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Abstract

The concentration fluctuations in passive plumes from an elevated and a ground-
level source in a turbulent boundary layer over a rough wall were studied using
large eddy simulation and wind tunnel experiment. The predictions of statistics
up to second order moments were thereby validated. In addition, the trend of rel-
ative fluctuations far downstream for a ground level source was estimated using
dimensional analysis. The techniques of extreme value theory were then applied
to predict extreme concentrations by modelling the upper tail of the probability
density function of the concentration time series by the Generalised Pareto Distri-
bution. Data obtained from both the simulations and experiments were analysed in
this manner. The predicted maximum concentration (Γ0) normalized by the local
mean concentration (Cm) or by the local r.m.s of concentration fluctuation (crms),
was extensively investigated. Values for Γ0/Cm and Γ0/crms as large as 50 and 20
respectively were found for the elevated source and 10 and 15 respectively for the
ground-level source.
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1 Introduction

The significance of concentration fluctuations is recognized in principle but the
incorporation of that understanding into predictive safety codes in a quanti-
tative manner is by no means simple, owing to the turbulent nature of at-
mospheric flow and hence of the concentration distributions. Experimental

1 Corresponding author. Email: z.xie@soton.ac.uk; tel: +44(0)23 8059 3334; fax:
+44(0)23 8059 3058

Preprint submitted to Elsevier Science 30 November 2006



evidence shows that the dose (the mean concentration integrated over the
time of exposure) can give a substantial underestimate of the short-term ef-
fect of exposure to a toxic substance. A generalised dose, related to some
higher power of concentration, is often more appropriate. Extreme concen-
tration fluctuations then become critical in determining the generalised dose.
Similarly, ignition of a flammable gas depends on the gas concentration falling
within the flammable limits and the availability of sufficient ignition energy;
the probability of ignition is therefore directly linked to the probability distri-
bution of concentration.

Large eddy simulation (LES) is known as a most promising technical ap-
proach to simulate atmospheric flow and dispersion, because of the very large
Reynolds number involved. However, we can normally only simulate atmo-
spheric boundary layer (ABL) flows over a short duration (e.g. a couple of
hours) by LES, owing to current computer capability and the resulting high
expense of simulations. Lack of sufficient information of the upper tail of prob-
ability density distribution (PDF) can make the standard estimation of ex-
treme events severely biased (Coles, 2001). Extreme value theory (EVT) is the
branch of statistics concerned with modelling the tails of probability distribu-
tions and hence performing probability extrapolations. A typical application
of the generalized extreme value distribution (GEV) is to fit the distribution to
a series of maximum data (for instance, annual maximum rainfall). However,
the technique of characterizing a GEV distribution just by using maximum
data during some fixed period is obviously of low efficiency. Use of the Gen-
eralized Pareto Distribution (GPD) (Pickands, 1975) has been proposed to
obtain higher data-use efficiency. EVT has been applied to the study of the
maximum concentration in atmospheric dispersion with some success (Ander-
son et al., 1997; Mole et al., 1995; Munro et al., 2001; Smith, 1989). Even so,
there are many open problems worthy of further study. In the current work,
we applied LES and wind tunnel experiment to study the concentration field
from elevated and ground-level sources over a rough wall. EVT, namely GPD
was used to postprocess the data obtained from both the LES and experiments
to predict extreme concentrations.

2 Governing equations of LES and discretizing scheme for disper-
sion

The method of generating turbulent flows over a rough wall was reported in
our previous paper (Xie et al., 2004a). The filtered scalar equation is given as
follows,
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where Ks and Km are the subgrid turbulent diffusivity and molecular diffusiv-
ity respectively. LES resolves the large scale eddies and models the small scale
eddies, i.e. subgrid scale eddies. Ideally, the subgrid scale is chosen within the
inertial subrange. Most previous LES studies of dispersion applied a subgrid
eddy viscosity combined with a subgrid Schmidt number to calculate the sub-
grid turbulent diffusivity, e.g. Sykes and Henn (1992). Here, a constant subgrid
Schmidt number is taken, Scs = νs/Ks, where νs is the subgrid viscosity, which
is modelled using a subgrid scale parameterization (Xie et al., 2004a). Scs is
the subgrid Schmidt number. Numerical experiments have been performed to
check the sensitivity to the subgrid Schmidt number, and we have found that
values around 1.2 yielded very small variations in the results (of course, sig-
nificant changes would be expected for large variations in Schmidt number).
Equation1, including the subgrid parameterization, was discretized in time by
using a second-order explicit scheme:
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steps and that this scheme is second-order in time at time step n + 1/2.

Equation 1 was discretized in space using a second-order finite-volume method.
The diffusion part is solved by central differencing. Firstly, as the gradient
of concentration may be very large within a plume, we must avoid numeri-
cal diffusion. Secondly, we must avoid generating negative concentration by
the so-called overshoot from central differencing. Consequently, the SMART
Bounded Quadratic Upwind Scheme (Waterson & Deconinck , 1995) was used
to discretize the convection term in space.

3 Experimental and Numerical Settings

The experimental measurements of turbulent flow over a rough wall were ob-
tained in the Fluids Research Centre ‘A’ tunnel at the University of Surrey
(Xie et al., 2004a). We used ethane as passive scalar in the experiment. A
source of diameter 4mm (outer) and 3.4mm (inner) was located at x=0, y=0.
In the current paper, we refer to an elevated source (ES) and a ground-level
source (GLS), located at z=177mm (0.4439D) and 2.25mm (0.00698D) re-
spectively, where D is boundary layer depth. The concentration was measured
mainly at five downstream positions x = 230, 380, 630, 1080, 1500 (mm), where
vertical profiles and lateral profiles were obtained. A hydrocarbon measure-
ment system, a Cambustion HFR400 Fast Flame Ionisation Detector, was used
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to measure the concentration. The maximum sampling rate used for obtaining
the concentration time series data and spectra was 1000Hz.

The computational domain size used for LES was 4D×1.47D×D with periodic
boundary condition in the streamwise and lateral directions. We discretized
the computational domain using a mesh 256×128×128. As far as the passive
scalar field was concerned, we considered that a 4D fetch for dispersion was
not long enough, and therefore a technique was used to extend the scalar
computational domain to 8D× 1.47D×D, with a mesh 512× 128× 128. We
simply copied the instantaneous upwind half (from x=0 to 4D) of the turbulent
flow field calculated using LES, to the downwind half (x=4D to 8D). Because a
periodic boundary condition in the streamwise direction was imposed for the
simulation of turbulent flow, this technique was easily implemented for the
simulation of the scalar field. The technique reduced CPU time and computer
memory requirements by about a factor of two. Note this mesh was much finer
than that of Sykes and Henn (1992). The boundary conditions for the scalar
were as follows: a Dirichlet boundary condition was applied at the inlet, a
convective boundary condition at the outlet, zero flux condition at the other
boundaries.

At the inlet of the LES domain, the scalar was prescribed in the form of a
Gaussian function with standard deviation 7.8∗10−4D. We chose a small value
of standard deviation to make the source size equivalent to one grid-space
in the vertical and lateral directions, which was comparable to the source
size in the wind tunnel experiment. The elevated source (ES) was located at
z=0.4324D, while the ground level source (GLS) at height z=0.00784D was
located at the second grid from the wall. Note that the very high resolution
and the non-zero height of the ground-level source ensured that the plume
was released into the region where most of the turbulence energy was resolved
(Xie et al., 2004a).

4 Some results of dispersion

In the LES, once the turbulent flow field was well developed, the source was
initiated to release the scalar. The sampling for statistical averaging started at
a dimensionless time 1.4D/u∗, where u∗ is the friction velocity. The averaging
time was 8.3D/u∗ to obtain traditional statistical data.

Fig. 1 shows the relative concentration fluctuations for elevated and ground-
level sources, where Cm is the maximum mean concentration and crms is the
maximum r.m.s on the vertical central line (y = 0) at each x station. For
the ES, both wind tunnel measurements and the LES model predicted larger
relative intensities than Thomson’s model (Thomson, 1990), which was pro-
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Fig. 1. Relative concentration fluctuations. 2 measurements ES; 4 Thomson’s
(1990) stochastic model ES; – – – LES ES; –·– extrapolated from LES ES; —– LES
GLS; ◦ measurements GLS; • Fackrell and Robins (1982) GLS. Cm, crms maxima
on vertical central line (y = 0) at each x station.

posed to suit the homogeneous turbulence. Brethouwer et al. (1999) predicted
smaller relative intensities close to the source than Thomson’s model and ex-
plained that the difference was the result of the low Reynolds number in their
DNS as opposed to the infinite Reynolds number assumed in the model of
Thomson.

The comparison between the LES and the experiment shows a discrepancy
for both the ES and the GLS, which may be accounted for in several ways,
such as the slight difference of resolution and source size. Some conditions of
the Fackrell and Robins (1982) experiment were slightly different than those
used in the LES, such as the Reynolds number and source size. Nevertheless,
their measured relative fluctuations were comparable with the current LES
and experimental data for the GLS. We noticed that the normalized velocity
variances of Fackrell and Robins (1982) work were in agreement with the
current experiment. Also note that the source size effect was not important
for the GLS. These comments may explain the agreement in Fig. 1 for the
GLS. We found that for the GLS there was a slight increase in the far field
(x/D > 3.5) in the two experiments, which was due to the background signal
noise that became important when the mean concentration decreased to a
relatively low level.

Note in Fig. 1, the far downstream trend for ES is quite different from that for
GLS. Sykes and Henn (1992) pointed out that the relative intensity of the fluc-
tuations decayed towards zero downstream in this case. In Fig. 1, the relative
intensity for GLS reaches an apparently near-constant value further down-
stream. Mylne and Mason (1991) also noted a near-constant relative intensity
for both a 2m height source and a surface release in their field observations.
Since the experiment range was up to 1000m, the 2m height source was unlikely
to give results distinguishable from a surface release (Mylne and Mason, 1991).
Hence both of the cases can be considered as a ‘ground level source’. From the
above LES data, wind tunnel measurements and field observations for GLS,
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we speculate that the relative intensity further downstream becomes constant.
This can also be deduced by using dimensional analysis. The concentration
fluctuation intensity at ground level is related to the mean concentration Cm,
the turbulence mixing scale Lt, the plume width Lc, the diffusivity Km, the

root of local total velocity variance $ =
√

u′2 + v′2 + w′2 and the Taylor scale
Lλ at ground level, which can be expressed as crms = f0(Cm, Lt, Lc, Km, $, Lλ).
The above equation can be simplified by using dimensional analysis,

crms

Cm

= f(
Lt

Lλ

,
$Lc

Km

), (3)

where Lt = O(kz), k is von Karman’s constant, z is the observation height,
Lc = O(x1/2). Note in equation 3 that the first factor Lt/Lλ is a constant at
constant observation height. The second factor in Equation 3 can be rewritten
as O(x1/2U)/ν×$/U×ν/Km and the full equation can be rewritten as follows,

crms

Cm

= f1(
$

U
× Ux1/2

ν
× Sc), (4)

where the relative concentration fluctuation is related only to a single com-
bined factor x1/2U/ν multiplied by the relative r.m.s velocity and the Schmidt
number Sc of the scalar. Recently Borgas et al. (2004) investigated a scalar
fluctuation field generated by isotropic turbulence acting on a uniform mean
gradient of scalar. They found that the non-dimensional scalar variance was
a linear function of ‘ln Sc’. For the GLS, the behaviour of scalar dispersion at
source height in the far field might be similar to the above case. We rewrite
Equation 4 as follows,

crms

Cm

≈
√

c0 + c1 × ln(
$

U
× Ux1/2

ν
× Sc), (5)

where c0 and c1 are constants. Note that as $/U and Sc are constants at
constant height, we get,

crms

Cm

∝
√

ln x1/2, for x →∞. (6)

The derivative of crms/Cm in Equation 6 is

d(crmsC
−1
m )

dx
∝

[
ln(x1/2)

]−1/2 × x−1 → 0, for x →∞. (7)

The concentration fluctuation relative intensity asymptotically tends to a con-
stant in the far field.
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As is known (Borgas et al., 2004), in the far field the relative concentration
fluctuation increases with increasing Schmidt number. In Equation 4, we de-
duce that f1 is a increasing function of $/U ×Ux1/2/ν ×Sc. Hence, crms/Cm

decreases with decrease of $/U . We assume that Lt/Lλ in Equation 3 is ap-
proximately a constant with height within some depth of the boundary layer,
e.g. D/2. Hence, f1 (Eq. 4) has approximately the same form at different
heights. As the turbulence intensities decrease with increasing distance to the
wall (Xie et al., 2004a), we might expect the asymptotic limit of the relative
concentration fluctuation to decline with increasing source height, which is
consistent with the above deduction for the GLS and Sykes and Henn (1992)
results for the ES. However, the plume is likely to be mixed throughout the
entire boundary layer in the far field and the effect of source height thus lost.
Nevertheless, it is very likely that the asymptotic constant for the GLS is not
zero.

The lateral profiles of crms are illustrated in Fig. 2. Note that the concentra-
tion r.m.s. is normalized by the maximum mean concentration at the same
streamwise station. The comparison between the LES results and measure-
ments is reasonable, though there are some random components in both at the
far downstream positions, owing to the limited sampling time duration. Two
peaks are seen in both the experimental and LES data for the lateral profile
of crms for the GLS. We found that the maximum normalized crms at ground
level occurred approximately at y/σy=0.75 for all downstream stations far
from the source (beyond approximately x/D=1.575), where the lateral plume
half-width σy was obtained by Gaussian fit. Since the turbulence scales in the
near-wall region were much smaller than those far from the wall, meandering
was much less for the GLS than the ES and any double peak structure in the
ES was probably smoothed-out. Nevertheless, the double peak behaviour was
more evident in the LES than that in experiment, which might possibly be
related to a jet effect in the experiment or to a slight difference of the vertical
location in the LES and in the experiment. Fackrell and Robins (1982) plotted
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the lateral profiles of concentration variance at heights of 0.5 and 1.5 vertical-
plume half-widths and the former show a maximum off the centreline while
the latter do not. The current numerical results show a very similar behaviour.

The normalized scalar fluctuations spectra for the ES at three downstream
stations, at the source height on the centreline, are plotted in Fig. 3(left). The
measurements show a region with slope of approximately −0.7 preceding any
-5/3 region that might exist, very similar to the wind tunnel data of Fackrell
and Robins (1982). The roll-off of the spectra in the LES is clearly earlier
than that in the spectra from the measurements. Similar evidence has also
been found in the velocity spectra and discussed in our previous paper (Xie et
al., 2004a), and is a direct consequence of the limited resolution in the LES.
The roll-off in the LES spectra occurs in the frequency range where the slope
in the experimental spectra is −0.7; of course, the LES data do not show
this slope. The symbol à marks the dimensionless frequency of the inertial
subrange on velocity spectra (Xie et al., 2004a). Note the Kolmogoroff scale at
the source height was approximately 0.45mm (correspondingly fD/U ' 480),
which was beyond the resolutions of both the experiment and the LES. The
Batchelor scale is in the similar range assuming that the Schmidt number Sc
is around 1.0 in the experiment and the LES.

A region with slope −5/3 is hard to discern in Fig. 3(left), which indicates that
an inertial subrange behaviour does not exist. Warhaft (2000) summarized
the scalar spectrum slope at various Reynolds numbers,Rλ, for shear flows and
grid turbulence. For shear flows, there is a slow evolution toward −5/3, which
is likely to be approached at large Rλ(> 2000). For grid turbulence, the slope
is close to −5/3 even at very low Rλ, e.g. 500. The Reynolds number in the
experiments of Fackrell and Robins (1982) was approximately 3 times larger
than that in the experiment reported here, which explains why the former
measurements show a narrow (approximately one decade) −5/3 slope and ours
do not. Mylne and Mason (1991) found a−5/3 slope over a range of frequencies
between 0.01 Hz and 1 Hz (two decades) in a series of tracer experiments
studying concentration fluctuations in a dispersing plume of pollutant in the
atmosphere at ranges of between 200m and 1000m. Note that the Reynolds
number of the field experiments was extremely high.

For dispersion from a point source in turbulent flows, the characteristics of
the scalar fluctuation spectrum also depend on the distance from the source
(Mylne and Mason, 1991). In the vicinity of the source, where the turbulence
characteristic length scale Lη is large compared to the plume width Lc, the
main role of turbulence acting on the plume is meandering. Turbulent ed-
dies move the whole plume around producing periods of zero concentration
in the time series measured at a fixed station. As the plume travels further
downstream and Lc is of order Lη, the turbulent eddies of scale Lη dominate
the growth of the plume and the generation of concentration variance. These
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processes are in the stages described as ‘molecular diffusion’ and ‘turbulent
convection’ by Brethouwer et al. (1999). Only in the third stage ‘turbulent
diffusion’, where Lc is much larger than Lη, does turbulence mixing become
dominant within the plume and the concentration variance is effectively trans-
ferred from low frequencies to high frequencies, developing an inertial subrange
in the scalar spectrum. Mylne and Mason (1991) did not find a clear −5/3
slope in the spectrum of a time series taken at a short distance from the source
(< 100m). However, as mentioned above, they did find a −5/3 slope over a
wide range of frequencies at ranges between 200m and 1000m.

The normalized scalar spectra for the GLS at three downstream stations,
which were located near the edge of the surface layer on the centre cross sec-
tion, are plotted in Fig. 3(right). Again, the symbol àmarks the dimensionless
frequency of the inertial subrange on velocity spectra. Note the Kolmogoroff
scale in the surface layer was approximately 0.17mm (correspondingly fD/U
'2700), which was far beyond the resolutions of both the experiment and
the LES. Both the LES results and measurements show a region with slope
approximately −1 preceding any -5/3 region that might exist. As for the ES,
the characteristics of the scalar spectrum depend on position in the plume.
Fackrell and Robins (1982) also observed a significant region with slope ap-
proximately -1 (they suggested a value of -1.2) prior to a narrow −5/3 region
for a GLS. Neither the present measurements nor the LES results show clearly
a region with −5/3 slope. Fackrell and Robins (1982) measurements do show a
narrow −5/3 region for the GLS because the Reynolds number of their exper-
iment was approximately 3 times larger than that of the present experiment.
Again, in the Mylne and Mason (1991) field measurements, both of the cases
(2 m height source and ground level source) can be considered as a ‘ground
level source’ in the far field. Their measurements show a wide region with
−5/3 slope, which reflected the extremely large Reynolds number of the field
work.

5 Methodology of EVT

The Generalized Pareto Distribution (GPD) (Davison and Smith, 1990) was
used to predict extreme events exceeding a high threshold u in the time series:

Prob(Γ ≤ u + φ | Γ > u) = Gξσ(φ) = 1− (1 +
ξ

σ
φ)−1/ξ (8)

where Γ is the physical quantity, φ, ξ and σ are argument, shape and scale
parameters respectively, and σ > 0, φ > 0, 1 + ξφ/σ > 0. ξ, σ are fitted by
using the likelihood method (Davison and Smith, 1990). It is known that ξ is
independent of u, while σ depends linearly on u and that ξ < 0 for the GPD
to have a finite upper limit (Munro et al., 2001).
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Fig. 3. Spectra of concentration fluctuations. I at x=0.575D, II at x=1.575D, III
at x=2.7D; all at y=0. ◦ LES; —– measurements. à, mark of inertial subrange on
velocity spectra (Xie et al., 2004a). Left: ES, at source height. Right: GLS; LES at
z=0.096D; measurements at z=0.05D, 0.0625D and 0.134D respectively in I, II and
III.

The mean excess function of the GPD distribution was used as the diagnostic
tool to choose a proper threshold u,

E(Γ− u|Γ > u) =
σ + ξu

1− ξ
, (9)

provided ξ < 1. In practice, the threshold is chosen from a mean excess plot
in which the mean difference between the exceedances and the threshold is
plotted against the threshold. Within some range of the threshold u, ξ is
independent of u, where the asymptotic approximation is valid. The mean
excess plot should be a straight line with slope ξ/(1−ξ) and intercept σ/(1−ξ).
Nevertheless, it only provides a necessary but not sufficient condition for fixing
the threshold. Quantile quantile (QQ) plots can also be used to find a suitable
threshold, and to check the goodness of fit.

For a threshold u, let τ denote the time period, ν is the crossing rate of the
threshold u and r is the return level (note r > u). From equation 8, the average

crossing rate of level r is ν
[
1 + ξ(r − u)/σ)−1/ξ

]
, which is set equivalent to 1/τ

to readily obtain

r = u− [1− (ντ)ξ]σ/ξ. (10)
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Theoretically, the return level r is independent of the threshold u. Provided
ξ < 0, the local maximum (upper limit) is deduced from the above equation
as,

Γ0 = u− σ/ξ. (11)

The data for processing by EVT are assumed to be independent and identi-
cally distributed (IID). However, since the turbulent fluctuation is not fully
random, data obtained from LES and experiment are not truly independent
and identically distributed (IID). Although the assumption of dependence is
not crucial, it’s contravention will affect the ability to calculate reliable confi-
dence intervals (Munro et al., 2001). A technique of “decluster” is applied to
pre-process the data before a GPD is fitted (Davison and Smith, 1990; Mole
et al., 1995; Munro et al., 2001; Smith, 1989; Xie et al., 2004b), where the key
is to specify a threshold u and a cluster time interval Tc.

6 Data to be processed by EVT

For LES data there were 7 output stations for GLS and 5 output stations for
ES respectively, while for the experiments there were 5 output stations for
GLS and 5 output stations for ES respectively (see Tables 1 and 2). Table 1
is a summary of the time series for ES, where enes are numerical data, and
exes are experimental data. The output positions were located at the height
of source. The sampling duration Ttlt and frequency were 5 minutes and 1000
Hz for the experiment. Table 2 is a summary of the time series for GLS, where
the output positions of gngs (LES) and gxgs (experiment) were located close
to ground-level. In addition, there were 5 output stations at x/D = 7.8 (at
z/D =0.00784, 0.09593, 0.18024, 0.31361, 0.44022) in the LES. Note that all
of the output locations were in the same vertical section (y = 0). Since the
dimensionless size of the LES time series was shorter than that from the ex-
periments, all of the time series from LES have been carefully assessed by
checking the sampling errors. The maximum differences of concentration fluc-
tuation r.m.s between the short duration “sub-series” (13.6%, 27.3%, 54.5%
and 81.8% of the total) and the total were found to be less than 10%. As-
sessed by the same procedure, the sampling errors of the time series from the
experiment were quite satisfactory.
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Table 1
Summary of LES and experimental time series for ES

LES,Hs/D = 0.432, Ttlt × U/D = 550 Exp,Hs/D = 0.444, Ttlt × U/D = 1950

series ene1 ene2 ene3 ene4 ene5 exe1 exe2 exe3 exe4 exe5

x/D 0.575 0.95 1.575 2.7 3.75 0.575 0.95 1.575 2.7 3.75

∗Hs source height,Ttlt sampling duration.

Table 2
Summary of LES and experimental time series for GLS

LES,Hs/D = 0.00784,Ttlt × U/D = 550 Exp,Hs/D = 0.00698, Ttlt × U/D = 1950

series x/D z/D series x/D z/D

gng1 0.575 0.00784 gxg1 0.575 0.02635

gng2 0.95 0.00784 gxg2 0.95 0.02635

gng3 1.575 0.00784 gxg3 1.575 0.02635

gng4 2.7 0.00784 gxg4 2.7 0.02635

gng5 3.75 0.00784 gxg5 3.75 0.02635

gng6 6.0 0.00784

gng7 7.8 0.00784

7 Some EVT results

In order to validate the fitting process, for each series we chose several different
cluster time intervals Tc and thresholds u, and checked the fitted parameters,
the standard errors and the estimated local maxima. Some typical examples
of the comparisons are shown in Table 3. We found that the sensitivity to Tc

and u to the EVT parameters was weak. In particular, the local maxima Γ0

were fairly stable. Note the maximum concentration was not dimensionless.
The mean excess plots and quantile-quantile (QQ) plots were also checked.
The optimum (Tc, u) were chosen as (0.25, 3.36), (0.25, 0.11), (0.325, 500) for
gng1, gng7 and gxg1 respectively. The shape parameter ξ tended to decrease
with downstream distance, which can be interpreted in terms of meandering
and intermittency becoming weaker further downstream.

Several typical mean excess plots and QQ plots for gxgs are shown in Fig. 4.
The plots are acceptable, suggesting that the fitting process is a success. We
noted that there was a broad area with nearly constant slope on the mean ex-
cess plots. In order to check the robustness of prediction, the GPD parameters
generated from fits to various durations of data, up to the maximum gathered,
were compared. These series with different durations were processed using the
same threshold and cluster time interval. The parameters of ξ and σ and the
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Table 3
Examples of comparisons among different cluster time intervals Tc and thresholds
u.

Tc × U/D u× 1000 ξ(s.e) σ(s.e.)× 1000 Γ0 × 1000

0.125 2.5 -0.1112(0.0871) 7.292(0.136) 68.05

0.125 3.36 -0.09647(0.0101) 6.865(0.137) 74.53

0.125 4.0 -0.08434(0.0113) 6.564(0.138) 81.82

gng1 0.25 3.36 -0.1123(0.0129) 7.613(0.205) 71.19

0.25 0.08 -0.3403(0.0173) 0.07521(0.00220) 0.3010

0.25 0.11 -0.2646(0.0257) 0.05687(0.00221) 0.3250

0.25 0.14 -0.2444(0.0378) 0.04741(0.00257) 0.3340

gng7 0.5 0.11 -0.2810(0.0356) 0.05989(0.00321) 0.3231

Tc × U/D u ξ (s.e) σ (s.e.) Γ0

0.325 450 -0.1346(0.0103) 271.3(5.2) 2465

0.325 500 -0.1104(0.0125) 249.2(5.3) 2755

0.325 550 -0.0850(0.0151) 230.5(5.6) 3230

gxg1 0.65 500 -0.1517(0.0153) 294.2(8.6) 2438

local maximum Γ0 were studied as functions of the duration of data used for
the fitting process. We found that the parameters tended to constants for the
longer series durations, demonstrating the process was robust.

The relative maximum is defined as the maximum concentration (upper limit
Γ0) normalized by the local maximum mean concentration Cm. Fig. 5(top)
illustrates the comparison of the relative maxima between enes and exes. De-
spite the large confidence interval of enes, the relative maxima for enes are
in good agreement with that for exes in Fig. 5. Compared with those for the
GLS, both the magnitude and the trend against downstream distance for the
ES in Fig. 5 are absolutely different (the upper limit Γ0 can be even more than
50 times larger than the mean concentration for the ES), which suggests that
the turbulence has a large effect on the extreme concentrations, since the local
turbulence in the near wall region is quite different from that at the height of
the ES. It is expected that the relative maxima will remain at a large level for
a long distance downstream from x/D = 3.75, which is quite different from
the case of the GLS.

Fig. 5 (bottom) also shows the comparison between LES and experiment of the
relative maxima at several downstream locations for the GLS. The comparison
is quite reasonable. We found that the local maximum Γ0 far downstream was
approached by the ‘return level’ in a shorter ‘return period’ than close to
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Fig. 4. From left to right then top to bottom: exe1, exe2, exe3, exe4, exe5. (a) Solid
lines, mean excess; dash dot lines, 95% confidence interval.

the source (see Eq. 10 and 11). Note the time series far downstream were
“denser”(fewer zero or very low concentration value and more peaks) due to
the weak meandering, which generated a lower ξ (see gng1 and gng7 in Table 3)
and made the return period less at the same return level. In Fig. 1 the relative
intensity of the LES data and measurements for the GLS shows a very slight
decay around x/D = 1.0 whereas further downstream, from x/D = 2.0, it
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Fig. 5. Relative maximum concentrations. Top: – –4– – ES LES;– –◦– – ES mea-
surements. Bottom: – –¤– – GLS LES;– –¢ – – GLS measurements. Vertical bars:
95% confidence intervals, large cap, LES; small cap, measurements.

clearly approaches a very evident constant. However in Fig. 5 (bottom), the
relative maximum shows a slow decay with downstream distance, which does
not have an obvious limit. We see that Fig. 5 for the ES is very similar in
shape to the plot of relative intensity of fluctuations for the ES (see Fig. 1),
where the peak is also located around X/D = 2.0. Again, Sykes and Henn
(1992) argued that the relative intensity of turbulence fluctuations for the ES
decays towards zero downstream. In Fig. 5 (top) for the ES, there is an evident
decay downstream.

In order to investigate further the similarity between the relative maxima
Γ0/Cm and the relative intensity of fluctuations crms/Cm, a plot of Γ0/crms

against the downstream distance is illustrated in Fig. 6. Note for the ES that
further downstream from x/D = 0.95, the numerical and experimental curves
converge approximately to a constant value of 20, which confirms that the
relative maxima and the relative intensity of fluctuations against the down-
stream distance are similar in shape in the far field. For the GLS, it is only
further downstream from approximately x/D = 3.75, that the decline with the
downstream distance slows down significantly. Note that the sudden decay at
the furthest point in the experimental data is due to background instrument
noise significantly affecting crms (Xie et al., 2004b). Nevertheless, it seems that
there is a similarity in shape between the relative maxima and the relative in-
tensity against the downstream distance for the GLS, in particular in the far
field, where the numerical data converge approximately to a constant value of
about 6.

The vertical profiles of the local maxima at x/D = 7.8 obtained from LES for
the GLS are plotted in Fig.7, where Clm(z) is the local mean concentration at
height z, Cm is the maximum mean concentration at the streamwise location
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confidence intervals; —4— Γ0(z)/Clm(z); –·–◦–·– Γ0(z)/Cm.

x/D = 7.8. The normalized half width of the plume σz/D is 0.26. Note that
the predicted highest concentration is not found at the core of the plume, but,
instead, at the edge. Further, we found that the local largest concentration
in the long-term numerically simulated time series at the top of the surface
layer was greater than that at ground level (in the core of the plume). This is
mainly because at the top of surface layer, although the distance to the source
was slightly longer than that at the core at the same streamwise location,
the background mean streamwise velocity was much larger and hence the
dispersion time was less than that at the core. Also the turbulence intensities
were larger at ground level than well away from the wall. Larger turbulence
intensities enhance the turbulent mixing, which diminishes the local maximum
concentration.
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8 Conclusions and discussions

The relative concentration fluctuations, demonstrated by vertical and lateral
profiles of fluctuation r.m.s for a GLS and ES obtained from LES were in
good agreement with measurements. We stress again that modelling fluctu-
ations for the GLS in particular is a hard task (Sykes and Henn, 1992). For
the ground-level source, the relative intensity of the concentration fluctuations
reached an apparently near-constant value further downstream. It has been
speculated (Sykes and Henn, 1992) that this was found in field observations
because of the presence of the large scale eddies in the atmosphere. For the
wind tunnel experiment and our numerical simulation, the ratio of the dom-
inant eddies near the wall (e.g. GLS) to the largest eddy was much smaller
than that far from the wall. Hence the numerical simulation and wind tunnel
experiments for the GLS were in similar situation to Mylne and Mason (1991)
field observations. Furthermore, dimensional analysis was used to estimate
the downstream trend for the GLS. This confirmed that the relative intensity
approached a constant value downstream.

Frequency regions with slope approximately -1 in the spectra for the GLS
and of -0.7 for the ES were observed in the current study. These preceded
any -5/3 region that might exist, though, in fact, none of the spectra showed
a clear −5/3 region. On the basis of this study, we were confident that the
current LES model was reliable for calculating dispersion from sources in tur-
bulent boundary layer flow, and can be applied to further analysis, such as
the prediction of extreme events and their return periods.

Twenty six time series, which were collected at ground-level for the GLS and
at the source height for the ES, were processed successfully by using the Gen-
eralized Pareto Distribution to predict the occurrence of rare events. A re-
markable difference in the character of the extreme concentrations was found
between the elevated source release and the ground-level source release, sug-
gesting that the turbulence characteristics played a very important role in the
extreme concentration. From the vertical profiles of the local maxima for the
GLS, the predicted highest concentration was not found at the core, but at
the upper edge of the plume.

It was noted that the variations of the relative concentration maxima with
the downstream distance were more or less similar in shape to the equivalent
relative intensity variations. Both the relative maxima and the relative inten-
sity plots for the ES indicated decay towards zero in the very far field, though
whether this trend will persist is unclear. For the GLS, the relative intensities
approached a clear far field limit whereas the behaviour of the relative maxima
was less obvious, with perhaps some sign of slow far field decay. A question
arising here is: is there any similarities or simple relations between the relative
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maxima and the relative intensities (or higher order moments)? If so, a lot of
effort could be saved in obtaining the relative maxima.
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