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An n-solid is a compact convex subset B of E™ whose affine hull is n-dimensional,
for some m > n > —1. The boundary of B is composed of faces which are solids
of a lower dimension. A flag of B is a sequence (Ao,...,A,) of distinct proper
faces of B such that A;_ is contained in A4;, j = 1,...,r. A flag is said to be
maximal if it is not contained in any other flag of B. If the symmetry group of
B is transitive on the set of maximal flags of B, then we say that B is regular.

Two solids B and C are symmetry equivalent if the actions of their sym-
metry groups GB and GC on their face-lattices F'B and FC, respectively, are
equivalent. A solid B is said to be perfect if B is similar to C whenever B is
symmetry equivalent to C.

The aim of this thesis is two-fold. First, the regular solids are classified.
This classification is based on the projection of the adjoint action of a compact
semisimple Lie group G on its Lie algebra g to the Weyl group action of g.
Secondly, a contribution to the solution of the more general problem of classifying
perfect n-solids is given. The cases n < 3 are already completely understood.
The case n = 4 is solved, thus proving Rostami’s conjecture that all prime

perfect 4-polytopes are Wythoffian up to polarity.
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PREFACE

The foundations for this work can be detected as far back as Ancient Greece,
where some mathematicians chose to study examples of compact convex sets in
terms of their symmetry properties. In particular, the so-called Platonic solids
and Archimedean solids spring to mind.

The Platonic solids (also known as regular polyhedra) were extended to
analogous figures in dimensions n > 4 in the nineteenth century by various
mathematicians. Such figures are known as regular polytopes and were first
classified in 1853 by Schléfli. The less symmetrical polyhedra also have analogous
n-dimensional figures called polytopes.

The notion of regularity was generalized to that of perfection by Robertson
(3] in 1981. A polytope P is said to be perfect if it has maximal symmetry
properties in the sense that P cannot be deformed without changing its ‘shape’
or its symmetry group.

In 1993, Farran and Robertson [1] extended the classical concept of regular-
ity from convex polytopes to convex solids (in other words, convex compact sets
in general). A convex solid that is regular in this new sense is called a regular
solid. Likewise, we have the notion of perfect solid.

This thesis is concerned with regular and perfect solids, and in particular
with classifying them. These two concepts are clearly closely related, indeed
the regular solids form a subset of the perfect solids. It is felt, however, that a
clearer understanding is obtained by considering each in turn. Thus this thesis
is divided into two parts. In part I attention is focused on regular solids, while

in part II perfect solids are considered.

This work is type-faced using TEX. All diagrams are drawn using PicTgX.
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PART 1

REGULAR SOLIDS

The notion of regularity may be defined as follows. We say that an i-face
A; of an n-dimensional solid B is a maximal ¢-dimensional solid contained in the
boundary of B.: < n. A flag of B is a sequence (Ag. ..., 4,) of distinct proper
faces such that 4;_; is contained in A; for each j = 1,...,r. Then B is regular
if 1ts symmetry group acts transitively on the set of maximal flags of B, where
a flag 1s maximal if it not contained in any other flag of B, that is, it is not a
subsequence of any flag of B. As a consequence of the extension of regularity
by Farran and Robertson [1]. certain conjectures arise on the determination of
the set of regular solids. Part I of this thesis proves these conjectures obtaining
a complete classification of regular solids. In order to achieve this, a lot of

introductory work 1s required, this is given in chapters 1, 2 and 3.

In chapter 1 we introduce the standard terminology and review some of
the recent results in the symmetry theory of convex bodies. This includes the
definition of a perfect solid. If P and Sp denote the sets of regular polytopes

and regular solids respectively, then Pp is well-known and forms a subset of Sg.



The classification of regular solids determines the set Sg.

The classification theorem uses the projection p : Sg — Pgr constructed by
Farran and Robertson [1]. This projection and the work of Kostant [1] are closely
related. In chapter 2, we summarize this work, refered to here as Kostant’s
construction, from which regular solids are obtained from regular polytopes.

In chapter 3, we consider the work of Dadok [1] on polar representations,
where a representation 7 is said to be polar if the normal to a principal orbit
of © cuts every orbit orthogonally. Dadok [1] classifies all irreducible polar
representations by associating each such representation to a symmetric space
representation. We also summarize the relevant symmetric space theory.

It is shown in chapter 4 that the inclusion of the symmetry group of any
regular solid in O(n) is an irreducible polar representation. Thus we can use
Dadok’s classification to associate each regular solid B to a certain symmetric
space whose Weyl group enables us to assign a regular polytope P to B. This
yields the projection p : Sp — Ppg in a form that explains the analogy with
Kostant’s construction. We conclude part I with a complete description of Sg

and give various examples of regular solids.
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CHAPTER 1

PROPERTIES OF CONVEX BODIES

The following is a summary of some of the recent developments in the
symmetry theory of convex bodies, based on work of Rostami [1], Pinto [1] and
Pinto and Robertson {1]. The basic theory of convex sets is well established and a
good exposition can be found in Lay [1]. Our main sources of information for the
symmetry theory of convex bodies are Robertson [1] and Farran and Robertson

[1], while Coxeter [1] provides detailed information on regular polytopes.

1. Convex sets

For any positive integer n, let Euclidean n-space be denoted by E™ and let
d denote the usual metric on E™.

A subset X of E™ is convex if for any points z,y of X, tz + (1 —t)y € X
forallt € IR,0 <t < 1. A subset X of E™ is an affine space if for any points
z,yof X, te + (1 —t)y € X for all t € IR. These two concepts, though closely

related, are very different in character. Notice that any affine space is convex.
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In particular E™ itself is convex.

It is well-known that the intersection of any family of convex sets is a convex
set. However the union of two convex sets is not, in general, convex. For
every subset X of E™, we define the convex hull conv(X) of X to be the
intersection of all convex sets that contain X. Thus X is convex if and only if
X = conv(X). Similarly, we define the affine hull ¢ff{ X) of a subset X of E"
to be the intersection of all affine subspaces that contain X. A trivial example
of a convex set is the empty set, denoted by 0.

The family of all convex subsets of E™ is a bounded lattice with zero § and
unit E™, partially ordered by inclusion. The meet X A Y of two convex sets X
and Y is X N} and the join X VY is conv(X UY). Likewise, the family of all
affine subspaces of E™ is a bounded lattice with zero § and unit E™, partially
ordered by inclusion. The meet of two affine subspaces X, V is again their

intersection while their join is ¢ff X UY").
2. Solids and polytopes

A compact convex subset of E™ is called a convex body, or solid. A solid
B for which aff{ B) is a k-dimensional space is said to have dimension k, written
dim(B) = k. We also refer to such a solid as a k-solid. The empty set is said
to be of dimension —1. The affine subspaces of E™ of dimension k, 0 < k < n,
are also convex. Of these only the singletons, that is to say the affine subspaces
of dimension 0, are compact convex sets. For any solid B, let dB denote the
boundary of B in af{B). Then B = conv(9B) (Lay [1]). The structure of 0B
may be analysed as follows.

Let n > 1 and let B be an n-solid in E™. We define a supporting hyper-
plane of B in E" as an affine (n — 1)-plane Il in E” such that (i) IINB # 0, and

(i1) B lies entirely in one of the two closed half-spaces bounded by II. Then for
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each such II, the set IIN B is convex and hence a j-solid for some 7,0 < 7 <n-1.
The set IIN B is called a j-face of B. It is convenient to call § and B the unique
(—1)-face and n-face of B respectively. As usual a 0-face of B is called a vertex
of B and we note that a nonempty solid always has at least one vertex. In fact,
Minkowski [1] proved in 1911 the following important theorem.
Theorem 1:2.1 MINKOWSKI'S THEROEM

Every compact conver set in E™ s the closure of the convez hull of the set
of its vertices.
Proof

See Jacobs [1].

The 1-faces and (n — 1)-faces of B (if any) are called the edges and facets
of B. It is customary in the case n = 3 to refer to the facets simply as the faces
of B.

Among the most familiar examples of solids are convex plane polygons,
convex polvhedra. and more generally polS*topes. If welet F;B be the set of all
J-faces of an n-solid B. then B is said to be a polytope or n-polytope if FyB
is finite. It then follows that F;B is finite and nonempty for all z, 0 < ¢ < n.
Thus a polytope is the extension of the concept of polygon in two dimensions
and of polvhicdron in three dimensions to the case of n dimensions. Although
EFy B 1s nonempty for dem(B) > 0. FyB need not be finite. Take, for example,
the n-disk D" = {r € E" : |2| < r} of radius r, for some r € RT. Thus the
family of polytopes forms a proper subset of the family of solids. The geometry
of polvtopes has been studied in great detail, most notably by Coxeter in recent
decades (sece for example, Coxeter [1] and Coxeter [2]).

We let § and P denote the set of all solids and the set of all polytopes,

respectively. Let §" and P" denote the set of all n-solids and n-polytopes,




respectively.

Let op = {j : F;B # 0,0 < j < n-—1}. If Bis an n-polytope then
op = {0,1....,n — 1}. However the converse is not true as we can quite easily
see by considering a circular cone or the solid in figure 1.1. The vertex set Fy B is
a subset of the set EztB of extreme points of B, that is to say the set of points
x of B such that @ is not the midpoint of any pair of distinct points of B. Note
that EztB =Fzt0B. In all polytopes and many solids FoB =EztB, although
there are examples of solids where this is not true. For instance, consider a solid
B given by the union of a rectangle xyzw with a 2-disk D of diameter d(z,y)
such that the edge 2y coincides with some diameter of D (see figure 1.1). Then
the points v and y are extreme points of B but they are not vertices since a

hyperplane supporting v or y also supports the edge wa or yz respectively.

w

£
r
]
}
\ {
|
|

y z

Figure 1.1

Note that F_1B = {0} and F,B = {B}, for all solids B. We use the
notation 4 < B to mean that 4 is a j-face of B for some j, —1 < j < n. The
faces ) and B are called improper since ) <. 4 and 4 a B for any j-face A of B.
All other faces of B are called proper.

Let F B denote the set of all faces of B, that is, if 4 is a solid then A € F'B
if and only if 4« B. Then FB is a bounded lattice with respect to <, with unit

B and zero 0. graded by dimension. We call F'B the face-lattice of B. Then




for any R,S € FB, the meet RA S is RN S and the join RV S is convy(RU S).
There is a basic equivalence relation between solids defined in terms of their
face-lattices as follows. We say that the solids 4 and B are combinatorially
equivalent or face equivalent if and only if there is a lattice isomorphism
At FA — FB. We denote this by A =~ B.

As an example, it is easy to see that any two triangles Ty, Tp are face
equivalent since the faces of T;, ¢ = 1 or 2, may be denoted as follows: let the
vertices be labelled A, B, and C; and the edges be labelled «, b, and ¢ such that

Adabc. Bac.aand C aa,b. Then Ty and Ty have the same face lattice (see

figure 1.2).

Level

A T; 2

// . ) / ]I \ . .

L h
2N N | > >
B C B 4 0
/ a \ ‘ /
C' ® -1
Figure 1.2 The face lattice of a triangle

A flag of B is a sequence (Ap...... 4,) of distinct proper faces of B such

that 4g - <4, Hdim(d,)=jsthen0<jo< i1 <---<jr<n-1. Sucha
flag is said to be maximal if it is not contained in any other flag of B, in other
words, 1t 1s not a subsequence of any other flag of B. This concept of maximal
flag is used to define regularity and is a reformulation suggested by A. J. Breda
d’Azevedo. For the original definiton of a maximal flag see, for example, Farran
and Robertson [1]. A flag of the form (A, A1...., 4,_1), dim(4) = s, is called

a complete flag. Any complete flag is. of course, maximal. If B 1s a polytope,
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then every maximal flag is complete. Let ® g denote the set of maximal flags of

B.
3. Symmetry and similarity

The symmetry group G = GB of an n-solid B in E™ is the set of all rigid
transformations of E™ keeping B setwise fixed. Any isometry ¢ € GB is called a
symmetry of B. If O is the centroid of B, then GB is a subgroup of O(n). We
assume that this is the case since otherwise GB = T~!}(GB')T for some n-solid
B' with centroid O, where T is a translation in E™ such that T(B) = B’. Since
B is compact, so also is GB. We say that that G and G{0} are trivial groups.
A fundamental region for the action of G on B is an s-body D such that
every point of B 1s in a G-orbit of some point of D and every G-orbit meets
the relative interior of D in at most one point. It is noted that this is not the
standard notion of a fundamental region. It is not obvious, in general, that such
a fundamental region exists, however as we see in section 6 existence is shown
in the area of our work.

The action of G on an n-solid B and hence on E™ = q¢ff( B) determines a
stratification of E™ called the G-stratification. For any point ¢ € B, we let
G denote the isotropy subgroup of G at z, that is, G, = {g € G : g(z) = z}. If
we put fir, = {y € E" : g(y) =y for all g € G,} and call this the fixed point
set of z under G, then aff( fiz,) is a linear subspace of E™. We say that fiz; is
of dimension m if aff{ fiz,) is m-dimensional. A point ¢ € E™ is said to be in
the j-set if and only if fiz, is j-dimensional. Each path component of the j-set
is called a j-stratum. The fixed point set of B under G consists of all points
of E™ held fixed by G and is denoted fizg. It is trivial to note that for any
nonempty solid B, the set fizp i1s nonempty.

The effective action of GB on B induces an effective action ap of GB on

8



FB, ap : GB x FB — FB. Thus we define an equivalence relation on § as
follows. We say that two solids 4 and B are symmetry equivalent, denoted
A ~ B, if and only if there is an isometry f of E™ and a lattice isomorphism

A: FA — FB such that the diagram

oz
GAxFA FA
fe XA A
ap
GB x FB FB

commutes. where f, : GA — GB is the isomorphism given by fi(g) = f~'¢f.
Each symmetry equivalence class is called a symimetry type and the symmetry
type to which B belongs is denoted [B]. If P is a polvhedron then [P] can be
realised as a topological manifold (see Robertson [1]), and the dimension of the
symmetry type is called the deficiency of P, denoted def P.

A more general class of mapping of E™ is defined as follows. A map s : E™ —
E™ such that for some A € IR, d(a.y) = Md(s(2), s(y)) for all 2,y € E", is called
a similarity. The group S(n) of similarities of E™ is generated by reflections,
rotations. translations and dilations and acts on " by mapping each n-solid
to another that differs only in size and position in space. Two solids A and B
are said to be similar. denoted 4 ~ B if there exists a similarity f € S(n)
such that B = f(4). The equivalence relation & 1s coarser than the relation
~ which in turn is coarser than the similarity relation ~. as can be illustrated
by considering the quadrilaterals shown in figure 1.3, Since we are interested in

solids with regard to their metrical symmetry, we consider S/ ~ rather than S.



[ N\~

N
A

Figure 1.3 Similarity, symmetry equivalence and face equivalence

4. Duality and polarity

Following Robertson {1], we say that two solids A and B are dual or A is
dual to B if there exists an anti-isomorphism « : A — FB. In other words,
there is a bijection o : F4 — FB such that for all faces 5,7 € FA, we have
S <« T if and only if a(T) «a(S). If A and B are dual solids, we denote this by
Al B. Duality U is not an equivalence relation since, although it is symmetric,
U is neither reflexive nor transitive. Although it is false in general that P P,
there are some solids which are self-dual, for example, a triangle or indeed any
simplex. It can be shown (for example, see Pinto [1]) that for any solid B, Bl A
for some solid 4. In fact, one such solid 4 dual to B is the polar of B. The polar
B* of a solid B is defined by B* = {z €af(B) : Vv € FyB,{z —c,v —¢) < 1},
where ¢ is the centroid of B. It is convenient to put §* = (. Then it can be
shown that G(B) = G(B*) for any solid.

Let P be a polytope with vertex set {vy,...,v,} and facet set {f1,...,fs}.
Suppose that ¢; is the centroid of f;. Then up to similarity the vertex set of P*
coincides with the set {c;,...,¢,}, and any facet of P* has centroid v; for some
t =1,...,r. Moreover, if a : FP — FP* denotes the anti-isomorphism of face

lattices, then for all T € FP and g € G, we have g - a(T) = a(g - T).
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5. Products and coproducts

The product and coproduct are binary operations on S which are used to
construct new solids from given solids.

We define the product of two solids by first considering the Cartesian prod-
uct of E™ and E™. We identify E™ x E™ with E™*" by the isomorphism 6
from E™ x E™ to E™*™ given hy 6(x,y) = z, where z; = z;, ¢ = 1,...,m
and z = Ym4j, J = 1,...,n. Thus E™ and E™ are embedded in E™*" as the
orthogonal complements E™ x 0 and 0 x E™.

Let A C E™ be an r-solid and B C E™ be an s-solid, r,s > 0. Then A x B,
under the above identification, is an (r + s)-solid in E™¥™ such that A x 0 and
0 x B are embedded as orthogonal subsets. The solid 4 x B is called the product
of A with B and is denoted Ao B. We put Aof) = oA = §. The faces of AoB
are of the form UaV where U € F4 and V' € FB.

An n-solid B is said to be o-prime if it is not isometric to MaoN for
some solids M and N with dim(A) > 1 and dim(N) > 1. Otherwise B is o-
decomposable. Then a o-decomposition of B is a sequence (By,...,B;) of
solids B; such that dim(B;) > 1 and B is isometric to B;o---0B,. In such a
case we put B = Byo--.0B,. Such a decomposition is complete if and only
if each B; is g-prime. It may be shown that a complete o-decomposition of B is
unique up to isometry and order. Two solids A and B are said to be o-coprime
if they have no common isometric ao-prime factors of positive dimension.

We now state some relations between the symmetry group of a solid and of
its o-prime powers. First recall (Rose [1], for example) that for any group G and
for any integer k£ > 1, there is a wreath product G Sy, defined as the group

with underlying set G* x Sj and product *, where

((gla---agk)aa) * ((hlv"-whk)"r) = (g‘r(l) ' hla--' sGr(k) " hk,O’ ' T)'

11



Then:

1. G(o*A4) is isomorphic to GA 1 Sy, if A is a o-prime n solid, n > 1; and

2. G(AoB) is isomorphic to GA x GB, if A, B are o-coprime solids of
positive dimension.

Thus we can write GB in terms of the symmetry group of the factors of its
complete o-decomposition by collecting together isometric factors.

Associated to the product operator is an operation denoted ¢ called the
coproduct. The relationship between the two is explained in terms of polarity.
The coproduct is defined as follows.

As above, let 4 and B be nonempty solids in E™ and E™ respectively.
Suppose that the centroids of 4 and B are a and b respectively. Using the
above identification of E™ x E® with E"*™_ the coproduct 40B of A with B
is defined to be the convex hull of 4 x {6} U {a¢} x B. In the case where A4 or
B is empty, we put 4oB = . If dim(4) = r > 0 and dim(B) = s > 0, then
dim(AoB) =1 + s. |

If A and B are any two solids then (A0 B)* = (A*oB*).

The concepts of o -primeness and ¢ -decomposability follow in a similar man-
ner to that for o.

We construct some low-dimensional solids to illustrate these operations. Let
I be a line segment, T be a triangle, P be a pentagon and D a 2-disk. Then
Tol and Pol are prisms with triangular and pentagonal base, respectively. The
coproduct Tl and P¢I are bipyramids with triangular and pentagonal bases,
respectively. As an example, see figure 1.4 for the case using T'. Similarly Dol
and Dol are the cylinder and the double cone, shown in figure 1.5. A more
interesting solid is the 4-polytope given by the product ToP (see figure 1.6)
which has three pentagonal and five triangular prisms as its facets. The 2-faces

of ToP are triangles, rectangles and pentagons.
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Figure 1.4 Tol and Tol

Figure 1.5 Dol and Dol
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Figure 1.6 ToP

6. Regularity

The theory of regular polytopes is well-known and a comprehensive study
can be found in Coxeter [1]. In dimensions —1,0, and 1, all solids are polytopes
and are regular. A polygon is regular if it is both equiangular and equilateral.
We recall that: (i) the vertex figure of an n-polytope P at a vertex v is the
(n — 1)-polytope given by the convex hull of the midpoints of all edges that
emanate from v, if all such points lie in some (n — 1)-space; and (ii) an n-
polytope is said to be regular if its facets are regular and there is a regular
vertex figure at every vertex.

In Farran and Robertson [1], the notion of regularity for convex polytopes
was extended to convex bodies in general. This may be given as follows in a
formulation using the new definition of maximal flag.

The action of GB on B induces an action of GB on the set F'B of all j-faces
of B for each j, and since U <« V implies g.U ag.V for all U € F;B,V € F;B,g €

G B, there is an action of GB on ®B, given by
g(Ao,....A4Ar) = (9. 40,-..,9.4;)

14




for each ¢ € G and each maximal flag (Ao,..., A,) of B.

The n-solid B is said to be regular if GB is transitive on the maximal flags
of B.

The definition of a regular polytope is consistent with this definition since
the maximal flags of a polytope are complete flags. The regular 2-polytopes are
the regular convex plane polygons. The regular 3-polytopes are the five classical
regular polyhedra or Platonic solids (see figures 1.7 to 1.11), as described in
Euclid Book XIII (see Heath {1]). The regular n-polytopes for n > 4 were
classified by Schlafli in 1853. We describe this classification following Coxeter
[1] using ‘Schlafli symbols’. The Schlafli symbol {p,q,...,u,v} for a regular
n-polytope is defined inductively using vertex figures. It is well-known that the
vertex figure of a regular polytope P is itself regular and any two vertex figures
of P are congruent to one another. Let a regular p-sided polygon be denoted
by {p}. Let a regular polyhedron be denoted by {p,¢} if its faces are {p} and
its vertex figures are {¢}, in other words there are ¢ of the {p}’s around each
vertex. A regular n-polytope whose (n — 1)-faces are {p,q,...,v} and vertex
figures are {q,...,v,u} is denoted by {p,q,...,u,v}.

The classification of regular n-polytopes for n > 2 is given in terms of these
symbols, as in table 1.1, where we rename the ‘measure-polytope’ and the ‘cross-
polytope’ as defined in Coxeter [1], the cube and cocube respectively. These

are denoted o, and ¢, respectively from their obvious decompositions. That is,
o,=J]o...0] =0"],

on=1I0... 0l =0o"].

The more general problem of classifving regular n-solids, for each n € IN, is
discussed in chapters 2 to 4. We note that regular non-polytope solids do exist,

the n-ball D™ being an obvious example.
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We state the following theorem from Farran and Robertson [1].

THEOREM 1:6.1

Let B be a regular n-solid in E™ with ceniroid O. Let (Aoy...,A;) be a
mazimal flag of B. Suppose O; is the centroid of A; for i = 0,...,r. Then

conv(0,0y,...,0,) 1s a fundamental region for the aclion of GB on B.

Since {0,0,,...,0,} is an affinely independent subset of E™, it follows
that conv(0,0;,...,0,)is an r-simplex with vertices O, Oy,...,0;. It can also

be noted that dim(fizp;) =1 foreach:=1,...,r.

DIMENSION | SCHLAFLI SYMBOL DESCRIPTION
2 {r} regular p-gon
3 {3,3} regular tetrahedron Aj
{4,3} cube O3
{3,4} | regular octahedron O3
{5,3} regular dodecahedron
{3,5} regular icosahedron
4 {3,3,3} 4-simplex Ay
{4,3,3} 4-cube Oy
{3,3,4} 4-cocube Oy
{3,4,3} . 24-cell
{5,3,3) 120-cell
{3,3,5} 600-cell
n>5 {3,3,...,3} n-simplex 4,
{4,3,...,3} n-cube O,
{3,...,3,4} n-cocube <,
Table 1.1

Classification of regular polytopes
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Figure 1.7 The tetrahedron

Figure 1.8 The cube Figure 1.9 The octahedron

or cocube

Figure 1.10 The dodecahedron Figure 1.11 The icosahedron
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7. Perfection

We may also study solids of S which are locally maximal in their symmetry
behaviour. Such solids are called perfect and are defined in terms of geometry
and topology, rather than in terms of groups. For this reason, it is considerably
harder to handle this concept than it is for regularity.

A solid B is said to be perfect if and only if all solids symmetry equivalent
to B are similar to B. Thus B is perfect if and only if all symmetry equivalent
polyvtopes differ from B only in their size or position in space relative to B.
Among the best known examples of perfect solids are the regular polytopes, most
notably the five Platonic solids. More generally, all regular solids are perfect
(Farran and Robertson {1]). However there are non-regular perfect solids as we
shall see. The perfect n-polytopes have been classified up to n = 3 in Robertson
[1]. Trivially in dimension —1.0 and 1, all solids are perfect polytopes. In
dimension 2. the perfect polygons comncide with the regular polygons. Finally
in dimension 3. there are four non-regular perfect polyhedra in addition to the
regular Platonic solids. These are the cuboctahedron, the icosadodecahedron,
and their respective polars. the rhombic dodecahedron of the first kind f and
the rhombic triacontrahedron (see figures 1.12 — 1.15). If we add the circular
disk and the 3-ball to this list. we have a classification of perfect solids up to
dimension 3. This classification shows that a polvhedron is perfect if and only
if its symmetry group acts transitively on the set of edges proving one case of
Deicke’s conjecture (see Robertson [1]), since a polyhedron P is perfect if
and only if defP = 0 (Robertson [1]). In 1987, this conjecture was proved by

Rostami [1].

T For a discussion of the rhombic dodecahedron of the second kind see Ap-

pendix A.
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THEOREM 1:7.1 ROSTAMI’'S THEOREM

Let P be any polyhedron. Suppose that the action of GP on the set of edges
of P has e orbits. Then defP =e — 1.

We now state some properties about perfect solids, whose proofs can be

found in Pinto [1) and Robertson {1].

THEOREM 1:7.2

A solid B 1s perfect if and only if B* is perfect.

THEOREM 1:7.3

A polytope P 1s perfect if and only if P = 0”@ for some o-prime perfect

polytope Q@ and for some integer r > 1.

THEOREM 1:7.4

Any n-solid 1s perfect if and only if it is a o-prime power of a perfect solid.

THEOREM 1:7.5
Let B be an n-solid in E™. Suppose B has symmetry group G and centroid

c. If B is perfect then the fized point set of B is the singleton {c}, that is
fizp = {c}.

Theorems 1:7.3 and 1:7.4 have obvious duals in terms of the coproduct.
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Figure 1.12 The cuboctahedron

Figure 1.13 The icosidodecahedron
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Figure 1.14 The rhombic dodecahedron of the first kind

Figure 1.15 The rhombic triacontrahedron




8. Wythoffian polytopes

Let R be a regular n-polytope with symmetry group G. Then R = conv(G.v)
and R* = conv(G.c), where v is any vertex of R and c is the centroid of any facet
of R. Let A be a complete flag of R. Then a fundamental region for the action
of G on R is given by conv(O,co = v,e¢1,...,cn—1 = ¢), where ¢; is the centroid
of the i-face f; contained in A. For each 0 <1 < n — 1, the polytope conv(G.c;)
is a perfect n-polytope R;. We call R; Wythoffian, since R; can be derived
from Wythoff’s construction which is described below (see Coxeter [1] for full

details). If P is a non-regular Wythoffian n-polytope we call P a wythotope

or n-wythotope.

There is a well-established representation of various fundamental regions of
Wythoflian polytopes and other polytopes by certain Coxeter graphs. The nodes
of a Coxeter graph represent the walls of the fundamental region D (that is, the
facets of D which contain O) or their respective reflections. Two nodes are joined
by a branch whenever the corresponding walls are not perpendicular. Moreover,
a branch between nodes ¢ and j is marked with the integer a;; to indicate the
angle ;’% (aij 2 3) between the two corresponding walls. It is usual to omit
the a;; on a branch if a;; = 3. Coxeter graphs can also be used to represent
degenerate polytopes (see Coxeter [1}). The various Wythoffian polytopes can
now be represented by modifying these graphs, since for each wall of D there
exists one vertex ¢; of D not contained in that wall. Thus its corresponding node
in the Coxeter graph is shaded to indicate the polytope P given by conv(G.c;).
The procedure of determining P from vertices of a given fundamental region is

called Wythoff’s construction.

Suppose P = R; is a wythotope derived from a regular n-polytope R =

{a1,...,an—1}, by taking the centroid of some i-face of R. Then we can also
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denote P by the Schlifli symbol

{ai""’al } or equivalently {ai'H’ rre 9 Ond },
Ai41y +v0 yQn-1 aijy...,1
as this polytope is a truncation of R (see Coxeter [1]). The facets of P are then

(n — 1)-polytopes of the form

QiyennyUn Qiy. ..y Q1
{aH_l, B T } and {a,-+1, cee Ap—2 }
Then for any Wythoffian polytope we can write out the Schlafli symbol for each
i-face, 1 < 72 < n. Schlafli symbols can also be used to represent degenerate
polytopes, for example honeycombs, non-perfect truncations and non-convex
polytopes (see Coxeter [1]). It can also be noted that for any polytope P given
by a Schlafli symbol, P may be represented by a Coxeter graph, where the
markings on the branches are given by the entries in the Schlafli symbol. For

instance, if P = R; is given as above then the Coxeter graph of P is the graph

in figure 1.16.

Figure 1.16 The Coxeter graph of P = R; and its Schlifli symbol

For example, the cuboctahedron {2} = {g} is the truncation both of
{4,3} and of {3,4}. Thefaces of { g } are of the form {4} and {3}, that is squares

and equilateral triangles respectively. The icosidodecahedron { g} = {g} 1S

23



the truncation both of {5,3} and of {3,5}. Thus each face of {g} is either a

{38} or a {5}. The Coxeter graphs of these polyhedra are given in figure 1.17

4 )
O—e—O o—e—=O

Figure 1.17 The Coxeter graphs of {g} and {g}

It can be noted that the polars of {2} and {g} (see figures 1.14 and
1.15, respectively), are perfect polyhedra which cannot be denoted by a Schlafli
symbol. Likewise, in n dimensions there are perfect polytopes which have no
Schlafli symbol. Rostami [1], however, stated the following conjecture for n = 4,

which as we shall see in part II can be generalised for all n (also see Pinto [1}).

CONJECTURE 1:8.1

Let P be a prime 4-polytope. Then P is perfect if and only if P or P* 1s
Wythoffian.



CHAPTER 2

KOSTANT’S CONSTRUCTION

The introduction of the concept of regular solids immediately gives rise to
the problem of classifving these objects. Robertson and Farran [1] constructed
a process by which regular solids are obtained from regular polytopes. This
construction is based on the adjoint action of a compact semisimple Lie group
on its Lie algebra and is due to Kostant’s work on convexity (Kostant [1]). The
origins of this work are Schur [1] and Horn [1], see also Atiyvah [1]. We summarize

this process which is the fundamental idea in what follows.

1. Lie theory

We begin with some notation and definitions in Lie theory (for more infor-
mation see Helgason [1] and Kostant [1]). Let B be a solid with centroid O.
Then GB is a compact subgroup of O(n) and hence a semisimple Lie group. If
G B 1s discrete and hence finite. we consider GB as a Lie group of zero dimension.

Suppose G is a Lie group with Lie algebra g. Let Ad : G — G L{g) denote the
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adjoint representation of G and ad : g — endg denote the adjoint representation
of g. where endg denotes the space of endomorphisms of g.

We recall some standard decompositions of semisimple Lie algebras.

A Cartan subalgebra of g is a subalgebra fj of g such that fj is a maximal

abelian subalgebra of g and for each H € ), the endomorphism ad(H) of g is

semisimple.

THEOREM 2:1.1

Every semisimple Lie algebra over @ contains a Cartan subalgebra.
Y 7 q

Proof

See. for example. Helgason [1].

Let g be a semisimple Lie algebra over € with Cartan subalgebra fj. Let
a be a linear function on the complex vector space fj. Then g* = {X € g :
[H.X] = a(H)X for all H € i} is a linear subspace of g, where [ , ] denotes the
Lie bracket of g. If g® # {0} then a is caned a root and g% is called a root

subspace. Let A denote the set of all nonzero roots of g with respect to .

THEOREM 2:1.2

(1) g=h+ 3 ,eag® (direct sum).

(12) dim(g®) =1 for each o € A.

(112) The restriction of B to ) x by 1s nondegenerate. For each linear form
a on B, there erists a unique element H, € b such that B(H,H,) = o(H)
for all H € h, where B denotes the Killing form on g.
Proof

See Helgason [1].

Now let gg be a semisiinple Lie algebra over IR, let g be its complexification

and o the conjugation of g with respect to go. A direct decomposition gy =
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Bo+ po of gy into a subalgebra & and a vector subspace pg is called a Cartan

decomposition of gg if there exists a compact real form g of g such that

o-gr C g
E=go N ay;

and  py = go N (2gz)-

It is well-known (see, for example, Helgason [1]) that every go has a Cartan
decomposition and that any two Cartan decompositions of gy are conjugate
under an inner automorphism of g.

A third decomposition. the Iwasawa decomposition, arises from the com-
bination of the Cartan decomposition of a semisimple Lie algebra and the root
space decomposition of its complexification. This decomposition is summarized
as follows.

Let gy be a semisimple Lie algebra over IR with Cartan decomposition gp =
Eo+ po. Let g be the complexification of gg and let u = & + tpo. Let 0 and 7
denote the conjugations of g with respect to>go and u, respectively. Let 8 denote
the automorphism 8 = o - 7. We let fp, be any maximal abelian subspace of
go and let hy be any maximal abelian subalgebra of go containing fhp . Then
B(ho) C ho and we have the direct decomposition fjg = (§ N &)+ (ho O po) where
h Npo = bp . Ifh denotes the subspace of g generated by )y then it follows that
b 1s a Cartan subalgebra of g.

The roots ay..... a, are called simple if (ay.....a,) is a basis of A and
each root a of \ can be written as a = Z:=1 ko, with integral coefficients kg,
all nonnegative or all nonpositive. If all &y, > 0 then « is called a positive
root.

Let AT denote the set of positive roots of g. For each a € A, let af be

defined by a?(H) = a(8H) where H € ). Then the root a vanishes identically
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ona = hp ifand only if a = a?. We divide AT into the two classes:

P, ={a:a€ A% a#af}

P_.={a:aec At a=a"}.

THEOREM 2:1.3
Letn = ZOE& g%, and suppose that ng = g, N n and 5o = a+ ng. Then
n and ng are nilpotent Lie algebras, $q 15 a solvable Lie algebra and go = €o+a+ng

15 @ direct vector space sum called an Iwasawa decomposition of gq.

Proof

See. for example. Helgason [1].

THEOREM 2:1.4

Let g0 = € + a + ny be an Iwasawa decomposition of a semisimple Lie
algebra gy over IR. Let G be any connected Lie group of go and let IV, Ap,
N be the analytic subgroups of G with Lie V(ngebms £y, a, and ng, respectively.
Then the mapping @ : K x Ay x N — G defined by ®(k,a,n) =k-a-n 18 an
analytic diffeomorphism of the product manifold ' x A4y x N onto G. Accordingly,

G = N Ap\N s called the Iwasawa decomposition of G.

Proof

See Helgason [1].

Let G be a Lie group with semisimple Lie algebra g such that G = AN and
g = ftan are Iwasawa decompositions of G and g respectively. Let exp:g — G
be the exponential mapping. If ¢ € A then @ = log(a) is the unique element in

a such that a = exp(x) (see Kostant [1]).



Finally, the Weyl group W associated to (a,g) is the finite group defined
as the quotient W = M' /M, where M' and M are, respectively, the normalizer

and centralizer of Ap in K, that is,
J\l':{kEI{:k-Ap-k—l CAp},
M={keK:k-a k' =aforallae Ap}.

W acts on a and A such that ezp: a — Ap is a W-isomorphism. This definition
from Kostant [1] is derived from the definition of the Weyl group of a symmetric
space (see chapter 3).

The Weyl group W is identified with a subgroup of the symmetric group
generated by reflections acting on some root system I'. The Dynkin diagram of
I' completely determines W and is associated with a fundamental region D of
W where the nodes indicate the walls of D and two walls are inclined at angles

s 3s 7 or & depending whether there are 0, 1, 2 or 3 branches, respectively,

us
2
joining the corresponding nodes. Thus a Dynkin diagram and a Coxeter graph
provide the same information about D, as shown in the components of these

graphs given in figure 2.1

Dynkin diagram Coxeter graph Angle
O O O O Z
Oo—0 o—0 3
o—o0 o0 z
O=—=0 o9 0 5

Figure 2.1 Components of a Dynkin diagram and Coxeter graph
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The nodes in a Dynkin diagram represent the simple roots in the root space
decomposition (see Helgason [1] and Humphreys [1]). Each simple root «; is
associated with a weight proportional to {a;, a;) where the scalar product (, ) is
a positive definite scalar product such as the Killing form. In each root system
there are at most two weights, and accordingly each root is called long or short.
It is usual to denote this in a Dynkin diagram by putting an arrow on the
branch between a long and short root pointing to the short root. The root
system is said to be irreducible if its graph is connected. The irreducible root
systems are well-known and have been classified: the Dynkin diagram of any
irreducible root system is one of the graphs in figure 2.2 (see Humphreys [1} for
full details). The classification of the simple non-Abelian Lie algebras follows
from the classification of irreducible root systems. The classical irreducible root
systems are denoted A4;, By, C;, D; and give rise to the so-called classical simple
Lie algebras. Likewise the exceptional irreducible root systems are denoted Eg,
E;, Eg, Fy and G,, giving rise to the exceptional simple Lie algebras. In order

to avoid repetitions, the following restrictions are made on I

A (1>1); B (1>2); C (1>3) and D, (I>4).

2. Kostant’s convexity theorem

Let G = AN be an Iwasawa decomposition of a semisimple Lie group G,
and let ® : ' x A x N — G be the corresponding analytic diffeomorphism. Then
® is trivially a bijection, for all ¢ € G, there exists a unique (k(g), a(g), n(g)) €
K x A x N such that g = k(g)-a{g)-n(g), and a(g) is called the a-component
of g.

Let W be the Weyl group of (a,g) wherea, g (a C g) are the Lie algebras of
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A O—O——0— - v —O0—©0—o0

B, OO o v v e ee s —-O——-O#O
C, o NG WY ¢ U —O—O:%O

Esg

I8
o
e
O——0
0

O——0

Eg O—--=0C

0
o
o
o

G, o=£=0

Figure 2.2 Dynkin diagrams of the irreducible rootsystems
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A and G. Then for cach 2 € a, let a(x) = conv(W(x)) be the convex hull of the

Weyl group orbit W (z) and correspondingly, for b € A let A(d) = ezp (a(log(b))>.

THEOREM 2:2.1 KOSTANT’S CONVEXITY THEOREM
For any b€ 4, A(b) = {a(bv):v e L}.

Proof

See Nostant [1].

This theorem was reformulated by Pinto [1] by considering the following,.
Let I be a compact connected semisimple Lie group with Lie algebra €, let €€
denote the complexification of € and let G be a semisimple Lie group with Lie
algebra g = (LEG‘)]R. Then let G = KTN be the Iwasawa decomposition of G
derived from the Iwasawa decomposition. g = € +it 4+ n, of g, where t is the

Lie algebra of a maximal torus T of I\,

COROLLARY 2:2.2

Let I be a compact connected semisimple Lie group acting on its Lie algebra
€ by the adjoint uction. Lett be the Lie algebra of a mazimal torus T of I and let
W be the Weyl group of N acting on t. For every x €€, the orthogonal projection
of the IV-orbit I\ (x) onto t coincides with the convex hull of the corresponding

Weoorbit W ('), where ' € tN K (a).

Proof

See Pinto [1].

Let IN(2) denote the orbit of @ € £ given by the adjoint action of K on E.

Suppose I1 : £ — tis the above orthogonal projection. Then

H(covzxv(K(.z‘))) = con-U(H(K(aﬁ))) = (K (a))
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since K{(z) projects onto the convex set conv(W(z')) for some 2’ € t N K(z).
Alternatively, if v* € M* = {g € K : Ad(g)(it) C it} is a representation of
v € W then Ad(v*)(2') = v(a') by the definition of the action of W on t, so that
W(a')y C K(2') = K(z). Thus conv(W(z')) C conv(K(z) N t) and therefore
(K (z)) = conv(K(z)N t).

Hence each orbit K(z) of the adjoint action of K on & 1s associated with
a polytope P = conv(W(z')) such that II(P) = P (trivally P = conv(W(z'))
1s a polytope since W is finite). This is the basis for Kostant’s construction
described in Farran and Robertson [1] which may be given as follows.

Let G = I be any compact connected semisimple Lie group with Lie algebra
g, and let T be a maximal torus in G with Lie algebra t C g. The adjoint action
of G on g i1s orthogonal with respect to a natural inner product in g, where
the orthogonal projection is given by II above. The quotient N(T)/T may be
identified with the Weyl group W of G acting on t as a group generated by
reflections, where N(T) = {g € G : Ad(g)(t) = t} is the isotropy subgroup of
G at t. A fundamental region for the induced action of W on the unit sphere in
t is a spherical (m — 1)-simplex A, where m = dim(t) is the rank of G. Then
P, = conv(TW(2)) is an m-polytope (with vertex set Fy P, = W(z)) for each
v € A, We put B; = conv(Ad(G)(z)) = conv(K(x)), then B, is an n-solid,
where n = dim(G), with extremal set Fy B, = Ad(G)z. Then G is a subgroup
of the symmetry group of B, and II( B, ) = P,.

It is possible to determine the face lattice F B, of B, in terms of FP,. In

particular, Farran and Robertson [1] proved the following.

THEOREM 2:2.3

P, is a regular polytope if and only if By 1s a regular solid.
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Proof

We give the proof that B, is regular if P, is regular in order to determine
FB, from FP, and refer to Farran and Robertson [1] for the converse.

Suppose P, is a regular polytope, then z is one of the vertices of A (we
may suppose that the set FyB, lies on the unit sphere in t). Then there is a
complete flag of P, of the form (Ao, A1,...,Ar) where dim(A4;) = 7 and the
centroid a; of A; is a vertex of A, with ag = @ (see theorem 1:6.1). Let G; be
the 1sotropy subgroup of G at «; and let B; = G;(A;). Then B; is a j-face of
B, with centroid a;, where j = j; = dim(G) — dim(G;)+ 1. Since every j;-face
of B; is of the form ¢ - B; and since (By, Bi,..., Br) is a maximal flag in B,

where dim(B;) = j;, it follows that B, is regular.

The restriction p of the projection II to the set of regular solids is a pro-
jection p : Sg — Pr where dim(p(B)) = #op and B = p(B) if and only if
B € Ppr. This process of deriving a regular solid B, from a regular polytope P;
is called Kostant’s construction.

This, however, does not yet give a classification of the regular solids as we

have not determined p~!(P) for each regular polytope P.
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CHAPTER 3

SYMMETRIC SPACE REPRESENTATIONS

The regular solids are classified by associating each regular solid with a
certain symmetric space. The key to this éssociation is the work of Dadok [1]
on polar representations. In this chapter we summarize some symmetric space
and polar representation theory in order to introduce the relevant notation and
concepts. Symmetric spaces are studied in detail in various texts including

Helgason [1], Loos [1] and Wolf [1].
1. Symmetric spaces

The study of symmetric spaces and Lie groups are closely related. Sym-
metric spaces, defined as Riemannian manifolds for which the curvature tensor
is invariant under all parallel translations, were first studied by E. Cartan in the
1920s.

A Riemannian manifold M is a Riemannian globally symmetric space

if each point p € A is an isolated fixed point of some involutive isometry of M.
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This definition is equivalent to the original definition by E. Cartan. Let I(M)
be the set of all isometries of M. Then I(A) is a group under composition and
it can be shown that I(A) is a Lie group (see, for example, Helgason [1]). Let

Iy(M) denote the identity component of I(A1).

THEOREM 3:1.1
Let M be a Riemannian globally symmetric space and let py be any point
in M. Let H = Iy(M) and KX C H be the subgroup which leaves py fized. Then

K is a compact subgroup of the connected group H and H/K 1is analytically

diffeomorphic to M under the mapping hIK — h-po for h € H.

Proof

See Helgason [1].

We may therefore denote a symmetric space by H/I{ for some Lie groups H,
I where ' C H. Then H isa Lie transfornﬁtion group of H/I in the sense that
the mapping (h, g-po) — hg-po is a differentiable mapping of H x H/IX onto H/I.
A symmetric space H/I is said to be of compact type or noncompact type
according to whether it has positive or negative sectional curvature and there
exists a duality between these two types (for more details, see Helgason [1}). The
rank of H/K is the maximal dimension of a flat, totally geodesic submanifold of
M (that is, the maximal dimension of a totally geodesic submanifold for which
the curvature tensor vanishes identically).

The Weyl group of a symmetric space is defined as follows (see Helgason
[1} or Loos [1]). Let H, I be Lie groups with Lie algebras fj, & respectively,
such that H/LI is a symmetric space. Let fj = 4+ p be a Cartan decomposition
of ) and let a denote an arbitrary maximal abelian subspace of p. Then the

Weyl group of H/K is the Weyl group of ¢ defined in Chapter 2, that is,
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the quotient of the normalizer of 7a in IV by the centralizer of ia in i, where
12 = —1. In fact Kostant’s definition in Chapter 2 (also see Kostant [1]) is
derived from this definition. The same identifications with root systems and
Dynkin diagrams hold as in Chapter 2. It then follows that the rank of H/K is
given by dim(a).

The irreducible symmetric spaces are well-known and have been classified.
Before we give the classification of irreducible symmetric spaces, we need some
more definitions. We follow Helgason [1].

A pair (H, ') is said to be a Riemannian symmetric pair if

1) there exists an involutive analytic automorphism o of H such that (K, ) C

H C Iy where IV, is the set of fixed points of o and (I{y )¢ is the identity

component of (I{,),

2) Adp(LV)is compact, where Ady () is the group given by the adjoint action
of K on H.
An orthogonal symmetric Lie algebra is a pair (), s} such that
1) By 1s a Lie algebra over IR,
2) s is an involutive automorphism of f,
3) the set, £ of fixed points of s is a compactly embedded subalgebra of .
For each Riemannian globally symmetric space H/I{, the pair (H,I{') is a
Riemannian symmetric pair, and is associated with an orthogonal symmetric Lie
algebra (f), 5). A synunetric space H/I{ is said to be irreducible if its associated
orthogonal symmetric Lie algebra (), s) is irreducible, that is,
1) § is semisimple and u contains no ideals # {0},
2) the algebra ad[)(u) acts irreducibly on e,

where u and e are eigenspaces of s for the eigenvalues +1 and —1, respectively.

The nrreducible symmetric spaces are then classified using the following

theorem of Helgason [1].




THEOREM 3:1.2
The iwrreducible orthogonal symmetric Lie algebras are of type
I (b,s) where ) is a compact simple Lie algebra and s is any involutive
automorphism of §.
IT  (b,s) where the compact algebra §y is the direct sum § = hi1+ b2 of
simple ideals which are interchanged by an involutive automorphism s of b.
IIT  (h,s) where b is a simple, noncompact Lie algebra over IR, the com-
plezification §h® is a simple Lie algebra over © and s is an involutive auto-
morphism of ly such that the fized points form a compactly embedded subal-
gebra.
IV (b,s) where ) = g® for some simple Lie algebra g over € and s is the

conjugation of fy with respect to a mazimal compactly embedded subalgebra.

Furthermore,
(h,8) s of type 1T < (Bh*,s™) is of type ]
and  (h,s) 1s of type IV <= (h",s") 1s of type II,

where (h*,s*) denotes the dual of (1, s).

The symmetric space H/K 1is said to be of type i, where : = I, II, III
or IV, if its associated orthogonal symmetric Lie algebra is of type 2. The
symmetric spaces of type | and Il are compact whereas those of type IIl and IV
are noncompact. Then the Riemannian globally symmetric spaces of type IV
are the spaces H/U where H is a connected Lie group whose Lie algebra is hR
where [y 1s a simple Lie algebra over €, and U is a maximal compact subgroup
of H. The metric on H/U is H-invariant and is uniquely determined (up to a
factor) by this condition. The symmetric spaces of type III are given in table

3.1, which by duality classifies all irreducible symmetric spaces.
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Noncompact Root system Dimension

Al SL(n,R)/SO(n) An_1 i(n—-1)(n+2)
AII  SU*(2n)/Sp(n) Anq (n—-1)(2n+1)
AIII  SU(p,q)/S(U, xU,) BC,,C, 2pq

BDI  S0(p,q)/SO(p)x SO(q) By, Dy pg

DIIT  SO*(2n)/U(n) BC,,D,,q = [in] n(n —1)
CI Sp(n,R)/U(n) Ca n(n+ 1)
CIT  Sp(p,q)/Sp(p)*Sp(q) BC,,C, 4pq

EI  (esc) 5P(4)) Eq 42

EII (e6(2), sU(6)+ su(2)) Fy 40

EIIL  (eg_y4), 50(10) + IR) B, 32

EIV  (es(-26), f1) Ay 26

EV (e7¢7y, 5u(8)) E; 70

EVI  (er(_s), 50(12)+ su(2)) Fy 64
EVII (e7(_25), ¢6 + R) Cs 54
EVIII (¢gs), 50(16)) Es 128

EIX  (eg(—24), €7+ su(2)) Fy 112

FI (fac4), SP(3)+ su(2)) F 28

FII (fa(=20), 50(9)) A 16

G (g2(2), Su(2)+ su(2)) Go 8

Table 3:1 The symmetric spaces of type III
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The symmetric space denoted BDI by Helgason [1] is SO(p,¢)/SO(p) x
S0(q) where ¢ < p. Such spaces include the case BI where p + ¢ is odd and
DI where p + ¢ is even. The symmetric spaces AIII, DI, DIII and CII each can
have different root systems depending on the values of p and ¢. For instance,
the root system of AIll is BCy if ¢ < p and Cj if p = ¢. For more details of the

root system BC, see Loos [1] and appendix B.

2. Polar representations

Let G be a compact Lie group with Lie algebra g. Let 7 : G — G(V) be
a representation of G on a real vector space V preserving an inner product (, ).
For each v € V7. the space g-v i1s the tangent space to the G-orbit through v.

Thus we can define a linear cross-section a, of the G-orbits by
_ " N — £+
a.={velV:i(ug-v)y=0}={g v}

In other words. a,. is normal to the G-orbit through v. It can be shown (see
Dadok [1]) that a, meets every G-orbit.

If g-v 1s a principal orbit then v € V' is called regular. The representation
7 is called polar if for some regular v and for any v € a,, (g-u, a,) = 0.
Thus the normal to a principal orbit of the action of a polar representation
cuts every orbit orthogonally. Such a cross-section or normal is called a Cartan
subspace. Obvious examples of polar representations are given by groups which
act transitively on spheres. for instance, the orbits of the action of O(n) on E”
are (n — 1)-spheres or the origin 0. Any normal to any and all of these orbits is
a line through 0: see figure 3.1 for the case n = 2. The adjoint actions and the
representations associated with symmetric spaces studied by Kostant and Rallis
[1] ave also polar. An example of a representation which is not polar is given

by the action of SU(1) = SO(2) acting on the 3-sphere S3 lying E* which is
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identified with @2, the principal orbits of this action are great circles, therefore
any normal is not orthogonal to every principal orbit. A full account of polar

representations may be found in Dadok [1] and Dadok and Kac [1}.

Figure 3.1 Principal orbits of the action of O(2) on EZ. :

B
b
i

The irreducible polar representations were classified by Dadok [1] by asso-
ciating each polar represenation to a symmetric space as follows.
Then a polar representation

Let G be a connected compact Lie group.

7:G — SO(17) is called a symmetric space representation if there exists:

(1) a real semisimple Lie algebra ) with Cartan decomposition j = €+ p;
(i) a Lie algebra isomorphism 4 : g — & and
(iii) a real vector space isomorphism L:V — p

such that

L -7m(X)(y)=[A(X)y]forall X € g,y € p.

By definition these representations are polar, and a Cartan subspace of such

a representation is a maximal abelian subalgebra of p. Dadok [1] showed that
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almost all polar represenations give rise to symmetric space representations in

the following proposition.

PROPOSITION 3:2.1
Let 7 : G — SO(V) be a polar representation of a connected Lie group G.

Then there exists a connected Lie group G with symmetric space representation

#: G — SO(V) such that the G- and G-orbits in V coincide.

The symmetric space H/K associated to G is of noncompact form and
the representation # may be given in terms of highest weight (see Dadok [1]
and Humphreys [1]). The classification of polar representations is then given in
terms of the noncompact symmetric spaces and a few exceptional cases, being
the adjoint representations and the action of Spin(7) x SU(2) on IR**. For full
details see Dadok [1]. It is noted that all irreducible noncompact symmetric

spaces with the exception of EII are associated with polar representations.
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CHAPTER 4

CLASSIFICATION OF REGULAR SOLIDS

In this chapter, we describe the classification of regular solids, to appear
in Madden and Robertson [1]. The regular solids arise from the study of both
polar representations and Kostant’s construction, the classification being given
in terms of the symmetric space and polytope associated to each regular solid.

We also give various examples to illustrate this connection in section 2.
1. Classification of regular solids

Let B be a regular n-solid in E™, n > 2, with centroid O. Let G = GB
be the symmetry group of B and g the Lie algebra of G. Let 7 : G — O(n)
be the representation given by inclusion. Recall that a representation is said
to be irreducible if it has no proper invariant subspace. We show that = is

irreducible by the following result.
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PROPOSITION 1.1
Let B be a perfect n-solid in E™. Then the action of GB on E™ 1s irre-
ducible.

Proof

Let B be a perfect n-solid in E™. Let B have symmetry group G = GB
and centroid O. Suppose G is reducible. Then there exist at least two or-
thogonal G-invariant subspaces of E™ of positive dimension. Let E™ be com-
pletely decomposed into non-trivial orthogonal G-invariant subspaces Ay,..., A,
in the sense that E" = 4; x .-+ x A, and A; does not contain any non-
trivial G-invariant subspaces, 1 < 7 < r. Let (e;,...,e,) be an orthogonal
basis for E" compatible with the above decomposition, so that A; and A, are
generated by €1,...,€e, and e, 41,..., €, respectively, and Aj is generated by
€t; 1+1s--0-€;, 2 < ) <r,wherel <t; <-.- <t =n. Wewritez € E” as
= (Ty,....30) € Ay x o x A

Forj=1,...,r, let L; be aline through O in A; such that D; = L; N B has
maximal length d;. We may suppose that di >dy>---2>d,. Let 6 : E® — E™
be the linear map defined as follows. For j =1,...,7, let s; = 1 4 ¢;, such that
€; > 0 and s; > s > -+ > s,. Then the action of 6 on each A; is a dilation by
s; and hence fixes each A; setwise. Thus, 8(z1,...,2,) = (51%1,...,8:-&r).

Let B = ¢(B) = {6(x) : © € B}, where ¢ = {e1,...,¢,} € E". Then §
induces an embedding of GB in GB,. But for ||e]| sufficiently small, GB, is a
subgroup of GB. Hence GB = GB,. Also for ||¢|| sufficiently small, § induces
a face equivalence from B to B, (also see Pinto {1]). Hence, since B is perfect,
there exists a similarity f: E" — E™ such that f(B) = B.. Let m be the scale
of fsoforall v,y € E™, d(f(x), f(y)) = md(z,y) .

Since B, has centroid O, f is the product of an orthogonal transformation

and a dilation. If » € A; for some : = 1,...,r then f(z) € A; for some
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J=1.....r. Thuscither f(4;) = 4; for all e = 1,...,r, or there exists a linear

YUY

subspace C; of some 4;, 1 < dim(C;) < dim(A;), such that f(C;) C A; and
I<i#j<r

First suppose that f(A4;) = 4; for all 7+ = 1,...,r. Let z;,y; € A4;
and xp,yx € Ax, for some j < k. Then md(xj,y;) = d(f(z;), f(y;)) =
d(6(x;),6(y;)) =s;d(zj,y;). Hence m = s;. However we also have md(zr, yx) =
d(f(xr), flyx)) = d(8(xr), 8(yx)) = srd(zr,yr). Hence m = sp. Therefore
m = s; > s, = m which is a contradiction.

Now suppose that f(C;) C A; for some maximal nontrivial subspace C;
of 4;. We may suppose i < j. Let C# be the orthogonal complement of C;
in 4;. Suppose that 0 < dim(C;) < dim(4;), and let v € C; and v € CF.
If w = A+ pr. A # 0 and p £ 0. then f(w) ¢ 4;, ) =1....r. Thisisa
contradiction. hence dim(C;) = dim(A4;). It then follows that f(A;) = A; and
fl4;) = Ay for some k # j. We may suppose that k < j. If d; = d; or d; = di,
then |f(D;)| = d; = dj ov |f(D;)| = di = dj, respectively, where |T| denotes
the length of the line segment T. Hence m = 1. This is a contradiction since
|6(D)} > d;. Howeverif d; < d; or di < dj then |f(D;)| = md; > |f(D;)| = md,

or |f(Dy)| = mdy > |f(D;)| = md; which again is a contradiction.

COROLLARY 1.2

7 18 1rreducible.

Proof
Let B be a regular solid. then B is a perfect solid (see section 1:1.7). The

corollary then follows from proposition 1.1

We also note that theorem 1:7.5 follows from proposition 1.1.




PROPOSITION 1.3

7 18 polar.

Proof

Recall (Bolton [1]), that a transnormal system in a complete connected
Riemannian manifold M is a partition of M into foils (nonempty connected
submanifolds) such that any geodesic of M cuts the foils orthogonally at none
or all of its points. Then by Bolton [1], the orbits of 7 form a transnormal system
in E™ and hence 7 is polar.

Alternatively, let 2 lie on a principal orbit of this action of 7 and let the
tangent plane of this action at 2 be denoted by g-z. By similarity, we can
assume a lies on the boundary of B, and hence in a proper face F' of B. Since
B is regular. each flag of F' is in a maximal flag of B. By Dadok [1}, a, = {u €
E™: (u,g-z) = 0} is a Cartan subspace of E™. Then by the transitivity of G
on ®B, for any v on a principal orbit, a, = ¢ - a, for some ¢ € G. Hence 7 is

polar by Dadok [1].

By Dadok [1], we have associated to the given n-solid B a noncompact
symmetric space H/I, where H and I{ have Lie algebras ) and &, respectively,

such that:

h=Et+p;
£~ g;
and p~ E"
Hence given an n-solid B and its symmetry group, H/K and therefore H are
determined from the classification of noncompact symmetric spaces (see table
3.1).
Let TV be the Weyl group of H/L and a be a Cartan subspace of 7, that is,

a maximal abelian subspace of p. Then the intersection of a G-orbit with a is a

46

i

ENU .




single W-orbit (see Dadok {1]) and W is the symmetry group of a regular poly-
tope P such that II{B) = P where II is the projection in Kostant’s construction
(see chapter 2 and Farran and Robertson [1]).

The root system and hence Dynkin diagram (or Coxeter graph) determined

by the Weyl group of a symmetric space is one of the following;:

A 121, Es,
B 1>2, E;,
BC; 1>3, Eg,
C; 1 >3, Fy

D, >4, Gs.

Of these root systems only A;, By, Ci, D, Fy and G5 are derived from a Weyl
group corresponding to the symmetry group a regular polytope P. We call such
root systems regular. The polytope P is determined by taking the convex hull
of a W-orbit of a point z in the fundamental region D of W corresponding to an
end node of the Coxeter graph, that is, by Wythoff’s construction on an end node
of the Coxeter graph. Any other polytopes arising from Wythoff’s construction,
that is, those from nodes which are not end nodes, are not regular (see section
1.8). Polytopes also arise by Wythoff’s construction on the Coxeter graphs
which are not associated to any regular polytope, namely, the root systems Eg,
E; and Eg. We shall call these polytopes Gosset polytopes or Gossetopes
since they were first studied by Gosset [1].

Therefore we are only interested in symmetric spaces whose root system
is regular. As usual, using the Coxeter graph of the root system, the Schlafli
symbol of P can be read directly. The root system D; is a special case as it
has three end nodes, from Coxeter [1], we make the identifications in figure 4.1

when using Wythoff’s construction on any of the nodes in the long branch of
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D,. The polytope arising from Wythoff’s construction using either node in the
short branch is the alternation ho; of oy, that is, the polytope derived from o,

by taking the convex hull of its alternate vertices. In general,

3
hnk_{3,3,...,3}’

for instance, hog = A; (note that D3 = A3 by section 2.1) and hoy = ¢4 are

given in figure 4.2.

O - = @O - -0—0—00
o8- = O - -0—0—0%0
O—O - = 00O —0—0—020
OO = 00 - -o—e—00

Figure 4.1 Equivalent polytopes from D;

A geometric interpretation of this process of deriving P from H/K may be

given as follows. The Cartan subspace a of E™ ~ p is a linear subspace of E™ and
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hence intersects B in a nonempty subset. In fact a is generated by the centroids
of faces of a maximal flag of B (see proposition 1.2). Hence, by theorem 2:2.3
and Kostant’s construction, the set P = BN a is a regular polytope. Then

P = p(B), where p is the projection of chapter 2.

Figure 4.2 Alternation polytopes of o3 and oy.

The dimension of the regular polytope associated to a regular solid and the
dimension of the regular solid are respectively given by the rank and dimension
of the associated symmetric space. The symmetric spaces from which regular
polytopes are derived by Wythoff’s construction are given in table 4.1 and 4.2,
along with the associated regular polytopes and the above mentioned dimensions.
Thus we obtain a classification of regular solids such that
(1) If P = {p} for p # 3,4,6. or P = {3,5}, {5,3}, {3,3,5}, or {5,3,3}, then

p~Y(P) consists of only P itself.

(2) All regular solids that are not polytopes are specified in tables 4.1 and
4.2 1n terms of their dimension, and the-associated symmetric spaces and
polytopes. (Of course, the regular polytopes have symmetry groups which
are O-dimensional Lie subgroups of O(n).)

(3) In addition to the above, there are regular solids associated with the adjoint
representation of simple Lie groups (with the exception of Eg, E7 and Eg)

whose corresponding symmetric space is of type IV.
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HIK dim(B) dim(p(B)) p(B)
Al SL(n,IR)/SO(n) n=1)n+2)| (n-1) AN
All SU=(2n)/Sp(n) n-1C2n+1)| (n—-1) JAVEPY
AIll SU(p,q)/S(U, x Uy) 2pq q 0,, <,
g<p
BI  500(p.q)/SO(p) x 50(q) pq q Og, O
p+qodd, g<p

q O,

DI 500(p,q)/SO(p) x SO(q) Pq ¢<p

P+ q even
p=49 4

DIII SO*(2n)/U(n) n(n —1) [in] =g¢ Oy, Oy
CcI Sp(n,IR)/U(n) n(n+1) n=gq Oy, Oy
CII  Splp.q)/Splp) x Splq) 4pq q O, O

g<p

Table 4.1 Regular solids derived from the classical noncompact

symmetric spaces and their associated regular polytopes.




H/K dim(B) | dim(p(B)) | p(B)
EIIT  (eg(-14), 50(10) + R) 32 2 wi
EIV (ea(—26)s f1) 26 2 JAV)
EVI  (ez_s), s6(12)+su(2)) 64 4 24-cell
EVII (e7(-25), ¢6 + IR) 54 3 03, s
EIX (€s(-24), €7+5u(2)) 112 4 24-cell
FI (fa(4)s 5P(3)+5u(2)) Azs 4 24-cell
FII (fa(=20, 50(9)) 16 1 JANY
G (g2(2),5U(2)+5u(2)) 8 2 Hexagon

Table 4.2 Regular solids derived from the exceptional noncompact

symmetric spaces and their associated regular polytopes.
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2. Some examples

With the classification of regular solids complete, it is interesting to locate
some familiar regular solids in tables 4.1 and 4.2.

A well-known family of regular solids is the family of balls D™, D" =
{(z1,...,24) : @2 + -+ + 22 < 1}, where the case n = 1 is the line segment I
which is the only solid (and hence polytope) up to similarity in E', and n = 2 is
the disk. Clearly op» = {0} for all n, therefore p(D™) = I for all n. Let B = D™,
then GB = O(n), the connected component of the identity of GB is G = SO(n),
so we take g = so(n). The only symmetric space H/K such that rank(H/K) =1
and & = so(n) is the space BDI, that is, H/K = SOq(p, q)/SO(p) x SO(q) where
p=n and ¢ = 1. We check that dim(H/K) = dim(B) = pg = n, and the action
of SO(n) x SO(1) on I is indeed D™.

Another family of regular solids are the Veronese solids, of which the 5-
dimensional solid is best-known (see Robertson [2]). Let B = V be this 5-solid,
given by the following. Let M denote the real projective plane and p € M have

homogeneous coordinates z, y, z with 22 +y? + 22 = 1. Then V is given by the

image of a smooth embedding v : M — E®, where -
v(p) = (.172,92,32, \/§yz, \/5;1, \/§:Ly) b

From Farran and Robertson [1], we see that the symmetry group G of V is
isomorphic to SO(3) and the polytope associated to V by Kostant’s construction
is an equilateral triangle T. The set of faces of V consist of vertices and 2-disks
only. From tables 4.1 and 4.2, we see that there is only one symmetric space such
that &€ = s50(3) with rank 2, namely H/LK = SL(3,IR)/SO(3) (which is of type
AT). The solid given by action of the isotropy subgroup of G at the midpoint of

an edge of T is a 2-disk, which agrees with Farran and Robertson {1].
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In both these cases the polytope derived from B by this classification agrees
with that found geometrically in Farran and Robertson [1]

We can also check the classification of perfect non-polytope 2 and 3-solids
by looking for all symmetric spaces of dimension 2 and 3, respectively, in tables
4.1 and 4.2. Using the identifications AI(n = 1) = AIII(p=q=1)= BDI(p =
2,g = 1) = CI(n = 1) from Helgason [1] (see also appendix B) the only such
symmetric spaces are the spaces SOg(2,1)/S0(2)x SO(1) and S0¢(3,1)/50(3) x

SO(1). Thus we have agreement with Farran and Robertson [1].




PART 11

PERFECT SOLIDS

Let Sp and Pp denote the sets of perfect solids and perfect polytopes respec-
tively. It has been noted that Sg is a proper subset of Sp and it is well-known
that Pr is a proper subset of Pp. The projection p: Sg — Pr can be extended
to p:Sp — Pp by restricting the projection II given by Kostant’s construction
to the set of perfect solids. The perfect solids have vet to be classified, one of
the obstacles being that there is no theorem for perfect solids analogous to the-
orem 2:2.3. Noreover the perfect polytopes have not been classified. However
the results given in part I provide many examples of non-regular perfect solids
whose associated polytope is a truncation of a regular polytope in the following

sense.,

THEOREM II:1

Let P be a polytope given by Wythofff’s construction on some node of the

Dynkin diagram of an irreducible root system. Then P 1s perfect.

Proof

This result can be read into the analysis of Robinson [1], who of course was

writing about quite different ideas. The key fact is that for any vertex transitive

54




polytope P whose symmetry group is the Weyl group of such a root system, the
fixed point set of any vertex has dimension 1 if and only if the vertex is a vertex

of the fundamental region of P.

The polytopes of theorem II:1 are the wythoffian polytopes and the Gosset
polytopes. It is thought that these along with their polars are the only prime
perfect polytopes. In fact Pinto [1] generalised Rostami’s conjecture (conjecture
1:8.1) for n-dimensions to the following.

CONJECTURE II:2

Let P be a perfect polytope. Then P or P* is a o-power of some prime
perfect polytope (). where Q 18 given by theorem II:1.

In part II. we are concerned mainly with perfect polytopes but in doing so we
work towards a classification of perfect solids. We make some progress towards
a general classification of perfect polytopes in chapters 5 and 6. In chapter 5
we consider transitivity on i-faces for each dimension ¢ < n for certain perfect
n-polyvtopes. Deformations of polytopes to nearby polyvtopes are introduced in
chapter 6. This allows us to determine the dimensions of fixed point sets of
vertices of perfect polytopes. We also consider G-stratifications of E™, where G
18 the symmetry group of a regular polyvtope.

In chapter 7 we consider conjecture II:2. In dimension n > 6, the Gosset
polytopes need to be considered. The symmetry groups of these polytopes are
not associated to any regular polytope. Therefore we concentrate on the case
n = 4. We make several conjectures on the orbit vector of perfect poytopes that
agree with conjecture II:2.

In chapter 8 we consider the angle formed by adjacent i-faces of a polytope,
¢ = 1.2, By considering perfect 0- and 3-transitive perfect 4-polytopes we prove
some of the conjectures in chapter 7. Rostami’s conjecture and a classification of

perfect d-polytopes then follow. This leads to a classification of perfect 4-solids.



CHAPTER 5

TRANSITIVITY

The regular polytopes form a more restricted family than that of the perfect
polytopes. As we shall see, the condition that a polytope P is regular imposes
restrictions on the transitivity properties of the proper faces of P. In this chapter
we are concerned with the transitivity properties of polytopes and the number
of face orbits of P in each dimension where a proper face exists. A more general
study of transitivity in solids may be found in Farran and Robertson [1], from

which some ideas used here have been derived.

1. Complete Transitivity

We start with two definitions from Farran and Robertson [1]. For any
0 <7< n-1,an n-polytope P is said to be i-transitive if GP acts transitively
on F;P. If P is i-transitive for all 0 < ¢ < n — 1, then we call P completely
transitive. It is noted in Farran and Robertson {1} that a polytope P is com-

pletely transitive if and only if P is regular. Clearly every regular polytope is
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completely transitive as any i-face of P can be embedded in a maximal flag, for
any 0 <17 < n — 1, the transitivity of the maximal flags then ensures the transi-
tivity of the i-faces. A proof that a completely transitive polytope is regular will
be given here. This proof makes use of an alternative definition of regularity,

which is provided by the following lemma.

LEMMA 5:1.1

Let P,, be an m-polytope in E™ such that P, has congruent regqular facets

and all the vertices of Py, lie on a sphere. Then P, 1s regular.

Proof

For m = 2. P, is an equilateral polygon with common length A. Suppose
that the vertices of P, lie on a circle of radius r. Let vy, ve,vs be any three
successive vertices of Py so that vyvg, vovg are edges of P». Then since vy, vy, v3
all lie on some circle. the length of the chord vyvs is determined by r and A
Hence the internal angle of Py at v is independent of the choice of vo. Thus P,
1s equiangular as well as equilateral and is therefore regular.

Form = 3. Ps is a polyhedron with congruent regular polygons as faces. The
regular-faced polyhedra have been classified by Johnson [1]. Of the polyhedra
with congruent regular faces. only the Platonic solids satisfy the condition that
the vertex set lies on a 2-sphere. Thercfore P is regular.

We now argue by induction. Suppose any k-polvtope Pj satisfving the
above conditions is regular. Let P4 be any (b + 1)-polytope with congruent
regular facets such that all the vertices of Pr4q lie on some sphere. Then all the
edges of Pryy are equal. Thus the vertex figure @ of Py at some vertex v is
given by the convex hull of the midpoints of all edges of P41 emanating from
v

Now Q) is a k-polytope. Since the facets of @) are the vertex figures of
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the facets of Pry1, the facets of Q are congruent and regular. We now show
that the vertices of () lie on a sphere. Consider the 1-dimensional space T
containing v such that 7 and ¢ff{Q) are orthogonal. Suppose z denotes the
point of intersection of 7 and ¢ff{@) and let |ab] = d(a,b). Since |vv;| = |vv;|
for any vertices v;,v; of @, the triangles given by the vertices v,v;,z and v, vj,
are congruent right-angled triangles. Hence |zv;| = |zv;| for all v;, v}, that is,
all vertices of @} lie on a sphere with centre 2. Therefore () is regular.

Then P41 has regular facets and regular vertex figures and hence Ppyq 1s
regular.
Therefore by induction all such P, are regular. Thus the above definition of

regularity for polytopes agrees with that found in Coxeter [1] and hence with

section 1.6.

We note that congruent regular facets is not a sufficient condition for reg- d
ularity. For instance in dimension 2, a rhombus is not regular. In dimension
3, there are five polyhedra, called deltapolyhedra, each with regular triangular
faces which are not regular (see Williams [1] or Cundy and Rollet [1]). Two such

polyhedra are the double cones on a triangle and a pentagon.

PROPOSITION 5:1.2

Any completely transitive n-polytope is regular.

Proof

Let P be a completely transitive n-polytope in E™. Let f be a 2-face of P.
Then f is an equilateral k-polygon, for some k£ > 3. The convex hull conv( fUO)
of f and O is a cone with f as base and with & triangular faces. Each triangle
is given by the points O, v;,viyy, where v;, v,y are the endpoints of an edge of

f. Since P is O-transitive, |Ov;| = |Oviy1|. Hence all the triangles are congruent
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and i1sosceles. Thus f is a regular polygon. Since P is 2-transitive all 2-faces of
P are congruent.

Suppose that the m-faces of P are regular for some m , 3 < m < n — 2.
Let fi+1 be an (m + 1)-face of P. Then fi,+1 is an (m + 1)-polytope with
regular m-faces. Since P is m-transitive, the m-faces are congruent. Since P is
0-transitive the vertices of f,,41 lie on a sphere. Hence by lemma 1.2, fi,41 1s
regular. Since P is (m + 1)-transitive, all (m + 1)-faces are congruent.

Therefore the facets of P are regular and congruent. Since P is O-transitive,
all vertices of P lie on a sphere, therefore P is regular. This completes the proof,

hence P 1s regular if and only if P is completely transitive.

It is noted in Farran and Robertson {1} that this property of a polytope being
completely transitive if and only if it is regular does not carry over into the more
general setting of the solids. As an example, consider the 3-solid B = Do D?,
then B is completely transitive and op = {0,1,2}. However B is not regular as

G B is not transitive on the maximal flags of B.

2. The orbit vector

Let P be an n-polytope. Then we say the orbit vector of P is the n-vector

O(P)=(8y..... 8, —-1). where 8; 1s the number of orbits of 7-faces in F; P, for each
1 = 0,....1n — 1. under the action of GP. Then by the above a polytope P is
regular if and only if §(P) = (1....,1). It 1s possible to express the orbit vector

of any o-prime polytope in terms of the orbit vectors of the prime polytopes in

its o-decomposition.

Suppose that P = Ao B. where 4 and B are ¢-prime o-coprime polytopes.

Suppose that dim(4) = m > 1 and dum(B) = n > 1 and the orbit vectors of 4
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and B are given by 6(A4) and 8(B), respectively, where

0(A) = (ag, ..., 0m-1)

and
6(B) = (boy .., bn_1).

It is convenient to put a,, = b, = 1, and to refer to (ag,...,am) and {(bo,...,bs)
as the extended orbit vectors of A and B respectively.

The product Ao B is an (m + n)-polytope with symmetry group GA x GB
it 4 £ B. A k-face of 4o B is of the form ffo]B where f* € F} A, fJB € F;B

and ¢ + j = k. Therefore §(AoB) = (6y,...,6m4n-1) where §; = Zi-i-j:k azb;

for 0 < <m0 < <n.
Now if P = dod where 4 is o-prime, then G = G(4dod) = Z, 1 GA

Therefore the (¢ 4 j)-faces of Ao given by (f;0f;) and (f;8f;), for some f; €

Fid and f; € F; 4. lic in the same orbit. First suppose that ¢ +) = & is odd,
then there are kf_,“ distinct pairs (7, 7). for z] >0,suchthat it +7=7+2=%.
Therefore the number of k-face orbits is ZH-]‘:L« %lcz,i(Lj for 0 <7, <mifkis
odd. If i +j =k is even, then there are k/2 distinet pairs (z,7) for 7,7 > 0 such
that i1 + ) = j+7 =k and 7 # j. If 2 = j, then the number of k-face orbits is «;.
Therefore the number of k-face orbits is a9 + S i+i=k %(L,-(Lj for 0 <e,7 <m \ 11:
if & is even. Therefore (4o d) = (8y....,02m_1) \\’l;zi?e o
D itk Eaiaj, if k odd;

6)]\' = v
appa + 2 ivj=k 5a;aj, if keven.
1]
We illustrate these facts with two simple examples. First recall that a
semiregular polygon is an equiangular polygon whose edges are of alterna-

tively equal length. Suppose that I is an interval. Let {6} and Ss be hexagons,

where {6} is regular and S is strictly semiregular. Then the extended orbit
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vectors of I. {6} and Ss arve (1,1), (1,1,1) and (1,2,1), respectively. Then
6({6}ol) = (1.2,2) and 8(Ssal) = (1,3,3), see figure 5.1. There are 3 face
orbits in the latter product, representatives of which are given by a hexagon Se

and two rectangles.

Figure 5.1

We study the orbit vectors of the known perfect polytopes, namely those
perfect polytopes arising from Wythoff’s construction and their polars. First

we consider the wythotopes. Let R be a regular n-polytope and, for some ¢ =

1..... n — 2. let 117/ be the wythotope given by taking the convex hull of the

centroids of all /-faces of R. In other words, if R is the regular n-polytope

‘R Uiy oy @ . oA
{aj..... a,_1} then 17 is the n-wythotope ¢ i given by figure gt
i1y - o0 s Up—1

1.16. -

S

Since R is regular. (1) the polar R* is regular and (i1) the fixed point sets of
centroids of /-faces of R and the fixed point sets of centroids of (n — 1 — 7)-faces
of R* comncide. for each i = 0..... n —1. Therefore we may assume that ¢ < n/2,

since otherwise 1177 ~ U"]R where ) =n—1—21<n/2

PROPOSITION 5:2.1

Let R be a regular n-polytope and v < 5. Then the orbit vector of WE is
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(1,1,2,3,...,6,6+1,...,i +1,5,i—1,...,4,3,2).

Proof
Let R = {ay,...,an—1},so that Wf = { Gy @ } . Then the facets
Ait+1y + ¢+ 30n—1
of WR are of type Fy = iy -on and Fy = { @ } A
Ait1y +0- yAn—-2 Ait1y -+ - y8qn-1

facet of type F} is given by the convex hull of the centroids of all z-faces of some
facet {a1,...,an—2} of R. A facet of type F, is given by the convex hull of the
centroids of all ¢-faces of R containing some vertex of R. Since G is transitive on
the maximal flags there are exactly two orbits of facets of W1, namely those of
type Fy and F; respectively. Thus an m-face of W is given by the intersection
of a suitable number of facets of W2 of types F} and F». We shall consider all

such intersections and show that all m-faces of W2 given by the intersection of

7 facets of type Fy and k facets of type F, lie in one orbit.
case (1). The intersection of j facets of type F1,1 < j <n—i—1,m=n-—j.
Let f = {a1,...,an—j—1} be an (n — j)-face of R. Then f contains r ¢-faces
of R where r > n — j — 1 (since R is n-dimensional ). Thus the convex hull of
the centroids of the r i-faces is an (n — j)-face f = AR since
) Qit1, s Ap—j—1
n —7 > 1+ 1. We note that f is the intersection of at least n — j facets of R,

therefore f is an (n — j)-face of WZE. Hence a suitable choice of j facets of type

F} intersect in an (n — j)-face of W&,

case (11). The intersection of j facets of type Fin~1 < j<n—-1m=n—j.
The intersection of j facets of R is an s-face of R, where s <n—(n—1) =1.
Thus the convex hull of the centroids of all :-faces in such an intersection is at
most a point . Therefore there are no m-faces, m > 1, of R given by j facets of

type Fy for j > n — 1.




case(111). The intersection of k facets of type Fh, k <i, m=n—k.

By polarity, the convex hull of the centroids of i-faces in the intersection
of k facets of type Fy is similiar to the convex hull of the centroids of (n —
i — 1)-faces in the intersection of k facets of type Fy of R*. By (i) this is
(n — k)-dimensional if and only if the intersection of the relative facets of R*
are (n — k)-faces {an_1,...,ar} and n —7—1 < n —k — 1. Thus the convex

hull of the centroids of all (n — ¢ — 1)-faces in this intersection is an (n — k)-

Ay (y s — A ¢ PO ad; cen - . .
polytope n=(n—i-1), Hat R - v+l »#n=1 4 So the intersection
AiyennQp Aiyov. Qg

of k suitable facets of type F, is an (n — k)-face iy e e Gk

of P;,
Ait1s -+« 5Qn-1

1<k<oe.

case (1v). The intersection of k facets of type Fp,k > i+ 1, m=n — k.

Note that : + 1 vertices of R either define a unique i-face of R, or don’t all
lie in any one i-face of R. Hence the convex hull of the centroids of all ¢-faces
containing those vertices 1s at most a point. Therefore there are no m-faces,
m > 1, of W& given by k facets of type Fy for k > i + 1.

case (v). The intersection of j facets of type Fy with k facets of type F3,
m=n-—j—k.

By (ii) and (iv) we may assume j <n —7 —1, and k < 7. By the repetitive
use of Coxeter [1] (also see section 1:8), we see that any m-face, 1 <m <n —1,

of W2 is of the form

{aiy. . @qi—m}, where m <1

Aiyonry Ui : :
S N where m=r+s+2,r<i,s<n-—-1;
@ity o e 3 Qs

{dix1,. .. digm-1}, where m <n —1i.
We also note that the intersection of a facet f; of type Fy with a facet fo of
type F» of W is (n — 2)-dimensional if and only if the vertex of R from which

f2 1s given is contained in the facet of R from which f; is given. Thus if f
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is the (n — j)-face of TV given by the intersection of j facets of type Fy and
v1,..., 0% are the vertices from which the k facets of type F, are defined, then
the intersection of these j 4+ k facets is (n — j — k)-dimensional if and only if the

(n — j)-face of R corresponding to f contains the vertices vy,...,vx.

Since R is j-transitive, the (n — j)-faces of W given by the intersections
of facets of type F} only all lie in one orbit, if they exist. Hence by polarity, the
(n — k)-faces of VR given by the intersections of facets of type F only all lie
in one orbit, if they exist. Let DZ be the set of all i:-faces of some ¢-face f; of
R containing some vertex v such that v < f; and ¢ > ¢. Since G is transitive on
the maximal flags of R, G is transitive on the sets DY for all ¢-faces f, such that
v<af.q> i Therefore G is transitive on the m-faces of W2 given by j facets of
type Fy and k facets of type I5. m = n — j — k, for given j, k.

Thus to determine the face orbit vector of W, we need only count the
number of combinations ¢ of j + 4 = n — m for each 1 < m < n — 1 subject
to the conditions 1 < 7 <n —:—1.1 <k <ioand @ < n/2. These results are

tabulated below.

1<im<i o =m
1< m<n—z ¢ =1+1
n—1<m<n-—-1 d=n-m-+1

By the definition of 1177, 11/ is 0-transitive. Hence
(1.1.2.3.....0.t+ 1..... 1+ 1,0,1—~1,....4,3,2)
is the face orbit vector of 1175,

COROLLARY 5:2.2

Let W be the polar of a n-Wythotope W, for some 1 <i < n —2. Then

Z

Gy = (2.3 i +1..... P41 —1.....2,1.1).




Proof

Follows immediately by polarity and the inversion of face lattices.

As an example we can consider the Wythotope W = W$ = {g:g’g 3 }
395

We form a lattice of face orbits of W, see figure 5.2. Each face orbit is denoted
by a representative of that orbit and the lattice is graded by dimension. The
lattice is partially ordered by <, where A < B if 4 «¢.B for some g € GW.
Then the number of k-face orbits is given by the number of elements in the k"
level of the lattice of face orbits. We find that 6(W) = (1,1,2,3,4,4,3,2), by
counting the number of elements in each level of the lattice. In this example,
there are different orbits of faces which are congruent. For instance, there are
two orbits of tetrahedral faces of 1¥. Thus it is not sufficient just to count the
number of different faces when computing 8(1V).

Thus the orbit vector §( P) of any perfect polytope P derived from a Wythof-
fian polytope can be computed if the decomposition of P is known. It is easy to
see that (60,0;,0,-2.0,-1) = (1,1,2,2) or (2,2,1,1,) for some z, that is, either

P or P* is vertex and edge transitive.
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Figure 5:2. Lattice of face orbits of 3.




Besides the family of perfect polytopes obtained above from regular poly-
topes, there are fourteen other perfect polytopes derived by Wythoff’s construc-
tion, namely the Gosset polytopes. Such polytopes are of dimension 6, 7 or 8. If
the shaded node is an end node then these polytopes are denoted I;; according
to the lengths of the branches, for example, see figure 5.3. The orbit vectors of
Gosset polytopes are more difficult to compute since the corresponding Coxeter
graph is not a simple chain because one of the nodes is attached to 3 branches.
Although it is not necessary for present purposes to compute these orbit vectors,
it is useful to consider the Gosset polytopes in order to understand some of the

difficulties in the general classification problem .

Figure 5.3 The polytope 155 = {3

67




CHAPTER 6

FIXED POINT SETS OF VERTICES OF A PERFECT POLYTOPE

In this chapter, we explore the restrictions that are imposed on the fixed
point set of a vertex of some polytope by t:he condition of perfection. We start
by considering how a general polytope P may be deformed into a symmetry
equivalent polytope. Such deformations depend on the dimensions of the fixed
point sets of vertices of P. The dimensions of such sets are determined for
perfect polytopes. We then conclude by examining perfect n-polytopes whose

G-stratification of E™ is isomorphic to that of some regular polytope.
1. Deformations of a polytope

A solid S is perfect if and only if every nearby solid that is symmetry
equivalent to S is similar to S. For this reason we study maps between such solids
and S, particularly when S is a polytope. To do this we consider deformations
of solids and for this purpose we introduce some elementary category theory.

Let S be the space of all solids. Then S can be regarded as the set of objects
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in a category & of face-maps between solids. The morphisms or face-maps are
defined as follows. Let B be an n-solid, n > 0. We first need to give each point
x in B a sequence of radial coordinates (similar to barycentric coordinates) in
terms of the centroids of a flag of B. Let f; be the face of B of lowest dimension
J1 such that @ € f1. If @ = ¢y (the centroid of fi), then we say x is given by
the n coordinates (0,...,0.1,0,...,0) where the (n + 1 — j;)* entry is 1. If
x # ¢, there is a unique straight line through points ¢; and x oriented from
¢y towards x. This line meets Jfiin a unique point z; at or beyond . Thus
x =tia; + (1 —t1)c; for some unique t; € I =[0,1], t; # 0. Let fy be the face
of B of lowest dimension jo < j; such that @y € fo. If 27 = ¢ (the centroid
of fa). then «; is given by coordinates similar to ¢; above but having the only
non-zero entry 1 at the (n — ;) position. If 21 # ca, then we repeat the above
process on .y in terms of ao and c3. After a finite number of steps zy 1s the
| centroid ¢ of a face of B. Therefore we can associate x with an affine sum of ¢;

(or wy)oe=1..... k. that is.

T = fl.lfl -+ (1 — f})(‘]
| =t1(tars + (1 —ty)en) + (1 —t1)e o )

:(1_t1)('1+t1(1—‘t2)('2+f]1‘2172 !

=(1—ti)er + 11 —ta)ea+ -+ (1 —t2) - (1 —tpoq)op—y + tate -+ - trak
=1 -t +t(l —ta)eo+ -+ (1 —ta) - (1 = tpog)cpo1 + trta - - trcy.
Hence v = {X;...., X, } such that X; = ¢; if j; = ¢ and X; = 0 otherwise.

Then a face-map f : B; — B, between two n-solids By, By is a map which

takes the centroids of faces of B; to centroids of faces of B such that the image

of any point & written as an affine sum above in term of ¢; is the affine sum of
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the images of ¢;, that is,
flz)=(1—=t1)f(c1) +t1(1 —ta)f(ca) + - -+ t1(1 —t2) -+ (1 — tr—1)f(cr=1)
+ tite -t fer)-

It follows at once that any face-map is continous, that the composition of
face-maps f : By — B, and g : B, — Bj is a face-map go f : B; — Bj, and
that for any nonempty solid B, the identity 1p is a face-map. It is convenient
to regard S(0, B), S(B,0) and S(0, ) as singletons.

Suppose next that 91 denotes the category of similarities between solids.
Then M is a subcategory of G. Thus: every object in 9 is an object in & (in
fact, both have the same objects, namely S); every similarity between solids is a
face-map; and the composition operation is the same in both categories. We can
define a notion of symmetry equivalence between solids which is coarser than
similarity and finer than face-isomorphism, as follows. Let Bj, By be solids.
Then a face-isomorphism f : By — B is said to be a symmetry equivalence
if and only if there is a group isomorphism f, : GBy — G B, such that for all
g € GBy, fu(g)o f = fog. If such an f exists, we say that B; is symmetry
equivalent to B, and write By >~ Bs. !

We now define a deformation of an n-solid B in terms of a connected
(continuous) path in the space of solids. A deformation is a continous map,
0: BxI — E™ suchthatforallt € I, §(B,t) = Byisann-solid and f; : B — By,
fi(x) = 6(x,t), is a symmetry equivalence. We can assume that GB = GB, for
all t € I. If B is an n-polytope P, then since P = conv(FyP) we may define
ft + P — Py in terms of a set of paths {6(v,[): v € FyP}. It follows that each
such path 6(v, I') lies in the fixed point set fiz, of v. Since we are interested in the
difference between perfect and imperfect polytopes, we consider only deforma-
tions involving non-similar polytopes, that is to say, B; is not similar to B, for

some t € I. If § is such a deformation for some solid B, we call f; : B — 6(B,t) a
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D-path from B. Thus a polytope P is perfect if and only if there are no D-paths
from P. The above formulation of the notion of face-map and the definition of

symmetry equivalence in terms of categories has been devised by Professor S. A.

Robertson.
2. Vertex orbits of a perfect polytope

Since no D-paths exist from a perfect polyvtope P, we explore the conditions
this imposes on the fixed point sets of vertices and of centroids of facets of P.

First we need to prove a simple proposition.

PROPOSITION 6:2.1

Let P be an (n — 1)-transitive n-polytope. Then every facet of P contains a

fundamental region of GP for OP.

Proof

Let f be any facet of P. Since P is (n — 1)-transitive, every point of P is in
a G-orbit of some point of f. If the isotropy subgroup of the centroid ¢ of f is o
trivial then f 1s a fundamental region D by definition. If the isotropy subgroup R
of ¢ 1s nontrivial. then any fundamental region D for the action of G, on fisa o

iy

fundamental region for the action of G on dP. In either case, D C f.

COROLLARY 6:2.2

If P 1s a vertex transitive n-polytope, then there exists a fundamental region

for OP containing only one vertex of P.

Proof

Since P* is an (n — 1)-transitive n-polytope, there is a fundamental region

for GP = GP* in OP* containing only one centroid of a facet of P*. The radial
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projection of this region to JP from the centroid of P is then a fundamental

region in P of the required type.

Now we examine the dimensions of fixed point sets of the vertices of a perfect
n-polytope. We first consider the case when a polytope is both 0-transitive and

(n — 1)-transitive.

LEMMA 6:2.3
Let P be a O-transitive (n — 1)-transitive n-polytope. Then P is perfect if

and only of dim(fix,) =dim(fiz.) = 1. where v 1s any vertez of P and ¢ 1s the

centroid of any facet of P.

Proof
Let P be a 0- and {n — 1)-transitive n-polytope. First suppose that P 1s
perfect. Then P cannot be deformed into a symmetry equivalent non-similar
polytope. Suppose that dim(fiz,) # 1. By corollary 2.2, there exists a funda-
mental region D containing only one vertex v of P. Thus we can define a D-path
&¢ from P by mapping v to w = v + €. Since dim(fiz,) # 1, §; may be chosen
such that the points O, v and w are not collinear. Then P; = §;( P) =conv(G.w) E
15 a symmetry equivalent non-similar polytope. This is a contradiction if P is -
perfect. Thevefore dim(fir,) = 1 and hence dim(fiz.) = 1 by polarity.
Conversely suppose dim{ fiz,) = dim{fiz.) = 1. Let D be a fundamental
region of P containing only one vertex v of P. We shall consider all deformations
of P to nearby polytopes by paths of v. The paths that take v off its fixed point
set are not D-paths as the resulting polytopes have different number of vertices
to P. Such polytopes cannot be symmetry equivalent to P. A path keeping v on
its fixed point get results in a polytope similar to P, since the effect is a dilation.
Heuce any deformation of P to a symmetry equivalent polytope is a similarity,
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and so P is perfect. By the same argument, since P* is perfect, it is necessary

for dim(fiz.) = 1.

It is not a sufficent condition for perfection that a polytope be both vertex
transitive and facet transitive. As an example, we can consider the anti-prism
of a line segment. Such a polyhedron P is tetrahedral in shape. If the four
congruent triangular faces are not regular, then P is a non-perfect vertex and

facet transitive polytope. See figure 6.1 for a picture of such a tetrahedron along

with its net.

‘ A B A A

Figure 6.1 The net of a non-perfect tetrahedron T, 8(T) = (1,3,1)

which i1s vertex and facet transitive

In fact, what we have shown in the proof of lemma 6:2.3 is the following,

ER

which we give as a corollary.

COROLLARY 6:2.4

If P 1s a perfect vertez- or facet-transitive n-polytope then dim(fiz,) =1 or

dim(fiz.) = 1 respectively.

Now let P be any polytope with vertex orbits given by G.v,...,G.vn

for some m > 1. Then let P; =conv(G.v;) denote the polytope given by the
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convex hull of the 7t* orbit. Clearly the polytope derived from a vertex transitive
polytope P gives rise to P; = P for all v; € Fy P. We explore the fixed point set
of a vertex of any perfect polytope, that is, one in which vertex transitivity is

not assumed, by studying the polytopes P;.

PROPOSITION 6:2.5

Let P be a perfect n-polytope. Then P; 1s an n-polytope, for all 2.

Proof

Suppose dim(P;) = k for some ¢, where 0 < &k < n — 2. Then G holds a
k-dimensional subspace aff{ P;) setwise (or, if & > 0, pointwise) fixed. It then
follows that G is reducible or that fizg # O. This is a contradiction by theorem

1:7.5. Hence dim(P;) = n.

It 1s easy to see that the converse of this proposition is false by consider-
ing any non-perfect vertex transitive polyhedron. These have been classified in
Robertson [1] and are given with their deficiencies. For instance, consider the

general antiprism given in figure 6.1 which has deficiency 2.

PROPOSITION 6:2.6

If P s perfect then P; 1s perfect.

Proof

Suppose P; is not perfect for some 7. Then there exists a deformation ¢
of P; and a D-path & : Pi — 6(P;,t) for some t € I such that the paths
{6(v,I):v € FyP;} are given by G.6(vi, I). Since dim(fiz,;) # 1, we can assume
that O, v; and &(v;) € fiz,, are not collinear. Then there exists a deformation
6" of P; defined by paths of vertices given by G.{s8;(vi)+ (1 — s)v; : s € I} such
that s6:(v;) + (1 — s)v; € fiz,, for all s € I. Let &, : P; — §'(P;, s) be a D-path
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of §'. We may consider é} acting on some fundamental region D of the action of
G P containing only one vertex v; of P;.

Since any point 2 in P may be given using barycentric coordinates in terms
of vertices of P, the deformation &' induces a deformation of P such that the
D-paths on the vertices {G.v; : 7 ¢ G.v;} are radial projections v; — (1 + €)v;
for some € and the D-paths on {G.v;} are given by 6,. This is a contradiction

to the hypothesis that P is perfect.

We note that the converse of this proposition is false. We can find numerous
counter-examples by taking P to be the convex hull of the union of a regular
polytope R with (R)*, where Ris a dilation of R, such that P is not a Wythotope.
For instance see figure 6.2, where conv(G.P;) is a cube and conv(G.P,) is an
octahedron. The polytope P is not perfect as each of the two vertex orbits can
be displaced independently of the other one. At a suitable dilation of P;, 7 = 1
or 2. P is a rhombic dodecahedron of the first kind (this occurs when the two
triangles common to any edge of Py become‘co-plana‘r). In such a case G.vy and

G.vy have the same symmetry group G = GP.

COROLLARY 6:2.7

Let P be a perfect n-polytope. Then dim(fiz.) =dim(fiz,) = 1 for any vertex
v of P and for the centroid ¢ of any facet of P.

Proof

This follows from proposition 2.6 and corollary 2.4.

=1
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Figure 6.2 conv(oz Uo3)

The fixed point sets of the vertices of an n-polytope and of its polar form
part of the G-stratification of E™. We consider the case in which a given perfect
polytope has the same G-stratification as a regular polytope, in other words
both polytopes have the isomorphic symmetry groups.

First we give a simple definition. Let P be an n-polytope. Then we say
that two ¢-faces, 1 < ¢ <n —1, fi and f; of P are adjacent if (f; N f2) is an

(i — 1)-face of P. Two vertices v; and vy are said to be adjacent if the line

segment viv2 is an edge of P.

PROPOSITION 6:2.8

Let P be an n-polytope such that GP 1s the symmetry group of a regular

n-polytope. If P is perfect then either P or P* 1s Wythoffian.
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Proof

Clearly if P or P* is Wythoffian, then P is perfect. Let P and R be n-
polytopes with the same symmetry group G such that P is perfect and R is
regular. Suppose that there are r vertex orbits and s facet orbits in P. Then
P* is perfect with s vertex orbits and r facet orbits, and GP* = G. We may
suppose therefore that s > r. It may be helpful to consider the polyhedron in
figure 6.2 as an example during this proof.

A fundamental region D of R (and hence of P) is the n-simplex A whose
vertices are O.cqg.....ch—; where ¢; is the centroid of an i-face A; in a maximal
flag of R. Suppose P = convo(G.v;U---UG.v,) wherev; € D, 1 < j <r. Since P
is perfect, dumn( fir,; ) = 1. Hence for each j = 1,...,r, v; lies on the ray a; from
O to¢; for some i = 0....,n—1. Without loss of generality, suppose {vy,...,v.}
is labelled such that if v; € a; and viy; € a then j < k. Bach P; = conv(G.v;)
1s Wrthoffian and is derived from a regular polytope similar to R (or R*).

We note that the fixed point sets of centroids of facets of a wythotope W
derived from R coincide with the rays G.Ao and G.a,—1. We also note that
the facets f; and fo with centroids ¢; and ¢3 on ag and a,_1, respectively, are
adjacent with common (n — 2)-face f' such that the centroids of f', fi; and f,
are coplanar with Q.

If ¥ = 1. then P 1s. by definition. Wythoffian. Suppose » > 2. Therefore
(1) there are t polytopes Pr. 1 <t < r. that have a facet f; with centroid v; on
ag and (2) the intersection (ag N JP) is either a vertex of P or the centroid of
a facet of P.

First suppose (ag N9P) is a vertex v of P. Then conv(G.v) is regular and
similar to R, Thus v = v;. Let @ be such that 1 < o < r and |O~v,| > |O~] for

all 1 <¢ <. Then v is unique. For suppose that fy, is a facet of P, for some
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y such that v, = v,. Let z and y be representatives of the vertice orbits of f,
and f, respectively, such that 2 and y both lie in the same fundamental region.
Therefore 2 and y are centroids of faces in some maximal flag of uR for some
dilation . Thus P, and Py are derived from the same polytope pR. This is a
contradiction since either P, C Py or P, C P,, according as ¢ > y or < y.

We also show that P, is not regular. Forif P, is regular then P, is similar to
R* and z = r. If r > 2, then there exists 7, 1 <1 < r such that G.v; C Fy P. We
may suppose that the convex hull P; of G.v; is derived from v R* for some positive
real number v > 0. Then the centroid v; of some facet of P; is on «g. Since
v > 0, |Ovi| > |O~v.|, which contradicts our hyphothesis. Now suppose r = 2,
in other words, P = conv(uR U vR*) for some p. Since the centroids of i-faces
of R are centroids of (n — i)-faces of R*, it follows that P is (n — 1)-transitive.
This contradicts r > s. Therefore P, is a wythotope.

If x is an extreme point of P, the boundary of f, is a part of the boundary
of P. Then any (n — 2)-face of f; is an (n — 2)-face of P. Conv(f; Uv) is an
n-cone with base f;. Then with the exception of fs. the facets of conv( fr Uv)
are facets of P. Let f’' be an (n — 2)-face of f; such that the centroid ¢’ of f' is
coplanar with the points of ap and a,—y. Then f* = conv(f' Uwv) is a facet of : 1‘
P. Since P is perfect, the centroid ¢* of f* lies in a 1-dimensional fixed point ¢
set. Therefore ¢* = ¢; for some 7, 1 <1 < n — 2. Then O, co, ¢; and ¢,_7 are

coplanar which is a contradiction if (4g,..., 4,-1) 1s a maximal flag of R.

Now if (o U OP) is the centroid ¢ of a facet f of P, then the (n — 2)-faces

of f are (n — 2)-faces of P and f € F,_1P; for some 1 <: < r. Let f' be the
(n — 2)-face of f whose centroid is coplanar with O, ¢y and ¢,—;. Then there
exist a facet f* of P containing f' and a facet f; of some P;, 1 < j # 1 < r,
whose centroid lies in ag such that either v € Fy f; and v € Fy f* or f € F.of;

and f € Fo_sf*. In either case the centroid of f* is coplanar with O, ¢o and
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¢n—1. This is a contradiction by the above.

Hence r = 1 and P is Wythoffian. Note that if s < r then the proof shows

s = 1 and P* is Wythoffian.




CHAPTER 7

PERFECT POLYTOPES

| One problem in proving Pinto’s conjecture II:2 is dealing with the perfect
polyvtopes. such as the Gosset polytopes, that are not associated to any regu-
lar polytope. If Pinto’s conjecture is correct then such polytopes occur only
in dimensions n > 6. For this reason we concentrate on the case n = 4 (in !
other words. Rostami’s conjecture 1:8.1), although some results are found for y
the general case. We first consider necessary conditions for a perfect polytope
to be regular. in the form of a conjecture. This leads to some interesting results

on the orbit vector of a perfect polytope and points towards a classification in

dimensions 4 and 5.

1. Regularity for perfect polytopes

There are many examples of non-regular prime perfect polytopes which
ave transitive only on either the vertices or the facets. Take, for example, the

wythotopes or their polars respectively. The following conjecture is based on
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consideration of all presently known perfect polytopes.

CONJECTURE 7:1.1

Every prime perfect O-transitive (n — 1)-transitive n-polytope is regular.

It is noted that the Gosset polytopes do not contradict this statement as
no such polytope is facet transitive. We also note from chapter 5 that this
conjecture is true if Pinto’s conjecture is true. It has not yet been possible to
prove conjecture 1.1 in the general case but a proof for n=4 is given in chapter 8.
The cases n < 4 are already familiar. We explore some of the metric properties

of such polytopes

PROPOSITION 7:1.2
Let P be a prime perfect O-transitive (n — 1)-transitive n-polytope. Let f be
an i-face unth centrord ¢ and f' an (1 + 1)-face with centroid ', such that faf'.

Then (1) |cvj| = Jevr] for all v;. v € Fof, and (2) cc' 1s perpendicular to f.

Proof

We shall prove this inductively by considering an i-face of P to be given
by the mtersection of (n — ¢} mutually adjacent facets of P. We assume P to
be o-prime, since otherwise the o-decomposition results in a decomposition of
E™ into orthogonal subspaces. Also if P = 074 for some integer  and some
polytope A. then P is perfect 0- and (n — 1)-transitive if and only if A 1s perfect
0- and (n — 1)-transitive by proposition 1:7.4 and chapter 5.
(n—¢=1). Let f, be afacet of P with centroid ¢, and let v be any vertex of f.
Then by corollary 6:2.7. dim(fize, ) =dim(fix,) = 1. Therefore off{ fr) and the
line Oc, are orthogonal. In particular, Zv;c,O = n/2 for all v; € Fy fr. Since P

is O-transitive and (n — 1)-transitive, we have |Ov;| = [Ovi| and [Oc,| = |Oc,|
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for all v;,vs € FyP and f;, fs € F,,_1 P, respectively. Therefore |c,v;| = |crvi]
for all v;,vi € Fy fr. Hence the proposition is true for n —¢ = 1.

We also check the case n — 7 = 2. Let f = fi N f2 be an (n — 2)-face with
centroid ¢, where f; and fy are facets with centroids ¢; and ¢y, respectively.
Then for any = € f, LOcijx = LOcyx = w/2. Then |c;z| = |cez|. Therefore
ccy and ccp are perpendicular to f. Let vy,vs be any two vertices of f, then
Leievy = Leqevg = w2 and |ejva| = |ejvz|. Thus we have |cvq| = |cv|. Hence
the proposition is true for n — ¢ = 2.

(n—1="h+1). Suppose the proposition is true for all n —¢ = 1,..., h. Let
f be an (n — h — 1)-face of P common to the facets fi,..., fr, 7 > h+ 1, with
centroids ¢y, ..., ¢, respectively. Let f have centroid ¢. Then f is the intersection
of s (n — h)-faces a1,...,as of P, where «; is given by the intersection of h
suitably chosen facets f; and s > h + 1. Let a; have centroid ;. Then for
any © € f, LOvix = LOvja = wn/2 for ¢,j = 1,...,s. Therefore f lies in
the intersection of the perpendicular bisectérs of the points ~;,v; for all 2,5 =
1,...,8, ¢ # j. Therefore f is perpendicular to ¢y; for ¢ = 1,...,s. Now let
vy,vp be vertices of f. Then vy,v3 < @; for i = 1,...,s. Hence |v1vi| = |v2vil.
Therefore |vyc| = |vac|. Thus the proposition is true for n — ¢ = h + 1.

Therefore by induction the proposition is true for n —2 =1,...,n — 1, that

is, it is true for all :-faces, 2 =n —1,...,1.
We now give two corollaries of Proposition 2.1.

COROLLARY 7:1.3

Let P be a prime perfect O-transitive (n — 1)-transitive n-polytope. Let f
be an i-face with centroid ¢. Then |cc,| = |ces| for all facets fr, fs such that

fafets




Proof

This follows by polarity.

COROLLARY 7:1.4
Let P be a prime perfect 0-transitive (n — 1)-transitive n-polytope. Let f be

an i-face, 1 < i < n — 2, with centroid c. Suppose that f < f' for some facet f'

with centroid ¢’. Then the line cc' is perpendicular to f.

Proof

The case 1 = n — 2 follows from proposition 1.2. Suppose : < n — 2.
Let «j be an j-face with centroid v, where ¢ + 1 < j < n — 2, such that
f € ajp1 Q-9 ap_s < f'. Then ¢'y,-2 is perpendicular to yp_27n—3

by proposition 1.2. Hence yr417% 1s perpendicular to yyr—1 by a repetitive

argument, ¢ < k < n — 3. Thus ¢’ is perpendicular to «ff{ f).

Thus each i-face f of prime perfect O-transitive (n —1)-transitive n-polytope
P, 1 <1 < n. issuch that the set Fyf lies on some (¢ — 1)-sphere with centre at
the centroid of f. Also we have all of the centroids of the i-faces of some facet
f' of P lying on some n-sphere with centre at the centroid of f'. “‘
Suppose we let f;, fir be i-faces of P with centroids cé-, c; and let fs, fi be 1‘
r-faces with centroids cj, ¢f, such that f,<f; and f; a fi. Then in view of lemma U
5:1.1 and the above, the proof of conjecture 1.1 would follow if it were possible
to prove that Ic;cgl = |cicr| for all 0 < r < i < n. However we have not been

able to prove this property.
|
2. Conjectures on orbit vectors of perfect polytopes

We consider the orbit vector of any prime perfect polytope P with the as-
sumption that conjecture 1.1 is true. In particular, we explore what restrictions

are imposed on the transitivity of vertices and facets of P.
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We begin with some notation. Let P be any n-polytope. For any vertex v
of P,let E, = {¢ € F}P : v ae} be the set of all edges of P emanating from
v. Let Vi, = {v; € FyP : v; aefor some e € E,} be the set of all vertices of
P adjacent to v. Now we suppose that P is perfect and let P; = conv(G.v;)
for some v; € FyP. Then by proposition 6:2.6, each P; is a perfect 0-transitive

polytope.

PROPOSITION 7:2.1

Let P be a prime perfect facet transitive n-polytope. If P s not verter
transitve. then either (a) 8(P) = (2.1,69,...,0,_2,1) or (b) dim(aff{G.v; N

) <n—1 for some facet f of P and some verter v; of P.

Proof

Let P be as stated, and suppose that P is not vertex transitive. Since P
is (n — 1)-transitive we may suppose that v; a f. Suppose ¢fiG.v; N f) is an
(n — 1)-dimensional space. Then f' = conv(G.v; N f) is an (n — 1)-polytope
contained within f and f # f'. Thus the closure of the complement of f' in f
is a collection of (n-1)-polytopes ay,...,a, such that f = f'Uay U--- U a,, for
some r > 1. Let v € Vi, v ¢ G.v;. Thus v and v; are endpoints of some edge e
of f. It may be useful to consider the polyhedron given in figure 7.1 during this
proof.

Then 1if (f NV.) € G.vy. there is a vertex v* adjacent to v, that is v* € V,,,
such that ©* ¢ G.v;. In this case, both v and v* belong to one of the polytopes
aj. Now a; and f' share an (n — 2)-face 3. However 3 is an (n — 2)-face of P;
and hence belongs to a unique facet f; of P; other than f'. Therefore each ray
Ov and Ov™* mtersect the interior of f1 in a distinct point, but these points have
1-dimensional fixed point sets. which is a contradiction. Therefore fNV, C G.v;

and hence V. C G.¢; for all ¢ ¢ G.v,;. Similarly we have V,,, € G.v for v; ¢ G.v.
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Thus f contains vertices from two orbits and each edge of P has one endpoint in
G.vi. Let v;,v<e for some edge e. Then G,.e generates E™ since dim(fiz,) = 1,
and likewise for G, .e. Thus conv(G.€) is an n-polytope @ such that Fy P = FpQ.
Hence P = @ and G.e = F}P. Since P is facet transitive we conclude that the

face-orbit vector of P is given by 6(P) = (2,1,60,,...,0,-2,1).

G =7y X 1l x s vertices in G.v;
labelled o

s - P //,]y///////
. B [ L AR e
. - .o «'/1///,/”/|
: M

g

:L':Ovﬂfl
y=0v*Nf

Figure 7.1 A distorted truncated cube with three vertex orbits

PROPOSITION 7:2.2

Let P be a prime perfect facet transitive n-polytope. As a consequence

of conjecture 1.1 either conv(G.v) is a prime perfect n-polytope P such that

S5



O(P') = (1,6y,...,0,_4,1,2) or P* is Wythoffian, where v is a vertez of P or
of P*.

Proof

Let P = P! have m; distinct vertex orbits given by G.vy,...,G.vm,. Let
P! =conv(G.v;). If the supporting hyperplanes of a facet f of P! and of a
facet of P} coincide, in other words, f' C f for some facet f' of P!, then
dim(aff G.v; N f)) = n — 1. Therefore either 8(P!) = (2,1,62,...,0,2,1) or
the facets of P! are only given by conv(G.v; N'V,) for some vertex v ¢ G.v; of
P! by proposition 2.1. Then in the latter case P? = (P!)* is a prime perfect
facet transitive n-polytope with mo distinct vertex orbits, where mo < m; since
there are at most ni; —1 vertex orbits to which v can belong. After finitely many
repetitions of this procedure. and writing P¥+! = (PF)* we obtain P7 such that
O(PI) = (2.1.6s..... 0p_2.1) orm; = 1. f m; =1 then PJ is a prime perfect
vertex transitive facet transitive n-polyvtope and hence regular by conjecture 1.

Otherwise P is Wythoffian by proposition 6:2.8.

The general polytope Q with 8(Q) = 6(P7) above has facets with strict

(n — 2)-transitivity conditions as we now see. f

LEMMA 7:2.3
Let P be an n-polytope with two facet orbits and one (n — 2)-face orbit.

Then the 1sotropy subgroup at the centroid ¢ of any facet is transitive on the

(n — 2)-faces of that facet. and dim(fiz,) = 1.

| Proof

Let P be an (n — 2)-transitive n-polvtope with two facet orbits. Let fi, fo
be adjacent facets. Then the intersection fi N fo is an (n — 2)-face and hence a

representative for the orbit F, _, P. Since any (n — 2)-face of P belongs to just

SG

‘%




two facets of P, f1 € G.f,. For since otherwise there would be only one facet
orbit. Hence all facets adjacent to any given facet f; lie in the orbit G.f; such
that f; ¢ G.fi. Let a.a* a f; be any two (n — 2)-faces. Then a < f and a* 4 f*
for some facets f, f* € G.f;. Since P is (n — 2)-transitive there exists g € G such
that g(a) = a*. If g(f) = f; then f; € G.f; which is a contradiction, therefore
g(f) = f*. Hence g keeps f; setwise fixed. Therefore G, is transitive on the
(n —2)-faces of f;. where ¢; 1s the centroid of f;. The affine hull of the centroids

of all (n — 2)-faces of f; is an (n — 1)-dimensional space kept setwise fixed by

Ge;. Hence dim(fize;) = 1.

COROLLARY 7:2.4

Let P be an edge-transitive n-polytope with two verter orbits. Then the

wsotropy subgroup of any verter v 1s transitive on all vertices adjacent to v.

Proof

Follows immediately from the above by polarity.

3. Conjectures on a classification for n =4 and 5

We conjecture a classification of the perfect polytopes up to dimension 5
based on conjecture 1.1. We consider perfect polytopes whose orbit vectors are
given by 6(P) = (1.6;.....0,-3,1,2). It seems unlikely that such polytopes
exist in dimensions n > 4 due to the (n — 2)-transitivity. We first consider a

simple lemma.

LEMMA 7:3.1

Let R be a regular n-polytope with symmetry group G. Let ¢ be the centroud
of any facet f and ¢ be any vertez in f. Then any symmetry g is a product of

finitely many clements of G, UG,..
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Proof

This follows immediately since the stratification of G. and G, defines the
boundary of a fundamental region for the action of G on R. Alternatively,
consider any symmetry g of R. Then we can assume that ¢ i1s a reflection since
otherwise ¢ is a product of reflections. Here, a reflection is a transformation
g that holds an (n — 1)-space H pointwise fixed and takes « ¢ H to —z with
respect to H, in other words g has eigenvalues equal to —1 and 1 of multiplicity
1 and (n — 1) respectively. Any reflective hyperplane H then contains n — 1 of
the centroids of faces from a maximal flag. Therefore H contains the centroid

of a facet or a vertex, hence the reflection is in the isotropy subgroup of that

point.

Recall that the k-faces, 0 < k < n—2, of any polytope () may be defined by
the intersection of a suitable number of suitable facets of . We use this fact to
define a new polytope from a perfect polytope, in order to prove the following

proposition.

PROPOSITION 7:3.2

Let P be an n-polytope with orbit vector (P) = (1,61,...,6,-3,1,2). Asa

consequence of conjecture 1.1, P s perfect of and only if n = 3.

Proof

If n = 3 then 6(P) = (1,1,2). Therefore P is perfect by Robertson [1]. Let
n > 4, and suppose that P is perfect. Let fi, fo be any two adjacent facets of P.
Let c¢; be the centroid of f;, j = 1,2 and ¢y any vertex of P. Then dim(fiz;;) =1
and G, is not reducible on aff{ f;) by the proof of proposition 2.2, for : = 0,1, 2,
where fy is a facet of P* with centroid on fiz.,. By lemma 7:2.3, f; ¢ G.fs.

If afflf1) and aff{ f2) are perpendicular, then all facets adjacent to one an-

other are perpendicular. In this case, any vertex v is given by the intersection
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of n mutually perpendicular hyperplanes. Now v is contained in some facet in
G.fi and some facet in G.fy. Since dim(fiz,) = 1, it follows that G, is re-
ducible on the hyperplane orthogonal to fiz,. This is a contradiction by the
above. Therefore affi f1) and aff{Ocz) intersect in some point . By lemma
2.3, G¢; is transitive on the facets adjacent to f; for j = 1,2. Since z €fiz,,,
dim(fiz,) = 1 and G, is transitive on the facets adjacent to f2, and hence on
their affine hulls. Let FyQ = {y € E™ : y = g.z for some g € G} and let
Q =conv(FyQ). Then y € FyQ is such that y € fizy,) and G is transitive on
the affine hulls of all facets adjacent to g(f2), for some g € G. Let h =aff( f1),
then Gy(h) = {H C E™ : H = g(h) for some g € G,y € FyQ} is the set of
all hyperplanes supporting facets in G.f;. Now G, is transitive on the set Fg
of facets adjacent to f;, and hence on the fixed point sets of centroids of facets
in Fy,. Therefore the affine hull of (G, .x) is the hyperplane h and the convex
hull is a facet f' of Q. Clearly G,, is transitive on the points of G, .z. There-
fore the centroids of f; and f' coincide and h = off(f1) = off(f'). Thus Q is
a vertex transitive facet transitive n-polytope, such that the fixed point set of
the centroid of any facet or any vertex is 1-dimensional. Therefore Q) is perfect.
By conjecture 1.1 () is regular. Obviously, if we considered the supporting hy-
perplanes of facets in G.fz, we would get the polar of @) as our polytope. Let
G be the symmetry group of P and G(Q) be the symmetry group of Q. Then

G(Q) € G by the above and lemma 3.1.

Suppose P* has vertex orbits G.v; and G.v,. Then let (P*); be the convex
hull of the G.v;, ¢ = 1,2, Let Q = Qp, then we can consider the perfect n-
polytopes (P*); and (P*),. Both of these polytopes are 0 and (n — 2)-transitive
and have two facet orbits. (P*); and (P*), have vertex-set given by the orbits
of ¢; and ¢y, respectively, and have facet-set given by the union of orbits of ¢g

with ¢p and ¢g with ¢;, respectively. For (P*); and (P*),, we can define regular
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polytopes @1 and @3, respectively, in a fashion similar to the above, such that
Qi has vertex orbit G.cj, where ¢ # j and ¢,j = 0,1,2. Now {foQi, fa—1Qi}
is independent of : = 0,1,2, where f,.P denotes the number of r-faces in P.
Hence for each 7,7 = 0,1,2, Q; is similar to @; or to @7, since any two regular
n-polytopes R and R’ are similar if and only if foR = foR'. If Qo and @1, say,
have the same vertex set G.co, then the fixed point sets of ¢y and C coincide.

This 1s a contradiction to the face-structure of P if P is perfect. Hence n = 3.

We now are able to state Pinto’s conjecture for the case n = 4 or 5 which

1s true if conjecture 1.1 is true.

CLASSIFICATION CONJECTURE 7:3.3

Let P be a prime perfect n-polytope, n = 4 or 5, then P or P* s Wythoffian.

Proof

Suppose P is a prime perfect n-polytope. Let P; =conv(G.v;). Then
P; is a vertex transitive perfect n-polytope. Therefore P; is Wythoffian or
8(P) = (1,1,2), in which case P is a 3-wythotope since the perfect polyhe-

dra are classified. In any case P has the symmetry group of a regular polytope

and hence P i1s Wythoffian.
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CHAPTER 8

DIMENSION 4

We investigate sums of angles formed by adjacent faces of a polytope. In
view of proposition 7:1.2, this gives some useful information on the 2-faces of
certain perfect polytopes. In section 2 we prove conjecture 7:1.1 for n = 4, and
hence classify the prime perfect 4-polytopes. This proves Rostami’s conjecture :

1:8.1 and leads to a classification of the perfect 4-solids. 1
1. Angle sums

We explore the restrictions on the angle between two adjacent i-faces of
some (7 4+ 1)-face of an n-polytope. We are specifically concerned with the case
1+ 1=n=4

Suppose v is a vertex of some polygon R. Then the two edges of R containing
v form an angle 6 called the interior angle of R at v. It is trivial to note that
because R is convex § < 7. Now let v be any vertex of some polyhedron P.

Suppose the number of faces of P containing v is ¢q. Then at v there are g
g q q
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interior angles. These ¢ angles must total less than 27 since otherwise v is not

an extreme point of P. Thus we have an angle sum inequality at v. We can also
find an angle sum inequality at an edge of some 4-polytope as follows. Let e be
any edge with midpoint ¢ contained in a 3-face f of some 4-polytope P’. Then
the subspace of aff{ f) orthogonal to affe) is a 2-space which cuts the boundary
of f such that the intersection is locally the boundary of a polygon « with vertex
e. The interior angle of a at ¢ is called the dihedral angle ¢ of e in f. We have
¢ < 7 if e is an edge of f. Likewise the subspace of a¢ff{ P') orthogonal to affe)
is a 3-space which cuts OP’ such that the intersection is locally the boundary
of a polyhedron 3. Thus the sum of the dihedral angles at any edge e of the
3-faces containing e is less than 2x. For example, suppose P’ is the 4-cube (see

figure 8.1). Then « is a square and J is a cube.

P/
N |
- 7/
// L 7/
/! | 2
f 2 ~C /A |
/] I | ! |
1 I | ! |
|
' | | !
! ! 1 jy/AShuint G B
l va KAy { 7
L4/ / b/
|¢/ 'y i/
Vv W o
€ €
Ja a3

Figure 8.1




Now let P be a O-transitive (n — 1)-transitive prime perfect n-polytope.
Then every 2-face of P is a circumscribed polygon @ by proposition 7:1.2 in the
following sense: if ¢ is the centroid of Q then the set Fy@ lies on a circle C with
centre c. Suppose vy,...,v, are the vertices of Q) such that v;v;4; and vyv; are
the edges of Q. where: = 1,...,¢ — 1. Let 8; be the interior angle of Q at v;.

Then it is useful to prove the following geometric result.

LEMMA 8:1.1
Let Q be a q-gon, ¢ > 3. circumnscribed by a circle C' with centre c. Suppose
Q has centroid ¢ and 8 us the minimum interior angle of Q. If 8 < T then Q 1s

an equiangular triengle and if § = Z then Q is an equilateral quadrilateral (in

other words. a square or rectangle).

Proof

Suppose ¢ > 4 and 8, = § < Z. Then Q contains the triangle A = Avjvovs.
The complement of A in Q is a (¢ — 1)-gon Q'. Since § < I, there exists
a diameter D of C such that the centroids of both A and @' lie in one of the
semicircles of C defined by D. Therefore ¢ is not the centroid of Q. Now suppose
that T < 6 < Z. Let D; be the diameter of C' given by the point v;, for : = 1, 3.
Then @ is divided into four regions Ay, A,, A3 and Ay, where Dy, D3 define
the regions 4, A3 and A, contains the vertex vy, see figure 8.2. Let a; denote
the area of the region A4;. Clearly a; < ay if 8 is a minimum interior angle and
g > 4. However, ay + a4 = a9 + a3 and a; + ay = az + a4 if ¢ is the centroid of
Q. Thus a; = a4. This is a contradiction. Hence ¢ = 3. Then by lemma 5:1.1,

Q is regular.
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Figure 8.2

Let Q be a ¢-gon with smallest interior angle 6, = Z. Then v; and v; lie
on a diameter. Clearly ¢ # 3. Suppose ¢ > 5. The centroid ¢ of @ is given by
>, vi = ¢. However vy +v3 = ¢. Thus vy +v4 + -+ 4 v, = ¢. Therefore Q' =
conv(vy, vy, ..., v¢) 15 a (¢ — 2)-gon with centroid ¢ and minimum interior angle

less than Z. Thus @' i1s an equilateral triangle and hence ¢ = 5.

Let 4; = conv(va,v3,vy) and Ay = conv(vy,vs,vs) be regions such that
Q = A1 + Q' + A, see figure 8.3. Let D be a diameter through vs. Let By, By
be the regions defined by D such that 4; = B, + B,. Suppose a; and b; denote
the areas of A; and B; respectively. Then a; = ay and b; = Ay + by, This
i1s a contradiction since a; = by + b3. Hence ¢ = 4. It then follows that @ is

equiangular.
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Ay =By + B,

Figure 8.3 ¢

Now suppose P is a prime perfect O-transitive (n — 1)-transitive n-polytope.
Let vals(v) be the valency of v in f where v is some vertex of f and f € FP.
If f € F3P then valg(v) = 3, 4 or 5 in order to preserve the interior angle sum ‘
inequality at ¢. In fact if valp(v) # 3, then v at a f, where t is some equilateral
triangular face. Moreover we have the following simple lemma. 4
LEMMA 8:1.2

Suppose P 1s a prime perfect O-transitive (n — 1)-transitive n-polytope with
vertez v such that valg(v) =5 where f € F3P. Then the edges of f containing

v are all of the same length and at least four of the 2-faces of f containing v are

equilateral triangles.




Proof

Suppose v has valency 5 in f. Let ¢1,...,¢5 be the interior angles of the
2-faces of f at v. Then ¢; + -+ + ¢5 < 27 and ¢; = § or ¢; > 7. Therefore
at least four of the o; are angles of I, in other words, there are four equilateral

triangles at v in f. Hence all edges emanating from v in f are of equal length.

Proposition 7:1.2, suggests that the 2-faces of a 0-transitive (n—1)-transitive

perfect n-polytope should be either regular or semiregular.

2. Perfect 4-polytopes

Let P e a O-transitive 3-transitive prime perfect 4-polytope. Let f be a
facet of P. Then valy(v) = 3. 4 or 5 for any vertex v of f. The case valf(v) =5

is quite interesting as is shown by the following lemma.

LEMMA 8:2.1
Let P be a O-transitive 3-transitive prime perfect 4-polytope. Let f be a facet

with verter v such that valg(v) = 5. Then one of the 2-faces of f containing v

s not a trrangle

Proof

Let valy(v) = 3 for some vertex v. Then there are at least four triangular 2-
faces containing v in f by lemma 1.2. Suppose that all the 2-faces of f containing
v are triangles. Then the 2-faces of f containing v are equilateral triangles by
proposition 7:1.2. Let S be the sphere with centre s containing the vertex set
Ly f. Then there exists an icosahedron a such that Fya C S, v € Fya and the
2-faces of f containing v are 2-faces of a.

Let ©f be a vertex adjacent to v. If valy(v') = 3 then f is a pentagonal

cone . This 1s a contradiction of proposition 7:1.2 since the centroid of such a
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cone does not coincide with s. If valf(v') = 4 then v’ is contained in either
(1) two triangular faces and two quadrilateral faces or (2) three triangular faces
and one m-gonal face. In (1), f is a ‘lantern’ with 12 vertices, 25 edges and 12
faces. There are possible three dihedral angles, e, €2, or e3, of an edge e of f
depending whether e belongs to 0, 1 or 3 triangular faces respectively. See figure
8.4. These dihedral angles may be calculated. We find that e¢; = 3?" and e,
es > F. This is a contradiction of the dihedral angle sum inequality at an edge

contained in a triangular face. In (2), the facet contains at least two vertices of

valency 5. This then leads to a contradiction to proposition 7:1.2.

[N

€1

N

Figure 8.4

Therefore valg(v') = 5 and f is an icosahedron by a similar argument.
Hence P has congruent regular facets. Thus by lemma 5:1.1 P is regular. This

1s a contradiction as no 4-polytopes exist with only icosahedral facets.

The lantern described in the proof of this lemma is derived from a pentag-
onal prism 581, for some interval I. We call a polyhedron an M-lantern if it
is derived from an m-gonal prism in a similar fashion.

We now prove conjecture 7:1.1 for the case n = 4 by considering the dihedral

angle sums of edges of a 4-polytope. The proof also uses Euler’s relation:

v—e+f—h=0,
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where v = f,P, e = fiP, f = f, P and h = f3P are respectively the total
number of 0-, 1-, 2- and 3-faces of P. In such a case, we say the face vector of

P is the vector f(P) = (v,e, f, k).

THEOREM 8:2.2

A prime perfect 0-transitive 3-transitive 4-polytope is regular.

Proof

For any facet f of P, G(f) = F5P. Suppose c is the centroid of f. Since P
is perfect fiz. is an 1-dimensional subspace of E*. Thus c is the only fixed point
in affl f) under G..

We consider the action of G, on aff{f) in terms of orbits G..v; of vertices
v; of f. We show that f is regular using the classification of vertex transitive
polyhedra (see Robertson [1] and Robertson and Carter [1}).

First suppose that f; = conv(G..v;) is of dimension 1 or 2 for some vertex
v;. In other words, v; lies in some G.-invariant subspace of ¢ff{f). Since the
triangular and quadrilateral faces of f are equiangular, the facet f is of the form
Mol or is an M-lantern, for some m-gon M and interval I. The valency vals(v)
of any vertex is 3, 4 or 5. Then the vertex set Fyf lies on a sphere S containing
FyQ for some Q = {3,3}, {3,4} or {3,5}. The cases valf(v) = 3 and vals(v) =5
are contradictions by proposition 7:1.2 and lemma 2.1, respectively. Therefore
valg(v) = 4. Thus f = {3,4} and hence by lemma 5:1.1, P is regular. This is a

contradiction since the isotropy subgroup of the centroid of a facet f of such a

polytope is irreducible on aff{ f).

Therefore f; = conv(G..v;) is a polyhedron, where v; € Fyf. There are four

possible cases:
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1. G reducible on «ff(f) and f = fi;

S

G, reducible on off( f);
3. G, irreducible on ¢ff(f) and f = fi;
and 4. G, irreducible on aff{ f).

In each case we consider dihedral angle sums and Euler’s relation on the
various polyhedra to show that the non-regular polyhedra give rise to contradic-

tions. Euler’s relation for a polvhedron @, where f(Q) = (v', €' f') is as follows.
o+ =2

Case 1.

Suppose that G. is reducible on «ff{ f) and f = f;. Then f is one of the five

families of prisms, which are labelled in table 8.1 (see Robertson {1] for more

details).
LABEL DESCRIPTION
Cm right prism on regular m-gon
D, anti-prism on regular m-gon
E., skew prism on regular m-gon
E,, right prism on semi-regular 2m-gon
Gm antiprism on semi-regular 2m-gon

Table 8.1 The five families of prisms

We first note that the dihedral angle ¢;; between faces f; and f; of Cp, is

given by

E(m —2). if f; and f; are both quadrilaterals.

|3 if fi or f; is not a quadrilateral;
Qij
m -~

See, for example, Cundy and Rollett [1]. The dihedral angles of Fy, coincide

with the dihedral angles of C'y,,.
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Consider f = C,,,. Suppose m = 3, so f has 6 vertices, 9 edges and 5 faces.
Any edge is common to only three 2-faces (and hence three facets) as we now
show. Suppose € is an edge belonging to some triangular face T' of f. In any
facet there are no adjacent triangular faces. Hence e is common to at least two
quadrilateral faces, two of which belong to facets containing T'. If e is contained
in another triangular face, then the dihedral angle sum at e is 27, which is a
contradiction. Suppose therefore e is contained in another quadrilateral face f'.
Then there are two facets common to f' such that the edge of f' adjacent to e is
contained in two triangular faces. This is a contradiction by the above. Hence
each edge of P is contained in two quadrilateral faces and one triangular face.
Now if m > 4 then ¢;; > T. Therefore each edge of P is common to (at most)
3 facets and 3 faces of P. Let e be an edge common to the 2-faces fi, fo and
fz. Since f; and f;, 1 # j, are adjacent in some facet, only one of the f; is an
m-gon, 2 = 1, 2 or 3. Therefore each edge is common to two quadrilateral faces
and one m-gonal face. For any m > 3, let f(P) = (v,e, f, k) be the face vector
of P. Suppose that the valency of a vertex v; of P is ¢ and z is the number of
facets common with v;. Then (m + 2)h = 2f, mh = ¢, 2mh = 2v and 2e = qv.

Therefore by Euler’s relation we have

2mh (m+2)h

" —mh-%——{)——-—h:().

=

Therefore ©+ = 4 and likewise ¢ = 4 for all m > 3. Hence P is of the form
{m}os({m}), for some similarity s. If s is not the identity then P is not facet
transitive. However if s is the identity P is not prime. Both cases are contra-
dictions.

In the case f = Fy,, any dihedral angle is at least 2. Therefore there are
three 2-faces and three facets common with each edge of P. A similar argument

to that for C, shows that each edge is contained in one 2m-gonal face and two
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quadrilateral faces. Using the above notation we have (2m+2)h = 2f, 2mh = e,
4mh = zv and 2e = qv. By Euler’s relation, @ = ¢ = 4. For each facet f, some
vertex v of f is contained in three edges, at least two of which are not equal
if f is a semiregular prism. Then whatever the length of the fourth edge of P
containing v , P is not facet transitive. This is a contradiction.

The 3- and 4-sided faces of E,, and G, are not equiangular. Hence f # E,,
or G, by lemma 1.1.

Suppose f = D,,. Then f has 2m vertices, 4m edges and (2m + 2) faces. If
m = 3 then f is a regular octahedron and P = {3,4, 3}, which is a contradiction
if G, is reducible. Suppose m > 4. Since the triangular faces of f are regular, f

is an Archimedean anti-prism. Thus the dihedral angles of f are

§ = sec™! Y/.'i{cosec—/-i + cot—T-r—}
m m

1 s
¢ = cos“lg{l - 4cos;;},
\ where the diliedral angle between two t‘riangular faces is 8. Since 8,¢ > %, each
\ edge of P is common to 3 facets. Let f(P) = (v,e, f,h). Then 3e = 4mh,
f =(m+1)h and vz = 2mh, where 2 is the number of facets common to v. By
Euler’s relation = 6. Likewise the valency of v is §. Therefore a facet f* of P*

has 6 vertices and 8 faces. Thus f* = {3,4}. It then follows that P = {3,4,3}. I

This is a contradiction.

Case 2

Suppose f = conv(fiU---Uf.)suchthatv; ¢ Goovjfore# 7, 1,7 =1,...,7,
where f; 1s a ‘case 1’ polyhedron . Then the axis of rotation of each f; coincides
with every other such axis. Hence each f; is a prism on a regular m-gon or a
semiregular m-gon for some fixed m. It follows that no such f exists since the
triangular and quadrilateral faces of f are equiangular and the dihedral angles of

f are at least those found in each f;. Moreover in the case of f; = F,, or G,,, the
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valency of a vertex of f would exceed 4, which by lemma 2.1 1s a contradiction.

Case 3

Therefore G, is irreducible on aff(f) and f is one of the twenty-four ver-
tex transitive non-prism polyhedra, see Robertson [1] and appendix C. These
polyhedra have deficiency 0, 1 or 2. A 0-transitive polyhedron f with deficiency
0 or 1 has dihedral angles which are invariant under any deformation é such
that f ~ 6(f). If f has deficiency 2 then valf(v) = 5 for some vertex v or f
has é-invariant dihedral angles. The dihedral angles of such polyhedra can be
calculated and are given in table 8.2, see also Cundy and Rollett [1].

If each dihedral angle 6 of f is such that § > QT” then the polyhedra com-
prising of G(f) cannot be ‘folded’ into a 4-polytope. Thus f is not a polyhedron
of the form C. E. F, I, M. O, P, V or W. The polyhedra of the forms J, I{
and R have irregular triangular faces, since otherwise they would be icosahedra.
Likewise f = U has trapezium faces. Hence f is not of any of these forms by
proposition 7:1.2. If f is of the form S or T then by lemma 1.2, the triangular
2-faces of f are equilateral. Therefore f is Archimedean and every dihedral angle
is greater than —2—31 This is impossible by the above. We also note that with the
exception of 4 and H. § > 7. Hence each edge of f # A, H is common to three
2-faces and three facets of P.

If f =24, B, D, or G then P has congruent regular facets. Hence P 1s
regular by lemma 5:1.1 and proposition 7:1.2. If f = A then P is the 4-simplex,
the 4-cocube or the 600-cell. If f = B, D or G then P is the 24-cell, the 4-cube
or the 120-cell respectively.

We now check that f is not one of the remaining polyhedra. Let f(P) =

(v, e, f,h) denote the face vector of P and ¢ = valp(v) be the valency of some

vertex v.




Name Dihedral angles (approx.)
A Tetrahedron 2sin~1 \/::1; 70°32
B Octahedron 25in1 /2 109°28!
C  Cuboctahedron T —sin~! % 125°26'
D  Cube 5 90°
E  Icosahedron 23in‘1(72§3in—:;—0’5) 138°11
F Icosidodecahedron 142°37
G  Dodecahedron 116°34/
H  Truncated tetrahedron 2sin~! \/g, 2sin~1 \/g 70°32',109°28*
I 7 —sin7! /2 125°26'
o1
K 1
L Truncated octahedron 2sin~?! \/g, T — sin”! \/_%‘ 109°28',125°26'
M Rhombicuboctahedron 3Z,Z 4 sin~! \/%j 135°,144°44'
N  Truncated cube Z,m—sin~! \/g 90°, 125°26'
O  Truncated icosahedron 23i71“1(72§=sin%), 142°37' 138°11',142°37
P Rhombiicosidodecahedron 148°17',159°6¢
Q  Truncated dodecahedron 116°34,142°37

t These polyhedra have irregular triangular faces.

Table 8.2 The vertex transitive polyhedra
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Name Dihedral angles (approx.)

R i

S Snub cube *ok 142°59',153°14/
T  Snub dodecahedron ** 152°56',164°11'
U i

V  Rhombitruncated cuboctahedron as [ and M each > %

W Rhombitruncated icosidodecahedron each > %

X 24 sin=t\[Tr—2sin 1 125°16',109°28

** Dihedral angles given when polyhedra are Archimedean.
i These polyhedra have irregular triangular faces.

T These polyhedra have trapezium faces.
Table 8.2 (continued)

(i) f = H The truncated tetrahedron :  f(H) = (12,18, 8)
The dihedral angles are 8 = sin~! \/I and ¢ = 2sin~! \/g We note that
0 + ¢ = w. Thus any edge is common to three faces and three facets of P. Then

18h = 3e, 16h = 2f and qv = 2e. Then by Euler’s relation we have

v—e+f—h:%l—l~6h+8h—h
q

21
B h
q

Hence ¢ < 0 which is a contradiction.

(i) f =L The truncated octahedron:  f(L) = (24, 36,14)

Each edge is common with three 2-faces and three facets. Thus qv = 2e,
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3e = 36h and 2f = 14h. Then by Euler’s relation we have

2 24]
q q

9. . .. .
Therefore ¢ = 15-3 which is impossible.

(iii) f = N The truncated cube:  f(N) = (24,36,14) Each edge is
common to three 2-faces and three facets. Thus qv = 2e, 3e = 36h and 2f = 14h.

Therefore by Euler’s relation we have

24h
—ﬁ —12h+Th—-Nh=0
q

and so g =4.
Hence v is contained in four facets. Consider the 0-transitive 3-transitive prime
perfect 4-polytope P*. A facet f* of P* only has four vertices so f* is a tetrahe-
dron. Therefore f* is of the form A and hence P* is regular. Thus P = {4, 3,3}

or {3,3,3}, which is a contradiction.

(iv) f =@ The truncated dodecahedron: f(Q) = (60,90,32)

The sum of any three dihedral angles of Q exceeds 27 which is impossible.

(v) f=X: f(X)=1(24,36,14)
Each edge is common to three 2-faces and three facets. Thus qv = 2e,
3e = 36h and 2f = 14. Thus we get a contradiction as in the case f = N.
Thus there are no 0-transitive 3-transitive prime perfect 4-polytopes whose

facets are vertex transitive with the exception of the regular 4-polytopes.

Case 4

Suppose that f is not vertex transitive. If cono(f; U fj) € f then the
stratifications of the symmetry groups (or subgroups) of f; and f; coincide.
Therefore we check that f is not the convex hull of two polyhedra with symmetry

groups G, G; such that G; € G;. Recall from case3 that f; # C, E, F, I, J, I,
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M, O, P, R, S5, T, U, V or W. Also note that vals(v) = 3 or 4 for any vertex
v of f. Thusif valy, (v) = 4 for some f; then this would lead to a contradiction

in valyg(v) if new edges were introduced at v apon taking convex hulls.

f = conv(A U A*)
Such a polyhedron has vals(v) = 6 for some vertex or f is a cube. In the

latter case P = {4, 3,3} which is a contradiction since the facets of P are vertex

transitive.

f = conv(AUB)
This 1s possible only if for each vertex v of B, there exists a midpoint € of
an edge of 4 such that v, € and the centroid of f are collinear. In such a case

the resulting polvhedron has a vertex (coinciding with a vertex of A) of valency

6.

f=conv(AUX)

Such a polyhedron has irregular triangular faces or trapezium faces which

contradicts lemma 1.1.
f = conv(B U D)

Such a polyhedron is either a cuboctahedron which has already been dis-
cussed or is given in figure 6.2. In the latter case, the triangular faces are regular,

therefore the sphere containing Fy f also contains the vertices of an octahedron

B. This is a contradiction.

f = conv(BUL)

Then B coincides with the octahedron which is truncated to form L. Thus
f = B, which by case 3 is a contradiction.
f = conv(B UN)

Such a polyhedron has a vertex of valency 8, which is a contradiction.
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f=conu(DUL)

Such a polyhedron has a vertex of valency 6, which is a contradiction.

f = conv(DUN)
Since the G -stratifications of off{ f) coincide, this union results in a cube

D or a truncated cube N.

f = conv(LUN)

Such a polyhedron has a vertex of valency 5, which is a contradiction.

The case where f; = G is impossible since the polyhedra with the same
symmetry group as G have already been excluded.

Thus a O-transitive 3-transitive prime perfect 4-polvtope does not have a
facet of the form f = conu(f; U f;). Since such a facet has a vertex of valency
four we conclude that f is vertex transitive since otherwise valys(v) > 5 for some

vertex v of f.

Thus we have shown that no non-regular 0-transitve 3-transitive prime per-

fect 4-polytope exists.

COROLLARY 8:2.3

The prime perfect 4-polytopes are given by the Wythoffian 4-polytopes and
their polars.

Proof

Follows from theorem 2.2 and section 7:3.

3. Perfect 4-solids

With the classification of perfect 4-polytopes complete, we turn our atten-
tion to the perfect 4-solids. Let G be the symmetry group of a perfect non-

polytope 4-solid. Then G C O(4) and dim(G) > 1. There are three known
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perfect 4-solids which are not polytopes, the 4-ball D*, the product of the disk
with itself D20 D?, and its polar D?20D2. By considering the compact subgroups
of O(4), we show that G = O(2)1 22 or G = O(4). In other words, G is the
symmetry group of D20 D? or D*.

First suppose that G is not the direct product of compact subgroups of
O(4) or a wreath product in O(4). If dim(G) < 4 then there exists a linear
subspace C, dim(C) = 4—dim(G), held pointwise fixed by G. Thus fizg = C
which contradicts theorem 1:7.5. If dim(G) > 4, then G = O(4) or G = SO(4)
(which has the same orbits as O(4)). The only 4-solid with such symmetry is
D*.

Now suppose G is the direct product J x I of the compact subgroups J, K
of O(4). Then the inclusion 7 : G — O(4) is a reducible representation. This is
a contradiction to proposition 4:1.1. In any case, there 1s a decomposition of B,
for instance, B = B;uB;, where B; # Bs, sucll that G = GB; x GB,. This is
a contradiction to theorem 1:7.4.

Suppose now that G = GIX 1 Sy, » > 1, where I{ is a o-prime z-solid, ¢ < 4.
Then B = o"K and rt = 4. Thus (¢,r) = (1,4) or (2,2). If = 1, then B is
a polytope and dim(G) = 0, which is a contradiction. Hence G = GK 1 S =
GK ) Z, and K is a perfect 2-solid. In other words G = O(2)1 Z; and K = D?.

We now check that there are no perfect solids whose symmetry group is
O(4) or O(2)1 Z3 other than those mentioned above. The fundamental region
of the action of O(4) on S? is a radial line. Hence D* is the only solid with
symmetry group O(4). Now consider the action of G = O(2) 1 Z; on 53. The
fundamental region of this action may be given as follows. Let E* be identified
with the orthogonal product E? x E2. Then C; = E? x0 and Cy = 0x E? are two
non-intersecting linked great circles of S3. Let v; be any point on C;, ¢ = 1,2.

Then there exists a great circle C' of S® through v;, 7 = 1,2, which intersects C;
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and Cj each in one further point. Then C' is divided into four equal arcs. If one
of these arc is subdivided equally into two, then the result is an arc A subtended
by an angle of T at O. Suppose that the endpoints of A are z and y, such that
x € Ci, 1 =1 or 2. Then the convex hull of A and O is a fundamental region D
of the action of G such that conv(G.z) = D?0 D? and conv(G.y) = D?0D?. We
may assume that a point v on A is given by ¢, 0 < 0 < Tywherev=2zif6=0
and v = y if § = I. Then there is a one-parameter family of face equivalent
4-solids given by the convex hull of the action of G on a point v on A. These
4-solids are face equivalent since dim(fiz,) = 4 and v may be mapped along a
D-path by a deformation in a similar fashion to that in chapter 5. The solids
in this family are not perfect as v may be deformed by changing 6. Similarly a
solid given by the convex hull of the action of G on a number of points of D is

not perfect. Thus the only perfect 4-solids are those already mentioned.
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APPENDIX A: A second rhombic dodecahedron

As noted in Coxeter {1}, the rhombic dodecahedron of the second kind was
discovered by Bilinski {1] in 1960. This polyhedron can be derived from a rhombic
triacontahedron (see figure A:1) in the following way.

Recall (Coxeter [1]) that a zone of faces of a polyhedron P with parallelo-
gram faces is a collection of all the faces which have two sides equal and parallel
to some given edge e. Such a P is called a zonahedron. Thus the edges of
a zone are m edges parallel to e (including e) and (m — 1) pair-wise parallel
edges, for some m. The removal of any zone from 9P results in two pieces of
surface and the loss of the m parallel edges. These can be brought together by
the 1dentification of two parallel edges e; and e, one from each piece of surface
(€1, €2 < f for some f € F,P). This gives an identification of the remaining
(m — 2) pair-wise parallel edges from the zone. The result is a zonahedron with
m less faces. If P is a rhombic triacontahedron, then m = 10. The resulting
surface 1s the surface of a rhombic icosahedron, Z(P) say. The surface of the
rhombic dodecahedron of the second kind Z?(P) is given by repeating this pro-
cess on Z(P). The faces of this polyhedron have the same shape as those of
P.

We can see that Z2(P) is not a perfect polyhedron by considering the inte-
rior angles of the faces at each vertex. See figure A:2 where a different perspec-
tive 1s given and the interior angles at a vertex are given by o and . Moreover,
the symmetry group G of Z%(P) is 7y x 7y X 7y (the symmetry group of a
‘matchbox-shaped’ cuboid). The orbit vector of Z?(P) is (4,4,3). Hence by

Rostami [1], Z2(P) has deficiency 3.
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b: A zone of a rhombic icosahedron (derived from a)

T

c: A rhombic dodecahedron (derived from b)

Figure Asla — ¢

Construction of Bilinski’s rhombic dodecahedron by removal of zones
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Figure A.2 The rhombic dodecahedron of the second kind




APPENDIX B

1. The root system BCgq

The notation BC, for a root system of rank ¢ is used by Loos [1]. In terms
of graphs, the Dynkin diagrams of BCy, B, and Cy are all the same. However
BC, is a non-reduced root system given by B,UC,. (Recall Loos [1] that a root
system R is reduced if « € R and ca € R then ¢ = £1.) If eq,..., ¢4 is the usual

basis of E7 and €;,..., ¢, is the dual basis to (E?)*, then

BC, ~ {%e€;,+2¢;,te; e 11 # 7}

2. Symmetric space isomorphisms

The restrictions on [ on the classical root systems 4;, By, C; and D; give
rise to some overlaps in table 3:1 for small n. These may be given in terms of

the following isomorphisms, which appear in Helgason [1].
! ; Pl 2

(i) Al(n=2)=Alll (p=¢q=1)=BDI(p=2,¢=1)=Cl(n=1).

Corresponding isomorphisms:

su(2) = so(4) = sp(1),
)

(i) BDI(p=3,q=2)=CI(n=2).

Corresponding isomorphisms:

(i) BDI(p=4,¢=1)=ClI(p=q¢=1).

Corresponding isomorphisms:
s0(5) = sp(2), so(4) = sp(1)x sp(l),
s0(4,1) = sp(1.1)

(iv) Al (n=4)=BDI (p=q¢=3).

Corresponding isomorphisins:
su(4) = s50(6). so0(4) = so(3)x s0(3),
si(4.IR) = s0(3,3).
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(v)

(vi)

(vil)

(viii)

(ix)

AIT (n=2)= BDI (p =5,¢=1).

Corresponding isomorphisms:
su(4) =~ s0(6), sp(2) =~ so(5),
su*(4) = so(5,1).

AlllI(p=¢=3)=BDI (p=4,¢=2).

Corresponding isomorphisms:
su(4) =~ so(6),
su(2,2) = so(4,2).

AIII (p =3,¢=1) = DIII (n = 3).

Corresponding isomorphisms:
su(4) = s0(6),
su(3,1) ~ s0*(6).

BDI(p =6.¢ =2) = DIII (n = 4).

Corresponding isomorphisms:
su(4) = 50(6).
s50*(8) =~ s0(6,2).

BDI (p=3.¢g=1)=aqa, (n=1).

Corresponding isomorphisms:
s0(4) =~ su(2)x su(2),
s50(3,1) = sl(2,@).

BDI(p=2,¢=2)= Al (n=2)x Al (n

Corresponding isomorphisms:
s0(4) =~ su(2)x su(2),
50(2,2) &~ sl(2,IR)x sl(2,IR).

DIII (n =2) = AT (n = 2).

Corresponding isomorphisms:
s0(4) = su(2)x su(2),
s0*(4) =~ su(2)x sl(2,R)
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APPENDIX C: Vertex transitive polyhedra

In this appendix we give some information about the vertex transitive poly-
hedra classified in Robertson and Carter [1] (see also Robertson [1}). The non-
prism 0-transitive polyhedra are given in table 8.2.

It is useful to note the symmetry groups of such polyhedra. We follow
the notation of Robertson {1]. Suppose P is a O-transitive polyhedron with
symmetry group G = I'(P). Then let T'_(P) be the subgroup of I'(P) consisting
of all rotations of I'(P). Let I',(P) denote the subgroup (j,I'+(P)) where j is
the reflection in O given by the matrix —I3 = diag{—1,~1,—1}. The symmetry

groups of the polyhedra A — X are given in table C:1

Symmetry group Polyhedra
I'(A4) AJH, X
To(4) J, K
L, (4) R
I'(B) B,C,D,L, M, NV
I'«(B) U
I, (B) S
I'(E) E.F,G,0,P,Q, W
[, (E) T

Table C:1

The polyhedra A — G have deficiency 0. Examples of these polyhedra can
be found in chapter 1. The polyhedra H — @ have deficiency 1, while the rest
have deficiency 2. Examples of the polyhedra of deficiency 1 or 2 are given in
figures C:1 to C:17. Two interesting polyhedra are those of type J and K, which
may be derived as follows. Let D be a cube. Then it is possible to embed an
icosahedron I in D such that the midpoints of six edges e;,...,es of I coincide

with the centroids of the faces of D. Then I = conv(ey,...,es). Now let the
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length of e;, 7 = 1,...,6, be increased in size by an amount to a new edge €}
such that the midpoints of €; and ¢! coincide such that the new edges remain in
the relative interior of D. Then the convex hull of these edges is K. If the length
of e; is decreased in a similar fashion, the resulting polyhedron is J. At each

vertex of J and K there are exactly two non-adjacent regular triangular faces.
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Figure C:1 H

The truncated tetrahedron

Figure C:2 1
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Figure C:3 J

Figure C:4 K
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Figure C:5 L

The truncated octahedron

Figure C:6 M
The rhombicuboctahedron
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Figure C:7 N

The truncated cube

Figure C:8 O

The truncated icosahedron
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Figure C:9 P

The rhombicosidodecahedron

Figure C:10 Q
The truncated dodecahedron
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Figure C:11

R

Figure C:12  §

The snub cube
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Figure C:13 T

The snub dodecahedron

Figure C:14 U
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Figure C:15 'V

The rhombitruncated cuboctahedron

Figure C:16 W

The Rhombitruncated icosidodecahedron
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Figure C:17 X
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