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An 71-solid is a compact convex subset B of Em whose affine hull is ?i-dimensional,

for some m > n > — 1. The boundary of B is composed of faces which are solids

of a lower dimension. A flag of B is a sequence (Ao,. . . , Ar) of distinct proper

faces of B such that Aj_i is contained in Aj, j — 1 , . . . , r. A flag is said to be

maximal if it is not contained in any other flag of B. If the symmetry group of

B is transitive on the set of maximal flags of B, then we say that B is regular.

Two solids B and C are symmetry equivalent if the actions of their sym-

metry groups GB and GC on their face-lattices FB and FC, respectively, are

equivalent. A solid B is said to be perfect if B is similar to C whenever B is

symmetry equivalent to C.

The aim of this thesis is two-fold. First, the regular solids are classified.

This classification is based on the projection of the adjoint action of a compact

semisimple Lie group G on its Lie algebra g to the Weyl group action of 0.

Secondly, a contribution to the solution of the more general problem of classifying

perfect ?i-solids is given. The cases n < 3 are already completely understood.

The case n = 4 is solved, thus proving Rostami's conjecture that all prime

perfect 4-polytopes are Wythoffian up to polarity.
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PREFACE

The foundations for this work can be detected as far back as Ancient Greece,

where some mathematicians chose to study examples of compact convex sets in

terms of their symmetry properties. In particular, the so-called Platonic solids

and Archimedean solids spring to mind.

The Platonic solids (also known as regular polyhedra) were extended to

analogous figures in dimensions n > 4 in the nineteenth century by various

mathematicians. Such figures are known as regular polytopes and were first

classified in 1853 by Schlafli. The less symmetrical polyhedra also have analogous

?^-dimensional figures called polytopes.

The notion of regularity was generalized to that of perfection by Robertson

[3] in 19S1. A polytope P is said to be perfect if it has maximal symmetry

properties in the sense that P cannot be deformed without changing its 'shape'

or its symmetry group.

In 1993, Farran and Robertson [1] extended the classical concept of regular-

ity from convex polytopes to convex solids (in other words, convex compact sets

in general). A convex solid that is regular in this new sense is called a regular

solid. Likewise, we have the notion of perfect solid.

This thesis is concerned with regular and perfect solids, and in particular

with classifying them. These two concepts are clearly closely related, indeed

the regular solids form a subset of the perfect solids. It is felt, however, that a

clearer understanding is obtained by considering each in turn. Thus this thesis

is divided into two parts. In part I attention is focused on regular solids, while

in part II perfect solids are considered.

This work is type-faced using T£JX. All diagrams are drawn using PicTj}X.
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PART I

REGULAR SOLIDS

The notion of regularity may be defined as follows. We say that an z'-face

Aj of an •>?-dimensional solid B is a maximal ?'-dimensional solid contained in the

boundary of B. i < n. A flag of B is a sequence {AQ. ... , Ar) of distinct proper

faces such that Aj-i is contained in Aj for each j = 1,. . . , ?\ Then B is regular

if its symmetry group acts transitively on the set of maximal flags of B, where

a flag is maximal if it not contained in any other flag of S , that is, it is not a

subsequence of any flag of B. As a consequence of the extension of regularity

by Farran and Robertson [1], certain conjectures arise on the determination of

the set of regular solids. Part I of this thesis proves these conjectures obtaining

a complete classification of regular solids. In order to achieve this, a lot of

introductory work is required, this is given in chapters 1, 2 and 3.

In chapter 1 we introduce the standard terminology and review some of

the recent results in the symmetry theory of convex bodies. This includes the

definition of a perfect solid. If VR and SR denote the sets of regular polytopes

and regular solids respectively, then VR is well-known and forms a subset of SR.



The classification of regular solids determines the set SR.

The classification theorem uses the projection p : SR —> VR constructed by

Farran and Robertson [1]. This projection and the work of Kostant [1] are closely

related. In chapter 2, we summarize this work, refered to here as Kostant's

construction, from which regular solids are obtained from regular polytopes.

In chapter 3, we consider the work of Dadok [1] on polar representations,

where a representation -K is said to be polar if the normal to a principal orbit

of 7r cuts every orbit orthogonally. Dadok [1] classifies all irreducible polar

representations by associating each such representation to a symmetric space

representation. We also summarize the relevant symmetric space theory.

It is shown in chapter 4 that the inclusion of the symmetry group of any

regular solid in 0(n) is an irreducible polar representation. Thus we can use

Dadok's classification to associate each regular solid B to a certain symmetric

space whose Weyl group enables vis to assign a regular polytope P to B. This

yields the projection p : SR —> VR in a form that explains the analogy with

Kostant's construction. We conclude part I with a complete description of SR

and give various examples of regular solids.



CHAPTER 1

PROPERTIES OF CONVEX BODIES

The following is a summary of some of the recent developments in the

symmetry theory of convex bodies, based on work of Rostami [1], Pinto [l] and

Pinto and Robertson [1]. The basic theory of convex sets is well established and a

good exposition can be found in Lay [1]. Our main sources of information for the

symmetry theory of convex bodies are Robertson [1] and Farran and Robertson

[1], while Coxeter [1] provides detailed information on regular polytopes.

1. Convex sets

For any positive integer n, let Euclidean ?2-space be denoted by En and let

d denote the usual metric on En.

A subset X of En is convex if for any points .T,y of X, tx + (1 — i)y € X

for all < € I R , O < < < 1 . A subset X of En is an affine space if for any points

x,y of A7", tx + (1 — t)y € A' for all t € IR. These two concepts, though closely

related, are very different in character. Notice that any affme space is convex.



In particular En itself is convex.

It is well-known that the intersection of any family of convex sets is a convex

set. However the union of two convex sets is not, in general, convex. For

every subset X of En, we define the convex hull conv(X) of X to be the

intersection of all convex sets that contain X. Thus X is convex if and only if

X = conv(X). Similarly, we define the affine hull aff(X) of a subset X of En

to be the intersection of all affine subspaces that contain X. A trivial example

of a convex set is the empty set, denoted by 0.

The family of all convex subsets of En is a bounded lattice with zero 0 and

unit En, partially ordered by inclusion. The meet X A Y of two convex sets A'

and Y is A" f~l 1' and the join A" V Y is conv(X U Y). Likewise, the family of all

affine subspaces of E" is a bounded lattice with zero 0 and unit En, partially

ordered by inclusion. The meet of two affine subspaces X, Y is again their

intersection while their join is ajf(X U Y).

2. Solids and polytopes

A compact convex subset of En is called a convex body, or solid. A solid

B for which aff(B) is a fc-dimensional space is said to have dimension fc, written

dim(B) — k. We also refer to such a solid as a fc-solid. The empty set is said

to be of dimension —1. The affine subspaces of En of dimension k, 0 < k < n,

are also convex. Of these only the singletons, that is to say the affine subspaces

of dimension 0, are compact convex sets. For any solid J3, let dB denote the

boundary of B in aff(B). Then B = conv(dB) (Lay [1]). The structure of dB

may be analysed as follows.

Let n > 1 and let B be an n-solid in En. We define a supporting hyper-

plane of B in En as an affine ( n - l)-plane II in En such that (i) II n B ^ 0, and

(ii) B lies entirely in one of the two closed half-spaces bounded by II. Then for



each such II, the set HOB is convex and hence a.jf-solid for some j , 0 < j < n — 1.

The set IID B is called a. j - face of B. It is convenient to call 0 and B the unique

( —l)-face and ??-face of B respectively. As usual a. 0-face of B is called a vertex

of B and we note that a nonempty solid always has at least one vertex. In fact,

Minkowski [1] proved in 1911 the following important theorem.

Theorem 1:2.1 MINKOWSKFS THEROEM

Every corn-pact convex set in En is the closure of the convex hull of the set

of its vertices.

Proof

See Jacobs [1].

The 1-faces and (n — l)-faces of B (if any) are called the edges and facets

of B. It is customary in the case n = 3 to refer to the facets simply as the faces

of B.

Among the most familiar examples of solids are convex plane polygons,

convex polyhedra. and more generally polytopes. If we let FjB be the set of all

/-faces of an /?-solid B. then B is said to be a polytope or ??-polytope if FQB

is finite. It then follows that FjB is finite and nonempty for all ?', 0 < i < n.

Thus a. polytope is the extension of the concept of polygon in two dimensions

and of polyhedron in three dimensions to the case of n dimensions. Although

FQB is nonempty for dim(B) > 0. FQB need not be finite. Take, for example,

the /7-disk D" = {.r € E" : \.v\ < ;•} of radius r. for some r £ IR+. Thus the

family of polytopes forms a. proper subset of the family of solids. The geometry

of polytopes has been studied in great detail, most notably by Coxeter in recent

decades (see for example, Coxeter [1] and Coxeter [2]).

We let S and V denote the set of all solids and the set of all polytopes,

respectively. Let S" and V" denote the set of all ??-solids and ?7.-polytopes,



respectively.

Let OB = {j : FjB ^ 0, 0 < j < n — 1}. If B is an ?z-polytope then

CD = { 0 , 1 , . . . . n — 1}. However the converse is not true as we can quite easily

see by considering a circular cone or the solid in figure 1.1. The vertex set FQB is

a. subset of the set ExtB of ex t r eme points of B, that is to say the set of points

x of B such that x is not the midpoint of any pair of distinct points of B. Note

that ExtB =ExtdB. In all poly topes and many solids F0B =ExtB, although

there are examples of solids where this is not true. For instance, consider a solid

B given by the union of a rectangle xyzw with a 2-disk D of diameter d(x, y)

such that the edge xy coincides with some diameter of D (see figure 1.1). Then

the points x and y are extreme points of B but they are not vertices since a

hyperplane supporting x or y also supports the edge wx or yz respectively.

w

Figure 1.1

Note that F_ iB = {0} and FnB = {B}, for all solids B. We use the

notation .4. <j B to mean that .4. is a j-face of B for some j , —1 < j < n. The

faces 0 and B are called improper since 0 < .4 and A < B for any j-face .4 of B.

All other faces of B are called proper.

Let FB denote the set of all faces of B. that is, if .4 is a solid then A € FB

if and only if .4 o B. Then FB is a bounded lattice with respect to <, with unit

B and zero 0. graded by dimension. We call FB the face-lattice of B. Then

6



for any 7?, S <E FT?, the meet 7?. A 5 is R fl S and the join 72 V 5 is conv(R U S).

There is a basic equivalence relation between solids defined in terms of their

face-lattices as follows. We say that the solids ,4 and B are combinatorially

equivalent or face equivalent if and only if there is a lattice isomorphism

A : FA -> FB. We denote this by A&B.

As an example, it is easy to see that any two triangles T\, To. are face

equivalent since the faces of T;, i — 1 or 2, may be denoted as follows: let the

vertices be labelled .4, 7?, and C; and the edges be labelled a, 6, and c such that

.4 < b. c. B < c, a and C <i a. b. Then T\ and To have the same face lattice (see

figure 1.2).

a

c

b

B

Level

2

1

,4 0

-1

Figure 1.2 The face lattice of a triangle

A flag of B is a sequence (.4o... .. -4r) of distinct proper faces of B such

that .4o < • • • < .4,.. If dim(A3) = j s then 0 < jo < j \ < • • • < jr < 11 — 1- Such a

flag is said to be maximal if it is not contained in any other flag of 73, in other

words, it is not a subsequence of any other flag of B. This concept of maximal

flag is used to define regularity and is a reformulation suggested by A. J. Breda

d'Azevedo. For the original definiton of a maximal flag see, for example, Farran

and Robertson [1]. A flag of the form (.4o, -4i,.. . , -4,,_i), dim.(As) — -s, is called

a complete flag. Any complete flag is. of course, maximal. If B is a polytope,



then every maximal flag is complete. Let §g denote the set of maximal flags of

B.

3. Symmetry and similarity

The symmetry group G = GB of an n-solid B in En is the set of all rigid

transformations of En keeping B setwise fixed. Any isometry g 6 GB is called a

symmetry of B. If 0 is the centroid of B, then GB is a subgroup of 0(n). We

assume that this is the case since otherwise GB = T~1(GB')T for some n-solid

B' with centroid 0, where T is a translation in En such that T(B) = B'. Since

B is compact, so also is GB. We say that that G0 and G{0} are trivial groups.

A fundamental region for the action of G on B is an .s-body D such that

every point of B is in a G-orbit of some point of D and every G-orbit meets

the relative interior of D in at most one point. It is noted that this is not the

standard notion of a fundamental region. It is not obvious, in general, that such

a fundamental region exists, however as we see in section 6 existence is shown

in the area of our work.

The action of G on an ??-solid B and hence on En = aff(B) determines a

stratification of En called the G-stratification. For any point x G 5 , we let

Gx denote the isotropy subgroup of G at x, that is, Gx = {g € G : g(x) = x). If

we put fixx — {y € En : g{y) = y for all g G Gx} and call this the fixed point

set of x under G, then aff(fixx) is a linear subspace of En. We say that fixx is

of dimension m if a,ff(fixx) is ??i-dimensional. A point x £ En is said to be in

the j -set if and only if fixx is j-dimensional. Each path component of the j-set

is called a j-stratum. The fixed point set of B under G consists of all points

of En held fixed by G and is denoted fixg. It is trivial to note that for any

nonempty solid B, the set fi/xg is nonempty.

The effective action of GB on B induces an effective action OB of GB on



FB. aB '• GD x FB —> FB. Thus we define an equivalence relation on S as

follows. We say that two solids A and B are symmetry equivalent, denoted

A ~ .£?, if and only if there is an isometry / of En and a lattice isomorphism

A : FA —> FB such that the diagram

GA x FA
a A

FA

f*

v
G£ x

v

A

commutes, where /* : GA —> GB is the isomorphism given by f*(g) = / 1gf-

Each symmetry equivalence class is called a symmetry type and the symmetry

type to which B belongs is denoted [B]. If P is a polyhedron then [P] can be

realised as a topological manifold (see Robertson [1]), and the dimension of the

symmetry type is called the deficiency of P. denoted clef P.

A more general class of mapping of E" is defined as follows. A map 3 : E" —+

E" such that for some A e IR, d{x.y) = \d(s(x),s(y)) for all x,y € En, is called

a. similarity. The group S(n) of similarities of E" is generated by reflections,

rotations, translations and dilations and acts on Sn by mapping each ?i-solid

to another that differs only in size and position in space. Two solids A and B

are said to be similar, denoted .4 ~ B if there exists a. similarity / G S(ii)

such that B = f{A). The equivalence relation as is coarser than the relation

~ which in turn is coarser than the similarity relation ~, as can be illustrated

by considering the quadrilaterals shown in figure 1.3. Since we are interested in

solids with regard to their metrical symmetry, we consider S/ ~ rather than S.
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Figure 1.3 Similarity, symmetry equivalence and face equivalence

4. Duality and polarity

Following Robertson [1], we say that two solids A and B are dual or A is

dual to B if there exists an anti-isomorphism a : FA —> FB. In other words,

there is a bijection a : FA —• FB such that for all faces 5, T € FA, we have

S < T if and only if a(T) < Q(S) . If A and 5 are dual solids, we denote this by

A 8 B. Duality 8 is not an equivalence relation since, although it is symmetric,

8 is neither reflexive nor transitive. Although it is false in general that P II P,

there are some solids which are self-dual, for example, a triangle or indeed any

simplex. It can be shown (for example, see Pinto [1]) that for any solid S, B 8 A

for some solid A. In fact, one such solid A dual to B is the polar of B. The polar

B* of a solid B is defined by B* - [x €aff{B) : Vu € F0B, (x - c,v - c) < 1},

where c is the centroid of B. It is convenient to put 0* = 0. Then it can be

shown that G{B) — G{B*) for any solid.

Let P be a poly tope with vertex set {v\,..., vr) and facet set {/i , . . . , /«}.

Suppose that c; is the centroid of /,-. Then up to similarity the vertex set of P*

coincides with the set {c\,..., ca}, and any facet of P* has centroid V{ for some

i = 1 , . . . , r. Moreover, if a : FP —> FP* denotes the anti-isomorphism of face

lattices, then for all T e FP and g € G, we have g • a(T) = a(g • T).

10



5. Products and coproducts

The product and coproduct are binary operations on <S which are used to

construct new solids from given solids.

We define the product of two solids by first considering the Cartesian prod-

uct of Em and En. We identify Em x En with Em+n by the isomorphism 6

from Em x En to Em+n given by 9(x,y) = z, where z,- = x{, i = l , . . . ,m

and z = ym+j, j = 1 , . . . , n. Thus £ m and En are embedded in £"*+" as the

orthogonal complements Em x 0 and 0 x En.

Let A C £ m be an r-solid and B C En be an s-solid, r, a > 0. Then A x B,

under the above identification, is an (r + s)-solid in Em+n such that A x 0 and

0 x 5 are embedded as orthogonal subsets. The solid AxB is called the product

of A with B and is denoted AaB. We put Ao0 = 0n.4 = 0. The faces of AoB

are of the form UaV where U e FA and V e FB.

An n-solid i? is said to be •-prime if it is not isometric to MaN for

some solids M and N with dim,(M) > 1 and dirn(N) > 1. Otherwise 5 is n-

decomposable. Then a a-decomposition of i? is a sequence (Bi , . . . , Br) of

solids B{ such that dim(Bi) > 1 and B is isometric to Bi • • • • aBr. In such a

case we put B = B\a • • • aBr. Such a decomposition is complete if and only

if each B{ is a-prime. It may be shown that a complete a-decomposition of B is

unique up to isometry and order. Two solids A and B are said to be D-coprime

if they have no common isometric o-prime factors of positive dimension.

We now state some relations between the symmetry group of a solid and of

its n-prime powers. First recall (Rose [1], for example) that for any group G and

for any integer k > 1, there is a wreath product G I 5;-, defined as the group

with underlying set Gk x SA- and product *, where

( ( 9 i , - - - , 9 k ) , 0 ) * { ( h i , - - - , h k ) , T ) = ( f l f r ( i ) • h u . . . , g r ( k ) • h k , a • r ) .

11



Then:

1. G(okA) is isomorphic to GA I Sk, if A is a D-prime n solid, n > 1; and

2. G(AoB) is isomorphic to GA x GB, if A,B are n-coprime solids of

positive dimension.

Thus we can write GB in terms of the symmetry group of the factors of its

complete o -decomposition by collecting together isometric factors.

Associated to the product operator is an operation denoted o called the

coproduct. The relationship between the two is explained in terms of polarity.

The coproduct is defined as follows.

As above, let .4 and B be nonempty solids in Em and En respectively.

Suppose that the centroids of A and B are a and b respectively. Using the

above identification of Em x En with En+m, the coproduct AoB of A with B

is defined to be the convex hull of A x {b} U {a} x B. In the case where A or

B is empty, we put AoB = 0. If dim(A) = r > 0 and dim(B) — s > 0, then

dim(AoB) =r + s.

If A and B are any two solids then (AaB)* = (A*oB*).

The concepts of o-primeness and o-decomposability follow in a similar man-

ner to that for • .

We construct some low-dimensional solids to illustrate these operations. Let

/ be a line segment, T be a triangle, P be a pentagon and D a 2-disk. Then

T°I and Pol are prisms with triangular and pentagonal base, respectively. The

coproduct Tol and Pol are bipyramids with triangular and pentagonal bases,

respectively. As an example, see figure 1.4 for the case using T. Similarly Do I

and Dol are the cylinder and the double cone, shown in figure 1.5. A more

interesting solid is the 4-polytope given by the product ToP (see figure 1.6)

which has three pentagonal and five triangular prisms as its facets. The 2-faces

of ToP are triangles, rectangles and pentagons.

12



Figure 1.4 To I and ToJ

Figure 1.5 Da J and Dol

13



Figure 1.6

6. Regularity

The theory of regular polytopes is well-known and a comprehensive study

can be found in Coxeter [1]. In dimensions —1,0, and 1, all solids are polytopes

and are regular. A polygon is regular if it is both equiangular and equilateral.

We recall that: (i) the vertex figure of an ?i-polytope P at a vertex v is the

(n — l)-polytope given by the convex hull of the midpoints of all edges that

emanate from v, if all such points lie in some (?i — l)-space; and (ii) an n-

polytope is said to be regular if its facets are regular and there is a regular

vertex figure at every vertex.

In Farran and Robertson [1], the notion of regularity for convex polytopes

was extended to convex bodies in general. This may be given as follows in a

formulation using the new definition of maximal flag.

The action of GB on B induces an action of GB on the set FB of all j-faces

of B for each j , and since U < V implies g.U ig.V for all U € F{B, V <E FjB, g €

GB, there is an action of GB on $B, given by

g.(A0,...,Ar) = {g.A0,...,g.Ar)

14



for each g 6 G and each maximal flag (.4o,..., Ar) of B.

The n-solid B is said to be regular if GB is transitive on the maximal flags

of B.

The definition of a regular polytope is consistent with this definition since

the maximal flags of a polytope are complete flags. The regular 2-polytopes are

the regular convex plane polygons. The regular 3-polytopes are the five classical

regular polyhedra or Platonic solids (see figures 1.7 to 1.11), as described in

Euclid Book XIII (see Heath [1]). The regular n-polytopes for n > 4 were

classified by Schlafli in 1853. We describe this classification following Coxeter

[1] using 'Schlafli symbols'. The Schlafli symbol {p, q,..., u, v] for a regular

n-polytope is defined inductively using vertex figures. It is well-known that the

vertex figure of a. regular polytope P is itself regular and any two vertex figures

of P are congruent to one another. Let a regular p-sided polygon be denoted

by {p}. Let a regular polyhedron be denoted by {p,q} if its faces are {p} and

its vertex figures are {</}, in other words there are q of the {p}'s around each

vertex. A regular ??-polytope whose (n — l)-faces are {p, <?,..., u} and vertex

figures are {q,..., u, u) is denoted by {p, q,..., u, v}.

The classification of regular 7z-polytopes for n > 2 is given in terms of these

symbols, as in table 1.1, where we rename the 'measure-polytope' and the 'cross-

polytope' as defined in Coxeter [1], the cube and cocube respectively. These

are denoted o „ and o „ respectively from their obvious decompositions. That is,

D n = / D . . . D j = O"J,

The more general problem of classifying regular ??-solids, for each n € IN, is

discussed in chapters 2 to 4. We note that regular non-polytope solids do exist,

the n-ball Dn being an obvious example.

15



We state the following theorem from Farran and Robertson [1].

THEOREM 1:6.1

Let B be a regular n-solid in En with centroid O. Let ( A 0 , . . . , A r ) be a

maximal flag of B. Suppose O{ is the centroid of Ai for i = 0 , . . . , r. Then

conv(0, O i , . . . , Or) is a fundamental region for the action of GB on B.

Since {O,Oi,. . . ,O r} is an affinely independent subset of En, it follows

that conv(0, O\,..., Or) is an 7--simplex with vertices O, O\,..., O r. It can also

be noted that dhn{fi.xo{) = 1 for each i = 1,. . . , r.

DIMENSION

2
3

4

n > 5

SCHLAFLI SYMBOL

{P}
{3,3}
{4,3}
{3,4}
{5,3}
{3,5}

{3,3,3}
{4,3,3}
{3,3,4}
{3,4,3}
{5,3,3}
{3,3,5}

{3,3,...,3}
{4,3,...,3}
{3,...,3,4}

DESCRIPTION

regular p-gon
regular tetrahedron A3

cube ^3
regular octahedron O3

regular dodecahedron
regular icosahedron

4-simplex A4

4-cube CU
4-cocube O4

. 24-cell
120-cell
600-cell

n-simplex An

n-cube Dn

n-cocube On

Table 1.1

Classification of regular polytopes
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Figure 1.7 The tetrahedron

Figure 1.8 The cube Figure 1.9 The octahedron
or cocube

Figure 1.10 The dodecahedron Figure 1.11 The icosahedron
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7. Perfection

We may also study solids of S which are locally maximal in their symmetry

behaviour. Such solids are called perfect and are defined in terms of geometry

and topology, rather than in terms of groups. For this reason, it is considerably

harder to handle this concept than it is for regularity.

A solid B is said to be perfect if and only if all solids symmetry equivalent

to B are similar to B. Thus B is perfect if and only if all symmetry equivalent

polytopes differ from B only in their size or position in space relative to B.

Among the best known examples of perfect solids are the regular polytopes, most

notably the five Platonic solids. More generally, all regular solids are perfect

(Farran and Robertson [1]). However there are non-regular perfect solids as we

shall see. The perfect n-polytopes have been classified up to n = 3 in Robertson

[l]. Trivially in dimension —1.0 and 1, all solids are perfect polytopes. In

dimension 2. the perfect polygons coincide with the regular polygons. Finally

in dimension 3. there are four non-regular perfect polyheclra. in addition to the

regular Platonic solids. These are the cuboctahedron, the icosadodecahedron,

and their respective polars. the rhombic dodecahedron of the first kind I and

the rhombic triacontrahedron (see figures 1.12 - 1.15). If we add the circular

disk and the 3-ball to this list, we have a classification of perfect solids up to

dimension 3. This classification shows that a polyhedron is perfect if and only

if its symmetry group acts transitively on the set of edges proving one case of

Deicke's conjecture (see Robertson [1]), since a polyhedron P is perfect if

and only if (hjP — 0 (Robertson [1]). In 19S7, this conjecture was proved by

Rostami [1].

^ For a. discussion of the rhombic dodecahedron of the second kind see Ap-

pendix A.
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THEOREM 1:7.1 ROSTAMI'S THEOREM

Let P be any polyhedron. Suppose that the action of GP on the set of edges

of P has e orbits. Then defP = e — 1.

We now state some properties about perfect solids, whose proofs can be

found in Pinto [1] and Robertson [1].

THEOREM 1:7.2

A solid B is perfect if and only if B* is perfect.

THEOREM 1:7.3

A polytope P is perfect if and only if P — nrQ for some n -prime perfect

polytope Q and for some integer r > 1.

THEOREM 1:7.4

Any n-solid is perfect if a.nd only if it is a a-prime power of a perfect solid.

THEOREM 1:7.5

Let B be an n-solid in En. Suppose B has symmetry group G and centroid

c. If B is perfect then the fixed point set of B is the singleton {c}, that is

fixB = {c}.

Theorems 1:7.3 and 1:7.4 have obvious duals in terms of the coproduct.
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Figure 1.12 The cuboctahedron

Figure 1.13 The icosidodecahedron
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Figure 1.14 The rhombic dodecahedron of the first kind

Figure 1.15 The rhombic triacontrahedron
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8. Wythoffian polytopes

Let R be a regular n-polytope with symmetry group G. Then R = conv(G.v)

and R* = conv(G.c), where v is any vertex of R and c is the centroid of any facet

of R. Let A be a complete flag of R. Then a fundamental region for the action

of G on R is given by conv(O, CQ = v, c\,..., cn_i = c), where c% is the centroid

of the i-face / , contained in A. For each 0 < i < n — 1, the polytope conv{G.C{)

is a perfect n-polytope i?s-. We call R{ Wythoffian, since Ri can be derived

from Wythoff's construction which is described below (see Coxeter [l] for full

details). If P is a non-regular Wythoffian ?2-polytope we call P a wythotope

or n-wythotope.

There is a well-established representation of various fundamental regions of

Wythoffian polytopes and other polytopes by certain Coxeter graphs. The nodes

of a Coxeter graph represent the walls of the fundamental region D (that is, the

facets of D which contain 0) or their respective reflections. Two nodes are joined

by a branch whenever the corresponding walls are not perpendicular. Moreover,

a branch between nodes i and ,;' is marked with the integer aij to indicate the

angle -2- (a,j > 3) between the two corresponding walls. It is usual to omit

the ciij on a branch if atJ = 3. Coxeter graphs can also be used to represent

degenerate polytopes (see Coxeter [1]). The various Wythoffian polytopes can

now be represented by modifying these graphs, since for each wall of D there

exists one vertex c,- of D not contained in that wall. Thus its corresponding node

in the Coxeter graph is shaded to indicate the polytope P given by conv(G.Ci).

The procedure of determining P from vertices of a given fundamental region is

called Wythoff's construction.

Suppose P — R{ is a wythotope derived from a regular ?^-polytope R =

{a,\,... , a n _ i} , by taking the centroid of some z'-face of R. Then we can also
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denote P by the Schlafli symbol

a;,..., a! 1 . f a,+i, . . . ,an_i \
> or equivalently < > ,

a.i+1, . . . ,an_i J [a,-,... ,ai J
as this polytope is a truncation of R (see Coxeter [1]). The facets of P are then

(n — l)-polytopes of the form

a t - , . . • ,«32 a ; , . . . , a i

Then for any Wythoffian polytope we can write out the Schlafli symbol for each

i-face, 1 < j! < n. Schlafli symbols can also be used to represent degenerate

poly topes, for example honeycombs, non-perfect truncations and non-convex

polytopes (see Coxeter [1]). It can also be noted that for any polytope P given

by a Schlafli symbol, P may be represented by a Coxeter graph, where the

markings on the branches are given by the entries in the Schlafli symbol. For

instance, if P — i?.,- is given as above then the Coxeter graph of P is the graph

in figure 1.16.

a i a. ai+l
•-O • O

a

a , - , . . . , a i

a«

Figure 1.16 The Coxeter graph of P = Ri and its Schlafli symbol

For example, the cuboctahedron is the truncation both of

f 4 l
{4, 3} and of {3,4}. The faces of < > are of the form {4} and {3}, that is squares

I6 J
a n d e q u i l a t e r a l t r i a n g l e s r e s p e c t i v e l y . T h e i c o s i d o d e c a h e d r o n " { r f = ' { Q M s
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f 5 l .the truncation both of {5,3} and of {3,5}. Thus each face of < > is either a
I6 J

{3} or a {5}. The Coxeter graphs of these polyhedra are given in figure 1.17

4 5
O • O O • O

Figure 1.17 The Coxeter graphs of < > and <

It can be noted that the polars of < > and < > (see figures 1.14 and

I 4 J I 6 )
1.15, respectively), are perfect polyhedra which cannot be denoted by a Schlafli

symbol. Likewise, in n dimensions there are perfect polytopes which have no

Schlafli symbol. Rostami [1], however, stated the following conjecture for n — 4,

which as we shall see in part II can be generalised for all ?z (also see Pinto [1]).

CONJECTURE 1:8.1

Let P be a prime A-polytope. Then P is perfect if and only if P or P* is

Wythoffian.
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CHAPTER 2

KOSTANT'S CONSTRUCTION

The introduction of the concept of regular solids immediately gives rise to

the problem of classifying these objects. Robertson and Farran [l] constructed

a. process by which regular solids are obtained from regular polytopes. This

construction is based on the adjoint action of a compact semisimple Lie group

on its Lie algebra and is due to Kostant's work on convexity (Kostant [1]). The

origins of this work are Schur [l] and Horn [1], see also Atiyah [1]. We summarize

this process which is the fundamental idea in what follows.

1. Lie theory

We begin with some notation and definitions in Lie theory (for more infor-

mation see Helgason [1] and Kostant [1]). Let B be a solid with centroid 0.

Then GB is a compact subgroup of 0(??) and hence a semisimple Lie group. If

GB is discrete and hence finite, we consider GB as a Lie group of zero dimension.

Suppose G is a Lie group with Lie algebra g. Let Ad : G —+ GL{#) denote the
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adjoint representation of G and ad : g —> endg denote the adjoint representation

of g. where endg denotes the space of endomorphisms of g.

We recall some standard decompositions of semisimple Lie algebras.

A Cartan subalgebra of g is a subalgebra [) of g such that () is a maximal

abelian subalgebra of g and for each H € (), the endomorphism ad(H) of g is

semisimple.

THEOREM 2:1.1

Every semisim.'ple Lie algebra, over (T contains a Cartan subalgebra.

Proof

See. for example. Helgason [1].

Let g be a semisimple Lie algebra, over <T with Cartan subalgebra (). Let

a be a linear function on the complex vector space [). Then ga = {A" £ g :

[H. X] = a(H)X for all H £ i)} is a. linear subspa.ce of g, where [ , ] denotes the

Lie bracket of g. If g° 7= {0} then a is called a root and gQ is called a root

subspace. Let A denote the set of all nonzero roots of g with respect to f).

THEOREM 2:1.2

(i) g= i) + Z]aG_i 0° (direct sum),

(ii) dim(ga) = 1 for each a 6 A.

(in) The restriction of B to \) x [) is nondegenerate. For each, linear form,

a on \). there exists a unique element Ha G f) such that B(H,Ha) — a(H)

for all H 6 /?, inhere B denotes the Killing form on g.

Proof

See Helgason [1].

Now let go be a semishnple Lie algebra over IR, let g be its complexification

and a the conjugation of g with respect to go- A direct decomposition go =
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t'o+ Po of go into a subalgebra to and a vector subspace po is called a Cartan

decomposition of go if there exists a compact real form g,k of g such that

^•Sfc C g f c;

e = 0on0A-;

and Po = So n 0:Sfc)-

It is well-known (see, for example, Helgason [1]) that every go has a Cartan

decomposition and that any two Cartan decompositions of go are conjugate

under an inner automorphism of g.

A third decomposition, the Iwasawa decomposition, arises from the com-

bination of the Cartan decomposition of a semisimple Lie algebra and the root

space decomposition of its complexification. This decomposition is summarized

as follows.

Let gt) be a semisimple Lie algebra, over IR with Cartan decomposition go =

t'o+ po- Let g be the complexification of go and let xi = 60 + ?Po- Let a and r

denote the conjugations of g with respect to go and u, respective!}". Let 6 denote

the automorphism 9 = a • r. We let f)p be any maximal abelian subspace of

go and let !)o be any maximal abelian subalgebra, of go containing ()p • Then

#(l)o ) C ()o and we have the direct decomposition h0 = ([j n 6o) + (fyo H po) where

() n po = ()p . If t) denotes the subspace of g generated by [)o then it follows that

[) is a Cartan sul)algebra of g.

The roots (\j a,- are called simple if (cii,. . . , a>) is a basis of A and

each root n of A can be written as a = Yl]=i ^Q> w i th integral coefficients kQi

all nonnegative or all nonpositive. If all kQi > 0 then a is called a positive

root.

Let A + denote the set of positive roots of g. For each a € A, let a6 be

defined by o^iH) = a{9H) where H £ i). Then the root a vanishes identically

27



on a = f)p if and only if a = ae. We divide A + into the two classes:

P_ = {<*:«€ A+,a = <**}.

THEOREM 2:1.3

Let n = Yla-eP 0a- an^ suppose that no = g0 H n and 5o = a+ no- Then

n and no are nilpotent Lie algebras. So is a solvable Lie algebra and go = Eo + a+no

is a direct vector space sum called, an Iwasawa decomposition of go.

Proof

See. for example. Helgason [1].

THEOREM 2:1.4

Let go = fc'o + a + ny be an Iwasawa decomposition of a semisimple Lie

algebra. g0 over JR.. Lei G be any connected Lie group of go and let K, Ap,

N be the analytic subgroups of G with Lie algebras to, a, and X\Q, respectively.

Then the mapping C5 : K x _4p x JY —+ G defined by $>(k,a,n) = k • a • n is an

analytic d.iffeomorphism of the product manifold A~x.4pxjY onto G. Accordingly,

G = A'.-ip.V it called the Iwasawa decomposition of G.

Proof

See Helgason [1].

Let G be a Lie group with semisimple Lie algebra g such that G — KAN and

g = fan are Iwasawa decompositions of G and g respectiveh". Let exp : g —> G

he the exponential mapping. If a G .4 then x = log(a) is the unique element in

a such that a = exp(x) (see Kostant [1]).
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Finally, the Weyl group W associated to (a, g) is the finite group defined

as the quotient W = M' /M, where M' and M are, respectively, the normalizer

and centralizer of Ap in K, that is,

M' = {k e K :k-Ap- k'1 C Ap},

M = {k e K : k • a- k'1 = a for all a € Ap} .

W acts on a and A such that exp: a •—»• Ap is a W-isomorphism. This definition

from Kostant [1] is derived from the definition of the Weyl group of a symmetric

space (see chapter 3).

The Weyl group W is identified with a subgroup of the symmetric group

generated by reflections acting on some root system F. The Dynkin diagram of

F completely determines W and is associated with a fundamental region D of

W where the nodes indicate the walls of D and two walls are inclined at angles

•|, -|, j or -| depending whether there are 0, 1, 2 or 3 branches, respectively,

joining the corresponding nodes. Thus a Dynkin diagram and a Coxeter graph

provide the same information about D, as shown in the components of these

graphs given in figure 2.1

Dynkin diagram Coxeter graph Angle

O O O O f

f

Figure 2.1 Components of a Dynkin diagram and Coxeter graph
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The nodes in a Dynkin diagram represent the simple roots in the root space

decomposition (see Helgason [1] and Humphreys [1]). Each simple root a, is

associated with a weight proportional to (ai, ai) where the scalar product (, ) is

a positive definite scalar product such as the Killing form. In each root system

there are at most two weights, and accordingly each root is called long or short.

It is usual to denote this in a Dynkin diagram by putting an arrow on the

branch between a long and short root pointing to the short root. The root

system is said to be irreducible if its graph is connected. The irreducible root

systems are well-known and have been classified: the Dynkin diagram of any

irreducible root system is one of the graphs in figure 2.2 (see Humphreys [1] for

full details). The classification of the simple non-Abelian Lie algebras follows

from the classification of irreducible root systems. The classical irreducible root

systems are denoted At, Bi, Ci, Di and give rise to the so-called classical simple

Lie algebras. Likewise the exceptional irreducible root systems are denoted EQ,

E-r, E$, F4 and G2, giving rise to the exceptional simple Lie algebras. In order

to avoid repetitions, the following restrictions are made on /:

Ai (I > 1); Bi (Z > 2); Ci (I > 3) and Dt (1 > 4).

2. Kostant's convexity theorem

Let G = KAN be an Iwasawa decomposition of a semisimple Lie group G,

and let $ : K x A x N —> G be the corresponding analytic diffeomorphism. Then

$ is trivially a bisection, for all g 6 G, there exists a unique (^k{g), a{g), n(g)) €

A' x A x iV such that g = k(g) • a(g) • n(</), and a(g) is called the a-component

of g.

Let W be the Weyl group of (0, g) where a, g (a C 0) are the Lie algebras of
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D,
o

o

O

E7

o

G-,

Figure 2.2 Dynkin diagrams of the irreducible rootsystems
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.4 and G. Then for each x £ a, let a(x) = conv(\¥{x)) be the convex hull of the

Weyl group orbit W(x) and correspondingly, for 6 £ .4 let A(b) = ex-pi a(log{b)) J.

THEOREM 2:2.1 KOSTANT'S CONVEXITY THEOREM

For any b € -4, .4(6) = {a{hv) :v e K}.

Proof

See Kostant [1].

This theorem was reformulated by Pinto [1] by considering the following.

Let A" be a compact connected semisimple Lie group with Lie algebra £, let £

denote the complexification of 6 and let G be a semisimple Lie group with Lie

algebra g = (tQ ) . Then let G = KTN be the Iwasawa. decomposition of G

derived from the Iwasawa decomposition, g = £ +H + n , of g, where t is the

Lie algebra, of a maximal torus T of A".

COROLLARY 2:2.2

Let A be a compact connected semisimple Lie group acting on its Lie algebra

£ by the adjoint action. Let t be the Lie algebra of a maximal torus T of K and let

IT" be the Weyl group of K acting on t. For every x £fc\ the orthogonal projection

of the A"-orbit, K(x) onto t coincides with the convex hull of the corresponding

W-orbit H'(.r'). where .r' € t n K{x).

Proof

See Pinto [1].

Let K(x) denote the orbit of x € £ given by the adjoint action of K on £.

Suppose PI : £ —> t is the above orthogonal projection. Then
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since K(x) projects onto the convex set conv(W(x')} for some x' G t D K(x).

Alternatively, if v* G M* = {g G K : Ad(g)(it) C it} is a representation of

v G Ty then AJ(u*)(x') = u(x') by the definition of the action of W on t, so that

W(x') C K(x') = K(x). Thus conv(W(a:')) C cont;(7\'(a;) D t ) and therefore

U(K(x)) = conv(K(x)D t ).

Hence each orbit K{x) of the adjoint action of K on 6 is associated with

a poly tope P = conv(W(x')) such that U(P) = P (trivally P = conv(W(x'))

is a polytope since W is finite). This is the basis for Kostant's construction

described in Farran and Robertson [l] which may be given as follows.

Let G — K be any compact connected semisimple Lie group with Lie algebra

g, and let T be a maximal torus in G with Lie algebra t C 0. The adjoint action

of G on g is orthogonal with respect to a. natural inner product in g, where

the orthogonal projection is given b}r II above. The quotient N(T)/T may be

identified with the Weyl group W of G acting on t as a group generated by

reflections, where N{T) = {g G G : .4c/(<7)(t) = t} is the isotropy subgroup of

G at t. A fundamental region for the induced action of W on the unit sphere in

t is a. spherical (m — l)-simplex A, where m = dirn(t) is the rank of G. Then

Px = conv(\V(x)) is an m-polytope (with vertex set FQPX — W(x)) for each

x G A. We put Bx = conv(Ac/(G)(.r)) = conv(K(x)), then Bx is an n-solid,

where ?7. = dim(G), with extremal set FQBX = Ad(G)x. Then G is a subgroup

of the symmetry group of Bx and II( Bx) = Px.

It is possible to determine the face lattice FBX of Bx in terms of FPX. In

particular, Farran and Robertson [1] proved the following.

THEOREM 2:2.3

Px is a regular polytope if and only if Bx is a regular solid.
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Proof

We give the proof that Bx is regular if Px is regular in order to determine

FBX from FPX and refer to Farran and Robertson [l] for the converse.

Suppose Px is a regular polytope, then x is one of the vertices of A (we

may suppose that the set FQBX lies on the unit sphere in t). Then there is a

complete flag of Px of the form (Ao,Ai,...,Ak) where dim(Ai) = i and the

centroid a,- of Ai is a vertex of A, with c*o = x (see theorem 1:6.1). Let G{ be

the isotropy subgroup of G at ai and let Bi — Gi(Ai). Then Bi is a j-face of

Bx with centroid a;, where j = ji = dim(G) — dim(Gi) + i. Since every j;-face

of Bx is of the form g • Bi and since (BQ,BI, ... ,Bk) is a maximal flag in Bx,

where dim(Bi) = ji, it follows that Bx is regular.

The restriction p of the projection II to the set of regular solids is a pro-

jection p : SR —> VR where dim(p(B)^ = #crg and B = p(B) if and only if

B 6 VR. This process of deriving a regular solid Bx from a regular polytope Px

is called Kostant 's construction.

This, however, does not yet give a classification of the regular solids as we

have not determined p~1(P) for each regular polytope P.
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CHAPTER 3

SYMMETRIC SPACE REPRESENTATIONS

The regular solids are classified by associating each regular solid with a

certain symmetric space. The key to this association is the work of Dadok [1]

on polar representations. In this chapter we summarize some symmetric space

and polar representation theory in order to introduce the relevant notation and

concepts. Symmetric spaces are studied in detail in various texts including

Helgason [1], Loos [1] and Wolf [1].

1. Symmetric spaces

The study of symmetric spaces and Lie groups are closely related. Sym-

metric spaces, defined as Riemannian manifolds for which the curvature tensor

is invariant under all parallel translations, were first studied by E. Cartan in the

1920s.

A Riemannian manifold M is a Riemannian globally symmetric space

if each point p € M is an isolated fixed point of some involutive isometry of M.
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This definition is equivalent to the original definition by E. Cartan. Let I{M)

be the set of all isometries of M. Then I(M) is a group under composition and

it can be shown that I(M) is a Lie group (see, for example, Helgason [1]). Let

IQ{M) denote the identity component of I(M).

THEOREM 3:1.1

Let M be a Riemannian globally symmetric space and let po be any point

in M. Let H = IQ(M) and K C H be the subgroup which leaves po fixed. Then

K is a compact subgroup of the connected group H and H/K is analytically

diffeomorphic to M under the mapping hK —> h • po for h £ H.

Proof

See Helgason [1].

We may therefore denote a symmetric space by H/K for some Lie groups H,

K where K C H. Then if is a Lie transformation group of H/K in the sense that

the mapping (h.g-po) —> hg-po is a differentiable mapping of HxH/K onto H/K.

A symmetric space H/K is said to be of compact type or nonconipact type

according to whether it has positive or negative sectional curvature and there

exists a duality between these two types (for more details, see Helgason [1]). The

rank of H/K is the maximal dimension of a flat, totally geodesic submanifold of

M (that is, the maximal dimension of a totally geodesic submanifold for which

the curvature tensor vanishes identically).

The Weyl group of a symmetric space is defined as follows (see Helgason

[1] or Loos [1]). Let H, K be Lie groups with Lie algebras h, t respectively,

such that H/K is a symmetric space. Let () = 6+ p be a Cartan decomposition

of \) and let a denote an arbitrary maximal abelian subspace of p. Then the

Weyl group of H/K is the Weyl group of I)® defined in Chapter 2, that is,
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the quotient of the normalizer of ia in K by the centralizer of ia in A', where

i2 = — 1. In fact Kostant's definition in Chapter 2 (also see Kostant [l]) is

derived from this definition. The same identifications with root systems and

Dynkin diagrams hold as in Chapter 2. It then follows that the rank of H/K is

given by dim(a).

The irreducible symmetric spaces are well-known and have been classified.

Before we give the classification of irreducible symmetric spaces, we need some

more definitions. We follow Helgason [1].

A pair {H,K) is said to be a Riemannian symmetric pair if

1) there exists an involutive analytic automorphism a of H such that (A'CT)o C

H C Ka where Ka is the set of fixed points of a and (A'<T)o is the identity

component of (A'CT),

2) AC\H{K) is compact, where Adn(K) is the group given by the adjoint action

of A" on H.

An orthogonal symmetric Lie algebra is a pair (f),s) such that

1) () is a Lie algebra over IR,

2) .* is an involutive automorphism of (),

3) the set. fc\ of fixed points of s is a compactly embedded subalgebra of ().

For each Riemannian globally symmetric space H/K, the pair (if, A') is a

Riemannian symmetric pair, and is associated with an orthogonal symmetric Lie

algebra ((). .>•). A symmetric space H/K is said to be irreducible if its associated

orthogonal symmetric Lie algebra (l),-s) is irreducible, that is,

1) 1) is semisimple and u contains no ideals ^ {0},

2) the algebra ordfJu) acts irreducibly on c,

where u and c are eigenspaces of s for the eigenvalues +1 and — 1, respectively.

The irreducible symmetric spaces are then classified using the following

theorem of Helgason [1].
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THEOREM 3:1.2

The irreducible orthogonal symmetric Lie algebras are of type

I (f),'S) where f) is a compact simple Lie algebra and s is any involutive

automorphism o/F).

II 0hs) where the compact algebra F) is the direct sum F) = F)i+ F)2 of

simple ideals which are interchanged by an involutive automorphism s oft).

III (f)5s) where f) is a simple, noncompact Lie algebra over IR; the com-

plexification F) is a simple Lie algebra over (C and s is an involutive auto-

morphism of F) such that the fixed points form a compactly embedded subal-

gebra.

IV (F),s) where F) = g R for some simple Lie algebra g over (D and s is the

conjugation of F) with respect to a maximal compactly embedded subalgebra.

Furthermore,

(F),.s) is of type III <=> (tf,s*) is of type I

and (f),s) is of type IV <=> (f)*,s*) is of type II,

where (F)*,.s*) denotes the dual of(l),s).

The symmetric space H/K is said to be of type i, where i — I, II, III

or IV, if its associated orthogonal symmetric Lie algebra is of type i. The

symmetric spaces of type I and II are compact whereas those of type III and IV

are noncompact. Then the Riemannian globally symmetric spaces of type IV

are the spaces H/U where H is a connected Lie group whose Lie algebra is F)111

where f) is a simple Lie algebra over (C, and U is a maximal compact subgroup

of H. The metric on H/U is if-invariant and is uniquely determined (up to a

factor) by this condition. The symmetric spaces of type III are given in table

3.1, which by duality classifies all irreducible symmetric spaces.
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AI

A l l

AIII

BDI

Dili

CI

CII

El

EII

EIII

EIV

EV

EVI

EVII

EVIII

EIX

FI

FII

G

Noncompact

SL(n,lR)/SO(n)

SU*(2n)/Sp(n)

SU(p,q)/S(UpxUq)

SOo(p,q)/SO(p)xSO(q)

S0*(2n)/U(n)

Sp(n,m)/U(n)

Sp(p,q)/Sp(p)xSp(q)

(e6(6), sp(4))

(c6(2), su(6)+ su(2))

(e6(-14), 50(10) + El)

(e6(-26), f4)

(e7(7), su(8))

(e7(_5), 50(12)+ su(2))

(e7(-25), £6 +1R)

(e8(8), so(16))

(e8(_24), ^7+ su(2))

(f4(4),Sp(3)+SU(2))

(f4(-20),SO(9))

(02(2), Sll(2)+ SU(2))

Root system

A..,

An-1

JJ\-J g , V_/g

Bq,Dg

BCg,Dq,q = [\n]

Cn

UUg, \~/q

E6

F,

B2

A2

E7

F4

Cz

Es

F*

F,

Ai

G2

Dimension

J(n-l)(n + 2)

(n - l)(2n + 1)

2pq

pq

n(n — 1)

n(n + 1)

4p5

42

40

32

26

70

64

54

128

112

28

16

8

Table 3:1 The symmetric spaces of type III
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The symmetric space denoted BDI by Helgason [1] is SOo(p,q)/SO(p) X

SO{q) where q < p. Such spaces include the case BI where p + q is odd and

DI where p + q is even. The symmetric spaces AIII, DI, Dili and CII each can

have different root systems depending on the values of p and q. For instance,

the root system of AIII is BCg if q < p and Cq if p = q. For more details of the

root system BCq see Loos [1] and appendix B.

2. Polar representations

Let G be a compact Lie group with Lie algebra g. Let TT : G —>• G(V) be

a representation of G on a real vector space V preserving an inner product (, ).

For each v G V. the space g,-v is the tangent space to the G'-orbit through v.

Thus we can define a linear cross-section av of the G'-orbits by

a,. = | « e V : (u.g-v) = 0 } = { g • v}±.

In other words, a,, is normal to the G'-orbit through v. It can be shown (see

Dadok [1]) that a,, meets every G-orbit.

If g-r is a principal orbit then v G V is called regular. The representation

- is called polar if for some regular v and for any u G av, { g • u, av) — 0.

Thus the normal to a principal orbit of the action of a. polar representation

cuts every orbit orthogonally. Such a cross-section or normal is called a Cartan

subspace. Obvious examples of polar representations are given by groups which

act transitively on spheres, for instance, the orbits of the action of O(n) on En

are (n — l)-spheres or the origin 0. Any normal to any and all of these orbits is

a line through 0; see figure 3.1 for the case n = 2. The adjoint actions and the

representations associated with symmetric spaces studied by Kostant and Rallis

[1] are also polar. An example of a representation which is not polar is given

by the action of S£ r(l) = 50(2) acting on the 3-sphere S 3 lying E4 which is
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identified with d'", the principal orbits of this action are great circles, therefore

any normal is not orthogonal to every principal orbit. A full account of polar

representations may be found in Dadok [1] and Dadok and Kac [1].

E2

a

Figure 3.1 Principal orbits of the action of 0(2) on E2.

The irreducible polar representations were classified lay Dadok [1] by asso-

ciating each polar represenation to a symmetric space as follows.

Let G be a connected compact Lie group. Then a polar representation

TT : G —> S0(V) is called a symmetric space representation if there exists:

(i) a real semisimple Lie algebra I) with Cartan decomposition () = I + p;

(ii) a Lie algebra isomorphism .4 : g —> t; and

(iii) a real vector space isomorphism L : V —> p

such that

I • ~(X)(y) = [A(X),y] for all .Y € g,y € p.

By definition these representations are polar, and a Cartan subspace of such

a. representation is a maximal abelian subalgebra of p. Dadok [1] showed that
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almost all polar represenations give rise to symmetric space representations in

the following proposition.

PROPOSITION 3:2.1

Let IT : G —» SO(V) be a polar representation of a connected Lie group G.

Then there exists a connected Lie group G with symmetric space representation

7T : G —> SO(V) such that the G- and G-orbits in V coincide.

The symmetric space H/K associated to G is of noncompact form and

the representation fr may be given in terms of highest weight (see Dadok [1]

and Humphreys [1]). The classification of polar representations is then given in

terms of the noncompact symmetric spaces and a few exceptional cases, being

the adjoint representations and the action of Spin(7) x SU(2) on IR" . For full

details see Dadok [1]. It is noted that all irreducible noncompact symmetric

spaces with the exception of EII are associated with polar representations.
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CHAPTER 4

CLASSIFICATION OF REGULAR SOLIDS

In this chapter, we describe the classification of regular solids, to appear

in Madden and Robertson [1]. The regular solids arise from the study of both

polar representations and Kostant's construction, the classification being given

in terms of the symmetric space and polytope associated to each regular solid.

We also give various examples to illustrate this connection in section 2.

i
1. Classification of regular solids

Let B be a regular n-solid in En, n > 2, with centroid 0. Let G — GB

be the symmetry group of B and g the Lie algebra of G. Let ir : G —> 0(n)

be the representation given by inclusion. Recall that a representation is said

to be irreducible if it has no proper invariant subspace. We show that -K is

irreducible by the following result.

43



PROPOSITION 1.1

Let B be a "perfect n-solid in En. Then the action of GB on En is irre-

ducible.

Proof

Let B be a perfect ?^-solid in En. Let B have symmetry group G = GB

and centroid O. Suppose G is reducible. Then there exist at least two or-

thogonal G-invariant subspaces of En of positive dimension. Let En be com-

pletely decomposed into non-trivial orthogonal G-invariant subspaces A\,..., Ar

in the sense that E" = A-[ x • • • x Ar and Aj does not contain any non-

trivial G-invariant subspaces, 1 < j < r. Let ( e i , . . . , e n ) be an orthogonal

basis for E" compatible with the above decomposition, so that A\ and A<i are

generated by t\,... , etl and etr + i,... , e<2 respectively, and Aj is generated by

e1,j_l + i,.. . . ttj, 2 < j < r, w h e r e I < ti < • • • < tr = n. W e w r i t e x 6 En as

x = (XU....X,.) e A1 x ••• x . 4 r .

For j = 1 , . . . , 7\ let Lj be a line through O in Aj such that Dj = LjDB has

maximal length t/j. We may suppose that d\ > d.2 > • • • > dr. Let 6 : En —> En

be the linear map defined as follows. For j'• = 1 , . . . , r, let Sj = 1 + ey, such that

6j > 0 and .>i > 5-2 > • • • > sr. Then the action of 6 on each Aj is a dilation by

Sj and hence fixes each .4/ setwise. Thus, <5(.x-i,... , xn) = (•Si.x'i,..., srxr).

Let Bf = 6(B) = {S(x) : x € B}, where e = {e ! , . . . , e r } € Er. Then 6

induces an embedding of GB in GS f . But for ||e|j sufficiently small, GBt is a

subgroup of GB. Hence GB = GB(. Also for ||e|| sufficiently small, 8 induces

a face equivalence from B to B( (also see Pinto [1]). Hence, since B is perfect,

there exists a. similarity / : E" —> En such that f{B) = Be. Let in be the scale

of / so for all x,ij € En, d{f(x)J(y)) = md(x,y) .

Since Bf has centroid 0, f is the product of an orthogonal transformation

and a dilation. If .r £ .4,- for some i = l , . . . , r then f(x) G Aj for some
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j = 1 , . . . . r. Thus either /(.4,-) = Aj for all i = 1, . . . , r, or there exists a linear

subspace C, of some .4,-, 1 < dim(C'i) < dim(Aj), such that f(Ci) C Aj and

i < ' V i < '••

First suppose that /(A,) = .4,- for all i — l , . . . , r . Let XJ,J/J £ Ay

and .Tfc,-i/jt € -4*. for some j < k. Then md(xj,ijj) = d(f(xj),f(yj)) =

d(8(xj), ^(j/j)) =Sjd{xj, ijj). Hence ?77. = Sj. However we also have md(xk,yk) —

d{f(xk),f{yic)) = ^ (x f c^d / f c ) ) = Skd(xk,yk). Hence ?n = 5fe. Therefore

?7?. = SJ > $k = m which is a contradiction.

Now suppose that / (C,) C Aj for some maximal nontrivial subspace C;

of .4,. We may suppose i < j . Let C/1 be the orthogonal complement of C{

in .4,. Suppose that 0 < dnn(C,) < dim{Ai), and let u £ Ci and v G C^.

If u- = \u + fir. A ^ 0 and /i ^ 0. then f{w) £ Aj, j — 1 ...,r. This is a

contradiction, hence d.im{C,) = dim{Aj). It then follows that f(Ai) = -4/ and

/(-4j) = Ai,- for some />• ̂  j . We may suppose that k < j . If dj = c/{ or c/j = c/fc.

then |/(£)y)| = dj = c/; or | / (Dj ) | = C/A- = r/j, respectively, where \T\ denotes

the length of the line segment T. Hence m = 1. This is a contradiction since

\6{Di)\ > <h. However if d, < dj or dk < dj then \f{D, )\ = mdi > \f(Dj)\ = mdj

or \f(Dk)\ = mdk > \f(Dj)\ — mdj which again is a contradiction.

COROLLARY 1.2

77 it irreducible.

Proof

Let B be a regular solid, then B is a. perfect solid (see section 1:1.7). The

corollary then follows from proposition 1.1

We also note that theorem 1:7.5 follows from proposition 1.1.
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PROPOSITION 1.3

TT is polar.

Proof

Recall (Bolton [1]), that a transnormal system in a complete connected

Riemannian manifold M is a partition of M into foils (nonempty connected

submanifolds) such that any geodesic of M cuts the foils orthogonally at none

or all of its points. Then by Bolton [1], the orbits of TT form a transnormal system

in En and hence TT is polar.

Alternatively, let x lie on a principal orbit of this action of TT and let the

tangent plane of this action at .r be denoted by g-x. By similarity, we can

assume x lies on the boundary of B, and hence in a proper face F of B. Since

B is regular, each flag of F is in a maximal flag of B. By Dadok [1], ax = {u £

En : (u.g • x) = 0} is a Cartan subspace of En. Then by the transitivity of G

on $£?, for any v on a principal orbit, av = g • ax for some g £ G. Hence TT is

polar by Dadok [1].

By Dadok [1], we have associated to the given ?}-solid B a noncompact

symmetric space H/K, where H and K have Lie algebras () and 6, respectively,

such that:
f) = t + p;

E ~ g ;

and p ~ E".

Hence given an n-solid B and its symmetry group, H/K and therefore H are

determined from the classification of noncompact symmetric spaces (see table

3.1).

Let W be the Weyl group of H/K and a be a Cartan subspace of ir, that is,

a maximal abelian subspace of p. Then the intersection of a G-orbit with a is a
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single W-orbit (see Dadok [1]) and W is the symmetry group of a regular poly-

tope P such that n(i?) = P where II is the projection in Kostant's construction

(see chapter 2 and Farran and Robertson [1]).

The root system and hence Dynkin diagram (or Coxeter graph) determined

by the Weyl group of a symmetric space is one of the following:

Bi l>2,

Ul I ^ O, X*4

D, I > 4, G2.

Of these root systems only Ai, I?/, C;, Di, £4 and G'2 are derived from a Weyl

group corresponding to the symmetry group a regular polytope P. We call such

root systems regular. The polytope P is determined by taking the convex hull

of a W-orbit of a point x in the fundamental region D of W corresponding to an

end node of the Coxeter graph, that is, by Wythoff's construction on an end node

of the Coxeter graph. Any other polytopes arising from Wythoff's construction,

that is, those from nodes which are not end nodes, are not regular (see section

1.8). Polytopes also arise by Wythoff's construction on the Coxeter graphs

which are not associated to any regular polytope, namely, the root systems £"6,

£7 and £$. We shall call these polytopes Gosset polytopes or Gossetopes

since the}'' were first studied by Gosset [1].

Therefore we are only interested in symmetric spaces whose root system

is regular. As usual, using the Coxeter graph of the root system, the Schlafli

symbol of P can be read directly. The root system Di is a special case as it

has three end nodes, from Coxeter [1], we make the identifications in figure 4.1

when using Wythoff's construction on any of the nodes in the long branch of
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D/. The polytope arising from WythofF's construction using either node in the

short branch is the alternation hat of • /, that is, the polytope derived from •;

by taking the convex hull of its alternate vertices. In general,

ha,. =
3 , 3 , . . . , 3 ] '

for instance, ha3 = A3 (note that D3 = A3 by section 2.1) and /ID4 = o4 are

given in figure 4.2.

O—•-

O—O -m-a = 0-0-

-o—« = 0-0-0-0-

Figure 4.1 Equivalent poly topes from Di

A geometric interpretation of this process of deriving P from HjK may be

given as follows. The Cartan subspace a of En ~ p is a linear subspace of En and
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hence intersects B in a nonempty subset. In fact a is generated by the centroids

of faces of a maximal flag of B (see proposition 1.2). Hence, by theorem 2:2.3

and Kostant's construction, the set P = BO a is a regular polytope. Then

P = p(B), where p is the projection of chapter 2.

= •—O-O

Figure 4.2 Alternation poly topes of ^3 and 04.

The dimension of the regular polytope associated to a regular solid and the

dimension of the regular solid are respectively given by the rank and dimension

of the associated symmetric space. The symmetric spaces from which regular

poly topes are derived by Wythoff's construction are given in table 4.1 and 4.2,

along with the associated regular polytopes and the above mentioned dimensions.

Thus we obtain a classification of regular solids such that

(1) If P = {p} for p ^ 3,4,6. or P = {3,5}, {5,3}, {3,3,5}, or {5,3,3}, then

p~1(P) consists of only P itself.

(2) All regular solids that are not polytopes are specified in tables 4.1 and

4.2 in terms of their dimension, and the-associated symmetric spaces and

polytopes. (Of course, the regular polytopes have symmetry groups which

are O-dimensional Lie subgroups of 0{n).)

(3) In addition to the above, there are regular solids associated with the adjoint

representation of simple Lie groups (with the exception of EQ, E-j and E$)

whose corresponding symmetric space is of type IV.
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H/K

AI SL(n,m.)/SO(n)

All SU'(2n)/Sp(n)

All I SU(p,q)/S(UpxUq)
q<p

BI S00(p,q)/SO(p)xSO{q)
p + q odd, q < p

DI SO0(p,q)/SO(p)xSO(q)
p + q even

Dili S0'{2n)/U{n)

CI Sp(n,lR)/U{n)

CII Sp{p,q)/Sp(p)xSp(q)

dim(B)

l(-i)(-+S)

(n - l)(2ra + 1)

2pq

pq

pq

n(n — 1)

n(n + 1)

Apq

dim(p{B))

(n - 1)

( n - 1 )

q

q<p

p = q

n — q

q

P(B)

n.,O,

O,.O.

o.

o..o,

n.,O,

Table 4.1 Regular solids derived from the classical noncompact

symmetric spaces and their associated regular polytopes.
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II jK

EIII (e6(_14),so(10)+IR)

EIV (e6(_26), f4)

EVI (e7(_5), so(12)+su(2))

EVII (e7(_25), ?e + IR)

£ J X (e8(_24), e7+su(2))

FI (f4(4),sp(3)+su(2))

FII (f4(-20,S0(9))

G (g2(2),su(2)+su(2))

dim{B)

32

26

64

54

112

28

16

8

dim(/>(£))

2

2

4

3

4

4

1

2

°2

A2

24-cell

n3 ,O3

24-cell

24-cell

Ax

Hexagon

Table 4.2 Regular solids derived from the exceptional noncompact

symmetric spaces and their associated regular polytopes.
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2. Some examples

With the classification of regular solids complete, it is interesting to locate

some familiar regular solids in tables 4.1 and 4.2.

A well-known family of regular solids is the family of balls Dn, Dn =

{(.Ti,... ,xn) : x2 + • • • + x\ < 1}, where the case n = 1 is the line segment I

which is the only solid (and hence polytope) up to similarity in E1, and n = 2 is

the disk. Clearly aDn = {0} for all n, therefore p(Dn) = /for all n. Let B = Dn,

then GB — O(n), the connected component of the identity of GB is G = SO(n),

so we take g = so(n). The only symmetric space H/K such that vank(H/K) = 1

and 6 = so(n) is the space BDI, that is, # /A' = SO0(p, q)/SO(p) x 50(5) where

p = n and q = 1. We check that dim(HjK) = dim(B) = pq = ?i, and the action

of 50(77.) x 50(1) on / is indeed £>".

Another family of regular solids are the Veronese solids, of which the 5-

dimensional solid is best-known (see Robertson [2]). Let B = V be this 5-solid,

given by the following. Let M denote the real projective plane and p £ M. have

homogeneous coordinates x, y, z with x2 + y2 + z2 = 1. Then V is given by the

image of a. smooth embedding v : J\4 —» .E6, where

v(p) = (x2,y2, z2,y/2yz, V2zx, y/2xy).

From Farran and Robertson [1], we see that the symmetry group G of V is

isomorphic to 50(3) and the polytope associated to V by Kostant's construction

is an equilateral triangle T. The set of faces of V consist of vertices and 2-disks

only. From tables 4.1 and 4.2, we see that there is only one symmetric space such

that 6 = so(3) with rank 2, namely H/K = 5L(3,IR)/5O(3) (which is of type

AI). The solid given by action of the isotropy subgroup of G at the midpoint of

an edge of T is a 2-disk, which agrees with Farran and Robertson [1].
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In both these cases the polytope derived from B by this classification agrees

with that found geometrically in Farran and Robertson [1]

We can also check the classification of perfect non-polytope 2 and 3-solids

by looking for all symmetric spaces of dimension 2 and 3, respectively, in tables

4.1 and 4.2. Using the identifications AI(n = 1) = AIII(p = q = 1) = BDI(p =

2,q = 1) = CI(n = 1) from Helgason [1] (see also appendix B) the only such

symmetric spaces are the spaces 5O0(2, l)/S0(2) x £0(1) and 5O0(3, l)/S0(3) x

SO(l). Thus we have agreement with Farran and Robertson [1].

53



PART II

PERFECT SOLIDS

Let Sp and 'Pp denote the sets of perfect solids and perfect polytopes respec-

tively. It has been noted that SR is a. proper subset of Sp and it is well-known

that Pf> is a proper subset of Pp. The projection p : SR —> PR can be extended

to p : Sp —> 'Pp by restricting the projection II given by Kostant's construction

to the set of perfect solids. The perfect solids have yet to be classified, one of

the obstacles being that there is no theorem for perfect solids analogous to the-

orem 2:2.3. Moreover the perfect polytopes have not been classified. However

the results given in part I provide many examples of non-regular perfect solids

whose associated polytope is a truncation of a regular polytope in the following

sense.

T H E O R E M 11:1

Let P he. a polytope given by Wythofff's construction on some node of the

Dynkin diagram of an irreducible root system. Then P is perfect.

Proof

This result can be read into the analysis of Robinson [1], who of course was

writing about quite different ideas. The key fact is that for any vertex transitive
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polytope P whose symmetry group is the Weyl group of such a. root system, the

fixed point set of any vertex has dimension 1 if and only if the vertex is a. vertex

of the fundamental region of P.

The polytopes of theorem 11:1 are the wythoffian polytopes and the Gosset

polytopes. It is thought that these along with their polars are the only prime

perfect polytopes. In fact Pinto [1] generalised Rostami's conjecture (conjecture

l:S.l) for ??-climensions to the following.

CONJECTURE 11:2

Let P be a perfect polytope. Then P or P* is a a-power of some prime

perfect polytope Q. where Q is given by theorem 11:1.

In part II, we are concerned mainly with perfect polytopes but in doing so we

work towards a classification of perfect solids. We make some progress towards

a general classification of perfect polytopes in chapters 5 and 6. In chapter 5

we consider transitivity on /-faces for each dimension i < n for certain perfect

/?-polytopes. Deformations of polytopes to nearby polytopes are introduced in

chapter 6. This allows us to determine the dimensions of fixed point sets of

vertices of perfect polytopes. We also consider G-stratifications of E", where G

is the symmetry group of a. regular polytope.

In chapter 7 we consider conjecture 11:2. In dimension n > 6, the Gosset

polytopes need to be considered. The symmetry groups of these polytopes are

not associated to any regular polytope. Therefore we concentrate on the case

n = 4. We make several conjectures on the orbit vector of perfect poytopes that

agree with conjecture 11:2.

In chapter S we consider the angle formed by adjacent ?-faces of a polytope,

i = 1.2. By considering perfect 0- and 3-transitive perfect 4-polytopes we prove

some of the conjectures in chapter 7. Rostami's conjecture and a. classification of

perfect 4-polytopes then follow. This leads to a classification of perfect 4-solids.
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CHAPTER 5

TRANSITIVITY

The regular polytopes form a more restricted faniily than that of the perfect

polytopes. As we shall see, the condition that a. polytope P is regular imposes

restrictions on the transitivity properties of the proper faces of P. In this chapter

we are concerned with the transitivity properties of polytopes and the number

of face orbits of P in each dimension where a, proper face exists. A more general

study of transitivity in solids may be found in Farran and Robertson [1], from

which some ideas used here have been derived.

1. Complete Transitivity

We start with two definitions from Farran and Robertson [1]. For any

0 < i < n — 1, an ?7-polytope P is said to be z-transitive if GP acts transitively

on F{P. If P is i-transitive for all 0 < i < n — 1, then we call P completely

transitive. It is noted in Farran and Robertson [1] that a polytope P is com-

pletely transitive if and only if P is regular. Clearly every regular polytope is
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completely transitive as any i-face of P can be embedded in a maximal flag, for

any 0 < i < n — 1, the transitivity of the maximal flags then ensures the transi-

tivity of the 7-faces. A proof that a completely transitive polytope is regular will

be given here. This proof makes use of an alternative definition of regularity,

which is provided by the following lemma.

LEMMA 5:1.1

Let Pm be an m-polytope in Em such that Pm has congruent regular facets

and all the vertices of Pm lie on a sphere. Then Pm is regular.

Proof

For m = 2. Pni is an equilateral polygon with common length A. Suppose

that the vertices of Pm lie on a circle of radius r. Let i>i, t'2, ̂ '3 be any three

successive vertices of Py so that i>iv2, t'2i>3 are edges of fV Then since ri,i>2,i>3 :

all lie on some circle, the length of the chord v\ v$ is determined by ?' and A. ', !'

Hence the internal angle of Po at t'2 is independent of the choice of V2- Thtis Pi

is equiangular as well as equilateral and is therefore regular.

For rn = 3, Pi is a polyhedron with congruent regular polygons as faces. The , "

regular-faced polyhedra have l̂ een classified by Johnson [1]. Of the polyhedra ; f

with congruent regular faces, only the Platonic solids satisfy the condition that :•' |

the vertex set lies on a. 2-sphere. Therefore P3 is regular. J,

We now argue by induction. Suppose any A'-polytope Pfc satisfying the

above conditions is regular. Let P^+i be any (k + l)-polytope with congruent

regular facets such that, all the vertices of PA-+I lie on some sphere. Then all the

edges of PA + I are equal. Thus the vertex figure Q of Pk+\ at some vertex v is

given by the convex hull of the midpoints of all edges of Pk+i emanating from

c.

Now Q is a /.--polytope. Since the facets of Q are the vertex figures of
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the facets of Pk+i, the facets of Q are congruent and regular. We now show

that the vertices of Q lie on a sphere. Consider the 1-dimensional space r

containing v such that r and a£f(Q) are orthogonal. Suppose a: denotes the

point of intersection of r and aff(Q) and let \ab\ = d(a,b). Since \vvi\ — \VVJ\

for any vertices u,-, Vj of Q, the triangles given by the vertices v, u,-, x and v, Vj, x

are congruent right-angled triangles. Hence \xvi\ = |#Uj| for all Ui,Uj, that is,

all vertices of Q lie on a sphere with centre a;. Therefore Q is regular.

Then Pk+i has regular facets and regular vertex figures and hence Pk+i is

regular.

Therefore by induction all such Pm are regular. Thus the above definition of

regularity for polytopes agrees with that found in Coxeter [1] and hence with

section 1.6.

We note that congruent regular facets is not a sufficient condition for reg-

ularity. For instance in dimension 2, a rhombus is not regular. In dimension

3, there are five polyhedra, called deltapolyhedra, each with regular triangular

faces which are not regular (see Williams [1] or Cundy and Rollet [1]). Two such

polyhedra. are the double cones on a triangle and a pentagon.

PROPOSITION 5:1.2

Any completely transitive n-polytope is regular.

Proof

Let P be a completely transitive n-polytope in En. Let / be a 2-face of P.

Then / is an equilateral fc-polygon, for some k > 3. The convex hull conv(fUO)

of / and O is a cone with / as base and with k triangular faces. Each triangle

is given by the points O,vt, t',+1, where i>,-,t>,-+i are the endpoints of an edge of

/ . Since P is O-transitive, |0i',-| = \Ovi+\ |. Hence all the triangles are congruent
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and isosceles. Thus / is a regular polygon. Since P is 2-transitive all 2-faces of

P are congruent.

Suppose that the ??i-faces of P are regular for some in , 3 < m < n — 2.

Let / m + i be an (??7 + l)-face of P. Then /m+i is an (m + l)-polytope with

regular ?7?-faces. Since P is ?77-transitive, the 772-faces are congruent. Since P is

0-transitive the vertices of fm+\ lie on a sphere. Hence by lemma 1.2, /m+i is

regular. Since P is (?7? + Intransitive, all (777 + l)-faces are congruent.

Therefore the facets of P are regular and congruent. Since P is 0-transitive,

all vertices of P lie on a sphere, therefore P is regular. This completes the proof,

hence P is regular if and only if P is completely transitive.

It is noted in Farran and Robertson [1] that this property of a polytope being

completely transitive if and only if it is regular does not carry over into the more

general setting of the solids. As an example, consider the 3-solid B = D1oD2,

then B is completely transitive and an = {0,1,2}. However B is not regular as

GB is not transitive on the maximal flags of B.

2. The orbit vector

Let P be an n-polytope. Then we say the orbit vector of P is the n-vector

9{P) = (6Q #n-i )• where 8j is the number of orbits of ?-faces in FiP, for each

i = 0 , . . . . /; — 1. under the action of GP. Then by the above a polytope P is

regular if and only if 0(P) = (1 . . . . , 1). It is possible to express the orbit vector

of any o-prime polytope in terms of the orbit vectors of the prime polytopes in

its D-decomposition.

Suppose that P — .4.o B. where A and B are o-prime D-coprime polytopes.

Suppose that dim(A) = ni > 1 and dim(B) = n > 1 and the orbit vectors of .4



a n d B a re given by 8(A) a n d 8(B), respectively, where

8(A) = (a0 ,am_i)

and

It is convenient to put am = bn — 1, and to refer to (ao, -. . , am) and (bo,..., bn)

as the extended orbit vectors of A and B respectively.

The product AaB is an (??7. + ??.)-polytope with symmetry group GA x GB

if .4 ^ B. A A-face of .-ln£ is of the form f-A off where /-4 € i^4, ff G FjB

and j + j = k. Therefore O(AoB) = (0O,... ,9m+n_i) where 9k = Yli+j=k a^j

for ( ) < / ' < m.O < j < n.

Now if P = .4.D.4 where .4 is n - p r i m e , t hen G = G(A&A) = Zo I GA.

Therefore the (/ + J)-faces of A a . 4 given by ( / , n f ; ) a n d [fjafi), for some / / (E

JF, .4 a n d fj t FjA. lie in the same orbi t . F i r s t suppose t h a t i + j = k is odd ,

then the re are ^p- d is t inct pa i r s (i,j), for i,j > 0, such t h a t i + j = j' + i = A".

Therefore the n u m b e r of A--face orb i t s is Yli+j=k ^r-aiaj f ° r 0 ^ z'--i ^ m ^ '̂ ̂ s

odd . If i + j = k is even, t h e n the re are kj'2 d is t inc t pa i r s (i,j) for i,j > 0 such

t h a t / + j — j + / = k and i ^ j . If ?' = j , t hen the n u m b e r of A:-face orbi ts is a.{.

Therefore the n u m b e r of /.'-face orbi ts is a^/o + ^ » + j = J t ^o-i^j f ° r 0 < i, j < ?n

if A' is even. Therefore 8(AoA) = (6o.... , ^2m.-i)

{ E i + ^ A - ^ ^ ' i f A:

+ Z ) ' + J = A- 9-a i f lj' ^ '̂ e v e n -

We illustrate these facts with two simple examples. First recall that a

semiregular polygon is an equiangular polygon whose edges are of alterna-

tively equal length. Suppose that I is an interval. Let {6} and SQ be hexagons,

where {6} is regular and SQ is strictly semiregular. Then the extended orbit
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vectors of I, {0} and Se are (1,1), (1,1,1) and (1,2,1), respectively. Then

6{{6}al) = (1.2.2) and 6{S6nI) = (1,3,3), see figure 5.1. There are 3 face

orbits in the latter product, representatives of which are given by a hexagon 56

and two rectangles.

Figure 5.1

We study the orbit vectors of the known perfect polytopes, namely those

perfect polytopes arising from Wythoff's construction and their polars. First

we consider the wythotopes. Let R be a regular ??-poh'tope and, for some i =

1 n — 2. let Wf1 be the wythotope given by taking the convex hull of the

centroids of all /-faces of R. In other words, if R. is the regular ?7.-polytope

an-i} t h e n II -fi is t h e / ? -wytho tope < . ' ' " ' > g iven b y figure
[ a + 1 a i J

1.16.

Since R is regular, (i) the polar R* is regular and (ii) the fixed point sets of

centroids of /-faces of R and the fixed point sets of centroids of (?? — 1 — i)-faces

of R* coincide, for each / = 0.. . .. n — 1. Therefore we may assume that i < ??./2,

since otherwise Wf* ~ 11*^ where j = /? — 1 — / < n/2.

P R O P O S I T I O N 5:2.1

Let R be a regular n-polytope and i' < %. Then the orbit vector ofW-^ is
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Proof

Let R = {Ol...., an_!}, so that W{
R = ( O i ' ' " ' ' ^ \ . Then the facets

( Oi+l , • • • ,<3n_l J

of W? are of type Fx = J a i> •••,<*! \ a n d ^ = / «n • • • ,«2 1 A

[ a,-+i, . . . , an_2 J (̂  a l + 1 , . . . , an_i J

facet of type F\ is given by the convex hull of the centroids of all i-faces of some

facet { a i , . . . , an_2} of R. A facet of type F2 is given by the convex hull of the

centroids of all z-faces of R containing some vertex of R. Since G is transitive on

the maximal flags there are exactly two orbits of facets of WR, namely those of

type Fi and F2 respectively. Thus an ?7 -̂face of W/1 is given by the intersection

of a suitable number of facets of Wf1 of types Fi and F2 • We shall consider all

such intersections and show that all ??i-fa.ces of WR given by the intersection of

j facets of type Fi and k facets of type F2 lie in one orbit.

case (i). The intersection of j facets of type F\, 1 < j < n — i — 1, m — n — j .

Let / = {a\,... , «n_j_i } be an (n — j)-face of R. Then / contains r i-faces

of R where r > n — j — 1 (since R is ?}-dimensional ). Thus the convex hull of

( 1

the centroids of the r z-faces is an (n — ?')-face f = < " ' ' ' ' 1 > since

n—j > i + 1. We note that / is the intersection of at least n — j facets of R,

therefore / is an (n — j)-face of WR. Hence a suitable choice of j facets of type

F\ intersect in an (n — j)-face of W{
R.

case (ii). The intersection of j facets of type F\,n — i < j <n — l,m = n—j.

The intersection of j facets of R is an s-face of R, where s < n — (n — i) = i.

Thus the convex hull of the centroids of all i-faces in such an intersection is at

most a point . Therefore there are no ?7i.-faces, m > 1, of R given by j facets of

type F\ for j > n — i.
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case(iii). The intersection of k facets of type i^ , k < i, m — n — k.

By polarity, the convex hull of the centroids of z-faces in the intersection

of k facets of type F2 is similiar to the convex hull of the centroids of (n —

i — l)-faces in the intersection of k facets of type Ff of R*. By (i) this is

(n — fc)-dimensional if and only if the intersection of the relative facets of R*

are (n — fc)-faces { a n _ i , . . . , a*.} and n — i — 1 < n — k — 1. Thus the convex

hull of the centroids of all (n — i — l)-faces in this intersection is an (n — k)-

polytope San-(n-i~i), ••• , a n _! 1 = f ai+i, ... , a n _ ! \ S Q t h g i n t e r s e c t i o n

{ a i a J { a a J

of k s u i t a b l e f ace t s of t y p e F-> is a n (n — fc)-face < " " " ' k > of P,-,
[ a; o J

where m = r -\- s + 2, r < i, s < n — i ;
, . . . , a s '

{a,-+1,... , a,-+m_i }, where ???. < n - i.

We also note that the intersection of a. facet f\ of type F\ with a. facet $2 of

type Fo of W/* is (n — 2)-dimensional if and only if the vertex of R from which

ji is given is contained in the facet of R from which /1 is given. Thus if /
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1 < k < i.

case (iv). The intersection of k facets of type F2,k > i + 1, ni = n — k.

Note that z + 1 vertices of i? either define a. unique z'-face of R, or don't all

lie in any one z'-face of R. Hence the convex hull of the centroids of all z-faces ,,.

containing those vertices is at most a point. Therefore there are no ?7i-faces, :

m > 1, of W/1 given by A: facets of type Fo for k > i + 1.

case (v). The intersection of j facets of type F\ with k facets of type F2, '{

• \m — n — j — k. i

By (ii) and (iv) we may assume j < n — i — 1, and k < i. By the repetitive , \

use of Coxeter [1] (also see section 1:8), we see that any m-face, 1 < m < n — 1,

of T'F/* is of the form

{oj - , . . . , «i_ni}, where m < i;

a,-,.. . ,o.,-_r



is the (?? — j>')-face of W'1 given by the intersection of j facets of type F\ and

Vi,. . . ,v>k are the vertices from which the k facets of type F% are defined, then

the intersection of these j + k facets is (n — j — A~)-dimensional if and only if the

(77. — j)-face of R corresponding to / contains the vertices i>i,.. . , u^.

Since R is j-transitive, the (7? — j)-faces of IF/* given by the intersections

of facets of type F\ only all lie in one orbit, if they exist. Hence by polarity, the

(??. — fc)-faces of IF/* given by the intersections of facets of type F2 only all lie

in one orbit, if they exist. Let Df, be the set of all i-faces of some 5-face fq of

R. containing some vertex r such that v < fg and q > i. Since G is transitive on

the maximal flags of i?, G is transitive on the sets D^ for all q-faces fq such that

v < f. q > i. Therefore G is transitive on the 777.-fa.ces of Wf1 given by j facets of

type F\ and k facets of type F?. m = n — j — />•, for given j,k.

Thus to determine the face orbit vector of TF/*, we need only count the

number of combinations o of j + k = n — m. for each 1 < 777 < n — 1 subject

to the conditions 1 < j < 11 — i — 1. 1 < k. < i. and i < ?7./2. These results are

tabulated below.

1 < /?? < i o = m

/ + 1 < 777 < 11 — i <j) = i + 1

7? — ? < /?7 < ?? — 1 0 = n — m + 1

By the definition of TF/l\ W;
H is O-transitive. Hence

(1.1.2.3 /. i + 1.. . . . 1 + 1, /, 7 - 1,. . . , 4, 3, 2)

is the face orbit vector of TF/*.

COROLLARY 5:2.2

Let IT" be. the. 'polar of a n -Wythotope W-R, for some 1 < i < n — 2. Then

0(W) = ( 2 . 3 / . / + 1 , . . . . * + 1,?:,* — 1 , . . . , 2 , 1 , 1 ) .
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Proof

Follows immediately by polarity and the inversion of face lattices.

( 3 3 4 1A s a n e x a m p l e w e c a n cons ide r t h e W y t h o t o p e W = W | = < Q ' Q ' Q Q f-
^ o, o, o,o J

We form a lattice of face orbits of W, see figure 5.2. Each face orbit is denoted

by a representative of that orbit and the lattice is graded by dimension. The

lattice is partially ordered by <, where A < B if A < g.B for some g £ GW.

Then the number of fc-face orbits is given by the number of elements in the kth

level of the lattice of face orbits. We find that 6(W) = (1,1,2,3,4,4,3,2), by

counting the number of elements in each level of the lattice. In this example,

there are different orbits of faces which are congruent. For instance, there are

two orbits of tetrahedral faces of W. Thus it is not sufficient just to count the

number of different faces when computing 8(W).

Thus the orbit vector 6{P) of any perfect polytope P derived from a Wythof-

fian polytope can be computed if the decomposition of P is known. It is easy to

see that (90, 9\, 6l
n_2, #Ti-i) = (1,1, rr, 2) or (2,.x, 1,1,) for some x, that is, either

P or P* is vertex and edge transitive.
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Level

3,3,4
3,3,3,3

/ \

3,3 1 f 3,3,4
3 ,3 ,3 ,3 ] 13 ,3 ,3

\ / \
3 \ (3,3 1 f3
3,3,3,3/ \ 3,3,3/ 13

,3,4 \
.3 /

n =

{3,3,3,3} 3
3,3,3

3,3
3,3

3,3,4
3

{3,3,3}
3,3

{3,3} | - | {3,3}

V \ /
{3} {3}

Figure 5:2. Lattice of face orbits of 1V"|.

-1
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Besides the family of perfect polytopes obtained above from regular poly-

topes, there are fourteen other perfect polytopes derived by Wythoff's construc-

tion, namely the Gosset polytopes. Such polytopes are of dimension 6, 7 or 8. If

the shaded node is an end node then these polytopes are denoted Kij according

to the lengths of the branches, for example, see figure 5.3. The orbit vectors of

Gosset polytopes are more difficult to compute since the corresponding Coxeter

graph is not a simple chain because one of the nodes is attached to 3 branches.

Although it is not necessary for present purposes to compute these orbit vectors,

it is useful to consider the Gosset polytopes in order to understand some of the

difficulties in the general classification problem .

3 3
Figure 5.3 The polytope 123 = \ 3 ' „
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CHAPTER 6

FIXED POINT SETS OF VERTICES OF A PERFECT POLYTOPE

In this chapter, we explore the restrictions that are imposed on the fixed

point set of a vertex of some polytope by the condition of perfection. We start

by considering how a general polytope P may be deformed into a symmetry

equivalent polytope. Such deformations depend on the dimensions of the fixed

point sets of vertices of P. The dimensions of such sets are determined for

perfect polytopes. We then conclude by examining perfect ?i-polytopes whose

G-stratification of En is isomorphic to that of some regular polytope.

1. Deformations of a polytope

A solid S is perfect if and only if every nearby solid that is symmetry

equivalent to S is similar to S. For this reason we study maps between such solids

and S, particularly when S is a polytope. To do this we consider deformations

of solids and for this purpose we introduce some elementary category theory.

Let S be the space of all solids. Then S can be regarded as the set of objects
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in a category (S of face-maps between solids. The morphisms or face-maps are

denned as follows. Let B be an ??-solid, n > 0. We first need to give each point

x in B a sequence of radial coordinates (similar to barycentric coordinates) in

terms of the centroids of a flag of B. Let f\ be the face of B of lowest dimension

j i such that .r G f\. If x = c\ (the centroid of / i ) , then we say x is given by

the n coordinates (0 . . . . , 0.1, 0 , . . . , 0) where the (n + 1 — ji)th entry is 1. If

x ^ c\, there is a unique straight line through points c\ and x oriented from

C\ towards x. This line meets dfiin a unique point x\ at or beyond x. Thus

x = tixi + (1 — t\ )c\ for some unique t\ € / = [0,1], t\ / 0. Let f2 be the face

of B of lowest, dimension j 2 < ji such that x\ G fo- If X\ = c2 (the centroid

of fo). then .;•] is given by coordinates similar to c\ above but having the onh'

non-zero entry 1 at the (?? — j)ih position. If x\ ^ c2, then we repeat the above

process on x\ in terms of ,r2 and c3. After a finite number of steps Xk is the

centroid c/,- of a face of B. Therefore we can associate x with an affine sum of c;

(or ,r,). / = 1 . . . . . A*, that is.

x = f1.r1 + ( 1 -* i )c j

= t 1 { t 2 x 2 + ( 1 - U ) c 2 ) + ( 1 - f i ) c !

= (1 - / i ) f i + f i ( l -U)c2 +Ut2X2

= (1 -f l)C] +<!(1 _t2)C2 + --- + fl(l - t , ) - - - ( l -^..Oc/fc-i +t1t2---tkCk.

Hence x = {A*i.... , A",,} such that A",; = ti if ji — i and A",; — 0 otherwise.

Then a face-map / : B\ —> B2 l^etween two ??.-solids B\, B2 is a. map which

takes the centroids of faces of B\ to centroids of faces of B2 such that the image

of any point x written as an affine sum above in term of c; is the affine sum of
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t h e i m a g e s o f cz-, t h a t i s ,

f ( x ) = ( 1 - < i ) / ( C l ) + * a ( l - h ) f ( c 2 ) + ••• + t i ( l - i 2 ) ••• ( 1 - t k -

+ t 1 t 2 - - - t k f ( c k ) .

It follows at once that any face-map is continous, that the composition of

face-maps / : B\ —> B2 and g : B2 —» -S3 is a face-map # o / : B\ —* B3, and

that for any nonempty solid B, the identity 1 B is a face-map. It is convenient

to regard 5 ( 0 , 5 ) , 5 ( 5 , 0 ) and 5(0,0) as singletons.

Suppose next that OT denotes the category of similarities between solids.

Then 9TJ is a subcategory of &. Thus: every object in DJl is an object in & (in

fact, both have the same objects, namely S); every similarity between solids is a

face-map; and the composition operation is the same in both categories. We can

define a notion of symmetry equivalence between solids which is coarser than

similarity and finer than face-isomorphism, as follows. Let 5 i , B2 be solids.

Then a face-isomorphism / : B\ —> Bo is said to be a s y m m e t r y equivalence

if and only if there is a group isomorphism /* : GBi —>• GB2 such that for all

g € GB\, /*(</) o / = / o g. If such an / exists, we say that B\ is symmetry

equivalent to B2 and write Bx ~ B2.

We now define a deformation of an ?i-solid B in terms of a connected

(continuous) path in the space of solids. A deformation is a continous map,

6 : Bxl -* En, such that for alH € / , 6 (5 , t) = Bt is an n-solid and / t : 5 -» 5 t ,

ft{x) — 8(x,t), is a symmetry equivalence. We can assume that GB = GBt for

all t G /• If B is an 77-polytope P , then since P = COTIV(FQP) we may define

ft '• P —* Pt in terms of a set of paths {8(v,I) : v € F0P}. It follows that each

such path 8(v, I) lies in the fixed point set fixv of v. Since we are interested in the

difference between perfect and imperfect polytopes, we consider only deforma-

tions involving non-similar polytopes, that is to say, Bt is not similar to B, for

some t 6 I. If 8 is such a deformation for some solid B, we call f( : B —> 8(B,t) a
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D-path from B. Thus a. polytope P is perfect if and only if there are no D-paths

from P. The above formulation of the notion of face-map and the definition of

symmetry equivalence in terms of categories has been devised by Professor S. A.

Robertson.

2. Vertex orbits of a perfect polytope

Since no D-paths exist from a perfect polytope P , we explore the conditions

this imposes on the fixed point sets of vertices and of centroids of facets of P.

First we need to prove a. simple proposition.

PROPOSITION 6:2.1

Let P be an (n — 1)-transitive n-polytope. Then every facet of P contains a

fundamental region of GP for dP.

Proof

Let / be any facet of P. Since P is (n — l)-transitive, every point of P is in

a G'-orbit of some point of / . If the isotropy subgroup of the centroid c of / is

trivial then / is a fundamental region D by definition. If the isotropy subgroup

of c is nontrivial. then any fundamental region D for the action of Gc on / is a.

fundamental region for the action of G on dP. In either case, D C / .

COROLLARY 6:2.2

If P is a vertex transitive n-polytope, then there exists a fundamental region

for dP containmt) only one vertex of P.

Proof

Since P* is an {n — Intransitive n-polytope, there is a fundamental region

for GP = GP* in OP* containing only one centroid of a facet of P*. The radial
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projection of this region to OP from the centroid of P is then a fundamental

region in OP of the required type.

Now we examine the dimensions of fixed point sets of the vertices of a perfect

n-polytope. We first consider the case when a polytope is both O-transitive and

{n — Intransitive.

LEMMA 6:2.3

Let P be a. O-transitive [n — 1)-transitive n-polytope. Then P is perfect if

and only if d.im(fi.xv) =dim{fi.xc) = 1. where v is any vertex of P and c is the

centroid of a.ny facet of P.

Proof

Let P be a 0- and (?? — Intransitive ?7-polytope. First suppose that P is

perfect. Then P cannot lie deformed into a symmetry equivalent non-similar

polytope. Suppose that dim.{fi.xv) ^ 1. By corollary 2.2, there exists a funda-

mental region D containing only one vertex v of P . Thus we can define a D-path

6t from P by mapping v to w — v + e. Since dim(fixv) ^ 1, 8t may be chosen

such that the points O. v and w are not collinear. Then Pt = St(P) =conv(G.w)

is a. symmetry equivalent non-similar polytope. This is a contradiction if P is

perfect. Therefore dim(fi.xv) = 1 and hence dim(fi.xc) = 1 by polarity.

Conversely suppose dvn(fixc) = dim.(fi.xc) = 1. Let D be a fundamental

region of P containing only one vertex v of P. We shall consider all deformations

of P to nearby polytopes by paths of v. The paths that take v off its fixed point

set are not D-paths as the resulting polytopes have different number of vertices

to P. Such polytopes cannor be symmetry equivalent to P. A path keeping v on

its fixed point set results in a polytope similar to P , since the effect is a dilation.

Hence any deformation of P to a symmetry equivalent polytope is a similarity,
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and so P is perfect. By the same argument, since P* is perfect, it is necessary

for dim(fixc) — 1.

It is not a sufficent condition for perfection that a polytope be both vertex

transitive and facet transitive. As an example, we can consider the anti-prism

of a line segment. Such a polyhedron P is tetrahedral in shape. If the four

congruent triangular faces are not regular, then P is a non-perfect vertex and

facet transitive polytope. See figure 6.1 for a picture of such a tetrahedron along

with its net.

C

B

A B A A

Figure G.I The net of a non-perfect tetrahedron T, 9(T) = (1,3,1)

which is vertex and facet transitive

In fact, what we have shown in the proof of lemma 6:2.3 is the following,

which we give as a corollary.

COROLLARY 6:2.4

If P is a perfect vertex- or facet-transitive n-polytope then dim(fixv) — 1 or

dim.(fi.xc) = 1 respectively.

Now let P be any polytope with vertex orbits given by G.vi,... , G.vm

for some 777. > 1. Then let P, =conv(G.Vi) denote the polytope given by the
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convex hull of the ith orbit. Clearly the polytope derived from a vertex transitive

polytope P gives rise to Pi = P for all V{ £ FQP. We explore the fixed point set

of a vertex of any perfect polytope, that is, one in which vertex transitivity is

not assumed, by studying the poly topes P;.

PROPOSITION 6:2.5

Let P be a perfect n-polytope. Then Pi is an n-polytope, for all i.

Proof

Suppose dim(Pi) = k for some z, where 0 < k < n — 2. Then G holds a

fc-dimensional subspace aff{Pi) setwise (or, if k > 0, pointwise) fixed. It then

follows that G is reducible or that fixs ^ O. This is a contradiction by theorem

1:7.5. Hence dnn(Pi) = n.

It is easy to see that the converse of this proposition is false by consider-

ing any non-perfect vertex transitive polyhedron. These have been classified in

Robertson [l] and are given with their deficiencies. For instance, consider the

general antiprism given in figure 6.1 which has deficiency 2.

PROPOSITION 6:2.6

/ / P is perfect then Pi is perfect.

Proof

Suppose Pi is not perfect for some i. Then there exists a deformation 8

of Pi and a D-path St : Pi —> S(Pj.t) for some t £ I such that the paths

{S(v,I) : v G FoPi} are given by G.8(vi,I). Since dim(fixVi) 7̂  1, we can assume

that O, Vi and 6t(vi) £ fixVi are not collinear. Then there exists a deformation

8' of Pi defined by paths of vertices given by G.{s8t(vi) + (1 — s)vi : s £ /} such

that sSt(vi) + (1 - s)v{ £ fixVi for all s £ /. Let 6's : P, -» <5'(P,-,s) be a D-path
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of 8'. We may consider 8's acting on some fundamental region D of the action of

GP containing only one vertex u,- of Pi.

Since any point x in P may be given using barycentric coordinates in terms

of vertices of P, the deformation 8' induces a deformation of P such that the

D-paths on the vertices {G.VJ : j ^ G.vi} are radial projections Vj —* (1 + e)vj

for some e and the D-paths on {G.V{} are given by 8's. This is a contradiction

to the hypothesis that P is perfect.

We note that the converse of this proposition is false. We can find numerous

counter-examples by taking P to be the convex hull of the union of a regular

polytope R with (R)*. where R is a dilation of R, such that P is not a Wythotope.

For instance see figure 6.2, where conv(G.P\) is a cube and conv(G.P2) is an

octahedron. The polytope P is not perfect as each of the two vertex orbits can

be displaced independently of the other one. At a suitable dilation of Pi, i = 1

or 2. P is a rhombic dodecahedron of the first kind (this occurs when the two

triangles common to any edge of Pj become co-planar). In such a case G.v\ and

G.vo have the same symmetry group G = GP.

COROLLARY 6:2.7

Let P be a perfect n-polytope. Then dim(fixc) =dim(fi.xv) — 1 for any vertex

v of P and for the centroid c of any facet of P.

Proof

This follows from proposition 2.6 and corollary 2.4.
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{4,3}

{3,4}

Figure 6.2 conv(a3 U o3)

The fixed point sets of the vertices of an ?T-polytope and of its polar form

part of the G-stratification of En. We consider the case in which a given perfect

polytope has the same G-stratification as a regular polytope, in other words

both polytopes have the isomorphic symmetry groups.

First we give a simple definition. Let P be an n-polytope. Then we say

that two z'-faces, 1 < i < n — 1, f\ and fi of P are adjacent if (/i D fa) is an

(i — l)-face of P. Two vertices v\ and vo are said to be adjacent if the line

segment v\V2 is an edge of P.

PROPOSITION 6:2.8

Let P be an n-polytope such that GP is the symmetry group of a regular

n-polytope. If P is perfect then either P or P* is Wythoffian.
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Proof

Clearly if P or P* is Wythoffian, then P is perfect. Let P and R be n-

polytopes with the same symmetry group G such that P is perfect and R is

regular. Suppose that there are r vertex orbits and 5 facet orbits in P. Then

P* is perfect with 6- vertex orbits and r facet orbits, and GP* = G. We may

suppose therefore that 5 > r. It may be helpful to consider the polyhedron in

figure 6.2 as an example during this proof.

A fundamental region D of R (and hence of P) is the ??.-simplex A whose

vertices are O.CQ cn_i where c,- is the centroid of an ?-face A{ in a maximal

flag of R. Suppose P = conv(G.i>i U- • •UG.ur) where VJ 6 D, 1 < j < r. Since P

is perfect, dim(fi.xVj ) = 1. Hence for each j — 1, . . . . r, Vj lies on the ray a; from

0 to c, for some / = 0...../? — 1. Without loss of generality, suppose {v\,... , vr}

is labelled such that if r, 6 a, and i' i+1 £ Q't then j < k. Each Pj = conv(G.Vj)

is Wythoffian and is derived from a regular polytope similar to R. (or R*).

We note that the fixed point sets of centroids of facets of a wythotope W

derived from R coincide with the rays G.Qo and G.an-\. We also note that

the facets j \ and f-j with centroids c\ and Co on cio and Q';1.-i, respectively, are

adjacent with common (77 — 2)-face / ' such that the centroids of / ' , f\ and fi

are coplanar with O.

If ;• = 1. then P is. by definition. WTythoffian. Suppose r > 2. Therefore

(1) there are / polytopes P,. 1 < t < r, that have a facet ft with centroid 7< on

Qo and (2) the intersection (QQ H dP) is either a vertex of P or the centroid of

a facet of P.

First suppose (op D DP) is a. vertex *> of P. Then conv(G.v) is regular and

similar to R. Thus v — v\. Let .r be such that 1 < x < r and \O^X\ > \Ojt\ for

all 1 < t < ;•. Then x is unique. For suppose that fy is a facet of Py for some
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y such that ^y = 7X. Let x and y be representatives of the vertice orbits of fx

and fy respectively, such that x and y both lie in the same fundamental region.

Therefore x and y are centroids of faces in some maximal flag of [j,R for some

dilation [i. Thus Px and Py are derived from the same poly tope JXR. This is a

contradiction since either Px C Py or Py C Px, according as x > y or x < y.

We also show that Px is not regular. For if Px is regular then Px is similar to

R* and x = r. If r > 2, then there exists i, 1 < i < r such that G.V{ C PoP- We

may suppose that the convex hull Pi of G.vi is derived from isR* for some positive

real number v > 0. Then the centroid 7; of some facet of P,- is on ci'o. Since

1/ > 0, |07i | > |O7r|, which contradicts our hyphothesis. Now suppose r = 2,

in other words, P = conv([tR. U ẑ Pi.*) for some /i. Since the centroids of i-faces

of PL are centroids of (n — i)-faces of R*, it follows that P is (?7. — l)-transitive.

This contradicts r > s. Therefore Px is a wythotope.

If x is an extreme point of P , the boundary of fx is a part of the boundary

of P. Then any (??. — 2)-face of fx is an (IT — 2)-face of P . Conv(fx U v) is an

n-cone with base fx. Then with the exception of / x , the facets of conv(fx U v)

are facets of P . Let / ' be an (n — 2)-face of fx such that the centroid c' of / ' is

coplanar with the points of QO and an-\. Then /* = conv(f U v) is a facet of

P . Since P is perfect, the centroid c* of /* lies in a 1-dimensional fixed point

set. Therefore c* = c; for some i, 1 < i < n — 2. Then O, Co, c; and cn_i are

coplanar which is a contradiction if ( AQ, ... , -4n_i) is a maximal flag of R.

Now if (a U dP) is the centroid c of a facet / of P , then the (n — 2)-faces

of / are (n — 2)-faces of P and / 6 Fn-iPi for some 1 < i < r. Let / ' be the

(n — 2)-face of / whose centroid is coplanar with 0 , CQ and cn_i. Then there

exist a facet /* of P containing / ' and a facet fj of some Pj, 1 < j ^ i < r,

whose centroid lies in Q-0 such that either v G Po/j and v € Po/* or / G P,,_2/j

and / 6 Fn-.of*- In either case the centroid of /* is coplanar with O, Co and
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cn_i. This is a contradiction by the above.

Hence r = 1 and P is Wythoffian. Note that if s < r then the proof shows

5 = 1 and P* is Wythoffian.
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CHAPTER 7

PERFECT POLYTOPES

One problem in proving Pinto's conjecture 11:2 is dealing with the perfect

polytopes. such as the Gosset polytopes, that are not associated to any regu-

lar polytope. If Pinto's conjecture is correct then such polytopes occur only

in dimensions n > 6. For this reason we concentrate on the case ??. = 4 (in

other words. Rostami's conjecture l:S.l), although some results are found for

the general case. We first consider necessary conditions for a perfect polytope

to be regular, in the form of a conjecture. This leads to some interesting results

on the orbit, vector of a perfect polytope and points towards a classification in

dimensions 4 and 5.

1. Regularity for perfect polytopes

There are many examples of non-regular prime perfect polytopes which

are transitive only on either the vertices or the facets. Take, for example, the

wythotopes or their polars respectively. The following conjecture is based on
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consideration of all presently known perfect poly topes.

CONJECTURE 7:1.1

Every prime perfect O-transitive (n — V)-transitive n-polytope is regular.

It is noted that the Gosset polytopes do not contradict this statement as

no such polytope is facet transitive. We also note from chapter 5 that this

conjecture is true if Pinto's conjecture is true. It has not yet been possible to

prove conjecture 1.1 in the general case but a proof for n=4 is given in chapter 8.

The cases n < 4 are already familiar. We explore some of the metric properties

of such polytopes

PROPOSITION 7:1.2

Let P be. a prime perfect O-transitive (n — l)-transitive n-polytope. Let f be

an. i-face -with centroid c and / ' are (i + l)-/ace with centroid c', such that f < f.

Then (1) CCj\ = for all k € -Fo.f, and (2) cc' is perpendicular to f.

Proof

We shall prove this inductively by considering an i-face of P to be given

by the intersection of (?? — /) mutually adjacent facets of P. We assume P to

be n-prime, since otherwise the • -decomposition results in a decomposition of

E" into orthogonal subspaces. Also if P — nT'A for some integer ?* and some

polytope .4. then P is perfect 0- and (??. — l)-transitive if and only if A is perfect

0- and (n — Intransitive by proposition 1:7.4 and chapter 5.

(n — I — 1). Let /,- be a facet of P with centroid cr and let v be any vertex of fr.

Then by corollary 6:2.7, dim(fi.xCr) =dim(fixv) = 1. Therefore aff{fr) and the

line Ocr are orthogonal. In particular, lvjCrO = ir/2 for all VJ G Fofr. Since P

is 0-transitive and (?? - Intransitive, we have \OVJ\ = \Ovk\ and \Ocr\ = \Oc
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for all vr,vs 6 FQP and fr,fs € Fn-i-P, respectively. Therefore \crVj\ = \crVk\

for all Vj,Vk G -Fo/r- Hence the proposition is true for n — i = 1.

We also check the case n — i = 2. Let / = f\ D /2 be an (n — 2)-face with

centroid c, where / i and /2 are facets with centroids c\ and C2, respectively.

Then for any x £ / , LOc\x = /.O02X — TT/2. Then |ci.r| = |c2#|. Therefore

cc\ and CC2 are perpendicular to / . Let x>\, U2 be any two vertices of / , then

Lc\cv\ — Lc\cvi — 7r/2 and \c^vo\ = tci^2[• Thus we have |cui| = |ci>2|. Hence

the proposition is true for n — i = 2.

(n — i = h + 1). Suppose the proposition is true for all n — i — 1 , . . . , h. Let

/ be an (n — h — l)-face of P common to the facets / 1 , . . . , / r , r > h + 1, with

centroids c j , . . . , cr respectively. Let / have centroid c. Then / is the intersection

of 3 (n — /?)-faces a-i, . . . , Q S of P , where a,- is given by the intersection of h

suitably chosen facets fj and s > h + 1. Let ci; have centroid 7,. Then for

any .T £ / , LOfix = LO~iyx = TT/2 for i , j = l , . . . , . s . Therefore / lies in

the intersection of the perpendicular bisectors of the points 7;,7j for all i,j —

1, . . . ,5 , i 7̂  j ; . Therefore / is perpendicular to cjt for i — 1,.. . ,6. Now let

vi, ^2 be vertices of/ . Then z'i,t'2 < cvt- for i = 1 , . . . , ^ . Hence |i>i7i| = | f 2 Ti I •

Therefore |t'ic| = \v2c\. Thus the proposition is true for n — i = h + 1.

Therefore by induction the proposition is true for n — i — 1 , . . . , n — 1, that

is, it is true for all /-faces, i — 11. — 1 , . . . , 1.

We now give two corollaries of Proposition 2.1.

COROLLARY 7:1.3

Let P be a prime perfect 0-transitive (n — I)-transitive n-polytope. Let f

be an i-face with centroid c. Then \ccr\ = \ccs\ for all facets fr, fs such that

f<frjs-
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Proof

This follows by polarity.

COROLLARY 7:1.4

Let P be a prime perfect 0-transitive (n — l)-transitive n-polytope. Let f be

an i-face, 1 < i < n — 2, with centroid c. Suppose that f < f for some facet f

with centroid c'. Then the line cc' is perpendicular to f.

Proof

The case i = n — 2 follows from proposition 1.2. Svvppose i < n — 2.

Let Qfj be an j-face with centroid jj, where i + 1 < j < n — 2, such that

/ <i cvj+j < ••• < an~2 < / ' • Then c'yn-2 is perpendicular to 7«-27n-3

by proposition 1.2. Hence yk+ilk is perpendicular to jklk-i by a repetitive

argument, z < k < ?? — 3. Thus cc' is perpendicular to aff[f).

Thus each i-face / of prime perfect O-transitive (n — 1 )-transitive ?i-polytope

P-, 1 < z < »• is such that the set Fof lies on some (i — l)-sphere with centre at

the centroid of / . Also we have all of the centroids of the i-faces of some facet

/ ' of P lying on some n-sphere with centre at the centroid of / ' .

Suppose we let fj, fk be i-faces of P with centroids c*-, cj. and let fs, ft be

?--faces with centroids c^, c[, such that fs < fj and ft <fk. Then in view of lemma

5:1.1 and the above, the proof of conjecture 1.1 would follow if it were possible

to prove that |c'-c£| = \c\.cr
t\ for all 0 < r < i < n. However we have not been

able to prove this property.

2. Conjectures on orbit vectors of perfect polytopes

We consider the orbit vector of any prime perfect polytope P with the as-

sumption that conjecture 1.1 is true. In particular, we explore what restrictions

are imposed on the transitivity of vertices and facets of P.
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We begin with some notation. Let P be any ??.-polytope. For any vertex v

of P , let Ev = {e € F\P : u < e} be the set of all edges of P emanating from

v. Let Vv = {VJ (E FQP : i>,- < e for some e G i£,,} be the set of all vertices of

P adjacent to v. Now we suppose that P is perfect and let Pi = conv(G.Vi)

for some v, £ FQP. Then by proposition 6:2.6, each Pi is a perfect 0-transitive

polytope.

PROPOSITION 7:2.1

Let P be a prime perfect facet transitive n-polytope. If P is not vertex

transitive, then either (a) 9(P) = (2, 1, 92. . . . , 6>n_2,1) or (b) dim(aff{G.Vi D

/ ) ) < n — 1 for some facet f of P and some vertex IH of P.

Proof

Let P be as stated, and suppose that P is not vertex transitive. Since P

is (;; — l)-transitive we may suppose that V; <3 / . Suppose aff(G.Vi H / ) is an

(n — l)-dimensional space. Then / ' = conv{G.Vi f\ f) is an (?7 — l)-polytope

contained within / and / ^ / ' . Thus the closure of the complement of / ' in /

is a collection of (n-l)-polytopes a i , . . . , ar such that / = / ' U Q'i U • • • U ay, for

some ?• > 1. Let r 6 V',.,. v (jz G.v-,. Thus v and •(.?,• are endpoints of some edge e

of / . It may be useful to consider the polyhedron given in figure 7.1 during this

proof.

Then if ( / n !•*,.) % G.v,. there is a vertex -v* adjacent to v, that is v* 6 Vv,

such that v* £ G.v;. In this case, both v and v* belong to one of the polytopes

Oj. Now a, and / ' share an (;?. — 2)-face Li. However ft is an (n — 2)-face of Pi

and hence belongs to a unique facet f\ of Pi other than / ' . Therefore each ray

Of? and Or* intersect the interior of f\ in a distinct point, but these points have

1-dimensional fixed point sets, which is a. contradiction. Therefore f C\VV C G.Vi

and hence !•',. C G.c, for all v £ G.v,. Similarly we have VVt C G.v for vi $ G.v.
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Thus / contains vertices from two orbits and each edge of P has one endpoint in

G.vi. Let Vi, v < e for some edge e. Then Gv.e generates En since dim(fixv) — 1,

and likewise for G,,,. .e. Thus conv(G.e) is an ?i-polytope Q such that FQP — FQQ.

Hence P — Q and G.e = F\P. Since P is facet transitive we conclude that the

face-orbit vector of P is given by 9(P) — (2,1,92,.. • , 9n-2, !)•

G = ZZ2 x 2Z2 x ZZ2 vertices in G.u;
labelled •

'/ / ' / ' ' , y ' ' ' 'i 's '', " , "/i\

a; = OvDfi
y = Ov* n /x

Figure 7.1 A distorted truncated cube with three vertex orbits

PROPOSITION 7:2.2

Let P be a prime perfect facet transitive n-polytope. As a consequence

of corijecture 1.1 either c.07i.v(G.v) is a. prime perfect n-polytope Pl such that
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9(P<) = ( l , # i , . . . , 0 n _ 3 , l , 2 ) or P* is Wythoffian, vjhere v is a vertex of P or

of P*.

Proof

Let P = P1 have ???i distinct vertex orbits given by G.v\,. . . , G.vmi. Let

py =conv(G.Vi). If the supporting hyperplanes of a facet / of Pl and of a

facet of P} coincide, in other words, / ' C / for some facet / ' of P / , then

dhn(aff(G.Vi n / ) ) = n - 1. Therefore either 6(PV) = (2,1,02 , • • • A - 2 , 1 ) or

the facets of P;1 are only given by conv(G.Vi fl Vv) for some vertex v £ G.vi of

P 1 by proposition 2.1. Then in the latter case P 2 = (P/)* is a prime perfect

facet transitive ;?-polytope with m? distinct vertex orbits, where nio < mi since

there are at most 77;.i — 1 vertex orbits to which v can belong. After finitely many

repetitions of this procedure, and writing Pk'+1 = [P^ )*, we obtain P-7 such that

0(PJ) = (2.1. 6»2..... 0,,_2.1) or mj = 1. If mj = 1 then P J is a prime perfect

vertex transitive facet transitive ??-polytope and hence regular by conjecture 1.

Otherwise P is Wythoffian by proposition 6:2.8.

The general polytope Q with 8(Q) = 9{P3) above has facets with strict

(n — 2)-transitivity conditions as we now see.

LEMMA 7:2.3

Let P be. an, 11 -polytope -with two facet orbits and one (n — 2)-face orbit.

Then the isotropy subgroup at the centroid c of any facet is transitive on the

(77 —2)-faces of that facet, and dim(fi.xc) = 1.

Proof

Let P be an (n — 2)-transitive j?-polytope with two facet orbits. Let / i , / 2

be adjacent facets. Then the intersection f\ f) fo is an [n — 2)-face and hence a

representative for the orbit Fn_2P- Since any (?? — 2)-face of P belongs to just
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two facets of P , f\ £ G./2. For since otherwise there would be only one facet

orbit. Hence all facets adjacent to any given facet fj lie in the orbit G.fi such

that fj (£ G.f,. Let a, a* <] fj be any two (?i — 2)-faces. Then a < / and a* < /*

for some facets / , /* 6 G.fi. Since P is (n — 2)-transitive there exists g (E. G such

that g(a) = a*. If </(/) = / ? then fj 6 G'./; which is a contradiction, therefore

</(/) = f*. Hence g keeps fj setwise fixed. Therefore Gc is transitive on the

(??. — 2)-faces of fj, where Cj is the centroid of fj. The affine hull of the centroids

of all (n — 2)-faces of fj is an (n — 1)-dimensional space kept setwise fixed by

GCj • Hence dim(fi.xci) = 1.

COROLLARY 7:2.4

Let P ha an. edtjr.-transitive n-polytope with two vertex orbits. Then the

isotropy xubgroup of any vertex v is transitive on all vertices adjacent to v.

Proof

Follows immediately from the above by polarity.

3. Conjectures on a classification for n = 4 and 5

We conjecture a classification of the perfect polytopes up to dimension 5

based on conjecture 1.1. We consider perfect polytopes whose orbit vectors are

given by 6{P) = (1. Q\..... . $7,_3,1, 2). It seems unlikely that such polytopes

exist in dimensions n > 4 due to the (?? — 2)-transitivity. We first consider a

simple lemma.

LEMMA 7:3.1

Let R be a regular n-polytope -with symmetry group G. Let c be the ce7itroid

of any facet f and v be any vertex in f. Then any symmetry g is a product of

finitely ma.ny elements of Gc U Gv.
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Proof

This follows immediately since the stratification of Gc and Gv defines the

boundary of a fundamental region for the action of G on R. Alternatively,

consider any symmetry g of R. Then we can assume that g is a reflection since

otherwise g is a product of reflections. Here, a reflection is a transformation

g that holds an (n — l)-space H pointwise fixed and takes .T £ H to —x with

respect to if, in other words g has eigenvalues equal to —1 and 1 of multiplicity

1 and (72 — 1) respectively. Any reflective hyperplane H then contains n — 1 of

the centroids of faces from a, maximal flag. Therefore H contains the centroid

of a facet or a vertex, hence the reflection is in the isotropy subgroup of that

point.

Recall that the fc-faces, 0 < k < n — 2, of any polytope Q may be defined by

the intersection of a suitable number of suitable facets of Q. We use this fact to

define a new polytope from a. perfect polytope, in order to prove the following

proposition.

PROPOSITION 7:3.2

Let P be an n-polytope with orbit vector 6{P) = ( l , # i , . . . , # n _ 3 , l , 2 ) . As a

consequence of conjecture 1.1. P is perfect if arid only if n = 3.

Proof

If ??. = 3 then 6{P) = (1,1,2). Therefore P is perfect by Robertson [1]. Let

n > 4, and suppose that P is perfect. Let / i , ft be any two adjacent facets of P.

Let Cj be the centroid of / j , j = 1,2 and CQ any vertex of P. Then dim(fixCi) = 1

and GCi is not reducible on aff[fi) by the proof of proposition 2.2, for i = 0,1,2,

where /o is a facet of P* with centroid on fixCo. By lemma 7:2.3, f\ ^ G./2.

If aff(fi) and a.ff[f2) are perpendicular, then all facets adjacent to one an-

other are perpendicular. In this case, any vertex v is given by the intersection
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of n mutually perpendicular hyperplanes. Now v is contained in some facet in

G.fi and some facet in G./2. Since dim(fixv) — 1, it follows that Gv is re-

ducible on the hyperplane orthogonal to fixv. This is a contradiction by the

above. Therefore aff^fi) and aff[Oc2) intersect in some point x. By lemma

2.3, GCj is transitive on the facets adjacent to fj for j = 1,2. Since x €.fixC2,

dim(fixx) = 1 and Gx is transitive on the facets adjacent to f2, and hence on

their affine hulls. Let FQQ = {y £ En : y = g.x for some j 6 G} and let

Q =conv(FoQ). Then y 6 FQQ is such that y G fix
g(c2)

 anc^ Gy iS transitive on

the affine hulls of all facets adjacent to g(f2), for some g 6 G. Let h =aj]{fi),

then Gy(h) = {H C En : H = g(h) for some g e Gyiy G F0Q} is the set of

all hyperplanes supporting facets in G.f\. Now GCl is transitive on the set Ffr

of facets adjacent to j \ , and hence on the fixed point sets of centroids of facets

in Ffi. Therefore the affine hull of (G'Cl..x) is the hyperplane h and the convex

hull is a facet / ' of Q. Clearly GCl is transitive on the points of GCl-x. There-

fore the centroids of /1 and / ' coincide and h = aff(fi) = &£/{/')• Thus Q is

a vertex transitive facet transitive ??-polytope, such that the fixed point set of

the centroid of any facet or any vertex is 1-dimensional. Therefore Q is perfect.

By conjecture 1.1 Q is regular. Obviously, if we considered the supporting hy-

perplanes of facets in G./2, we would get the polar of Q as our polytope. Let

G be the symmetry group of P and G(Q) be the symmetry group of Q. Then

G{Q) C G by the above and lemma 3.1.

Suppose P* has vertex orbits G.v\ and G.V2- Then let (P*)i be the convex

hull of the G.iu, i = 1,2. Let Q = Qo, then we can consider the perfect n-

polytopes (P*)i and {P*)2. Both of these polytopes are 0 and (n — 2)-transitive

and have two facet orbits. {P*)i and (P*)2 have vertex-set given by the orbits

of c\ and Co, respectively, and have facet-set given by the union of orbits of c0

with C2 and CQ with cj, respectively. For (P*)i and (P*)2, we can define regular
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polytopes Qi and Q2, respectively, in a fashion similar to the above, such that

Qi has vertex orbit G.Cj, where i ^ j and i,j = 0,1,2. Now {foQi, fn-iQi}

is independent of i = 0,1,2, where frP denotes the number of r-faces in P.

Hence for each i,j — 0,1,2, Qi is similar to Qj or to Q*;, since any two regular

?^-polytopes R and R' are similar if and only if f0R = JQR'. If QQ and Qi, say,

have the same vertex set G.C2, then the fixed point sets of CQ and C\ coincide.

This is a contradiction to the face-structure of P if P is perfect. Hence n = 3.

We now are able to state Pinto's conjecture for the case n = 4 or 5 which

is true if conjecture 1.1 is true.

CLASSIFICATION CONJECTURE 7:3.3

Let P be a prim,e perfect n-polytope, n = 4 or 5. then P or P* is Wythoffian.

Proof

Suppose P is a prime perfect n-polytope. Let P{ =conv(G.vl). Then

Pi is a vertex transitive perfect n-polytope. Therefore P,- is Wythoffian or

0(P) = (1,1,2). in which case P is a 3-wythotope since the perfect polj'he-

dra are classified. In any case P has the symmetry group of a regular polytope

and hence P is Wvthoffian.
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CHAPTER 8

DIMENSION 4

We investigate sums of angles formed'by adjacent faces of a polytope. In

view of proposition 7:1.2, this gives some useful information on the 2-faces of

certain perfect polytopes. In section 2 we prove conjecture 7:1.1 for n = 4, and

hence classify the prime perfect 4-polytopes. This proves Rostand's conjecture

1:8.1 and leads to a classification of the perfect 4-solids.

1. Angle sums

We explore the restrictions on the angle between two adjacent z-faces of

some (i + l)-face of an ?i-polytope. We are specifically concerned with the case

i + 1 = n = 4.

Suppose v is a vertex of some polygon R. Then the two edges of R containing

v form an angle 6 called the interior angle of R at v. It is trivial to note that

because R is convex 6 < TT. NOW let r be any vertex of some polyhedron P.

Suppose the number of faces of P containing v is q. Then at v there are q
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interior angles. These q angles must total less than 'IT: since otherwise v is not

an extreme point of P. Thus we have an angle sum inequality at v. We can also

find an angle sum inequality at an edge of some 4-polytope as follows. Let e be

any edge with midpoint e contained in a 3-face / of some 4-polytope P'. Then

the subspace of aff^f) orthogonal to aff(e) is a 2-space which cuts the boundary

of / such that the intersection is locally the boundary of a polygon a with vertex

e. The interior angle of a- at e is called the dihedral angle <j> of e in / . We have

<f> < TT if e is an edge of / . Likewise the subspace of aff{P') orthogonal to aff(e)

is a 3-space which cuts dP' such that the intersection is locally the boundary

of a polyhedron /3. Thus the sum of the dihedral angles at any edge e of the

3-faces containing e is less than 2TT. For example, suppose P' is the 4-cube (see

figure 8.1). Then a is a square and ,3 is a cube.

P

s /

/

A
/ i

/ i
1 i

i i
i i
|

/

/

/

da Off

Figure S.I
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Now let P be a O-transitive (n — l)-transitive prime perfect ?i-polytope.

Then every 2-face of P is a circumscribed polygon Q by proposition 7:1.2 in the

following sense: if c is the centroid of Q then the set FQQ lies on a circle C with

centre c. Suppose t ' i , . . . ,vq are the vertices of Q such that u,-u,-+i and vqv\ are

the edges of Q, where i = 1 , . . . ,q — 1. Let 9{ be the interior angle of Q at V{.

Then it is useful to prove the following geometric result.

LEMMA 8:1.1

Let Q be a q-gon. q > 3. circumscribed by a circle C with centre c. Suppose

Q has centroid c and 9 is the minim-inn interior angle of Q. If 9 < ^ then Q is

an equiangular triangle and if 9 = £ then Q is an equilateral quadrilateral (in

other words, a square or rectangle).

Proof

Suppose q > 4 and 9o — 9 < y. Then Q contains the triangle A = Ai-'i?>n>3-

The complement of A in Q is a [q — l)-gon Q'. Since 9 < f, there exists

a diameter D of C such that the centroids of both A and Q' lie in one of the

semicircles of C defined by D. Therefore c is not the centroid of Q. Now suppose

that j < 9 < £. Let Dt be the diameter of C given by the point V{, for i = 1,3.

Then Q is divided into four regions A\, Ao, A3 and .44, where D\, D3 define

the regions Ai, A3 and .49 contains the vertex v-2, see figure 8.2. Let a; denote

the area of the region .4,-. Clearly o2 < 0.1 if 9 is a minimum interior angle and

q > 4. However, aj + 04 = ao + 03 and a.\ + ('2 = <"'3 + 04 if c is the centroid of

Q. Thus a2 = a.j. This is a contradiction. Hence q = 3. Then by lemma 5:1.1,

Q is regular.
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Figure S.2

Let Q be a q-gon with smallest interior angle 62 = %. Then ui and U3 lie

on a diameter. Clearly q ^ 3. Suppose <y > 5. The centroid c of Q is given by

^T\ vi — c. However vi + 1-3 = c. Thus V2 + i'-i + • • • + vq = c. Therefore Q' =

coni;(u2, U4,... , Vq) is a ((/ — 2)-gon with centroid c and minimum interior angle

less than %. Thus Q' is an equilateral triangle and hence q = 5.

Let .4i = conv(v2, V3. v.i) and .4-2 = cony(ri, t'9,1*5) be regions such that

Q — A\ + Q' + .4-2, see figure S.3. Let D be a diameter through V5. Let B\,B2

be the regions defined by D such that .4i = B\ + B-7- Suppose a; and 6,- denote

the areas of .4,- and Bi respectively. Then ci\ = (12 and 61 = Ai + 62. This

is a contradiction since ci\ = b\ + 62- Hence </ = 4. It then follows that Q is

equiangular.
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Figure 8.3

Now suppose P is a prime perfect O-transitive (n — l)-transitive ?7-polytope.

Let valf(i') be the valency of v in / where v is some vertex of / and / G FP.

If / G F3P then valf(v) — 3, 4 or 5 in order to preserve the interior angle sum

inequality at v. In fact if valj{v) ^ 3, then v <i t < / , where i is some equilateral

triangular face. Moreover we have the following simple lemma.

L E M M A 8:1.2

Suppose P is a prime perfect O-transitive (n — 1)-transitive n-polytope with

vertex v such that valj{v) = 5 where f G F3P. Then the edges of f containing

v are all of the same length and ai least four of the 2-faces of f containing v are

equilateral triangles.
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Proof

Suppose v has valency 5 in / . Let (pi,... ,6$ be the interior angles of the

2-faces of / at v. Then <f>i + • • • + (p5 < 2TT and 4>i = j or 4>i > j . Therefore

at least four of the Oj are angles of j , in other words, there are four equilateral

triangles at v in / . Hence all edges emanating from v in / are of equal length.

Proposition 7:1.2. suggests that the 2-faces of a O-transitive (rc —l)-transitive

perfect 77-polytope should be either regular or semiregular.

2. Perfect 4-polytopes

Let P be a O-transitive 3-transitive prime perfect 4-polytope. Let / be a

facet of P. Then valj(v) = 3, 4 or 5 for any vertex v of / . The case valf(v) = 5

is quite interesting as is shown by the following lemma.

LEMMA 8:2.1

Let P he. a 0-transitive 3-transit.ive prune perfect 4-polytope. Let f be a facet

•with vertex 1: such that valf(v) = 5. Then one of the 2-faces of f containing v

is not a triangle

Proof

Let cal f(o) — 5 for some vertex v. Then there are at least four triangular 2-

faces containing r in / by lemma 1.2. Suppose that all the 2-faces of / containing

r are triangles. Then the 2-faces of / containing v are equilateral triangles by

proposition 7:1.2. Let S be the sphere with centre ^ containing the vertex set

Fof. Then there exists an icosahedron a such that Foa C 5, v G F^a and the

2-faces of / containing v are 2-faces of o.

Let r' be a vertex adjacent to c. If valf(v') = 3 then / is a pentagonal

cone . This is a contradiction of proposition 7:1.2 since the centroid of such a
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cone does not coincide with s. If valj(v') = 4 then v' is contained in either

(1) two triangular faces and two quadrilateral faces or (2) three triangular faces

and one m-gonal face. In (1), / is a 'lantern' with 12 vertices, 25 edges and 12

faces. There are possible three dihedral angles, e1? e2, or e3, of an edge e of /

depending whether e belongs to 0, 1 or 3 triangular faces respectively. See figure

8.4. These dihedral angles may be calculated. We find that e\ = ^jr- and e2,

e$ > j . This is a contradiction of the dihedral angle sum inequality at an edge

contained in a triangular face. In (2), the facet contains at least two vertices of

valency 5. This then leads to a contradiction to proposition 7:1.2.

Figure 8.4

Therefore valf(v') = 5 and / is an icosahedron by a similar argument.

Hence P has congruent regular facets. Thus by lemma 5:1.1 P is regular. This

is a contradiction as no 4-polytopes exist with only icosahedral facets.

The lantern described in the proof of this lemma is derived from a pentag-

onal prism 5 n / , for some interval I. We call a polyhedron an M-lantern if it

is derived from an ?7i-gonal prism in a similar fashion.

We now prove conjecture 7:1.1 for the case n = 4 by considering the dihedral

angle sums of edges of a 4-polytope. The proof also uses Euler's relation:

v - e + f - h = 0,
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where v = /OP, e = f\P, f = /2P and h = /3P are respectively the total

number of 0-, 1-, 2- and 3-faces of P. In such a case, we say the face vector of

P is the vector / (P) = (u, e, / , /z).

THEOREM 8:2.2

A prime perfect ^-transitive 3-transitive A-polytope is regular.

Proof

For any facet / of P, G(f) = F3P. Suppose c is the centroid of / . Since P

is perfect fixc is an 1-dimensional subspace of S4 . Thus c is the only fixed point

in aff{f) under Gc.

We consider the action of Gc on aff[f) in terms of orbits Gc.Vi of vertices

Vi of / . We show that / is regular using the classification of vertex transitive

polyhedra (see Robertson [1] and Robertson and Carter [1]).

First suppose that /; = conv(Gc.Vi) is of dimension 1 or 2 for some vertex

Vi. In other words, Vi lies in some Gc-invariant subspace of aff(f). Since the

triangular and quadrilateral faces of / are equiangular, the facet / is of the form

Mol or is an M-lantern, for some m-gon M and interval / . The valency valf(v)

of any vertex is 3, 4 or 5. Then the vertex set Fof lies on a sphere S containing

F0Q for some Q = {3,3}, {3,4} or {3,5}. The cases valf(v) = 3 and ral/(u) = 5

are contradictions by proposition 7:1.2 and lemma 2.1, respectively. Therefore

valf(v) = 4. Thus / = {3,4} and hence by lemma 5:1.1, P is regular. This is a

contradiction since the isotropy subgroup of the centroid of a facet / of such a

polytope is irreducible on aff(f).

Therefore /; = conv(Gc-Vi) is a polyhedron, where Vi € Fof. There are four

possible cases:
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1. Gc reducible on a,ff(f) and / = /,•;

2. Gc reducible on aff{f);

3. Gc irreducible on afj{f) and / = /,•;

and 4. Gc irreducible on afj{f).

In each case we consider dihedral angle sums and Euler's relation on the

various polyhedra to show that the non-regular polyhedra give rise to contradic-

tions. Euler's relation for a polyhedron Q, where f(Q) = (v',e'f) is as follows.

v' -e' + f = 2.

Case 1.

Suppose that Gc is reducible on af}{f) and / = /,-. Then / is one of the five

families of prisms, which are labelled in table 8.1 (see Robertson [1] for more

details).

LABEL

^ m

Dm

Fm

Gm

DESCRIPTION
right prism on regular m-gon
anti-prism on regular ??i-gon
skew prism on regular 7??-gon

right prism on semi-regular 2m-gon
antiprism on semi-regular 2m-gon.

Table S.I The five families of prisms

We first note that the dihedral angle <pjj between faces /,• and fj of Cm is

given by

~

if fi or fj is not a quadrilateral;
^ / ' anc^ fj a r e ^°tli quadrilaterals.

See, for example, Cundy and Rollett [1]. The dihedral angles of Fm coincide

with the dihedral angles of Com-
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Consider / = Cm. Suppose m = 3, so / has 6 vertices, 9 edges and 5 faces.

Any edge is common to only three 2-faces (and hence three facets) as we now

show. Suppose e is an edge belonging to some triangular face T of / . In any

facet there are no adjacent triangular faces. Hence e is common to at least two

quadrilateral faces, two of which belong to facets containing T. If e is contained

in another triangular face, then the dihedral angle sum at e is 2TT, which is a

contradiction. Suppose therefore e is contained in another quadrilateral face / ' .

Then there are two facets common to / ' such that the edge of / ' adjacent to e is

contained in two triangular faces. This is a contradiction by the above. Hence

each edge of P is contained in two quadrilateral faces and one triangular face.

Now if m > 4 then cfrij > -f. Therefore each edge of P is common to (at most)

3 facets and 3 faces of P. Let e be an edge common to the 2-faces / i , ji and

fz- Since /,• and fj, i ^ j , are adjacent in some facet, only one of the / ; is an

??i-gon, i — 1, 2 or 3. Therefore each edge is common to two quadrilateral faces

and one ??T-gonal face. For any m > 3, let f(P) = (t>,e,/, h) be the face vector

of P. Suppose that the valency of a vertex vi of P is q and a; is the number of

facets common with V{. Then (m + 2)h = 2 / , mh = e, 2mh = xv and 2e = qv.

Therefore by Euler's relation we have

2mh (m + 2)h
mh H — h = 0.

x 2

Therefore x = 4 and likewise q = 4 for all m > 3. Hence P is of the form

{7n}a.s({m}), for some similarity s. If s is not the identity then P is not facet

transitive. However if s is the identity P is not prime. Both cases are contra-

dictions.

In the case / = F m , any dihedral angle is at least y. Therefore there are

three 2-faces and three facets common with each edge of P . A similar argument

to that for Cm shows that each edge is contained in one 2m-gonal face and two
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quadrilateral faces. Using the above notation we have (2?7i + 2)/i = 2 / , 2mh = e,

Amh = xv and 2e = qv. By Euler's relation, x = q = 4. For each facet / , some

vertex v of / is contained in three edges, at least two of which are not equal

if / is a semiregular prism. Then whatever the length of the fourth edge of P

containing v , P is not facet transitive. This is a contradiction.

The 3- and 4-sided faces of Em and Gm are not equiangular. Hence / ^ Em

or Gm by lemma 1.1.

Suppose / = Dm. Then / has 2m vertices, 4??7 edges and (2m + 2) faces. If

m = 3 then / is a regular octahedron and P — {3,4, 3}, which is a contradiction

if Gc is reducible. Suppose m > 4. Since the triangular faces of / are regular, /

is an Archimedean anti-prism. Thus the dihedral angles of / are

6 — sec * \/3{cosec \- cot — }
m m

<P = c o ^ - l l - 4 c o s — } ,
3 m

where the dihedral angle between two triangular faces is 6. Since 9, <? > ?, each

edge of P is common to 3 facets. Let f(P) = [v,e,f,h). Then 3e = 4???/?.,

/ = (??7 + l)h and vx = 2/77/?, where x is the number of facets common to v. By

Euler's relation x = 6. Likewise the valency of v is S. Therefore a facet /* of P*

has 6 vertices and S faces. Thus /* = {3,4}. It then follows that P = {3,4,3}.

This is a contradiction.

Case 2

Suppose / = conv(fiU- • -U/ r) such that u,- £ Gc-Vj for i ^ j , i,j = 1 , . . . , r,

where fi is a 'case 1' polyhedron . Then the axis of rotation of each /; coincides

with every other such axis. Hence each /,• is a prism on a regular ?77-gon or a

semiregular 777-gon for some fixed m. It follows that no such / exists since the

triangular and quadrilateral faces of / are equiangular and the dihedral angles of

/ are at least those found in each /,-. Moreover in the case of /,• = Fm or G,,,, the
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valency of a vertex of / would exceed 4, which by lemma 2.1 is a contradiction.

Case 3

Therefore Gc is irreducible on aff(f) and / is one of the twenty-four ver-

tex transitive non-prism polyhedra, see Robertson [1] and appendix C. These

polyhedra have deficiency 0, 1 or 2. A 0-transitive polyhedron / with deficiency

0 or 1 has dihedral angles which are invariant under any deformation 6 such

that / ~ <$(/)• If / has deficiency 2 then valf(v) = 5 for some vertex v or /

has ^-invariant dihedral angles. The dihedral angles of such polyhedra can be

calculated and are given in table 8.2, see also Cundy and Rollett [1].

If each dihedral angle 9 of / is such that 9 > ^f- then the polyhedra com-

prising of G(f) cannot be 'folded' into a 4-polytope. Thus / is not a polyhedron

of the form C, E, F, I, M. 0 , P, V or W. The polyhedra of the forms J, K

and R have irregular triangular faces, since otherwise they would be icosahedra.

Likewise / = U has trapezium faces. Hence / is not of any of these forms by

proposition 7:1.2. If / is of the form S or T then by lemma 1.2, the triangular

2-faces of / are equilateral. Therefore / is Archimedean and every dihedral angle

is greater than ^-. This is impossible by the above. We also note that with the

exception of A and H, 9 > -y. Hence each edge of / 7̂  A, if is common to three

2-faces and three facets of P.

If / = A, JB, D, or G then P has congruent regular facets. Hence P is

regular by lemma. 5:1.1 and proposition 7:1.2. If / = A then P is the 4-simplex,

the 4-cocube or the 600-cell. If / = 5 , D or G then P is the 24-cell, the 4-cube

or the 120-cell respectively.

We now check that / is not one of the remaining polyhedra. Let f(P) =

(u,e, / , h) denote the face vector of P and q — valp(v) be the valency of some

vertex v.
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Name Dihedral angles (approx.)

A Tetrahedron

B Octahedron

C Cuboctahedron

D Cube

E Icosahedron

F Icosidodecahedron

G

H

I

J

K

L

M

N

0

P

2sin

2sin~1

TV — sin 1

•K

2

25m-1 (-2

vT

Dodecahedron

- I / ITruncated tetrahedron 2sin

7T — Sin'

t

t

Truncated octahedron 2.sm~1 W f ,TT — sin' , , „

i—

Rhombicuboctahedron j , | + sin~1

Truncated cube ^,?r — 5?'n~- A/ 3

Truncated icosahedron 25in"1(-4-5mY5:), 142°37'

Rhombiicosidodecahedron

,-i /I

70°32'

109°28'

125°26'

90°

142°37'

116°34'

70°32',109°28'

125°26'

Q Truncated dodecahedron

109°28',125°26'

135°,144°44'

90°,125°26'

138°11',142°37'

148°17',159°6'

116°34',142°37'

f These polyhedra have irregular triangular faces.

Table 8.2 The vertex transitive polyhedra
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Name Dihedral angles (approx.)

R f

S Snub cube

X

**

T Snub dodecahedron **

U t

V Rhombitruncated cuboctahedron

W Rhombitruncated icosidodecahedron

142°59',153°14'

152°56',164°11'

as I and M each > j

each > j

Zin-2sin-1J\ 125°16',109°28'

** Dihedral angles given when polyhedra are Archimedean.

f These polyhedra have irregular triangular faces.

| These polyhedra have trapezium faces.

Table 8.2 (continued)

(i) f = H The truncated tetrahedron : f(H) = (12,18, 8)

The dihedral angles are 9 = sin~1yj- and <fr = 2sin~1 * / | . We note that

9 + (f> = 7T. Thus any edge is common to three faces and three facets of P. Then

ISh = 3e, I6h — 2 / and qv = 2e. Then by Euler's relation we have

v - e + f - h = —-
2>q

V2h

-6h + Sh-h

Hence q < 0 which is a contradiction.

(ii) / = L The truncated octahedron: f(L) = (24, 36,14)

Each edge is common with three 2-faces and three facets. Thus qv = 2e,
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3e = 36/? and 2/ = 14/?. Then by Euler's relation we have

e 4/i
— - I2h + 7h-h = - 5h = 0.

Therefore q = -y- which is impossible.

(iii) f = N The truncated cube: /(JV) = (24,36,14) Each edge is

common to three 2-faces and three facets. Thus qv = 2e, 3e = 36/?. and If — 14/i.

Therefore by Euler's relation we have

- 12/?. + 7/?. - /?. = 0
q

and so q = 4.

Hence v is contained in four facets. Consider the 0-transitive 3-transitive prime

perfect 4-polytope P*. A facet /* of P* only has four vertices so /* is a tetrahe-

dron. Therefore /* is of the form .4. and hence P* is regular. Thus P = {4,3,3}

or {3,3,3}, which is a contradiction.

(iv) / = Q The truncated dodecahedron:' f{Q) = (60,90,32)

The sum of any three dihedral angles of Q exceeds 2vr which is impossible.

(v) f = X: f(X) = (24,36,14)

Each edge is common to three 2-faces and three facets. Thus qv = 2e,

3e = 36/i and 2 / = 14. Thus we get a contradiction as in the case / = N.

Thus there are no 0-transitive 3-transitive prime perfect 4-polytopes whose

facets are vertex transitive with the exception of the regular 4-polytopes.

Case 4

Suppose that / is not vertex transitive. If conv{f\ U fj) C / then the

stratifications of the symmetry groups (or subgroups) of fi and fj coincide.

Therefore we check that / is not the convex hull of two polyhedra with symmetry

groups C?i, Gj such that G',- C Gj. Recall from case 3 that / , ^ C, E, F, J, J, A',
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M, O, P, i?, S, T, 17, V or IF. Also note that valf(v) = 3 or 4 for any vertex

t> of / . Thus if valf{(v) = 4 for some /,• then this would lead to a contradiction

in valf(v) if new edges were introduced at v apon taking convex hulls.

/ = conv(AUA*)

Such a polyhedron has valf(v) — 6 for some vertex or / is a cube. In the

latter case P = {4, 3,3} which is a contradiction since the facets of P are vertex

transitive.

/ = conv(AUB)

This is possible only if for each vertex v of B, there exists a midpoint e of

an edge of .4 such that v, e and the centroid of / are collinear. In such a case

the resulting polyhedron has a vertex (coinciding with a vertex of A) of valency

6.

/ = conv{AUX)

Such a polyhedron has irregular triangular faces or trapezium faces which

contradicts lemma. 1.1.

/ = conv{BU D)

Such a polyhedron is either a cuboctahedron which has already been dis-

cussed or is given in figure 6.2. In the latter case, the triangular faces are regular,

therefore the sphere containing Fof also contains the vertices of an octahedron

B. This is a contradiction.

/ = conv{Bl)L)

Then B coincides with the octahedron which is truncated to form L. Thus

f = B, which by case 3 is a contradiction.

/ = conv(B UN)

Such a polyhedron has a. vertex of valency S, which is a contradiction.
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/ = conv(D U L)

Such a polyhedron has a vertex of valency 6, which is a contradiction.

/ = conv{D U N)

Since the (?c-stratifications of aff{f) coincide, this union results in a cube

D or a truncated cube N.

f = conv(L U N)

Such a polyhedron has a vertex of valency 5, which is a contradiction.

The case where /,• = G is impossible since the polyhedra with the same

symmetry group as G have already been excluded.

Thus a. O-transitive 3-transitive prime perfect 4-polytope does not have a

facet of the form / = conv(fi U fj). Since such a. facet has a vertex of valency

four we conclude that / is vertex transitive since otherwise valf(v) > 5 for some

vertex v of / .

Thus we have shown that no non-regular O-transitve 3-transitive prime per-

fect 4-polytope exists.

COROLLARY 8:2.3

The prune perfect A-polytopes are given by the Wyth.Qffi.an 4-polytopes and

their polars.

Proof

Follows from theorem 2.2 and section 7:3.

3. Perfect 4-solids

With the classification of perfect 4-polytopes complete, we turn our atten-

tion to the perfect 4-solids. Let G be the symmetry group of a perfect non-

polytope 4-solid. Then G C 0(4) and dirn(G) > 1. There are three known
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perfect 4-solids which are not polytopes, the 4-ball D4, the product of the disk

with itself D2 n£)2, and its polar D2oD2. By considering the compact subgroups

of 0(4), we show that G = 0(2) \ Z2 or G = 0(4). In other words, G is the

symmetry group of D2 o D2 or D4.

First suppose that G is not the direct product of compact subgroups of

0(4) or a wreath product in 0(4). If dim(G) < 4 then there exists a linear

subspace C, dim(C) = 4—dim(G), held pointwise fixed by G. Thus fixs = C

which contradicts theorem 1:7.5. If dim(G) > 4, then G - 0(4) or G = S0(4)

(which has the same orbits as 0(4)). The only 4-solid with such symmetry is

D4.

Now suppose G is the direct product J x K of the compact subgroups J, K

of 0(4). Then the inclusion IT : G —-> 0(4) is a reducible representation. This is

a contradiction to proposition 4:1.1. In any case, there is a decomposition of B,

for instance, B = BiuB2, where Bx ^ B2, such that G = GBX x GB2. This is

a contradiction to theorem 1:7.4.

Suppose now that G = GK \ 5 r , r > 1, where A' is a • -prime i-solid, i < 4.

Then B = arK and ri = 4. Thus (i,r) = (1,4) or (2,2). If i = 1, then B is

a polytope and dim(G) = 0, which is a contradiction. Hence G = G/v' / 52 =

GK I Z2 and K is a perfect 2-solid. In other words G — 0(2) \ Z2 and A' = D2.

We now check that there are no perfect solids whose symmetry group is

0(4) or 0(2) I Z2 other than those mentioned above. The fundamental region

of the action of 0(4) on S3 is a radial line. Hence D4 is the only solid with

symmetry group 0(4). Now consider the action of G — 0(2) \ Z2 on S3. The

fundamental region of this action may be given as follows. Let E4 be identified

with the orthogonal product E2xE2. Then C\ = E2 x 0 and C2 = 0 x E2 are two

non-intersecting linked great circles of S3. Let Vi be any point on Ci, i = 1,2.

Then there exists a great circle C of 5 3 through u,-, i = 1,2, which intersects C\
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and C2 each in one further point. Then C is divided into four equal arcs. If one

of these arc is subdivided equally into two, then the result is an arc A subtended

by an angle of j at 0. Suppose that the endpoints of A are x and y, such that

x £ C;, i — 1 or 2. Then the convex hull of A and O is a fundamental region D

of the action of G such that conv(G.x) = D2oD2 and conv(G.y) = D2oD2. We

may assume that a point v on A is given by e'e, 0 < 9 < j , where v = x if 8 — 0

and v = y if 8 = —. Then there is a one-parameter family of face equivalent

4-solids given by the convex hull of the action of G on a point v on A. These

4-solids are face equivalent since dim(fixv) = 4 and v may be mapped along a

D-path by a deformation in a similar fashion to that in chapter 5. The solids

in this family are not perfect as v may be deformed by changing 8. Similarly a

solid given by the convex hull of the action of G on a number of points of D is

not perfect. Thus the only perfect 4-solids are those already mentioned.
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APPENDIX A: A second rhombic dodecahedron

As noted in Coxeter [1], the rhombic dodecahedron of the second kind was

discovered by Bilinski [1] in 1960. This polyhedron can be derived from a rhombic

triacontahedron (see figure A:l) in the following way.

Recall (Coxeter [1]) that a. zone of faces of a polyhedron P with parallelo-

gram faces is a collection of all the faces which have two sides equal and parallel

to some given edge e. Such a P is called a zonahedron. Thus the edges of

a zone are m edges parallel to e (including e) and (in — 1) pair-wise parallel

edges, for some ???.. The removal of any zone from DP results in two pieces of

surface and the loss of the m parallel edges. These can be brought together by

the identification of two parallel edges t\ and e-2, one from each piece of surface

(ei, eo < / for some / £ F2P). This gives an identification of the remaining

(m — 2) pair-wise parallel edges from the zone. The result is a. zonahedron with

m less faces. If P is a rhombic triacontahedron, then in = 10. The resulting

surface is the surface of a rhombic icosahedron, Z(P) say. The surface of the

rhombic dodecahedron of the second kind Z2(P) is given by repeating this pro-

cess on Z(P). The faces of this polyhedron have the same shape as those of

P.

We can see that Z2(P) is not a perfect polyhedron by considering the inte-

rior angles of the faces at each vertex. See figure A:2 where a different perspec-

tive is given and the interior angles at a vertex are given by a and /?. Moreover,

the symmetry group G of Z2(P) is 2Z2 x TL^ x 2Z2 (the symmetry group of a

'matchbox-shaped' cuboid). The orbit vector of Z2(P) is (4,4,3). Hence by

Rostami [1], Z2(P) has deficiency 3.
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a: A zone of a rhombic triacontrahedron

b: A zone of a rhombic icosahedron (derived from a)

c: A rhombic dodecahedron (derived from b)

Figure A:l a —> c

Construction of Bilinski's rhombic dodecahedron by removal of zones
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a = 116°34'

Figure A.2 The rhombic dodecahedron of the second kind
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APPENDIX B

1. The root system BCq

The notation BCq for a root system of rank q is used by Loos [1]. In terms

of graphs, the Dynkin diagrams of BCq, Bq and Cq are all the same. However

BCq is a non-reduced root system given by BqUCq. (Recall Loos [1] that a root

system R is reduced if a 6 R and ca € R then c = ±1.) If &\,..., eq is the usual

basis of Eq and e j , . . . , eq is the dual basis to (Eq)*, then

BCq ~ {±ei, ±2e,-, ±e,- ± e3 : z ̂  j } .

2. Symmetric space isomorphisms

The restrictions on / on the classical root systems -4;, £?/, C'i and D\ give

rise to some overlaps in table 3:1 for small n. These may be given in terms of

the following isomorphisms, which appear in Helgason [1].

(i) AI (n = 2) = AIII (p = q = l) = BDI (p = 2,q = 1) = CI (n = 1).

Corresponding isomorphisms:
su(2)«so(4) =

5[(2,R) « su(l, 1) w so(2,l) «

(ii) BDI (p = 3,? = 2) = CI (n = 2).

Corresponding isomorjohisms:

50(5) « sp(2).

so(3.2) % sp(2.IR).

(iii) BDI (p = 4,3 = 1) = CII (p = q = 1).

Corresponding isomorphisms:

so(5)wsp(2), so(4) sa sp(l)x

5 0 ( 4 , 1 ) « S p ( l , l )

(iv) AI(??. = 4) =

Corresponding isomorphisms:
5U(4) % 5 0 ( 6 ) . 5 0 ( 4 ) RS 5O(3)X 5 0 ( 3 ) ,

5t(4. H) ^ 50(3,3).
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(v) Al l (n = 2) = BDI (p = 5, ry = 1).

Corresponding isomorphisms:
su(4) « so(6), sp(2) « so(5),
su*(4) « so(5,l).

(vi) AIII (p = </ = 3) = BDI (p = 4, 5 = 2).

Corresponding isomorphisms:
su(4) w so(6),
su(2,2) « so(4,2).

(vii) AIII (p = 3,q = l) = D i l i (n = 3).

Corresponding isomorphisms:
su(4) « 50(6),
su(3,1) ~ so*(G).

(viii) BDI (p = 6. q = 2) = D i l i (??. = 4).

Corresponding isomorphisms:
su(4) « so(6),
so*(S) w 50(6,2).

(ix) BDI (p = 3, fy = 1) = a,, (n = 1). •

Corresponding isomorphisms:
50(4) W 5U(2)X 5U(2),

50(3,1) «s l (2 ,a : ) .

(x) B D I (p = 2, q = 2) = AI (n = 2)x AI (n = 2)

Corresponding isomorphisms:

50(4) ss su(2)x su(2),

50(2,2) R3 sl(2,IR.)x s((

(xi) DI I I (n = 2) = AI (n = 2).

Corresponding isomorphisms:
50(4) ?2 5U(2)X 5U(2),

so*(4) « su(2)x st(2,lR)
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APPENDIX C: Vertex transitive polyhedra

In this appendix we give some information about the vertex transitive poly-

hedra classified in Robertson and Carter [1] (see also Robertson [1]). The non-

prism O-transitive polyhedra are given in table 8.2.

It is useful to note the symmetry groups of such polyhedra. We follow

the notation of Robertson [1]. Suppose P is a O-transitive polyhedron with

symmetry group G = T(P). Then let F+(P) be the subgroup of F(P) consisting

of all rotations of F(P). Let F*(P) denote the subgroup (j,F+(P)) where j is

the reflection in 0 given by the matrix —13 = diag{ — 1, — 1, — 1}. The symmetry

groups of the polyhedra A —> X are given in table C:l

Symmetry group

T(A)

r+(A)
T(B)
r.(B)
r+(B)
T(E)
r+(£)

A,
J,
R
B,
U
S
E,
T

H
K

C

F

Polyhedra

, I ,X

, D, L, M, N,V

, G, 0 , P, Q, W

Table C:l

The polyhedra A —> G have deficiency 0. Examples of these polyhedra can

be found in chapter 1. The polyhedra H —> Q have deficiency 1, while the rest

have deficiency 2. Examples of the polyhedra of deficiency 1 or 2 are given in

figures C:l to C:17. Two interesting polyhedra are those of type J and K, which

may be derived as follows. Let D be a cube. Then it is possible to embed an

icosahedron I in D such that the midpoints of six edges e\,... , e^ of I coincide

with the centroids of the faces of D. Then I = conv(ei,... ,ee). Now let the
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length of ei, i = 1,. . . ,6, be increased in size by an amount to a new edge e\

such that the midpoints of e,- and t\ coincide such that the new edges remain in

the relative interior of D. Then the convex hull of these edges is K. If the length

of e; is decreased in a similar fashion, the resulting polyhedron is J. At each

vertex of J and K there are exactly two non-adjacent regular triangular faces.
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Figure C:l H

The truncated tetrahedron

Figure C:2 I

117



Figure C:3 J

Figure C:4 K
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Figure C:5 L

The truncated octahedron

Figure C:6 M

The rhombicuboctahedron
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Figure C:7 N

The truncated cube

Figure C:S O

The truncated icosahedron
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Figure C:9 P

The rhombicosi dodecahedron

Figure C:10 Q

The truncated dodecahedron
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Figure C:ll R

Figure C:12 S

The snub cube
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Figure C:13 T

The snub dodecahedron

Figure C:14 U
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Figure C:15 V

The rhombitruncated cuboctahedron

Figure C:16 W

The Rhombitruncated icosidodecahedron
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Figure C:17 X
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