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The Hecke group H(Ag) is the discrete subgroup of PSL(2,~R.) generated by
R(z) — —\/z and T(z) = z + \q for A7 = 2cos7r/q. In this thesis we investigate
normal subgroups of these Hecke groups.

The most important Hecke group is the modular group obtained for q = 3.
There are many results in the literature concerning normal subgroups of the modu-
lar group. We are interested in generalizing these to other Hecke groups H(A?).

Jones and Singerman, [Jo-Si,1], determined a 1:1 correspondence between nor-
mal subgroups of certain triangle groups, including Hecke groups, and regular maps.
We study normal subgroups of H(Ag) by means of this correspondence and obtain
results about normal subgroups of H(A9) using the known regular maps. This is es-
pecially useful when g — 0 or 1, as all regular maps with these genera are classified
(see [Co-Mo, 1] or [Jo-Si, 1]).

We obtain fairly complete information about the normal subgroups of H(A4),
H(A5) and H(A6) of low index and obtain some other results for other values of q. In
particular we investigate principal congruence subgroups of H(A?) for prime powers
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INTRODUCTION

In "Uber die Bestimmung Dirichletcher Reichen durch ihre Funktionalgleichun-

gen", Erich Hecke introduced the groups H(A) generated by two linear fractional

transformations

R(z) := - \ and T(z) := z + A, (1)

where A is a fixed positive real number. R and T have matrix representations

\ / V /
respectively. Let S = R.T.

These groups are useful in the study of Dirichlet series only when H(A) is prop-

erly discontinuous, i.e. a Fuchsian group. E. Hecke, in [He,l], showed that when

A > 2 and real, or when

A = \q = 2cos- (3)
q

where q is an integer > 3, when A < 2, the set

FA = {z € U : | Re z \ < A/2, \z \ > 1} (4)

is a fundamental region for the group H(A), and also that F\ fails to be a fundamen-

tal region for all other A > 0 (see Chapter 1 for more details). It follows from this

that H(A) is Fuchsian if and only if A = Xq or A > 2 is real. In these two cases H(A)

is called a Hecke group. Because of its interest, we shall deal in this thesis with the

case A < 2 and denote the group obtained by H(A?). Then the Hecke group H(A?) is



the discrete subgroup of PSL(2,H) generated by R and T, where T(z) := z + A,.

The Hecke groups H(A?) are included in a more general class H(AP, A9) generated

by

R'(z) := — - 1 — and T'{z) := z + Ap + A,, (5)
z — Ap

where 2 < p < q < oo, p + q > 4. In fact

H(Xq) = tf(A2, A,). (6)

It is known that H(AP, A7) is the free product of a cyclic group of order p and

one of order q ( see [Lh-Ne,l]). In Chapter 2 we. prove this result for Hecke groups,

geometrically, and find that H(A7) is the free product of cyclic groups of orders two

and q.

The most important and worked Hecke group is the modular group H(A3). In this

case A3 = 2COSTT/'3 — 1 and hence the underlying field for this group is Q(l) = Q,

i.e. all coefficients of the elements of H(A3) are rational integers.

In the literature, the symbols F and F(l) are used to denote the modular group.

In this thesis we shall use F and H(A3) for this purpose.

There are many results in the literature concerning F. Some of them can easily

be generalized to all Hecke groups with only a few differences.However most results,

especially number theoretical ones, can only be generalized to H(Ap), where p is a

prime. For example, when power subgroups Hm(A,) are considered, the situation

in the H(AP) case is similar to the modular group case. Indeed, as we shall see in

Chapter 6, H(AP) has only three power subgroups H(AP), H2(AP) and HP(AP) like the

modular group. Finally there are some results which are only true for the modular

group and do not hold for the other Hecke groups. The main reason for this is that



the underlying field Q(Aq) for q > 3 is clearly more complicated, being a simple

extension of Q, than Q, and therefore the coefficients of elements of H(A?), q > 3,

are more complex than integers, which are the coefficients of elements of T. As a

result of this, all calculations are more complicated than they are in the modular

group case.

The next two most important Hecke groups are those for q = 4 and 6. In these

cases A, = y/2 and \ /3 , respectively. Therefore the underlying fields are Q(\/2) and

Q(\/3), i.e. quadratic extensions of the field Q of rationals.

We are also going to work with H(As) seperately, since in this case, the underly-

ing field is again a quadratic extension of Q. These four Hecke groups are the only

ones for which Xq is a root of a polynomial of degree less than three.

For q > 7, q 6 N, Aq is a root of a polynomial of degree > 3. As a result of this,

as we shall see in Chapter 2, we are not going to be able to determine the number

\q as clearly as in the first four cases we already discussed. Because of this we are

going to attempt to find the. minimal polynomial of \q over Q. This will be done in

Chapter 2 where we deal with odd and even q cases seperately and give the formulae

for the minimal polynomial.

One of the reasons for H(v2) and H(\/3) to be two of the most important Hecke

groups is that, apart from the modular group, they are the only Hecke groups whose

elements are completely known. If we put m — 2 or 3, W(yfm) consists of the set of

all matrices of the following two types:

(ill i— , a, o, c, a € Z, ad — mbc = 1,
v ' V Cyjrn a I

(7)

(ii) I " v " l . ,— I o, b, c, <7 G Z , mad — be = 1.



Those of type (i) are called even while those of type (ii) called odd.

Note that if we consider the multiplication of these elements, the situation is

similar to the multiplication of negative and positive numbers. Here we have

odd.odd=even.even=even, ,_>
even.odd=odd.even=odd.

Let now q be even. We can define an important normal subgroup of the Hecke

groups H(Ag):

As q is even there is a homomorphism of H(Aq) to the cyclic group of order

two, taking both elliptic generators R and 5 to elements of order two. Then the

parabolic element T = R.S goes to the identity under this homomorphism. Using

the permutation method we find the signature of the kernel as (0; q/2, oo, oo). That

is, it is isomorphic to the free product of the infinite cyclic group Z and a finite

cyclic group of order q/2.

In particular when q = 4 or 6, this subgroup has a rather special form. Indeed,

it contains all the even elements in Yl(^/m), m. = 2 or 3, and therefore will be called

the even subgroup denoted by He(>/m), i.e.

(9)

In general for any even q. the even subgroup obtained above will be denoted by

He(A,). It is generated by T = RS and TU = RS2R, and in fact

He(Xq) ^ < T > * < T U > . (10)

We shall see in Corollary 1 that the elements of H(Ag) has one of the forms

V(z) = (az + bX)/{Xcz + d) or V[z) = {Xaz + 0)/{-(z + XS) where A = A, and

a, 6, c, d, Q', ft, 7,8 are all polynomials in Â  with rational integer coefficients. In a

similar way to q = 4 and 6 cases, we can consider the elements of the former type



as even elements and the ones of the latter type as odd. Again (8) hold in this case.

Therefore

He{Xq) = Ul= (a
cX

 hXq
dj : M e

The set of odd elements

forms the other coset of He(Ag) in H(A7). In fact

H(Xq) = He(Xq) + R.He(Xq), (13)

as R <£ He(Xq).

It is not possible to have the even subgroup for the odd values of q. Indeed the

elliptic generator S has order q in H(A?) and cannot be mapped to an element of

order two.

He(Ag) is quite important amongst the normal subgroups of H(Aq). In fact it

contains infinitely many other normal subgroups.

We shall deal with He(>/m), m = 2,3, in detail, when we discuss the normal

subgroups of H(y/m) in Chapters 8 and 9.

Now we know all elements of F, H(v2) and H(v3). In other cases the elements

of H(A?) are worked out by D. Rosen in [Ro,2]. Using continued A-fractions he gave

the necessary and sufficient conditions for a substitution to be an element of H(A9).

Because of the importance of being able to determine the elements of Hecke groups,

we now recall his ideas:



As shown in Chapter 1, an element of H(A?) can be expressed, in terms of the

generators R and T, as

V(z) = ?±±1 = Tr°RTr>R...RTr\ (14)
cz + «

where the r,-'s (0 < i < n) are integers such that only 7*0 and rn may be zero.

We shall write a continued fraction with arbitrary elements

as

(&o, al/bua2/b2, . . . ) • (16)

The a,'s and tt-'s (z = 0,1,2, ...) will be called the i — th partial numerator and

denominator respectively, while a,-/6,- denotes the i — £/J partial quotient or £erm of

the continued fraction. The finite continued fraction consisting of the first n + 1

terms, when written as the quotient of two polynomials in a,-, 6,-, will be called the

n — th convergent of the continued fraction, and denoted by

Pn/Qn = (6o,ai/6l , . . . ,a

Here we shall consider the continued A-fraction

(r0A, d/r,A, 62/r2A, ...) (18)

where e,- = ±1, 7*0 is a rational integer, r,- is a positive rational integer for i > 1. The

values of A = A, are restricted to those for which H(A,) is Fuchsian.

An equivalent form of the A -fraction (18) is

(7-0A, -1 /nA, - l / r 2 A, ...) (19)



where the r;'s (i > 0) are now integers and only r0 may be zero. If the A-fraction

(19) is finite, say consisting of n + 1 terms, then rn may also be zero.

Now we have

Theorem 1: A substitution V(z) = (Az + B)/(Cz + D) <E H(A,) if and only

if A/C = Pn/Qn = (7'oAg, —1/rjA,, ..., — l/rn\q), i.e. A/C is a finite A,-fraction.

Proof: [Ro,2].

Note that B/D is also a finite A-fraction if A/C is. Moreover B/D and A/C are

consecutive convergents of a finite A-fraction consisting of n + 1 partial quotients if

rn 7̂  0 and n partial quotients if 7v
n = 0, i.e.

f / ePn_, Pn \ .f ^ Q

V = (20)

ePn Pn_i \

where e = ±1 is chosen to make the determinant equal to 1.

By Theorem 1, we can determine whether a given substitution is in H(A,) or not.

It is also important, as in the cases q = 4 and 6, to know the form of the elements

of H(Ag). The following corollary will supply this to us:

Corollary 1: If V 6 H(A?), then V has one of the forms

y Xcz + d K ' -yz + \8 v '

where a, b, c, rf, a,/3,7 and 5 are all polynomials in A2 with rational integer coeffi-

cients.



Note that the result given in Corollary 1 coincides with the one given for q = 4

or 6, while when q = 3, it is clear.

Theorem 1 gives us a characterisation of the parabolic points of the Hecke groups.

These, are the transforms of oo under the elements of H(Ag). As the fixed point of

T, oo is a parabolic point. All other parabolic points are real. In fact a real point is

parabolic if and only if it is congruent to oo under a group element. We then have

Corollary 2: The point z = —D/C is a parabolic point if and only if — D/C

is a finite A-fraction.

In Chapter 0, we recall some definitions and results which will often be used in

the following chapters. The main ideas discussed there are Galois theory and field

extensions, projective groups, basic notions concerning Fuchsian groups, the permu-

tation method and Riemann-Hurwitz formula, the Reidemeister-Schreier method,

free groups and products, all in connection with the Hecke groups, and finally, cora-

mensurability of Hecke groups.

In the first chapter, we deal with two important problems: the determination

of the cuspset and the determination of the group theoretical structure of Hecke

groups. These two problems are related to each other in a way that one way of

solving them is to make use of fundamental regions. Therefore we begin by recalling

the results concerned with the fundamental region of the modular group and then

move on to the discussion of the fundamental region for Hecke groups in general.

To solve both problems we introduce some polynomials denoted by an which give

the relations between the images of the vertices of a fundamental region for H(Ag).

Chapter 2 is about the determination of the minimal polynomial of Xq over Q.

As we explained above, the first four values of A, are obtained for q = 3,4,5,6 as 1,

\ /2, (1 + \/E)/2, \ / 3 , and are rather nice algebraic numbers. However for q > 7,



it is not possible to obtain Xq that nicely. Therefore obtaining properties of Hecke

groups, involving Ag, will only be possible by using the minimal polynomial instead

of A,.

As it can be understood from its title, this thesis is concerned with the normal

subgroups of the Hecke groups H(Ag). Therefore we will try to use several methods

to determine these normal subgroups. One of them is to make use of regular map

theory. We recall a 1:1 correspondence, given by Jones and Singerman in [Jo-Si,1],

between the regular maps and normal subgroups of certain triangle groups including

Hecke groups H(Ag). By means of this correspondence, we will try to get information

about normal subgroups of H(Ag) from some well-known regular maps. We will see

some applications of this in Chapters 4 and 5.

In Chapter 4 we discuss the normal genus 0 subgroups of H(Ag). We determine

their total number for all q and also give a classification of them. It will be shown

that most of these subgroups have torsion. Therefore beginning with the normal

genus 0 subgroups having torsion, we will discuss all normal torsion subgroups of

H(A,). We will detemine their number in each case and give a classification of them.

Torsion-free normal subgroups of H(Ag) will also be discussed there.

Chapter 5 is concerned with the normal genus 1 subgroups of Hecke groups H(A,).

We shall determine the values of q for which H(Ag) has normal subgroups of genus 1.

We shall also determine the q such that H(Ag) has a torsion-free normal subgroup

of genus 1. All these will be done using the regular map theory established by Jones

and Singerman in [Jo-Si,1] and recalled in Chapter 3. As a nice application of this

theory, we are going to calculate the number of normal genus 1 subgroups of a given

index in H(Ag).

We have already mentioned some differences between odd and even q cases, q =

4 and 6 give two of the most important Hecke groups and they are both examples



of the even q situation. Therefore most properties of H(A9) for even q will be dis-

cussed in Chapters 8 and 9 where we deal with the normal subgroups of H(\/2) and

H(\/3). This leaves us the odd q case to consider, and this will be done in Chapter 6.

In Chapter 7 we discuss the principal congruence subgroups of Hecke groups.

In the modular group case, they have been discussed by Newman [Ne,6] and Me

Quillan [MQ,1]. It can be said that principal congruence subgroups are the most

important normal subgroups of the modular group F. Here we discuss them for q

= 4, 6 and q = p, a prime. We use [Ma,l] to determine the quotients of H(Aq) by

them and then we find their group theoretical structures. Also in this chapter, we

prove that H(Ag) has infinitely many normal subgroups of finite index.

In Chapters 8 and 9, we discuss normal subgroups of H(\/2) and H(\/3), and

make some generalisations to the even q case. The lists of normal subgroups of these

two important Hecke groups with small index are given at the end of this thesis.

Another important Hecke group is H(As). As 5 is prime, this group shows a lot of

similarities to the modular group. Some properties and normal subgroups of H(A5)

will have been discussed in the earlier chapters and they will be briefly recalled in

Chapter 10.

10



Chapter 0

PRELIMINARIES

0.0. INTRODUCTION

In this chapter we give some definitions and results about the normal subgroups

of Hecke groups H(Ag), which will be used often in this work. To do this we need

to recall some classical notions and results such as Galois fields, field extensions,

projective groups and Fuchsian groups.

0.1. GALOIS THEORY AND FIELD EXTENSIONS

Several times in this thesis we will need finite extensions of fields. Although

there are other kinds of field extensions, the ones we are going to use will usually be

simple extensions. Therefore we start by recalling the notion of simple extension.

Let us first recall the construction of the field C of complex numbers from the

field R of real numbers. The complex number i is a zero of the second degree monic

irreducible polynomial

f(x) = x2 + \ e R[x], (o.i)

n



and the elements of C are uniquely written in the form z = a + bi where a, b 6 R

and i2 = — 1. This is a simple extension of the field R to the field C by adding a

single element i which is not in R but is a root of a monic irreducible polynomial in

the polynomial ring R[x].

Similarly let F be a field. Let / be a monic irreducible polynomial of degree n

in F[x]. We can construct a simple extension F(u) of F in which u is a root of / . It

is a well-known result that every element v of F(u) has a unique representation in

the form

v = ao + axu + ... + an_xu
n-1 (0.2)

with a,- G F for i = 0,1, ..., n. — 1. In this case we say that u is algebraic of degree

n over F.

The existence of a. simple extension of a field is given by the following theorem:

Theorem 0.1: Let F be a field and / a monic irreducible element of F[x] of

degree n. Then there is a simple extension K = F(u) of F such that u is algebraic

over F with minimal polynomial / .

Proof: See [Fr,l].

One of the applications of simple extensions in our thesis will be cyclotomic ex-

tensions. If £ is a primitive n-th root of unity, i.e. a root of the cyclotomic equation

of degree n

C - 1 = 0, (0.3)

then by adding ( to the field Q of rationals, we will obtain the n-th cyclotomic

extension of Q.

12



In Chapter 2 we will try to determine the degree of the minimal polynomial of

Xq. To do this we shall need some definitions and results from Galois theory, such

as Galois group, normal extension, etc., which are recalled in the following:

Let F be a subfield of a field K.

If u,v € K are algebraic over F, then u and v are called conjugates over F if

the}' have the same minimal polynomial over F.

The extension K over F is said to be closed under conjugates if whenever F -<

K -< L, u € K, and v £ L is a conjugate of u over F, then v € K. K is closed

under conjugates if and only if whenever / is an irreducible polynomial in Ffx] hav-

ing any roots in K then it splits in K(see [Fr,l]).

K is said to be a normal extension of F if K is closed under conjugates.

The collection of all automorphisms of K leaving F fixed forms a group denoted

by G(K/F) . If K is a finite normal extension of F, then G(K/F) is called the

Galois group of K over F. We now have the following result which will be needed

in Chapter 2:

Theorem 0.2: The Galois group of the n-th. cyclotomic extension of Q has

¥>(??•) elements, where tp denotes the Euler function, and is isomorphic to the group

of units modulo n.

Proof: See [Fr,l; pp 472].

Corollary 0.1: The Galois group of the p-th cyclotomic extension of Q for a

prime p is of order p — 1.

13



0.2. PROJECTIVE GROUPS

It is known that for every prime power q = pn, there is, up to isomorphism, a

unique field of q elements, denoted by GF(q). This is the Galois field of q elements.

All finite fields are of this form.

Let now K be a field of order q = pn, i.e. K = GF(q). Then the general linear

group GL(2, K) is defined by

GL{2, K) = l\ c d I : a, b, c, d € K, ad - be ^ 0 > . (0.4)

This group acts on the 2-dimensional vector space K2 = K 0 K as a group of lin-

ear fractional transformations and it permutes the set PG(1,K) of 1-dimensional

subspaces of K2. The center of this group, denoted by Z(GL(2,'K)) consists of all

the scalar 2x2 matrices and it forms a normal subgroup of GZ,(2,K). By means of

this, we define the projective general, linear group PGL(2,K) as

PGL(2, K) = GL(2, K)/Z(GL(2, K)). (0.5)

The matrices of determinant 1 in GL(2,K) form a subgroup called the special

linear group

K) = { ^ J ) € G L ( 2 , K ) : a d - b c = l j , (0.6)

and the projective special, linear group is then

PSL(2, K) = SL(2, K)/Z(SL(2, K)). (0.7)

Here Z{SL(2,K)) is {± /} if p > 2 and {/} if p = 2. The order of PSL{2,K) is

q(q - l)(q + l) /2 if p > 2 and q(q - l)(q + 1) otherwise.

There is a natural homomorphism from 5X(2,K) onto PSL(2,K.) which takes

14



an element I , I in SL['2,K.) to a unique element, i.e. the coset ± , in
\ c d J \ •> J i y c a J

PSL(2,~K). Because of this we can represent an element of PSL(2,K) by either of

the two matrices in 5*1,(2, K) which induce it.

Up to now we have only considered the protective groups over finite fields. But

in general the four groups defined above, i.e. GL(2,K), PGL(2,K), SL(2,K) and

PSL(2, K), can be defined in case of K being an infinite field, by taking all entries of

the matrices or the induced linear fractional transformations from this infinite field.

The most interesting examples are PSL(2, R), PSL(2, C) and their correspondences

in the other three classes of projective groups.

It is also possible to define projective groups over rings with identity; e.g. PSL(2, Z).

We finally give a result which determines that for what values of a prime power

q, the projective special groups PSL(2.iq) are Hurwitz groups — groups of 84(g — 1)

automorphisms on a Riemann surface of genus g:

Theorem 0.3: The group PSL(2,q) is a Hurwitz group if

(i) 9 = ^

(ii) q — p = ±1 (modi),

(iii) q — p3, wherep ~ ±2, ±3 (modi)

and for no other values of q.

Proof: See [Ma,l].

15



0.3. FUCHSIAN GROUPS AND THEIR SUBGROUPS, PERMU-

TATION METHOD

By a Fuchsian group F we understand a finitely generated discrete subgroup of

PSL(2, R)— the group of conformal homeomorphisms of the upper half plane U.

It is known that every Fuchsian group has a presentation of the following form:

Generators: a1? !>i, . . . , ag, bg (hyperbolic),
xi, ..., xT (elliptic), . .
pi, . . . , pt (parabolic),
h\, ..., hu (hyperbolic boundary elements),

Relations: x™> = UUx [*iM UT
j=i *i n L i Pk UU hi = l-

We then say T has signature

(g; mi, ... ,m r; i; u); (0.9)

where mi, ... ,mr are integers > 2 and are called the periods of T.

We must note the following facts about this presentation: every elliptic element

of F is conjugate to a power of one of the Xj (1 < j < r), every parabolic element of

F is conjugate to a power of one of the pk (1 < k < t) and every hyperbolic boundary

element of F is conjugate to a power of one of the hi (1 < / < u). Moreover no

non-trivial power of one of the generators can be conjugate to a power of another

generator, (see, for a proof of these facts [Lh,2]).

Let us now recall the limit set L(T) for a Fuchsian group F. L{Y) is a subset of

the real line satisfying one of the following conditions:

(i) L(T) has at most two points,

16



(ii) L(T) = R,

(iii) L(T) is a perfect nowhere dense subset of R.

Groups of type (ii) are called groups of the first kind and groups of type (iii) of

the second kind. We shall mainly be interested in groups of type (ii).

For all normal subgroups of finite index of Hecke groups, u = 0, as they do not

have hyperbolic boundary elements. Let F be a group with signature (0.9) such that

u = 0. Define

fl(D=2g-2+ir(l-—)+t. (0.10)
, _ l > 7 7 1 , /

If F is of the first kind then /x(F) > 0. In this case 27r/z(F) is the hyperbolic

measure of a fundamental region for F. As we shall prove in Chapter 1, H(Ag) has

a signature (0; 2, q, co) and therefore, has a fundamental region of finite hyperbolic

area 2TT (1 — 1/2 — l/</). Let now Fi be a subgroup of F with finite index. Then

This formula is called the Riemann-Hurwitz formula and is probably the most

useful tool in the study and classification of Fuchsian groups and will be used very of-

ten in this thesis (If u = 0, (0.11) follows from the fact that 27r/z(F) is the hyperbolic

measure of a fundamental region. If u > 0, (/t(F) = co in this case), Maclachlan

proved this result in [Mc,l]).

The study of subgroups of Fuchsian groups is obviously quite related to this

work, and as a result of this we shall often use the following important result, which

will be called the permutation method, proved by Singerman [Si,2]:

Theorem 0.4: Let F^ be a Fuchsian group with signature (0.9). Then F2 con-
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tains a subgroup Fi of index /x with signature

(g1; n n , . . . ,n l p i , ... ,n r l , . . . ,n rp r; t'; u') (0.12)

if and only if

(a) there exists a finite permutation group G transitive on /x points, and an

epimorphism 0 : F2 —» G satisfying the following conditions:

(i) the permutation 0(z.,) has precisely />,• cycles of lengths less than rrij, the

lengths of these cycles being nij/riji, ... ,mj/ujPj;

(ii) if we denote the number of cycles in the permutation 0(7) by 6(7), then

t' = £ 6(Pk), u> = J2 «(*/) ; (o-i3)
h-\ 1=1

(b) A«(r,)//x(r2) = /1.

Proof: See [Si,2].

Recall that, in this thesis, we are concerned with the normal subgroups of the

Hecke groups H(Ag). Furthermore Hecke groups are. Fuchsian groups of the first

kind. Therefore supposing Fj <1 F2 and F-2 is of the first kind, we can now obtain

the following corollary for normal subgroups of the first kind Fuchsian groups. As

F2 is of the first kind, u = 0. It is sometimes convenient to consider the parabolic

elements as elliptic elements of infinite order. So we may write the signature (0.9)

of F2 in a new form

(</; mi, ... ,m r , m r+1, ... ,m r+ ,) (0.14)

where m r+i = ... = jnr+i = 00. Let now [F2 : Fi] = /x. Let ut- be the exponent of

X{ modulo F], i.e. the least integer such that .T"1 € Y\. Clearly V{ < 00 and i», \m{
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if mi < oo. Some of the x,-'s in F2 may have exponent m,- modulo Fx. Rearranging

the periods so that u,- = 77̂ •̂ only for 1 < i; < p and xi+p has exponent ni < vii+p

otherwise, wye find that (0.14) can be written as

(g; 771a, . . . , ? n p , rai&i, ...,nqkq) ( 0 . 1 5 )

where p -f- q = r + t and 1 < fct- < oo. We then deduce the following result given

by Singerman [Si.l]:

Corollary 0.2: Let F2 be given by signature (0.15) and Fx be a normal sub-

group of finite index /J. Then Fi has signature

(0.16)

where fct- means that the period ki occurs ///??; times. Here g\ can be found by

the Riemann-Hurwitz formula.

As Hecke groups H(A9) are of the first kind and as we deal mainly with nor-

mal subgroups, when we refer to the permutation method we shall actually refer to

Corollary 0.2 rather than Theorem 0.4.

We now want to define triangle groups as Hecke groups H(A9) can be thought of

as triangle groups with a parabolic generator.

Let l,m,n > 2 be integers. Consider the hyperbolic triangle with angles

TT/7, ?r/?7i, n/n.

Let <Ti, o~2i °"3 be the reflections on the sides of this triangle as shown in Figure

0.1. Let F* be the group generated by these three reflections:

F* = (au <r2, a3 | a\ = a] = a\ = {a2a3)
1 = {azax)

m = [a^f = l) .

(0.17)
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Put x = CT2<73 and y = <Jz<J\. Then x is a rotation around the vertex A by 2irjl

and y is a rotation around the vertex B by 2TT/m. Then xy is a rotation around

C by 2TT jn. These are all orientation preserving isometries. Therefore we obtain a

subgroup F of F* containing only orientation preserving isometries:

(0.18)

This subgroup has signature (0; l,m,n) as a Fuchsian group and usually denoted

by (l,m,n). It is called a triangle group. It has index two and is therefore a normal

subgroup of F*.

Figure 0.1.

As we shall prove in Chapter 1, the Hecke group H(A9) is a triangle group with

signature (0; 2,<7,oo). We also know that parabolic elements can be realized as

elliptic elements of infinite order. Of course in this case (.xt/)°° = 1 is void, and

therefore H(A7) is a triangle group such that

H(Xq) £ (2,7,oo) £

20
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which is isomorphic to the free product of two finite cyclic groups of order 2 and q

(an elementary proof of this result is given in section 1.3.). It is easy to see that

the above triangle turns into one of the two triangles in Figure 0.2 with angles

TT/2, 7r/g, TT/OO = 0.

•KJq

Figure 0.2.

0.4. SOME RELATIONS BETWEEN ^, n AND t

Let N be a normal subgroup of H(A9) with finite index fi. We define the parabolic

class number t of Ar as the number of conjugacy classes of maximal parabolic cyclic

subgroups and the level n of N as the least positive integer such that Tn € N. Then

it follows from Corollary 0.2 that

= n.t. (0.20)

The following result enables us to decide about inclusions between the normal

subgroups of Hecke groups:
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Lemma 0.1: Let Ni, iV2 be two normal subgroups of H(A9) with finite index

such that N\ D N2- Let N\ be of level n-i and have ti parabolic classes, 7V2 be of

level n2 and have t2 parabolic classes. Then

ni|n2 and t\\t2. (0.21)

Proof That n\\n2 is elementary group theory. The fact that t\\t2 follows from

Corollary 0.2.

Since Hecke groups are finitely generated, a subgroup of finite index will also be

finitely generated and to find these generators will be very important in our work.

To be able to do this we have the following method:

0.5. THE REIDEMEISTER-SCHREIER METHOD

The Reidemeister-Schreier method is a useful technique which will be used to

find the generators of subgroups of H(Ag) with finite index.

Let G be a finitely generated group with generators {</,•}. Let H be a subgroup

of G. The Reidemeister-Schreier method consists of firstly choosing a Schreier

transversal for H and then taking ordered products of the elements of this transver-

sal, generators and coset representatives, as described below:

A Schreier transversal £ is defined in [Jh,l] by Johnson. It consists of a set of

coset representatives satisfying the following conditions:

(i) The identity element / € £,

(ii) £ is closed under right cancellation; i.e. if </,-, .<7,2 glr € £, then gii .<7,-2 < 7 , - r _ ,

must be in £.



Let S be a Schreier transversal for N. Then a Schreier generator of N will have

the form

(An element of T,)x(A generator)x(Coset representative of preceeding product)*1

(0.22)

Example 0.1: We want to find out the generators of the commutator subgroup

H'(\/2) of H(A/2), which will be discussed later in this chapter (see below for the

definition). We shall see that H'(\/2) is a normal subgroup of H(\/2) with quotient

group isomorphic to the direct product of two cj'clic groups of orders two and four.

Therefore it has index 8 in H(\/2)- There is a homomorphism

0 : # ( N / 2 ) —• H(y/2)/H'(y/2) ^ C2 x C\. (0.23)

Recall that H(\/2) has a presentation < R, S : R2 - S'1 = / >. We choose a

Schreier transversal for H'(\/2) as

/, 5, S'2, S3, R, RS, RS2, RS3. (0.24)

Now we can form all possible products formulated in (0.22):

I.R.R-1 = I R.R.I-1 = /
I.S.S-1 = I R.S.(RS)-1 = I
S.R.(RS)-1 - SRS3R RS.R.S-1 = RSRS3

= I . .
1 = S2RS2R RS2.R.{S2)~X = RS2RS2 [ '

52.S'.(53)-1 = / RS2.S.(RS3)~1 = I
S3.R,(RS3)-1 = S3RSR RS3.R.(S3)-1 = RS3RS
S3.S.I~l = I RSZ.S.R-1 = I.

Now since (SRS3R)~1 = RSRS3, (S2RS2R)-1 = RS2RS2 and (S3RSR)~1 =

RS3RS, we have

\y/2) ^< RSRS3, RS2RS2, RS3RS >; (0.26)
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i.e. H'(V2) is the group generated by a = RSRS3, b = RS2RS2 and c = RS3RS.

In fact it is known that

<a,b,c : - >, (0.27)

that is, H'(\/2) is isomorphic to a free group of rank three.

0.6. COMMUTATOR SUBGROUPS, FREE GROUPS AND FREE

PRODUCTS

In this section we shall recall the commutator subgroup of a group in general

and discuss its basic properties. Then we shall apply these ideas to Hecke groups

to obtain more information about H'(A?)—the commutator subgroup of H(Ag). As

H(Ag) is isomorphic to the free product of two finite cyclic groups of orders two

and q, we shall often need information about free products. Therefore we recall

some results concerning them. As Hecke groups have infinitely many normal free

subgroups, we also discuss the free groups briefly in this chapter.

Let us now recall the commutator subgroup of a group G. The commutator

subgroup of G is denoted by G' or [G, G] and defined by

<\g,h) : g,h6G> (0.28)

where [g, h]:=ghg~Ah~A. We shall prefer the first notation.

G' is a normal subgroup of G (see [Al,l]). Therefore we can form the quotient

group G/G'. This group is very significant in the study of the abelian quotients of

a group:

Lemma 0.2: G/G' is the largest abelian quotient group of G. That is, if G/N

is any other abelian quotient of G, then
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G' <\ N <J G (0.29)

and there exists a homomorphism

0 : GjG' —> GIN. (0.30)

See [Al,l; pp 259] for a proof.

The second and the other commutator subgroups are defined succesively as the

commutator subgroup of the previous one, e.g.

G" :=< [a, b) : a, 6 € G' > . (0.31)

We now have:

Lemma 0.3: Let G be a group generated by k elements ttj, ..., a^. Let M be the

normal subgroup of G generated by all the commutators [a,, dj] of the generators.

Then

M = G'. (0.32)

Proof: Obviously G/M is abelian. But by Lemma 0.2, G/G' is the largest

abelian quotient group of G. As M < G", M = G'.

As we have noted before, H(Ag) has, as a free product, some free subgroups. To

be able to understand the structure of these subgroups and to get more information

about them we now recall some classical results:

Intuitively, a group is free if there is a set of generators with no relations between

them. We now make this precise as follows:
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Let X be a subset of a group F. Then F is a free group with basis X provided

the following holds: If <f> is any function from the set X into a group H, then there

exists a unique extension of <j> to a homomorphism <f>* from F to H. Here, we need

the uniqueness to make X generate F.

The cardinal of X will be called the rank of F. If \X\ — n, then the generated

free group will be denoted by Fn. Note that all bases of a free group necessarily

have the same cardinal.

It is easy to see that two free groups are isomorphic if and only if they have the

same rank (see [Ly-Sc,l; pp 1]).

A free group of rank 0 is trivial, and of rank 1 is infinite cyclic.

Finitely generated Fuchsian groups of the first kind containing parabolics are free

if and only if they have no elliptic element, e.g. a group of signature (0 ; oo^) =

The following is a well-known property of the subgroups of free groups:

Theorem 0.5: Every subgroup of a free group is again a free group.

It is also known that every group is a homomorphic image of a free group.

We can now determine the rank—i.e. the number of free generators—of a sub-

group of a free group with a given rank. For this we need:

Theorem 0.6: Let H be a subgroup of finite index /z in a free group G of finite

rank R. Then the rank ?• of H is also finite and given by

26



(0.33)

Proof: This easily follows from the Riemann-Hurwitz formula and from the fact

that the rank of a free group of genus g having t parabolic classes is equal to 2g-\-t — 1.

Let now G be a free normal subgroup of H(A9) of finite index ft. Let G have t

parabolic classes. We can use the Riemann-Hurwitz formula to find the signature

of G:

Theorem 0.7: Let G be a free normal subgroup of H(Ag) of finite index ft. Then

it has the signature

,(0 (0.34)

Proof: As G is free, it has the signature (g ; oo^). By the Riemann-Hurwitz

formula

2g - 2 + t = ft. f-2 + 1 - i + 1 - - + 1 j (0.35)

and therefore

g = 1-1 + ̂ .i-i. (0.36)
2 Aq

We now brief!)' discuss some properties of the free products. We shall omit the

definition as it is a. bit detailed and also well-known.

The free product of the groups Ai, i € / , is going to be denoted by

n * Ai- (°-37)



We have already noted that H(A9) is isomorphic to the free product of two finite

cyclic groups of order two and q. As we are studying the normal subgroups of the

Hecke groups, we need a result that gives the general character of the subgroups of

free products. This result is known as Kurosh subgroup theorem:

Theorem 0.8: (KUROSH SUBGROUP THEOREM) Let the group G be

the free product of subgroups Aa. We write this as

G = n * A<*. (0.38)
a

If H is a subgroup of G, then we have

where F is a free group and, for each /?, Bp is conjugate to a subgroup of some Aa.

Note that Yip • Bp can be empty and that F can be trivial. However if Yip * Bp

is not empty, then [G : F] is infinite; for, otherwise, some power of a non-identity

element of Yip » Bp would belong to F.

Proof: See [Ra.,2; pp36].

Let us now discuss the commutator subgroup of H(Ag).

We have the relations

R2 = S" = / , RS = SR (0.40)

in H(A?)/H'(A,). So

H(\q)/H'(Xq) * C2 x Cq (0.41)
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and hence = Ciq if q is odd. Therefore

| H(Xq) : H'{\,)\ = 2q. (0.42)

If q is even, (RS)q = I while if q is odd, (RS)2q = / . Therefore by Corollary

0.2, H'(Ag) has parabolic class number 2 if q is even and 1 if q is odd. The genus

can be computed by the Riemann-Hurwitz formula to give

Theorem 0.9:

; oo) if q is odd.

In particular, H'(A?) is a free group of rank q — 1.

We also have the following immediate result:

Corollary 0.3: The genus of the commutator subgroup of a Hecke group is

always positive.

The Reidemeister-Schreier method gives the generators of H'(Ag) as

a, = RSRSq-\ a2 = RS'2RSq~\ ..., a,_! = RS'^RS. (0.44)

By Theorem 0.6, a subgroup N of H'(\q) of finite index // has finite rank; in fact,

if r is the rank of N, then

r = l+n(q- 2) . (0.45)

The following result connects the commutator subgroup and the even subgroup

of H(Ag) when q is even:
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Theorem 0.10: Let q be even. Then the commutator subgroup H'(A,) of H(A9)

is a normal subgroup of the even subgroup He(Aq) with index q.

Proof: We have just seen that H'(A?) is a normal subgroup of H(Ag) with index

2q. The even subgroup He(Ag), having index 2 , is also normal in H(A9). Therefore

the required index is q.

Let now two elements A, B of H(Ag) be given. Then whatever A and B are, their

commutator [A, B] is always even. Hence for every pair of elements A,B of H(A,),

we have

[A,B] E He(Xq). (0.46)

That is,

H'(Xq) < He(Xg). (0.47)

We now have another result that gives the relation between the second commuta-

tor subgroup of Hecke groups and the group M defined in Lemma 0.3. We actually

show that these two subgroups are equivalent. We should recall, at this point, that

H'(A9) is of rank q — 1 and, let us say, generated by aa, ... ,og_i. Then we have

Theorem 0.11: Let M be the normal subgroup of H'(Ag) defined in Lemma 0.3

with k = q — 1; i.e. M is the normal subgroup containing all commutators of the

ai, ...,a9_!. Then

M = H"(Xq). (0.48)

Proof: Follows from Lemma 0.3.
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Let us now investigate the group theoretical structure of H"(Ag). We have seen

above that H'(A?) is a free normal subgroup of finite index, 2q, and of rank q — 1, of

H(A?). Therefore the second commutator subgroup H"(A?), as the commutator sub-

group of a free group, H'(A,j), is of infinite index in H'(Ag) and hence in H(A9). Hence

Theorem 0.12: H"(Ag) is a free normal subgroup of infinite rank in H(A9).

We also have

Theorem 0.13: H'(A?)/H"(Ag) is a free abelian group with free generators

a1H"{\q),...,aq-lH"{\q) (0.49)

where a,'s (1 < i< q — 1) are the generators of H'(A9) given by (0.47). Also

r(H'(Xq)/H"(Xq)) = r(H'(Xq)) = q - 1. (0.50)

0.7. COMMENSURABILITY OF THE HECKE GROUPS

In this section we discuss commensurability of the Hecke groups.

Two subgroups G, H of a group F are said to be directly commensurable if GC\ H

is of finite index in both G and H. More generally, G, H are said to be commensu-

rable in F if G and some conjugate of H in F are directly commensurable.

It is a known result that H(\/2) and H(\/3) are the only Hecke groups commen-

surable with the modular group F. A conjugate of H(\/2) and F have a common

subgroup, Fo(2), but there is no common normal subgroup with finite index in both

of them. To see this let us suppose there exists a normal subgroup iV in F and

H(\/2)M where H(V
/2)M denotes the conjugation by a matrix M G SL(2,R). Let
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r)(N) be the normalizer of W in PSL(2,R). H(>/2) contains the element SM of

order 4 and also SM $. F. But (̂A )̂ contains both F and SM. As (̂A )̂ is also a

Fuchsian group, this contradicts with the maximality of F (see [Be,l]).

Similarly there is no common normal subgroup of finite index in both F and

Note that the proof depends on the two facts: The maximality of F =

and discreteness of the normalizer T](N) of a normal subgroup N of F. This can be

extended to any two Hecke groups as these two facts remain true for all Hecke groups:

Theorem 0.14: Let q and r be two distinct integers > 3. Then the set of

normal subgroups of finite index in H(Ag) and the set of normal subgroups of finite

index in H(Ar) are disjoint.
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Chapter 1

SOME BASIC RESULTS
CONCERNING H(A9)

1.0. INTRODUCTION

As is well-known, fundamental region plays an important role in the geometrical

study of a group and its subgroups. Therefore, as our thesis is concerned with the

subgroups of the Ilecke groups, we shall have a great deal of interest in their funda-

mental regions.

In this chapter we first define a fundamental region of a group. Then we recall

some information about the fundamental region of the most interesting Hecke group

which is the modular group. This region is well-known and there has been a lot

of research related to it. E. Hecke asked the question that for what values of A,

the group H(A) defined in the introduction is discrete. In answering this question,

he proved that H(A) has a fundamental region if and only if A > 2 and real, or

1 < A < 2 and A = A, = 2cosn/q. Therefore H(A) is discrete only for these values

of A. In particular all H(A,) are discrete groups.
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After obtaining fundamental regions for Hecke groups H(A?), we shall deal with

two important problems: Firstly we shall try to determine the parabolic point set

(cuspset) of Hecke groups. Parabolic points are basically the images of infinity un-

der the group elements. In the literature there has been several attempts to find

this set, but no one has yet given a complete result. There are some results giving

partial answers, and they will be recalled here. We shall particularly deal with the

four important Hecke groups F, H(\/2), H(A5), H(\/3) and give the result in each

case.

We also calculate the vertices of the transforms of a specific fundamental re-

gion under the subgroup < S > generated by the elliptic generator S of order q

which will be used in the determination of the abstract group structure of Hecke

groups H(A?). Since infinity is one of the vertices of the original fundamental region

given by Hecke, its transforms under < S > form a class of parabolic points of H(Ag).

Our second main problem in this chapter will be the determination of the ab-

stract group structure of H(A9). Using a result of Macbeath, we shall prove that

H(A,) is isomorphic to the free product of two finite cyclic groups of orders two and

q. This result is well-known for the modular group where q = 3.

We begin by the discussion of fundamental region for Hecke groups:

1.1. A FUNDAMENTAL REGION FOR H(A,)

Definition 1.1: An open subset F of the upper half-plane U is a fundamental

region (domain) for the group G in U iff

(i) Each orbit G(z),z € U, meets F, the closure of F, at least once;

(ii) Each orbit G(z),z € U, meets F at most once.
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Obviously (i) and (ii) imply that

= U 9{F\
geG

(1.1)

and that

g(F) n F = 0 if (1.2)

Let us begin with the modular group P. A fundamental region for V is given by

F={zeU:\z\>h\Rez\<-\. (1.3)

-3/2 _ i -1/2 1/2 3/2

Figure 1.1. A fundamental region for the modular group
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This region is determined in many books, e.g. [Ra,2], [Fo,l]. See Figure 1.1. It has

three vertices in the upper half plane two of which are the fixed points of two elliptic

generators and the third one is the infinity which is the unique parabolic point in

this region.

Let us now discuss the situation in general for the other Hecke groups. (Of course

this discussion includes T as well). E. Hecke, when investigating the discreteness of

Hecke groups H(A), gave the following result (see [He,l]):

Theorem 1.1: When A > 2 and real, or when A = A9 = 2cosir/q, q 6 N, q >

3, the set

Fx = {zeU :\Rez\< A/2 , \z | > 1} (1.4)

is a fundamental region for the group H(A), and also F\ fails to be a fundamental

region for all other A > 0.

R. Evans gave an elementary proof of this fact in [Ev,l].

We therefore take a fundamental region for H(A?) as

FXq = [ z e U : \ R e z \ < ^ - : \ z \ > l] . (1.5)

It is well-known that fundamental region of a group is not unique. We have

already seen that F\q = F\ U F2 in Figure 1.2 is a fundamental region for H(Ag).

Actually a shaded region together with an unshaded one form a fundamental region

for H(A9). Therefore sometimes, for convenience, we shall take it as
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1 •,, K . i , i

= j z € W : _ _ . < i t e 0 < O , | , + - | > _ (1.6)

which is Fx U RF2.

The elliptic generator 5* has order q so that the q transforms of F'x = F\ U i?F2

form a pattern around the center point — C, = —e~x'Klq which is the fixed point of S.

In another words the transforms of F\ and RF2 under S form a pattern alternately.

-A, -2/A, -1 _A,/2 1 - A , \ - 1 \,/2 1 2/A, A,

Figure 1.2. A shaded and a white region together form a fundamental region for

H(A?)

1.2. DETERMINATION OF THE IMAGES OF VERTICES OF F(
A ,

AND PARABOLIC POINTS OF HECKE GROUPS

In this section we first try to find formulae giving the images of the vertices of F'x

under the subgroup < S >. We already know that a fundamental region for H(A?)
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has three vertices and that one of those is a parabolic point. We are specially inter-

ested in the parabolic points as the determination of them is still an open question

on Hecke groups. These images will also be used in proving the group theoretical

structure of Hecke groups later on in this chapter.

Let us now find the images of the vertices of F'x under the group < S >. It

is sufficient to find the images of the vertices of F2, since they coincide, in another

order, with the ones of F'x .

The region F-2 has vertices /, — £ and oo in the compactified upper half plane

U — U U {00} . Being the fixed point of 5, — £ is a vertex of every transform of F2

under the group < S >. Therefore we only need to calculate the images of i and

00. The latter ones will be real or 00 and called cusp (or parabolic) points and are

of great interest. They will be dealt with later on in this chapter.

After easy calculations we find the required images as follows:

OO

SF1

S3F1

S4F1

A2+l

-A.A2+t
A*-A2 + l

-A(A 2 - l ) 2 + t
A6-3A4+2A2 + 1

-A(A3-2A)2+i
A^_5A6 + 7A4-2A2+1

-A(A4-3A2 + l ) 2+i
Aio_7A8 + i6A6_13A'>+3A2 + l

-A(A6-4A3+3A)2+i
Ai2_gAio+29A*-4OA6+22A4-3A2 + l

1
A

A
A 2 - l

A 2 - l
A3-2A

A3-2A
A4-3A2+1

A4-3A2 + 1
A5-4A3+3A

(1.7)

and in general
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and

CH/..N _ «n-l(A)

( L 9 )

where, for 1 < n < q — 1, cvn 's are the polynomials given by the reduction formulae

= c*o(A) = 0

a,(A) = 1 (1.10)

«n(A) = A.orn_i(A) - an_2(A) ; n > 2.

It is clear that

«2(A) = A

Q3(X) = A 2 - l

a4(A) = A 3 -2A (1.11)

as(A) = A4 - 3A2 + 1

oe(A) = A 5 - 4 A 3 + 3A.

Also deg orn(A) = n — 1, and an is not always irreducible.

We now discuss an open problem on Hecke groups which is the determination

of all parabolic (cusp) points of H(A7), i.e. determination of the " cuspset " Sq of
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H(A,) given by

(1.12)

which is the orbit of oo on RU{oo}. There are several results answering this problem

for particular values of q. Before recalling them, we discuss this problem for the four

important Hecke groups:

To find the parabolic points of any particular Hecke group, one needs to know

the form of the elements of this Hecke group. This is because all parabolic points,

being images of infinity under group elements, are quotients of the first and third

coefficients of the elements of H(Ag).

We have seen in earlier chapters that the most interesting and important Hecke

group is the modular group T = H(A3). We determined the underlying field for this

group as Q. Therefore all coefficients of the elements of T are rational integers. This

implies that the parabolic points of T are just rational numbers and S3 is equal to

Q U 00.

Next two interesting Hecke groups are obtained for q = 4 and 6. For these

two groups the underlying fields were found as Q(\/2) and Q(\/3). Recall that

the elements of H(yfm), m = 2 or 3, have been classified as odd and even ones in

the Introduction. An easy calculation shows that the parabolic points of these two

groups are of the form ^ ^ for integers a and b. This implies that the cuspset Sim

is a subset of Q(y^n) consisting of ^ ^ with a, b G Z, and of 00.

Another interesing Hecke group is H(A5). Because of the identity

A! = A5 + 1, (1.13)
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the underlying field is again Q(A5). Rosen, in [Ro,3], showed that the parabolic

points, as finite A-fractions, are the quotients of integers in the field Q(A). A typi-

cal one is denoted by ajb where a — ci\ -\- CZ2A and b = bi -\- 62A. Rosen also showed

that, in this case, the units A"1 are all parabolic points. Wolfart, [Wo,l], proved that

the only possible values of q such that all the elements of the field Q(A) are cusps

are 3 and 5.

We can now recall some other results concerning the parabolic points of Hecke

groups in general. One of the most significant results on this topic was proven by

Leutbecher [Le,2]: If g = 3,4, 5, 6, 8,10 or 12 then

S, = A,.Q(A*)U{oo}. (1.14)

Borho and Rosenberger [Bo-Ro,l] proved that, for odd q, (1.14) is only valid

when q = 2" + 1. On the other hand it can only be true when the field Q(A^) has

class number 1.

Let us now denote, by A, the ring of algebraic integers in Q(Aq) and let

A, =ADQ(Xl). (1.15)

We have seen that every M G H(A9) can be written as ' q ,. I or as . ;
9

\ C d\q I y CAq Cl

with a,b,c,d G Z[A ]̂ C Aj, and it is certain that

Sq CA,.Q(Aj)°u{oo}, (1.16)
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where Q(Aq)° denotes the subset of Q(Aq), whose elements are either a\q/c or a/c\q

with a,c£ Ai, (aXq,c) = 1 and (a,cAg) = 1 in A, respectively.

By means of Borho and Rosenberger's method, Wolfart, [Wo,l], proved that

(1.14) can be written in an extended form by adding the cases q = 9,18,20 and 24:

Theorem 1.2: If the cuspset Sq of the Hecke group H(Ag) has the form

Sq = A,.Q(Aj)° U {cx>} (1.17)

then necessarily q = 3,4,5,6,8,9,10,12,18,20 or 24.

By (1.9) we have an infinite class of parabolic points in general for any Hecke

group H(A9). In fact applying R to this class gives another class of parabolic points

given by

(1.18)

The other parabolic points are the transforms of those already found, under the

elements of H(A9). Therefore the polynomials cv,,(A) play a very important role in

determining the parabolic, points of H(Ag).
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1.3. H(A,) ^ C2 • Cq

We have already mentioned that H(A?) is isomorphic to the free product of two

finite cyclic groups of order 2 and order q. We now give an elementary proof of this

fact using a result of Macbeath, [Ma, 2]. First we have:

Definition 1.2: Let [G, X] be a topological transformation group and let P C

X. If for <7i,<?2 € G, #i ̂  g-2-, giP C) g2P = ®, then P is called a G-packing.

Equivalently, if for 1 ̂  g £ G, </P fl P = 0 then P is a G-packing.

If P is a G-packing, then it contains at most one element from each orbit.

Theorem 1.3: The Hecke group H(A?), q > 3, q G N , is isomorphic to the free

product of two finite cyclic groups of orders 2 and q\ i.e.

H{\q)^C2*Cq. (1.19)

The proof of Theorem 1.3 depends on the following lemma:

Lemma 1.1: Let H and K be two subgroups of a transformation group [G, A'].

If P is an //-packing, Q is a A'-packing, A = < H,K > - the group generated by

the generators of / / and K- and P U Q - X, P n Q ̂  0, then

A = H*K. (1.20)

Also P C\ Q is an /1-packing.
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Proof: See [Ma,2].

We are now in a position to prove Theorem 1.3. Let H =< R >= C2 and

K =< S >= Cg. Then H and K are subgroups of H(Ag). Let us now try to find

packings P and Q for H and K, respectively, such that the conditions of Lemma

1.1 are satisfied:

Since R(z) = -l/z = - s / | ~ | 2 , it is clear that

Sign (ReR(z)) = -Sign (Re z), (1.21)

and that the set

P = {z e U : Re z < 0} (1.22)

is an //-packing. Now consider the set

f A
= <~ £U : Rez> —f, (1.23)

The elliptic element S(z) = —l/(z + Xq) can be expressed as a composition of

simpler mappings as follows:

(i) Ti(z) — rqj = 4, reflection in the unit circle,
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(ii) T2(z) = —z, reflection in the line Re z = 0,

(iii) T(z) = z + A7, translation through A,.

Then obviously S(z) = TxT2T{z).

-V2

Figure 1.3. The region Q

Q has the vertices (, 0 and oo. Now applying T to Q we obtain a translation of

Q with vertices £ + A7, A, and oo. Applying T2 to TQ we obtain a reflection of TQ

with vertices (, —Xq and oo. Finally applying T\ to T2TQ we obtain a reflection of

T2TQ which is SQ with vertices (, —I/A, and 0.

If we apply T, T-j and T\ respectively, this time, to SQ, the final region we obtain

will be S2Q with the vertices £, A,/(I — A )̂ and —1/A?. Repeating this process

another q — 3 times, we obtain the regions 53Q, S4Q, ..., S<t~1Q. Since they do not

45



overlap each other, Q is a A'-packing.

We have already found the vertices of the transforms of Q under the group < S >

in (1.8) and in (1.9). Of course one of the vertices, (,*, is the fixed point under this

group. Therefore the transform SnQ, 1 < n < q — 1, will have vertices (, Sn(oo)

and 5n+1(oo).

Since we now have an //-packing and a A'-packing we can apply Lemma. 1.1.

Then the group H(Ag) = < H,K > is isomorphic to the free product of its sub-

groups H and A', i.e. H(Ag) = C2 + Cq. Also

PC\Q = [z
(1.24)

= F(

is an H(A9)-packing.
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Chapter 2

THE MINIMAL POLYNOMIAL OF Xq

2.0. INTRODUCTION

For the first four Hecke groups T, H(V5), H(A5) and H(\/3), we can find the

minimal polynomial of \q over Q as A3 — 1, \\ — 2, A§ — A5 — 1 and A| — 3, re-

spectively. However, for q > 7, the algebraic number A, = 2cosft/q is a root of a

minimal polynomial of degree > 3. Therefore it is not possible to determine Xq for

q > 7 as nicely as in the first four cases. For this reason we shall be interested in

the minimal polynomial of A, instead of A, itself.

In Chapter 7, we shall discuss important kind of normal subgroups, the prin-

cipal congruence subgroups, of H(A9). Using results given in [Ma,l], we shall find

quotients of H(A9) by these subgroups. There, we will need to know whether the

minimal polynomial of Xq is congruent to 0 modulo p, for prime p. Therefore we will

need to know the constant term of it modulo p. Here we will determine the values

of p and q satisfying this condition.

In this chapter we prove, using some results from Galois theory given in Chapter

0, that the degree of the minimal polynomial of A, is <f(2q)/2 where ip denotes the
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Euler function. Then we find formulae for the minimal polynomial in odd and even

q cases. This will be done using the Chebycheff polynomials and [Bn,l]. Our final

problem in this chapter is the determination of the constant term of these minimal

polynomials. This will also be done separetely for odd and even q. We shall see that

both problems are easier to solve when q is odd.

In Appendix 1, we give lists of all polynomials we use here to calculate the min-

imal polynomial, and also list of the minimal polynomials of Xq for q < 50.

Let us begin by recalling the Chebycheff polynomials:

For n G N, the n-th Chebycheff polynomial Tn(x) is defined by

Tn(x) := cos(ncos~1x), x , 0 € R, |x| < 1, (2-1)

or

Tn(cosG) := cos(nQ), 0 <= R. (2.2)

We drop the conditions on 0 and x as they always apply.

The first few T ŝ are

T0(x) = 1
Ti(x) = x
T2(x) = 2x2 -1 (2.3)
T3(x) = 4x3 - 3x
T4(x) = 8x4-Sx2 + \.

We have the following well-known recurrence formula for Tn:

Lemma 2.1: Let n 6 N. Then

Tn+l{x) = 2xTn(x) - Tn.i(x). (2.4)
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Here we shall also use a normalization of the ChebychefF polynomials, denoted

by An. This normalization is given by

An(x) = 2Tn{x/2)
= 2cos(ncos-1(x/2)) (2.5)
= 2cosnQ

where x = Ax{x) = 2cosQ, x,Q e R, |x| < 2, n e N .

For our purposes, we take 0 = n/q, q G N, q > 3. Then x = \g and yln(a;) is

a polynomial of A,. In fact

An(\q) = 2cos— = C + C"n. (2.6)

where £ = etV/9.

An 's are given explicitly by H. Weber in [We,l] as

x
(2.7)

where [a] denotes the greatest integer less than or equal to a. Therefore

— na;""2 + n("~3) x
n~4 — "(n-4)(n~5) xn-& i

deg(An(x)) = n. (2.8)

We have the following recurrence formulae for An :

Lemma 2.2: Let n € N. Then

(x) -2 i4 0 (x) , (2.9)

- A n_i( i ) , n > l , (2.10)

where, for consistency, we put AQ(X) = 1.
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Hence the first few An 's are

A2(x) = x2 - 2
A3(x) = x3 - 3x
AA(x) = x4 - 4x2 + 2
A5(x) — x5 — 5x3 + 5x.

Then the inverse relations, giving powers of x in terms of A'ns, are

1 = A0(x)
x =

X2 =

X3 =

X4 =

X5 =

X6 =

Ai(x)
A2(x) + 2A0{x)
A3(x) + 3A1(x)
A4(x) + 4A2(x) + 6A0(x)
As{x) + 5A3(x) + 10Ai(x)
Ae(x) + 6A4(x) + 15A2(x) + 20v40(x)

and in general

[n/2]

fc=O

n An. 2k-

It is easy to see that

A2n

A3n

= Al-2
= Al-ZAr, =

Akn = AkoAn

A2oAn,
A3oAn,

fc,n > 1

and in general

(2.11)

(2.12)

(2.13)

(2.14)

Ami...mn = Amio(Am2o(...o(Amn)))

where mt- > 1, (1 < i < n). Also

(2.15)

AnoAk = AkoAn

and

(2.16)

Amo(AnoAk) = (AmoAn)oAk (2.17)
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for every m, n, k > 1. Furthermore

AaoAfc = AkoAr = Ak (2.18)

for each k > 1. Hence we have

Theorem 2.1: The set of A^s, n > 1, forms a commutative semigroup with the

unit element A\ under the composition of functions.

2.1. THE DEGREE OF THE MINIMAL POLYNOMIAL OF A,

NOTATION: We denote the minimal polynomial of A, by P*.

We now want to determine the degree of P* Let

(' = e2vi/n = cos(27r/n) + isin(2ir/n). (2.19)

Then

C + i = 2cos(2x/n). (2.20)

Now let K be the splitting field of xn — 1 over Q. Then by Theorem 0.2,

[ K : Q ] = V ( n ) . (2.21)

If a € G(K/Q) and <r((') = (/r, then

But for 1 < r < n, we have 2cos(2irr/n) = 2cos(2ir/n) only when r — n — 1. Thus

the only elements of C(K/Q) fixing (' + 77 are the identity automorphism and the

automorphism r with

r(C') = C ' - 1 = £ • (2-23)
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This shows that the subgroup of G(K/Q) leaving Q(£' + 4) fixed is of order two,

so by Galois theory

[Q(C + £ ) = Q] = ̂ - (2-24)

Suppose that n is even and put q = n/2. Then

C + - = 2cosTt/q = A,, (2.25)

and hence by (2.24)

[Q(C + I) : q] = ̂ M , (2.26)
i.e.

: Q] = r i p i . (2.27)

Hence we have the following result:

Theorem 2.2: Let ip denote the Euler function. Then

(2.28)

Corollary 2.1: We have

^p; = {vi.9i2 i'!!!!id: <2.»)
Proof: Let first q be odd. Then

degP; = 2

1 ^(9) ]f Q 1S even.

2

2 •
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Let secondly q > 4 be even. Then q can be written as

q = 2m.k (2.30)

where k is an odd number. Now

2m-1.cp(k)

2.2. THE MINIMAL POLYNOMIAL OF A<7

In this section we give formulae for P* in odd and even q cases. We use a formula

given in [Bn,l].

NOTATION: Let rp2q(x) denote the minimal polynomial of x = cosn/q over Q.

Then ip2q(x) is of degree tp(2q)/2 by Theorem 2.2.

As the minimal polynomials are monic we have the relation

; (2.31)

between the two minimal polynomials.

We now want to find the minimal polynomial P*(x) of Xq in the light of this

information.

First let q be odd. Then by [Bn,l]

Tq+1(x) - Tq.,{x) = 2« n M*) (2-32)
d\7q
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as 2q is even and

^ n rj)d{x) (2.33)
2 2 d\q

as q is odd. These can easily be proved by showing that both sides of each of them

have the same leading coeefficients, same degrees and same roots. Hence

a|2g
d^2g
d even

Therefore

a even

Now by (2.31)

p*(x) = 2 ^ 1 - ^ rg+1(x/2) r?_x(x/2)

<f euen

Finally using (2.5), we obtain the minimal polynomial of \g, for odd q, as

P*(x) = o*1^?^ A?+1(x) - A^jx)
9 1 ; "n u ^ / m ^ i x ) A ( x ) y {- ]

d even

With a little more effort we can reduce this equation to a simpler form. Recall

that, by (2.14)

Aq+1(x) = Al^ - 2 (2.38)
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and similarly

A,_a(a:) = A ^ - 2. (2.39)

Therefore

4 , + i ( z ) - i4,_i(x) = i 4 | « - 2 - A * , + 2

- A?" V

Then

— -rlq-l •
2

V (2-40)

(,i: £( ,
2

Hence we have

Theorem 2.3: Let 5 be odd. Then the minimal polynomial P*(x) of Xq is given

by

(2.42)

d even

Example 2.1: (i) Let q = 3. Then by (2.42) we have

(ii) Let <7 = 9. Then similarly

- ^ • W(*/2) (2.43)
= X — 1 .

— 9 - 2 >U(:c) + >U(g)
~ Z -V2W2).v6(x/2) (244)
= x 3 - 3x - 1. V y

Secondly let q be even. Again by [Bn,l], we have

r,+1(x) - r,_a(x) = 2* TT M*) (2-45)
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as 2q is even and

§n ) (2.46)
d\q

as q is even. Then

r f ( x ) r C x ) T l M * ) ' l j

Therefore

d\2q *W
( }

Proceeding similarly to the case of odd q, we get

Theorem 2.4: Let q be even. Then the minimal polynomial Pg(x) of \q is given

by

"n

Conjecture: If q = 2a°.k, k G N, odd, then

) A C x ) ) - l

Corollary 2.2:

=

Corollary 2.3:

PLnlx) = 2-pn~\ , T + / w ~ A*P"-1(X' - . (2.52)
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We now find the roots of the minimal polynomial P*(x):

Theorem 2.5: The roots of P*{x) are 2cos— with (h,q) = 1, h odd and

1 < h < q- 1.

Proof: Let n = 2q. We proved that P*(x) has </?(n)/2 roots. Let /i £ N such

that (/i,n) = 1 and let a be an automorphism of Q(C) over Q such that

cr(C) = C\ (2.53)

where ( is the primitive n-th root of unity, i.e. £ = cos— + i.sin—. Then

<j(2cos—) = <r(cos— + i.sin— + cos— - i.sin—)

-sk^ r-k (2-54)

Therefore

= 0

since 2cos^ = A, is a root of P*(x) = 0 over Q. So 2cos^ is a root of P*(x) = 0

over Q.

Now the values of 2COS^L a r e distinct for h 6 N such that (h,n) = 1 and

h < q, since

57



0 < 2JL < H ^ < 2-Il = * £ = £ = „. (2.56)
n n n n

Also

(h,n) = 1 <=> (h,n-h) = l. (2.57)

Moreover (n,q) ^ 1. Finally by the definition of </?(n), there are y>{n) values

of h such that (h,n) — 1 and h < n. So from the above statements, there are

cp(n)/2 values of h 6 N such that (h,n) = 1 and h < q. That is, there are <p(n)/2

values of 2cos^^- for h £ N such that (h,n) = 1 and h < q. That is, there are

f(n)/2 values of 2 c o s ^ for /i € N such that (/i,<?) = 1, h odd and fo < q. As

deg P*(x) = c/?(n)/2, the proof follows.

2.3. THE CONSTANT TERM OF P;(x)

In Chapter 7 we will need to know the constant term of the minimal polynomial.

In this section we calculate this term for all values of q.

Let c denote the constant term of the minimal polynomial P*(x) of Ag, i.e.

c = P;(0). (2.58)

We have determined the roots of Pg(x) in Theorem 2.5. Being the constant term,

c is equal to the product of all roots of P*(x):

c = I] 2cos—. (2.59)
q

{h,q) = l
h odd

Therefore we need to calculate the product on the right hand side of (2.59). To do

this we need a result given in [Ke-Yu,l]:
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Lemma 2.3:
7 - 1 1

2sin(— + 0) = 2sinqQ. (2.60)
1

We now want to obtain a similar formula for cosine. By replacing 0 by ^ — 0

we get

?-i L

JJ 2cos(— - 0) = 2sinq(- - 0) (2.61)
h=o 9 2

Let now // denote the Mobius function defined by

{ 0 if n is not square-free
1 ifra = l (2.62)

(—l)fc if n has k distinct prime factors,
for n € N. It is known that

^ , ,> f 0 if n > 1 , .
E Kd) = i 1 ifn = 1 (2.63)
d\n v

Using this last fact we obtain

= JZlJo In (2cos(!f - 0)) Erf|(M

fc ^ - 0))

f (f - 0)) by Lemma 2.3

Therefore

9 - 1 ,

JJ 2co5(— - 0) = [ I (5»"d(- - 0))"(«/rf). (2.65)

o q d\*
(h,q) =
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Finally, as (0, q) =£ 1, we can write (2.65) as

2cos(
h = 1

Note that if <? is even then

d\q

(2.66)

2cos(^.) = n = c (2.67)

h odd

while if g is odd then

9 - 1n

as cos{h — i)- = — cos—. Also note that

hir.
= c

,7T
sind( 0

cosdQ if d = 1 modi
sindQ \( d = Imodi

—cosdQ \{ d = 3 mod A
—sindO if d = 4 mod 4:

(2.68)

(2.69)

To compute c we will let 0 —> 0 in (2.66). If d is odd, then «'n(f(f — 0 ) —> ±1

as 0 —> 0, by (2.69). So we are only concerned with even d. Indeed, if q is odd then

the left hand side at 0 = 0 is equal to ± 1 . Therefore we have

Theorem 2.6: Let q be odd. Then

(2.70)

Proof: It follows from (2.68) and (2.69).
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Let us now investigate the case of even q. As (h,q) = 1, h must be odd. So by

a similar discussion we get

Theorem 2.7: Let q be even. Then

c = Urn I I (««<*£ - Q)Y{q/d)- (2.71)

Note that by (2.69), the right hand side of (2.71) becomes a product of ±(co5c?0):tl's

and ±(smd0)± 1 's . Above we saw that we can omit the former ones as they tend

to ±1 as 0 tends to 0. Now as Yld\q A*(̂ ) = 0? there are equal numbers of latter

kind factors in the numerator and denominator, i.e. if there is a factor sindQ in the

numerator, then there is a factor sind'Q in the denominator. Then using the fact

that

sinkQ k . „ .
hm ——^ = - , (2.72)
e^o sinlQ I v

we can calculate c.

In fact the calculations show that there are three possibilities:

(i) Let q = 2a°, a0 > 2. Then the only divisors of q such that n(q/d) ^ 0 are

d = 2ao and 2ao~1. Therefore

c - hme-o ,,-B2«o-i(f-e)

2 ifao>2 (2.73)
-2 if a0 = 2.

(ii) Secondly let q — 2pa, a > 1, p odd prime. Then the only divisors of q such

that n(q/d) / 0 are d = 2pa ,2pa~l ,pa and p0"1. Therefore
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_ , . sin2pa(§-e).sinpa-1 ( f-8)
c — lime-^o 5tnp«(s-e).»tn2p«-i(f-e)

»-te (2-74)

= e.p

where

f 1 if p = Imod4 ,
\ -1 if p = - I m o d 4 l\ if p = -

(iii) Let 9 be different from above. Then q can be written as

q = 2a°Pr...plk (2.76)

where p,- are distinct odd primes and at- > 1, 0 < i < k.

Here we consider the first two cases k — 1 and 2. The proof for k > 3 is similar,

but rather more complicated.

Let k = 1, i.e. let 9 = 2a°.p"1. We have already discussed the case ao =

1. Let a0 > 1. Then the only divisors d of q with fi(q/d) ^ 0 are d =

?1, 2a°~Vr, 2C>?1~1 and 2a°-1pi1"1- Therefore

_
- i i m e - . o - 2 a o i - i ( f e ) - 2 a o - i - i ( f e ) (2 .77)

= 1.

Now let & = 2, i.e. let g = 2a°.p"1 .p%2. Similarly all divisors d of q such that

Oared = 2°°?^??, ^''PVP?, 2°"'p?1-1p?2,

r~1P22"1- Therefore

c = 1. (2.78)

In general, when A; > 3, the product of all coefficients d in the factors sind(?- — 0)

in the numerator is equal to the product of all coefficients e in the factors sine(^-Q)
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in the denominator implying c = 1. But the proof, as we explained above, is omitted.
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Chapter 3

NORMAL SUBGROUPS OF H(Ag) AND
REGULAR MAPS

3.0. INTRODUCTION

Normal subgroups of the modular group F have been studied by many people

and classification theorems are given ([Gr,l], [MQ,l], [Ne,2], [Ne,4], [Ne,6]). Our

aim in this chapter is to generalise these results to all Hecke groups and find some

normal subgroups of them. One way of doing this is to use regular map theory.

Although the study of maps began long ago, they have been widely studied in

the last hundred years by, amongst others, Tietze [Ti,l], Brahana [Bh,l], Threlfall

[Th,l], Heffter [Hf,l], Coxeter and Moser [Co-Mo,l], Edmond [Ed-Ew-Ku,l], Sherk

[Sh,l], [Sh,2], and Jones and Singerman [Jo-Si,2 ].

In this chapter we begin by recalling some definitions and results about the

theory of maps, mostly from [Jo-Si, 1]. We then discuss the relations between the

subgroups of H(A?) and maps. Specially, as all regular maps with genus g < 7 are

known, we can obtain a lot of information about the normal subgroups of Hecke
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groups with g < 7, using these regular maps.

3.1. DEFINITIONS AND APPLICATION TO HECKE GROUPS

We define a map Ai to be an embedding (without crossings) of a finite connected

graph Q into a compact connected surface S without boundary such that S - Q is a

union of 2-cells. We are not going to be interested here in the non-orientable case,

so we will assume that S is orientable as well.

The dual map of KA has the same underlying surface S while the vertices and

face centers are interchanged.

If m. and n are the l.c.m. of the valencies of the faces and vertices, respectively,

we then say M. has type {m,n}. Clearly the dual map has type {77,777}.

We define a dart of M. to be a pair consisting of an edge and an incident vertex,

and draw it as an arrow on the edge towards the vertex. The set of darts of Ai will

be denoted bv fi.

a

Figure 3.1. A dart a

The study of maps is closely related to the study of subgroups of certain tri-

angle groups. Jones and Singerman showed that there is a natural correspondence

between maps and Schreier coset graphs for the subgroups of the triangle groups

(2,?7?, 77). We can illustrate this correspondence in the following way:
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Let H be a subgroup of H(Ag) with finite index JX. Then there is a natural ho-

momorphism from H(A9) into the symmetric group 5M by letting H(Aq) permute the

right cosets of H by right multiplication. This takes the elliptic element R of order 2

to a product of 1-cycles and 2-cycles, such that the sum of these lengths is equal to

the index //. Geometrically each cycle corresponds to an edge of the associated map

(naturally, a 1-cycle corresponds to a free edge, having only one dart, and a 2-cycle

corresponds to an ordinary edge so that the two darts of this edge are represented

by the two elements in this cycle).

The elliptic generator S of order q goes to a. product of r cycles of lengths <fr, ... qT

where qi\q, 1 < i < r, and again the sum of these lengths is equal to ft. Here each

cycle corresponds to a vertex in the following way: If cr,- is a cycle of length g,-, then

there is a vertex t>{ of the associated map with valency §,-. Also each dart at this

vertex is represented by an element in a,-. 5' permutes the darts around each vertex

following an anticlockwise orientation.

Finally the parabolic element T goes to a product of s cycles of lengths <i, ..., t3

with the sum equal to /.t. Here each cycle corresponds to a face of the map and T

permutes the darts around each face.

The permutation group 5M mentioned above is transitive on [i points where each

point corresponds to a dart. In this way we obtain a map of type {m,n} where m is

the l.c.m. of the lengths of the cycles of 5 and n is the l.c.m. of the lengths of the

cycles of T.

Similarly we can choose the cycles of S to correspond to the faces and the cycles

of T to the vertices and we obtain the dual map {n,m}, denned above, which has

the same number of edges but with numbers of vertices and faces interchanged.

We can illustrate this correspondence in the following example:
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Example 3.1: Let q = 6 and let / / be the subgroup given by the permutation

representation

R
S
T

> (12)(3 4)(5 6)(7 8)(9 ) ( ) (
> (13 5 7 9 11)(2 4 8)(6 12)(10)
> (1 4 5 12 6 7 2 3 8 9 10 11).

By the Riemann-Hurwitz formula H has the signature

(3.1)

(1; 2,2,2,3,6,oo) (3.2)

and therefore is a map on a torus. To find its type, we must calculate the l.c.m.'s

of the lengths of the cycles of S and T. These are 6 and 12, respectively, and there-

fore it is of type {6,12}. To draw it, we must consider the cycles given for R, S

and T. For example, there are five 2-cycles in the permutation representation of i?,

each corresponding to an ordinary edge, and there are two 1-cycles corresponding

to two free edges represented by 11 and 12. In the representation of 5, the cycle

(2 4 8) means that there are three darts represented by 2, 4 and 8 towards a ver-

tex of the map. Similarly there are three other vertices of the map with valencies

1, 2 and 6. Also as we have only one cycle for T1, the map is one faced. See figure 3.2.

Figure 3.2. A map of type {6,12} on a torus
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Conversely given a map M of type {???., n} with m\q, we can find a permuta-

tion representation of H(Aq) by letting R permute the two darts of an edge and S

permute the darts around the vertices. Now if we take H to be the stabilizer of a

dart then H is a subgroup of index /* in H(A,). Therefore to a given map we can

associate a subgroup.

When the subgroup is normal, the situation is simpler. If we consider the per-

mutation representation of this subgroup, then each of i?, 5" and T has cycles of

equal lengths, those being 2 (or 1 in exceptional cases-see below), m and n, re-

spectively, where m\q: i.e. R goes to /z/2 2-cycles, S goes to fi/m ?n-cycles and T

goes to fi/n ??.-cycles. Here the number n will correspond to the level of the normal

subgroup. Clearly, j.i/n = t is the number of the faces of the regular map. Jones

and Singerman, in [Jo-Si,l], proved the existence of a natural 1:1 correspondence

between normal subgroups and regular maps. For example, in Chapter 0, we have

seen that H(A,)/H'(A,) £ C2 x Cq. Clearly the relations R? = Sq = I are satisfied

and also if q is even (RS)q = / while if q is odd, (RS)2q = / . Therefore the regu-

lar maps corresponding to the commutator subgroup H'(A?) are of type {q,q} and

{q,'2q}, respectively.

We define an automorphism of AA to be an orientation preserving homeomor-

phism of S preserving the incidence of the darts of M. We identify two automor-

phisms if they have the same effect on the darts. The automorphisms of M form a

group AxdM. called the automorphism group of M.. We shall see the importance of

this group when studying properties like regularity, etc. of maps.

A map M. is called quasi-regular if every vertex has the same valency, every face

has the same valency, and either it has no free edges (an edge with only one dart)

or all its edges are free. The only ones of the latter kind are called star maps and

consist of a single vertex on the sphere surrounded by free edges towards it (Figure

3.3). Star maps lie on the sphere and correspond to the case where R maps to a
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product of 1-cycles.

Figure 3.3. A star map

We call a map M. regular if Autj\4 is transitive on fi - the set of darts. Tran-

sitivity implies that from every vertex, the map looks the same. Obviously every

regular map is also quasi-regular. The converse is not always true. However, on the

sphere, every quasi-regular map is also regular (see [Jo-Si, 1]). Note that even star

maps are regular.

Ever}' finite map of type {???,??} can be finitely covered by a regular map of the

same type, and hence, is the quotient of this regular map by a group of automor-

phisms.

Regularity is an important property of maps. Jones and Singerman showed the

existence of a 1:1 correspondence between regular maps and normal subgroups of cer-

tain triangle groups including Hecke groups H(Ag) (see [Jo-Si,l]). By means of this

correspondence we can find normal subgroups of H(A9) and prove many important

results related to them if we know the corresponding regular maps. For example,

we shall classify normal subgroups of Hecke groups having genus 0 and 1 using this

correspondence. Also as an important application, we shall use it to determine the

number N(ji) of normal genus 1 subgroups of Hecke groups H(A9) having a given

finite index JL in H(A7). This result has been proved by Kern-Isberner and Rosen-
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berger using number theoretical methods in the special case q = 4 (see [Ke-Ro,l]).

We use this correspondence between regular maps and normal subgroups to ob-

tain normal subgroups of Hecke groups from regular maps in the following way:

Firstly, there is a homomorphism 9 from H(A9) = (2, <7, oo) to the triangle group

(2, m,n) where in is a divisor of q. Let now M. be a regular map of type {m,??}.

By Jones and Singerman's result, associated to M. there is a normal subgroup N

of the triangle group (2,77?.,7?.). If we consider the inverse image 9~l(N) of N, it is

a normal subgroup of H(A9). We shall say that N is a normal subgroup ofH(\q)

corresponding to the regular map M of type {m,n}. The number ??. corresponds to

the level of the normal subgroup 6~1(N).

Let \'\ E and F denote the set of vertices, edges and faces of a. regular or quasi-

regular map M. with ?7.0, ??i and ??.2 elements respectively. Then

IIMQ — 2.7?! = 777,. 7? 2- (3-3)

The number ??0 of vertices is the parabolic class number of 0~1(N).

We have noted above that studying low genus normal subgroups by means of

regular maps has many advantages. Therefore we try to obtain a classification of

the regular maps of genus 0 and 1. The ones with genus 2 are listed in [Co-Mo,l],

while when g = 3 the result is given by Sherk [Sh,l], and when g = 4, 5, 6 or 7 by

Garbe ([Ga,l] and [Ga,2]). It is known that the number of regular maps with genus

2 < <7 < 7 is finite. An easy argument using the Riemann-Hurwitz formula implies

that this is true for any g > 2.

Let us consider the spherical regular maps first. In this case an easy calculation

shows that

{m - 2){n - 2) < 4 (3.4)
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for a regular map of type {m,n} on the sphere. Therefore all regular maps on

the sphere are spherical tessellations (and star maps as a degenerate class), i.e.

{2, n}, n G N, {3,3}, {3,4} and {3,5} with their duals. We discuss them in the

next chapter.

On a torus, a regular map of type {m,n} must satisfy the equation

( m - 2 ) ( n - 2 ) = 4 . (3.5)

Thus only regular maps on a torus are the ones of type {4,4}, {6,3} or {3, 6}. They

are classified, in [Jo-Si,2] and [Co-Mo,l], as {4,4}ri5, {6,3}riS or {3,6}r,5, respec-

tively, with r, s € N U {0} and not both of r,s zero. Also the automorphism group

of {4,4}r,s is of order 4(r2 + s2) and the automorphism group of {6,3}r>s or {3,6}^

is of order 6(r2 + rs + s2).

The normal subgroups of H(A9) having genus 1 will be studied in Chapter 5 while

the ones of H(A/2) and H(\/3) are studied in Chapters 7 and 8.

Let now M. be a given regular map of type {m,n} and let the correspond-

ing normal subgroup N have index /( in H(A9). By the permutation method and

Riemann-Hunvitz formula, we see that N has the signature

?U ' ,oo (3.6)
2 \2 m nj m J

By (3.6), we can find whether a regular map of a given type may exist. It is then a

purely group theoretical problem to show the existence of this regular map.

As we have already noted, the lists of regular maps of g < 7 are known. There-

fore, for a given q, we can easily classify all regular maps with g < 7 corresponding

to the normal subgroups of H(A9) with g < 7. As an easy example let us see how
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we can use the regular maps to obtain information about g — 1 normal subgroups

of H(A?). We have seen that the onty regular maps of genus 1 are those of type

{4,4},{3,6} and {6,3}. It is then easy to see that the first ones occur only when A\q,

the second ones when 3\q and the third ones when 6\q. Obviously when I2\q, H(A9)

has normal subgroups of genus 1 corresponding to all three classes of regular maps

above. It is also clear that if q is not divisible by 3 and 4, then H(Ag) has no normal

subgroups of genus 1. For example, one of the four important Hecke groups, H(A5),

has no g = 1 normal subgroup for this reason.

To determine whether a normal subgroup is free or not is also important to us.

Therefore we now consider this problem in particular for normal genus 1 subgroups

of the four most important Hecke groups F, H(\/2), H(A5) and H(\/3)- When q = 5,

we have noted in the above paragraph that H(A5) has no normal subgroups of g = 1.

The modular group F has infinitely many normal subgroups of genus 1 correspond-

ing to the regular maps of type {3,6}, and therefore all of them are torsion-free.

Similarly H(\/2) has an infinite number of normal subgroups of genus 1 correspond-

ing to the regular maps of type {4,4}, and again they are all free. The different case

is H(\/3). As H(\/3) has signature (0; 2,6,oo) it is possible to map it to (2,3,6) and

also (2,6,3). The former ones will give infinitely many normal subgroups of genus

1 with torsion (having a finite number of elements of order 2) while the latter ones

give an infinite family of torsion-free genus 1 normal subgroups. This argument can

easily be extended to other values of q. But significantly, the cases q = 3, 4 and 6

will remain as the only cases having torsion-free genus 1 normal subgroups. For a

detailed discussion of normal genus 1 subgroups of Hecke groups H(A9) see Chapter 5.

This idea, which we have applied to genus 1 normal subgroups only, can be ex-

tended to any g such that g < 7, but with more difficulty.

Some interesting examples of these three classes of regular maps are {6,3}2,i

obtained by embedding the complete graph A'7 on a torus, and {4,4}2,i obtained by



embedding K5 on a torus (see Figure 3.4).

Figure 3.4. {6,3}2,: and {4,4}2)1

These three types of regular maps of genus 1 will be dealt with, in detail, in

Chapters 8 and 9 where we consider normal subgroups of the two important Hecke

groups H(V2) and H(V3). We shall give the lists of the regular maps correspond-

ing to low index normal subgroups of these two groups, and also pictures of some

interesting ones.
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Chapter 4

NORMAL SUBGROUPS OF GENUS 0,
NORMAL TORSION AND TORSION-FREE

SUBGROUPS OF R(Xq)

4.0. INTRODUCTION

In this chapter we discuss normal subgroups of genus 0 of Hecke groups and also

as a related topic, torsion and torsion-free subgroups of any genus g > 0.

We have already considered genus 0 normal subgroups of Hecke groups in the

last chapter briefly, where we discussed the relations between normal subgroups of

H(Ag) and regular maps. A more precise method which leads to a classification of

genus 0 normal subgroups is to consider the corresponding quotient groups.

Let N be a normal subgroup of genus 0 in H(A,). Then H(Ag)/./V is a group of

automorphisms of U /N, where (/ = [ / U Q U {°°}- This gives a regular map on the

sphere so that H(Ag)//V is isomorphic to one of the finite triangle groups. These are

known to be isomorphic to /l4, .$4, As, Cn and Dn for n 6 N. Considering each of

these groups as a quotient group of H(A?), whenever possible, we will find all genus
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0 normal subgroups of Hecke groups. Also in this chapter, the total number No(\q)

of genus 0 normal subgroups in H(Ag) for all of the possible cases is calculated. It

will be shown that this number is finite when q is odd, and infinite otherwise.

It can easily be seen that iVo(A,j) only depends on q. Indeed as it is only possible

to map H(A,) to the finite triangle groups, A ô(A,) will depend on the divisibility of

q by 2,3,4 and 5. We shall deduce that for each q, H(A7) always has genus 0 normal

subgroups and in fact

N0(Xq) > 211(1 + *P) (4.1)
Pl<7

where ap is the exponent of the prime p in the prime power decomposition of q.

As most of the genus 0 normal subgroups of H(Ag) have torsion, we shall consider

torsion subgroups of Hecke groups in this chapter. We shall classify all torsion-free

normal genus 0 subgroups of H(Ag) of finite index and deduce that their total num-

ber does not exceed 4 in any case. Actually this number is only 1 if q > 6. We

shall also find the number of normal torsion subgroups of H(A?) of genus 0 as finite

when q is odd, and infinite when q is even.

We then discuss the normal torsion and torsion-free subgroups of H(Ag) of genus

g > 2. We particularly discuss the first two cases where g=2 and 3.

We shall see that the number of normal torsion-free subgroups of H(A9) is always

infinite. But this number is finite for any particular g.

Considering normal torsion subgroups, we find that H(\/2) and H(AP) for odd

primes p have no normal proper torsion subgroups if g > 1, while for all other

values of q, H(A7) has infinitely many such subgroups.
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4.1. NORMAL GENUS 0 SUBGROUPS OF H(Ag) WITH FINITE

INDEX

We first discuss some genus 0 normal subgroups of finite index of H(Ag), which

exist for any q, q > 3, q G N:

By mapping R to identity and S to the generator a of the cyclic group of order n

where n\q, we obtain a homomorphism of H(Ag) to the cyclic group of order n. For

each such n we get a normal subgroup N of genus 0. By the permutation method,

TV has signature (0; 2 ^ , q/n, 00). We denote this class of normal subgroups of

H(A9) by Yn(\g). They are isomorphic to the free-product of the cyclic group Cq/n

of order q/n with n cyclic groups of order two. The corresponding regular maps are

star maps.

There is another homomorphism of H(Ag) to a cyclic group C-i of order two with

signature (2,1,2) (that is, C2 can be thought of as a finite triangle group with a

presentation < x,y\x2 = y = (xy)2 = I >). But as this quotient is a member of

the class Dn = (2, n,2) of dihedral groups of order 2n, it will be considered in the

following paragraph:

Let us now map H(Ag) to a dihedral group Dn = (2,n,2) = < x,y\x2 = yn —

(xy)2 = 1 > of order 27i, where necessarily n\q, by taking R to x and 5 to y. This

is a homomorphism and similarly we obtain a normal subgroup denoted by S^A,)

with signature (0; (7/n, q/n, oo*")). It is isomorphic to the free-product of two cyclic

groups of order q/n with n — 1 infinite cyclic groups.

Note that, if n = 1, we map H(Ag) to the cyclic group of order two and obtain

the normal subgroup .?i(Ag) = Cq * Cq. If n = q then 5g(Ag) = Fg_i, a free group

of rank q — 1, is obtained.

All these subgroups occur for each value of q. There are some others, which we
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are now going to discuss, that occur dependently on q. Actually their occurence

completely depends on the divisibility of q by 2, 3, 4 and 5, as we have noted above.

Recall that if q is not divisible by these numbers, then there is no homomorphism

from H(Ag) to a finite triangle group, and therefore there is no normal subgroup of

H(Ag) having genus 0. Let us now discuss all these cases in order:

First let q be divisible by 3. Then H(A9) has three more normal subgroups of

genus 0 in addition to those listed above:

Let AA = (2,3,3) = < x,y \x2 = y3 = (xy)3 = 1 >. By mapping R to x and S

to y we obtain a homomorphism of H(A?) onto A4 and this gives a normal subgroup

denoted by Tx{\) with signature (0; {qj'i){A\ oo(4>).

If we map H(A,) to .S'4 = (2,3,4) by taking R to the generator of order 2 and

S to the generator of order 3 of .S'4, then we. get a normal subgroup ^(A^) with

signature (0; (<//3)W, oo(6)).

Thirdly and finally if we map H(A,) to A5 = (2, 3, 5) such that R is taken to the

generator of order 2 and S is taken to the generator of order 3, we obtain a normal

subgroup T3(A?) 3 (0; (<7/3)(2O>, oo(12)).

Let, secondly, 4\q. Then we have another homomorphism to S4 taking R to the

generator of order 2 and S to the generator of order 4, and we obtain a normal

subgroup T4(A?) 3 (0; (q/4)^, oo<8>).

Thirdly, if 5|<7, then we can map H(A,) to A5 = (2,5,3) such that R is taken to

the generator of order 2 and 5 to the generator of order 5. Then we obtain a normal

subgroup T5(\q) with signature (0; (<y/5)(12\ oo(20>).

Furthermore when q is even, it is possible to map H(Ag) to a dihedral group
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Dn = (2,2, n) = < x, y \ x2 = y2 = (xy)n = 1 > for each n G N by mapping R to x

and S to y. Here we obtain a normal subgroup with signature (0; (<7/2)(n), oo, oo).

These subgroups are important in the study of normal subgroups of Hecke groups.

They are denoted by Wn(\q) and isomorphic to the free-product of the infinite cyclic

group Z with n finite cyclic groups of order two. We have the following result:

Theorem 4.1: Let m,n 6 N. Then

Wmn(K) < Wn(\q). (4.2)

In general if q is odd, for example in the modular group case, it is not possible to

obtain these subgroups and therefore there are only finitely many normal subgroups

of genus 0 in H(Ag) for odd q. Of course when q is even, H(A?) has infinitely many

normal subgroups of genus 0, as we can map H(Ag) to Dn = (2,2, n) for any n € N.

4.2. NUMBER OF NORMAL GENUS 0 SUBGROUPS OF H(A,)

WITH FINITE INDEX

We now calculate the number of genus 0 normal subgroups of H(A9) for all possi-

ble cases. Because of the Wn(Xg) subgroups, there will be two situations to consider

mainly: Odd q and even q cases. As we have already noted, this number is finite for

the former situation, and infinite otherwise. However if we exclude the subgroups

of type Wn(A9), then H(A,), now for any q, has only finitely many normal genus 0

subgroups with finite index. We will try to find this number:

Let 7Vo(A,) denote the number of normal genus 0 subgroups of finite index in

H(A9) except those of type Wn(\q). Firstly

N0(\q) < oo. (4.3)
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We have seen that for all q we can map H(A,) to the cyclic group Cn such that

n\q by taking R to the identity and 5* to the generator of Cn. For each such n

we obtain a normal subgroup of genus 0 and therefore the number of them will be

as much as the number of divisors of q. Since the function "number of divisors"

is multiplicative, we only need to determine the number of divisors of each prime

power pap in the prime power decomposition of q. But this number is 1 -f ap as all

the divisors of pap are 1, p, p2, ... , pap. Hence if q has the prime power decomposition

q = pVPT-Ptk, (4-4)

then the number of divisors of q is

d(q) = ] I ( 1 +<*.-), (4-5)
t=i

or in other words

As we can map H(Ag) to Dn = (2, n,2) such that n\q, this will also give us d(q)

normal subgroups of genus 0. This shows that (4.1) is always true.

We now find the number of other normal genus 0 subgroups that occur depend-

ing on q. As we are not considering the ones of type Wn(Xg) we have only nine cases

to investigate:

(1) If (<7,60) = 1, i.e. if neither 3,4 nor 5 divides <7, then we do not have A4, S4

nor A5 as a homomorphic image of H(A?) and therefore N0(Xq) is just 2d(q).

(2) If (7,20) = 1 and 3|<7, then there exist three homomorphisms to A4, S4 and

A5 as we have seen above and therefore the number No(Xq) is 3 -f 2d(q).



(3) If (<?,20) = 2 and 3\q, then again there exist three homomorphisms to Aj, S4

and A5 and therefore the number N0(\q) is 3 + 2d(q).

(4) If (g, 15) = 1 and 4|<?, then there is only one possible homomorphism which

is to 54 and N0(Xq) is 1 + 2d(q).

(5) If (</, 12) = 1 and 5\q, then again there is a unique homomorphism, this time

to A5, and N0{\q) is 1 + 2 % ) .

(6) If (<y,5) = 1 and 12\q then there are two homomorphisms to S4: one to A4

and one to A5. Therefore Ar
0(A9) = 4 + 2d(q).

(7) If (qA) = 1 and 15|r/ then there are two homomorphisms to A5, one to AA

and one to 5'4. Therefore Ar
0(Ag) is 4 + 2d(q).

(8) If (5,3) = 1 and 20\q then H(A9) can be mapped to 64 and A5 only and

JV0(A,) is 2 + 2d(q).

(9) If 60\q then we have all of above homomorphisms and therefore Aro(A9) =

5 + 2d(q).

Therefore we have

Theorem 4.2: Let d(q) be the number of divisors of q. Then the number N0(\q)

of normal genus 0 subgroups of H(A9) with finite index apart from the ones of type

Wn{\) is
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(4.7)

2d(q) if (9,60) = 1 or 2

3 + 2d(q) if (q, 20) = 1 and 3\q

3 + 2 % ) if (9,20) = 2 and 3\q

l+2d(q) if (q,lS) = landA\q

\+2d(q) if (7,12) = 1 and 5\q

4 + 2d(q) if (7, 5) = 1 and \2\q

4 + 2d(q) if (7,4) = 1 and I5\q

2 + 2d(q) if (7, 3) = 1 and 20|<7

5 + 2d(q) if 6OI7.

Note that when (7,60) = 2 in case 1 and in cases 4, 6, 8 and 9 we also have

infinitely many normal subgroups of genus 0 of type Wn(\g). These cases are, of

course, the ones where q is even. In all other cases No(Xq) is the number of all

normal genus 0 subgroups of H(Ag).

4.3. NORMAL TORSION-FREE SUBGROUPS OF H(A,)

We have seen that most of the normal genus 0 subgroups of Hecke groups have

torsion. Actually there are only a few that are torsion-free. They are found by

considering the regular maps on the sphere:

Theorem 4.3: The normal genus 0 torsion-free subgroups of Hecke groups are

the following:
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N H(A,) index

(OJCXDW) < (0; 2 ,3 ,oo) 12

(0; oo(6>) <] (0; 2,3,oo) 24

(0; oo<12)) <1 (0; 2,3,oo) 60

(0; oo(8)) « (0; 2,4,oo) 24

(0; oo(2°)) <3 (0; 2,5,oo) 60

(0; 00^)) < (0;2,<7,oo) 27.

(4.8)

Note that the number of parabolic, classes of each normal subgroup is actually

equal to the number of vertices of the corresponding regular solid. In fact each

vertex can be thought of as a cusp on the sphere. For example there are four classes

of parabolic points for the subgroup (0; 00^) and the corresponding regular solid

is a blown-up tetrahedron on the sphere with four vertices being four cusp points.

See Figure 4.1.

T

Figure 4.1. A tetrahedron corresponding to (0; oo^4') <1 F
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Note also that the quotient group E(\3)/N ^ A, = (2,3,3). Therefore corre-

sponding regular solid, which is a tetrahedron, can be thought of as a regular map

of type {3,3} (see Chapter 3).

In the other five cases, the corresponding regular solids are octahedron, icosahe-

dron, cube, dodecahedron and dihedron, respectively. See Figure 4.2.

D

Figure 4.2. Other four platonic solids and a dihedron

Hence we have
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Corollary 4.1: The number of normal genus 0 torsion-free subgroups of H(A7) is

4 if q = 3

2 if q — 4 or 5

1 if <? > 6.

and they are S3(\3), 7](A3), T2(A3), T3(A3), 5

(4.9)

2), 55(A5), T5(A5) and

By Theorem 4.2 and Corollary 4.1 we easily obtain the following result:

Theorem 4.4: The number of normal genus 0 subgroups of H(Ag) having tor-

sion is finite if q is odd, and infinite otherwise. If we omit the class Wn(Xq) which

exists when q is even, then this number is always finite and equal to

and

- 1 + 2 % ) if (<7,60) = l or 2

2 + 2d(q) if (<7,20) = 1 and Z\q

2 + 2d(q) if (<7,20) = 2 and Z\q

2d{q) if ((7,15) = 1 andA\q

2d(q) if (7,12) = 1 and 5|9 ( 4 J Q )

Z + 2d{q) if {q, 5) = 1 and I2\q

if (oA) =

l+2d(q) if (</,3) = 1 and20\q

4 + 2<i(<7) if 6O|<7.

when q > 6, and
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3 if q = 3

5 if q = 4

3 if <? = 5.

(4.11)

and they are I\ T2, T3, H(v/2), He

and H5(A5), when q < 5.

, 5 I (> /2 ) , H2(>/2), H(A5), H2(A5)

By the Riemann-Hurwitz formula, the number of normal subgroups of H(A9)

having genus g > 1 and finite index is finite. However when g = 1, the situation is

more complicated. In Chapter 3, we have briefly discussed these subgroups. The

following result is clear:

Theorem 4.5: (i) H(Ag) has no normal genus 1 subgroups if and only if

(g, 12) = l o r 2.

(ii) H(Ag) has infinitely many normal genus 1 subgroups if and only if (q, 12) >

3.

(iii) H(A?) has a (and therefore infinitely many) torsion-free normal genus 1

subgroup if and only if q — 3,4 or 6.

(iv) All normal genus 1 subgroups of H(A?) are torsion-free if and only if q — 3

or 4. (In both cases, the number of these subgroups is infinite).

(v) All normal genus 1 subgroups of H(A?) have torsion if and only if q > 6. (In

this case their number is infinite again).

(vi) H(A?) has both torsion and torsion-free subgroups of genus 1 if and only if

q = 6. (Both are infinitely many).
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Let us now discuss normal torsion subgroups of H(A,) for several values of q:

Firstly, if q — 4, as we noted in the last chapter, H(\/2) has infinitely many nor-

mal genus 1 subgroups which are all torsion-free. Secondly let q — p, a prime, it is

easy to see that H(Ap) has no normal torsion subgroups of genus 1 as it is discussed

in the last chapter. Let thirdly q be a composite number > 6 and let either 3\q

or A\q. Then H(A?) has at least one (and therefore infinitely many) normal genus

1 subgroups with torsion. This is because we can map H(A9) homomorphically to

the infinite triangle groups (2,3,6) or (2,4,4) and this gives infinitely many normal

subgroups of genus 1 with torsion. Also if 6\q, q > 12, then H(A,j) can be mapped

to (2,6,3) homomorphically and this too gives infinitely many normal subgroups of

genus 1 with torsion. Let us finally consider the remaining values of q. By means

of a similar argument, we see that when q is a composite number > 4 such that

(q, 12) = 1, H(A9) has no normal genus 1 subgroups with torsion (in fact no sub-

groups of genus 1).

We have noted above that the number of normal subgroups of H(Ag) having

genus g > 1 is finite by the Riemann-Hurwitz formula. This can also be seen from

the fact that the number of regular maps of genus g > 1 is finite. Therefore there are

only finitely man}7 normal torsion and torsion free subgroups of H(A9) of genus g > 1.

Let us now consider the first two cases:

(1) g = 2 : All possible regular maps on a Riemann surface of genus two are

given by Coxeter and Moser in [Co-Mo,l]. They are of type {8,8}, {5,10}, {6,6},

{4,8}, {4,6}, {3,8} and their duals. Using the 1:1 correspondence between normal

subgroups and regular maps, it is not too difficult to obtain the following result:

Theorem 4.6: (i) H(A9) has no normal torsion-free subgroup of genus g = 2 if
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and only if q = 7, 9 or q > 10.

(ii) H(A,) has a normal torsion-free subgroup of genus two if and only if q =

3,4,5,6,8 or 10.

(iii) H(A9) has no normal (torsion or torsion-free) subgroup of genus two if and

only if (</, 120) < 2.

(iv) Therefore, H(A9) has normal genus two subgroups if and only if ((7,120) > 3.

(v) H(A?) has a normal subgroup of genus two with torsion if and only if q > 10

and (q, 120) > 3.

Proof: To prove this theorem, we must recall the 1:1 correspondence between

normal subgroups and regular maps described in Chapter 3: There is a homomor-

phism of H(A7) to the triangle group (2,m, n) where m\q. We saw in Chapter 3 that

if M. is a regular map of type {m, n], then, by a result of Jones and Singerman,

there is a normal subgroup N of (2, m, n) and the inverse image of N is a normal

subgroup of H(A?) corresponding, uniquely, to M. Using this correspondence, we

can prove Theorem 4.6. We prove (iii). The others can be proved in a similar way:

Let us suppose (7,120) = k > 3. Then A: = 3,4,5,6,8,10,12,15,20,24,30,40,60 or

120. Let k = 3. Then as there exists a regular map of type {3,8}, by the above

correspondence, H(A9) has a normal torsion-free subgroup of genus 2. Similarly for

k < 10, there exists a regular map of type {k,l} for some natural number / and

therefore a normal torsion-free subgroup of H(A?). For the other values of k H(A7)

has normal subgroups of genus 2 having torsion, e.g. if k = 30, then H(Ag) has at

least 5 normal genus 2 subgroups having torsion corresponding to the regular maps

of type {3,8}, {5,10}, {6,4}, {6,6}, {10,5}. Therefore by contrapositive method,

one side of (iii) is proven. Let now H(A9) has a normal subgroup of genus 2. Then
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by Jones and Singerman's result, q must be divisible by 3,4,5,6,8 or 10. Therefore

(q, 120) > 3. Again by the contrapositive method, the other side of (iii) follows.

(2) (7 = 3 : All regular maps of genus three are listed by Sherk in [Sh,l] . They

areoftyPe{l2,12}, {7,14}, {8,8}, {4,12}, {6,6}, {4,8}, {3,12}, {4,6}, {3,8}, {3,7}

and their duals. Then we can obtain following similar result:

Theorem 4.7: (i) H(Ag) has no normal torsion-free subgroup of genus g = 3 if

and only if q = 5,9,10,11,13 or q > 14.

(ii) H(A?) has a normal torsion-free subgroup of genus three if and only if q —

3,4,6,7,8,12 or 14.

(iii) H(A7) has no normal (torsion or torsion-free) subgroup of genus three if

and only if (</, 168) < 2.

(iv) Therefore, H(A9) has normal genus three subgroups if and only if (q, 168) >

3.

(v) H(Ag) has a normal subgroup of genus three with torsion if and only if q > 14

and (7,168) > 3.

Similar results can be obtained for normal subgroups of H(A9) with genus 4

< g < 7 as all regular maps of genus up to and including 7 are known.

However a problem arises when we want to calculate the number of normal sub-

groups of genus <7 > 2. It is possible that there are many homomorphisms from

a triangle group (2,??i,n) onto a finite group G. This means that there could be

more than one regular map of type {??i,7i} and genus g. For example there are two

regular maps {8,8}2 and {4.2,4.2} of type {8,8}.
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Chapter 5

GENUS 1 NORMAL SUBGROUPS OF H(AJ

5.0. INTRODUCTION

In this chapter we discuss the normal subgroups of genus 1 of Hecke groups.

They have already been discussed briefly in Chapter 3 as an application of regular

map theory to Hecke groups. Here we extend this discussion and obtain all our

results concerning normal subgroups of genus 1 using regular maps.

We begin by recalling some facts from Chapter 3 about regular maps on a torus.

The main idea we are using is the 1:1 correspondence between regular maps and

normal subgroups of the triangle groups (2,m,n), proved by Jones and Singerman.

Firstly we determine the values of q such that H(A9) has a normal subgroup of

genus 1, and also such that H(Ag) has a. free normal subgroup of genus 1.

Next, we consider normal subgroups of genus 1 of H(\/2) and H(\/3), two im-

portant Hecke groups. These subgroups will be discussed in Chapters 8 and 9 in

detail. Here we determine their total number to be infinite.



Finally we give a generalisation of a result of Rosenberger and Kern-Isberner,

[Ke-Ro,l]. They discussed normal subgroups of genus 1 of certain free products and

showed, using number theoretical methods, that the number N(fi) of normal genus

1 subgroups of H(\/2) of a given index fi is equal to a quarter of the number of rep-

resentations of f.i/4 as the sum of two squares in Z. Here we use some well-known

number theoretical results to calculate this number explicitly. Then we calculate

N(II) for H(\/3). Finally we obtain the generalisation for all values of q, that is,

a formula giving the number of normal genus 1 subgroups of H(Ag) having a fixed

index /«.

At the end of this thesis, we give, in Appendix 1. a list of values of N(ft) for

small values of q and /.i.

5.1. EXISTENCE OF NORMAL GENUS 1 SUBGROUPS OF H(A,)

Recall that, if a regular map of type {???, n) has ??o vertices, 7?! edges and n2

faces, then the Euler-Poincare characteristic x °f {m.n} is given by

X = "o - "l + n2 = 2 - 2g (5.1)

and also

Combining these two equalities, we obtain

X = ~ ( 4 - (m - 2)(n - 2)). (5.3)

We want to find out the regular maps of genus 1, that is, the regular maps on a

torus. Putting \- = 0 in (5.3), we obtain

(nj - 2 ) ( J ? - 2 ) = 4. (5.4)
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It is easy to see that the only solutions of (5.5) are

{3,6}, {4,4} and {6,3}. (5.5)

This makes sense as these are the only regular Euclidean tessellations of the complex

plane C and the universal covering of the torus is conformally equivalent to C.

These three types of regular maps on a torus are classified in [Jo-Si,2] and [Co-

Mo,!] as

{3,6},.s. {4,4},,s and {6.3},,s (5.6)

for non-negative integers r and 5, not both zero.

In Chapter 3, we mentioned a 1:1 correspondence between the regular maps

and normal subgroups of certain triangle groups, including Hecke groups, proven by

Jones and Singerman. Recall that for every divisor m of q, there exists a homomor-

phism 9 from H(A?) = (2, q, oo) into a finite quotient of the triangle group (2, m, n),

n € N, taking the generator R of order 2 to the generator r of order 2, the second

generator S of order q to the generator s of order ??? so that the product T = RS

is mapped to rs of order 7? in (2,m,n). This homomorphism gives us a normal

subgroup of (2,77?,??.). Let N be a normal subgroup of (2, /??, ?i) of index /J obtained

in this way. Then 9~*(N) is a normal subgroup of H(A9) of index /.i as well. By

Jones and Singerman's result, there is a regular map of type {777,7?} corresponding

to each normal subgroup of (2,7??, n). It is known that the number fi is also the

order of the automorphism group of {m,n}. Similarly to each regular map of type

{???., ??.}, there exists a normal subgroup of H(A9), m\q. Here the number 77. is also

important:

Theorem 5.1: The number ?? is equal to the level of the normal subgroup
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Proof: H(A,) has a presentation (2, q,oo) ^ < R, S\R2 = Sq = I >. Similarly

the triangle group (2,77i,n) has a presentation < r,s\r2 = sm = (rs)n = 1 >. The

above homomorphism 6 takes the generators R,S of H(A,) to the generators r,s of

(2,m,?z). Then the parabolic element T = RS is mapped to rs of order n and as

(rs)n = 1

)" € KerO = r J ( l ) < ra(iV). (5.7)

That is fl-^iV) < H(A,) is of level n.

As all regular maps {in, ??.}r,s on a torus are {3,6}r,s, {4,4}riS and {6,3}riS, it

follows that the existence of a normal genus 1 subgroup completely depends on the

divisibility of q by 3, 4 and 6. Clearly if 4 | q we obtain the regular maps of type

{4,4} corresponding to the normal subgroups of H(A9) of genus 1, while the ones of

type {6,3} (or {3,6}) are obtained when q is divisible by six (or three). All these

three types are obtained when 12 \q. It also follows that if (<?, 12) = 1 or 2, then

H(A9) does not have any normal genus 1 subgroups. Therefore we have

Theorem 5.2: H(A9) has a normal subgroup of genus 1 if and only if q =

0 mod 3 or q = 0 mod 4.

Note that when H(Ag) has a normal subgroup of genus 1, it actually has infinitely

man}' of them as each of the three classes discussed above has infinitely many regular

maps. Therefore

Theorem 5.3: The total number of normal subgroups of genus 1 in H(A9) is

either 0 or oo.

Let us now consider the four most important Hecke groups T = H(A3), H(\/2),

H(A5) and H(N/3).
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By Theorem 5.2, H(A5) has no normal genus 1 subgroups.

The modular group, having the signature (0 ; 2,3,oo), has infinitely many nor-

mal subgroups of genus 1 corresponding to infinitely many regular maps of type

{3,6}. If N is a normal subgroup of the modular group corresponding to such a

regular map, then in F/Ar we have the relations

.2 s3 = (rs)6 = ... = I. (5.8)

Therefore A'" must be free. The genus 1 normal subgroups of the modular group

were discussed by [Ne,2].

H(\/2), similarly to the modular group case, has also infinitely many normal

genus 1 subgroups corresponding, this time, to the regular maps of type {4,4}.

Here we have the relations

r2 = .s4 = (rs)4 = ... = I. (5.9)

and again the normal subgroup is free.

Finally let us consider H(>/3). In this case, as there exist homomorphisms onto

the infinite triangle groups (2.3,6) and (2,6,3), H(\/3) has infinitely many normal

genus 1 subgroups corresponding to the regular maps of type {3,6} and also in-

finitely many normal genus 1 subgroups corresponding to the regular maps of type

{6,3}. If we map H( \/3) to the former triangle group, then in the quotient R(\/3)/N

the relations

r2 = s3 = (rs)6 = ... = / (5.10)

are satisfied. Therefore N contains elements of order two, i.e. it is not torsion-free.

If we map H(\/3) onto (2,6,3), then similarly to the previous cases, N must be

torsion-free.
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All these together imply the following result:

Theorem 5.4: (i) All normal subgroups of genus 1 of H(A9) are free if and only

if q - 3 or 4.

(ii) The only values of q such that H(Aq) has a normal free subgroup of genus 1

are 3,4 and 6.

Note that the converse of (ii) is not always true as H(\/3) has normal subgroups

of genus 1 with torsion.

5.2. NUMBER OF NORMAL GENUS 1 SUBGROUPS OF H(A,)

Normal subgroups of genus 1 of H(\/2) and H(\/3~) will be discussed in detail in

Chapters 8 and 9. As a nice application, we are now going to obtain some formulae

for the number N[f.i) of genus 1 normal subgroups of these two groups having a

given index //, and then generalise this to any q to find the number N(fi) of the

normal genus 1 subgroups of H(Ag) having a given index /<.

(i) q = 4 :

In Chapter 3, we have seen that such a regular map must be of type {4,4}. In

[Jo-Si,2] and [Co-Mo,1], these are classified as {4,4}r-5 for non-negative integers r

and 5. Also if N is a normal subgroup of H(\/2) corresponding to such a regular

map, then

\AutM\ = |H(\/2) : N| = 4(r2 + s2). (5.11)

As regularity of the regular map corresponds to the normality of the correspond-

ing normal subgroup, each of these regular maps will give us a normal subgroup of
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H(A/2) with genus 1 and finite index ft = 4(r2 + s2). This implies

Theorem 5.5: H(\/2) has infinitely many normal subgroups of genus 1.

We have already seen that a normal subgroup of H(\/2), apart from H(\/2) itself,

has always even index. We have studied the normal subgroups Wn(y/2) of genus

0 and found their index in H(\/2) to be 2n. If /f > 4, then apart from these nor-

mal subgroups, all normal subgroups of H(\/2) have index ji divisible by four, and

we have often noted that this is an interesting case. Also if the genus is 1 then

/.c — 4(?-2 + s2) as we have just noted.

Now given // — 4(r2 + s2), H(\/2) has as many normal subgroups N of genus

1 with index /£ as the number of possible "non-identical" pairs (r, 5) such that

r2 + s2 = t where t denotes the number of parabolic classes of N. Before proving

this statement, we want to explain what we mean b)7 non-identical pairs (or equiv-

alently, identical pairs):

Recall that a regular map {4,4}r,5 is determined by the non-negative integers r

and s. Then there are three cases to consider:

(i) r ^ 0, s = 0: Then each of the pairs (r,0), (0,r), ( -r ,0) , (0, -r) gives the

same normal subgroup of index 4?̂ 2 having t = r2 parabolic classes. Therefore we

take these four pairs as identical. (5 ^ 0, r = 0 case is similar).

(ii) ?• and 5 are different non-zero integers: Then the pairs (»*, s), (—r, 5), (r, —5)

and (—r, —s) give the same regular map {4,4}r,s and the pairs (s,r), (—s,r), (5, —r)

and (—5, — r) give the regular map {4,4}Sir. Therefore there are two sets of identical

pairs corresponding to two different normal subgroups.

(iii) r = s ^ 0: Then each of the four pairs (?•, r), (r, —7"), ( — ?•,?•) and ( — 7% — r)
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gives the same regular map {4,4}r,r, and therefore will be taken as identical pairs.

Example 5.1: (1) If t = 1, then we have four identical pairs (1,0), (-1,0), (0,1)

and (0,-1) giving the regular map {4,4}i,o. In this case the corresponding normal

subgroup is denoted by K = [4,4)1,0.

(2) Secondly let t — 2. Then the identical pairs are (1,1), (1,-1), (-1,1) and

(-1,-1). They give the regular map {4,4}ITI and the corresponding normal subgroup

is denoted by H'(\/2) = [4,4]i,i.

We can now prove our statement.

A normal subgroup of genus 1 of H(\/2) has level 4: Indeed, to obtain a genus 1

normal subgroup Ar of H(v/2), we map H(>/2) into a finite quotient of (2,4,4) by a

homomorphism. We also know that in a normal subgroup of (2,4,4) generated by r, s

of orders 2 and 4, the parabolic element rs has exponent 4. Then the corresponding

normal subgroup of H(\/2) also has level 4 by Theorem 5.1. Therefore /t = At. Then

4{r2 + s2) = At (5.12)

and therefore

r2 + s2 = t. (5.13)

Now for each pair satisfying (5.13) we have three more identical pairs. As each

set of identical pairs gives us a normal subgroup N of H(\/2) of genus 1, we obtain

the following result:

Theorem 5.6: The number N(f.i) of normal subgroups of genus 1 and index ft

in U(y/2) is
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N(n) = N(U) = I # {(r, 5) : r, 5 e Z, r2 + s2 = t} . (5.14)

(5.14) shows that iV(^) is equal to a quarter of the number of representations of

t = fi/A as the sum of two squares in Z.

Remark 5.1: Kern-Isberner and Rosenberger proved the same result number

theoretically by showing that N(ft) is a multiplicative function (see [Ke-Ro,l]).

We can now use some number theoretical results to calculate the number A'(/t).

We have already proved that N(fi) is equal to a quarter of the number of represen-

tations of t = /J/4 as the sum of two integer squares. The following result will be

useful in calculating N(fi) explicitly:

Lemma 5.1: ([Kn,l]) Let t = 2a fit Pblb • Tic 1cmc be the prime power decom-

position of t, where the pj, = 1 modi and the qc = 3 modA. Then the number r(t)

of integer solutions of the Diophantine equation a:2 + y2 = t is given by r(t) = 0 if

one of the ???c is odd, and by

r(t) = 4.IJ(/6 + l) (5.15)
6

if all mr are even.

By means of Lemma 5.1, we can easily find N(fi) as

N{ii) = \-r(t) (5.16)

which is either 0 if there is, in the above prime power decomposition of t, a factor

qc
mc with qc = 3 modi and ??7C is odd, or equal to ]~[& (̂ > + 1) otherwise.
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Remark 5.2: The first few values of the function N(fi) are given in the follow-

ing table. Note that if the index // is not divisible by 4, then this number is 0.

*

t

t

A'(/0

1
4
1
11
44
0

...

...

2
8
1
12
48
0

25
100
3

3
12
0
13
52
2

...

...

4
16
1
14
56
0

65
260
4

5
20
2
15
60
0

...

...

...

6
24
0
16
64
1

325
1300
6

7
28
0
17
68
2

...

...

8
32
1
18
72
1

625
2500
5

9
36
1
19
76
0

...

...

10
40
2
20
80
2

1105
4420
8

Table 5.1: Some values of N{/.i) for q = 4

(ii) q =

Let us now calculate N{fi) for H(\/3). The method we use is the same as the one

for q =4. But this time we need to use the regular maps of type {6,3} and {3,6}.

However we must note an important difference between the two cases. In q = 4

case, as we can only map H(\/2) to a finite quotient of the infinite triangle group

(2,4,4) to get genus 1 normal subgroups, all of these subgroups were torsion-free.

In q = 6 case, we can map to finite quotients of (2,6,3) and (2,3,6). Mapping to the

former one gives torsion-free subgroups. However if we map H(\/3) to the latter,

then as the elliptic generator 5, which is of order six in H(\/3), goes to an element

of order three under this homomorphism, the obtained normal subgroup will have

some elements of order two implying that it has torsion. We will find the number of

normal subgroups of genus 1 in both cases, i.e. for torsion and torsion-free normal

subgroups. We shall see that there is a 1-1 correspondence between their numbers

(as {6,3} and {3,6} are dual).

Let us now begin by recalling some facts about regular maps of genus 1 from

Chapter 3. If a regular map corresponds to a normal subgroup of genus 1 of II(v3),

98



then it must be of type {6,3} or {3,6}. They are classified as {6,3}riS and {3,6}riS

respectively for non-negative integers r and s. Also their automorphism groups have

order 6(r2 + rs + s2).

Now given the number fi = 6(r2 + rs + s2), we want to find the number of

normal subgroups of genus 1 in H(\/3) having index /f. Clearly for the other values

of//, H(v3) has no normal subgroup of genus 1 with index ji as we have already seen.

Since 6 |//, whenever one of {6,3}rjS and {3,6}rt5 appears, the other one also

appears. Therefore it is enough to find the number of normal subgroups [6, 3]r.s for

each given fi, as this is also the number of the normal subgroups [3,6]r,s. Therefore

the number of all genus 1 normal subgroups of H(\/3) is going to be twice that

number. Now

fi - Zt = 6(r2 + rs + s2) (5.17)

and hence

t = 2{r2 + rs + s2) (5.18)

and finally

which is a quadratic equation of, say r, if we take 3 fixed (as the equation (5.18) is

symmetric it does not matter which one of r and s is fixed). Solving this equation

we have

r = - ^ ± \\/2t - 3^2 (5.20)

which are real only when s2 < 2//3. Therefore because of the symmetry, we have

r (and s) bounded:
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As \i is given t is also given. Therefore there are only finitely many solutions of

(5.21). That is the solutions of (5.18) can be found by solving (5.21). Now similarly

to the q = 4 case we find the number N(//) of the normal subgroups [6,3]r)S of H(\/3)

having genus 1 as

Ntifi) = - # Ur,s) : r,s € Z, r2 + rs + s2 = - j . (5.22)

Therefore

Theorem 5.7: The number of all normal subgroups of genus 1 in H(\/3) having

a given index // is

N(n) = 2.iV1(/t) = i #{ ( r , a ) : r, s G Z, r2 + rs + s2 = i } . (5.23)

The number A^(/t) is the number of torsion (or torsion-free) normal subgroups

of genus 1 of H(\/3) having index fi.

It is possible, as in q = 4 case, to calculate A (̂/t) more explicitly using the fol-

lowing result:

Lemma 5.2: ([Kn.l]) The number of solutions to ,r2 -f xy -f y2 = k is 6E(k)

where E(k) is the number of divisors of k of the form 3a + 1 subtracting the number

of divisors of the form 36 + 2.

Note that if k = t/2 = /t/6, then we have

Corollary 5.1:

= E(k) (5.24)
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so that

= 2E(k). (5.25)

Remark 5.3: The following table gives the first few values of the function N(fi)

for q = 6:

t
fi — 3t

t
fi = 3f
N(fi)

2

6
2
22
66
0

4
12
0
24
72
2

6
18
2

26
78
4

8
24
2

28
84
0

10
30
0

30
90
0

12
36
0

...

...

14
42
4
98
294
6

16
48
0
...

...

18
54
2
182
546
8

20
60
0
...
...
...

Table 5.2: Some values of Ar(/i) for q — 6

Corollary 5.2: The number N(fi) of genus 1 normal subgroups of H(\/3) having

a given index /.i is always even.

Now we have calculated Ar(/z) for q = 4 and 6. It is then easy to generalise

these to any q > 3. Recall that, by Theorem 5.2, H(A?) has a normal subgroup of

genus 1 if and only if q = 0 mod's or q = 0 mod4. Also recall the homomorphism

of H(\/2) to a finite quotient of the infinite triangle group (2,4,4), giving genus 1

normal subgroups. This homomorphism, in general, exists as a. homomorphism of

H(A?) when q is divisible by four. When q is divisible by 3 or 6, we can obtain

similar results. By means of all these we now obtain the following generalisation:

Theorem 5.8: The number of normal genus 1 subgroups of H(AV) having index

/i IS
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0 if (q, 12) = 1 or 2

P/2 if 3 | q, q odd and fi =

0 if 3 | q, q odd and \i ^

a if 4 | q, 3 /<? and /J =

0 if 4 | q, 3 /<? and /J, ^

iV(/t) = 3 if 6 | 9, 4 / g and ^ =

0 if 6 | g, 4 \q and /x ^

a -\- j3 if 12 | ̂  and ft = 3t2 =

a if 12 | q and /< = 3t2 ^

/? if 12 | 9 and /< = 4 ^ ^

0 if 12 | q and 3t2 ^ / ( ^

where ^ and t2 are such that <! = r\ + ^^ and t2 = '2(r\ + r>d

Zt2

3£2

3t2

3t2

(5.26)

+ s%) and also

a = — € Z, r? + sj = (5.27)

and

€ Z, r2 + r2s2 + 4 = - ^ | . (5.28)

Example 5.2: (i) Let q = 20. As 4 | q and 3 / g , the total number of genus 1

normal subgroups in H(A2o) is either a or 0. A few values of N(/.i) are given in the

following table:
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iY(/O
1
0

11
0

2

0

12
0

3
0

13
0

4
1

14
0

5
0

15
0

6

0

16
1

7
0

17

0

8
1

18
0

9

0

19

0

10
0

20
2

Table 5.3

Therefore H(A2o) has no genus 1 normal subgroup of index 12, for example, but

it has two such subgroups, [4,4]i.2 and [4,4]2,1, of index 20.

(ii) Let q = 84. As 12 | q, the total number of genus 1 normal subgroups is either

0, a, /3 or a -f /?• Again the first few values of N(fi) are given in the following table:

V-
N{fi)

/*
N{fi)

jV(/o

1

0

11
0

21
0

2
0

12
0

22
0

3

0

13

0

23
0

4
1

14

0

24

2

5
0

15

0

25

0

6
2

16
1

26
0

7
0

17

0

27
0

8
1

18

2

28
0

9

0

19
0

29
0

10
0

20
2

30
0

Table 5.4
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Chapter 6

NORMAL SUBGROUPS OF H(Ag) FOR
ODD q

6.0. INTRODUCTION

In the earlier chapters, we have sometimes noted some important differences be-

tween the odd and even q cases. For example, if q is even, then H(Ag) has infinitely

many normal subgroups of genus 0 of finite index which is not true when q is odd

(including the modular group case). Similarly if q is even, then H(Ag) has infinitely

many normal subgroups of finite index with torsion which is again not possible in

the odd q case. There are many other examples like these that we have already

noticed or we shall notice.

As two of the most important Hecke groups are obtained for q = 4 and 6, we

shall deal with even q case mainly in Chapters 8 and 9 where we discuss the normal

subgroups of H(v/2) and H(\/3) and also we shall make generalizations of these two

cases to any even q.

In this chapter, we discuss some classes of normal subgroups of H(A7) for odd q.
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As q — 5 gives one of the important Hecke groups, we shall deal with it in Chapter

10 separately. But, of course, all the results in this chapter also apply to H(A5) as

well as to the modular group F =

We begin with the power subgroups of H(A9). The m-th power subgroup Hm(A?)

o/H(Ag) is the group generated by the m-th powers of the elements of H(A9). The

power subgroups of the modular group F = H(A3) have been studied and classified

in [Ne,l], [Ne,4] by Newman. In fact, it is a well-known and important result that

the only normal subgroups of F containing torsion are F, F2, and F3 of indices 1,2,3

respectively. Here we show that this nicely generalizes to the Hecke groups H(AP)

with p prime. We specially discuss H2(Ag) and H9(A9) as they are nicely related to

H(A9) and its commutator subgroup H'(A9). Then we give a classification theorem

for these power subgroups.

In the second part of this chapter, we discuss free normal subgroups of finite

index in H(AP), p prime.

If p is prime, then we shall show in Chapter 7 that we can find infinitely many

homomorphisms from H(Ag) to PSL groups. So H(AP) has infinitely many normal

subgroups. If q is non-prime, then there exists a homomorphism from H(Ag) to H(AP)

where p\q (p prime). Therefore H(A9) has infinitely many normal subgroups for all q.

6.1. POWER SUBGROUPS OF H(AJ FOR ODD q

Let q > 3 be an odd integer and let m € N. The m-th power subgroup of H(A9)

is defined to be the subgroup generated by the 7?i-th powers of all elements of H(Ag).

As fully invariant subgroups, they are normal in H(A(/).

In this section we. investigate these subgroups and also give some relations be-

tween them, H(A9) and the commutator subgroup H'(A,). We shall prove that H(A?)
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is the product of H2(A,) and H9(A9) and that the intersection of these two subgroups

is H'(Ag). Therefore H2(Ag) and H?(Ag) will be two important power subgroups.

From the definition it follows that

Hm{Xq) > Hmn{Xq) (6.1)

and that

(//'"(A,))" > Hmn{Xq). (6.2)

The last two inequalities imply that

Wn(Xq).H
n(Xq) = //<"1-">(A,), (6.3)

where m,n G N and (jn,n) denotes the greatest common divisor of m and n. In-

deed, first note that the product is well-defined as power subgroups are normal

subgroups. By (6.1) we have

> Hm(Xq) (6.4)

and

H{m'n){Xq) > //"(A,) (6.5)

so that

H^n\Xq) > Hm(Xq).H
n{Xq). (6.6)

Let now z be any element of H(Ag). Let us choose integers mi,rii such that

+ riin = (m,n). Then

'""" € //'"(A) "'" € Hn{Xq) (6.7)
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and hence

2m,m+n1n g //" l (A,).//H(Ag). (6.8)

That is

2(«.n) € Hm(Xq).H
n{Xq) (6.9)

and therefore

< Hm(Xq).H
n{Xq). (6.10)

Therefore we have

= Hm{Xq).H
n(Xq). (6.11)

Particularly

//(A,) = //2(A,).//'(A,) (6.12)

as q is odd.

Let us now discuss the group theoretical structures of the power subgroups. The

proofs are just generalizations of the proofs in [Ne,l]. First we have

Theorem 6.1: The normal subgroup H2(A,) is the free product of two finite

cyclic groups of order q. Also

| H(Xq) : H>(Xq)\ = 2, (6.13)

H(Xq) = H2{Xq) U RH2{\q), (6.14)

and

H2(Xq) = < < ? > * < RSR> . (6.15)
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The elements of H2(A?) are characterised by the property that the sum of the expo-

nents of R is even.

Proof: Set K = (S,RSR). Then clearly K is normal in H(Ag). Since the

elements of K satisfy the requirements of the theorem, i.e. since the sum of the

exponents of R is even, we find that K < H2(A9).

Let now z be any element of H(Ag). Then we can write

z = SCiRSC2R...Sc"RSCn+i (6.16)

where the c\s are integers some of which, but not all, may be zero. Thus

z = SC1 {RSR,)C2SC3 ... {RSR)CnSen+l if n is even, (6.17)

and

z = SCl(RSR)C2SCi...SCn{RSR)c"+1 R if n is odd. (6.18)

Hence either z £ /( or zR £ K. Since R is not in A', we find

H(A,) = K U K.R
(6.19)

= K U R.K.

Now H(A,) > H2(A,) > K and | H(A,) : K \ = 2 which altogether imply that

|H2(A9) : K | = 1 or 2. But as R. is odd, it cannot be a square as all squares are

even elements. Therefore R is not in H2(A(/). Hence H(AV) ^ H2(A9) which implies

(6.13), that is

K = H\\q). (6.20)

That S and RSR generate H2(A7) can be seen by the Reidemeister-Schreier

method.
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Let us now consider the homomorphism

H(Xq) —> H(Xq)/H*(Xq) S C2. (6.21)

Here R is mapped to an element of order two and S is mapped to the identity.

Hence T is mapped to an element of order two. Then the permutation method

and Riemann-Hurwitz formula together give the signature of H2(A?) as (0 ; q, q, oo),

that is, H2(A9) is isomorphic to the free product of two finite cyclic groups of order q.

We now have

Theorem 6.2: The normal subgroup H'(Ag) is isomorphic to the free product

of q finite cyclic groups of order two. Also

|//(A,) : H"{Xq)\ = q, (6.22)

H(\q) = H"{Xq) U SH"(Xq) U ... US ' - 1 / / ' ^ , ) , (6.23)

and

#9(A9) = < / ? > * < SRSq-x > * < S'2RSq-'2 > * . . . * < S'-'RS > . (6.24)

The elements of H.q(Xq) can be characterised by the requirement that the sum of the

exponents of ,Sr is divisible by q.

Proof: Set L = {R,SRS'1-\S'2RS'>-2, ... ,Sg~l RS). Being closed under conju-

gation by the generators R and S, L is normal in H(A7). The elements of L satisfy

the requirements of Theorem 6.2, i.e. the sum of the exponents of S for each element

of L is a multiple of q. Hence L < H9(A,).

Let now ivn be any word of the form

wn = SeiRSC7R...SenR. (6.25)
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As

SClR = SCl RS2ci S~2ci (6.26)

we have

wn = SC1 RS2ci .iyn_! (6.27)

where ton-i = SC2~2ciR... SCnR. But

SeiRS2ei = #, SRSq-\ S2RSq-2, ...,S"-lRS. (6.28)

This implies, by induction on n, that

wn = k.SC0 (6.29)

where k £ L and Co is any integer. Hence for any z given by (6.16) we have

Z = lDn.SC" + 1

(6.30)
= fc.5c

where c is some integer. Since no non-trivial power of S belongs to L, this implies

H(A,) = E?=o L-S*
(6.31)

= E^o 5'".L.
Now we have H(A,) > H»(A,) > L and also | H(A,) : L \ = q. Therefore

\H{\q) : /HA,) | = d (6.32)

where d\q. Here d cannot be 1 since S is not in H?(A,). In H(Ag)/H9(A?), we have

the relations

r2 = *i = (rs)i = I (6.33)
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where r and 5 are the images, in H(A,)/H'(A?), of R and S, respectively. Therefore

q j d. As also d\ q, we find d = q. Hence (6.22) is true. Therefore L — H'(A?).

Now consider the homomorphism

//(A,) —> H{\q)/H'{\q) £ Cq. (6.34)

Here R is mapped to the identity and S is mapped to an element of order q. Hence

T is mapped to an element of order q as well. Therefore

H"(\q) £ (O; 2<»\ oo) (6.35)

which is the required result.

Using the results above, we obtain the following theorem:

Theorem 6.3: Let p be an odd prime. The subgroups Hm(Ap) satisfy the

following:

f H(Ap) if(m,2p) = l

H2(AP) if m is even and {m,p) = 1 , >

HP(AP) if 77). is an odd multiple of p

Proof: When (m,2p) = 1, H(AP)/H
TO(AP) is trivial and hence Hm(Ap) = H(AP).

Secondly let 771 be even and (771, p) = 1. Then in the quotient group H(Ap)/H
m(Ap)

we have the relations ?-2 = s = / and therefore this quotient is isomorphic to the

cyclic group C-i. Now by the permutation method and Riemann-Hurwitz formula,

Hm(Ap) has the signature (0 ; p,p, oo) implying Hm(Ap) = H2(AP), as there exists a

unique normal subgroup of H(A,) with index two when q is odd.
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Thirdly, suppose that rn is an odd multiple of p. Then similarly the quotient is

isomorphic to Cp and H'n(Ap) has the signature (0 ; 2(p),oo). Again as there is a

unique normal subgroup of index q in H(A9) when q is odd, we have Hm(Ap) = HP(AP).

Remarks 6.1. Because of Theorem 6.3, we have left only the subgroups

H2pm(Ap), m 6 N to consider. This will be done after a discussion of the com-

mutator subgroup H'(Ag) of H(Ag).

Let now q > 3 be a composite odd number. Then Theorem 6.3 is again satisfied,

but does not cover all cases. For example the. subgroups H2'm(A7) are again left to

consider as in the case of an odd prime p. Moreover, there are some other classes

of these subgroups which need to be dealt with. For example, if m is odd such

that 1 < (m,q) = d < q, then in the quotient group H(A,)/H"l(A,) we have the

relations ?• = sH - 1, that is, H(A,)/H"l(A,) = Cd. Then we obtain

o). (6.37)

Recall that in Chapter 4, we discussed a class of normal genus 0 subgroups of H(A7),

denoted by Vrf(A7) with the signature (6.37). Therefore in this case H'n(Ag) = Yd(Xq).

Finally, if m is even such that 1 < (m,q) = d < q, then in the quotient group

H(A,)/Hm(Av) we have the relations r2 = .•>'' = (rs)m = 1. Therefore the above

techniques do not say much about H"l(A7) in this case apart from the fact that they

are all normal subgroups with torsion.

We now discuss the commutator subgroup H'(A7) of H(A9):

Lemma 6.1: The commutator subgroup H'(A,j) of H(A,) is isomorphic to a free

group of rank q — 1. Also

|//(A,,) : //'(A,) | = 2r7, (6.38)
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f / / ' ("(A,) = E r\//'(Ag) (6.39)
t=0

and

#'(A,) = < SRS'^R > • < S2RSq-2R > *...* < Sq-XRSR > . (6.40)

Let

<M = SRSq-lR,a2 = S'2RS"-2R, ...,«,_! = Sq-lRSR. (6.41)

Note that since <y is odd the quotient groups H(A,)/H2(A?) and H(A?)/H'(A?) are

cyclic and therefore abelian so that

H2(Xq) > //'(A,), //'(A,) > tf'(A,). (6.42)

Hence.

//2(A,) D //'(A,) > //'(A,). (6.43)

Since H2(A,) and H9(A?) are normal subgroups of H(A7) we have, by one of the

isomorphism theorems, that

H*(\q)Hi(\q)/Ho(\q) 3 //2(A,)/ (H2(Xq) n //'(A,)) . (6.44)

As H2(A,)H'(A,) 3 H(A,), we have

2(A,)n H"(Xq)) | = 7. (6.45)

Then

| H(Xq) : (ff2(A,)n H"(Xq)) | = 2(7- (6.46)
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Now we have

ff(A,) > H2(Xg) H ff«(A,) > H'(Xq) (6.47)

and

|ff(A,) : ff'(A,)| = |ff(A,) : (//2(A,) n ff'(A,)) | = 2q. (6.48)

These together imply the following result:

Theorem 6.4: The commutator subgroup H'(Xg) of H(A9) satisfies

H'(Xq) = ff2(A,) n ff'(A,). (6.49)

By means of this result, we are going to be able to investigate the subgroups

H2?"l(A,). As H2(A?) > H2'(A,) and H'(A,) > H"2'(A9), (6.49) implies that

H'(Xq) > ff2'(A,). (6.50)

As H'(Ag) is a free group, we can conclude that H2'(A,) is also a free group. More-

over (6.1) implies that

ff2'(A,) > ff2'w(A,). (6.51)

for m € N. Therefore we have

Theorem 6.5: The subgroups H29'"(A7) are free.
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6.2 FREE NORMAL SUBGROUPS OF H(AP) FOR PRIME p

As H(A9) is the free product of two finite cyclic groups of orders two and q, it

has, by the Kurosh subgroup theorem, or by considering signatures, two kinds of

normal subgroups: Free ones and free products of some infinite cyclic groups with

some cyclic groups of order two and order d where d \ q. Therefore the study of

free normal subgroups and their group theoretical structures will be important to

us. They have already been discussed briefly in Chapter 4 in connection with the

normal genus 0 subgroups. Here we discuss them for prime p. This has been done

for p — 3 by Newman in [Ne,l]. His results can be generalized to prime p case.

When q is a composite odd number, it is possible to obtain similar results, however,

it looks difficult to find all normal free subgroups in this case.

First we have

Theorem 6.6: Let p be an odd prime. If Ar is a non-trivial non-free normal

subgroup of H(AP), then N is one of

H(Xp),H
2(Xp)orHp(Xp). (6.52)

The proof of Theorem 6.6 depends on the following two lemmas:

Lemma 6.2: Let N be a. non-trivial normal subgroup of H(AP). Then N is free

if and only if it contains no elements of finite order.

Proof: Suppose N contains no element of finite order. Now by the Kurosh

subgroup theorem

,V £ F * n * B/3 (6-53)
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where F is either free or {/} and each Bp is conjugate to either {R} or {S}. As

N has no elements of finite order the product n* Bp xs vacuous and also as N is

non-trivial, N must be free.

Conversely, if N is free, then by definition, it contains no elements of finite order.

We also have

Lemma 6.3: The only normal subgroups of H(AP) containing elements of finite

order are

H{\p),H
2{\p)and Hp{\p) (6.54)

Proof: Let N be a normal subgroup of H(AP) containing an element of finite or-

der. Then N contains an element of order two or an element of order p, as p is prime.

An element of order two in N is conjugate to R as p is odd and an element of order

p is conjugate to a power of S. Therefore if a normal subgroup N contains an el-

ement of finite order, then it contains R or S or both. Therefore we have three cases:

(i) If Â  contains both R and S then N = H(AP).

(ii) If Â  contains 5' but not 7?, then H(XP)/N is isomorphic to C-i as we have

the relations ?-2 = -5 = 1. Then by the permutation method and Riemann-Hurwitz

formula we have N = H'2(AP).

(iii) If N contains R but not S, then H(XP)/N is isomorphic to Cp as, this time,

we have the relations r = sp = 1. Similarly N = Hp(Ap).

The proof of Theorem 6.6 is now a direct result of Lemmas 6.2 and 6.3.
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We finally have

Theorem 6.7: Let q be odd. Let N be a free normal subgroup of H(Ag) with

| H{Xq) : N\ = fi < oo. (6.55)

Then

2q\fi. (6.56)

Proof: The quotient group must contain elements of order 2 and q, so its order

is divisible by 2q.
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Chapter 7

PRINCIPAL CONGRUENCE SUBGROUPS
OF THE HECKE GROUPS H(Ag)

7.0. INTRODUCTION

Perhaps the most interesting normal subgroups of the modular group F are the

principal congruence subgroups. In this chapter we define these subgroups in general

for any Hecke group H(A9). Then we find the quotients of H(A?) by them and finally

we determine their group theoretical structure. Most of them are free groups. We

shall see that these subgroups are important and interesting in the case of Hecke

groups as they are in the modular group case.

In this chapter the principal congruence subgroups of H(A7) will be discussed for

several values of q. The modular group case where q = 3 has been investigated for a

long time, so we shall largely ignore this case. We begin with the next two interest-

ing examples q = 4 and 6. There is some work done on the congruence subgroups of

these two grpups, see [Pa,l] and [Pa,2]. Our next case will be q = 5 as in this case

we have the icosahedral group A$ as a quotient group of H(A5) giving a torsion free

principal congruence subgroup. As we shall see, this is not possible for the other
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values of q > 3. Than we shall discuss the case where q is a prime > 5. Again q = 7

case will be significant and different from others, and therefore will be dealt with

seperately. Indeed in this special case, with only one exception, all quotient groups

of H(AT) with the principal congruence subgroups are Hurwitz groups — i.e. the

groups of 84(<7 — 1) automorphisms on a Riemann surface of genus g. We shall also

prove that H(A7) has in fact infinitely many normal subgroups.

In each case we shall find the quotient group of H(A7) by the principal congru-

ence subgroup and then determine the group theoretical structure of the normal

subgroup. Our main tool will be [Ma,l]. We shall recall some results from this

work, which will be used in determining the required quotient groups.

Recall that Hecke groups H(A7) are triangle groups with a parabolic element T.

We say a subgroup N of H(Ag) is of level n if Tn belongs to N and n is the least

positive integer with this property. It is known that fi = n.t where t denotes the

parabolic class number of N and \i =[H(A7) : TV] (see Section 0.4).

Let us now begin with the modular group:

A complete classification of the normal congruence subgroups of the modular

group F is given by Newman [Ne,7] and Me Quillan [MQ,1]. The principal congru-

ence subgroup of level n of Y is defined by

Y(n) = \T(Z) = ^ 4 eY : a = d=±l,b = c = 0 (modn)} . (7.1)
[ cz + d )

A subgroup of Y containing a principal congruence subgroup Y(n) is called a

congruence subgroup of level n.

Y(n) is a normal subgroup of Y. But in general, not all congruence subgroups

are normal in Y.
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Another way of obtaining F(n) is to consider the "reduction homomorphism"

which reduces everything modulo n. Then F(n) can be obtained as the kernel of this

homomorphism. (This will be discussed in detail for all q in this chapter).

In [Pa,l], the principal congruence subgroup of level p of H(^/m), p prime,

m =2,3, is defined by

Tp{y/m) = {M e H(yfiZ) : M = ±1 (mod p)} . (7.2)

This is equivalent to

= I T(z) = — — : a = d = ± 1 , b = c = 0 (mod p), ad — mbc = 1 > .

(7.3)

See [Pa,2].

In general for any q £ N, q > 3, we can define the principal congruence sub-

group of level p, p prime, of H(A7) by

TP(\) = {T e H(Xq) : T =±I{modp)}.

= <( . , 1 : a = d = del, 6 = c = 0 (mot/ p), ac? — \2bc = 1 > .

(7.4)

FP(A9) is always a normal subgroup of H(Ag).

Let us once more consider the "reduction homomorphism" modulo p, p prime. In

the modular group case we noted that the kernel of this homomorphism is F(p)-the

principal congruence subgroup of level p of F. We shall see that the situation for

Hecke groups H(Ag) with q > 3 is more complex as there is not usually a unique

way of defining the reduction homomorphism.

Let p be an ideal of Z[Aq]. Then the natural map

0 P : Z[Aq] —> Z[Aq]/p (7.5)
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induces a map

H(\q) —> P5L(2,Z[Aq]/p) (7.6)

whose kernel is going to be called the principal congruence subgroup of level p.

Let now s be an integer such that P*(\) has solutions in GF(ps). We know

that such an 5 exists and satisfies 1 < s < d = deg P*(Xq). Let u be a solution of

P*{\) in GF(ps). Let us take p to be the ideal generated by u in Z[Aq]. As above,

we can define

0PiUi, : //(A,) —+ PSL(2,p') (7.7)

as the homomorphism induced by Xq »-> u. Let

A'p,u(A,) := /Cer(0p,u,,). (7.8)

As the kernel of a homomorphism of H(A,), A'PiU(Ag) is normal in H(A9).

Given p, as A'P)U(Ag) depends on p and u, we have a chance of having a different

kernel for each root u. However sometimes they do coincide:

Lemma 7.1: If u,v correspond to the same irreducible factor / of P*(Xq) over

GF{p), then A'P,U(A,) = tfp,u(A,).

Proof: Note that A 6 Kv u{\) if and only if A = ± (

with g(u) = h(u) = k(u) = l(u) = 0 in GF(ps). Therefore as / is irreducible,

(g,y)=l or / . If it is 1, then there are polynomials a and b such that ag + 6/ = 1.

But f(u) = g(u) = 0. Therefore (</, / ) = / and g is a multiple of / . Similarly

h,k and / are all multiples of / . As v is another root of the same factor of P*(A?),

g(v) = h(v) = k(v) = l(v) = 0 in GF(p'),i.e. A E KPAK)-
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Even when u, v give different factors of P,*(A,), we may have /fP)U(A,) = Kp<v(\q).

As an example of this situation we have the following:

In Example 7.1, we shall find odd elements A — I r I and B =
\ 7 5v2 )\ )

21 37 \k ) i n I<7>3^ ' r7(V^) and K7A(V2) - T7(V2) respectively for the

two roots of P4*(>/2) mod 7. But

7 W 37\/2 - 7
7 5v/2 / ' I -21 2v/2

i.e.

A.T7{y/2) = B.T7(y/2), (7.10)

so that

K7fl(V2) = K7,4(y/2). (7.11)

We now have

Theorem 7.1: KPtU(Xq) is a normal congruence subgroup of level p of H(A,), i.e.

Tp(Xq) < KPAK)- (7-12)

Therefore

rp(A,) < f| Kr,«M- (7-13)
allu

Proof: Before starting the proof, we want to recall a way of obtaining group

homomorphisms from ring homomorphisms.
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Let R and S be two rings with identity. Let

V> : R —* S (7.14)

be a ring homomorphism. Then xj) induces a group homomorphism

If : SL{2,R) —> SL(2,S). (7.15)

Similarly since PSL(2, R) is obtained from SL(2, R) by factoring out the center,

which is ±7, another group homomorphism

± : PSL{2,R) —» PSL(2,S) (7.16)

is induced by the same ?/>.

This general idea of obtaining group homomorphisms from ring homomorphisms

can be applied to Hecke groups H(A,) in the following way: Consider Z[Aq] which

is just an extension of the ring of integers by the algebraic number A,. If we reduce

all elements in this ring modulo p, for a prime p, we obtain a ring homomorphism

<pp : Z[Aq] _-» Zp[Aq] (7.17)

which reduces the elements of Z[Aq] modulo p. Now for each root, if there are any,

u € GF(p) of Pq{^q), there is a ring homomorphism

X« : Zp[Aq] — • Z p = GF(p) (7.18)

taking A, to u G GF(p). These two ring homomorphisms induce two group homo-

morphisms

<Pr : H{\) < PSL(2,Z[\}) — • Hp(Aq) < PSL(2, Zp[Aq]) (7.19)

and

Xu : Hp(Xq) < P5L(2,Zp[Aq]) — • PSL(2,p), (7.20)
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where Hp(Xq) denotes the image of H(Ag) modulo p, generated by Rp and Sp.

For each root u £ GF(p) of Pq(Xq), Kp>u(Xq) is the kernel of the composite

homomorphism

_ : H(Xq) —* PSL(2,p). (7.21)

If a root u is not in GF(p) then it is in an extension field GF(p3). Then the

above idea can be applied to the homomorphism from H(Ag) to PSL(2,ps) and the

kernel of this homomorphism gives us KPtU(Xq).

An element T of H(Ag) has the form

T = ( Pl P 2 ) (7.22)
V P3 PA )

where each p, is a polynomial of Xq of degree < d — 1 with d is the degree of the

minimal polynomial P*(Xq). Under (pp, T is mapped to T = I — — I. Here
\ PA PA /

Pi denotes the polynomial of A, with coefficients in GF(p). Finally by x^, T_ is

mapped to T* = [ ^ j ^ 1 J j n PSL{2,p), where Pi(u) denotes the value of

Pi_ at u G GF(p).

We can now prove Theorem 7.1. Let T € FP(A,) be in the form (7.22). Then

by the definition of FP(A?), we have

pi = p4 = ±1 mod p , pi = p3 = 0 mod p . (7.23)

Therefore T is an element of the kernel A'p>u(Aq) defined above. Hence

rp(A,) < KPtU{Xq) (7.24)

as required.
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Furthermore, as KPiU(Xq) and FP(A,) are normal in H(A,),

(7-25)

By Theorem 7.1, KPfU(\q) is a congruence subgroup of H(A,). We shall see that

the index of FP(A?) in KPtU(\q) is 1 or 2 except for a few cases.

In this thesis, we are not going to be concerned with KPtU(\q) for all roots u of

Pq(^q)- We shall only consider the Kp<u(\q) such that u is chosen from GF{p°) for

the smallest possible value of s. For example, if 5 = 1, then there is a homomor-

phism of H(Ag) to PSL(2,p) as we shall see in the next section, and therefore the

quotient of H(A,) by Kp<u(Xq) is going to be PSL(2,p).

When the index of rp(Ag) in KPtU(Xq) is not 1, i.e. when they are different, we

shall use Kp^u(Xq) to calculate rp(Aq). In fact in all cases we first determine the quo-

tient of H(Ag) by /<p)U(A,) and then, using this, we determine the required quotient

of H(Ag) by rp(A,j). To do this we use some results of Macbeath (see [Ma,l]). As we

shall use these results intensively, we now briefly recall them here:

7.1. SOME RESULTS OF MACBEATH

Let k = GF(pn) — a field with pn elements, where p is prime and n € N, and

let ki be its unique quadratic extension. Let Go = SL(2, k) and G = PSL(2, k) so

that G = Go/{±/} . We shall also consider the subgroup G\ of SL(2,ki) consisting

of the matrices of the form

where a,b 6 ki and aq+1 — bg+1 = 1. Macbeath, [Ma,l], classifies the Go-triples

(A, B,C), C = (AB)~l, of elements of Go finding out what kind of subgroup they

generate. The ordered triple of the traces of the elements of the Go-triple (A, B, C)
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will be a k~triple (a, /3,7). Also to each Go-triple (A, B,C), there is an associated

N-triple (/, m, n) where /, m, n are the orders of A, B and C in G.

Macbeath first considers the Go-triples and then using the natural homomor-

phism <f> : Go —> G, passes to the G-triples in the following way: If H is the

subgroup of G generated by (j>(A), <f>{B) and <f>(C), we shall say, by slight abuse of

language, that H is the subgroup generated by the G0-triple (A,B,C).

In the Hecke group case we have A = rp, B = sp and C = tp, where rp (sp, tv

respectively) denotes the image of R (S, T respectively) under the homomorphism

(fp reducing all elements of H(A?) modulo p. Hence the corresponding k -triple is

(0,tt,2) where u is a root of the minimal polynomial P*(A,) modulo p in GF(p) or

in a suitable extension field. Also the corresponding N -triple is (2, q, n) where n is

the level of the subgroup.

Macbeath obtained three kinds of subgroups of G: affine, exceptional and pro-

jective groups. We now consider them in relation with the Hecke groups.

Let p > 2. A k -triple (a,/3,7) is called singular if the quadratic form

PtC + 7fr (7-27)

is singular, i.e. if

1 7 /2 13/2
= 0. (7.28)

1 7 /2 13/2
7/2 1 a/2
P/2 a/2 1

Now consider the set of matrices of the form

a b
0 a-1 I - (7-29)

They form a subgroup of Go- By mapping it to G with the natural homomorphism

<f> we obtain a subgroup A\ of G. Now consider the set of matrices
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( o I ) ' ' e kl

in G\, where ki is the unique quadratic extension of k. This is conjugate to a

subgroup of SL(2,ki). It is mapped, firstly by the isomorphism from G\ to Go,

and then by the natural homomorphism <j> from Go to G, to a subgroup Ai of G.

Any subgroup of a group conjugate, in G, to either A\ or A% will be called an affine

subgroup of G.

A Go-triple is called singular if the associated k -triple (a, /?, 7) is singular. Any

group associated with a singular Go-triple is an affine group, [Ma,l].

From now on we restrict ourselves to the case k = GF(p), p prime.

For H(A?) with the generators R(z) = — l/z and T(z) = z -f A?, the above de-

terminant is equal to —A /̂4 and therefore vanishes only when Â  = 0 mod p. Then

if q = 3, A3 = 1 cannot be congruent to 0 modulo p for any p; that is, there is no

singular triple in the modular group case; i.e. modular group has no affine homo-

morphic images.

If q = 4 or 6, then the only singular triples are obtained when p = 2 or 3, re-

spectively.

For the other values of q, we need to find primes p such that Â  = 0 modp to find

the singular Go-triples. To do this we shall consider the minimal polynomial P,(x)

of A, over Q, discussed in Chapter 2, and specially its constant term c. Recall that

we determined c in 2.3 for all q. We found that if q is odd then \c\ = 1. Therefore

we do not have any singular triples when q is odd. When q is even, we have more

possibilities.' First, if q = 2a, a > 1, then \c\ = 2 and hence (rp,sp,tp) is singular

if and only if p = 2. Secondly if q = 2rn ,n > 1, then we showed that \c\ = r and

hence (rp,5p,/p) is singular if and only if p = r. Finally, let q be different from
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above. Then \c\ = 1 and again no singular triples are obtained in this case.

The triples (2,2,n), n <E N, (2,3,3), (2,3,4), (2,3,5) and (2,5,5) - as (2,3,5)

is a homomorphic image of (2,5,5)- which are the associated N -triples of the finite

triangle groups, are called the exceptional triples. The exceptional groups are those

which are isomorphic images of the finite triangle groups.

For example when q = 3, we obtain exceptional triples for p = 2, 3 and 5. When

q = 4 or 6 only exceptional triples are obtained for p = 2 and 3, respectively. In

general if q > 6 is even, then except for the infinite class of exceptional dihedral

triples (2,2, n), we only have the exceptional triple (2,2n, 2) which is again dihedral.

That is, only for p = 2, an exceptional triple can be obtained.

If q > 5 is prime then it is easy to see that the only exceptional triples are ob-

tained for p = 2.

For composite odd values of q, the number of exceptional triples depends on the

divisibility of q by 3 and 5. For example if q is divisible by 3, then there are homomor-

phisms to four finite triangle groups D3 2* (2,3,2), A4 S (2,3,3), S4 = (2,3,4)

and A5 = (2,3,5) each giving an exceptional subgroup of H(A7). Similarly if q is

divisible by 5, there are homomorphisms of H(A?) to D5 = (2,5,2), A5 = (2,5,3)

and again (2,5,5) as it maps onto A&, giving three exceptional subgroups. Further

if 15 | q, then H(Ag) has all of the above subgroups as there are homomorphisms to

the seven finite triangle groups mentioned above.

The final class of the subgroups of G is the class of the projective subgroups. We

have already discussed them in Chapter 0 and seen that there are two isomorphism

classes of them, PSL(2, k8) and PGL(2,ks) where ks < k, the latter containing the

former with index 2, except for p = 2 where the two groups are equal.
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Let now ki be the quadratic extension of k. Then every element of k is a square

in ki and therefore PGL(2, k) is contained in PSL(2, k i ) , i.e. we have the following

inclusions:

PSL(2,k) x PGL(2,k) -< PSL(2,ki). (7.31)

If ks is asubfield of k, then clearly PSL(2,)<LS) -< PSL(2, k). If also the quadratic

extension kSl is a subfield of k, then PGL(2, k8) -< PSL(2, k). Briefly, the groups

PSL(2, k s) , for all subfields of k, and whenever possible, the groups PGL(2,k8),

together with their conjugates in PGL(2, k) will be called projective subgroups of G.

Dickson, [Di,l], proved that every subgroup of G is either affine, exceptional or

projective, and we have discussed all these above. The remaining thing to do is to

determine which one of these three kinds of subgroups is generated by the Go-triple

(rp,sp,tp). We shall see that in most cases it will be a projective group, and our

problem is going to be to determine this subgroup. To do this we shall use the

following results proven by Macbeath, [Ma,l]:

Theorem 7.2: A Go-triple which is neither singular nor exceptional generates

a projective subgroup of G.

Theorem 7.3: If a Go-triple generates a projective subgroup of G, then it

generates either a subgroup isomorphic to PSL(2, n) or a subgroup isomorphic to

PGL{2, KO) where K is the smallest subfield of k containing a, f3 and 7, and KQ is

the subfield, if any, of which K is a quadratic extension.

There are some k-triples which are neither singular nor exceptional. They are

called irregular in [Ma,l], i.e. a k-triple is called irregular if the subfield generated

by its elements, say /c, is a quadratic extension of another subfield KQ, and if one of

the elements of the triple lies in KQ while the others are both square roots in K of

non-squares in KO, or zero. Then we have
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Theorem 7.4: A Go-triple which is neither exceptional, singular nor irregular

generates in G a projective group isomorphic to PSL(2, K) where K is the subfield

generated by the traces of its matrices.

We have thus completed recalling some necessary results of Macbeath. We can

now find the quotients of H(Ag) by FP(A7) and KPiU(\q) for several values of q be-

ginning with 9 = 4 and 6:

7.2. PRINCIPAL CONGRUENCE SUBGROUPS OF H(\/2) AND

In this section we discuss the principal congruence subgroups of H(y/m), where

m stands for 2 or 3. We first find the quotients of H(y/rn) by the principal congru-

ence subgroups and then find the group theoretical structure of them. We find that

except for a few cases, they are all free.

We first try to find the quotients of H(-y/ra) with KPiU(y/m). It is then easy to

determine H(y/m)/Tp(y/m). To determine both quotients we need the results stated

in 7.1.

(i) q = 4: Here we have the following result:

Theorem 7.5: The quotient groups of the Hecke group H(\/2) by its congruence

subgroups KP)U(\/2) and principal congruence subgroups Fp(\/2) are as follows:

) PSL(2,p) if p = ±\ mod 8
PGL(2,p) if P = ±3modS (7.32)

C2 if p = 2,
and
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{ Ci x PSL(2,p) if p = ±1 mod 8
PGL{2,p) if p = ±3 mod 8 (7.33)

D4 if p = 2.

Proof: Case 1. Let p ^ 2 be so that 2 is a square modulo p, that is, p = ±1

mod 8. In that case there exists an element u in GF(p) such that u2 = 2. Therefore

V2 can be considered as an element of GF(p). Let us now recall the homomorphism

of H(Ag) reducing all elements of it modulo p. The images of R, S and T under this

homomorphism were denoted by r p , s p and tp respectively. Then clearly rp,sp and

tp belong to PSL(2,p). Now there is a homomorphism

0 : H{y/2) —> PSL{2,p) (7.34)

• j J u ( aV2 b\ ( au b\ , ( a b\/2 \ (a bu \
induced by _ v-» I and r- , I t — > I ,

J V c d\/2 j \ c du J \ cy/2 d ) \ cu d jwhere in SL(2,p) we write, with slight abuse of language, a,b,c,d for their classes

in Z p . Then our problem is to find the subgroup of PSL(2,p) = G, generated by

Rp, Sp and Tv.

Following Macbeath's terminology let k = GF(p). Then K, the smallest subfield

of k containing a = tr rp, /3 = tr sp and 7 = tr tp, is also GF(p) as \[2 £ GF(p).

In this case, for all p, the Hp(\/2)-triple (rp,sp,£p) is not singular since the dis-

criminant of the associated quadratic form, which is —u2/4, is not 0. It is also not

exceptional since the associated N-triple (giving the orders of its elements) (2,4,p)

is not an exceptional triple for p = ±1 mod 8. Then by Theorem 7.2, (rp,.sp,ip)

generates a projective subgroup of G, and by Theorem 7.3, as /c = GF(p) is not a

quadratic extension of any other field, this subgroup is the whole PSL(2,p), i.e.

H{y/2)/KPtU{y/2) = PSL(2,p). (7.35)

Let us now find the quotient of H(\/2) by the principal congruence subgroup

rp(v2) in this case. Note that, by (7.3), Fp(\/2) is a subgroup of the even subgroup
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He(\/2) consisting of all even elements in H(\/2). Therefore there are no odd ele-

ments in Fp(\/2). We have the following subgroup lattice:

H(N/2)

PSL(2,p)
He(v/2)

PSL(2tp)

Figure 7.1. Two congruence subgroups of H(v2)

We now want to find the quotient group KPiU(y/2)/Tp(\/2). To show that it is

not the trivial group, we show that KPjU(\/2) contains an odd element, as Fp(\/2)

Let us see what an odd element looks like. If A is such an element, then

A = x y
\ Z ty/2

is in KPiU(>/2) - Tp(y/2). Now

; A = 2xt- yz = 1, x,y,z,t € Z, (7.36)

A2 = y
ty/2

- yz \/2(xy + yt)
y/2{xz + tz) 2t2 + yz

(7.37)

and since xu = tu = 1, y = z = 0 mod p, we have

x2u = 2a;2 = 1 mod p, (7.38)
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and similarly

t V = 2t2 = 1 mod p. (7.39)

Hence A is of exponent two mod Fp(\/2). Then we can write

KPtU(y/2) = TP(V2) U A.Tp(V2) (7.40)

as A £ rp(>/2).

Now we want to show that any element I y- j of He(x/2)/rp(\/2) com-

mutes with yl mod p. This is true since

/ xy/2 y \ ( a by/2\ ( y/2(ax + cy) 2bx + dy
\ <V̂  ) \ /2 d) \ + 2t /2(b + dt)

and

/ a by/2 \ ( x\/2 V \ _ ( \/2{ax + bz) ay + 2bt
\ cy/2 d ) \ z t\M ) ~ \ 2cx + d

and since y = z = 0 and x = t mod p. Therefore

cy/2 d) \az + 2ct y/2(bz + dt) ) { '

cy/2 d ) \ z ty/2 ) \ 2cx + dz V2~(cy + dt) ) ^ ' '

x
* C2 x PSL{2,p).

To find the odd element mentioned above we need to solve a Diophantine equa-

tion. Let us first see this with an example:

Example 7.1: (i) Let p — 7. Then u = \/2 = ±3 mod 7. We choose
( xy/2 y \ r

u = 3 mod 7. We are looking for an odd matrix 4̂ = I y- of KT^{\/2)

which is not in F7(\/2). Such an element must satisfy the following conditions:

A = 2xt - yz = 1, (7.44)

xu = tu = 1, y = z = 0 mod 7. (
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As u = 3 mod 7,

x = t = 5 mod 7. (7.46)

Then we have

2(5 + 7o)(5 + 76) - Ic.ld = 1, (7.47)

where a, 6, c, d are non-negative integers. Hence

7 + 10(a + b) + Uab = led (7.48)

which has a solution whenever a + 6 is an integer multiple of 7. A particular solution

of the Diophantine equation (7.48) is

a = b = 0, c = d = I (7.49)

and therefore

Notice that we have chosen u = 3 mo</ 7. If we choose the other value 4 of

it G GF(7), then again we obtain an odd element

* = (If
in K7^(v^-TV(v2)• In fact, as in this special case, 3 is the negative of 4, gener-

ators of one of the two principal congruence subgroups corresponding to these two

values of u are just the inverses of the generators of the other. Therefore these two

subgroups are equal in H(\/2).

(ii) Secondly let p = 17. Then similarly we obtain the Diophantine equation

1 + 6(a + 6) - 34a6 = \lcd (7.52)
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and solving this one we find

a = 14, b = 0, c = 1, d = 5, (7.53)

as a particular solution which gives the matrix

In general let p = ±1 mod 8. Let A = I / • be as above. We havex \/2 y

z ty/2

A = 2xt-yz = 1, (7.55)

xu = tu = 1, y = z = 0 mod p, (7.56)

where u = V^ mod p. Let t> € GF(p) be such that ut> = 1 mod p. Then

x = v + pa, < = u + p6, y = pc, z = pd

where a,b,c,d are non-negative integers. Hence (7.55) becomes

A = 2(u + pa)(u + pb) - p2cd = 1 (7.58)

and hence

2v2 - 1 + 2up(a + 6) + 2p2a6 = p2cd. (7.59)

Therefore

p | ( 2 V
2 - l ) . (7.60)

Let 2v2 - 1 = fc.p, A; G N. Then (7.59) becomes

k + 2v(a + b) + 2pab = pcd. (7.61)

135



This can be solved whenever

p\(k + 2v{a + b)). (7.62)

As k and v are known we can choose the non-negative integers a and b such that

(7.62) is satisfied. Although (7.61) has infinitely many solutions, we can obtain a

particular solution by choosing b = 0 and c = 1:

p \ ( }

pd vy/2 ) v ;

where a and d are chosen uniquely. That is, it is always possible to find an odd

element A of KPjU(\/2) which does not belong to rp(\/2), when p = ±1 mod 8.

Case 2. Now choose p be so that 2 is not a square modulo p and let p ^ 2, i.e.

let p = ±3 mod 8. In this case \/2 cannot be considered as an element of GF(p).

Therefore we shall extend this field to its quadratic extension GF(p2). Then u = \/2

can be considered to be in GF(p2) and there exists a homomorphism

0 : H(V2) — • PSL(2,p2) (7.64)

induced in a similar way to case 1.

Let k = GF(p2). Then /c, the smallest subfield of k containing traces a, ft, 7 of

RP,SP,TP, is also GF(p2).

Except for p — 3, the Go-triple (rp,sp, tp) is not an exceptional triple. If p = 3

then the corresponding N-triple is (2,4,3) and therefore the generated subgroup is

isomorphic to the symmetric group S4.

Now suppose p > 3. Then as in case 1, (rp,sp,/p) is not a singular triple. Since

K is the quadratic extension of KQ — GF(p) and as ft = 2 lies in KQ while a = 0,

and 7 = \[2 is the square root in K of 2 which is a non-square in KQ, by Theorem
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7.3, {rp,sp,tp) generates PGL(2,p), i.e.

S PGL(2,p). (7.65)

Since 2 is not a square modulo p, there are no odd elements in the kernel KPtU(\/2).

Hence

and hence

= TP(V2)

H(y/2)/Tp(y/2) = PGL(2,p).

(7.66)

(7.67)

Figure 7.2.

If _p = 3, then again the two subgroups coincide and

H(V2)/T3(V2) * H(y/2)/K3,u(y/2) S 54 = PGL(2,3). (7.68)

Case 3. Let finally p = 2. Then \/2 = 2 = 0 moJ 2. It is easy to find exactly

elements in H(\Z2)/r2(\/2) and as

r\ = t\ - s\ = / , s2 = r2t2, (7.69)
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(r2,s2, t2) is an exceptional triple generating the dihedral group D4 of order 8, that is

H(y/2)/T3(y/2) 3 D4. (7.70)

Now GF(2) = {0,1} and v/2 = 0 in GF(2). Therefore t2 = I mod 2. Hence

H(v2)//i'2,o(\/2), generated by r2,s2 and t2 is isomorphic to the cyclic group of

order 2, i.e.

H(V2)/K\O(V2) * C2.

H(\/2)

2

He(v/2) = K2l0

(7.71)

ra(v/2)

Figure 7.3. Two congruence subgroups of level two of H(\/2)

(ii) q = 6: We now calculate the principal congruence subgroups of H(\/3). All

ideas and calculations are similar to the q = 4 case. In fact we have the following

very similar result:

Theorem 7.6: The quotient groups of the Hecke group H(v3) by its congruence

subgroups KP)U(v'3) and Fp(\/3) are as follows:

(7.72)

' PSL(2,p)
PGL(2,p)

c2{ D3

if
if
if
if

P = ±1
p ^ ±1
p = 3
p = 2,

mod
mod

12
12, and
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and

C2 x PSL(2,p) if p = ±1 mod 12
PGL(2,p) if p ^ ±1 mod 12, and p ^ 2 , .

(r v r \ i r ;f « — i \'-(A)
^03 X O3J J U2 II p — O

D6 if p = 2.

Proof: Case 1. Let p ^ 2 be so that 3 is a square modulo p, that is, p = ±1

mod 12. In that case there exists an element u in GF(p) such that u2 = 3. Therefore

A/3 can be considered as an element of GF(p). Then we have a homomorphism

—> PSL(2,p). (7.74)

Let k = GF(p). Then K is also GF(p) as \/3 can be thought of as an element

of GF(p). (rp ,sp , ip) is not singular nor exceptional as (2,6,p) is not an exceptional

triple and as p > 2. Then by Theorems 7.3 and 7.4, (rp,sp,£p) generates PSL(2,p),

i.e.

* PSL(2,p). (7.75)

Let us now find the other quotient group H(y/S)/Tp(\/3). As in the case q = 4,

we can find an odd element

A = (xf* <vl) ;A = 3xt~yz = !' x'̂ z'*e z

in KP)U(\/3) — r p(v3)- ^ is of exponent two mod r p (v3) , and hence

U A.Tp{y/2). (7.77)

Also since A commutes with every I r 1 of H e(v3)/rp( \ /3) mod p,
y cyo a J

we have the below commutative diagram and hence

X //e(^y3)/^p(^/3)
^ C2 x PSL{2,p).
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Example 7.2: (i) Let p = 11. Then u = \/3 = ±5 mod 11. Let u = 5. After

some calculations similar to the case q = 4, we find the required odd element as

* = {%*£)• <"9>
(ii) Let p = 13. Now u = \/3 = ±4 mod 13. For u = 4, solving the corre-

sponding Diophantine equation we find

* = i ; « " 62^1 )• <7-8o>

H,(N/3)

PSL(2,p)

Figure 7.4. Two congruence subgroups of level p of H(\/3), (p = ±1 mod 12)

/ 3 \
Case 2. Let now p ^ 3 be such that 3 is not a square mod p, i.e. I J = — 1.

Then \/3 cannot be considered as an element of GF(p). If we extend GF(p) to its

unique quadratic extension GF(p2), then following the similar argument of the case

2 of q = 4 case, we obtain

H{V3)/KPtU{V3) = H(V3)/TP(V3) * PGL(2,p). (7.81)

When p = 2, (r2,52,<2) gives the exceptional N-triple (2,3,2) and hence gener-

ates a group isomorphic to the dihedral group D3 of order 6.
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Let us now consider H(-v/3)/r2(\/3). After some calculations we can see that

there are the following 12 cosets in this quotient group:

/ , s , s 2 , s 3 , s4, s5, r, rs,rs2,rs3,rs4,rs5. (7.82)

Here r and 5 denote their classes in the quotient H(\Z3)/r2(\/3). Therefore we have

the relations r2 = s6 = t2 = / , i.e. it is isomorphic to the dihedral group D6 of

order 12. Therefore we have the following:

2

r2(\/3)

Figure 7.5. More subgroup lattices for H(\/3)

Case 3. Let p = 3. As \/3 can be thought of as an element 0 of GF(3),

t3 = 1 mod 3. As r | = 1 as well, we have

H(y/3)/K3tQ(y/3) = C2.

In the quotient H(\Z3)/r3(\/3) we have the relations

(7.83)

r\=t% = s% = 53 = r3t3 (7.84)

as 3 = 0 mod 3. Therefore H(\/3)/r3(v3) is a finite homomorphic image of the

infinite triangle group (2,3,6). As
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- {A, - : M = ±7 mod 3 (7.85)

we can find all cosets. It can be shown that the quotient group is isomorphic to the

Wreath product Cj, \ C2 of order 18.

He(>/3) = K3,0{y/3)

r3(v/3)

Figure 7.6. Some congruence subgroups of level 3 of H(\/3)

Hence we have found all quotient groups of H(-y/m), m= 2 or 3, with KP

and with the principal congruence subgroups rp(-y/m), for all prime p. By means

of them we can give the index formula for these two congruence subgroups. (This

agrees with the formula given by Parson, [Pa,l]):

Corollary 7.1: The indices of the congruence subgroups KPiU(y/rn) and Tp(y/m)

in are

p(p — l)(p + l)/2 if m is a square mod p and p ^ m,
P{P ~ l)(p + 1) if m is not a square mod p and p ^

2 ifp = m,
24 if m = 2, p = 3,
6 ifm = 3, p =, 2,

6/m,

(7.86)
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and

' p{p - l)(p + 1
2m2

24
12

if
if
if

P
P
m
m

= m,
= 2,
= 3,

6/m,

p = 3,
p = 2.

(7.87)

We are now able to determine the group theoretical structure of the subgroups

KP,u{y/rn) and Tp(\/m) of H(^/m), m = 2 or 3. First we consider the H(\/2) case:

We know that

TP(V2) ^ KPtU(V2) (7.88)

and also by the definition of Fp(\/2)

Tp(\/2) <] / / e(\ /2). (7.89)

We then have four cases:

(i) Let p = 2. In this case H(\/2) / /G,o(\/2) = C2. It is easy to see that

^2,o(\/2) cannot have any odd elements. Indeed if there is one, say I , ,- 1,

then it can not be mapped to the identity mod 2. Since both of the normal sub-

groups K2fl{\/2) and He(\/2) have index two in H(v/2), they must be isomorphic by

(7.71), i.e.

K2,0{y/2) * He(V2). (7.90)

Let us now consider T2(y/2). Recall that H(v
/2)/r2(y /2) = D4 = < a , 7 | a 2 =

>y2 — (ecy)4 = I >. Recall that the kernel of the homomorphism of H(v2) onto

Z>4 was denoted by W4(y/2). Therefore Y2(^/2) is the same as W4(\/2). Here

R y~* a, S h-> 7 and therefore RS »-» cry, i.e.

R~ (12)(34)(56)(78) . ,
S n-f (18)(23)(45)(6 7) [ '
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and therefore

RS *-* (13 5 7)(2 8 6 4). (7.92)

Now by the permutation method and Riemann-Hurwitz formula we find the signa-

ture of T2{y/2) as (0 ; 2<4\ oo, oo).

(ii) Let p = ±1 mod 8. Then the quotient groups are PSL(2,p) and C<i x

PSL(2,p) respectively as we have proved. Let now rp and sp be the images of R and

S, respectively, in PSL(2,p) or in C-i x PSL(2,p). Then the relations r£ = s* = I

are satisfied, that is, both Kp<u{\/2) and Tp(y/2) are free groups. The parabolic

element rpsp has order p, that is, the level of the congruence subgroup Fp(\/2) or

^P,U( \ /2) is p. Then T goes to an element of order p. Let \i be the index of the con-

gruence subgroup A'P)U(\/2) or the principal congruence subgroup Fp(\/2) in H(\/2)-

Then they have the signature (g ; oo^p^). By the Riemann-Hurwitz formula the

genus g is given by

g = l + f ( p - 4 ) . (7.93)
8p

Let us see this with an example:

Example 7.3: Let p = 7. Then the two quotient groups are PSL(2,7) and

C2 x PSL(2,7), respectively. Therefore the signature of K7j3(y/2) = K7,4{y/2~) is

(10 ; oo(24)) and the signature of T7(y/2) is (19 ; oo(48)).

As the example suggests we can easily see that if KPiU(>/2) has genus g\. and

parabolic class number f̂ , and if Fp(v2) has genus g1 and parabolic class number

t-y, then

g-y = 2.9k - 1 (7.94)

and
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ty = 2.tk. (7.95)

(iii) Finally let p = ±3 mod 8. Then both quotient groups are isomorphic to

PGL(2,p). As in case (ii) we have the signature of KPtU(V^) = rp(>/2) as

(l + A ( p _ 4 ) ; o o ^ . (7.96)

Example 7.4: Let p = 5. Then }l(y/2)/K6<u{y/2) = H(x/2)/r5(\/2) S PGL(2,5),

and therefore

A'5,u(\/2) = T5(v^) = (4 ; oo<24>). (7.97)

Let us now do the similar calculations for the principal congruence subgroups of

H(v3)- We have the following relations:

TP(\/3) < tfPlU(\/3), (7.98)

and

Tp(\/3) ^ ^(V^)- (7.99)

We now consider the possibilities:

(i) Let p = 2. We know that R{y/3)/K2<u(\/3) = D3 and H(>/3)/ T2(\^) ^ D6.

In the former one, the quotient group is D3 = (2,3,2), and hence by the permu-

tation method it is easy to see that A'2,u(\/3) has the signature (0 ; 2,2, oo^) and

therefore

= C2*C2 + F2, (7.100)

where F2 denotes a free group of rank two.
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Secondly let us consider H(v /3)/r2(v /3) = D6 = (2,6,2). In a similar way we

obtain the signature of F2(\/3) as (0 ; oo^) and therefore it is a free group of rank

five, i.e.

=* F 5 . (7.101)

(ii) Let p = 3. Now we have H(y/3)/K3fi(y/3) = C2. Since R and 5 both map

to the generator of C2, we find

K3,0{y/3) = He{V3). (7.102)

We have also proved that ll(y/3)/T3(\/3) = C3 I C2. This Wreath product has

a presentation

(a, 0,7 : a3 = /3s = 7
2 = apa'1^1 = I, 7 a 7 = p) (7.103)

which can be written as

(a , 7 : a3 = 7
2 = ( a 7 ) 2 ( 7 a ) - 2 = / ) (7.104)

and therefore is a finite quotient of the infinite triangle group (2,3,6), as (cry)6 = / .

Therefore r3(\ /3) has the signature (1 ; 2(6),oo<3)) and hence

6

r3(\/3) ^ F4 * H * C2. (7.105)

(iii) Let now p = ±1 mod 12. Then we have shown that H(\Z3)//^Pl«(>/3) —

PSL(2,p) and that H(\/3)/rp(v /3) = C2 x PSL(2,p). Similarly we find that

KP,u{\/3) or rp(v/3) has the signature (^ ; oo^/^) where

«/ = 1 + ^ ( P - 3 ) - (7-106)

Example 7.5: Let p = 11. Then A'n,5(\/3) = / < H , 6 ( \ / 3 ) has the signature

(81 ; oo(60)) and Tn( \ /3) has (l61 ; oo(120)).
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Again (7.94) and (7.95) are valid in this case.

(iv) Finally let p ^ ±1 mod 12 and p ^ 2. In that case both quotient groups

are PGL(2,p) and as in part (iii) of q = 4 case, both congruence subgroups Kp<u(\/3)

and r p (v3) have the same signature

fl + ( p 3 ) ; o o V . (7.107)

Example 7.6: Let p = 5. Then A's,u(\/3) and rs(\/3) both have the signature

(9;oo(24)).

Therefore we have finished the search of the principal congruence subgroups of

the two important Hecke groups H(\/2) and H(\/3)- We now discuss the principal

congruence subgroups of another important Hecke group H(A5):

7.3. PRINCIPAL CONGRUENCE SUBGROUPS OF H(A5)

For q = 5, we have A = A5 = ^ , ^n e g°lden ratio, as a root of the minimal

polynomial x2 — x — 1 = 0. Because of A2 = A -f 1, every element of Q(A) is linear

in A, i.e. has the form aX + b, a,b G Q. Therefore all entries of the matrices of

H(A5) will have form aX + b, a, b G Z.

We know that H(As) is generated by the elements corresponding, in the usual

way, to the matrices

satisfying the relations

R2 = S5 = I. (7.109)
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Let us now reduce all elements of H(As) mod p, for a prime p. Doing this we ob-

tain a homomorphism of H(A5) to H(X5) / KPtU(X5). Under this homomorphism i?, S

and T are mapped to rp, sp and tp. Then H(A5)/A'PiU(A5) is a homomorphic image of

(rP, sP : r2
p = ss

p = t; = I, tp = rpsp). (7.110)

Let us now discuss the possibilities. First we have three exceptional cases:

Case 1: p — 2. In this case the polynomial equation x2 — x — 1 = 0 has no

solutions in GF{2) — Z2 = {0,1}. Therefore we extend Z2 by adding u where u is

a root of the quadratic equation x2 + x + 1 = 0. Then Z2[u] = {0, l,u, 1 + u}. It

is then easy to see that in H(A5)/A'2,u(A5) we have the relations r2, = s\ = t\ = I

which implies that this quotient is isomorphic to the dihedral group D5.

Case 2: p = 3. In that case r3,53 and 3̂ satisfy the relations r | = S3 = t^ = I;

that is, H(A5)/A'3!U(A5) is As, as A5 is simple.

Case 3: p = 5. Now \/E can be thought of as equal to 0 6 GF(5). There-

fore A5 = i = 3 mod 5. As 3 G GF(5), there is a homomorphism of H(A5)

to PSL(2,5). Then we have the relations r2 = s5
5 = t5

5 = I in U(X6)/KSfl(Xs).

Therefore H(A5)/A'5?3(A5) is isomorphic to a finite quotient of the infinite triangle

group (2,5,5). Now

r5tl = ( J -\ ) mod 5. (7.111)

Let U5 = t\. Since tr(r5u5) = 1, r5u5 is of order three. Then H(A5)/Ar5)3(A5) has

a presentation (r5,u5 | rj = u | = (r5u5)3 = / ) , that is H(A5)/A'5i3(A5) is a (2,3,5)-

group, i.e. it is isomorphic to the alternating group A5.

From now on we let p > 7 be a prime. Then we have two cases according to

p = ±1 mod 10 or not:
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Case 4: If 5 is a square mod p, i.e. if I 1 = 1 , i.e. if p = ±1 mod 10,

then \/E can be considered in GF{p). In fact as P5*(A5) is quadratic, there are two

values u and v of A5 modulo p. Hence the elements rp,sp and tp would belong to

PSL(2,p). Then we have two homomorphisms

0, : i/(A5) _ > PSL(2,p), « = 1,2, (7.112)

induced by A5 —> u and A5 —> u. Since the Go-triple (rp,sp,tp) is neither excep-

tional nor singular, by Theorem 7.3, it generates PSL(2,p). Therefore H(As) has

two normal congruence subgroups KPtU(\5) and KPtV(X5) for p = ±1 mod 10.

Example 7.7: Let p = 11. Then there are two candidates for A5, 4 or 8. Now

consider 5T6 . For A5 —> 4, ST6 is of order 6 and for A5 —• 8, it is of order 3.

Therefore there are two different kernels Ku^i^s) and Kufl(X5).

Case 5: Finally let p jk ±1 mod 10 and p / 5. That is, p is such that 5 is

not a square mod p. In this case \fE cannot be considered as an element of GF(p).

Hence we extend it to GF(p2) as two is the degree of the minimal polynomial of A5.

Then y/E can be considered in GF(p2) and then we have a homomorphism

0' : H{\5) —-4 PSL(2,p2). (7.113)

Since p > 7, the Go-triple (rp,sp,tp) is neither exceptional nor singular. Hence by

Theorem 7.2, it generates a projective subgroup of PSL(2,p2). By Theorem 7.3,

it is either PSL{2,p2) or PGL(2,p). In this case we must consider the irregularity

of the corresponding k -triple which is (0,u,2) where A5 = u in GF(p2). By the

discussion just before Theorem 7.4, this k-triple is not irregular. Hence Theorem

7.4 implies that

H(Xs)/KPtU(Xs) S PSL(2,p2). (7.114)

As a result of the five cases investigated above we have the following:
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Theorem 7.7: The quotient groups of the Hecke group H(A5) by its principal

congruence subgroups Kp<u(\^) are as follows:

PSL(2,p) if p = ±1 mod 10,
PSL(2,p2) if p = ±3 mod 10, and p ^ 3,

A5 if p = 3,5.

Let us now determine the group theoretical structure of these kernels. As we

have the relations

r\ = 4 = / (7.116)

in H(X5)/KP)U(XS), all these subgroups are free. Also

t; = / (7.ii7)

implies that KPjU{Xs) is of level p. Now by the permutation method and Riemann-

Hurwitz formula it has the signature

depending only on the index /x of Kp!U(\s) in H(As).

Example 7.8: A'2,U(A5) = (° ! °° ( 5 )) ' ^3,«(A5) = (o ; oo^20)) and A"5,3(A5) =

(4;oo(12)).

The first of these three kernels corresponds to a dihedron. The second one geo-

metrically corresponds to one of the five platonic solids, icosahedron, which can be

thought of as a regular map of type {3,5}. Finally the third one corresponds to a

great dodecahedron, a regular map of type {5,5}.

Let us remind ourselves of what we have already done in this chapter. For q

= 4 and 6 we have found the kernel Kp<ii(y/rn) and then by means of it we have

calculated the principal congruence subgroups Tp{y/m). We have seen that for a lot

of values of p, these two congruence subgroups are different. We have also calculated
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the principal congruence subgroups of H(A5). We saw that for p = ±1 mod 10

there are two Kv,u(\5) subgroups unlike q = 4 and 6 cases.

7.4. PRINCIPAL CONGRUENCE SUBGROUPS OF OTHER HECKE
GROUPS

We have considered the principal congruence subgroups in the cases q = 4, 5 and

6, and recalled some results for q = 3. We now discuss the case where q > 7 is a

prime. We deal with the case of q = 7 seperately because of its close relation with

the Hurwitz groups. We shall show that this is the only case, apart from the modu-

lar group, that gives the quotients H(A?)/Kp>u(Xq) as Hurwitz groups. Actually all

of these quotients, except for p = 2, are Hurwitz groups.

Let q = 7. Since we do not have any exceptional or singular triples for p > 2, by

Theorem 7.3, (rp,sp,tp) generates a projective subgroup. Now the minimal polyno-

mial P7(x) is of degree three, which is odd. Hence the field K which is either GF(p)

or GF(p3) cannot be a quadratic extension of any other field KQ. Therefore by The-

orem 7.4 we cannot have any projective general linear groups as a quotient of H(A7)

by a principal congruence subgroup. That is, the only possible projective groups

generated by the G0-triple (rp,sp,tp) are PSL(2,pn), n\d = 3, i.e. PSL(2,p) or

PSL(2,p3). Let us now deal with the possibilities:

Case 1: p = 2. In this case we have an exceptional N-triple (2,7,2) which gives

H{X7)/K3,U(X7) S D7. (7.119)

Case 2: p = 7. Now the minimal polynomial P7(x) has a root, u = 5, of multi-

plicity three in GF(7). Indeed

(x - 5)3 = {x + 2f = x3 - x2 - 2x + 1 = P;(x) mod 7. (7.120)

Since (R7, 5*7, TV) is neither exceptional nor singular, it generates, by Theorem 7.3,

PSL(2,7). Therefore the quotient group

H(\7)/K7,u(\7) =* PSL{2,1) (7.121)
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is a Hurwitz group.

Case 3: p = ±1 mod 7. This is equivalent to say that p = ±1 mod 14. Since

7 is prime and divides the order of PSL(2,p), there are elements of order seven in

PSL(2,p). That is, there is a homomorphism of H(A7) to PSL(2,p) for each of

the three roots of Pf(\?) whenever p = ±1 mod 14. Since (rp,sp,tp) is neither

exceptional, singular nor irregular, by Theorem 7.3, it generates the whole group

PSL(2,p). Therefore, as in the case q = 5, H(A7) has three normal congruence

subgroups Kp,Ui(A7), i = 1,2,3 with quotient PSL(2,p).

Case 4: Finally let p ^ ±1 mod 7 and let p ^ 2. In that case, 7 does not

divide the order of PSL(2,p) implying that there is no homomorphism of H(A7) to

PSL(2,p). In another words, the minimal polynomial P7(x) has no roots in GF(p).

Hence we need to extend it to GF(p3), as the degree of lP7(x) is three, and then we

have a homomorphism

9 : H(X7) —> PSL(2,p3) (7.122)

induced as before. By Theorems 7.2 and 7.3, (rp,sp,tp) generates PSL(2,p3) which

is a Hurwitz group.

We have thus completed the discussion of the principle congruence subgroups of

H(A7). At the end we have the following result:

Theorem 7.8: The quotient groups of the Hecke group H(A7) by its principal

congruence subgroups A'PiU(A7) are as follows:

{
D7 if p = 2

PSL{2,7) if p = 7 (7 M\
PSL(2,p) if p = ±1 modi ( 7 J 2 3 )

PSL(2,p3) if p £ ±1 mod 7, p^2,

Now we consider the prime q case where q > 7. Of course all ideas in this case

are also true for q = 3, 5 and 7.

152



Recall that for q = 7 and p = ±1 modi, we obtained three homomorphisms

from H(A7) to PSL{2,p) one for each root of Pj(x) in GF(p), and these homomor-

phisms gave three non-conjugate normal subgroups of H(A7). A similar thing seems

to happen when q > 7. Every time we reduce P*(x) modulo p, it splits either in

GF(p) or in a finite extension of GF(p). That is, the roots of Pg(x) modulo p are

in GF(p) or in a finite extension of GF(p). If a particular root u is in GF(p), then

there is a homomorphism from H(A?) to PSL(2,p), and the kernel of this homomor-

phism is KPtU(\q). Similarly, if a root u lies in GF(pn) where n is less than or equal

to the degree d of the minimal polynomial P*(x), then there is a homomorphism

from H(A,) to PSL(2,pn) with the kernel Kp,u(\q). Therefore for each root u, we

have a chance of obtaining another normal subgroup KPtU(Xq).

We have already seen that the Co-triple (rp,sp,tp) generates an exceptional sub-

group if p = 2. In this case the quotient group H(A,)//f2,u(\) is associated with

the N-triple (2, q, 2) which is dihedral of order 2q.

Earlier in this chapter we have shown the necessary and sufficient condition to

have a singular triple as Â  = 0 mod p. We have also shown that there is a unique

possible singular triple when q = 2pn, p odd prime, n > 1 or q = 2n, n > 2, and

no singular triples for the other values of q. That is, we will not have any singular

triples when q is prime > 7.

Since (rp ,sp , tp) is neither exceptional nor singular for p > 2, it generates, by

Theorem 7.2, a projective subgroup of G. To find which projective subgroup is

generated by this triple, we must consider the field k and its smallest subfield K,

containing the traces a, (3 and 7, modulo p, of r p , s p and tp, respectively. Here we

have three possible cases:

Case 1: p = q. In this case x0 = q — 2 is the only root of the minimal

polynomial P*(x) mod p. To prove this we show that —1 is the only root of

$p(x) = ^ J - = xP-1 - xp~2 + xp~3 - ... + x2 - x + 1. Consider the expan-

sion of (x + l)p~1. The binomial coefficients are congruent to ±1 mod p:
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( " r
 J ) = <>-*)• ;•••(»") ^ (-l)'.i) = (-1)-

Therefore $p(:r) is congruent to (a; -f I)*""1. Hence all p — 1 roots of $p(x) are

congruent to —1 modulo p, as required. Therefore all roots are in GF(p). Then

there is a homomorphism of H(A,) to PSL(2,p) for each root u. Again by a similar

argument we find

£ PSL(2,q) (7.124)

for each u.

Case 2: Let p = ±1 ?noJ </. Since q is an odd prime, this is equivalent to say

that p = ±1 mod 2q\ i.e. p = fcg ± 1 with k £ N is even. Now

. , i ll : P | i G N (7.125)
ZJ ZJ ft/

and therefore g divides the order of PSL(2,p); i.e. there are elements of order q in

PSL(2,p). Then there exists a homomorphism

9 : H(Xq) —> PSL(2,p) (7.126)

for each root u in GF{p). Therefore there are d = deg P*(\q) normal congruence

subgroups KPjU(\q) of H(Aq). This implies

Theorem 7.9: If p = ±1 modq, then there exists a homomorphism 0 :

H(\q) -—> PSL(2,p) for each root u £ GF(p). The kernel of this homomorphism

is /rp>u(A,).

Corollary 7.2: For each prime q, H(A,) has infinitely many normal subgroups.

Proof: This follows from Dirichlet's Theorem on primes in arithmetic progres-

sions.

Note that as every finitely generated Fuchsian group has a surface subgroup of

finite index, Corollary 7.2 also follows from Malcev's theorem on residual finiteness.
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Corollary 7.3: Let q > 3, q G N. Then H(A,) has infinitely many normal

subgroups.

Proof: It follows from Corollary 7.2 as there exists a homomorphism from H(A,)

to H(AP) for each prime divisor p of q.

Case 3: Let p ^ ±1 mod q and p ^ 2,q. Then q does not divide the order

of PSL(2,p) and therefore no homomorphism from H(Aq) to PSL(2,p) exists, i.e.

P*(x) has no roots in GF(p). We extend GF(p) to GF(pn) where n is less than or

equal to the degree d of the minimal polynomial P£(a:) which is

d = q-^- (7.127)

as q is an odd prime. Let u be a root of Pg(x) in GF(pn). Then by Theorems

7.2 and 7.3, we have a homomorphism of H(A7) to PSL(2,pn) if n is odd, and to

PGL(2,pn/2) if n is even. The kernel of this homomorphism is Kp,u(\q).
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Chapter 8

NORMAL SUBGROUPS OF H(v
/2)

8.0. INTRODUCTION

In the early chapters we often noted the importance of H(\/2). We saw that it

is, after the modular group, the most worked and accessible Hecke group. There-

fore the study of its normal subgroups is also important to us. In this chapter we

consider the normal subgroups of H(\/2) and discuss the relations between them.

In the introduction we have classified the elements of H(>/2) into two classes as

odd and even ones. We denoted by He(\/2) the even subgroup of H(\/2) consist-

ing of all even elements in H(\/2). Having index two, it is a normal subgroup and

it contains infinitely many normal subgroups of H(>/2)- Here we shall prove that

He(%/2) is actually isomorphic to the free product of the infinite cyclic group Z and

a finite cyclic group of order two.

An important property of H(>/2) is its commensurability with the modular group.

We have earlier noted that H(\/2) and H(\/3) are the only Hecke groups that are

commensurable with the modular group F. But although a conjugate of H(\/2) and

F have a common subgroup, no common normal subgroup in both of them exists,
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as we proved.

In this chapter we discuss the normal subgroups of H(\/2). Being the free product

of two finite cyclic groups of orders two and four, H(\/2) has two kinds of subgroups;

those which are free of rank 2g -f t — 1 and those which are free products of a cyclic

groups of order two, b cyclic groups of order four and c infinite cyclic groups (see

the Kurosh subgroup theorem, Theorem 0.8).

We first discuss the power subgroups Hm(\/2) generated by the m-th powers of

all elements of H(\/2). We shall deduce that, unlike odd q case ( and particularly

modular group case where q = 3), it is not possible to write H(\/2) as a product of

two or more proper normal power subgroups. We shall investigate H2(-\/2) first and

deduce that for in > 2, Hm(\/2) is either free if m is divisible by four, or equal to

H(v2) if m is odd, or equal to Wrn(\/2) if m = 2 mod 4.

The search of genus 0 and genus 1 normal subgroups of the Hecke groups has

been done in Chapters 4 and 5. Therefore we will not go into details here and only

discuss them briefly. We shall see that H(v2), unlike the modular group case, has

infinitely many normal genus 0 subgroups, as we can find a homomorphism of H(-y/2)

to the dihedral group Dn for any natural number n, each giving a normal subgroup

of genus 0 of H(>/2) containing a finite number of elements of order two. This will

also prove that unlike odd q case (and again unlike the modular group case), H(\/2~)

has infinitely many normal subgroups with torsion.

The study of normal subgroups of genus 1 will play an important role in the clas-

sification of normal subgroups of H(\/2). They correspond to regular maps of type

{4,4}. These regular maps are classified in [Jo-Si,2] and in [Co-Mo,1] as {4,4)>iS for

non-negative integers r, 5 and therefore are infinitely many. This means that H(\/2)

has infinitely many normal subgroups of genus 1 like the modular group. They have

also been discussed in [Ke-Ro,l] by Kern-Isberner and Rosenberger.
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By the Riemann-Hurwitz formula, a normal subgroup N of finite genus g > 1

in H(\/2) always has finite index and therefore will be finitely generated.

H(\/2) has, as we shall prove, infinitely many normal free subgroups of finite

index. Therefore their investigation will form an important part of this chapter. We

will determine their group theoretical structure. They all have index divisible by

four, while those of genus 1 particularly have level four.

In the classification of normal subgroups of genus 1, we shall often use two par-

ticular subgroups, the commutator subgroup H'(\/2) of H(\/2) and K = H'(y/2) U

RS2.H'(V2). Since H'(\/2) has index 8 in H(\/2), K will have index four in H(\/2).

They are both normal free subgroups on three and two free generators respectively,

having genus 1. We shall prove that all normal subgroups of genus 1 of H(i/2) lie

between K and its commutator subgroup K', and therefore by the Kurosh subgroup

theorem, they are all free of level four, i.e. all normal subgroups of genus 1 in H(>/2)

are free.

We have already noted that a normal subgroup N of genus 1 of H(\/2) corre-

sponds to a regular map {4,4}>i;S where

| Aut+({4,4}r,s) | = | H(V2) :N\= 4(r2 + s2). (8.1)

Using this we showed in Chapter 5 that the number of normal subgroups of genus

1 and given index fi = At (as the level is necessarily four) in H(\/2) is

r , 5 ) € Z 2 : r 2 + s2 = t } . (8.2)

This number has also been found by Kern-Isberner and Rosenberger in [Ke-

Ro,l] using the fact that the function N(fi) is a multiplicative function.
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Jones and Singerman showed that every normal subgroup corresponds to a

unique regular map (see [Jo-Si,1]). Therefore one way of studying normal sub-

groups of H(Ag) is to study corresponding regular maps.

When g > 2, H(\/2) has, by the Riemann-Hurwitz formula, only finitely many

normal subgroups of genus g and therefore there will only be finitely many corre-

sponding regular maps. The final part of this chapter is about the relations between

the normal subgroups of genus g > 0 and the corresponding regular maps.

Also in this chapter, we shall refer to a paper of C. Maclachlan, [Me,2], for an

infinite class of normal subgroups denoted by K(g)- This class is actually obtained

for any q divisible by four, but when q > 4, its elements contain torsion.

The principal congruence subgroups, of course, also form an important class of

normal subgroups of H(\/2). But because of their similarity with the ones of H(\/3),

and because of the length of their investigation, we have already discussed them sep-

arately in Chapter 7.

In Appendix 1, the list of all normal subgroups of index < 60 of H(v2), and the

lists of all corresponding regular maps with genus g < 7 are given. The number

of normal subgroups of index upto 100 in C2 * Cn has been independently found by

Conder (see [Cn,l]). The numbers found here coincide with the ones found there.

Also pictures of some interesting regular maps of type {4, n} are given at the end

of this thesis.

We begin with the power subgroups Hm(\/2) of H(\/2):

8.1. POWER SUBGROUPS Hm(V^) OF H(v
/2)

Let m be a positive integer. Let us define Hm(\/2) to be the subgroup generated
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by the 772-th powers of all elements of H(\/2). Hm(\/2) is called the m-th power

subgroup of H(\/2). As fully invariant subgroups, they are normal in H(\/2).

From the definition one can easily deduce that

Hm(V2) > Hmn(V2) (8.3)

and that

n > Hmn(V2). (8.4)

Using (8.3) it is easy to deduce that

Hm(V2).Hn{V2) = #(m'n>(\/2) (8.5)

as in the case of odd q given before (see Chapter 6). Here (m, n) denotes the greatest

common divisor of m and n. But the useful property that

H2(\q).H<(\q) = H{\q), (8.6)

which is a direct result of (8.5) in the case of odd q (particularly modular group),

does not hold here since q = 4. Therefore it will not be possible to express H(\/2)

as a product of its proper power subgroups.

Let us now discuss the group theoretical structure of these subgroups. First we

have

Theorem 8.1: The normal subgroup H2(v2) is isomorphic to the free product

of the infinite cyclic group Z and two finite cyclic groups of order two. Also

H(V2)/H2(y/2) * C2 x C2, (8.7)

H(y/2) = H2(V2) U RH2(V2) U SH2(y/2) U RSH2(V2), (8.8)
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and

H2(y/2) =<S2>*< RS2R > • < RSRS3 > . (8.9)

The elements of H2(\/2) are characterised by the property that the sums of the

exponents of R and S are both even.

Proof: Set M =< S2, RS2 R, RS RS3 >. Then M is normal in H(>/5) and

clearly, the elements of M satisfy the requirements of the Theorem, i.e. the sums of

the exponents of R and 5" are both even for each element.

If r = U2(y/2)R and 5 = H2(x/2)5, then the quotient group H(x/2)/H2(V2) is

generated by r, s with r2 = s2 = (rs)2 = 1. Now rs = I I ^ H2(\/2),

so r ^ s and so < r, 5 > = C2 x C2. Hence (8.7) is clear. Let us now use the

permutation method to find the signature of H2(\/2). As each of /?, S and T goes

to elements of order two, they have the following permutation representations:

R .—> (1 2)(3 4)
S 1—> (1 3)(2 4) (8.10)
T 1—> (1 4)(2 3).

Therefore the signature of H2(\/2) is (g ; 2,2, 00, 00). Now by the Riemann-Hurwitz

formula g = 0. Hence H2(\/2) is isomorphic to the free product of Z and two CVs.

As the unique normal subgroup of H(\/2) with quotient C2 x C2, it must be equal

to this free product.

If we choose / , R, S, RS as a Schreier transversal for H2(\/2) then it is easy to

see that M is a set of generators for H2(\/2).

We also have

Theorem 8.2: Let m be a positive odd integer. Then
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2) = H{V2). (8.11)

Proof: It is clear as the quotient is trivial.

We finally have

Theorem 8.3: Let in be a positive integer such that m = 2 mod 4. Then

Hm(\/2) is the free product of the infinite cyclic group Z and m finite cyclic groups

of order two.

Proof: It is easy to show that the quotient group is isomorphic to the dihedral

group D,n of order 2m. The permutation representations of /?, S and T are

R i—> (1 2)(3 4)...(2771-1 2m)
S '—> (2 3)(4 5)...(2m 1) (8.12)
T i—* ( 1 3 5 ... 2m — l)(2?n 2?7i — 2 ... 4 2).

Then Hm(\/2) has the signature (0 ; 2'm',oo,oo) similarly to the previous cases, i.e.

H"l(v/2) is the free, product given in the statement of the Theorem.

Note that when m = 2 mod 4, Hm(\/2) = Wm{\/2).

We can now conclude our research of the power subgroups of H(\/2) making a

few remarks. Note that we have already proved

if mis odd,
I Wm(y/2) ifm = 2 mod 4. (

Because of this we have only left to consider the case where m is a multiple of

four. Let now m — 4k, k € N. Then in H(\/2)/H"l(\/2) we have the relations

r2 = s4 = / where 7- and .s are the images of R and .S', respectively, under the

162



homomorphism of H(>/2) to H(>/2)/Hm(v/2). These relations imply that Hm(v
/2)

is a free group.

We now investigate the structure of another important normal subgroup of

H(\/2), namely the even subgroup He(\/2) defined in the introduction:

Theorem 8.4: The even subgroup He(\/2) of H(\/2) denned by

He{y/2) := { M = ( ^ ^ ) : M G ff(>/2) } (8.14)

is a normal subgroup of index two of H(\/2). Also

H(y/2) = He(V2) U RHe(V2), (8.15)

^e(>/2) 91<T>*<TU> = <RS>*< RS2R >, (8.16)

and therefore He(v2) is isomorphic to the free product of the infinite cyclic group

(generated by RS) and the finite cyclic group of order two (generated by RS2R).

Proof: Having index two He(\/2) is a normal subgroup of H(\/2)- By the per-

mutation method the signature of He(\/2) is (0 ; 2, oo, oo) as each of R and S go to

elements of order two.

Let us now choose / , R as a Schreier transversal for the even subgroup. Then

it is easy to find that He(\/2) has the parabolic generators T = RS and U = SR

with their product TU being the elliptic generator of order two.

Finally as R # He(\/2), (8.15) follows.

The even subgroup is very important amongst the normal subgroups of H(\/2).

It is one of the three normal subgroups of H(v2) with cyclic quotient of order two

and contains infinitely many normal subgroups of H(\/2). It will often be used in

163



the classification and determination of the group theoretical structures of certain

types of normal subgroups like principal congruence subgroups, etc.

Recall that the normal subgroups of genus 0 of the Hecke groups have been

discussed in Chapter 4. We now discuss these subgroups particularly for H(\/2)

without going into details. For some proofs see Chapter 4.

8.2. NORMAL SUBGROUPS OF GENUS 0 OF H(v/2)

It is well-known that if N is a normal subgroup of genus 0, then H(\/2)/./V is a

group of automorphisms of the sphere, so that H(\/2)/Ar is isomorphic to a finite

subgroup of S'O(3), and therefore, is isomorphic to one of the finite triangle groups.

As we can always find a homomorphism of H(\/2) to the dihedral group Dn for every

n (E N, H(v2) has infinitely many normal subgroups of genus 0 unlike the odd q

case and in particularly the modular group case.

If we map H(\/2) to the cyclic group Cd = (\,d,d) where d\4, we obtain a

normal subgroup N = (0 ; 2^d\4/d, oo). This subgroup is denoted by Yd(\/2) and

is isomorphic to the free product of a cyclic group of order 4/d and d cyclic groups

of order two. If d / 4 then there is no homomorphism of H(\/2) to a cyclic group Cd-

Secondly, if we map H(\/2) to the dihedral group Dj = (2, d, 2) where d \ 4, we

obtain N = (0 ; 4/d,4/d,oc,W) which was denoted by St[{y/2). Note that Si(\/2)

and 52(\/2) contain elements of finite order while 6'.((\/2) is free of rank three. Again

if d is not a divisor of four, this process is not possible.

Thirdly, by mapping onto S4 = (2,4,3) we obtain a normal subgroup denoted

by T4(\/2) with signature (0 ; oo^8') which is isomorphic to a free group of rank seven.

We have already found seven normal subgroups of H(\/2) with genus 0. We
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now introduce an infinite family of normal subgroups of genus 0 by considering the

homomorphism of H(\/2) onto Dn = (2,2, n) for any n 6 N. Then we obtain the

normal subgroup Wn(\/2) with signature (0 ; 2(n),oo,oo). These subgroups have

the property that each Wn(\/2) contains infinitely many normal subgroups Wm(\/2)

of genus 0, since we have Wnk(V2) <1 Wn(\/2).

Hence we have the following result:

Theorem 8.5: All normal subgroups of H(\/2) with genus 0 are H(\/2), Y2{\/2),

, 5x(x/2), S4(V2), r4(>/2) and Wn(y/5) for n € N.

Corollary 8.1: H(\/2) has infinitely many normal subgroups of genus 0.

Remarks 8.1: (i) Note that in the case of modular group, and in general, of

any odd q, we only have finitely many normal subgroups of genus 0. We shall see

that for every even 9, H(Ag) has infinitely many normal subgroups of genus 0.

(ii) It is clear that when m = 2 mod 4, the subgroups Hm(\/2) and Wm(\j2)

coincide.

(iii) Note that the subgroups He(\/2), S2(V2), H 2 ( ^ ) and Hn(>/2) for n =

2 mod 4 are automatically included in the list of Theorem 8.5, since He(\/2) =

Wx{y/2), S2(V2) = E2{y/2) = W2(y/2) and finally Hn(V^) = Wn(y/2) for n =

2 mod 4. We can also see that the congruence subgroups T2(\/2), K2(\/2), r3(\/2)

and K3(y/2) are also in this list since K2{y/7) = Wi(V2), T2(\/2) = W4(y/2) and

8.3. FREE NORMAL SUBGROUPS OF

As a free product of two finite cyclic groups of orders two and four, H(\/2) has,

165



by the Kurosh subgroup theorem, some free normal subgroups. We shall prove in

this section that these are actually infinitely many. We shall also give a characteri-

sation of them. First we have

Lemma 8.1: Let JV be a non-trivial subgroup of H(\/2). Then N is free if and

only if it contains no elements of finite order.

The proof of this lemma is just a special case of the proof of Lemma 6.2.

Lemma 8.2: The only normal subgroups of H(v2) containing elements of finite

order are H(>/2), Y2(y/2), S^y/2), YA(s/2) and Wn{y/2) for n G N.

Proof: Let N be a normal subgroup of H(\/2) containing an element of finite

order. Then iV contains an element of order two or an element of order four. Since

every element of order two is conjugate to R or S2, and every element of order four

is conjugate to S or S3, it follows that, as N is normal, N contains /?, S and/or S2.

Then there are five possibilities:

(1) N contains R and S. Then clearly N = H(\/2).

(2) N contains R but not 5 or S2. Then in the homomorphism from H(\/2) to

H(\/2)/N, R goes to the identity and 5" goes to a product of 4-cycles. Therefore

RS goes to a product of 4-cycles as well. That means that H(v2)/./V is isomorphic

to C4 = (1,4,4). Then iV has the signature (0 ; 2(4),oo), and hence N S YA(y/2).

(3) N contains R and S2 but not S. Then R goes to identity and S goes to a

product of 2-cycles. Therefore H(v2)/./V is isomorphic to Ci and iV has the signa-

ture (0 ; 2,2,2,oo). Hence iV =

(4) iV contains S2, but not R or S. Then both R and S go to 2-cycles. Hence

166



the parabolic element RS could go to any product of n-cycles, which altogether

imply that H(y/2)/N is isomorphic to the dihedral group Dn, n £ N. In this case

we have seen that the subgroup is Wn(y/2).

(5) Finally iV contains S but not R. Here R goes to 2-cycles and S goes to

the identity. Therefore H(v/2)/Ar is isomorphic to C%. Then N has the signature

(0 ; 4,4,oo) which is the subgroup S\(y/2).

Remarks 8.2: (i) Note that Lemma 8.2 implies that H(\/2) has infinitely many

normal subgroups containing elements of finite order unlike the modular group and

any odd q case.

(ii) The list of Lemma 8.2 also includes the normal subgroups Yi(\/2), /\

H2(\/2)5 5-2(\/2) and r2(\/2), since each of them is equal to one of those listed above

(see Appendix 1 for more details).

We now have the following result:

Corollary 8.2: Let N be. a normal subgroup of positive genus of H(\/2). Then

N is torsion-free.

Corollary 8.2 does not have a converse as there are some free normal subgroups

of H(\/2) with genus 0, as we have seen in 8.2.

We can now characterize the freeness of a normal subgroup of H(\/2) by com-

paring it with the following list of normal subgroups:

Theorem 8.6: Let N be a non-trivial normal subgroup of H(\/2) different from

H(V2), V'2(\/2), S\(yf2), y4(v/2) and Wn{y/2) for n € N. Then TV is free.
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Proof: Clear by Lemmas 8.1 and 8.2.

Now we know that what normal subgroups of H(v2) are free. It is also impor-

tant to know the rank and index of these subgroups. We have seen in Chapter

that if N is a free subgroup of H(Ag) of genus g, then the rank of iV is

r = 2g + t - 1. (8.17)

Note that particularly when g = 0, r = t — 1 and when g = 1, r = t + I.

Let now N be a normal free subgroup of H(\/2) of index //. Then R goes to an

element of order 2 and S goes to an element of order 4 implying the following result:

T h e o r e m 8.7: If TV is a normal free subgroup of H(\/2) with finite index (i, then

4 | At- (8.18)

Note that in the statement of Theorem 8.7, we need N to be free , for otherwise,

we have, as a counter example, Wn(\/2) with index sometimes not divisible by four.

Now by the Riemann-Hurwitz formula, the genus g of such a subgroup is given by

This implies, for a given genus g j^ 1, that we can only have finitely many normal

free subgroups of genus g of H(>/2), since the equation (8.19) has only finitely many

solutions.

For g = 1 the situation is quite different. Here n must be four and t could be

any natural number. Therefore there are infinitely many normal subgroups of genus

1 in H(\/2). (We proved their existence in Chapter 5 using regular maps of type
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{4,4}).

We have already found all normal subgroups of genus 0 in section 8.2. The ones

of genus 1 will be studied in 8.4. But first we summarize our final remarks in the

following:

Theorem 8.8: H(\/2) has finitely many normal free subgroups of genus g if

<7 ̂  1, and infinitely many otherwise.

8.4. NORMAL SUBGROUPS OF GENUS 1 OF H(\/2)

Throughout this section, unless otherwise stated, N will denote a normal sub-

group of genus 1 of H(\/2).

We have already seen that N is free of rank r = t +1 , of level four, and therefore

of index fi divisible by four.

We first define the commutator subgroup H'(\/2) of H(\/2). By adding the re-

lation RS — SR to the existing relations R2 — S4 = I of H(\/2), we obtain the

quotient group H(\Z2)/H'(\/2). By the permutation method H'(\/2) is a normal

subgroup of index eight, since the quotient group is isomorphic to C<i x C4, and

of signature (1 ; oo,oo). Therefore H'(\/2) is a free group of rank three. By the

Reidemeister-Schreier method, the generators of H'(\/2) can be found as

a = RSRS3, b = RS2RS2 and c = RS3RS. (8.20)

As all commutators are even elements we obtain

H'(V2) <l He(V2). (8.21)

Let us now concentrate on the second commutator subgroup H"(\/2) of H(\/2).
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First we have

Theorem 8.9: H'(\/2)/H"(\/2) is a free abelian group of rank three with the

free generators

aH"(V2), bH"(V2) and cH"(V2) (8.22)

where a, b and c are the generators of H'(\/2)-

Proof: We know that H'(\/2) is free of rank three. By Theorem 0.13, H'(\/2)/H"(\/2)

is free abelian. Obviously it has the generators given in (8.22).

Now recall that the quotient group of a free group Fn by its commutator sub-

group F^ is isomorphic to Zn (see [Ra,l]). Therefore the rank of the quotient group

is also three, as required.

We now have

Theorem 8.10: H"(>/2) is a free normal subgroup of infinite rank.

Proof: It is free by Theorem 0.5. Also by Theorem 0.6, it has infinite rank as

it has infinite index.

Let A ^ (2,4,4) = < x, y | x2 = y4 = (xy)4 = 1 >. If we map R to x, S to y

and T to xy, we obtain a homomorphism 6 of H(\/2):

6 : ^ (v^ ) —> A £ (2,4,4). (8.23)

0 has kernel Ker 9 = A(4), the normal closure of T4. Then A', the commutator

subgroup, is going to be the translation subgroup Z x Z which is abelian; actually

A' = (a,c : a.c = c.a) (8.24)
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where a, b and c are the images of a, b and c under 6 respectively. The relation in

(8.24) is true since (R.S)4 — I in A and therefore aca~xc~x H-> /.

That a, b and c generate A' can be easily seen by the Reidemeister-Schreier

method.

Since A' is abelian, A" will just be the trivial group {/}.

Let us now map H(\/2) onto a finite cyclic quotient of order 4 of A. Using the

permutation method and Riemann-Hurwitz formula we obtain a normal subgroup

with signature (1 ; oo). We shall denote this subgroup by K. It is isomorphic to a

free group of rank two.

By the Reidemeister-Schreier method the free generators are

a = RSRS3 and [3 = RS'2 (8.25)

with matrix representations

Note that a = a and (P — b. Since (3 £ H'(\/2) we can express K in terms of its

normal subgroup H'(\/2) as follows:

K = <*,«<(^>
= tf'(V5) U !i.H'(V2).

The commutator subgroup K' of K is a free group of infinite rank with K/K' =

(a/v', (3IC) is abelian.

The groups K and K' are very important in the classification of the normal

subgroups of genus 1 of H(\/2). Actually all normal subgroups of genus 1 will lie
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between these two subgroups, as we shall prove. Therefore

Theorem 8.11: The subgroup K is maximal through all normal subgroups of

genus 1 of H(\/2).

We now have

Lemma 8.3: We have

A" = A(4). (8.28)

Proof: See [Ke-Ro,l].

We have proven that KjK' is free abelian of rank two. Now if N is a normal

subgroup of genus 1 of H(\/2), i-e. if K' < N < K, then N/K', as a subgroup of

the free abelian group K j K\ is also free abelian and therefore has rank

1 < r(N/K') < r(K/K') = 2. (8.29)

That is, NjK' is either Z or Z x Z. We shall see that it is always the latter:

Theorem 8.12: Let N be a normal subgroup of A' of finite index. Then NjK'

is a free abelian group of rank two.

Proof: UN = A, then r{N/K') = r{K/K') = 2.

If N is a proper normal subgroup of A', then N has rank r = t + I > 2 and

finite index pi = At in H(\/2). Then |A' : N\ = t < oo and since KjK' = F2, we

haver (TV/A") = 2.
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We have often mentioned the existence of a 1-1 correspondence between normal

subgroups of certain triangle groups (including the Hecke groups) and regular maps

(see [Jo-Si, 1]). Let us now consider the relationship between the normal subgroups

of genus 1 of H(\/2) and the corresponding regular maps. In Chapter 3, we have

seen that such a regular map must be of type {4,4}. In [Jo-Si,2] and [Co-Mo,1],

these are classified as {4,4},.iS for non-negative integers r and s. Also if N is a

normal subgroup of H(\/2) corresponding to such a regular map, then

\AutM\ = |H(\/2) : N| = 4(r2 + s2). (8.30)

As regularity of the regular map corresponds to the normality of the correspond-

ing normal subgroup, each of these regular maps will give us a normal subgroup of

H(\/2) with genus 1 and finite index /< = 4(?'2 + s2). This implies

Theorem 8.13: H(\/2) has infinitely many normal subgroups of genus 1.

Using (8.30), we have, in Chapter 5, determined the number N(/.i) of the normal

genus 1 subgroups of H(\/2) having a given finite index /x. We have seen that this

number is equal to a quarter of the number of representations of ///4 = t as the sum

of two integer squares. See Chapter 5 for details.

We now want to determine some relations between some of the normal sub-

groups of H(\/2). We have already showed that Hm(\/2) t> Hmn(v
/2) and Wm{y/2) t>

2) , form,n G N.

It is easy to show that

A" <J H'(\/2). (8.31)
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Since KjK' is free abelian of rank two, as a normal subgroup, W(y/2)/K' is also

free abelian of rank two as | K : H'(\/2) | = 2 < oo. We know that H'(\/2)/H"(\/2)

is the largest abelian quotient of H'(>/2). Now as W(y/2)/K' is also abelian, we can

easily deduce that

K' > H"(V2). (8.32)

Finally as KjK' is free of rank two and H'(V^)/H"(V2) is free of rank three, the

quotient A''/H"(\/2) is just the infinite cyclic group, i.e.

K'/H"(\/2) = Z. (8.33)

The subgroup W(\/2) also contains H4(\/2) generated by the fourth powers of

the elements of H(\/2~). Indeed, if A is any element of H(\/2), then A.H'(\/2) will

be an element of H(V^)/H'(v^) = C2 x C4. Therefore (A.E'(y/2))4 = ^ .H^v^)

must be the identity. Therefore

H4(V2) <J H'{V2). (8.34)

As H'(\/2) is torsion-free we have

Theorem 8.14: H4(\/2) is torsion-free.

This follows from the following result:

Lemma 8.4: Let H < G, G torsion-free. Then H is also torsion-free.

Now we consider the subgroup H2(v2)- By its definition it is generated by the

squares of the elements of H(\/2). Therefore all of its elements must be even. Then

H2(V2) <I tfE(V2). (8.35)
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Also

H2(V2). (8.36)

9 : //(v/2)-

4

A" = Ker 0 = A(4)

H"{y/2)

= (2,4,4) «

A' = Z x Z ^ (1 ;-)

Figure 8.1

By means of all these inclusions we can now form the above subgroup lattice

mainly concerning the normal subgroups of genus 1 of H(\/2). Recall that the sub-

groups with infinite index ha.ve genus 0 or oo.

Note that the translation subgroup A' = (1 ;-) is free abelian with generators
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a, b and c satisfying the relation a_.c = c.a. Therefore the quotient A'/A4 will have

order 4,4 = 16. Then | A : A4 | = 128 and since 9~x preserves the indices we have

\H(y/2) : H4{V2)\ = 128. (8.37)

8.5. ANOTHER CLASS OF NORMAL SUBGROUPS OF H(\/2) : K(g)

In [Me,2], Maclachlan introduced an infinite family of groups denoted by K(g)

which also form a class of normal subgroups of H(\/2). In this section we shall

investigate these subgroups, determine their group theoretical structure and obtain

some relations between them.

Let

L+(g) := (# , .? : R2 = S4 = (RS)29+2 = {S2R)2 = i) . (8.38)

It contains the central involution S2 and

S2>^ D2{g+1). (8.39)

Hence L+(g) has order 8(g + 1). It follows that < R > C\ < S >= {/} and hence

every element of L+{g) has the form

S'{RS)\ 0 < i < 3, 0 < j < 2g + 1. (8.40)

Since, in L+(g), we have the relations R2 — S4 = / , there is a homomorphism of

H(\/2) onto L+(g). The kernel of this homomorphism, which is denoted by K{g),

is a normal subgroup of H(\/2) of genus g and index &(g + 1), as the order of L+(g)

is 8(<7 + 1).

Because of the relations R2 — S4 = / in L+(g), K{g) must be a free subgroup.

Since the parabolic element T has order '2g + 2, the level of K(g) is 1g + 2. Hence
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the parabolic class number t of K(g) is

t = !<£±il = 4. (8.41)
2(9 + 1)

Therefore K(g) is isomorphic to a normal subgroup with signature (g ; oo^4'), i.e. it

is isomorphic to the free group of rank 2g + 3.

Example 8.1: (i) Let g = 0. Then we have a homomorphism

H(V2) —* L+(0) = (R,S : R2 = S4 = {RSf = (S2R)2 = i) . (8.42)

That is, L+(0) is a homomorphic image of D4. Now (S2R)2 = S2RS2R = S2(S~1R)SR

— (SR)2, i.e. the relation (S2R)2 = I is deducible from the other three relations.

Then L+(0) = D4. Hence

R v-> (1 2)(3 4)(5 6)(7 8)
5 h-» (17 6 4)(2 3 5 8) (8.43)
T ^ (1 3)(2 7)(4 5)(6 8).

Hence we find that A'(0) has the signature (0 ; o

(ii) Let now g = 1. Similarh' we have a homomorphism

H(y/2) —-+ L+{1) = (R, S : R2 = S4 = (RS)4 = (S2R)2 = i) . (8.44)

Here the relation (S2R)2 = / cannot be reduced from the other relations. But we

know that a normal subgroup of genus 1 and of index 16 is free and of level four.

Hence At = 16 and t = 4. Therefore the signature of A'(l) is (1 ; oo*4').



8.6. CONNECTIONS BETWEEN REGULAR MAPS AND NORMAL
SUBGROUPS OF

We have often noted the 1-1 correspondence between regular maps and normal

subgroups of the Hecke groups. We have also discussed this correspondence for the

genus 1 normal subgroups of H(\/2) earlier in 8.4.

In this section, we shall discuss the situation for any g > 0. At the end of the

thesis we give the lists of the regular maps of type {4,n} having genus g < 7.

Since q = 4, the only non-degenerate regular maps we can have are those of type

{2,n} or {4,7i}. The former ones will correspond to the normal subgroups Wn(y/2)

with dihedral quotient Dn = (2,2,n), n 6 N. Therefore, having genus 0, they are

regular ?i-gons on the sphere. For this reason, we shall not be interested in them.

Hence all regular maps we shall consider here are of type {4, n) where n corresponds

to the level of the corresponding normal subgroup. Therefore each vertex will have

valency four. We shall denote by [4, n] the normal subgroup corresponding to {4, n}.

For g = 0, we have, as we have noted in the above paragraph, infinitely many

regular maps of type {2,??} with n € N. Apart from these, we have two more non-

degenerate regular maps of genus 0. They are {4,2} which is a map consisting of four

edges joining two antipodal points on the sphere, and {4, 3} corresponding to a cube.

Each genus 1 normal subgroup of H(\/2) corresponds to a regular map {4,4}r>s,

with r2 + $2 = t, as we have seen. Therefore they are infinitely many.

Let us now deal with the higher genus cases beginning with g = 2. Obviously as

g gets bigger, the minimum index for which there exists a regular map having that

index becomes higher.

Let g = 2. If N is a normal subgroup of H(\/2) with index /:, genus 2 and level
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n, then by the Riemann-Hurwitz formula

8n
" = — • ( 8 - 4 5>

Therefore n must be greater than four. Solving (8.46) in the integers and remem-

bering fi = n.t, we can easily find all possible maps. Some of them are known to be

regular. By checking the regularity of these possible maps we obtain the list given

in Appendix 1.

Let g > 3. Then similarly

" = - T T 4 - (8'46)

Again in the same way we can obtain all regular maps of type {4, n} with genus

g < 7'. They are also listed in Appendix 1.

Also in Appendix 1, we give some details of all normal subgroups of H(\/2) with

index upto 56. They give for any // < 56, the normal subgroup N, the quotient

group H(\/2)/A^, the associated triangle group, the signature, genus and the level

of TV, and also the corresponding regular map with the number of its vertices, edges

and faces, and finally, its automorphism group.
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Chapter 9

NORMAL SUBGROUPS OF H(v
/3)

9.0. INTRODUCTION

In this chapter we discuss normal subgroups of another interesting Hecke group

H(\/3). Because of the similarity between the groups H(\/2) and H(>/3) we will

often not go into details as the most of the results will be similar to those already

proven for H(\/2) in Chapter 8. However there will be some results quite different

from the H(\/2) case, and we shall mainly be interested in them.

We begin once more with the power subgroups Hm(\/3) of H(\/3):

9.1. POWER SUBGROUPS Hm(\/5) OF H(\/3)

The power subgroups of H(\/3) are defined exactly in the same way to those of

H(\/2). As they depend on the relation between m and q, there are some important

differences between the two cases q — 4 and q = 6. But first we have the following

similar result:
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Theorem 9.1: The normal subgroup H2(\/3) is the free product of the infinite

cyclic group and two finite cyclic groups of order three. Also

= C2 x C2, (9.1)

S) U RH2{\ft) U SH2(y/z) U RSH2(Vs), (9.2)

and

H2(Vl) = < S2 > * < RS2R >*< RSRS3 > . (9.3)

The elements of H2(\/3) can be characterised by the requirement that the sums of

the exponents of R and S are both even.

Proof: It is similar to the proof of Theorem 8.1.

Theorem 9.2: The normal subgroup H3(\/3) is the free product of four cyclic

groups of order two. Also

l) ^ C3, (9.4)

//(v/3) = #3(\/3) U 5//3(\/3) U S2H3{>/Z), (9.5)

and

H3{V3) =< R>*< S3 > * < SRS5 > * < S2RS4 > . (9.6)

Proof: Similar to the proof of Theorem 8.1.

The following results are easy to see:
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Theorem 9.3: Let m = ±1 mod 6. Then Hm(\/3) = H(v/3).

Theorem 9.4: Let m = ±2 7?iorf 6. Then Hm(\/3) = Wm(>/3).

Theorem 9.5: Let m = 3 ?no<2 6. Then Hm(\/3) = H3(>/3).

Therefore the only case left is that when m is divisible by 6. A similar discussion

will show that H"l(\/3) is free in this case.

We now recall an important normal subgroup of H(\/3):

Theorem 9.6: The. even subgroup He(\/3) of H(\/3) defined by

is a normal subgroup of index two of H(\/3). Also

/3) U /?//e(\/3), (9.8)

<RS>*< RS2R >, (9.9)

and therefore He(\/3) is isomorphic to the free product of the infinite cyclic group

(generated by RS) and the finite cyclic, group of order three (generated by RS2R).

9.2. NORMAL SUBGROUPS OF GENUS 0 OF H(>/3)

In a similar way to the. section 8.2, we obtain the following result:

Theorem 9.7: All normal subgroups of H(\/3) with genus 0 are H(\/3), ^ ( v ^ ) ,

Ve(V3), -S'I(N/3), 53(N/3), Ti(yfi), H3(N/3), 56(V/3), T2(\/3), T3(X/3) and Wn(V3) for

rt G N.
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Corollary 9.1: H(\/3) has infinitely many normal subgroups of genus 0.

9.3. FREE NORMAL SUBGROUPS OF

In this section we consider free normal subgroups of H(A/3). We have already

seen that when the free normal subgroups of H(>/2) are considered the situation

was unlike modular group case where there are only finitely many normal subgroups

containing elements of finite order. Here for q = 6, we shall find that the situation is

different from these two cases as the normal subgroups of H(\/3) having torsion seem

to be more numerous. But H(\/3) still has infinitely many normal free subgroups.

The situation is rather different than q = 4 case. This is because 3 is also a

divisor of 6. Therefore H(\/3) = (2, 6, oo) can be mapped to every finite quotient

(2,3, A:), k > 2, k € N of the triangle group (2,3,oo). Therefore H(V3) will have

countably infinitely many normal subgroups with torsion. An infinite class of them

is those with signature (1 ; 2^2t\ oo^)) which will be denoted by K,s for non-negative

integers r and s. They are obtained by mapping H(\/3) to A = (2,3,6) such that

the obtained subgroup has index \i — 6t, t = r2 + rs + s2. Obviously there is no

subgroup Vo,o(\/3)-

We now have

Theorem 9.8: All normal subgroups of H(\/3) having torsion are H(\/3),

for n G N, K,«(>/3) f°r non-negative integers r and s and [3,k] for A; € N,k >

8, k|/x.

Note that unlike q = 3 and q = 4 cases, H(v3) has non-free normal subgroups

with positive genus.
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Theorem 9.9: Let N be a non-trivial normal subgroup of H(\/3) different from

those listed in Theorem 9.8. Then TV is free.

To obtain a free group we must send the element S to an element of order 6.

Therefore

Theorem 9.10: If N is a normal free subgroup of H(\/3) with finite index fi,

then

6 | /x. (9.10)

By the Riemann-Hurwitz formula the genus g of N is

<7=1 + / i .^-Pi (9.11)

This implies, for a given genus g ^ 1, that we can only have finitely many normal

free subgroups of genus g in W(y/2). However when g = 1, n must be three and t

could be any natural number. We shall prove using the regular maps of type {6,3},

that H(\/3) has infinitely many normal free subgroups of genus 1.

The rank of N is 2g + t — 1, as we have found for q = 4. Therefore r = t — 1 for

g = 0, and r = t + 1 for g = 1, etc.

We now discuss an important free subgroup of H(\/3) — the commutator sub-

group H'(\/3). It can be obtained, as in q = 4 case, by adding the commutativity

relation RS = SR to the existing relations. In that way we obtain a homomorphism

of H(\/3) to H(\/3)/H'(\/3)- Obviously this quotient is isomorphic to CIXCQ. There-

fore H'(\/3) is a normal subgroup of index 12 in H(\/3) with signature (2 ; oo,oo),

that is, H'(\/3) is free of rank five. By the Reidemeister-Schreier method it has the

free generators
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ax = RSRS5, ..., a5 = RS5RS. (9.12)

Again we have

< He(V3). (9.13)

Let now N be a normal subgroup of H'(\/o). By the Kurosh subgroup theorem,

N is free of rank

r = 1 + 4//" (9.14)

and genus

g = 1 + ^(71-3). (9.15)

We also have

Theorem 9.11: H'(\/3)/H"(-\/3) is free abelian of rank five with the free gen-

erators

aiH"(V3),...,a5H"(V3) (9.16)

where a\, ..., a 5 are the generators of H'(\/3) given in (9.12).

Theorem 9.12: H"(\/3) is a free normal subgroup of infinite rank.

9.4. NORMAL SUBGROUPS OF GENUS 1 OF H(v
/3)

In Chapter 8 we have used three subgroups in the classification of the normal

subgroups of genus 1 of H(\/2): H'(\/2), K and K'. For q = 6, however, the commu-

tator subgroup H'(v3) does not have genus 1 (we have just seen that it has genus

two) and therefore will not be of any use in the classification of the normal subgroups
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of genus 1 of H(\/3)- But the subgroup K will play the same role as it did for H(\/2).

Let us now map H(\/3), by a homomorphism 9, to a finite quotient C& of the infi-

nite triangle group (2,6,3) by mapping R to the generator of order two and S to the

generator of order six. This gives us a normal subgroup with signature (1 ; oo,oo)

denoted by K. It is isomorphic to a free group of rank three with the free generators

a = RSRS5, (3 = RS3 and 7 = RS2RS4. (9.17)

They have the matrix representations

(2

Note that

a = aj, 7 = a2 and /52 = a3. (9.19)

Since fl $ H'(\/3) we can express K in terms of H'(\/3) as follows:

A" = //'(\/3) U f3H'(Vs). (9.20)

The commutator subgroup A' of K is a free group of infinite rank with K/K' is

isomorphic to a free abelian group of rank three. Clearly K/K' = {aK1, f3K', ~fK')

is abelian.

It is easy to show, as in the q — 4 case, that all normal subgroups of H(\/3) with

genus 1 lie between K and K'. Therefore we have

Theorem 9.13: The subgroup K is maximal through all normal subgroups of

genus 1 of H(v3).

We have seen that K/K' is free abelian of rank three. Let now iV be a normal

subgroup of H(\/3) with genus 1, that is, let K' < N < K. Then N/K' is a normal
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subgroup of K/K' and therefore is also a free abelian group with rank

1 < r{N/K') < r{K/K') = 3. (9.21)

Recall that, in Chapter 5, we have calculated the number N(fi) of normal genus

1 subgroups of H(\/3) having a finite given index JX. We have shown that, unlike q

= 4 case, there are ones with torsion as well as torsion-free ones. In fact we know

that, as {6,3}r,s and {3,6}r,s are dual maps, there is a 1:1 correspondence between

these two classes of normal genus 1 subgroups of H(v3). We have proved that N{fi)

is equal to one. third of the number of representations of the number /i/3 = t as a

quadratic form 7>2 + rs + s2 in integers. Because of the duality mentioned above,

is always even.

9.5. CONNECTIONS BETWEEN REGULAR MAPS AND NORMAL

SUBGROUPS OF H(v/3)

We have often noted the 1-1 correspondence between the regular maps and the

normal subgroups of H(Ag). Also we have just discussed this correspondence for the

genus 1 normal subgroups of H(\/3). In this section we consider this correspondence

for any g. At the end of the thesis we give the tables of the regular maps of type

{6,7i} and {3,7i} for g < 7.

As q = 6, the only non-degenerate regular maps corresponding to a normal sub-

group of H(\/3) are those of type {2,??.}, {3,??.} or {6,?i}. The ones of type {2,n}

correspond to the regular ?i-gons on the sphere and we will not be interested in

them. Recall that the number n corresponds to the level of the normal subgroup.

If g = 0, we have infinitely many regular maps of type. {2,71}. Apart from these

and a few degenerate ones (corresponding to cyclic, quotients), we have {3,2} which

is a map consisting of three edges joining two antipodal vertices, {3,3} which is a

tetrahedron, {6,2} consisting of six edges joining two antipodal vertices, {3,4} a
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cube, and finally {3,5} which is an dodecahedron. All normal genus 0 subgroups

have been discussed in Chapter 4 and also in Section 9.2.

The genus 1 case is already been considered in Chapter 5 and Section 9.4.

Let now g > 2. By the Riemann-Hurwitz formula

irir- <9-22>
it — O

Solving (9.22) and using the relation /z = nt we can find all possible maps. Check-

ing their regularity using group theoretical methods, we can obtain all regular maps

of type {3,n} and {6,n} having small genus (in fact g < 7).

In Appendix 1, we give some details of all normal subgroups of H(\/3) with index

upto 78. They give for any /x < 78, the normal subgroup N, the quotient group

H(\/3)/iV, the associated triangle group, the signature, genus and the level of N,

and also the corresponding regular map with the number of its vertices, edges and

faces, and finally, its automorphism group.
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Chapter 10

NORMAL SUBGROUPS OF H(A5)

10.0. INTRODUCTION

In this chapter we discuss normal subgroups of Il(A.r,). As some of them, such

as genus 0 normal subgroups, power subgroups and principal congruence subgroups

have already been investigated in the earlier chapters, in general, there is no need

to go into details here. We shall just recall the important results and prove only the

ones specific to the case </ = 5.

The q = 5 case is different from q = 4 and 6 cases as q is an odd prime and

naturally shows similarities to the modular group case where q — 3.

The. interest in this case comes from the fact that 5 is the. only value of 7, apart

from q — 4 and 6, for which Q(Aq) is a quadratic iield. Here we have the relation

A;: _ As - 1 = 0 (10.1)

which makes the calculations easier as every polynomial can be reduced to a linear

form «A5 + />,«,/> 6 Q, by means of it.
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Recall that in the introduction we discussed the conditions for a linear fractional

transformation to be an element of H(Ag), using a result of Rosen [Ro,2]. There,

we defined Ag-fractions. Leutbecher [Le,l], and Rosen [Ro,l], [Ro,2] have studied

some properties of the Hecke groups using these, fractions. It can be shown that

every finite A9-fraction is an element of the algebraic number field Q(Aq). But the

converse is not always true. Leutbecher [Le,l] showed that only for q = 5, every

element of Q(Aq) has a finite A,;-fraction representation. Therefore a real number

is an element of Q(A5) if and only if it has a finite A5-fraction representation, and

every real number has a unique As-fraction representation. It then follows that the

parabolic points, being finite A5-fractions, are just the quotients of integers in the

field Q(A5), i.e. a typical one is denoted by a/b where a = <i\ + a-2 A5, h = b\ + 62A5

(see [Ro,3]).

Another interesting result is that the units of the field Q(A5) are A's
l which can

be written in terms of two consecutive Fibonacci numbers. Let Fn be the n-th

Fibonacci number. It can be shown, by induction, that, for n > 2

A'5' = Fu_, + FnA5 (10.2)

and also

,-« _ J - / V f i + FnX^ if n is odd, nn-i\
A5 — < n _, . (HJ..i)

I rn+\ — l'nM ll ii- is even.

Rosen showed, in [Ro,3], that the units A'̂ , v. € Z are finite A5-fractions and there-

fore parabolic points.

In this chapter we begin with the power subgroups and obtain relations between

them, H(A;;) and H'(A5). A classification theorem for these subgroups will also be

given. Then we discuss normal subgroups of genus 0 of finite index. We see that

there are only five of them two of which being free. In 10.3 we discuss torsion sub-
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groups of H(A5) and Theorem 10.6 shows us that there are only three of them all

with genus 0. Using the Riemann-Hurwitz formula, we obtain information about

the genus and the rank of a normal free subgroup N of H(A5). That H(A5) has no

normal subgroups with genus one or three will also be proven.

In 10.4, the principal congruence subgroups are discussed. We shall see that they

are all free.

Finally in 10.5, we discuss low index normal subgroups of H(A5) and find values

of fi such that H(A5) has no normal subgroup of index fi.

We begin with the power subgroups H"l(A5) of H(A5):

10.1. P O W E R SUBGROUPS Hm(A5) OF H(A5)

The. in-th power subgroup H'"(A5) o/H(A5) is defined, for in £ N, as the sub-

group generated by the ??i-th powers of all elements of H(As). We have noted in the

earlier chapters that H'n(A5) is a normal subgroup of H(A5).

As the relations

Hm(X5) > //mn(A5) (10.4)

and

(//m(A5))n > Hmn(X5) (10.5)

hold, we have

Hm{\5).H
n{\5) = //('"^(As) (10.6)

where (m,n) denotes the greatest common divisor of in and n ( see Chapter 6 for a
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detailed proof). Particularly

H(X5) = H2(X5).H
S(X5). (10.7)

We now briefly discuss the group theoretical structure of these subgroups begin-

ning with H2(A5):

Theorem 10.1: The normal subgroup H2(As) is isomorphic to the free product

of two finite cyclic groups of order five. Also

H(X5)/H'2(X5) £ C2, (10.8)

H(X&) = //2(A5) U RH2(X5), (10.9)

and

H'2(XS) = <.$>*< RSR > . (10.10)

The elements of H2(A5) are characterised by the. requirement that the sum of the

exponents of R is even.

Proof: A special case of Theorem 6.1.

Theorem 10.2: The. normal subgroup H5(A5) is isomorphic to the free product

of five finite cyclic groups of order two. Also

: H5(X5)\ = 5, (10.11)

= //5(A5) U SH5(X5) U ... US4//5(A5), (10.12)

and

/ / 5 ( A 5 ) =< R>*< SRS4 >*< S'2RS3 > * . . . * < S4RS > . (10.13)
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The elements of H5(A5) can be characterised by the requirement that the sum of the

exponents of S is divisible by five.

Proof: A special case of Theorem 6.2.

We can now obtain a classification of these subgroups:

Theorem 10.3: The subgroups H"l(A5) satisfy the following:

f H(A5) if(m,10) = l

H2(A5) if m is even and (m, 5) = 1 , .

H°(A5) if m is an odd multiple of five.

Therefore we have only left the subgroups H10fc(A5) to consider. There is nothing

certain about these subgroups except they are all free. For sufficiently large fc, they

have infinite index as well. However some of them have finite index as we shall soon

prove.

To discuss H10/;(A5) we first need to consider the commutator subgroup H'(A5):

Lemma 10.1: The commutator subgroup H'(As) of H(As) is isomorphic to a

free group of rank four. Also

: //'(A5) | = 10, (10.15)

//(A5) = £ r.//'(A5) (10.16)
t=0

and

//'(A5) = < SRS4R > * < S2RS3R > * . . . * < S*RSR > . (10.17)
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We let

Ol = SRS4R,a2 = S2RS3R, ...,a4 = S4RSR. (10.18)

It is easy to conclude that

H'(X5) = //2(A5) n H5(X5) (10.19)

as a special case of Theorem 6.4.

Now as

//'(A5) > H10(X5) > Hl0h(X5), (10.20)

we have

Theorem 10.4: The subgroups H10fc(A5) are free.

10.2. NORMAL GENUS 0 SUBGROUPS OF H(A5) OF FINITE

INDEX

Let now N be a normal genus 0 subgroup of H(A5) with finite index. We have

already seen, in Chapter 4, that H(A5)/./V is isomorphic to one of the finite triangle

groups. These are known to be A4, 54, A5, Cn and Dn for n G N. Let us now con-

sider all possibilities:

Firstly, if we map H(A5) onto a cyclic group C,,, then ./V has the signature

(0 ; 2("),5/n, 00). This class of normal subgroups was denoted by K,(A5) in Chapter

4. Here necessarily n | 5, i.e. n = 1 or 5.
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If n = 1, then N = H(A5).

If n = 5, then N £ (0 ; 2(5\oo) = H5(A5). But N = H5(A5) as this is the

unique normal subgroup of index 5.

Secondly, mapping onto a dihedral group Dn = (2, n,2), where n |5 again, we

obtain a normal subgroup denoted by 5n(A5) with signature (0 ; 5/n,5/?i, oo^")).

If n = 1, then N = (0 ; 5,5,oo) = H2(A5). Again N = H2(AS) as there is a

unique normal subgroup of index 2.

If 7?. = 5, then N = (0 ; oo(r>>) =• F4. Therefore yV = 5'5(A5).

Thirdly and finally, we can map H(Ar,) onto A*, = (2,5,3). Then we obtain

r5(A5) with signature (0 ; oo '̂20)) S F19.

Therefore we. have

T h e o r e m 10.5: H(A.=,) has only five normal genus 0 subgroups those being

H(A5), H2(A5), HS(A5), 55(A5) and Th{Xh).

10.3. NORMAL TORSION S U B G R O U P S OF H(A5)

As a special case of Theorem G.G, we have

Theorem 10.6: Let N be a non-trivial normal subgroup of H(A5) different from

//(A5) , /f2(A5)aH f / / /
5(A5) . (10.21)

Then N is free.



Also

Theorem 10.7: Let N be a free normal subgroup of H(A5) with finite index //.

Then

10 | //. (10.22)

10.4. PRINCIPAL CONGRUENCE SUBGROUPS OF H(A5)

These subgroups have, been discussed completely in C'hapter 7 and therefore we

only recall some of the results obtained there.

Recall that the principal congruence subgroup of level 7?. of H(A5) was denoted

by r,,(As). We have found the quotients of H(As) with P7l(Ar,) for all prime values

of 7i as follows:

Theorem 10.8: The quotient groups of the Hecke group H(A5) by its principal

congruence subgroups r,,(A5) are

P$L{2,p) if p = ±1 mod 10,
PSL(2,p2) if p = ±3 mod 10, and p ̂ 3 ,

Dh if p = 2, l l U - l j

A5 if p = 3,5.

We have also seen that if (i is the index of rp(A5), then rp(A5) has the signature

1 + -4"(3;> - 10) ; oo{ll/tA (10.24)
20/> J

and therefore is free.
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10.5. LOW INDEX NORMAL SUBGROUPS OF H(A5)

We now investigate some low index normal subgroups of H(As). Let N be a

normal subgroup of index /z in H(A5). Let us consider some values of (i:

If/* = l , then N = H(A5).

If fi = 2, then H(A5)/A' S C2 S (2,1,2). Therefore W = H2(A5), as there is a

unique normal subgroup of index 2.

If /z = 3, then the only possibility for H(A.s)/A7 is CV But the commutator quo-

tient of H(A5) is C-2 x '̂'5 and every abelian c[uotient is a. subgroup of this. Therefore

H(A5) has no normal subgroup of index 3.

H = 4 case is ruled out by the same reason.

If /.i = 5, then H(X^)/N is isomorphic to O5 and this gives H5(A5) as we have

seen in Theorem 10.2.

We have seen in Theorem 10.7 that if /t > 5 and 10 /f/i, then H(A5) has no

normal subgroup of index /t.

Therefore the next value of // to consider is 10. Then H(A.=,)/.'V is either d o o r

D5. We saw in 0.6 that, the former one gives the commutator subgroup H'(A5). We

also saw, in Chapter 4, that the latter one gives .S'.s(Ar,) of genus 0.

Next value of /.i is 20. We can show the impossibility of this using Sylow theo-

rems: Let

G = H(\s)/N. (10.25)
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Then |G| = 20. By Sylow theorems G has a unique Sylow 5-subgroup H. Then

GjH has order 4 and there is a homomorphism from H(A5) to G/H, giving a con-

tradiction, as there is no image of H(A5) of order 4. Therefore

Theorem 10.9: H(A5) has no normal subgroup of index 20.

Let now n = 30. We then need the following result:g

L e m m a 10.2: Let G be a group of order 27- with 7- odd. Then G contains a

subgroup of order ?•.

Proof: Let |G'| = 2?". Consider the regular representation of G. As G contains

an element of order 2, this element is a product of ?• 2-cycles, i.e. G contains odd

permutations. Therefore the even permutations form a subgroup of index 2 and

hence have order ?\

We can now return to the investigation of index 30 normal subgroups of H(A5).

By Lemma 10.2. G = H(A5)/Ar contains a subgroup II of order 15. All groups of

order 15 are cyclic, so // = (Yv By Sylow theorems, G contains ] or 6 Sylow

5-subgroups. Suppose it contains fi. Then as they arc all conjugate by Sylow theo-

rems, the normalizer oi any one of them lias index () and so each such subgroup is

self normalizing. However the (7S inside CYs is not, giving a contradiction. Therefore

there is a unique (hence normal) Sylow 5-subgroup K. Then \GjK\ — 6 and there

is a homomorphism from H(A.s) to GjK which is impossible as we saw. Therefore

we have

Theorem 10.10: H(AS) has no normal subgroup of index 30.

A similar discussion implies that H(A5) has no normal subgroups of index 70, 90

or 110.



Now let n = 40. Let G = H(A5)/iV with \G\ = 40. By the Sylow theorems G has

a unique Sylow 5-subgroup H. Then G/ H has order 8 and there is a homomorphism

of H(As) to G/H, which gives a contradiction. Therefore

Theorem 10.11: H(A5) has no normal subgroup of index 40.

To prove the existence of normal subgroups of H(A5) we can refer to lists of

regular maps. However, if there is an elementary argument, we give it here.

Let us now consider the case \i = 50. Consider the group

C5 xC5 = < a, b | a5 = b5 = 1, ab = ba > . (10.26)

This admits an automorphism of order 2 interchanging a and b. Therefore we can

form the wreath product

C5\C2 ^<a,b,t\a5 = b5=t2 = l,tat~l = b >

= <a,t\a5 = t2 = 1, atat = tata > . ^ ' '

Clearly this is an image of H(A5). As (at)10 = 1, the kernel of the homomorphism

of H(A5) to Cs I C2 gives a normal subgroup of level 10. A look at the regular maps

with 25 edges shows that this subgroup is unique.

Let // = 60. Let G be a group of order 60. Consider the Sylow 5-subgroups of

G. By the Sylow theorems, there are 1 or 6 of them. If there is only one, then it is

normal and so we have a quotient of order 12 that is an image of H(A5) which is im-

possible. Therefore there are 6 Sylow 5-subgroups. (Also there cannot be a unique

Sylow 3-subgroup). This gives a transitive action of G on the 6 Sylow 5-subgroups

by conjugation. There is a homomorphism 9 : G —» 5*6. Suppose 6(G) = H <£ A$.

Then | H : H n A6 | = 2. That is 6~X{H n A*) has index 2 in G, i.e. G contains a

normal subgroup K of order 30. Now K contains 6 Sylow 5-subgroups and at least
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4 Sylow 3-subgroups. Counting the elements, we obtain a contradiction. Hence

H < AG.

As 5' is of order 5, we can assume that 5 —> y — (1 2 3 4 5)(6). Because of

the transitivity and because of the fact that the number of the cycles must be even,

we can assume that R —* x = (1 6)(a b)(c)(d) where a,b,c,d £ {2,3,4,5} are

different. Then possibilities are as follows:

x = ( 1 6 ) ( 2 3)(4)(5)
(i) y = ( 12 3 4 5)(6)

xy = ( 1 6 2 4 5)(3)

Therefore, x and y generate a finite image of (2,5,5). To find this image, consider

xy2 — ( 1 6 3 4)(2 5) which is of order 4. Now < .i\ y > = < x,y'2 > , as y has

odd order. As x2 = (y2)5 = (xy2)4 = / . C is an image of (2,5,4) of order 60. The

Riemann-Hurwitz formula then gives 2g — 2 = 60. (1 — | — i — ̂ J — 3, a contra-

diction.

x = ( 1 6 ) ( 2 4)(3)(5)
(ii) y = ( 1 2 3 4 5)(6)

xy = ( 1 6 2 5)(3 4)
which is ruled out by the same reason.

x = (1 6)(2 5)(3)(4)
(iii) y = ( 1 2 3 45)(6)

xy = (1 6 2) (3 4 5)
As x2 = y5 = (xy)3 — / , x ami y generate An, i.e. this gives the unique homomor-

phism of H(A.5) onto /45. The kernel of this homomorphism is ^ ( A s ) .

x = ( 1 6 ) ( 2 ) ( 3 4)(5)
( iv) y = ( 1 2 34 5)(6)

xy = (1 6 2 3 5)(4)
which generate an image L of (2,5,5). Now xy'2 = ( 1 6 3)(2 4 5) so we have / l 5 as in

(iii).
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x =(16)(2)(3 5)(4)
(v) y = ( 1 2 3 4 5)(6)

xy = ( 1 6 2 3)(4 5)
which is not possible as in (i) and (ii).

x = (1 6)(2)(3)(4 5)
(vi) y = ( 1 2 3 45)(6)

xy = (16 2 34)(5).
Now xy2 = (16 3 5)(2 4) which rules out this possibility.

Therefore there are only two homomorphisms of H(A5) onto a finite group of

order 60, given in (iii) and (iv) with kernels F.^As) and [5,5], respectively.

Let \i = SO. Then using regular maps, we can find a unique homomorphism to

(2,5,5) with kernel [5,5]4.

Let /( = 100. There is a unique Sylow 5-subgroup of order 25, by Sylow the-

orems. But this is not possible as otherwise the quotient would have order 100/25=4.

Finally let \i = 120. Regular map theory again implies that there are homomor-

phisms from H(A5) to 5s and ,45 x C-2 giving two normal subgroups [5,4]e and [5,6]4,

respectively.

Therefore we have a list of the normal subgroups of H(A5) having index < 120:

_ji N
1 H(A5)
2 H2(A5)
5 H5(A5)
10 H'(A5), r2(A5) (10.28)
50 [5,10]
60 r3(A5), [5,5]
80 [5,5] 4

120 [5,4]6, C2(A5)

If N is a free normal subgroup of H(A.s) having genus (j and parabolic class num-

201



ber t, then as H(As) has level 71 = ji/t and by the Riemann-Hurwitz formula

(7 = 1 + ^ - ( 3 « - 10) (10.29)

and therefore the level n of N must be > 3. Hence

H > 'it. (10.30)

Then the rank r of N is given by

r = 1 + 777- (10-31)

Let us now discuss some normal subgroups of 11 (A5) in terms of their genera.

By (10.29), if g = 0, then n — 2 or 3 giving the two normal free subgroups 5s (A5)

and F3(A5) of genus 0 of H(A5) of indices /t = 10 and 60, respectively. There are

also 3 normal torsion subgroups of H(A5): H(A5), IT2(A5) and H5(A5) of indices 1,2

and 5, respectively. These are all normal torsion subgroups of H(As).

Secondly let g = 1. In Chapter 5, we showed that H(A5) has no normal subgroups

of genus 1.

Now let g — 2. By the Riemann-Hurwitz formula, if /z is the index and n is the

level of N of genus 2 in H(A5), we have

,. = - ^ - . (10.32)
' lin - 10 K '

Then possible values of 7?, are 4,5 and 10 giving /i = 40, 20 and 10, respectively. We

have shown that H(Ar,) has no normal subgroup of index 20 or 40. The final one,

having level 10, gives the commutator subgroup H'(As). That is, H(A5) has a unique
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normal subgroup of genus 2, namely its commutator subgroup.

Consider g = 3. Then similarly all possible values of n are 4,5,6 and 10 giving

subgroups of indices 80,40,30 and 20, respectively. The last three do not exist by

the calculations we have done above. The first one, if existed, would correspond to

a regular map of type {5,4}. But by [Sh,l], there is no regular map of genus three

of type {5,4}. Therefore

Theorem 10.12: H(A5) has no normal subgroups of genus 3.

Finally let g = 4. Possible values of n are 4,5,6,10 and 20 with indices 120,60,45,30,24,

respectively. The third and last are automatically ruled out as 10 / / i . We showed

that H(A5) has no normal subgroup of index 30. So the fourth is also ruled out. n

= 4 and 5 give the two genus 4 normal subgroups of H(A5), namely [5,5] and [5,4J6,

as the kernels of the homomorphisms of H(A5) to A$ and ,S's, respectively.

We finally discuss a class of normal subgroups of M(A5) which appears in [Co-

Mo,lj. Consider the homomorphism of H(A5) to A5 x 6\. = << 2, 5 | 3; /c >>, in

Coxeter and Moser's notation, for some k € N. Let 6\(A5) denote the kernel of

this homomorphism. Here H(A5)/C;t(A5) is a finite quotient of the triangle group

(2,5,3k)- We can determine, the signature of Ch{\5) as (9(A:- 1) : oo^20'). The first

few values of k that give a normal subgroup are k = 1,2,4,5 and 10. Some of them

are listed in Appendix 1.
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THE POLYNOMIALS Tn(x) FOR

0 < n < 17

n

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

17

Tn(x)
1
X

2x2 - 1
4x3 — 3x
8x4 - 8x2 + 1
16a;5 - 2 0 x 3 + 5x
32a;6 - 48x4 + 18x2 - 1
64x7 - 112a:5 + 56:c3 - 7x
128a:8 - 256:c6 + 160x4 - 32;r2 + 1
256a:9 - 576x7 + 432x5 - 120x3 + 9x
512x10 - 1280x8 + 1120a:6 - 400x4 + 50x2 - 1
1024.T11 - 2816a:9 + 2816x7 - 1232x5 + 220x3 - l lx
2048a:12 - 6144x10 + 6912a:8 - 3584a:6 + 840x4 - 72a:2 + 1
4096:r13 - 13312a:11 + 16640x9 - 9984a:7 + 2912a:5 - 364x3 + 13x
8192x14-28672x12 + 39424x l o-26880x8+9408x6-1568x44-98x2-l
16384x15 - 61440x13 + 92160a;11 - 70400a;9 + 28800a;7 - 6048x5 +
560.T3 - 15x
32768a:16 - 131072x14 +212992x12 - 180224a;10 +84480x8 -21504x6 +
2688.T4 - 128:c2 + 1
65536x17-278528x15+487424x13-452608xn+239360x9-71808x7 +
11424x5 - 816x 3 + 17x
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THE POLYNOMIALS An(x) FOR
0 < n < 32

n

0
1

2
3
4
5
6
7
8

9
10

11
12
13
14
15
16
17
18

19

20

21

22

23

24

1
X

x2 -

x3 -
x 4 -
x5 -
xG -
x ' -
a;8 -

x9 -
x10

x11

X 1 2

a;13

X 1 4

X 1 5

x16

x1 7

~18

81 x

a;19

285

825

2

• 3 x

- 4.x2 4 2
- 5.x3 4 5a;
- 6.x4 4 9.x2 - 2
- 7a;5 4 14a:3 - 7x
-8xG 4 20x4 - 16x2 4 2
- 9x7 4 27.x5 - 30x3 4 9x

- 10a;8 4 35a:6 - 50x4 4 25x2 - 2
- 1 lx9 4 44x7 - 77a:5 4 55a;3 - l lx
- 12x10 4 54x8 - 112a:6 4
- 13a:11 4 65x9 - 156x7 4

- 1 4 x r i 4 77.x-1 0-210x84
- 15.x13 4 90x n - 275x9 4
- 16.x14 4 104x12 - 3 5 2 x 1 0

-17x 1 5 4 119a:13 -442a:11 4

- 1 8 x 1 ( 5 4 l 3 5 x 1 4 - 5 4 6 x 1 2 4
2 - 2

- 19x174152a:15 - 6 6 5 x 1 3 4
x3 - 19a:

a;4 - 100x2 4 2

105x4 - 36x2 4 2

182a:5 - 91a:3 4 13x
294x6 - 196x44-49x2 - 2
450x7 - 378x5 4 140x3 - 15x
4 660x8 - 672x6 4 336.x4 - 64x2 4 2
935a;9 - 1122a:7 4 714.x5 - 204x3 417x
1287.x10 - 1782a:8 4 1386a:6 - 540x 4 4

1729a:1! - 2717x9 4 2508.x-7 - 1254x5 4

2275x 1 2 -4004x l o 44290x 8 -2640x 6 4

a:21 - 2 1 x l y 4 189x I 7 -952x 1 5 42940x 1 3 -5733x n 47007x y -5148x 7 4
2079x5 - 385x3 4 21x
a:22 - 22a:20 4 209a:18 - 1122a:
9438a:8 4 4719a:6 - 121 Ox4 4 1
x23 - 23x21 4 230x19 - 131 la:1

16445.x9 4 9867.x7 - 3289x5 4

1(5 4 3740x14 - 8008x12 4 HOllx1 0 -
21x2 - 2
7 4 4692a:15 - 10948a;13 4 16744a:11 -
506.x3 - 23x

x24 - 24x22 4 252.x20 - 1520x18 4 5814x16 - 14688a:14 4- 24752x12 -
27456.x10 4 19305.x8 - 8008a:6 4 1716x4 - 144x2 4 2
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An(x)
25 x25 - 25x23 + 275x21 - 1750xX9 + 7125x17 - 19380xi5 + 35700xi3

44200xn + 35750x9 - 17875x7 + 5005x5 - 650x3 + 25x
26 || x26 - 26x24 + 299x22 - 2002x20 + 8645x18 -

2xi2 , 63206x10 - 37180a:8 + 13013a:6 - 2366x4 + 169x2 - 2
27 x27 - 27x25 + 324x23 - 2277x21 + 10395x19 - 32319x17 -

104652x13 + 107406a;11 - 72930x9 + 30888x7 - 7371x5 + 819x3 - 27x
28 x28 - 28x26 + 350x24 - 2576x22 + 12397x20 - 40964x18 + 94962x16 -

155040x14 + 176358x12 - 136136x10 + 68068x8 - 20384x6 + 3185x4 -
196x2 + 2

29 || x29 - 29a:27 + 377x25 - 2900a;23 + 14674x21 - 51359a:19 + 127281x17 -
284808x15+281010x13-243542xn-
1015x3 + 29.c

30 || x30 - 30x28 + 405x26 - 3250x24 + 17250x22 - 63756x20 + 168245xi8

319770x16 + 436050a;i4 _ ^ggQOx12 + 277134x10 - 119340x8

3094Ox6 - 4200x4 + 225x2 - 2
31 x31 -31x 2 9 + 434x27 -3627x25 +20150x23 - 78430x21 +219604xitJ -

447051a;17 + 660858x15 - 700910a;13 + 520676xn - 260338x9 +
82212.T7 - 14756.C5 + 1240x3 - 31x

32 x32 - 32x30 + 464x28 - 4032x26 + 23400a;24 - 95680x22 + 283360a:20 -
615296x18 + 980628a;16 - 1136960x14 + 940576x12 - 537472x10 +
201552x8 - 45696a;6 + 5440x4 - 256a;2 + 2
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THE POLYNOMIALS SBn(x) FOR
1 < n < 13

1
2
3
4
5
6

7
8

9
10

11

12

13

x —
x +
x +
X

x2-
X —

x3-
X2 -

X3-

X2

X5

X2

X*

1

1

f
1
2

f

•f

-

•f

X

7 ~

X1

7

7
•ix
4

X

2
X4

2
•i

4

T

1
4

X

2

' 8

4

- X3 -

5x4

4
—

loo

ix2 i 3x , 1
8 "*" 1(i ' 32

Xs i 3i-J i :)x 1
~ 2 + 8 + 3 2 (>4
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THE MINIMAL POLYNOMIAL P*(x)
OF Xq FOR 3 < q < 50

<7
3
4
5

6
7
8
9

10
11

12
13
14
15
16

17
18
19
20
21
22
23

24
25
26
27
28
29

30

¥>(?)

2
2

4
2
6
4
6
4

10
4

12
6
8
8

16

6

18
8

12
10
22

8
20
12
18

12
28

8

d

1
2

2
2
3
4

3
4
5
4
6
6
4
8
8

6

9
8
6

10
11

8
10
12
9

12

14

8

p?(x

x - 1

x 2 -

x 2 -

x 2 —

a:3 -

a:4 —

x 3 —

ttr ~~~

r 5

x 4 -
xe-
x 6 -

x 4 4
a;8 —

x 8 -

x 6 -
x 9 -

x 8 -
a:6 4
x 1 0 -
x11 -
35x3

x8 -
x10 -
x12 -
x 9 -

x12 -

)

2
a: —

3
a:2 -

4a:2

3x -

5x2

x 4 -
4x2

X 5 -

7x4

x 3 -

8x6

x7 -

6x4

x 8 -
8x6

X 5 -

- 11

1

- 2a: 4
4 2
- 1
4 5
- 4x3 H
4 1
- 5x4 H
4 14x
- 4a;2 -
4 20x
- 7xG -
4 9x2

- 8a;7 4
4 19x
- 6a;4 -
rs 4 4

- x10 - 10
- 15x2 -
8x6

- 10
- 13
9x7

- 12
X1 4-X1 3

21Ox6 -

x 8 - • 7 x b

4 20x

1

- 3a;2 4 3a;

- 4x3 4 6x2

2 - 7
- 4x 4 1
4 - 16x2 4
h 6x5 4 15a
- 3
7a;6 4 21 x5

4 - 12x2 4
- 6x3 4 8a:'̂
lxc - 77a:4

r9 4 9x8 4
6x4 1
4 - 16x2 4

c8 4 35xG - x5 -
L-10 4 (
4 27a
t10 4 -
-13a:
126x5

4 14a

35x8 - 156;
5 - 30x3 4
33x8 - 104

- 1

- 3x - 1

2
;4 - 10a;3 - 10x2 4 4

- 15x 4 -20a : 3 4 10x
1

4 8x 4 1
4 55x2 - 11
36a;7 - 28x6 - 56x5

1

50x4 4 5x3 4 25x2 -
i : c4 182x4 — 91a;2 4
9a; - 1

;:G 4 86x4 - 24x2 4 1
12 4 12xn 4 66a;]° - 55x9 - 165x8

- 126x4 4 56x3 4 28x2 - 7x -
;4 - 8x2 4

f + 1

2 4 5x - 1

4 35x4 4

- 5x - 1
13

4120x74
1
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31

32

33

34

35

36
37

38

39

40

41

42
43

44

45

30

16

20

16

24

12
36

18

24

16

40

12
42

20

24

d

15

16

10

16

12

12
18

18

12

16

20

12
21

20

12

x 1 5 -x 1 4 -14x 1 3 + 13x12 + 78x 1 1 -66x l o -220x 9 + 165x8 +
330a;7 - 21 Ox6 - 252x5 + 126x4 + 84x3 - 28x2 - 8x + 1
x16 - 16a;" + 104a:12 - 352a;10 + 660x8 - 672x6 + 336z4 -
64x2 + 2
x10 + x9 - 10x8 - 10x7 + 34x6 + 34x5 - 43x4 - 43x3 +
12x2 + 12x + 1
x16 - 17a;14 + 119a;12 - 442a:10 + 935z8 - 1122a;6 + 714x4 -
204x2 + 17

x™ + xn - 12x10 - l lx 9 + 54x8 + 43x7 - 113x6 - 71x5 +
110x4 + 46x3 - 40x2 - 8x + 1
x12 - 12x10 + 54x8 - 112a:6 + 105x4 - 36x2 + 1
;c«8 _ ;ci7 _ 1 7 X .H> + 1 6 ; c i5 + 120a;" - 105x 1 3 - 455a;12 +

364x" + lOOlx10 - 715a:9 - 1277x8 + 792a;7 + 914x6 -
462x5 - 330a:4 + 120x3 + 45x2 - 9a; - 1
x18-19x1G+152x14-665x12 + 1729x1°-2717x8+2498x<5-
1254a:4 +285x2 - 19
x r2 + x " - 12x 1 0 - 12x9 + 53x8 + 5 3 x 7 - 103x 6 - 103x5 +
79x4 + 79x3 - 12x2 - 12x + 1
x1G - 16x14 + 104a:12 - 352a;10 + 659a;8 - 664x6 + 316x4 -
48x2 + 1

;C2o _ ;,; 19 _ 19a;18 + 18x17 + 153x1G - 136x15 - 680x14 +
560x13 + 1820x12 - 1365a:11 -3003x l o + 2002x9 + 3003x8 -
1716.x-7 — 1716;i;6 + 792a:5 + 495x4 - 165x3 - 55x2 + 1 Ox + 1
x12 - 1 ix10 + 44x8 - 78xG + 60x4 - 16x2 + 1
xn _ ;r2o _ 2O.c19 + 19x18 + 171x17 - 153a;16 - 816x15 +
680x14 + 2380x13-1820x12-4368x11+3003x10 + 5005x9-
3003x8 - 3432s7 + 1716a:6 + 1287a;5 - 495a:4 - 220x3 +
55x2 + l lx - 1
x™ - 20:c18 + 169x16 - 784x14 + 2172x12 - 3664K1 ° +
3683x8 - 2072:c6 + 575x4 - 60x2 + 1
x12 - 12a;10 + x9 + 54x8 - 9x7 - 112x6 + 27x5 + 105x4 -
31x3 - 36x2 +12x + 1 ,
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46

47

48

49

50

22

46

16

42

20

d
22

23

16

21

20

xn - 23x20 + 230xi8 - 131 lx16 + 4692xM - 10938xi2 +
16694x10 - 16375x8 + 9837x6 - 3289x4 + 506x2 - 23

X23 _ X22 _ 22x2i + 21x
20 + 210x19 - 190x18 - 1140x17 +

969x16 + 3876xi5 - 3060xu - 8568xi3 + 6188x12 +
12376xn - 8008x1° _ HUQX9 + 6435x8 + 6435x7 -
3003x6 - 2002x5 + 715x4 + 286x3 - 66x2 - 12x + 1
x16 - 16x14 + 104x12 - 352x10 + 660x8 - 672x6 + 336x4 -
64x2 + 1
x21 - 21a:19 + 189x17 - 952x15 - x14 + 2940a;13 + 14a:12 -
5733X11 - 77x10 + 7007x9 + 210a:8 - 5147x7 - 294x6 +
2072;c5 + 196x4 - 371a:3 - 49x2 + 14x + 1
x20 - 20a:18 + 170:c1(5 - 800x14 + 2275a:12 - 4OO5x10 +
4300.C8 - 2675a:6 + 875x4 - 125x2 + 5

211



NORMAL SUBGROUPS OF H(\/2)
WITH INDEX < 60 l

1

2

4

8

16

20

24

32

36

40

48

52

56

H(V2)/iV

{1}
c2
c2
c2

c4
c4

L+(0)
C2 x C4

L+(l)
<78xC2

A//(l,5)
A//(l,5)

54

L+(2)
C74 x D 3

£4,4,8

L+(3)
< 2 , 8 | 2 ; 2 >
<2,8 |2;2>

(4,4|2,3)
See [Co-Mo, 1]
See [Co-Mo, 1]

L+(4)
<2,10|2;2>

& XC2

< 2 , 1 2 | 2 ; 2 >
<2,12|2;2>
See [Co-Mo, 1]
See [Co-Mo, 1]
<2,14|2;2 >
<2,14|2;2>

Associated

triangle group

(1,1,1)
(2,2,1)
(1,2,2)
(2,1,2)

(2,2,2)
(2,4,4)
(1,4,4)

(2,4,2)
(2,4,4)

(2,4,4)
(2,4,8)
(2,4,4)
(2,4,4)

(2,4,3)
(2,4,6)
(2,4,12)
(2,4,4)
(2,4,8)
(2,4,8)
(2,4,16)

(2,4,4)
(2,4,4)
(2,4,4)
(2,4,10)
(2,4,20)

(2,4,6)
(2,4,12)
(2,4,24)

(2,4,4)
(2,4,4)
(2,4,14)
(2,4,28)

N

U(y/2)=Yi(y/2)

He(V
/2) = K2{y/2)
Y2(V2)
Si(V2)

H2(>/2) = S2(V~2)
^ = [4,4] l i0

Y4(V2)
S4{V2) = K(0)

H'(^) = [4,4]ia

K(l)
[4,8]i,i
[4,4]2l l

[4,4]i,2

K3(V2) = T4(V2)
K(V2)
[4, 12]!,!
[4,4]2,2

#(3)
[4,8]2,o
[4,16]i,i
[4,4]3,o
[4,4]3,i
[4,4] l l3

KM
[4,20]1>x

[4,6]3

[4,12]2j0

[4,24]:,!

[4,4]2)3

[4,4]3)2

[4,14]2,0

[4,28]!,!

Signature

of Â

(0;2,4,oo)
(0; 2, oo, oo)

(0;2,2,2,oo)

(0;4,4,oo)

(0; 2,2,oo,oo)
(l;oo)

(0; 2,2,2,2,oo)

(0; 00, 00, 00, 00)

(1; 00,00)

(1; 00,00,00,00)

(2; 00,00)

(1; oo(5))
(1; oo«)
(0; cx>(8))

(2; 00, 00, 00, 00)

(3; 00,00)

(1; 00W)

(3; 00,00,00,00)

(3; 00, 00, 00, 00)

(4; 00,00)

(1; 00W)
(1; oo(10))
(1; oo(10))

(4; 00,00,00,00)

(5; 00,00)

(3; 00W)

(5; 00,00,00,00)

(6; 00, 00)

(1; oo(13))

(1; oo<»>)
(6; 00,00,00,00)

(7; 00,00)

n

1

1
2
2
2
4
4
2
4
4
8
4
4
3
6
12
4
8
8
16
4

4
4
10
20
6
12
24
4
4
14
28

Excluding Wn(y/2) with n > 3
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REGULAR MAPS CORRESPONDING
TO THE NORMAL SUBGROUPS OF

H(\/2) WITH INDEX < 60

/*
1

2

4

8

16

20

24

32

36

40

48

52

56

N

H(\/2)

Si(x/2)
H2(v/2)

A"
y^(V2)

JRT(O)

[4,8]ia

[4,4]2,i
[4,4]1|2

£(2)

[4,4]2,2

[4,8]2,o
[4,16]i,i
[4,4]3,0

[4,4]3,i
[4,4]i)3

[4,20]i,i
[4,6]3

[4,12]2,o

[4,4]2)3

[4,4]3,2

[4,14]2,o
[4,28]i,i

g

0

0
0
0
0
1
0
0
1
1
2

1
1

O
 

C
M

 
0
0

1
3
3
4
1

1
1
4
5
3
5
6
1
1
6
7

n0

-
1

2
2
1

to
 t

o

4
4
5
5
6
6
6
8
8
8
8
9

10
10
10
10
12
12
12
13
13
14
14

-

1

1

I 
to

 to

4
4

00
 

0
0

10
10
12
12
12
16
16
16
16
18

o
 

o
 

o
 

o
C

M
 

C
M

 
C

M
 

C
M

24
24
24
26
26
28
28

n2

-

2

1
2
1

4
2
4
2
5
5
8
4
2

8
4
4
2
9

10
10
4
2
8
4
2
13
13
4
2

Aut. group

{1}
c2
c2
c2

cl
c4
D4

C2 xC4

C8xC2

AAfm%

ik
(-4,4,8

L+(3)
< 2 , 8 | 2 ; 2 >
<2,8|2;2 >

(4,4|2,3)
See [Co-Mo, 1]
See [Co-Mo, 1]

L+(4)
<2,10|2;2 >

S4 x C 2

< 2 , 1 2 | 2 ; 2 >
<2,12|2;2 >
See [Co-Mo, 1]
See [Co-Mo, 1]
< 2 , 1 4 | 2 ; 2 >
<2,14|2;2>

Regular map
degenerate

{1.2,1}
degenerate

{1,1.2}
{1.2,2}
{4,4}i,0

degenerate
{2.2,2}2,O

{2.2,2.2}i,i
{2.2,4}2,o

{4,4}2,i
{4,4}i,2

{4,3}
{2.2,6}2,o

{4,4)2,2
{4,4.2}

{2.2,8}2,0

{4,4}3,o
{4,4}3,i
{4,4}i,3

{2.2,10}2,0

{2.2,2.10}i,i
{4,6}3

{2.2,12}2)0

{4,4}2,3
{4,4}3,2

{2.2,14}2)0

{2.2,2.14}i,i
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NORMAL SUBGROUPS OF H(\/3)
WITH INDEX < 84 2

V-
1

2

3

4

6

12

18

24

30

36

42

H(v/3)/iV

{1}

c2
c2
c2
c3
£>2

# 3

c6
Ce
Ce

De

A4

C2 xC6

<2,3|2;3 >
<2,3|2;3>

(-3,6,4

S4

L+(2)
(-3,6,4

A4 x C2

< 2,4|2;3 >
<2,5|2;3 >
See [Ga,l]

<2,6|2;3 >
See [Ga,l]

See [Co-Mo,l]
See [Co-Mo,l]
See [Co-Mo,l]
See [Co-Mo,l]
<2,7|2;3 >

Associated
triangle group

(1,1,1)
(2,2,1)
(1,2,2)
(2,1,2)
(1,3,3)
(2,2,2)
(2,3,2)
(2,6,3)
(2,3,6)
(1,6,6)
(2,6,2)
(2,3,3)
(2,6,6)
(2,6,3)
(2,3,6)
(2,6,3)
(2,3,4)
(2,6,4)
(2,3,6)
(2,6,6)
(2,6,12)
(2,6,15)
(2,6,6)
(2,6,6)
(2,6,6)
(2,6,3)
(2,6,3)
(2,3,6)
(2,3,6)
(2,6,21)

TV

H(^3)=F1(v/3)
He(\/3)
Y2(y/S)
Si(VS)

H3(^3) = y3(\/3)
H2(x/3) = 52(x/3)

53(>/3)
K = [6,3]li0

[3,6]i,0

H'(x/3) = [6,6]li0

[6,3]i,!
[3,6]i,i
[6,3]2,o
T2(y/S)
k(2)

[3, 6j2,o
[6,6]

[6,12]ll0

[6,15]i,o
^2,3

[6,6]u

[6,6]
[6,3]2,i
[6,3]i,2
[3,6]2)1

[3,6]il2

[6,2l]i,o

Signature
of N

(0;2,6,cx))
(0;3,c»,oo)
(0;2,2,3,oo)
(0;6,6,oo)

(0; 2,2,2,2,oo)
(0; 3,3,oo,oo)

(0; 2,2,oo, 00, 00)

(1; 00,00)

(1; 2,2,oo)
(0;2(6\oo)
(0; oo(6))

(0;2(4),oo(4))
(2; 00,00)

(1; 00W)

(l;2(6),oo(3))
(1; 00W)

(0;2(8),oo(6))
(2; cx)(6))

(l;2(8),ooW)
(3; 00, 00, 00, 00)

(4; 00,00)

(5; 00, 00)

(4; 00W)

(4; oo(6))
(4; oo(6))
(1; ool»>)
(1; oo("))

(l;2(14),oo(7))
(l;2(14),oo(7))

(7; 00,00)

n

1

1
2
2

3

2

2
3
6
6

2
3

6
3
6
3

4

4
6
6
12
15
6
6
6
3
3
6
6

21

2Excluding Wn(v/3) with n > 3
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p-

48

54

60

66

72

78

E(V3)/N
O4 X O2

See [Ga,l]
<2,3|4;2>
<4,3|2;2>
<2,3 |3>
See [Ga,2]

See [Co-Mo,l]
(93,6,6
(73,6,6

< 2 , 9 | 2 ; 3 >
See [Ga,2]
See [Ga,2]

A5

See [Co-Mo, 1]
<2,10|2;3 >
See [Co-Mo, 1]
See [Co-Mo,l]

See [Ga,l]
See [Co-Mo,l]
<2,6|2;6>
See [Co-Mo, 1]
< 2 , 1 2 | 2 ; 3 >
See [Co-Mo,l]
See [Co-Mo, 1]
See [Co-Mo, 1]
See [Co-Mo, 1]
See [Co-Mo,l]
<2,13|2;3 >

Associated
triangle group

(2,6,4)
(2,6,6)
(2,3,8)
(2,6,8)
(2,3,12)
(2,6,12)
(2,6,24)
(2,6,3)
(2,3,6)
(2,6,9)
(2,6,9)
(2,6,9)
(2,3,5)
(2,6,10)
(2,6,30)
(2,6,33)
(2,6,3)
(2,6,4)
(2,3,6)
(2,6,12)
(2,6,12)
(2,6,12)
(2,6,12)
(2,6,3)
(2,6,3)
(2,3,6)
(2,3,6)
(2,6,39)

N

[6,4]3

[6,6]2,o
[3,8]
[6,8]

[3,12]
[6,12]

[6,24]li0

[6,3]3)0

[3,6]3i0

[6,9]n
[6, 9]
[6,9]

T3(\/3)
[6,10]

[6,30]liO

[6,33]liO

[6,3]2,2

[6,4]4

[3,6]2,2

[6,12]i,i
[6,12]

[b, izji 1

[6,12]'

[6,3]3,i
[6,3]il3

[3,6]3,i
[3,6]i,3

[6,39]i,0

Signature
of N

(3; oo^12))
(5; 00W)

(2;2(16),co(6))
(6; oo(6>)

(3; 2(16), 00, 00, 00, 00)

(7; 00W)
(8; 00,00)

(1; oot18))
(1; 2(18),oo(9))

(7; oo(6))
(7; oo(6))
(7! 00W)

(0;2(2°),oo(12))
(8; oo<6))

(10; 00,00)

(11; 00,00)

1; oo<24))
(4; oo(18))

(l;2(2 4),oo(1 2))
(10; oo(6))
(10; oo(6))
(10; oo(6))
(10; oo(6))
(1; oo^26^)
(1; oo(26))

(l;2(2 6),oo(1 3))
1; 2(26),oo(13>)

(13; 00,00)

n

4
6
8
8
12
12
24
3
6
9
9
9

5
10
30
33
3
4
6
12
12
12
12
3
3
6
6

39
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NORMAL SUBGROUPS OF H(A5)
WITH INDEX < 160

V-
1
2
5
10

50
60

80
120

160

H(A5)/tf

{1}
c2
c5

D5

CslC2

A5

As
(4,5|2,4)

Ss
As x C2

See [Ga,l]

Associated
triangle group

(1,1,1)
(2,1,2)
(1,5,5)
(2,5,10)
(2,5,2)
(2,5,10)
(2,5,3)
(2,5,5)
(2,5,5)
(2,5,4)
(2,5,6)
(2,5,4)

N

H(AS)
H2(A5)
H5(A5)
H'(A5)

T2(A5) = Ss(X5)
[5,10]

r3(A5) = d(A5)
[5,5]
[5,5]4

[5,4]6

[5,6]4 = C2(A5)
[5,4]

Signature
of N

(0;2,5,oo)
(0;5,5,oo)
(0;2W,oo)

(2;oo)
(0; ooW)
(6; oo(5))
(0; oo(20))
(4; oo(12))
(5; cx)(16))
(4; oo(30))
(9; oo(2°))
(5; oo(4°J)

n

1
2
5
10
2
10
3
5
5
4
6
4
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REGULAR MAPS CORRESPONDING
TO THE NORMAL SUBGROUPS OF

H(A5) WITH INDEX < 160

A*
1
2
5
10

50
60

80
120

160

N

H(A«)
Ha(A8)
H5(A5)
H'(A5)

r2(A5)
[5,10]

r3(A5)
[5,5]
[5,5]4

[5,4]6

C2(A5)
[5,4]

9
0
0
0
2
0
6

0
4
5

4
9
5

n 0

-

2
-

to
 t

o

10

12
12
16

24
24
32

n i

-

1
-

5
5

25

30
30
40

60
60
80

n2

_

1
-

1
5
5

20
12
16

30
20
40

Aut. group

{1}

c2
C5

CDs

C5\C2

As
As

(4,5|2,4)

s5
A 5 x C 2

See [Ga,l]

Regular map
degenerate

{1,1.2}
degenerate

{5,10}2

{5,1.2}
{5,5.2}
{5,3}

{5,5|3}
{5,5}4

{5,4}6

{5,2.3}4

{5,4|4}
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NUMBER OF NORMAL GENUS 1
SUBGROUPS OF H(Ag) OF INDEX /x

FOR fi, q < 20.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

3
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

4
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
2

5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
2
0
0

7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

8
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
2

9
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

12
0
0
0
1
0
2
0
1
0
0
0
0
0
0
0
1
0
2
0
2

13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

15
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

16
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
2

17
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

18
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
2
0
0

19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

20
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
2
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{4,2.3}

{8,8},
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