonparametric regression estimators in

preference to both the ratio and separate ratio estimators.

Introducing a vr weight into the estimators to ensure design unbiasedness is

discussed in Chapter 6.

5.6 Discussion

In this chapter some possible methods of choosing the smoothing parameter have

been discussed. In some applications of nonparametric regression, the subjective

choice of comparing curves with varying smoothing parameters and choosing the

one that looks the best fit to the data, is sufficient. The problem of predicting
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a finite population total may require a more objective choice of the smoothing

parameter. Many of the methods described in the literature are based on a choice

for the regression function and not on a function of the response such as a total or

a mean. The standard automatic method, of cross validation, has not performed

particularly well in this prediction setting. It tends to choose a smoothing pa-

rameter that is either too small or too large, mimicking the behaviour of the

sample squared error. This is not particularly satisfactory since the optimal

choice, in terms of minimising mean squared error, lies somewhere between the

two extremes. Modifications of crossvalidation, by removing a proportion of the

observations and using the remaining to predict, do not dramatically improve

on the standard crossvalidation method either. This is one possible area that

requires further research.

The asymptotic bias and variance results, however, show more promise. A

local bandwidth is useful since it allows the window width to vary with the un-

derlying design density and possibly other factors such as variance. A varying

bandwidth is a feature implicit in the running estimators described and in smooth-

ing splines (Silverman, 1985). We note that, although the asymptotic results can

lead to some useful bandwidth selectors, in practice these are difficult to achieve

because of the unknown functions of the underlying regression model.

Finally in the last section, some other possible methods of smoothing pa-

rameter selection were discussed. These included equating degrees of freedom,

particularly useful in calibrating between estimators when comparisons are being

made. Also methods based on a large b approximation of the model mean squared

error and approximating the estimator tji to a quadratic in Xi were considered;

these are specific methods related to the locally weighted ratio estimator with

Gaussian weight.

In conclusion, there does not appear to be one method of smoothing param-

eter selection that stands out as being the best method to use in this problem,

except perhaps the degrees of freedom method for its ease of computation. Cross-

validation does not work particularly well. Asymptotics tend to rely heavily on

the knowledge of certain functions of the data and their derivatives, in particu-

lar the unknown regression model. These functions can be estimated, but then

we have an additional estimation problem. The degrees of freedom method is

possibly the easiest to use and relates to the parametric regression setting well.

The methods described so far have not been exhaustive and from this work we
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see much scope for further research into the important question of smoothing

parameter selection.



Chapter 6

Properties under repeated

sampling

6.1 Introduction

In Chapter 2, the notion of a sampling design was introduced. The probability

function involved plays a central role in determining properties such as the mean

and the variance of random quantities calculated from a sample. Common ex-

amples of designs used are simple random sampling (SRS) and stratified simple

random sampling (SSRS).

Design-based properties, such as the bias and variance, can be calculated for

each of the estimators mentioned so far. Some of the estimators are unbiased

or approximately unbiased under repeated sampling. If the nonparametric esti-

mators could be modified in some way, to remove or reduce the bias, then this

would lead to a useful class of estimators of the population total. It is possible to

do this, by introducing a weight associated with each sample observation; these

weights are the reciprocals of the sample inclusion probabilities.

6.2 7r-weighted estimators

The notion of a 7r-weighted estimator is briefly described in Section 2.4. It is

derived by weighting each sample observation appearing in the estimator by the

inverse of its inclusion probability, i.e. 1/TTJ, j = 1,. . . , n. The simplest example

110
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is the Horvitz-Thompson estimator, already mentioned in Section 2.4.

Introducing inclusion probabilities as weights ensures approximate unbiased-

ness under repeated sampling. If the estimator we have chosen to weight in this

way is total-preserving then it will be shown, in Section 6.3, that such vr-weighted

estimators are approximately design unbiased. The 7r-weighting increases the im-

portance of elements in the sample, so that each sample value represents 1/TTJ of

the population values.

The inclusion probabilities described depend on the underlying design that

has been adopted. Stratified simple random sampling with optimal allocation is

one design we are interested in. The weights associated with a sample observation

differ between strata, but are constant within strata.

Estimators which are unbiased under repeated sampling, i.e.

ET{f) - T = Y^ ^(-s)^ -T = 0,

or have small design mean squared error,

are particularly useful. Under simple random sampling (SRS), the ratio estimator

has bias of order 1/n and under stratified SRS it remains biased (also order 1/re,

see Cochran, 1977). Introducing inclusion probabilities as weights in the ratio

estimator, for designs other than simple random sampling where the TT;S are equal,

ensures approximate design unbiasedness.

The approximate bias and variance of some 7r-weighted estimators are now

found, under any design. The estimators considered include the locally weighted

ratio estimator, weighted according to a kernel function or Uniform A:-nearest

neighbour. Similar results for the ratio estimator are given by Cochran (1977)

and by Sarndal, Swensson and Wretman (1992). A similar line of argument is

followed to that given in Sarndal et al. (1992), in order to derive expressions for

approximate bias and variance of the 7r-weighted estimators under any design we

choose.

In the first instance, we concentrate on a locally weighted generalised linear

model estimator, and then obtain results for the ratio and regression estimators

as special cases of this. One or more explanatory variables are considered, by

introducing matrix notation into the calculations.
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6.3 A 7r-weighted local GLM estimator.

6.3.1 Introduction

Sarndal et al. (1992) consider the following for the regression estimator of the

population total:

fLR = ty7T + (tx-ix7T)'B, (6.1)

where the tyiTl tX7T = (tXl7V,. . ., tXp7T) denote the yr-weighted sample totals of y and

the p regressor or explanatory variables respectively. This is an example of a

difference estimator. Also

B = C^to ,

where

and

In order to include multiple explanatory variables, the above has been written

in matrix notation as in Sarndal et al. (1992). For instance, x̂ . = ( l , ^ ) , and

B=(_S1, B2) corresponds to a linear regression model with an intercept term.

The above can be extended to a generalised linear model estimator. The

estimating equations for estimating the parameters in a generalised linear model

can be written as:

where g(fit) = //;, the linear predictor, and V(//,-), is the variance function. This

variance function might, for example, be proportional to the mean.

This is an example of when survey sampling becomes model assisted, and

inferences based on surveys may also depend on the underlying superpopulation

model.

It should be noted here that in order to keep the estimation of parameters non-

iterative, the generalised linear model estimators discussed so far are restricted to

a certain class of models. Models with Normal errors, or Poisson errors provided
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an offset log(x,) and intercept term are included in the linear predictor, are con-

sidered since they ensure non-iterative estimation with an appropriate, usually

the canonical, link function.

Some examples of these models are outlined below.

i. For the ratio estimator; we assume an identity link, g(m) = fii — 8xt and

var^/i,) oc xt.

2. For linear regression (with an intercept term); we assume an identity link

again, g(fJ,i) = Hi = fio + fl-yXi, and var̂ (yu,-) = cr2, a constant.

So far a global estimator of the population total has been considered. At-

tention is now focused on the case of a locally weighted generalised linear model

estimator, which is an extension of the global case. A locally weighted generalised

linear model estimator may be written as:

g(m) = X ;B t . (6.3)

The B, is the locally weighted version of the B described above in (6.2), for the

global estimator. Each Bpt corresponds to a locally weighted parameter estimate

associated with the pth explanatory variable, including constants. In this case

B; = C,- tOj

and the corresponding elements of the matrices C,- and t0; above are

E
Wb(xt,xk)xrkx i , i _, .

fcc, ', / ; r yt r = i , . . . , p 6.4)
k&s okT\kg {nk) ' I 1 7 / - ,

+ — V^ Wb(x,,xk)xrkyk _ i n- r \
I'rOi — Z J L - C * 1 ^ — i 7 ~~ *-,-•• , p . ( 0 . 0 )

^h&s crkTTkg (nk) T T r \ /

If we assume case 1 above, then Bt- = Bi, and the parameter estimate for the

locally weighted ratio estimator becomes

6.3.2 Approximate bias under repeated sampling

The approximate bias, under repeated sampling, of the locally weighted gener-

alised linear model estimators, (6.3) above, is now considered.
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Theorem 6.1 The approximate bias of the locally weighted GLM estimator is

N N N v N

i=l r=l

Proof of theorem

By Taylor series linearisation, B,- in (6.3) is approximated by

B; = B, + C- 1 (to,- - Q B i ) • (6.6)

The proof of this is quite easy to derive, and is outlined below; the global case is

given by Sarndal et al. (1992).

The following proof is another application of the general Taylor series lineari-

sation technique. The estimator

B{ = C4~ toi

where C,- is a p x p symmetric matrix with elements given by crri{ in equation

(6.4), and t0; is a p x 1 vector of the elements tpoi described in equation (6.5).

Taylor series linearisation amounts to finding a linear approximation

p v

B t = BOt- = B ; + ^ J ] arr'i(Crr',- ~ Crr'2) + E ar0i{tr0t ~ tr0i) (6.7)
r = l r < / r=l

where arr'4- and aroi are vectors defined as

"-rri ~ 88 ,.
rr i

*rOi —

evaluated at the true values, C; = Q and to;= t0;. We obtain the following

— r^-1 \

where A r r / i is a p X p matrix with ones in positions (?', r ) and (?• , r) and zeros

elsewhere, and A,.; is a p x 1 vector with the rth component 1 and zeros elsewhere.

Evaluating the derivatives at (C;, t0,) and inserting into (6.7) gives

Bo i = Bi - J2r=1 Yjr<r' C7^ ^rr'i^ii^rr'i ~~ Crr'i) + Y7r=l Ci Ki(trOi ~ Uoi)

B i p i - 1 ( + P.R .
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the linearised form of B;.

Substituting the approximation (6.6) above into (6.3), an approximation for

g(i)i) can be found and hence an approximation for the bias term. It follows that

g(yi)= x;.B, + X ; .C - 1 ( t ! -C ! B ! ) .

Taking the design expectation we arrive at

and hence the approximate bias results.•

The bias term is zero when the estimator has a smoother matrix which is

total-preserving. A predictor is represented by l T Sy, for any linear smoother

matrix S, or l r x T B . If the linear smoother matrix is total preserving then l T Sy
must give the total exactly and hence so must l T x T B, since they are equivalent.

Therefore, the locally weighted GLM estimator is approximately unbiased under

repeated sampling, provided it has a smoother matrix which is total-preserving.

It should be noted that to estimate the population total we need to invert the

transformation applied to fi (the link function) and apply it to the right hand

side of the equation above. There are various ways of doing this, some described

in Carroll and Ruppert (1988), but we do not consider them further here.

6.3.3 A 7T-weighted local regression estimator

Approximate bias

The results obtained from Section 6.3 are used to find the approximate bias under

repeated sampling of the locally weighted regression estimator.

The components of the linear model are the identity link

g(fii) = fJ-i = /5o + P\Xi and a constant variance a2. The approximate bias using

the result from above is
N N p N

- * ) = E E BriXri ~ E y* ^
i—1 i = l r = l 4 = 1

where B; = (B1,B2)' and
1

/ V^JV / \
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where lô - = Wb(xi,Xj).

Solving (6.9) above, and substituting into the approximate bias formula (6.8),

it is shown that the bias is approximately zero, for the same reason described in

Section 6.3.2 above.

6.3.4 A 7r-weighted local ratio estimator

Approximate bias

This estimator has received the most attention throughout this thesis. It is an

example of a local GLM estimator with var^(^j) = Xicr2, and g(/J.-i) = //; = /3xi,

written as:

LWRE = 2 ^ xi = } ^ Xij- = ̂  XiRi, (6.10)

using similar notation to Sarndal et al. (1992), Remark 5.6.1. but including an

extra subscript in the variables to denote that they depend on the target X{. Then

- tiy, etc.

By applying the results from Section 6.3 to (6.10).
N N N

J2 xi&i = Y,xiR{ + J2 T-&V* - M C T ) ,
t=i «=i t=i ix

approximating to the first term only in the Taylor series expansion. Taking

expectations of this under the design employed:
N N N

x? eh \ • V ^ %y i ST^ Xi f4 iy + \ S^ iy

En(TLWRE) = 2_^ x^q- + z^T'^y ~ 7~ ^ = z^ {T~'

and therefore
N t

Hence, an expression for the approximate bias of the locally 7r-weighted ratio

estimator under any design has been derived. The estimator, TLWRE-, is approxi-

mately unbiased when
N , N
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i.e. when the estimator has a smoother matrix that is total-preserving (see Section

4.3).

Error associated with the approximate bias

The approximation above is only rough, and does not work particularly well in

samples that are small relative to the population size. In order to make the

approximation more accurate, the next term in the Taylor series linearisation

is included. This gives the order of magnitude of the error associated with the

approximate bias.

The first term in the Taylor series expansion for the bias has already been

given. The next, quadratic term, gives us some indication of the size of error

associated with the approximation.

Recall that

ir,iiXr), (6.11)

and Sarndal et al. (1992), in their derivations, neglected all terms after the first.

In order to find the next term in the Taylor series expansion we must consider

the second derivatives of the function (6.11), evaluated at the true values, tix, Uy.

The following coefficients are obtained from the second order derivatives:

n 2tiy - 1
lix lix

for the i]yv/2l, i]xv/2\ and Uy^Ux-K terms in the expansion respectively. Then

i „ 1 ~. *
-tii = tii ~T ~ (tiyir fUtixv) i Q | . 2 \ * ixir ^•i

Taking design-expectations leads to

TV TV

E*(fLWRE) = E

The first term is just the 0(1) term that is fixed for any sample size and, for the

total-preserving estimators, equals the population total. The second term above

is the error term we are interested in and consider in more detail. Now
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and

E Ei Xl)Xkyi.

For example, under stratified simple random sampling

H

and

nh)Nh

where the S'flix and Shixy are the individual stratum population variances and

covariances, weighted according to the target x,.

Hence, the error term for the stratified simple random sample case is

N
Xi

K [2RiiixT. — biyir,

N N
D

f
2 = 1

n / i

hixy •

^j=l / \j=l / h=l

The first and third term above are fixed, for a suitable b, and the remaining error

term is of order
Nh{Nh-nh) . (Nh - 1

nh

This indicates that the size of the error term depends on nh/Nh, the strata sam-

pling fraction. If n/t is small relative to Nh then the error term on the approximate

bias is large, otherwise if niJNh is close to 1, i.e. iih —>• iV/t, the approximation

does well.
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Approximate variance under repeated sampling

Again, the methods described below are based on the proofs given in Sarndal et

al. (1992) for finding the approximate variance of the TT-weighted ratio estimator

under repeated sampling. The TT/̂ TT^ are the first and second order inclusion

probabilities and Aki = TTM

Theorem 6.2 The approximate variance of the TT-weighted local ratio estimator

is

AV(fLWRE) = 52iLi E?=i TST [C<"V(V> *.V) - ^ covv(iixn, iilyj (6.12)

Proof of theorem

To find the approximate variance of the 7r-weighted local ratio estimator, TLWRE-,

we note that the ratios R{, appearing in the estimator, depend upon the i. Recall

that
N

TLWRE =

where

- i •
bix-n

The approximate variance is

TV

AV(TLWRE) =

N

= E
The first term on the right hand side can be written as

TV TV

i=l 1=1
^ , .2
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The individual var7r(il?/7r), etc. are calculated for the particular design consid-

ered; we might, for example, be interested in the approximate variance of this

estimator under stratified simple random sampling, in which case we would con-

sider the individual variances and covariances of the t{yv and ttx1T under stratified

simple random sampling. This is considered some more later, but next we turn

to the second term in equation (6.13) above. Now,

where

and

Using the Taylor series approximation to the first term only, we have

1
T •

Then (6.15) above becomes

~{iiy, - Riii R;

= ET RiR{l +
{

- Riii**) +
Ri,t

So the covariance term is

covn

(6.16)
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Combining equations (6.14) and (6.16) gives the approximate variance. •

The approximate variance can be calculated for any design using the popula-

tion quantities appearing in the formula. It can also be estimated by estimating

any population quantity appearing in the formulae by the corresponding sample

quantity.

For illustration, the approximate variance of the 7r-weighted local ratio es-

timator under SSRS has been considered. In the formula for the approximate

variance, design-based quantities such as var7r(iij/7r) and cov7r(f,-y^,ti/ ), etc., are

required.

In the notation of Sarndal et al. (1992) we write

VkVi

The above can also be written as

^ (xi, xk) (6.17)
Ju

Here, the particular design is introduced, by substituting the 7rw, k ^ l,k, I =

1 , . . . , TV and vr̂ , k = 1 , . . . N inclusion probabilities into (6.17) above. Using the

SSRS inclusion probabilites, then

h=\

where
•-> Y"\ /\ Wh(x;, Xhk-)2vfi — (Y"\ '\ Wh(xj,Xhk)vhk)2iNu

This is the locally weighted variance of the y's weighted according to the target

Xi, calculated within each stratum. Similar expressions can be derived for the

other terms appearing in the approximate variance formula, all of which are

summarised below. The yk,xk are the vr-weighted y and x observations in the

sample respectively. The covariance terms appearing in the approximate variance

formula can be written as:

AklWb(xi, xfc)W
/
6(;ct-', xi)qki

<i

?h Wb(x.l,xhk)rhk)
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with appropriate substitution of q and r to obtain cov7r(f,-2/7r, fy ), cov7r(£j

^ , ^ ) and

The approximate variance of the simplest case, the combined ratio estimator

(when all Wb(x{,Xj) = 1), could be computed quite easily if the stratum vari-

ances and covariances of the population x and y were known. However, these

will be unknown, for the y's at least, and so estimates can be obtained from the

within stratum sample x and y variances and covariances. The same estimation

procedure can be applied to the approximate variance formula, (6.12) above, sub-

stituting the unknown population variances and covariances by their respective

sample quantities.

As nil —* Nil, the variance approximation improves. When Nh = n/t, the

variance is zero. There is an error term associated with the approximate variance

which depends on n^ and N^ in some way. The calculation for this has been

omitted here.

The result for the approximate variance given for the locally weighted ratio

estimator can be extended to a locally weighted regression estimator, and gener-

alised to locally weighted generalised linear models.

6.4 Generalised linear modeling with regres-

sion splines

To ensure design unbiasedness in our generalised linear model estimator, as de-

scribed in Section 4.3.3, a TT-weight, associated with each sample value, is intro-

duced.

Recall that the model previously used was:

k

= g(xi) + A, + V ctjAjixi), (6.18)

where Aj(xi) are the linear basis functions for a regression spline (B-spline). The

above model with canonical link and appropriate variance function leads to a

total-preserving estimator. In the case of Normal errors, or Poisson errors with

an offset log(z) and intercept term in the linear predictor, the solution is non-

iterative.
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Introducing the weights, I/TT,-, into (6.18) above, makes no difference to the

total-preserving property, this still remains. The estimating equation is

i.e.

i=l i=\

The model described above, with and without prior weights of 1 /vr7, is com-

pared numerically in Section 6.5 with the parametric ratio estimators and the

other nonparametric regression estimators, using the India dataset of Section

1.4. The calculations for the generalised linear model estimator were performed

in S-PLUS (see Becker et al., 1988 and Chambers and Hastie, 1990 for more

on modelling using S-PLUS). The glm function was used; prior weights were

included using the weight= option.

The following remarks can be made about this estimator:

1. It is fairly easily implemented; the ir weights can be introduced as prior

weights into the generalised linear model if required.

2. It has the feature of a smooth underlying function which is often more

realistic of the underlying model than the discontinous underlying model of

the separate ratio estimator.

3. The variance under repeated sampling is considerably smaller than some

of the parametric estimators, and the bias is comparable. Introducing the

7r-weight improves the estimator to a certain extent. (See numerical results

in Section 6.5).

4. There is no problem with deciding how many knots and where to place them

for the regression spline part, if stratified random sampling is used; the

number of strata and stratum boundaries should be used. This is discussed

in Section 4.3.3 in more detail.
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6.5 Numerical results

In this section we establish, empirically, how well the 7r-weighted estimators per-

form in terms of bias and variance, under repeated sampling. The empirical

performance is also compared with the approximations derived from above. The

approximations worsen as the sample size decreases relative to the population

size, as expected.

Monte Carlo simulation was performed by selecting 1000 samples and calcu-

lating the bias and variance of the 1000 samples.

Example 6.1 India dataset

The India dataset of Section 1.4, is used. From the population, 1000 SSRSs with

3 strata were selected using optimal stratification. The bias and variance of the

ratio estimator, separate ratio estimator, combined ratio estimator and various

7r-weighted nonparametric estimators under SSRS were calculated and are found

in Tables 6.1 , 6.2, and 6.3. The experiment was performed for varying sample

sizes, n = 30 and n — 60, and for a range of values of the smoothing parameter.

The theoretical approximate bias and variance calculations for this dataset

can be found in Table 6.1. The combined and separate ratio estimators are

approximately unbiased as these are 7r-weighted versions of the ratio estimator.

Approximate unbiasedness also applies to the vr-weighted averaged running ratio

and GLM with spline estimators. However, the 7r-weighted local ratio estimators

with kernel or nearest-neighbour weights are not approximately unbiased under

repeated sampling. The first term in the approximate bias is 0(1) for these

estimators and so is fixed for any sample size n. This is because these estimators

do not possess the total-preserving property of the other estimators. In order to

be total-preserving the following condition should be satisfied:

l T Sy = l T y ,

where S is the smoother matrix associated with the estimator. This is not the

case for these estimators and is discussed more in Section 4.3.1. In Tables 6.2

and 6.3 the empirical results from selecting 1000 SSRSs are given. The results

based on n = 60 give smaller variances and therefore more precise estimates of

bias than for the n = 30 case, as expected. The bias and variance of the 7r-

weighted running ratio estimator and Gaussian weighted estimators appear to
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increase and then decrease again for varying smoothing parameter. The estima-

tors behave as might be expected, the ratio estimator performing the worst. The

locally weighted Ciaussian kernel and running line estimators improve on the ratio

estimator, in some instances, but are only unbiased as b (or k) approaches infin-

ity, when they become the combined ratio estimator. The combined and separate

ratio estimator perform well in terms of bias but are outperformed further by the

averaged running ratio and generalised linear model estimators. Both are unbi-

ased (or approximately so) under repeated sampling and both are more precise

and efficient than either the combined or separate ratio estimator. For the n = 60

case the empirical MSE is reduced from 0.435 in the separate ratio estimator to

0.412 and 0.317 in the ARRE and GLM with spline estimator respectively. The

generalised linear model with spline estimator has a smaller variance than any of

the other estimators, particularly in the n = 60 case.

The nonparametric regression estimators appear more efficient than the un-

biased parametric estimators. The variance term dominates the mean squared

error in this example; this is not, however, always the case. These results are very

encouraging and show the potential of nonparametric regression in the prediction

of finite population measures.

6.6 Design-model based approach

6.6.1 Introduction

In Section 2.2.4, the idea of joint expectation (and variance) under the design and

superpopulation model was introduced. Here, properties of the estimators under

these joint methods are considered further, motivated by the work of Royall and

Herson (1973a) on ratio estimators and separate ratio estimators. They consider

simple random sampling compared with balanced sampling, and in particular

the superpopulation variance under both designs. They conclude that the vari-

ance under balanced sampling is always smaller than the variance under SRS for

the ratio and separate ratio estimators. Interesting joint properties to consider

include

EnEt(f-T) and ^ ( v a r ^ f ) ) , (6.19)
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Estimator

Ratio Estimator (n=60)

7r-weighted ratio estimators

Combined R.E.

Separate R.E.

Locally weighted R.Es

with 7T weighting

Gaussian kernel

b=200

b=400

b=600

Running line

k=10

k=20

k=30

Averaged running R.E.

k=10

k=20

k=30

Approximate

Bias

-0.3622

0.0000

0.0000

0.1135

-0.2321

-0.3681

-0.1946

-0.2384

-0.2609

0.0000

0.0000

0.0000

Variance

n = 60

0.3870

0.4452

0.4403

0.4083

0.5215

0.5346

0.3591

0.3875

0.3885

0.3735

0.4121

0.4378

Variance

n = 30

5.4437

5.6602

5.7004

4.5435

5.7438

5.9239

4.7071

4.9922

5.1065

4.7420

5.3670

5.7537

Table 6.1: Theoretical approximation to design bias and variance under SSRS for

the India dataset
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Estimator

Ratio estimator

vr-weighted ratio estimator

Combined R.E.

Separate R.E

Locally weighted R.Es

with 7T weighting

Gaussian kernel

b=200

b=400

b=600

b=800(« 3 df)

b=10000

Running line

k = l

k=10
k=20(^ 3 df)

k=30

k=500

Averaged running R.E

k = l

k=10
k=20

k=30(« 3df)

GLM with spline

with 7T weight

without IT weight

Actual bias

-0.3891

-0.0309

-0.0256

0.0937

-0.2619

-0.3998

-0.5061

-0.0309

0.0904

-0.1955

-0.2804

-0.2161

-0.0309

0.0904

-8.0e"5

-0.0168

-0.0229

-0.0575

0.1672

Actual Variance

0.3807

0.4387

0.4341

0.4065

0.5129

0.5258

0.5157

0.4387

0.7018

0.4089

0.4105

0.3896

0.4387

0.7018

0.4146

0.4114

0.4167

0.3134

0.3012

Actual MSE

0.5321

0.4397

0.4348

0.4153

0.5815

0.6856

0.7718

0.4397

0.7099

0.4471

0.4891

0.4363

0.4397

0.7099

0.4146

0.4117

0.4172

0.3167

0.3292

Table 6.2: Empirical results

dataset

selecting 1000 stratified SRSs with n=60, India
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Estimator

Ratio estimator

Combined R.E.

Separate R.E.

Locally weighted R.Es

with IT weighting

Gaussian Kernel

b=200

b=400

b=600(« 3df)

b=800

b=1000

b=2000

b=10000

Running line

k = l

k=10(« 3 df)

k=20

k=26

k=30

k=32

k=36

k=40

k=500

Averaged running R.E.

k = l

k=10

k=15(«3 df)

k=20

k=30

k=35

k=40

k=50

GLM with spline

with 7T weight

without 7T weight

Actual bias

-0.4305

0.0212

0.0191

-0.4193

-0.6646

-0.6826

-0.6827

-0.6910

-0.7005

-0.0155

-0.2928

-0.2690

-0.4072

-0.7981

-1.0212

-0.9706

-0.7473

-0.6429

0.0212

-0.2928

-0.1004

-0.0722

-0.0552

-0.0313

-0.0238

-0.0182

-0.0103

-0.4301

-0.1588

Actual variance

5.4282

5.6424

5.6668

5.4736

6.3283

6.3669

6.1734

5.9831

5.7170

5.6257

7.6158

5.5131

5.7849

6.9365

8.3133

8.2032

7.3754

7.0293

5.6424

7.6158

5.5141

5.5313

5.6126

5.6365

5.6353

5.6348

5.6348

6.3102

5.1397

Actual MSE

5.6135

5.6428

5.6672

5.6494

6.7700

6.8328

6.6395

6.4606

6.2077

5.6259

7.7015

5.5855

5.9507

7.5735

9.3561

9.1453

7.9339

7.4426

5.6428

7.7015

5.5242

5.5365

5.6156

5.6375

5.6358

5.6351

5.6349

6.4952

5.1649

Table 6.3: Empirical results

dataset

selecting 1000 stratified SRSs with ra=30, India
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also the variances associated with these expected values, i.e.

vaiv E^f - T) and vaiv(var^(T)). (6.20)

The theoretical results for the first expression of (6.19) above can be easily derived

from those for E^{T — T), by replacing every occurence of y,- in the formula by

the superpopulation mean, rn(xi). If the estimator is unbiased under either the

design or model, then there is overall unbiasedness.

Recall that

/ N k \ 2

varc(TA R R E) = a

for our averaged running ratio estimator. Then, after some manipulation, it can

be shown that

E.

expectation taken with respect to SRS. Similar results can be derived for the

quantities given in (6.20) above but have been omitted here.

6.6.2 An example

The India dataset of Section 1.4 has been used in this example. The ratio esti-

mator, separate ratio estimator and averaged running ratio estimator are used to

predict the population total. In Table 6.4 the results from selecting 1000 strat-

ified (3 strata) simple random samples and computing the joint model-design

var^(T)), are given. Varying sample sizes and

spans are used. The standard errors associated with these expectations are given

in brackets in the table. The averaged running ratio estimator performs best

in terms of reducing the standard error associated with the joint expectation.

The ratio estimator performs best in expected variance under repeated sampling,

however this is not the case for the expected bias under repeated sampling.



Chapter 6 130

Sample size

10

15

20

27

34

Estimator (Span)

T k=5

TRE

TSRE

TARRE k=7

TRE

TSRE

fARREk=10

TRE

TSRE

TARRE k=13

TRE

TSRE

TARRE k=17

TRE

TSRE

En(vn

22197

20963

23183

14939

14385

153282

10874

10436

11371

8326

8185

8507

7426

7426

7426

(48)

(1892)

(2194)

(26)

(956)

(1047)

(33)

(400)

(518)

(3)

(86)

(177)

(0)

(0)

(0)

EJE^T-T))
5.4

66.6

-9.1

3.9

5.2

-6.2

11.7

71.6

-2.5

8.5

46.9

-0.3

0

0

0

(1.51)

(93.67)

(69.74)

(1.05)

(68.60)

(52.58)

(0.55)

(118.65)

(28.67)

(0.03)

(3.70)

(3.85)

(0)

(0)

(0)

Table 6.4: Expected var^(T) and bias under stratified simple random sampling
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Conclusions and further research

7.1 Conclusions

In this thesis, the problem of predicting finite population totals using nonpara-

metric regression estimators has been addressed. The nonparametric estimators

described lead to greater efficiency than standard estimators because of their abil-

ity to reflect the actual structure of the data. In particular, comparisons with the

ratio estimator and separate ratio estimator were most beneficial; it was shown

that nonparametric regression estimators have genuine gains in efficiency over the

ratio estimator and separate ratio estimator. This was emphasised by numerical

results in Chapter 5 and 6. Efficiency gains, over the separate ratio estimator,

were shown for all of the nonparametric regression estimators described. The fact

that nonparametric regression estimators perform better than standard estima-

tors suggests that they are methods that should be considered in any prediction

of finite population measures.

A large class of nonparametric regression estimators were described in Chap-

ter 4, dichotomised into operational and model-based estimators. Motivation for

these nonparametric regression estimators was also given. Of particular inter-

est are those which possess a 'total-preserving' property, found to be of greatest

benefit in removing design-based bias while keeping the design-variance small.

The total-preserving nonparametric estimators were more efficient, for a suitable

choice of the smoothing parameter, than standard total-preserving estimators

such as the separate and combined ratio estimators, because of the smooth un-

derlying curve of the nonparametric estimators as opposed to the underlying

131
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discontinuous model of the parametric separate and combined ratio estimators.

This was particularly true of the averaged running ratio estimator and the model-

based, generalised linear model (GLM) with spline estimator. In particular, the

GLM with spline estimator, for the example given in Chapter 5, outperformed

most of the other estimators, in reducing the design-variance. There is much scope

for considering other generalised linear model estimators such as this, incorpo-

rating a nonparametric component into a parametric model thereby providing

a semi-parametric approach. This semi-parametric approach could be extended

to many different types of data. Also in Chapter 4 an alternative form for the

degrees of freedom was derived which allowed for the possibility of a heterogenous

variance.

In Chapter 6, the estimators described were vr-weighted to ensure approximate

design unbiasedness and properties of these vr-weighted estimators under repeated

sampling were derived. In particular, the approximate design-based bias of a TT~

weighted local generalised linear model estimator was obtained and shown to be

zero when the estimator was total-preserving. The approximate variance of the ir-

weighted local ratio estimator was also derived. For the generalised linear model

with regression spline estimator vr weights were introduced as prior weights into

the model. The total-preserving property still holds in this case. An example

based on the India dataset was included to illustrate the advantage of total-

preserving nonparametric regression estimators over parametric estimators.

Finally, the question of what value to choose for the smoothing parameter

was covered in Chapter 5. Crossvalidation, in the context of predicting a popula-

tion total, performed disappointingly; a modified crossvalidation criterion did not

improve on this any further. Work on the asymptotic bias, variance and mean

squared error of the locally weighted ratio estimator was enlightening. It was

shown how the bias depends on functionals of the design density, the underlying

superpopulation mean and their derivatives. The asymptotic variance has a first

term which does not depend on /;, the smoothing parameter. We did not derive an

asymptotically optimal bandwidth from this, but an intuitive 'local' bandwidth

was considered based on some aspects of the asymptotic variance. The most prac-

tical choice of smoothing parameter was using the degrees of freedom formula,

as described by Tibshirani and Hastie (1987) and the alternative form derived

in Section 4.5, from the modified residual sums of squares. There appears to be

much scope for further research into this very important question of smoothing
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parameter selection with a growing interest in the literature for new or modified

approaches.

7.2 Recommendations for further research

The following are some possible areas of further research related to the work

carried out in this thesis:

(1) The important issue of smoothing parameter selection requires much further

investigation. In particular, more work on the choice of a local or variable band-

width in the kernel estimators is required. It would also be useful to provide an

automatic method of selection, perhaps by considering an approach similar to

penalising functions as described in Section 5.2.2.

(2) The nonparametric estimators described have not been exhaustive. The class

of operational estimators referred to as averaged running estimators can be ex-

tended to include any estimator (in particular total-preserving) as the running

estimator. These may include, for example, running generalised linear model esti-

mators. Semi-parametric estimators, such as the GLM with spline estimator, are

well worth investigating further. Provided an intercept term and canonical link

are used in the generalised linear model part of the model the total-preservation

property holds. The smooth part of the model (as in the regression spline) could

be replaced by any smooth function, such as a smoothing spline. This semi-

parametric approach leads to a flexible and also fairly efficient class of models.

(3) Variance estimation has not been covered extensively in this thesis but is

an important area that also needs addressing. It would be of interest to find

methods of estimating the function a(xt) in order to yield a variance estimator

for the prediction error of the total.

(4) Robustification to outliers by downweighting influential observations as de-

scribed by Chambers (1993), is worth consideration. Also no allowance for miss-

ing population x values has been given; the examples we have looked at have

contained the x value for the whole population.

(5) Extensions to other types of data. An obvious extension is to binary data.

For example, suppose j/2- = 1 if an event occurs, and zero otherwise and x,- is some

measure of size. Interest may be in a population total such as T = X^=i xiVi-
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Here, since vrt = Pr(Yi = 1) typically depends on X{, a linear logistic model such

as
j

vr.
1 " *' i=o

might be appropriate, for some Jth order polynomial (./ > I) to ensure total-

preservation. This has been covered to some extent in Section 6.3 with the intro-

duction to the local generalised linear model estimator. In the case of multivariate

data the generalised additive model already described in Section 3.4, is analogous

to nonparametric regression in the univariate setting. More recently Hastie and

Tibshirani (1993) have described a general class of varying coefficient models.

These models are linear in the regressors, but their coefficients are allowed to

change smoothly with the value of other variables. Generalised additive models

and nonparametric regression are examples of varying coefficient models.

(6) A related problem to finite population prediction is that of nonparametric

regression estimation of finite population distribution functions as studied re-

cently by Dorfman and Hall (1993), Kuk (1993) and Chambers, Dorfman and

Wehrly (1993). In particular the introduction of bias calibration has been consid-

ered to take account of bias incurred by model misspecification. Bias calibration

ideas could also be applied to nonparametric regression estimation of finite pop-

ulation totals.
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Approximation to model mean

squared error

Below, the coefficients a-[, a2 and a3, of the large-6 ( or small-fc) approximation to

the model mean squared error (aj + a-2k + (13k2) are given, for the locally weighted

ratio estimator with a Gaussian kernel weight function. These are based on using

the Taylor series expansion of the Gaussian kernel function and the subsequent

expansion of the locally weighted ratio estimator.

The model-MSE or PMSE can be written, up to terms of 0(k2), as:

a3A:2,

where the coefficients al7 a2 are obtained from contributions of the model-variance

and squared bias terms. These coefficients are:

a-[ = a

N

E
N n / \

,=i m(xj)

1=1

N

and

— Xi — X i
j=i XJ

135
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