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Accurate measiu-ements of the CKM matrix elements can be used to probe 
the consistency of the Standard Model. The main uncertainties in these mea-
surements are involved in the theoretical calculation of the strong interaction 
effects on weak decays. Lattice QCD offers the only non-perturbative method to 
calculate these effects in a model independent way. 

Neutral kaon mixing is driven in the low energy effective theory by the AS = 2 
four fermion operator. We study the weak matrix element of this operator in 
terms of the kaon B-parameter using Lattice QCD with an improved fermion 
action. The chiral behaviour of the matrix elements compared with the Wilson 
results show no significant improvement. 

Extraction of CKM matrix elements from B-meson mixing is restricted by the 
uncertainty in the B-meson decay constant. We calculate this matrix element 
using 6 quarks simulated in the static limit of the Heavy Quark Effective Theory 
(HQET). Smeared interpolating operators are used to extract the ground state 
and the effectiveness of several smearing functions is studied. 

We calculate the Bg — Bj and A;, — B mass differences from the lowest order 
contribution to the static theory. The spin dependent first order corrections 
are studied in a calculation of the vector-pseudoscalar mass splitting, B* — B. 
Comparison is made to calculations with Wilson fermions and experimentally 
measured values. 
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Chapte r 1 

In t roduct ion 

Nineteen eighty-three wag a good year for particle physics. The detection of 

the W and Z bosons at CERN's UAl detector were in spectacular agreement 

with the predictions of the electroweak theory of Glashow, Salam and Weinberg. 

Arguably, this was one of the great successes of the Standard Model of Particle 

Physics and was celebrated by Nobel Prizes for the experimentaiists Rubbia and 

Van der Meer in 1983. Since then it could be said that most of particle physics, 

both experimentally and theoreticeilly, has been involved in testing this Standard 

Model and as yet it has survived remarkably well. 

In this chapter we include a brief sketch of the Standard Model and outline 

in more detail one aspect of the theory of particular interest to this thesis, CP 

violation in the Standard Model. A detailed account of the Standard Model ca:i 

be found in a multitude of text books on the subject, [7, 8, 9]. This chapter is 

ended with some motivations for the calculations attempted in this work. 

1.1 T h e S t a n d a r d Mode l 

The Standard Model of Particle Physics describes the interactions of elementary 

particles (gunr&a and in terms of three forces wea/c and e/ec^ro-

though as yet fails to provide a quantum theory of gravity. All three 

theories fall into the class of Quantum Field Theories (QFT), with particles rep-

resented by fields over all space-time. Interactions can be introduced in a very 

natural way by the requirement of gauge invariance. This involves constructing a 

theory which is invariant under local, transformations. In this way, 

are introduced into the theory. These are massless spin 1 particles, which 



mediate the interactions, acting as force carriers. A further requirement placed 

on the Standard Model is that of renormahsabihty, which allows the extraction 

of Rnite physical predictions from the theory. 

The 'blue-print' QFT is QuantumElectroDynamics (QED). This describes 

the interactions of electrons and photons in a gauge covariant formalism as a 

theory of electromagnetism. HistoricaJly, this arose from Dirac's work on spin-^ 

particles, but can be constructed from invariance under the U(l) gauge group, 

forming an abehan gauge theory. With the technical problems involved in the 

renormalisation of this theory solved by Feynman, QED offers the most accurate 

theory known to science. 

The ideas of gauge invariance introduced in QED were generalised to non-

abelian gauge groups by Yang and Mills (1954). A theory of the strong inter-

action wag formulated from the work of Gell-Mann and Zweig (1964). This 

involved interpreting hadrons as bound states of elementary particles, quarks, 

carrying a new quantum number, colour. A gauge theory describing the in-

teractions of quarks was constructed in analogy to QED; invariance under the 

5'[/(3)co(our gauge group with force carriers called gluons. This theory is known 

as QuantumChromoDynamics (QCD). The final piece, came in terms of a theory 

of the weak interaction. Originating from the Fermi theory of decay, the ideas 

of gauge theories and intermediate vector bosons, culminated in the unified elec-

troweak theory of Glashow(1961), Salam(1967) and Weinberg (1968), in terms 

of the S'[/(2)/, (g) [/(l)y gauge group. However, it was only with the the proof of 

renormalisation of the electroweak theory by't Hooft (1971), that gauge theories 

were adopted as the Standard Model of Particle Physics. 

With hindsight, the Standard Model can be completely determined from three 

requirements, 

# specification of the gauge group, 

^[/(3) ^ (^[/(2)L ® [;( l )y) . 

This is the combined gauge group of the strong, weak and electromagnetic 

interactions. Each force is mediated by a gauge boson; gluons, W and Z 

bosons and the photon, respectively. 

# choice of matter fields in the theory and how they transform under the above 

gauge group. A minimal choice in the fermion content of the theory consists 

2 



of three generations of quarks and leptons. These are usually arranged as 

left-handed doublets and right-handed singlets for the electroweak theory. 

L \ / z, \ / L 

; 

# and the Anal requirement that all possible renormalisable couplings are 

included. 

With these requirements satisfied, all the information concerning the dynam-

ics of the Standard Model can be contained in a Lagrangian, 

^SM ^GAUGE ^FERTNION • ( 1 * 1 ) 

All the pure gauge dynamics are contained in fgauge, /Zfermicm describes the 

interactions between the fermion content of the theory and the gauge bosons 

and is a topological term. The full Standard Model Lagrangian is given in 

Appendix A. 

The requirement of renormalisability forbids the inclusion of mass terms, for 

either the fermions or gauge bosons. This is a major problem, aa fermion masses 

are experimentally observed and it is known that the weak interaction is short 

ranged, mediated with very heavy gauge bosons. One way of introducing mass 

terms in a renormalisable way, was introduced by Higgs, [10]. In the simplest 

case this involves the introduction of a charged scalar (Higgs) doublet, into the 

particle count, 

*=($»)• 
This gives rise to another two terms in the Standard Model Lagrangian, Zlffigga 

dealing with the dynamics of the scalar helds, including gauge couplings, and 

containing all interactions between the scalar Higgs and the fermions in 

the theory. 

Masses are introduced by means of spontaneous symmetry breaking (SSB). 

The choice of one particular physical vacuum from all possible degenerate ground 

states breaks the symmetry. This vacuum keeps only a subgroup of the full sym-

metry, while the Lagrangian itself is still fully invariant under the symmetry 



transformations. The Higgs mechanism involves the SSB of the electroweak sym-

metry to the electromagnetic symmetry, 

(1.3) 

In terms of Standard Model fields, one component of the Higgs obtains a 

non-zero vacuum expectation value (v.e.v.), 

(0>o = (0|$|0)o = ( ^ - (14) 

As a result, this component of the Higgs obtains a large maas. In turn, these 

degrees of freedom are 'eaten' by the electroweak gauge bosons resulting in very 

massive W and Z bosons and the massless photon. The effect of this symmetry 

breaking on the Yukawa sector of the Standard Model is to give rise to fermion 

mags terms. 

This concludes the barest outline of the Standard Model. Although there 

have been many successes, the story is far from complete. There are still many 

problems with the current theory; 19 free parameters still have to be put in 

'by hand', the arbitrary nature of the Higgs sector to introduce fermion masses, 

no explanation of the mass hierarchy (why the top mass is so much greater 

than the other quark masses), why there should be just three generations and 

whether there is some underlying structure to the whole scheme. Further to this is 

the fundamental question of baryon number violation, leading to a matter/anti-

matter asymmetry in the universe, which is related to the phenomenon of CP 

violation. 

It is hoped that study of CP violation can probe the rare parts of the Standard 

Model, really testing the details and searching for inconsistencies which could 

perhaps indicate a path beyond the Standard Model. With this as motivation, 

we give a brief outline of how CP violation enters the Standard Model, then 

describe a method for studying it. 

1.2 C K M M a t r i x a n d C P Violat ion 

The arbitrary nature of the fermion masses in the Standard Model is closely tied 

to the phenomena of CP violation, in that they both arise from the Yukawa term 

in the Lagrangian. 



The most general Yukawa coupling of quarks and leptons with the scalar helds 

is, 

For all three generations = 1.2,3, are the Yukawa couplings, are the 

left-handed lepton doublets, the right-handed leptons, the left-handed 

quark doublets and the right-handed quark singlets. The dual Higgs held is 

defined eis $ = 

After SSB the Yukawa terms obtain a form reminiscent of a mass term, though 

at this point the mass matrix is cross-generational (i.e. not diagonal in flavour), 

(16) 

with 

However, it is known that any matrix can be diagonalised by two unitary 

transformations, By rotating the quark fields in the Yukawa 

terms, 

the quark maas matrices can be diagonahsed. 

/ TTlu 0 0 \ 
0 m c 0 

\ 0 0 mt y 
= 0 0 I . (1.8 

In this way the Standard Model obtains queirk mass terms, for all quarks, 

These new fields are known as the mass eigenstates of the theory, compared 

with the weak eigenstates which were the original quark fields. 

These rotations of the fields to the mass eigenstates can be carried out in the 

other sectors of the Standard Model. Of particular interest is the effect on the 

electroweak sector, governing the weak decays of quarks. Consider, for example 

a neutral current, 

.7̂  = 'Ui'ŷ (cK" 4- 4- -t- + /i.e., (1-9) 

involved in the decays of quarks and of all chiralities. Being diagonal in 

flavour the neutral currents are clearly unaffected by the rotation to the mass 

eigenbasis, as the rotation matrices are unitary. This means there are no flavour 

changing neutral currents at tree level. 



Quarks also decay weakly through the emission of charged W bosons. The 

dynamics of these decays are contained in the charged currents, The effect 

of the transformation of the quark fields on these currents is as follows, 

4-A.c . = (1-10) 

The unitary matrix y = eirises from the combination of the rotations 

on the upper and lower components of the quark doublets. This is known as the 

Cabibbo-Kobayshi-Maskawa (CKM) quark mixing matrix, [11, 12]. Its matrix 

elements tell us of the coupling strength of weak quark decays. 

y 
/ \ 

Kj 
\ Kb / 

(1.11] 

This CKM mixing matrix is a unitary 3 x 3 complex matrix. Generalising 

for a complex » x M unitary matrix, there are free parameters, which the 

unitajity condition reduces to This can be reduced further, by 2?% — 1, by 

exploiting the freedoms to redefine the phase on the 2M quark fields, though the 

matrix is invariant when all quarks are rotated by the same phase. Comparison 

with an 7% X M orthogonal matrix with n(M — l) /2 real angles, indicates that a 

complex unitary matrix can be parameterised in terms of M(M — l ) /2 real angles 

and (M— 1)(M —2)/2 complex phases^. For the CKM matrix of a three generation 

Standard Model, this means a parameterisation in terms of three real angles and 

one complex phase. It is this complex phase which is the origin of CP violation 

in the Standard Model. 

So why can't the CKM matrix elements be better defined by experiment? 

One reason is the uncertainty in the mass of the top quark. This plays a crucial 

role in extracting the CKM matrix elements from experimental measurements. 

Despite great excitement earlier this year with the publication of ref. [13], quoting 

m t = 1 7 4 ± 1 0 : | ^ G e V , (1.12) 

the experimentalists at the CDF detector at Fermilab were very careful to point 

out this was evidence /o?-, not discovery o/ the top quark. Clearly time will 

ascertain the validity of this result. 

> 3 for a complex phase 



However, the main problem involves theoretical uncertainties in calculating 

the strong interaction effects on weak matrix elements. These are vital if we are 

to exploit the full predictive power of the CKM matrix aa a probe of the Standard 

Model. To see this further, the next section offers a pareimeterisation of the CKM 

matrix, and outlines a set of steps, including both experimental and theoretical 

input, which can be used to determine the CKM matrix elements. 

1.3 T h e C K M M a t r i x and t h e Wol fens t e in Pa-
ramete r i sa t ion 

The leist section ended with the introduction of the CKM matrix as a means of 

introducing CP violation in the Standard Model. This, however, goes only a small 

way into describing the full utility of the CKM matrix. In terms of the Standard 

Model itself, the CKM matrix contains many of the free parameters, including 

the poorly known top couphngs^. It also probes both strong and weak sectors 

of the theory, covering much of the dynamics of the Standard Model. Further 

to this, given that many of the processes involving the CKM matrix occur only 

above tree level, it tests the very quantum nature of the theory and could also 

give the clues to the existence of new physics. 

In attempting to determine the couplings within the CKM matrix, it is pos-

sible to parameterise this matrix with three real angles and one complex phaae. 

Many such parameterisations exist. The Particle Data Group, [14], recommend 

a 'standard' form, because of the simple relations between the parameters and 

the experimental measurements. Instead, the Wolfenstein parameterisation, [15], 

only will be given here, because of its useful geometrical representation. 

The Wolfenstein parameterisation is based on an expansion in A = IK.3I, 

originally founded from empirical observation, and displaying the relative sizes 

of the couplings. 

y T AA" A 1 - ^ AÂ  + 0(A^), (1.13) 

for real angles A. .4 and p and phage 7/ representing CP violation contributions. 

This parameterisation clearly shows the hierarchy of couplings between genera-

^accurate determination of CKM matrix elements could also constrain the top mass 



C ^ ( 0 , 0 ) I ^ (1,0) 

Figure 1.1: The unitarity triangle in the (p, ??) plane. 

tions, largest within one generation and smallest between first and third. Also, 

all CP violating phases only occur in the couplings of heavy quarks. The utility 

of this parameterisation becomes clear in the next section, where a simple geo-

metric representation of the contents of the CKM matrix is given in terms of the 

unitarity triangle. 

1.4 T h e Uni t a r i ty Triangle 

Unitarity of the CKM matrix offers nine relations between the rows and columns 

of the matrix. By considering the CKM matrix elements as vectors in the complex 

plane, these unitarity relations can be described in terms of 'unitarity triangles', 

the area of which give a measure of CP violation. These triangles offer means 

to represent the structure of the CKM matrix in a simple geometrical form. 

This is particularly useful for studying CP violation with the inclusion of much 

experimental data and theoretical predictions from B and K decays. 

The most interesting of these triangles, from a phenomenological point of 

view, is, 

which contains the poorly known ajid Rescaling each side of this triangle 

by |K:6̂ cdl = transforms the unitarity triangle into the (p, v?) plane, shown 

in Figure 1.1. Unitarity of this triangle is simply given by the condition, 

a + /) + ^=180° . (1.15) 

Using this triangle, with the Wolfenstein parameterisation, it is possible to 

combine experimental and theoretical results to determine values for A. .4. p aiid 



7/, or at least offer constraints to the values. A typical strategy, [16. 17], for this 

involves, at least, a five step process, 

# parameter A: 

measured to a good accuracy from K and hyperon decays, 

A =114,1 = 0.2205 ±0.0018. (1.16) 

# parameter A; 

related to this can be extracted from the semi-leptonic B decays. Orig-

inally measured from inclusive decay processes, an alternative more theo-

retical approach is to use the formalism of Heavy Quark Effective Theory 

(HQET) and the non-perturbative calculation of the Isgur-Wise function. 

Using = 0.044 ± 0.006 gives, 

= = 0.90 ±0.12. (1.17) 

In order to determine point ^ = (p, 77) for a given value of 771̂ , it is usual to 

consider at least three experimental measurements, from which it is possible to 

determine unambiguous solutions for (p, 7;). 

# Experimental measurement of 

Measured at ARGUS/CLEO from inclusive semi-leptonic B decays, we 

take = 0.085 ±0.015. This defines a circle, centre (0,0), 

JpZ + 7̂ 2 = = 0.39 ± 0.07. (1.18) 
A IK*! 

Mixing in neutral kaon system : e: 

CP violation haa only been seen in neutral kaon mixing and a measure of 

this CP violation is given by the parameter e, discussed in more detail in 

Chapter 3. Experimental measurements from kaon mixing give |e| = (2.26± 

0.02) X 10" .̂ The theoretical input to this process comes from evaluation 

of the box diagram, described in Section 3.1. The non-perturbative strong 

interaction effects of the weak decay are contained in the kaon B-parameter, 

= 0.66 ± 0.08, calculated in Chapter 3. The result of Equation (3.7). 

relating the experimentally measured e to terms involving CKM matrix 

9 



elements, known factors and the weak matrix elements, defines a hyperbola 

in (/),??) space, 

(77ct/3(3;c, 3;t) - %c) + %a;ty2(a;t)v4^A^(l - p)] . (1.19) 

We have used the notation of ref. [18], defining the CP violating pareimeter 

in terms of the Wolfenstein parameters, QCD corrections and 

known functions and /s. 

# Mixing in the B-system : 

Neutral meson mixing is also observed in the B-system, discussed in Chap-

ter 4, with many similarities to kaon mixing. Experimental input comes 

from the mixing parameter, 3;̂  = 0.67 i 0.10. Theoretical input can be ob-

tained from the associated box diagram, Section 4.1, where now the main 

uncertainty is in the determination of the decay constant, /g = 200 ± 30 

MeV. Expressing the CKM matrix dependence to the mixing parameter 

in Equation (4.1) in terms of the Wolfenstein parameterisation, defines a 

circle, centre (1,0), 

% = rg ^g^2^^QCD/n8/gBgZt/2(:rt)y4^A^ [(1 - p)^ -t- 77̂ ] . (1.20) 

These experimental measurements and theoretical predictions can be com-

bined using the geometrical representation of these relations. In principle this 

could uniquely determine the unitarity triangle from point v4 = (p, 7/) and hence 

all four parameters of the CKM matrix. Realistically, however, accurate mea-

surements of all these quantities are not attainable. We attempt to show this 

by plotting the three curves outlined above, including the experimental errors, 

to show the constraints on the unitarity triangle. Figure 1.2(a) shows the (/),/?) 

parameter space for the current experimental and theoretical estimates listed in 

Table 1.1. 

Without further improvements in both theoretical and experimental calcu-

lations, only vague predictions can be made about the unitarity triangle. For 

example, if all the measurements required for the unitarity plot were obtained to 

an accuracy of 5%. Figure 1.2(b) would be obtained. To sharpen the predictive 

power of such an analysis several improvements would be welcome. 

10 



Experimental Measurements 
1%,,! 0.2205 ±0.0018 [18] 

0.08 ± 0.02 [18] 
e (2.26 ± 0.02) x 10"^ [53] 

175 ± 15 GeV [13] 
80.2 GeV [53] 
0.498 GeV [53] 
0.161 GeV [53] 

mg 5.279 GeV [53] 

1%*! 0.044 ± 0.005 [18] 

0.67 ± 0 . 1 0 [67] 
rric 1.4 GeV [53] 
Gf 1 .17x l0 -^GeV-^[53] 

AmK 3.5 X 10-^5 QgY 

1/Tg 4.388 X 10-^3 QgY [53] 

Theoretical Predictions 
Bjc 0.66 ± 0.08 (this work) 

0.82[16] 
77ct 0.35 [16] 

/ g y B a 0.2 ± 0.03 GeV [16] 
% 0.62 [16] 

%CD 0.55 [16] 

Table 1.1: Input values for constraints on the unitarity triangle. 
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Figure 1.2: Constraints on the unitarity triangle, (a) for present experimental 
and theoretical measurements and (b) for all measurements accurate to 5%. 
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1. Experimentally: 

# accurate measurement of the top quark mass would remove a large 

uncertainty from all the dependence, 

# measurement of mixing in to determine without precise 

knowledge of 

# further study of semi-leptonic B decays (and associated theory) to 

improve measurements of |%.6| and |%6|, 

# experimental determination of / g from leptonic 5 decays. 

RIB~* LU] = ( l / I IK u6| 

# measurement of direct CP violation in various kaon decays, 

# study of CP asymmetries in B-decays, allowing for direct determina-

tion of angle of unitarity triangle, free from theoretical uncertainties. 

The continued huge experimental effort focused on the above experimen-

tal improvements, will undoubtedly shed a good deal of light on the quark 

mixing matrix and CP violation in coming years. This will be further 

strengthened by the arrival of dedicated B-factories, producing the nec-

essary luminosities required for study of some of the more elusive decay 

modes. 

2. Theoretically: 

# improved calculations of 

# / g and Bg. 

In studying CP violation and the CKM matrix, we are probing the weak 

decays of quarks. However, quarks also interact strongly and what is needed 

is a better understanding of these strong interaction effects. The non-

perturbative nature of these calculations is the main stumbling block to 

an accurate determination of these quantities. At present Lattice QCD, 

offers the best method by which to attack these calculations. Its utility 
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and possibilities have been demonstrated by successes in realms of light 

quark spectroscopy and hadronic matrix elements with recent developments 

opening up new possibilities in heavy quark physics. 

The Standard Model of Particle Physics has been very successful in describing 

a huge variety of experimental data. In this chapter we introduced this model in 

terms of gauge theories. We focus on the phenomenon of CP violation, introduced 

into the Standard Model primarily through the CKM quark mixing matrix. This 

was developed into a strategy for the determination of the CKM matrix elements, 

with the main uncertainties involved in the theoretical calculation of weak matrix 

elements. In Chapter 2 we outline a method to attempt these non-perturbative 

calculations. Lattice QCD, in Chapter 3 we continue with calculation of 

and in Chapter 4 /g, Chapter 4 mentioned above. The last chapter, Chapter 5. 

involves the spectroscopy of systems containing one heavy quark. 
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Chapte r 2 

Latt ice Field Theory 

The Standard Model of Particle Physics has achieved great success in describing 

the interactions of elementary particles and classifying the ^zoo' of particles dis-

covered from accelerator experiments. In terms of the strong force, the success in 

understanding the dynamics of this theory is only partial. The theory describes 

the interactions only of the constituent particles, quarks and gluons, but what 

is of primary interest is a description of the low energy behaviour of the parti-

cles, hadrons, existing in nature and studied by experiment. The standard field 

theoretic techniques of perturbation theory, relying on the asymptotic freedom 

of the strong interaction, can only accurately investigate the high energy, short 

distance physics. Clearly this is a problem, when many quantities of interest, 

such as hadronic masses and matrix elements, are inherently non-perturbative. 

It was Wilson, [19], who suggested a possible 'Arst principles solution' to the 

strong interaction problem. 

His solution was a non-perturbative formulation of a Aeld theory on a discrete 

space-time lattice. In formulating a field theory on a lattice, the finite lattice 

spacing serves as an ultraviolet regulator to cut-off the high energy behaviour, 

which then requires renormalisation group techniques to regain the continuum 

physics. Further to this, it was possible to take full advantage of the machin-

ery of statistical mechanics which is well developed for study of systems with 

high numbers of micro-degrees of freedom to obtain macroscopic predictions. In 

tackling the strong interaction problem this way, the theory simulated is 'true' 

QCD containing all the physics of the continuum theory and not some model 

approximation. 

As was mentioned, one of the main aims of Lattice QCD is the calculation of 
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the strong interaction effects on hadronic matrix elements^. The standard way of 

calculating this is in the Path Integral formalism, [20], which in Minkowski space 

involves the following integral, 

Numerically this integral is not well defined, due to the complex exponent. How-

ever, Wick rotating to Euclidean space recovers a more useful form, 

^ SVUV^V-TPE'^A"-*-*^ ' ^ ' 

and Dirac matrices with the following properties, 

{7^,7^} = 2̂ ;,̂  and (2.3) 

In everything that follows, Euclidean space will be assumed, and 'E' labels 

dropped. In fact there will be no need to return to Minkowski space, as all 

quantities of interest can be extracted directly from Euclidean correlators. 

In general, a Lattice Field Theory (LET) is required to satisfy the same con-

ditions of gauge invariance and renormahsability as a continuum field theory. 

Further to this, the LET is required to recover the continuum form as the lattice 

spacing is removed. With this in mind this chapter outlines the discretisation 

of spacetime, the construction of a lattice version of the full QCD action and 

then some of the techniques needed for numerical simulation of a field theory. A 

simple example of the generic lattice calculation is given at the end. 

2.1 Free Fermion Act ion 

With the aim of introducing the basic ingredients to formulate a field theory on 

a discrete lattice, the free fermion action is considered. In Euclidean space, the 

Dirac action for a free fermion has the following form, 

5" = (2.4) 

where for simplicity and clarity all spin, o:, colour, a and Havour, / , indices have 

been omitted, i/;(:r) = 

'in this thesis we focus on a lattice formulation of the strong force, described by QCD. 
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To obtain a lattice version of this action it is necessary to discretise spacetime. 

This involves replacing the continuous spacetime variables, with the dimen-

sionless, where is an integer, and dimensionful parameter, a. the lattice 

spacing. Then the quantum Held, is replaced by on a lattice site, 

representing the field over some small region of space. Often in numerical calcu-

lations it is useful to work with a dimensionless theory. This can be constructed 

by rescaling all quantities by powers^ of the only dimensionful scale available to 

the theory; the lattice spacing. 

-4- (2.5) 

>'0^^ (2.6) 

i/;(a;) — a 2i/'(M) (2.7) 

m (2.8) 

In constructing the discrete version of the derivative, many possible choices 

exist. The simplest cage which obeys the requirement of anti-hermiticity is the 

symmetric difference, 

9 ; , i / ; ( z ) - ) '^(^(n- | - / l ) - i / ' (M- / l ) ) , (2.9) 

which ensure that quarks and anti-quarks propagate in the same manner. Here 

we use as the unit vector in the //th direction, as opposed to // the Lorentz 

index. 

With such a definition, the following naive fermion action is obtained. 

SNF — XI ^ (i/'(M)7;,(V'(M + /I) - - /^))) + m'!/;(n)i/'(n 
L M 

(2 .10) 

= ^i/'(M)M(M,m)i/'(m). (2.11) 
71,m 

In writing the action as a term quadratic in quark fields, with some fermion 

matrix, M(M, m), it is suggestive of the continuum formalism from which the free 

propagator can be obtained. Similarly, a free lattice propagator can be defined 

in terms of the two point correlation function, 

(w(n)?/;(m)) = G(7L m) = m). (2.12) 

4 h e power is given by the engineering dimensions of the quantity 
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A convenient way to determine this is in momentum space. With the field the-

ory formulated on a discrete spacetime lattice, momentum space is continuous, 

periodic and restricted to the Brillouin Zone ^ E [—7r, 7r].̂  In this way it is clear 

that introducing a discrete lattice haa regulated the held theory by a momentum 

cut-off. The momentum space representation of the quark fields, in terms of 

dimensionless momentum are, 

from which the free propagator in lattice units is. 

The naive continuum limit of this is obtained by rescaling all quantities by 

appropriate factors of a and then taking the a —̂  0 limit, 

- 5 ^ , 

where, s = ^ sin 

For finite /j, in the a — 0 hmit, and the free lattice propagator 

regains the usual continuum formulation of the Dirac action, 

corresponding to a physical particle with mass m. However, with this formula-

tion of the free quark propagator, the naive continuum limit is also regained for 

momenta in the neighborhood of % ±7r/a, at the edges of the Brillouin Zone. 

These extra contributions correspond in physical terms to mass degenerate 

fermions, a 'doubler' in each dimension, i.e. 2̂  fermions in all. This is the 

infamous 'doubling problem' for naive fermions on the lattice. Clearly no such 

degenerate fermions are seen in nature. Fortunately, there are ways around this 

problem, but as always there must be some compromise. The two main ways 

used in practical Lattice QCD calculations are the Kogut-Susskind formulation, 

[21, 22], using 'staggered' fermions, or the one proposed by Wilson, [23]. It is this 

latter approach which is followed in all the work carried out in this thesis, with 

a review of staggered fermions given in ref. [24]. 

hh i s assumes translational invariance and infinite spatial volume. 



With an outiine of the procedure to discretise spacetime and construct a naive 

free fermion lattice action, the next section describes the Wilson formulation to 

overcome fermion doubhng. 

2.2 Wilson Fermions 

The formulation of Lattice QCD used in this study is based on the Wilson action. 

The idea behind this lies in the fact that the lattice action is only required to 

regain the continuum in the limit a 0 . leaving considerable choice in the 

definition of a lattice action. Wilson, [23], exploited this ambiguity by adding 

irrelevant operators, ones which vanish in the continuum limit, to reduce the 

fermion content of the lattice theory to one fermion. 

Wilson's choice wag to axld a second derivative term to the naive action, 

Sp=S,Hf + Sw, (2.17) 

where the Wilson term is, 

= (2.18) 
n 

with Wilson coefficient, r, and A is the lattice discretisation of the second deriva-

tive, 

Ai//(M) = ^ (V'()̂  + /̂ ) - 2':/'(») + i/;(M - / / ) ) . (2.19) 
^ a 

This gives for free fermions, 

5"̂  = ^ (fM + 4r) i/'(M)'!/'(?2) 
71 

— ^i^(M){^ 2 ^ ) ^ 2 ^ ) (2.20) 

= ^'!^(M);/;(n) 

- Y]# (M){ (r - 7;,)V;(?̂  + A) + (r + '7;i)V'(M - //)}- (2.21) 

In passing to Equation (2.21) we have redefined the quark fields, 

TI) 
y = (2.22) 

Y 772 + 4?' 
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in terms of the 'hopping parameter', K, which measures the 'strength' of nearest 

neighbour interactions in the lattice theory. In practical lattice calculations this 

is the input parameter which controls the bare mass of the quarks used and will 

be referred to frequently in the following. 

The effect of adding this irrelevant operator is to introduce an explicit mass 

term which breaks the degeneracy of the quark masses. In terms of the free quark 

propagator, the naive continuum hmit is modified to, 

= (2.23) 

where M(A;) = m + 2r/al]^sin^ In the a 0 limit one quark retains its 

continuum maas, M(A;) — m , while the others obtain an infinite mass, ^(r/o), 

and decouple from the theory. However, this term also breaks chiral symmetry 

in the lattice theory even in the m —y 0 hmit, thus leaving Wilson fermions less 

useful for calculations which test the chiral symmetry of QCD, compared with 

the staggered formulation. In the Wilson formulation this hard broken chiral 

symmetry is accepted in preference to a multi-fermion interpretation required 

with the staggered fermion approach. However, it will be seen later, (Section 2.8), 

that it is possible to regain this chiral limit. In fact, Neilson and Ninomiya showed 

in [25] that this is a fundamental problem with a lattice regularisation (the No Go 

theorem), in that it is impossible to have a local fermion action while retaining 

full chiral symmetry cind avoiding the problem of fermion doublers. 

The final part in discretising the fermionic part of the Path Integral is the 

definition of the fermionic measure. A formal definition is, 

(2-24) 

where the sum is over all lattice sites ajid all quantum numbers, o, 6 (colour, 

spin, flavour). These integrals of fermionic fields are in terms of anti-commuting 

(Grassman) variables which obey the Grassman algebra and eis such have special 

integration rules. Consider a set of Grassman Aelds, with {7;̂ , %} = 0. The 

integration rules for these are, 

y (ff/: = 0 : = 1. (2.25) 

With the properties of Grassman variables outlined, the following integrals of 
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particular interest are included, 

y Di/'Di/' exp =detv4 (2.26) 

and yDi^'Z)'!/'%?^exp^-^%Ak(?7ij=(detA)A;"\ (2.2T) 

The introduction of the Wilson term reduces the fermion content of the Lattice 

QCD to one, though at the expense of chiral symmetry. This, with the definition 

of the fermion measure, completes the construction of a free fermion action in 

Lattice QCD, with quark masses characterised by a free parameter, /(. However 

the real utility of Lattice QCD arises from calculations of an intereicting held 

theory, with the inclusion of gauge fields. 

2.3 Gauge Fields 

The requirement of local gauge invariance in continuum field theories introduces 

the concept of gauge fields into the theory to correct the transformation properties 

of the action. This gauge symmetry manifests itself in the invariEmce of the action 

under the following local transformations of quark fields, 

(2-28) 

where are local treinsformations belonging to some gauge group 

Exactly the same is required for a lattice gauge theory. However, the free 

fermion action defined earlier contains non-local quark bilineeir terms which 

clearly are not invariant under such a gauge treinsformation. 

In the continuum this problem was overcome by the introduction of gauge 

fields cind construction of a covariant derivative from the simple derivative of the 

Dirac action. The continuum gauge fields transform as follows, 

(2-29) 
(/o 

where go is the bare gauge coupling parameter of the theory. With the success 

of this procedure in the continuum, it seems sensible to attempt the same for a 

lattice field theory. However, introducing gauge fields, say, on the lattice 

sites does not remove the problem of gauge invariance. It took Wilson, [19], to 
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formulate a covariant lattice gauge theory with the gauge fields represented on the 

links between sites. These links are members of a compact Lie Group compared 

with to elements of the Lie Algebra. 

Again continuum held theory hints at what to use to correct the behaviour 

under gauge transformations. What is needed is a term, such that, 

(2.30) 

is gauge invariant. This term exists and is known as a Schwinger line integral, 

[/(a:,?/) = (2.31) 

which corresponds to the phase picked up by a fermion propagating in the pres-

ence of a gauge field. 

In constructing a discrete version of Equation (2.31) for a lattice field theory, 

a natural definition is obtained in terms of the link variables, 

[/(M, n + //) = [/^(n) - 6 ^[/(N), (2.32) 

corresponding to the %op' of a quark field from one lattice site to the next, 

along direction /z. The path ordering prescription in the continuum leads to the 

following identity, 

D_^(n + /1) = [/^(M)', (2.33) 

for traversing a link in the opposite direction. The transformation properties of 

a link, following from the transformations of gauge field in Equation (2.29), are, 

[/);(») (7(n)[/^(n)p^(n + /(). (2.34) 

With this in mind, it is now possible to construct a gauge invariant lattice 

action, by joining up the point-spht quark bilinears, using the appropriate link 

variables. This gives the Wilson action, 

'S'w = ^(m4-4r)i^(Ti)i/'(Ti) - Y]iA(M) [/^(7i)i^(n + /l)4-
77. L \ L J 

4-7^ 
2 / 

[/T(M _ //)i/,(n - / / ) (2.35) 

In doing this, not only has the theory been made gauge invariant, but also 

interactions between quarks and gauge fields have been naturally included. In 
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Figure 2.1: An elementary plaquette. 

effect the combination of the links with the simple difference derivative has formed 

a lattice covariant derivative and the theory now resembles full interacting QCD. 

To see this more clearly, the naive continuum hmit can be taken as before. In 

the case of the link variables, this involves, 

% 1 4- (2.36) 

which, when included with the naive continuum limit of the Wilson action, results 

in, 

S'M/T = / c(̂ 3:i/;(z) (3/̂  (a^ + + ?7i) i/'(z) + O(o) (2.37) 

Having now introduced gauge fields into the theory, the full QCD action 

requires a kinetic term for these gauge fields. The continuum definition of tlie 

pure gauge action is, 

^ ' (2.38) 

In looking for a lattice version of this, a gauge invariant quantity dependent 

only on link variables, [/;,(?%), is sought. The simplest and most local gauge 

invariant object satisfying these criteria is known as a plaquette, the path ordered 

product of hnks shown in Figure 2.1, 

(2.39) 

It is also useful to consider the naive continuum limit of a plaquette, using 

the definition (2.36) earlier and taking care to consider the non-Abelian nature 
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j (2.42) 

of the gauge fields for QCD. This gives, 

= 1 + + O(a'). (2.40) 

Clearly the plaquette haa a suitable continuum limit to be used for a lattice 

version of the gauge action. Gauge invariance is obtained in the continuum by 

taking the trace of the field tensor term. Taking the trace of the real part of a 

plaquette gives a definition of the pure gauge lattice action, 

Sa" = - i i Y . ^ { V , , + U l ) (2.41) 

1 

~ 4 

where = 6/^o for QCD, defines the parameter in lattice field theory for the 

bare couphng constant, po-

The final ingredient in this recipe for a lattice field theory, is a definition for 

a gauge invariant measure, 

= (2.43) 
n , / 2 

where (/[/},(?%) is the invariant Haar measure, with integration over all sites and 

directions, [26]. Again, the utility of defining the theory on the lattice in terms 

of members of the (compact) Lie group arises. For a lattice field theory there is 

no need to fix a gauge or introduce ghost fields, though these will be mentioned 

later with reference to other issues of lattice field theory. 

In summary, the Wilson action for Lattice QCD is, 

Sa = - ^ Y . T r { U , , + Ui;) (2.45) 

5'QCD = V;, (2.44) 
0 

6 

6"^ = ^ (m + 4?-) i/'(n)i/'(n) - ^^'(M) ( — 1 ^ ) C (̂M)i/'(M + A) + 

[;^(n — )[f)i/'(?i — /() . (2.46) 

Here, in principle at least, is the basis for a non-perturbative formulation of 

QCD, offering first principles calculation of the effects of the strong interaction. 

The practical application of this formulation is best dealt with by large numerical 

simulation, discussed in the following sections. 
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2.4 Improvement 

In an attempt to reduce the 0(a) systematic errors in lattice calculations without 

significant computational overhead, Symanzik, [27] and then Sheikholeslami and 

Wohlert, [28], outlined a programme of theoretical improvement to the lattice 

action. Looking at the naive continuum Hmit of the Wilson and gauge actions, 

as defined earlier in Sections 2.2 and 2.3, 

S c ^ l l d'x F;,F;^ + 0{a^) (2.47) 

S W J 'IPJN {DFJ. ^ +(9(a) . (2.48) 

The gauge action is automatically improved to O(a^), with gauge symmetry 

protecting this improvement. However, the Wilson action has CP((z) corrections to 

the continuum. For some matrix elements this is a significant effect, in particular 

when simulations with heavy quarks are performed. 

Sheikholeslami and Wohlert proposed the exploitation of the flexibility in the 

choice of the discretisation of the fermion action and include extra irrelevant 

operators which exactly cancel the terms in the original Wilson action, 

+ + (2.49) 

The fermion action improvement term, 5'/^, in this study was of the form, 

6"/̂ - = ^ (2.50) 

n ^ 

This improvement term, called SW or 'Clover' improvement, due to the shape 

of the lattice field tensor in terms of plaquettes. Figure 2.2, corrects the classical 

fermion action to O(a^), but quantum corrections introduce terms of O(pQa), 

[29]. The added advantage of this choice of improvement term is that it only 

couples quarks locally. This offers improvement which can be easily incorporated 

in the numerical calculation of quark propagators. Section 2.5.2, without greatly 

increasing the computational effort. 

It is also necessary to consider the effect of this improvement on the matrix 

elements of operators. Another way of introducing the improvement is as a 

transformation of quark fields, such as, 

(2.51) 

1 + — , (2.52) 
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/i 

Figure 2.2: Contributions to field tensor for 'Clover' improvement. 

with appropriate discretisation of lattice covariant derivative, A. It has been 

shown, [29], that the effect of these rotation of the quark fields is to improve the 

operator matrix elements to It should be noted that when matching to 

the continuum, the renormahsation constants for these improved operators are 

now different from those obtained from matching unimproved operators. 

Throughout this study, the SW action is used. The effect of this improvement 

is one of the motivations in studying many of the quantities already calculated 

with Wilson fermions. 

2.5 Numer ica l Techniques 

Much time and effort in lattice field theory is spent in the numerical application 

of a field theory discretised on a finite lattice. In particular, the calculation 

of the expectation values of multi-local operators, . . . ) , by means of a 

Euclidean Path Integral of the type. 

< 0 (2.53) 

(2.54) 

This integral is complicated by the fact that fermion fields are anticommuting 
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fields, which follow the rules for Grassinau integration outlined in Section 2.2. To 

begin, the numerical calculation of a purely bosonic path integral is outhned, 

(O) = (2.55) 

and then a procedure for including fermions is mentioned. 

Before attempting any sort of numerical integral, the dimension of the system 

must be made finite, which in the case of Lattice QCD involves simulating in a 

box of size x lattice points' .̂ Periodic boundary conditions are imposed 

on the lattice boundary, though, for technical reasons, anti-periodic boundary 

conditions are apphed in the time direction. The physical effect of a spacetime 

lattice with finite extent is the introduction of an infrared red cutoff, in addition 

to the ultraviolet cutoff introduced at finite lattice spacing. For these reasons 

it is only possible to study phenomena with length scales large compared to 

the lattice spacing but short compared to the lattice size. Clearly, the lattice 

parameters must be chosen Ccirefully, to minimise any systematic error from these 

compromises required in the hght of finite computing resources. 

2.5 .1 M o n t e C a r l o M e t h o d s 

Clearly, it is impossible for an integral such as Equation (2.55) to be calculated 

numerically using the traditional techniques, due to the very large dimensionality 

of the integral^. Instead it is necessary to turn to statistical methods to calculate 

the expectation value as an ensemble average using some kind of Monte Carlo, 

(MC), integration method. 

A straight forward MC application to the integral would be extremely inef-

ficient because the action, varies widely over the possible configurations^. 

However, the algorithm is made much more efficient if it can choose the config-

urations which contribute most, a procedure called 'importance sampling'. In 

particular if the configurations are chosen with probability, 

f , , oc (2.56) 

''corresponding physical volume y = (W^a)^ x (W^a). 
•̂ a numerical integration at every lattice site, for every direction and colour index. 
6 by configuration we mean the background fields, (7, at all points on the lattice. 
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then the expectation value of the operator is estimated by an ensemble average. 

(O) = 1 y PL- ^ z O [{D'.}]. (2.57) 

This ensemble average is calculated over {[/,}, a set of TV independent con-

figurations chosen with the appropriate probability. The error of the ensem-

ble average approximation is of the order l/\/)V. It is useful to think of these 

conAgurations as elements of some Markov process, which constructs a config-

uration from the previous, with the correct probability. Many such algorithms 

exist, though an efficient one would quickly sample the configuration space, thus 

generating independent configurations in the minimum of computer time, while 

limiting the Eimount of systematic error introduced in producing the next ele-

ment. However, there is a constraint on the algorithm, in that it must satisfy 

a condition called detailed balance. This ensures the Markov process forces the 

configuration towards equihbrium with each step. Detailed balance requires the 

transition probability, P, from one configuration, C, to the next, C", to satisfy, 

^ C). (2.58) 

The simplest algorithm satisfying detailed balance and selecting configura-

tions with the appropriate probability was suggested by Metropolis, [30]. The 

idea behind it is as follows, 

# suggest a change to a configuration, C —̂  C", 

# accept this change if, 

change reduces the action, 

# also accept this change if, for some random number, r E [0,1], 

> r. 
Q — S(C) 

where this stage allows some deviation from the minimum action path, 

corresponding to quantum fluctuations, 

# reject change otherwise. 
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A 'sweep' of the algorithm consists of the application of this update procedure 

at every lattice site. SufRciently large numbers of sweeps are required to obtain 

a configuration in 'thermeil' equilibrium on which the ensemble average can be 

based. This ensures that the system has no memory of its initial state and that 

a fully equilibrated configuration has the probability 

This algorithm, however, is not without its problems. Updating single vari-

ables at each step is very inefBcient^. Similar ineiBciencies exist for a single 

variable update of a widely non-local action^. In addition, the fact that we are 

treating the Held theory as a statistical system results in the efficiency of the 

algorithm being eifected by the choice of bare parameters. Near the continuum 

limit large fluctuations over all length scales result in critical slowing down and 

the algorithm has difficulty attaining an equihbrated configuration. 

There is another class of algorithms, including the Langevin, Molecular Dy-

namic and Hybrid, which allow updates on all variables at one time and which 

are also efficient with non-local actions. These are based on considering the 

quantum field theory ag a classical statistical mechanics system with four space 

dimensions. The dynamics of this system are governed by an associated Hamilto-

nian with the evolution of the system determined by numerically integrating out 

the equations of motion over some classical trajectory. Such algorithms progress 

very fast through configuration space, but suffer from a systematic error due to 

a finite step size required for numerical integration of the equations of motion. 

In an attempt to overcome the problems associated with these two classes of 

algorithms, the Hybrid Monte Carlo algorithm was proposed by the authors of 

[31]. This algorithm contains all the advantages of the global update and non-

local actions of Molecular Dynamics type, with the lack of systematic error of 

the Metropolis algorithm. 

The above algorithms work well for MC integration over bosonic fields, how-

ever, integration over Grassman fields, as needed for the Path Integral with 

fermions, causes many problems. The standard approach to this problem is to use 

the properties of Grassman integration and analytically evaluate the fermionic 

"cluster algorithms exist which update many sites, though these suffer f rom reduced accep-
tance rates, due to increased changes in the action. 

^many lattice points must be considered for each update. 
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parts of the Path Integral, 

(O) = ^ y 2̂ gg) 

= ^ y DC/ det O (2.60) 

To obtain Equation (2.60) from integrating over fermion fields, Wick's Theo-

rem has been used to contract pairs of quark fields to form propagators, 

. (2 .61) 

This results in a form of O which contains only traces over quark propagators 

and the relevant spin structure. 

This analytic integration in principle leaves a form suitable for MC methods. 

The non-local determinant, det M[[/], however, causes a huge problem numeri-

cally, perhaps the largest facing Lattice QCD at the present. Algorithms exist, 

such as pseudo-fermionic, which tackle this determinant directly as an integra-

tion over extra bosonic fields, though still the computational overhead is high. 

A more common approach, and the one followed in this work, is to simply set 

the determinant equal to a constant. This is the infamous 'quenched' or valence 

approximation of Lattice QCD which corresponds to generating gauge config-

urations without internal quark loops. Clearly this is a drastic approximation 

and cannot be fully understood until sufBcient 'full' QCD calculations have been 

undertaken (this is discussed further in Section 2.10). 

In principle, MC integration can be used to calculate the background gauge 

fields required for the first step in evaluating non-perturbative matrix elements in 

the Path Integral formalism. In an attempt to deal with fermionic fields, part of 

the Path Integral was calculated aneilytically, leaving an integral over functions 

of quark propagators and Dirac matrices only. The next section outlines how 

quark propagators are obtained from the background fields. 

2.5.2 Q u a r k P r o p a g a t o r s 

The basic building blocks for numerical simulation of Lattice QCD are quark 

propagators. In the continuum full quark propagators, 5'(z,2/), are calculated 

from inversion of the Euclidean Dirac operator, 

(^-t-m)5'(:c,2/)=^(^)(z,!/). (2.62) 
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A similar procedure is followed numerically for lattice quark propagators. For 

a fermion action of the form (2.21), calculation of the quark propagators requires 

solution of the following system of equations, 

(v4 — m), (2.63) 

where the terms have spatial, colour and spin indices. For the Wilson action .4 

is purely local and B connects only nearest neighbour terms. The bare quark 

masses of the simulation are effectively chosen by the K, the hopping parameter. 

Due to the actual forms of terms v4 and B, this is the inversion of a very large 

but sparse matrix which can efficiently be done numericcilly using conjugate gra-

dient type algorithms. However, convergence of these algorithms is affected by 

choice of bare parameters. For this reason, simulations are restricted to unphysi-

cally high quark masses in order to avoid the problems of critical slowing down of 

the inversion algorithm. In practice, a vector equation is solved for each spin and 

colour component and at a single fixed point m. This point is called the origin 

and a set of propagators 5'(a;, 0) are obtained. 

A further complication in this study was due to the use of an improved fermion 

action. This improvement, covered in Section 2.4, was implemented by a rotation 

of quark fields (2.51). In terms of propagators this corresponds to the following 

rotation®, 

m) = 5'(Ti, m) - (2-64) 

This is easily implemented numerically with no great increase in computational 

expense, by solving, 

(v4 — KB)6''(n, m) = m) + m)''y - ^ (2.65) 

and 5'^(n, zn) = '5''(n, m). (2.66) 

In this way, all the rotations of the quark fields have been included in the gen-

eration of the propagators so that all improved correlators can be calculated as 

with the unimproved action. 

Thus, from the pure gauge configurations it is possible to construct the 

full quark propagators which include all gluonic interactions, for various quark 

masses. These form a basis for a non-perturbative calculation of the hadronic 

matrix elements of interest. 

'here we have chosen the Wilson parameter, r = 1. 

30 



2.5 .3 G a u g e F i x i n g 

The final numerical component of a toolkit for Lattice QCD is that of numer-

ical gauge fixing of the Monte Carlo produced gauge field configurations. As 

mentioned earlier, the compact nature of the group space over which gauge in-

tegrations are carried out removes the need to introduce a Fadeev-Popov type 

procedure. However, the study of gauge dependent objects such as gluonic or 

smeared hadron correlators^^ requires gauge fields fixed to a particular gauge. 

Indeed, the study of gauge fixing and the resulting Gribov copies on the lattice 

is a very interesting and involved subject in itself, [32, 33, 34]. 

In this work, gauge fixing to the Coulomb gauge was done numerically. Im-

posing the gauge condition was equivalent to minimising the function, 

1 
= (2.67) 

-Ve T=\ 

where 

f P ' m = -^Tr E E (Uf{n, t) + Uf(n, t)) . (2.68) 

This is a function of the gauge transformed fields, 

(2.69) 

One of the advantages of using the Coulomb gauge is that it can be apphed to 

each timeslice, as is explicitly shown in the above, which is useful numericahy 

speaking, but also preserves the interpretation of the operators evolved by means 

of a transfer matrix formahsm. 

A measure of quality of the gauge fixing comes from a lattice version of 

the Coulomb gauge condition. In terms of the 

Coulomb gauge condition is expressed with the quantity, 0, 

c = [A«(n)A"(n)] (2.70) 
n ^ n 

(2.71) 

which vanishes when the Coulomb gauge is obtained. 

Coulomb gauge smearing is of particular interest in this study, though gauge invariant 
smearing is also studied. 
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To numerically minimise the function, JF, an algorithm based on an over-

relaxation technique of Mandula and Ogilvie, [35], was used. Small gauge trans-

formations are apphed on the gauge fields and used to force the function, JF, 

to a minimum, with the 6'(7(3) updates done by the subgroups. Over-

relaxation is apphed by introducing dependence of the gauge transformations, 

used to force JF to a minimum, on parameter w. This involves replacing trans-

formations by which is expanded in a power series, 

. = (2.72, 

In practise, the sum is truncated at = 2 and matrices reunitarised before 

being used to transform the links. Tuning the over-relaxation parameter, w, can 

increase the speed of convergence significantly. For this study, 600 iterations of 

the gauge fixing algorithm were applied, fixing the gauge to an accuracy of 10" ,̂ 

measured by quantity 

A detailed study, [34] of this gauge fixing has shown that there may be many 

local minima of .F. These correspond to Gribov copies of the background gauge 

field, which are related by some global gauge transformation. The number of 

such copies is difficult to queintify, though Coulomb gauge is seen to have leirger 

numbers than, say. Landau gauge, because of the dependence of gauge fixing only 

on spatial extent, allowing gauge freedom between timeslices. Indeed the gauge 

fixing process can be thought of as some kind of non-linear system behaving 

chaotically. The evolution of the gauge fields through configuration space and 

the minimum the algorithm finds on the gauge plane is dependent on the initial 

conditions and the parameters on which the equations of evolution depend, such 

as the over-relaxation parameter, w. 

The existence of Gribov copies can affect the correlators generated from the 

gauge fixed links and propagators. The Coulomb gauge does not fix the gauge 

completely, some residual gauge freedom remaining. For example, smeared two 

point correlators can be used to extract smeared matrix elements, These 

are some kind of average over all Gribov copies. With the Coulomb gauge, these 

smeared amphtudes are the same for all time, as the gauge is fixed independently 

at each timeslice. Further to this, for the quantities studied at the moment 

other statistical errors are such that this gauge uncertainty plays an insignificant 

role, though with increased lattice size and statistical samples these effects could 
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become more important. 

In summary, we quote the gauge transformations, in terms of Coulomb Gauge 

transformations, of the elements Lattice QCD, which will be used later; the 

gauge fixing of background gauge fields and light quark propagators, 

+ /̂ ) (2-73) 

0) = 0)^^(0). (2.74) 

2.5.4 S u m m a r y 

This concludes the outline of the three most computationally intensive parts of 

Lattice QCD; MC integration to produce the background fields, ()}, in-

version of the Dirac operator to obtain quark propagators, 0)}, and gauge 

fixing of the background fields to obtain an appropriate set of gauge transforma-

tions, {g(M, ^)}. Although the emphasis in this thesis is not on the finer points 

of the algorithm industry spawned by Lattice QCD, any account of the lattice 

formahsm would be incomplete without some mention of the technology involved. 

Indeed, the close relationship between technology and Lattice QCD has resulted 

in great improvement of results over the last few years and is one of the bright 

hopes for further progress. 

2.6 Fixing t h e Inpu t P a r a m e t e r s 

Lattice QCD formulated in Sections 2.1 to 2.4 and implemented numerically, 

using the techniques outlined in Section 2.5 is a theory with n/4-1 free parameters: 

quark flavours characterised by K/ and bare gauge coupling constant po = 6//!). 

Clearly with so few free parameters, the predictive power of such a theory has 

not been reduced, however an experimental measurement is needed to fix each 

free parameter. 

2.6.1 P h y s i c a l Scale 

A finite lattice spacing was introduced in the formulation of a field theory on a 

discrete spacetime lattice. The size of this lattice spacing is not known from the 

outset of the numerical calculation. Instead, the coupling constant in terms of ,3 

is supplied as input and the lattice spacing is measured non-perturbatively from 
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physical quantity 0-^ (GeV) 
(J = ^/K 

u 

2.73(5) 
2.7(1) 
3.4(2) 

Table 2.1: Scale, o \ from different physical quantities, (taken from [6] 

the simulation. The scale of the lattice theory can be set by relating the lattice 

measurement of some dimensionful quantity to its physical value. Several such 

quantities are used, 

* the string tension: the quark anti-quark potential is meeisured from various 

sized Wilson loops and fitted to a Coulomb plus linear potential of the 

following form, 

= + (2.75) 

The string tension is = V ^ . The scale is set by comparing this 

lattice quantity to the experimental value measured from the charmonium 

spectrum, = 0.44 GeV. 

• the rho mass, 

(2.76) 

# the pion decay constant, and 

# the IP — 15' mass sphtting in charmonium. 

The values of were ceilculated in [6] and are listed in Table 2.1. Clearly 

there is a significant discrepancy in the values of lattice spacing obtained from 

different quajitities. In this study we opt for a central value = 2.7. For the 

final dimensionful results we quote an additional error due to uncertainty in the 

lattice spacing = 2.7 3°'^, with the error on the lattice spacing encompassing 

the range of results measured for the scale, the upper value from the decay con-

stant measurement and lower from the string tension. Error in the final results 

are quoted giving a range which include dimensions from the scale set by the 

different methods outlined above. 
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2.6.2 Q u a r k M a s s e s 

The other free parameters of the theory enter in terms of quark masses, or in 

lattice terminology, kappa values, K. 

Light quarks, 1/ and d, are assumed to be approximately massless. Numeri-

cally it is not possible to simulate light quarks at their physical values. Instead, 

simulations are performed at several light kappa values and the physical results 

are determined from an extrapolation in kappa to the chiral limit. The procedure 

for finding the critical kappa value for the chiral limit is outlined in Section 2.8. 

We use a critical kappa value, Kcrit = 0.1431(2),[6]. 

Quantities containing strange quarks can be simulated directly. The corre-

sponding kappa value, K,, is fixed by comparing the ratio of pseudoscalar to 

vector meson masses, from both lattice and experimental measure-

ments, = 0.413. Following the results given in ref. [6] we use. 

Ks = 0.1419(1). 

Similarly, it is possible to simulate directly queirks about the charm quark 

mass, though the heavy quark masses are now equivalent to about half a lattice 

spacing and there is the possibility of discretisation errors. In [36] they simulate 

with heavy kappa values around % = 0.129, corresponding to approximately the 

mass of the charm quark. This was found from comparison with the experimental 

D-meson mass. 

For hadrons containing beauty quarks, it is not possible to simulate directly 

at the quark mass. This topic is covered in detail in Section 4.2. One approach is 

to simulate heavy quarks at lower than physical masses around the charm quark 

mass. Results at the 6 quark mass are obtained from an extrapolation in the 

heavy-light pseudoscalar mass, Mp, to the physical B-meson mass. For light 

quark physics PCAC indicates a useful form for the extrapolation. However, no 

such simple form exists for systems of heavy quarks. For some quantities scaling 

relations from the Heavy Quark Effective Theory offer a guide to this extrapo-

lation. The approach followed in this work takes the other extreme, attempting 

simulations with heavy quarks of inhnite mass. In this limit the dynamics of 

the system simplify greatly and particularly simple forms for the heavy quark 

propagator are obtained. This is the so called static theory. 
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2.7 Con t inuum Limit 

In constructing a gauge invariant lattice action the main constraint on the form 

of the action is that it must regain the correct form in the naive continuum limit, 

o -4- 0 . This offers much ambiguity in the definition of the action, exploited 

by the addition of the Wilson term and later with improvement, aa outlined in 

Section 2.4. However, there is no reason why this continuum hmit should be 

continuum QCD. 

A lattice field theory has one dimensionful parameter, the lattice spacing a, 

and is dependent on several dimensionless parameters (^, K, . . . ) . To relate some 

dimenaionless quantity, say a maas, m'"", measured on the lattice to its physical 

value, it is necessary to multiply by appropriate powers of lattice spacing, 

(2.77) 

Indeed this is a way in which the lattice spacing can be determined (Section 2.6). 

In taking the continuum limit, o ^ 0 , the physical mass must remain fixed, 

so for a consistent approach to the continuum limit the bare parameters must 

be tuned so that the lattice mass vanishes. This can be viewed in terms of a 

statistical mechanics system, defining a correlation length as, 

(2-8) 

which diverges in the continuum limit. This suggests that continuum physics 

exists at the critical points of a lattice field theory, with bare peirameters tuned 

to their critical values, [3 -4- (5*. Clearly this makes sense intuitively, the divergent 

correlation length corresponds to fluctuations over all length scales and the system 

'forgets' it is on a discrete lattice, clearly a desirable aim. 

However, the real utility to practical lattice simulations is a property of sta-

tistical systems know as scaling. This means for small enough lattice spacing, 

dimensionless ratios of quantities (both lattice and physicEil) are independent of 

o. If the bare coupling exists in a 'scaling window' then it is not necessary to 

simulate at » = 0, nor even extrapolate to the a — 0 limit. Too small a lat-

tice spacing introduces significant finite size effects. Too large a lattice spacing 

and the simulation can't account for fluctuations on small scales and the system 

moves away from the continuum limit. The simulations presented here are at 

= 6.2, thought to be within the scaling window. However, even for this value 
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of coupling constant there is the possibihty for signifiCcint 0 ( a ) corrections, espe-

cially for quantities involving heavy quarks. An attempt to reduce these effects 

is made by the use of an improved action. 

2.8 T h e Chiral Limit 

The use of the Wilson formulation for lattice fermions breaks the chiral invariance 

of the field theory formulated on the lattice, even in the zero mass limit. In 

addition to this, light quarks, if and (f, cannot be simulated at their physical 

masses. The former situation arises due to the need to overcome the fermion 

doubling problem, whereas the latter is required to avoid convergence problems 

in numerically inverting the Dirac operator. 

The way to overcome both of these problems to some extent is to tune the bare 

parameters of the theory. This attempts to 'exactly' cancel the chiral symme-

try breaking effects and obtain matrix elements containing light quarks at their 

physical masses. In a lattice simulation, the bare quark meisses are controlled 

by the hopping parameter, K, and this tuning procedure involves determining a 

critical kappa value, Kctu- The criterion used for determining the chiral limit is 

the vanishing of the pion mass. The light pseudoscalar is thought to obey the 

PCAC relation, [37], 

1 1 1 
+ — (2,79) 

for light quarks of meisses Ki, Kg. By plotting against ajid Kg the critical 

kappa value can be calculated non-perturbatively cind indeed the PCAC relation 

is seen to be well satisfied (see Section 2.12). 

For all lattice quantities containing light quarks it is necesseiry to extrapolate 

in terms of the light quark mags to the chiral hmit at /(crit- This extrapolation 

is assumed to be linear in inverse kappa value. For example, to extract some 

quantity at its physical value say, from extrapolation of the lattice 

quantity calculated at hght kappa values the extrapolation takes the 

form, 

4 - OQ , ( 2 . 8 0 ) 
\ ^CRIT ' 

with Q(p/zi/ĝ CoZ) = Q(Kcr,t)-
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The extrapolation to the chiral limit offers a means by which practical calcu-

lations of quantities involving hght quarks can be obtained v^ithout simulating 

the light quarks at their physical masses. The final step to make contact with 

continuum physics is to reintroduce powers of the lattice spacing to obtain a di-

mensionful quantity and multiply by the relevant renormahsation constant. The 

need for this renormalisation constant and an outline of how they are determined 

are given in the following section. 

2.9 Renormal i sa t ion and Ope ra to r M a t c h i n g 

Before matrix elements calculated by lattice methods can be incorporated into 

the study of continuum physics, it is necessary to first relate the operator defined 

on the lattice to that in the continuum, [38]. Calculation of renormalisation 

constants for this matching are the final input for obtaining physical results from 

Lattice QCD. 

In essence, both continuum QCD and Lattice QCD are well defined field 

theories intended to describe the same continuum physics. The main differences 

arise when the quantum nature of the field theories is considered, i.e. on the 

inclusion of queintum loop corrections. The idea of renormalisation is to correct 

the bare theory, including the divergences introduced by loop effects, to give finite 

physical results. 

In continuum field theory it is in principle possible to go beyond tree level and 

perturbatively calculate the loop corrections. However, the loop integrals involved 

in this process can diverge at high energies. In order to obtain finite results from 

these integrals it is necessary to regularise the theory. In the MS regularisation 

scheme, for example, the dimension of the loop integrals is reduced to cf = 4 — e. 

The divergent loop corrections are then parameterised in some systematic way, 

as poles in 1/e, for example. These divergent terms are then subtracted from the 

bare theory and absorbed in a redefinition of the bare parameters. As a necessary 

consequence of this method to deal with these infinities a renormalisation scale, 

// is introduced in the theory. This renormalisation procedure is intended to give 

finite physical predictions of the field theory. 

In the same way, it is possible to consider the lattice as another perfectly good 

regularisation scheme. Expanding the lattice action in the weak coupling limit 

it is possible to produce a set of Feynman rules suitable for perturbative calcu-
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lations. These perturbative calculations can in principle^^ determine the loop 

corrections to the lattice theory in exactly the same way as in the continuum. In 

this case the lattice spacing a is used as the UV cutoff to regularise the divergent 

loop integrals. In this caae a also plays the role of the renormalisation scale. 

As both lattice and continuum schemes aim to represent the same physics, 

renormalisation of operators in both schemes should match. In practise this 

matching procedure involves calculating the loop corrections to the operators 

using the continuum and lattice regularisation schemes. The aim of this is to 

obtain a relation of the type, 

O r ' W = (2.81) 

for the renormeilisation constants. The continuum operator should 

not depend on lattice cutoff, o, this dependence cancehng exactly between the 

matching coefficients and operators This introduces the possibihty of oper-

ator mixing under renormalisation, in that other operators must be considered in 

the lattice theory, for a complete matching. The main advantages of this type of 

matching are that only the high energy, short distance behaviour of the operators 

must be matched^^, which can be done perturbatively and Eilso the renormaJisa-

tion coefBcients, depend only on the operators present and are independent 

of externa] states. 

Perturbation theory is a widely used tool in continuum physics and involves 

an expansion in terms of which is small at scales involved. A perturbation 

theory is also possible on the lattice in terms of the lattice coupling 

However this involves the bare lattice coupling constant and recently, [39], it hag 

been suggested that this is a poor expansion parameter. A better choice is to use 

some renormalised couphng, as was the case in continuum perturbation theory 

adopting This leads to use of a 'boosted couphng' defined aa 

where i/o is some measure of the average of a link variable. This is measured 

non-perturbatively from the expectation value of the plaquette or, as used in 

this work, defined by mean field arguments as Mo = (8/Ccrif)" -̂ I]:i this way it 

is hoped to resum some of the tadpole graphs, which often appear in lattice 

perturbation theory and offer a more reliable perturbation theory. In this study 

" i n practise perturbative calculations are complicated significantly by the form of these 
Feynman rules. 

^^the low energy, infrared behaviour is the same for both regularisation schemes 
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Operator Calculation Renormalisation Constemt Reference 

A, A", 
BK 

fstatic TDstatic 
JB ! 

mg. — 

% 1 - 0.0177^^ = 0.97 
Z+ % 1 - 0.069p^ = 0.88 

% 1 - 0.127p2 = 0.79 
% 1 4-0.245^^ = 1.45 

[40] 
[40] 

[41, 42, 43] 
[44] 

Table 2.2: Renormalisation constants. Values for boosted coupling = l.GSpg. 

at /) = 6.2, we use = I GSgq. 

In summary, we list in Table 2.2, the renormahsation constants used in this 

work, with references to the original calculation. 

2.10 Sys temat ic Er ro r s 

In the search for a practical non-perturbative technique for the calculation of 

QCD matrix elements, Lattice QCD accepts various compromises required in 

light of hmited resources. Indeed one of the main aims of current research in 

the field is to understand and attempt to quantify the systematic errors which 

unavoidably enter into any numerical simulation. 

As outlined earher. Section 2.5, the Path Integral expectation value for an 

operator is calculated by a Monte Carlo integration over a large but finite sample 

of configurations. Clearly this introduces some statistical error, the size of which 

can be estimated in the standard techniques, also outhned in Section 2.11. The 

present status of current simulations is such that these statistical errors seem for 

many, but not all quantities, to be under control with sample sizes of around 

50-100 configurations. 

The fact that these integrals are calculated on a discrete lattice of finite extent 

introduces 'finite size effects' with the quantities simulated 'feeling' the surround-

ing box. These effects can be quantified by veirying the bare parameters (in terms 

of and number of lattice points) of the theory to simulate over different vol-

umes. Related to this is the need to simulate the quarks at much larger masses 

than is physical, which, as is mentioned elsewhere, requires an extrapolation in 

quark mass to the physical limit (Section 2.8). 

Also arising from formulating the field theory on a discrete lattice are finite 

lattice spacing effects. These arise initially from terms in the action which agree 
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with the continuum action only in the naive o — 0 hmit, but which introduce 

corrections to lattice quantities at finite a. Indeed these finite a corrections can 

sometimes greatly affect the properties of lattice matrix elements (of particular 

interest in this study is the chiral behaviour of the matrix element for the four 

fermion operator in neutral kaon mixing, Section 3.1). A 'brute force' way to 

attempt to quantify these lattice artefacts is to simulate at different lattice spac-

ings and extrapolate to zero lattice spacing hmit. However, in this work, a less 

computationally intensive approach weis taken. By use of an improved action, 

Section 2.4, which formally removes the lowest order corrections to the matrix 

elements it is hoped that these lattice cirtifacts are reduced. Comparison of re-

sults with this action to unimproved operators is of continuing interest and will 

be one of the main themes of this study. 

The other main systematic error arises from the wide use of the 'quenched 

approximation' (Section 2.5.1). The good agreement of quenched calculations 

with experiment for many quantities suggests quenching is a small effect, perhaps 

backed up by theoretical analysis of quenching using chiral perturbation theory. 

There are still, however, quantities such as the hyperfine splitting in quarkonia 

which suffer badly from quenching. In effect the full potential of lattice QCD as 

a truly 'first principles' solution to the effects of the strong interaction depends 

on the development of both theoretical and algorithmic methods to obtain 'full' 

unquenched QCD on a lattice. 

Quantifying the systematic errors is a difficult subject and much work still 

needs to be done before many of the criticisms levelled at lattice QCD are silenced. 

But they are systematic and with experience and time there is hope that they 

can be understood and minimised. 

2.11 F i t t i ng and Er ro r Analysis 

The calculation of operator matrix elements in Lattice QCD usually involves the 

generation of sets of Euclidean correlators. The final step in the analysis of these 

correlators is the fit of the numerical data to some asymptotic form, /i, as a 

function of time 

% ) = (0(^,)0(0)) = /,(p), (2.82) 
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The aim of this is to extract the parameters, {p}, which are related to the matrix 

elements and masses of the particles simulated. The function offers a mea-

sure of how well the observed data compares with the theoretical prediction. A 

widely used way of determining the most probable set of parameters for a given 

set of data is by a maximum likehhood type At achieved by minimising the 

function. Further to this, error aneilysis of both the original data set and 'best 

At' parameters is essential. 

To estimate the errors, a set of averages are constructed from 'bootstrap' or 

'jacknife' processes, [45, 46]. The spread of these averages offers a measure of 

the error. If the original data set contains N measurements at times (i, 

A: = 1 , . . . , TV. The central value for this data set is obtained from a simple mean, 

= (2-83) 
k=:l 

The error on this value is calculated, not from the spread of the data, but from the 

spread of the biased averages. Bootstrap averages, {}^(({)}, A; = 

are constructed from random samples from the original data set (including 

repeats). Similarly, jacknife clustering can be thought of ag a systematic boot-

strap, formed with one configuration dropped from the average in each sample, 

i.e. yy(^i) = (7Vy((i) — 2/k(^«))/(-^— 1)- Errors for the jacknifed clusters can just 

be calculated in the usual way, 

(;\^^) = - % ) ) V ( A ^ - 1), (2.84) 
K 

whereas the errors on the bootstrapped clusters are fixed to contain the central 

68% of the data. Everything is now expressed in terms of clustered averages (in 

this study we only use jacknife averages), {}t(^i)}, with gaussian distribution, 

mean y((i) and variance (T(ti). 

A Hrst estimate of the best fit parameters p of function is gained from 

minimising an uncorrelated over some fit range 6 where the 

data is thought to fit the model, 

However, this takes no account of correlations which exist between data at dif-

ferent times. This is done by use of a correlated xLr function in terms of the 
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^ Z - ^( t j ) ) ) (2.86) 

covariance matrix, Q^, [45, 47] (with prefactors changing dependent on whether 

bootstrap or jacknife error analysis was applied), 

N 

TV- 1 AT 

xL = E ( ^ e . ) - /.(?)) q - ' {Y(t,) - I,(p)) • (2.87) 
IJ 

In both cases the functions are minimised numerically to determine the best fit 

parameters. This process is repeated for all biased clusters to obtain a distribution 

of the parcimeters, from which errors of the parameters can be obtciined. The 

'goodness of At' for these correlated fits is indicated by per degree of freedom, 

where the degree of freedom of a fit is the number of points fitted minus the 

number of free parameters in the fit. A %^/d.o.y. 1 suggests a good fit. A 

very small /dof could indicate an overestimate of errors. Alternatively, a large 

indicates poor agreement between data and model. 

Although not as computationaily intensive eis the other numerical parts of 

Lattice QCD, the analysis and fitting of correlators is without doubt the most 

labour intensive. Many strategies for obtaining the 'best At' remge exist. These 

can be based on comparison of uncorrelated and correlated fits and goodness of 

fit measures such as the function. As such, choosing fit ranges is still as much 

an art as science. 

At the end of this process a set of best fit parameters is obtained with a 

qualitative estimate of the statistical uncertainty of both the MC average and 

these fitted parameters. 

2.12 A n Example Lat t ice Calcula t ion 

To demonstrate the techniques outlined above, it may be useful to consider a 

simple example which uses the four main parts to any lattice calculation, that is, 

# generation of the gauge configurations and quark propagators, 

# construction of required correlation function from quark propagators, 

# analysis of these by fitting to some model, to extract lattice quantities and, 

# extrapolation of the results to the chiral hmit, including factors of lattice 

spacing and renormalisation constants to obtain physical results. 
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Figure 2.3: Two point pseudoscalar meson correlator 

This example aims to calculate the critical kappa value required in extrapo-

lation to the chiral limit, Section 2.8. This requires the measurement of the mass 

of the light pseudoscalar obtained from a simple two point function. This was 

chosen because it neatly and simply demonstrates the above steps, oifers a good 

lattice example and is also a vitcil calculation for the rest of the work presented 

in this thesis. 

Step 1. Generation of Propagators. It is assumed that a set of quark propagators 

exists, generated using the techniques outlined in in Section 2.5. 

Step 2. From Propagators to Correlators. 

As mentioned in Section 2.5 the expectation value of an operator is obtained 

with the Path Integral formalism and expressed in terms of an integral over 

configuration space. The further step of integrating over eill fermion fields 

leaves an integral over gauge space, which in lattice field theory is done by 

Monte Carlo integration, of the trace of the Wick contracted operator. 

In this example the correlator of interest is the product of operators which 

create/destroy a zero momentum pseudoscalar meson, which 

are Wick contracted to form propagators, 

(2.88) 
X 

= 0)75'5'X0,:r)'y5}) 
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= - E 0)^}) . (2.89) 

This last step Wcis possible by invoking a symmetry of lattice propagators, 

[48], namely, 

'̂(a;, 0) = 75^^(0,3;)3'5. (2.90) 

The function in Equation (2.89) is calculated for all configurations and for 

all combinations of quark masses. 

Step 3. Analysing the Correlator. 

Another route from the definition of the correlator, Equation (2.88), can be 

used to construct the asymptotic form to which the numericcil results can 

be fitted. Inserting a complete set of states and allowing large Euclidean 

times to isolate the lowest state gives. 

at) = E ( ^ ' 5 W n ' ( o ) ) 

= E / ( 0 ! f : 5 ( 0 ) e - ® - " l | n ) ( n , | P i ( 0 ) | 0 ) , 
n ^ 

I (0\P^(F))\P\ P 
{exp(-mp() + exp(—mp(7Vt-t))} 

lazge t 
ZR 

= —^exp(—mpA^t/2)cosh(mf(A^t/2 —()). (2.91) 
V f l p 

These last steps include the time reversed ordering of operators, with rel-

ative sign due to time reversal symmetry of propagators, [48]. The am-

plitude of the correlator is defined in terms of the matrix element, Z3 = 

|(0|f5(0)|P> 1̂  

The expression in Equation (2.91) is the asymptotic form of the two point 

correlator to be used in extracting the amplitude, Z5, Euid mass of the 

pseudoscalar, , from the MC data by means discussed in Section 2.11. 

Step 4. ChirEil Extrapolation. 

The final step in the process involves an extrapolation to the chiral limit, 

corresponding to physical light quark masses. This extrapolation depends 

on the particular physical quantity to be extracted, though it is assumed to 
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K2 
0.14144 0.14144 
0.14144 0.14226 
0.14144 0.14262 
0.14226 0.14226 
0.14226 0.14262 
0.14262 0.14262 

0.297 (2) 
0.258 (2) 
0.240 (2) 
0.213 (2) 
0.191 (3) 
0.166 (3) 

0.14313 (2) -

Table 2.3: Pion mass composed of degenerate and non-degenerate quarks, mea-
sured in lattice units 

be linear in inverse kappa, with the basic constituents the amplitudes and 

masses eilready fitted. 

To actually calculate the vaiue of the critical kappa, it is necessary to ex-

trapolate the pseudoscalar mass to zero (corresponding to zero pion mass). 

The results of this are shown in Table 2.3 and Figure 2.4. 

From this study, we And the critical kappa value, 

l̂ crit = 0.14313(2) 

which agrees well with [6]. 

In other calculations it is at this point the factors of lattice spacing and the 

renormalisation constants are included to produce a result corresponding 

to the continuum value in physical units. 

2.13 Numer ica l Detai ls 

All numerical results presented here are from the UKQCD Collaboration, with 

further details available elsewhere, [36, 2, 6, 46]. Simulations in the quenched 

approximation were performed on 60 gauge field configurations from a 24^ x 48 

lattice at = 6.2, corresponding to lattice spacing, = 2.7 to [46], from the 

string tension and errors given from measurements of the scale from and the 

rho mass. 

Gauge configurations and quark propagators were calculated on a 64 i860-

node Meiko computing Surface at Edinburgh. The gauge configurations were 
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Paeudoscaiar Mass with Kapp 

l/(2vĉ ) 

Figure 2.4: Chiral extrapolation of pion mass. 

generated with a combination of over-relaxed and Cabibbo-Marinari subgroup 

updates, the so called Hybrid OverRelaxed algorithm, [46]. Propagators were 

generated with an CP(a) improved, 'Clover', action, with r = 1 and coefBcient of 

the clover term fixed to its tree-level value. These were calculated for light quark 

masses, = 0.14144, 0.14226, 0.14262, by means of an over-relaxed minimal 

residue algorithm with red-black preconditioning, [49]. 

Smeared propagators were generated by two methods, which will be discussed 

in more detail in Section 4.3. Coulomb gauge smearing techniques. Section 4.3.1, 

required the gauge fixing of the 60 gauge configurations to Coulomb gauge. An 

outline of this gauge fixing method was given in Section 2.5.3. This was done 

numerically, [34] on the CRAY YMP8 at the Rutherford Appleton Laboratory. 

For the gauge invariant smearing, [2], discussed in Section 4.3.2, smeared prop-

agators were generated on a Thinking Machines CM-200 at The University of 

Edinburgh. 

The analysis of the gauge configurations and propagators, to produce the 

hadronic correlators was carried out on a variety of DEC ALPHA machines at 

Edinburgh. 
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Chapte r 3 

Light Quark Phenomenology 

Neutral kaon mixing is the perfect place to test the StEindard Model. Not only was 

it the first phenomena to exhibit CP violation, [50], or offer the first prediction 

of the charm mass before its discovery, [51], but it is also an ideal example of the 

effects of the strong interaction in weak hadronic decays, at both long and short 

distances. Further, experimental measurement and theoretical prediction of the 

mixing are centra] to constraining some of the free parameters of the Standard 

Model; the CKM quark mixing angles, especially the top couplings, and also the 

top mass, to which kaon mixing is especially sensitive. 

In terms of lattice calculations, the kaon system also provides the perfect place 

to test lattice methods. Historically, much ground breaking work was done on 

light systems and even now the state-of-the-art lattice calculations are in light 

hadron spectroscopy, [52]. Further to this, non-perturbative calculations of light 

hadron weak matrix elements from lattice calculations Eire of continuing interest 

and importance to both experimentalists and lattice devotees ahke. 

3.1 Ind i rec t C P Violat ion in iT^^^Mixing 

and are flavour eigenstates and Ccin mix via second order weajc interactions. 

From these it is possible to construct CP eigenstates, ^ 

= ±17^1,2). However the physically observed mass eigenstates, 

contain an admixture of both states, 

jr. \ + e|A'2)) _ ((1 + e)|A'°) + (1 -

- V I + 
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' " y r r ? -

where e is a small parameter^. These physical eigenstates decay predominantly 

as, 

K s — S t t and KL —̂  Stt, (3.3) 

due to the major contributions from A'l and A'g, and with 27r and 37r being CP 

even and odd final states, respectively. However, also contain small contri-

butions from the opposite CP eigenstate. As a result, the physical eigenstates 

can decay via the other cheinnel, though with a much smaller branching fraction. 

This is indirect CP violation, the initial state particles having a component from 

each CP eigenstate, which should be compared with direct CP violation where, 

say, a CP even state decays into a CP odd state. Indirect CP violation in kaon 

decays is measured by, the CP violating pareimeter defined in terms of the 

ratio of CP violating to CP conserving decays, 

^ ^ (27r);=o) 

(27r);=o)' ^ ^ 

This CP violating parameter was measured at UAl in CERN, with current mea-

surement, [53], 
= (2.259 ± 0.023) x 10- \ (3.5) 

The CP violating parameter, e, can be calculated theoretically, with the main 

contributions coming from the box diagram. Figure 3.1. This represents the 

second order weak decay responsible for neutral kaon mixing. The typical scale 

of the weak decay in this process is given by the W mass. As this scale is much 

greater than any hadronic scale entering the decay, it is possible to treat this 

in terms of an effective low energy theory. This invokes all the formalism of 

the Operator Product Expansion (OPE), to integrate out all the irrelevant, high 

energy degrees of freedom^ rewriting the decay amplitude as the matrix element 

of an effective Hamiltonian, expressed as a sum of operators, Oi(;u) with Wilson 

coefficients, Ci(//), where /z is the renormalisation scale. These coefBcients can be 

calculated perturbatively in terms of the appropriate CKM elements and a set of 

is dependent on phase convention taken for flavour eigenstates, so cannot be taken as a 
physical measure of CP violation. 

^6 is independent of phase convention chosen. 
reappears in the effective couplings and Wilson coefficients 
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Figure 3.1: Box diagreim contributing to CP violation in neutral kaon mixing 

universal functions of [54], for internal quarks, % = ^/,c, t. As this 

decay is a second order weak process, only operators with dimension < 6 can 

enter the sum. In short, the large forces the interaction to be short ranged 

and squeezes the sides of the box diagram together to form an effective four 

fermion interaction. The only operator for the A5' = 2 decay with the correct 

current structure is,̂  

= ( g y ( l - - Trs)̂ ). (3.6) 

All dependence on the scale should cancel between Wilson coefficients and 

operator matrix elements. The first place the strong interaction enters this calcu-

lation is in the QCD corrections to these operators. At scales between the scale 

relevemt to the calculation of the matrix element, 0(2GeV), and these cor-

rections are short distance effects and can be calculated perturbatively. This 

procedure haa been carried out for the box diagram, [51, 55, 56], resulting in, 

R<2 AYFL 

16\/27r^AmmA' 
+ (3.7) 

This form has all the ingredients mentioned above; Wilson coefficients in terms 

of functions 5"!, [54], CKM factors, short distance QCD corrections ?%, [56], and 

the matrix element of the four fermion operator driving the effective theory of 

the mixing process. This matrix element is where QCD rears its ugly head for 

a second time in this calculation, though this time concerning the long distance 

physics which is intrinsically non-perturbative. 

"'this operator is multiplicatively renormalisable, so only operators with dimension D^ = 6 
are included. 
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It is the theoretical calculation of the non-perturbative contributions to the 

mixing that causes all the problems. Measurements of e and the other well know 

quantities in Equation (3.7) can be used to gain an accurate measure of the CP 

violating effects from this decay. However, the main uncertainty arises in the the-

oretical calculation of the hadronic matrix element. There are many approaches 

to calculating this matrix element, including chiral perturbation theory, [57], and 

QCD sum rules, [58], though in this study we offer a calculation based on Lattice 

QCD. 

What is usually calculated is the so called B-parameter, which gives a 

comparison between the mat r i x element and its vacuum satura t ion approximat ion 

(VSA). The VSA involves inserting the lowest state, the vacuum |0)(0|, into the 

four fermion operator. The B-parameter is also a more appropriate quantity to 

calculate on the lattice, in that a ratio of matrix elements has lower fluctuations, 

and reduced systematic imcerteiinties. This defines the B-parameter as, 

(3.8) 

where the VSA is expressed in terms of the kaon decay constant, 

(0|g7;,75c(|^(g)) = (3.9) 

I f the V S A is an accurate approx imat ion, % 1. 

This definition describes the S-parameter at the scale of the calculation of 

the hadronic matrix element. Often, it is more convenient to work with a renor-

maliaation group invariant deAnition, 

Bfr = BK(//) (A!QCD(A())^ = (a'QCD(ju))" , (3.10) 

wi th the exponent coming f rom the anomalous dimension of the operator and the 

beta function of the theory. 

This concludes the outline of mixing in the neutral kaon system. The basic 

formalism in terms of the usual operator product expansion was used to motivate 

the need for a non-perturbative calculation of the = 2 weak matrix element, 

which the following sections will elaborate on. 

3.2 Kaon Decay Cons tan t 

Related to the calculation of the kaon g-parameter, deAned in Equation (3.8), is 

calculation of the kaon decay constant, deAned in Equation (3.9), and other 
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light hadron properties. These have been extensively studied with the same set 

of gauge configurations in [6], thus offering a check of the correlation functions 

to be used in determining and the general methods used to analyse such 

correlators. 

The usual way to calculate decay constant in terms the matrix element of 

the time component of the axial current is from the combination of the following 

pseudosccJar two point functions, 

C M = T,{Pd^' t )Pi{d ,o)} (3.11) 

C.4.(f) = E { ' * 4 K t ) P | ( 0 , 0 ) ) , (3.12) 
X 

where is the pseudoscalar current and = (37475 (f) is the 

time component of the axieil current. 

These correlators are htted to the following forms, 

Cs(^) = —^ exp (—mpA/t/2) cosh (Nt/2 — t)) (3.13) 
TTlp 

C/i4(^) = ^exp(-mp7Vt/2)s inh(mf(7Vt/2 - t)), (3.14) 

where pseudoscalar mass, mp. and the hadronic matrix elements are extracted 

from the amplitudes, 

Z3 = |(0|7^,|P>P (3.15) 

Z45 = |(0M4|P>||(0|P5|P)| = /pmp|(0 | f5 | f> | . (3.16) 

The pseudoscalar decay constant, /p, is then determined from the ratio, 

Rit) = (3.17) 

^ Z;;tanh(mp(7Vt/2 —^)) (3.18) 
large t 

where the amplitude, Z;;, is defined in terms of the matrix elements of the light 

meson, /pmp/Z^KOjfsIP)! eind Z/i, is the renormahsation constant for the lat-

tice axial current. The use of this ratio is to obtain a clearer signal to be fitted, 

with some cancellation of systematic uncertainties between numerator and de-

nominator. 

The extraction of the decay constants is done in four stages, 
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/p/Zyl 
0.14144 0.14144 
0.14144 0.14226 
0.14144 0.14262 
0.14226 0.14226 
0.14226 0.14262 
0.14262 0.14262 

0.0621 ( 9) 
0.0563 ( 9) 
0.0534 (10) 
0.0505 (10) 
0.0472 (12) 
0.0435 (17) 

Kcrit 0.14313 ( 2) 0.0402 (11) 

Table 3.1: Pseudoscalar meson decay constants in lattice units. 

0.040 d: 0.001 0.049 ± 0.001 1.21 ±0.01 

Table 3.2: Extrapolated meson decay constants in lattice units. 

1. Calculate the critical kappa value, at which the pion mass vanishes and 

corresponds approximately to the physical light quark mass, from the mass 

parameters obtained from Equation (3.13). This calculation is given in 

Section 2.12 as an example of a lattice calculation. 

2. Combining results from hts to the amplitudes of ratio (3.18) and two point 

function (3.13) to calculate the pseudoscalar decay constant from, 

_ y \ / ^ 
^ • 

(3.19) 

Values of this for all six light kappa combinations are shown in Table 3.1. 

The pion decay constant, is determined by the chiral extrapolation of 

both light kappa values to the critical value. This extrapolated value is 

included in Table 3.1 and Table 3.2, in lattice units. 

3. From the quantities measured it is also possible to calculate the kaon decay 

constant, /A.', and the ratio, /K/A, which is hoped to have reduced system-

atic errors as uncertainties in lattice spacing and renormalisation constant 

cancel in the ratio. To calculate using the pseudoscalar decay constant 

results in Table 3.1, one light kappa value is extrapolated to the chiral limit. 
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lattice estimate experiment 

A 

/AT/A 

105 ± 3 MeV 

125 ± 2 MeV 

1.21 ±0.01 

132 MeV 

160 MeV 

1.22 

Zyi = 0.97 , = 2.7 GeV 

Table 3.3: Meson decay constants in physical units. 

while the other is interpolated to the strange maas. This used the value 

KS = 0.1419 from ref. [6]. The results for FX and ratio / K / I t t are given in 

lattice units in Table 3.2. 

4. In order to obtain results to be compared with experimental values it is 

necessary to include a scale and the perturbative renormalisation constant. 

Z/). These physical results are given in Table 3.3 along with the experimen-

tal measurements. Errors on the lattice results are statistical and include 

an uncertainty due to variation in the determination of the scale, though 

of course is used to set the scale in the hrst place. 

These results clearly agree well with those found in ref. [6], which gives us 

confidence in the correlation functions to be used later and also in the methods 

used to analyses these correlation functions. 

3.3 Kaon .B-Parameter BK 

The main uncertainties restricting the extraction of CKM matrix information 

from mixing in the neutral kaon system are the large theoretical uncertainties 

arising from the non-perturbative calculation of the matrix element of the A 5 = 2 

operator. We attempt this calculation by means of Lattice QCD. 

For this calculation, we are interested in the matrix element of the four fermion 

operator, 

O (3.20) 

which in practice requires calculation of the matrix element of the parity-even 

oi^erator. 

O'"" = 4- = V + ^ . (3.21) 
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The chiral symmetry of the lattice theory is explicitly broken by the inclusion of 

the Wilson term in the fermion action. As a result the operator mixes with 

operators of different chirality which are listed below, 

24 

^ ^ [ V - A ] (3,22) 

whepe we have used the notation, 

= (sc()(sd) 

? = (g''y5G()(g'y5o() 

V = (3.23) 

? - = 

fi<i/ 

We are interested in obtaining a meaningful value for the matrix element of 

the continuum operator with the correct chirality. In order to obtain this from a 

lattice calculation a two stage matching procedure must be undertaken. Firstly, 

the chiral behaviour of the lattice operator is corrected by perturbatively sub-

tracting operators (3.22). Then, as is common with all lattice calculations, the 

lattice regularised operator must be matched to the continuum. This matching 

was originally done in ref. [59] up to order Resulting from this is an expres-

sion relating an operator with the correct chiral behaviour and matched to the 
/ Af— 

continuum, f , with those which mix under renormalisation, 

+ 4- . (3.24) 
L J 

Of the renormaJisation constants calculated, Z(r) is from the matching procedure 

and Z*(r) from the perturbative subtreiction. These renormalisation coefficients 

have been calculated for the 'Clover' lattice action, [40], 

Z(r = 1) = -10.9 ; Z*(r = 1) = 19.4, (3.25) 
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where r is the Wilson parameter. It is the matrix element of this perturbatively 

matched and corrected operator that is required for the ceilculation of the B-

parameter. 

A check of the matrix elements calculated on the lattice is offered by compar-

ison with the chiral perturbation theory prediction, [48], 

(3.26) 

In previous lattice studies, [1], this exact behaviour was not observed. Two rea-

sons for this were suggested; imperfect perturbative subtraction of operators in 

determining the continuum matrix element and lattice eirtefacts with signihcant 

0 (a) ejfects. To combat these problems in this study, we use Lepage Mackenzie 

'boosted coupling' in the definition of the renormahsed operator and an 0(G) im-

proved 'Clover' lattice action in the numerical calculation of the matrix element. 

3.3 .1 L a t t i c e C a l c u l a t i o n of t h e B - P a r a m e t e r 

The matrix elements for all the above operators are calculated on the lattice in 

the usual way, by evaluation of the three point function, 

Gituh) = 4 ) 0 ( 0 . ( 3 . 2 7 ) 

large 

— ^ (0|C9|7i''A'''') exp ( — + (.2)). (3.2S) 
large 1̂,̂ 2 

where the aaymptotic form obtained depends on the time ordering of the operators 

and alters the matrix element extracted. Here we have assumed negligible final 

state interactions and 
(3.29) 

Both matrix elements will be needed for the calculation of the B-parameter. 

Evaluation of the three point function defined in Equation (3.27) is done in 

the usual way by ensemble average over the 'eight' diagreims shown in Figure 3.2. 

In terms of queirk propagators this corresponds to two traces which, including 

the relative minus sign due to a single fermion loop, can be written as, 

G((], 2̂) = 2 {Tr [g(^i)r75] Tr [^((2)r75] 

-Tr[^((i)r^5S(^2)r75]}. (3.30) 
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7 5 # ^ # 7 5 

Figure 3.2: An 'Eight' diagram for the four fermion operator, O, with pseu-
doscalar sources, fg. 

In calculating this, it is useful to define as, 

E (3.31) 

These untraced objects, are calculated at the outset. Then the matrix el-

ements for all possible operators O required are determined from Equation (3.30) 

with traces over colour and spin indices for appropriate combinations of all 16 

Dirac matrices F. 

Often in lattice calculations it is preferable to calculate ratios of quantities 

rather than the quantities themselves, there being some cancellations of system-

atic and statistical uncertainties in the ratio. This is the case here, where it is 

more useful to extract the B-parameter aa opposed to the matrix element itself. 

In particular we attempt to reduce statistical errors by taking the following ratio 

of three point eind two point functions, 

which is htted to a constant which is proportional to the matrix element. 

The B-parameter is extracted by fitting the values of the ratio, /Z((i, ^2), as a 

function of ^(/ArmA')^/2'5. The form of this At is suggested by chiral perturbation 

theory. 

Z5 
(0|O|A'0A'0) 

= a 4- ("y -t- ̂ 0)2; = o -I- (3.33) 

a 4- ("y — /3)z = 0 4- 6' z (3.34) 

, 8 8|(0|A.|A-°)p 8 
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Both matrix elements are required to extract all individual fit parameters. 

The B-parameter, at scale set by the lattice calculation, is then given by, 

(3.35) 

in terms of the axial current renormalisation constant. 

In a theory where operator O = is properly renormeilised, with the 

correct chiral behaviour, parameters a and ^ should vanish and is extracted 

purely from parameter -y. We see that the operators with wrong chiral behaviour 

do tend to a constant with vanishing meson maas, as predicted by chiral pertur-

bation theory. As a result there still remains a small discrepemcy in the chiral 

behaviour of the A5' = 2 matrix element, the reason being that the operators 

with the wrong chirality were not subtracted completely. Comparison of this 

study with one using Wilson fermions, [l], can be used to study the effect of 

improved actions on these lattice artefacts. 

3.3.2 R e s u l t s fo r BK 

Three point function, 'eight' diagrams, were calculated as outlined in Equa-

tion (3.30) for the operators defined in Equations (3.21) and (3.22) and fully 

matched operator from Equation (3.24). To increase the statistics we use the 

symmetries of the quark propagators under time reversal, [48], to obtain the 

relation, 

G{ti, 2̂) = G{Nt — fg, Nt — ti) = —ii), (3.36) 

which is then used to 'fold' the three point function onto its 'backward' half. 

In practise these three point correlators are only calculated for certain times, 

keeping <2 = 12 fixed and allowing to vary. 

The matrix elements for each kappa combination were calculated from the 

ratio of three point and two point functions deAne in Equation (3.32). Examples 

of these ratios are shown in Figure 3.3, the plots showing the heaviest and lightest 

mass combinations. Two plateaus can be seen corresponding to the two matrix 

elements. Fitting both these plateaus we extract the matrix elements for all six 

combinations of quark maases. The correlated its for these matrix elements are 

shown in Table 3.4, along with the fitting ranges and the correlated 

We study the chiral behaviour of these ratios by fitting the results to the form 

given in Equation (3.33). This waa done for both linear and quadratic fits, to take 
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(K|o|;r)/Z5 (0|0|Kj^)/Z5 
0.14144 0.14144 

Fit range 

-0.0290 (156) 
16/10 
[30,40] 

0.1158 (115) 
8.9/8 
[9,17] 

0.14144 0.14226 

Fit range 

-0.0204 (155) 
8.9/10 
[30,40] 

0.0889 (111) 
5.2/8 
[9,17] 

0.14144 0.14262 
xVdo/ 

Fit range 

-0.0098 (137) 
12/12 
[30,42] 

0.0707 (134) 
16/6 

[10,18] 
0.14226 0.14226 

Fit range 

0.0001 (133) 
8.1/12 
[30,42] 

0.0647 (111) 
4.0/8 
[9,17] 

0.14226 0.14262 

Fit rcinge 

0.0085 (131) 
9.4/12 
[30,42] 

0.0458 (123) 
2.5/8 
[9,17] 

0.14262 0.14262 

Fit range 

0.0085 (160) 
7.2/5 
[37,42] 

0.0271 (151) 
0.19/5 
[12,17] 

Linear Fits 
Intercept : a 0.031 ( 16) 0.022 ( 13) 
Gradient : b 0.433 (140) 0.884 ( 93) 

3.7/4 10/4 

Quadratic Pits 
Intercept : a 0.044 ( 18) 0.032 ( 14) 
Gradient : b 0.996 ( 404) 0.521 ( 238) 
Curvature : c 3.523 (2345) 2.153 (1316) 

1.4/3 7.2/3 

Table 3.4: Values of R = {0)/Zr^ for all K combinations from correlated fits. 
Linear and quadratic fit parameters are also given. 
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R(t) 14144 n c f g " go n t " l m T 

O 
V 

10 20 30 40 

t , : [9,17] x ' = 9 / 8 , [30,40] / = 1 6 / 1 0 

R(t) emO.14282 ncfgm 60 Olmtav 

30 40 50 

t . : [12,17] / = 0 . 2 / 5 . [37,42] %'=7/5 

Figure 3.3: Ratio 7^(^1,(2), as a function of <1 (̂ 2 = 12, fixed), at K = 0.14144 
and /( = 0.14262 (best and worst cage scenarios). Correlated fits shown with x^. 

Parameter Linear Fits Quadratic Fits 
a 0.026 (13) 0.038 ( 13) 

-0.226 (88) 0.237 ( 199) 

1 0.658 (80) 0.759 ( 265) 
6 - 0.685 (1480) 
e - 2.838 (1194) 

Table 3.5: Separated hnear and quadratic fit parameters. 

into account the possibility of large 0(n2^) corrections to the matrix elements. 

This chiral behaviour and the corresponding correlated linear and quadratic fits 

are shown in Figure 3.4. Estimates of parameters {a,6, c} and {a, from 

correlated fits are also shown in Table 3.4, the introduction of parameters c and 

c' for a quadratic fit. 

Within errors the intercepts of the fits to the two matrix elements agree. 

Estimates of the parameters {a, -y} are obtained from combinations of the fit 

parameters listed in Table 3.4. Defining a = a, ^ = (6 —(/)/2, "y = (6 + ()')/2 and 

quadratic fit parameters (̂  = (c — c')/2, e = (c + c')/2 the results of which are 

given in Table 3.5. The B-parameter is determined from the parameter -y. 

Including the factors of we quote as values of Bx from linear and quadratic 
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< K ° | 0 | K ° > 

• luaa • / - 0.014 
b -0.611 * / - OJM 

<o|o|Ky> 

Figure 3.4: Linear and quadratic Ats of (0)/Z5 against § 171^/^5)-

fits, 

Linear : = 2.7 GeV) = 0.66 ± 0.08 

Quadratic : = 2.7 GeV) = 0.76 d: 0.26. 

(3.37) 

(3.38) 

At the scale = 0 ^ = 2.7 GeV, taking Apcc = 200MeV with = 3, the 

renormalisation group invariant -B-parameter is, 

= (ckQCD) *'8A-()U) = 0.88 ± 0.11 (Linear) 

= 1.02 d: 0.35 (Quadratic). 

(3.39) 

(3.40) 

The values obtained for from the linear and quadratic fits agree within 

errors. However, it was observed that the results obtained from the hnear fits 

were much more stable with the variation in time fitting ranges used to extract 

the matrix elements from the three point functions. This and the smaller error 

estimates leads us to quote the results from the linear fits as a Anal answer. 

3.3.3 C o m p a r i s o n w i t h t h e W i l s o n A c t i o n 

The inclusion of the Wilson term to avoid the fermion doubling problem breaks 

the chiral symmetry of Lattice QCD. These lattice artefacts are a particular 

problem in the calculation of the kaon B-parameter, which relies on the chiral 
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Parameter o: "y 
Linear Fits (Wilson) 0.080 (30) 0.012 (185) 0.871 (24) 
Linear Fits (Clover) 0.026 (13) 0.266 (88) 0.658 (80) 

Table 3.6: Results for B-parameter from calculations with Wilson and Clover 
fermions. (Taken from [l].) 

behaviour of the matrix elements for an accurate determination of Bx- It might 

seem that by reducing these 0(a) effects it could be possible to improve the chiral 

behaviour for One of the main aims of this calculation was to see if the use 

of an 0(a) improved action did in fact offer improved chiral behaviour of the 

= 2 matrix element. 

The calculation of the kaon B-parameter was originally done by the European 

Lattice Collaboration, [1], with Wilson fermions on 15 configurations at /? = 6.2 

and on a 24^ lattice. They find, 

= 0 60 d: 0.20, quadratic (3.41) 

= 0.88 ± 0.20, linear (3.42) 

for the B-parameter, using the values from linear and quadratic fits. Although 

the actual values of the matrix elements were not quoted kappa by kappa, it was 

possible to obtain estimates from the graph in the paper, shown in Figure 3.5. 

We construct a set of jacknife clusters from these estimates and apply the same 

analysis used to produce the Clover results, in an attempt to obtain a comparison 

between the two actions for B^-. Unfortunately, these were only estimates to the 

original data, so there is a small discrepancy between the results quoted in the 

paper, and those calculated in this analysis. Also, it was not possible to determine 

the raw matrix element results accurately enough to ailow a quadratic fit, which 

was found to be especially sensitive to small changes in the fitted points. 

If the lattice version of the AS = 2 operator has the correct chiral behaviour 

the parameters a and /i) in Equation (3.33) should vanish. Of these, the intercept 

CK is the most difficult to correct for, [60]. In comparing Wilson emd Clover results 

we take the value of a as the criterion for the ^goodness' of the chiral behaviour 

of the matrix elements. The values of the fit parameters (a, -y} from linear fits 

are shown in Table 3.6 with errors quoted only for the Clover action results. 
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Figure 3.5: Chiral behaviour of the AS" = 2 operator for Wilson fermions. (Taken 
from [1].) 

From the examination of Table 3.6 it is not possible to determine any definite 

improvement due to use of the Clover action, though comparisons of the intercepts 

might suggest a slight improvement. Only through analysis with a fuller set of 

data in the Wilson caae may it be possible to compare these two methods in a 

more quantitative way. These findings were conArmed by those presented in ref. 

[61] which compared Wilson and Clover results from simulations at = 6.0. 

3.3.4 C o n c l u s i o n s 

The kaon B-parameter is an important phenomenological quantity, introduced in 

the theoretical analysis of neutral kcion mixing. An accurate calculation of is 

required for tightening constraints on the CKM matrix elements while exploring 

CP violation in the Standard Model. itself, describes all the non-perturbative 

strong interaction effects on the AS" = 2 effective operator which drives this weak 

mixing process. 

At present. Lattice QCD offers the only way to calculate the non-perturbative 

contributions to these weak matrix elements with no model assumptions. In this 

Chapter we have outhned a method of calculating from Lattice QCD using 
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an 0(a) improved action. We And, 

BK(A( = 2.7Gev)= 0.66 ±0.08, (3.43) 

which is consistent with others calculations performed with different fermion 

actions. At present the method and data used was too crude to determine any 

significant improvement in the chiral behaviour of the matrix elements over the 

calculation with Wilson fermions. 

The main problems encountered in this study arose from two main sources; 

extraction of the matrix elements from the three point functions and fitting the 

chirai behaviour of these matrix elements to extract the B-parameter. A possible 

improvement for the former problem could be through the use of smeared quark 

propagators. These have been used widely to improve the signal in heavy light 

calculations and could oifer the same advantage to this calculation. 

The problem involved in extracting from the chiral behaviour of the matrix 

elements is more difBcult to solve, as it is intrinsic to the use of Wilson formula-

tion of fermions on the lattice. A 'quick fix' can be implemented by adopting the 

programme of improved perturbative subtraction suggested by Bernard in ref. 

[48]. Another possibility is to include results from correlation functions of pseu-

doscalar mesons with non-zero momentum. With these additional results it is 

possible to extract the ht parameters and from the matrix element 

only. This would avoid using the other matrix element which is prone to Anal 

state interactions. Perhaps the only way to fully remove the problem of incom-

plete perturbative subtraction is to match the continuum and lattice operators 

by non-perturbative methods. This procedure has been attempted for simpler 

operators, [62], with the eiim of applying these non-perturbative renormalisation 

techniques to the = 2 operator. 
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Chapte r 4 

5 -Phys ics f rom Latt ice Q C D 

B-Physics is without doubt a fashionable topic in Particle Physics, so much 

so that grant funding bodies around the world are wilhng to spend billions on 

dedicated B-factories. Such interest is not unfounded as B-Physics holds a vital 

position in testing the consistency of the Standard Model and probing the New 

Physics that may lie beyond. B-decays offer one of the best possibilities for the 

measurement of Ave of the nine CKM matrix elements, including the least well 

known ones, as well as the possibility of exploiting top quark dependencies to 

constrain mt. 

In this chapter we discuss one example of B-Physics, B°B° mixing, and in 

particular the role that Lattice QCD can play in extracting constraints on CKM 

matrix elements from this process. In short, this is an attempt to reduce some of 

the theoretical uncertainties introduced by the strong interaction effects on this 

decay. In order to do this, it is necessary to introduce some lattice technology re-

quired to deal with heavy quarks, and apply this to determine the decay constant 

of the B-Meson, a vital parameter in B-mixing and one that poses considerable 

theoretical difBculties. 

4.1 Mixing in t h e N e u t r a l 5—System 

In Chapter 3, we attempted to study one aspect of CP violation in the kaon sys-

tem, experimentally seen as neutral meson mixing and quantified by CP violating 

parameter Mixing has cJso been observed in the neutral B-system (B'̂ B^ 

mixing hrst seen at ARGUS, [63], but also observed at the LEP experiments and 

at the Tevatron). However, no CP violation has been observed in this system. 
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Figure 4.1: Box diagram contributing to CP violation in neutral B mixing. Loop 
contributes from the top quark only. 

The size of the CP violating parameter, eg, is negligbly small and in what fol-

lows we will ignore CP violating effects, i.e. = 1-8°) Instead, in 

this chapter we consider mixing in terms of the theoretical input required 

to extract accurate estimates of the CKM matrix elements emd in particular a 

calculation of the strong interaction effects entering this process. 

Mixing in the system is similar to kaon mixing, with the second order 

weak process governed by a low energy effective theory. The mixing parameter, 

defined in terms of the mass difference, Am and decay width, F, arises 

in a similar manner to the kaon system from the box diagram. Figure 4.1. This 

is now dominated by the top quark contribution, giving, 

Zj = = Tg (art) 1 j I ̂ . (4.1) 

This theoretical expression for the mixing parameter is defined in terms of the B 

lifetime, Tg, a known function 5'(a;t), [54] and the perturbative QCD corrections 

contained in [56]. Here the non-perturbative contributions are contained 

in the matrix element of the AB = 2 operator of the low energy effective theory 

responsible for the mixing. Again, the matrix element is compared with the 

vacuum saturation approximation and is parameterised by the decay constant, 

/b and B-parameter, Bg, 

= {B°|(5(1 - I M I M L - 75)rf)|B°>. (4.2) 

Most estimates of Bg indicate only small deviations from the vacuum saturation 

approximation, Bg % 1, with a recent lattice calculation, [64], giving Bg = 

1.16 j: 0.07. 
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Experimentally, the Zj parameter wag measured in scattering at the 

T(4S) energy, creating pairs. The B/, and have different masses and 

decay with different frequencies. One method to measure the mixing is to mea-

sure the probabihty of a decaying to a integrated over time. This time 

integrated mixing can be characterised by a ratio, r, 

2+x'' IY(B«B«) * ' 

in terms of numbers of pairs that mix emd then decay, compared to those that 

just decay. Results from CLEO and ARGUS, [65, 66] quote, 

Zj = 0.66 ±0.11. (4.4) 

Similar quantities have been measured at LEP, [67, 68, 69, 70], (at the Z reso-

nance, Z 65, and the B hadrons decay semileptonically) and also at pp colliders 

at CERN (UAl) and Fermi]ab(CDP). 

Also of interest is the mixing in the B, system, which hag recently been ob-

served at ALEPH. Knowledge of this would offer an accurate measure of 

without relying on a measurement of 

X, 

V] 
(4.5) 

The factors multiplying the CKM matrix elements are 6'[/(3) symmetry breaking 

terms. This offers another constraint on the CKM matrix elements, though a 

measurement of j;, is experimentally more difficult, requiring time dependent 

analyses of the mixing^. 

Although smaller branching ratios of B decays, compared to kaon decays, 

make the experimental study more difficult, the shear variety of possible decays 

makes neutral B mesons a rich source for the study of the CKM matrix. Future 

possible avenues of study arise from the time dependent B° —J/ i / ' (7r '* '? [" ) 

decays, containing both mixing and direct CP violation, offering direct measure-

ment of all the angles of the unitarity triangle. 

However, there is still a major obstacle to extracting accurate values of the 

CKM matrix elements. The top quark mass is not accurately known and, more 

Hhe evolution of states is t ime dependent, with probabilities of finding 5 ° ( 5 " ) 
states a time ( later are given by, H''go(au)(^) = (1 ± cos (Amf)) . 



importantly for us, there are large theoretical uncertainties in the value of /g. An 

accurate determination of / g would also have important phenomenological impli-

cations for the predicted sizes of the CP asymmetries to be studied at future col-

liders. One attempt to overcome these difBculties is through a non-perturbative 

calculation of this weak matrix element, by Lattice QCD. 

4.2 Heavy Qua rks on t h e Lat t ice 

The scale and resolution of the processes which can be studied by Lattice QCD 

is determined by the lattice spacing, a. This is typically 0.1 fm, corresponding 

to scales 2 — 3 GeV. In order to minimise the effect of simulating the 

Reld theory on a discrete lattice and to fully resolve all important detail, it is 

only possible to study phenomena on length scales large compared to the lattice 

spacing. Clearly this causes a major problem when studying systems involving b 

quarks on the lattice. Simulating quarks with such a large meiss, 

TMb 5 GeV '-^2 — 3 GeV, 

the Compton wavelength of the 6 quark is smaller than the lattice spacing and it 

could 'see' the granularity of the lattice. 

To overcome the difficulties in simulating b quarks at their physical masses, 

three approaches are often followed; 

# simulate quarks with masses well below the true 6 quark maas, usually 

around the charm mass. Then extrapolate in terms of pseudoscalar meson 

mass to the the true B-meson mass, [71, 36]. This may introduce uncer-

tainties arising from O(mQa) effects and the extrapolation. 

# treat the heavy quark in the non-relativistic approximation and make a 

formal expansion of the action in powers of heavy quark velocity. The free 

parameters in Non Relativistic QCD (NRQCD) are fixed from comparison 

with the T or states, [72]. 

# follow the approach introduced by Eichten, [73], and treat the propagation 

of heavy quarks by means of an effective field theory, in particular in the 

infinite quark mass, or static hmit. 

This last approach will be followed thoughout this work. 
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4.2 .1 H e a v y Q u a r k S y m m e t r y 

In studying an infinitely heavy quark, the dynamics involved are greatly simplified 

and QCD gains two new symmetries. Heavy-light systems, such aa the B-meson. 

are particularly useful exeimples for an introduction to Heavy Quark Symmetry 

(HQS), with an intuitive understanding offered by simple analogies in atomic 

physics. Indeed, the B-meson is sometimes referred to as the 'hydrogen atom of 

QCD'. Such a system has a very heavy queirk at the centre of the meson, which 

is not affected greatly by interaction with the light degrees of freedom. This 

approximation holds well if the heavy quark mass is much greater than typical 

momentum transfers within the meson, 

mg 3> AqcD- (4-6) 

This is well satisfied for the 6 quark, but with sizable corrections for the charm 

quark 10%). In this hmit the heavy quark can be thought of as a 

static colour source creating a field in which the light quarks and gluons move. 

This static colour source propagates in time only, with small perturbations due 

to the interactions with light degrees of freedom. These light degrees of freedom 

are the 'brown muck' of QCD, whose behaviour is non-perturbative. 

With this picture of a heavy light system in mind, how can the new symmetries 

of QCD be understood? 

• flavour symmetry: 

The light degrees of freedom of these systems are the same for all heavy 

quarks that are heavy enough. In other words, it is not possible to discrim-

inate between the brown muck around different flavours of quarks which 

satisfy the heavy quark condition. In terms of atomic physics, this is analo-

gous to the isotope effect, the electronic structure of the atom is independent 

of the number of neutrons in the nucleus. 

* spin symmetry: 

The spin of a quark arises from the chromo-magnetic moment, // = 

This decouples from the theory in the infinite mass hmit, the brown muck 

being oblivious to the spin of the heavy quark. This is also seen in the 

hydrogen atom analogy, where the hyperfine splitting is dependent on the 

magnetic moment of the nucleus. 
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These heavy quark symmetries, first developed by the authors of refs. [74, 75]. 

have been exploited in two main areas; the mass spectra of systems containing 

a heavy quark can be related using the predictions of HQS, [76], and the matrix 

elements involved in semi-leptonic B decays can be related in terms of a universal 

form factor, the Isgnr-Wise function, [77]. Of course to actually calculate 

these quantities it is necessary to first turn to non-perturbative methods, such 

as Lattice QCD, to determine the dynamics of the brown muck. For example, 

the Isgur Wise function has been calculated on the lattice in ref. [78]. 

The heavy quark symmetries of QCD are only exact in the infinite mass 

limit. For quarks with a Hnite mass it is necessary to consider symme-

try breaking corrections. The Heavy Quark Effective Theory (HQET) has been 

developed to deal with these corrections in a systematic way. In the next section 

we outUne the HQET and obtain a form for the heavy quark propagator in the 

infinite mass, static limit. 

4.2.2 H e a v y Q u a r k Ef fec t ive T h e o r y 

Effective theories are often used in physics when the full theory is intractable. By 

extracting the important aspects of the full theory, however, some head way can 

be made by the approximation embodied in the effective theory. One well known 

example of such an effective field theory is chiral perturbation theory, used to 

study light quark physics at low momenta. Clearly, heavy quark physics, with 

the new symmetries outlined above, offers an ideal candidate for description by 

an effective field theory. In this case the mass of the heavy quark is an irrelevant 

degree of freedom and is removed in formulating the effective theory. A fnll held 

theoretic derivation of HQET from the QCD Lagrangian, including the l/m,Q 

corrections can be found in [79]. Here instead we outline a simpler treatment to 

extract the first term in the effective Lagrangian motivated by the physical ideas 

of heavy quark syn^metry. The l /mg corrections will only be mentioned later 

in a slightly different context, where they are treated as perturbations to this 

leading term, Section 5.3. 

We begin by determining the Feynman rules of the HQET. The heavy quark 

symmetry is introduced by parameterising the meson momentum, 

= + (4.T) 



in terms of the heavy quark velocity, which explicitly introduces the heavy 

quark mass dependence, and a residual momentum, A;''. The heavy quark is now 

nearly on-shell, with its motion characterised by the velocity, defined to satisfy, 

= t; -1; = 1. (4.8) 

This residual momentum characterises all the small perturbations due to inter-

actions with the light degrees of freedom and acts as a measure of how far the 

quark is off shell. 

In the oo hmit, the usual QCD Feynman rules for the fermion propa-

gator and fermion-gauge interaction become, 

i ^ (4.9) 

(4.10) 

The projection operator, (1 ±';/)/2, defines the heavy quark field in terms of a two 

component spinor, Ai,, which satisfies, In perturbative ceilculations 

with these Feynman rules, the projection operators can always be connected with 

spinors as a result of which the projection operators can be omitted from the 

Feynman rules. These projection operators separate field components for heavy 

quark and anti-quark, which must now be treated aa completely independent 

fields. The rules clearly contain the essence of the heavy quark symmetry, in 

that they are independent of the heavy quark mass, and contain no spin depen-

dence. The effective field theory from which these Feynman rules are obtained is 

described by the effective Lagrangian, [80], 

(4.11) 

for a heavy quark field, /i,,, propagating with velocity i;, eind related to the original 

quark fields by, Q(a;) % This is the leading term in the HQET 

Lagrangian. 

In what follows later, we use the static limit of this effective field theory. The 

static Lagrangian describes a heavy quark in its rest frame, f = (1,0), [81], 

C-IL, = (4.12) 

Although the perturbative expansion offers a simple expression for the free 

propagator of a heavy quark, from a lattice point of view we are interested in 



evaluating a Path Integral using the heavy quark propagator in a background 

held. This is found from the solution of, 

D%(a;,2/) = 6(")(3;,2/). (4.13) 

Constructing a suitable lattice version of the covariant derivative, a solution for 

the propagator exists in terms of a product of link variables in the time direction. 

for a forward propagating heavy quark. Similar solutions exist for heavy anti-

quarks. 

An alternative path to this propagator, offering a heuristic derivation of the 

HQET, can be obtgiined directly from the QCD Lagrangiem. In the static hmit 

the quark mass is much greater than other momentum scales. The equation for 

a quark propagator in terms of the Dirac operator simplifies to, 

(7o^o + n^Q)'5'o(a;,2/) = (̂ (̂ )(a;,̂ ). (4.15) 

<9(t/̂  - z"̂ ) exp (-mQ(i/^ - a;̂ )) 
1 + 7 4 
2 

This has as formal solution, 

+ 6(x' - y') exp {m,Q(x* - y*)) ^ , (4.16) 

for the heavy quark propagator. is the Polyakov phase picked up as the 

static quark propagates in time in a background field which contains all gluonic 

interactions. This is defined ag the path ordered integral of the gauge fields, 

( ^4 I = 7 ^ e x p z ) . (4.1' 

The utility of calculating this propagator on the lattice is its simple form. The 

Polyakov phase was met earlier in constructing a gauge invariant fermion action 

which for the lattice version was constructed from link variables, L^(f, ^). Clearly 

this static propagator is now just a time ordered product of links in the time 

direction, 

I y I - 2o) . . . [/^(f, / ) (a;̂  > %/'') ' ^ ^ 



This is known as a Wilson line and corresponds to a static quark hopping in time 

on a constant spatial lattice site. When quark helds have been rescaled and spin 

dependencies reintroduced, the heavy quark propagator from Equation (4.18) and 

HQET agrees with the form given in Equation (4.16). 

In the absence of practical lattice calculations with 6 quarks at their physical 

mass, this static heavy quark propagator offers an interesting and useful approach 

to heavy quark physics and one which can be obtained without the computation-

ally expensive inversion of the full Dirac matrix. However, before these can used 

to probe heavy quark physics, it is necessary to consider the effect of the matching 

procedure when using an effective field theory. In principle there Eire now three 

field theories that need to be matched; full continuum QCD, the continuum ef-

fective field theory and the effective field theory defined with a lattice regulator, 

aU of which can provide perturbative expansions. Historically the perturbative 

calculation of the renormalisation constants was ceirried out in two parts, 

* firstly relate the 'full' continuum operators to the corresponding operators 

in the continuum effective theory, 

* then match the continuum effective theory to the effective theory on the 

lattice. 

This can be done in one step, by requiring the quantum corrections of full con-

tinuum QCD match those of the effective field theory on the lattice. 

This concludes the outline of the HQET and in particular the definition of the 

heavy quark propagator in the infinite mass limit. However, practical calculations 

in the static limit require the introduction of a piece of lattice technology, smeared 

interpolating operators. 

4.3 Smea red In te rpo la t ing O p e r a t o r s 

Calculating matrix elements and particle masses in the static limit introduces 

problems with the extraction of the ground state from the large time behaviour 

of the Euclidean correlators. For example, consider the zero momentum two point 

correlator of operator Cl(z, <) which haa quantum numbers suitable for study of 

hadrons, /i. On inclusion of a complete set of states, this becomes, 

C(t)=%^(o(;r,()C^(0,0) 



Local O p e r a t o r s m e a r e d C o r r e l a t a 

Time (t) T1m« (t) 

Figure 4.2: Effective mass plots from local and smeared operators. 

(0|0(0)|/io) 
2 & 

exp (— 

where, o(() = I 1 + 
^ | _ ( 0 | 0 ( 0 w _ ^ 

^^J(0 |0 (0 ) |Ao> I" 
exp(- (E^ - Eo)t) 

(4.19) 

(4.20) 

Included in a complete set of states is an infinite tower of energy levels with 

|Ao) the lightest hadronic state, and |/in) the nth excited state. In all lattice 

calculations it is hoped that this lightest state dominates in the asymptotic time 

limit and a(^) — 1 . The approach of a(^) 1 requires contributions from 

the excited states to be exponentially damped in time and depends crucially 

on the choice of interpolating operators. However, with local operators in static 

correlators, it is often not possible to take a large enough time length to isolate the 

ground state plateau, before statistical noise swamps any signal. Added to this 

are large excited state contaminations introduced by the closeness of the ground 

and first excited states. This can be seen clearly in the comparison of effective 

mass plots from correlators of the local axial current and a smeared current in 

Figure 4.2. For correlators with exponential time behaviour, C(() = Zexp (—m^), 

the effective mass is defined as, m '̂̂ (̂̂ ) = The correlator from local 

current never achieves an asymptotic value and statistical errors dominate in the 

large time limit. One way to improve this situation is through the use of extended 

or 'smeared' interpolating operators. 
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Interpolating operators for matrix elements are only required to have the 

correct quantum numbers to connect the two external states, leaving a degree of 

arbitrariness in their definition. This arbitrariness is exploited in smearing. The 

idea behind smearing involves choosing an interpolating operator which increases 

the overlap between the operator and the ground state, thus increasing the signal 

from this state. The aim of this is to extract a clean ground state signal for 

as small times as possible, before statistical errors dominate the signal. Local 

operators only sample the current at a single point, z say, whereas extended 

operators include contributions to the operator from the current at neighbouring 

lattice sites, 

Of (f, ^ )̂. (4.21) 
Y 

Op is an example of a smesired operator for the current, QFg, with a general 

smearing function, g]. Such smearing functions can be generated in many 

different ways and we compare calculations using both gauge fixed smearing func-

tions and those calculated in a gauge invariant fashion. Within these two classes 

the smearing functions are 'optimised' by including different forms for the wave-

function used to approximate the heavy quark and by varying the extent of the 

smearing function. For example, the smeared correlator shown in Figure 4.2, uses 

a groundstate exponential smearing function of radius, ro = 5 lattice units and 

generated in the Coulomb gauge. A great deal of work has been done on this 

optimisation, one example using multi-state smearing methods, which accounts 

for contributions from excited states, [3]. 

On a point of notation we refer to a smeared correlator, say, as 

smeared with source of type 5" and with sink of type Such a distinction 

becomes particularly important when deahng with correlation functions with one 

interpolating operator left local, equivalent to, ^ Although 

(SL), local source smeared sink, and (LS), smeared source and local sink, are 

equal in the limit of infinite configurations, for a finite sample the statistical er-

rors are greatly reduced for the LS case. This can be understood from the form 

of the correlators; LS correlators sample the quark propagators over many spatial 

lattice points, whereaa SL correlators conteiin only contributions from = 0. A 

good example of this occurs in the determination of This involves the 

'LS correlators are required to extract local matrix elements. 
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Figure 4.3: Ratios (a) and (b) Correlators for 
pseudoscalar mesons with the heavy quark treated in the static limit, and smeared 
with gauge invariant smearing. 

calculation of the ratio, or with the 

graphs of the two ratios compared in Figure 4.3. 

In practise, the smeared correlators are generated from a set of smeared heavy 

propagators. For example, consider a general smeared-smeared two point corre-

lator, 

= Z ( # 0 ) f ( f , 0 ) r Q ( f , 0 ) ) ) (4.22) 
1,2 

Z Tr { s , ( f , i; 0, 0 ) r / « ( f , f )Sg( j , 0; y. t)J^{z, 0 )r} , (4.23) 

Z,1/r 

Typically we calculate a set of smeared propagators, 

0, 0) = ^ z, 0). (4.24) 
y,~ 

This is especially useful when dealing with static quark propagators, where the 

propagator is a product of links, and the data requirements are more manageable. 

Having explained the need for smearing, we now turn to the actualities of 

the smearing techniques applied in the rest of this work. A comparison of these 

different techniques is included later, with reference to the smeared operator 

'test-bed' calculation, 
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4.3.1 C o u l o m b G a u g e S m e a r i n g 

Historically, the first use of extended operators considered a smearing function 

consisting of a simple sum of delta functions, [82]. This method produced smear-

ing sources which were not gauge covariant. To obtain a signal from a gauge 

dependent object, smearing functions in a fixed gauge were introduced. The 

Coulomb gauge was chosen for its simple application, gauge fbdng at each times-

lice independently. The first smearing functions considered in ref. [83], were 

simple 'cubes'. These consisted of the local current sampled at all points in a 

cube of spatial lattice sites, with contributions weighted equally, 

fcubef;-; -y\ f ^ (2and6andc < tq ,. 
[ 0 otherwise ' I - / 

where we define (a, 6, c) = z — ^ as the position relative to the centre of the 

smearing function. Variations of this simple form have been used. A doubly 

smeared cube waa constructed from a convolution of the cube with itself, 

nand6andc<2ro . . 
otherwise ^ 

and exponential smearing functions. 

^='r"exp(—r/^o), r = + (427) 

These exponential smearing functions were motivated by the wavefunctions of 

the hydrogen atom, which also offer the possibihty of studying excited states. 

Examples of these smearing functions are shown in Figure 4.4. 

All of these smearing functions introduce some average length scale, corre-

sponding to the extent of the smearing. Following earlier work studying a variety 

of smearing radii, [84], we choose rq = 5 lattice units for cube, double and expo-

nential smearing functions. 

Although the Coulomb gauge smearing technique allowed for greater flexibil-

ity in the actual smearing functions used, it did have certain drawbacks, mainly 

the shear computational effort required. Not only was it necessary to calculate 

the gauge transformations numerically, though these could be reused elsewhere, 

but to apply the smearing functions to create smeared quark propagators was 

also numerically intensive. Take, for example, the worst case scenario of con-

struction of smeared smeared correlators. The computation required to smear a 
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Cube Smearing Double Smearing 

Exponential Smearing 

Figure 4.4: Coulomb gauge smearing functions /(z,;/), on a 24^ grid using cube, 
double cube and exponential (smearing radius ro = 5). 
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heavy propagator goes as where M = 24^ (the extent of the smearing fimc-

tion) is a large number. For the selection of smearing functions used, this was a 

considerable computational overhead. A possible way to reduce this was to use a 

fast fourier transform to compute the convolution of smearing functions for the 

smeared smeared case, [85], which scales as MlogM. However, this method was 

not implemented for the work presented here. 

4.3.2 G a u g e I n v a r i a n t S m e a r i n g 

An alternative smearing was proposed by the Wuppertal group, [86], which gen-

erated smearing functions in a gauge covariant manner. The idea behind this 

was to smear a delta function using a scalar wavefunction. A non-local source 

term, 0), was calculated from the scalar propagator solution of the three 

dimensional, gauge invarieint, Klein Gordon equation, 

f , 0) = (^(f, 0) (4.28) 

with Ar(f, = 1 — discretised accordingly. 

However Wuppertal smearing turns out to have a significant computational 

overhead for smearing at the sink. We use a variation of this method, Jacobi 

smearing, [2], to solve for 5'(f ,0) as a power series in with A/" terms. The 

Jacobi smearing function, .7(f, 0), is calculated by an iterative process, 

N 

J(f , 0) = ^ 0 (4.29) 
n = 0 

A(f , g) = -it]+ 0 ) (4.30) 

which has the advantage of being much quicker computationally. 

For scalar kappa values less than some critical value, this series converges to 

the Wuppertal smearing source. For greater than this value the series diverges, 

but still offers a valid smearing function for any value of Â . This smearing has 

been used widely within the UKQCD collaboration, [2], and a value of K, = 0.25 

is fixed. The smearing radius is varied with TV the number of iterations of the 

Jacobi algorithm and is calculated by, 

, , ^ (4.31, 



Figure 4.5: A smearing function F(z, i/) = y 

on a 24^ x 48 lattice using Jacobi smearing 
from [2].) 

: = 0 
normalised to unit volume, 

: 0.250, AT = 50). (Taken 

where | J(f , 0)|^ = 0) 0). This process can be thought of as a dif-

fusion type process, with a delta function expanding with iteration time. Follow-

ing an initial study of smeared static correlators in ref. [36], we choose N = 140. 

An example of this smeeiring function is given in Figure 4.5. 

Where the gauge invariant smearing benefits, is in the computational effort 

required to calculate smeared propagators. The effort required to calculate these 

went aa nvV where M = 24 ,̂ the lattice volume, and N the number of Jacobi 

iterations. To construct a LS propagator, the zeroth iteration of the Jacobi 

algorithm was simply a set of links, all elements zero except for unity at the origin. 

For SL propagators, the initial set of links Wcis the local Wilson line, "PffO, <). For 

SS type smearing, no extra effort was required, as the Jacobi algorithm was 

applied with the SL propagator as the zeroth iteration. 

4.4 Decay Cons t an t of t h e 5—Meson 

An accurate determination of the decay constant of the B-meson has a critical 

part to play in extraction of CKM matrix elements from neutral B-meson mix-

ing. Much effort has been applied in the determination of a reliable theoretical 

estimate for this quantity, but as yet no final result has been obtained. Indeed 
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a large part of this effort haa been directed toward the calculation of the matrix 

element in the static limit of QCD. This has its own particular problems and 

uncertainties, the main one being the extraction of a clean ground state signal. 

In this section we attempt a calculation of 

The B-meson decay constant, /g , is defined in the continuum in terms of the 

matrix element of the axial current, 

(0|yl^|B(p)) = % / g . (4.32) 

The standard way of extracting this from a lattice calculation is through 

the large time behaviour of the zero momentum B-meson propagator. This is 

obtained from the two point correlation function of the time component of the 

local axial current, 

C(() = (4.33) 
X 

(Z^Yexp(-Ma() (4.34) 
large t ^ ^ ^ 

where, ( , ,35, 
\ / 2Ma 2 ^ 

the local amphtude, defined in terms of the matrix element of the axial current. 

In treating the 6 quark in the static approximation, the decay constant is 

related to the local amplitude, , by, 

= \/2 a J G-3/\ (4.36) 

with powers of the lattice spacing giving a dimensionful result. is the 

renormalisation constant for the axial current in the HQET. Further to this, we 

must make two main changes to Equations (4.33) and (4.34), which are altered 

in the static limit. 

Firstly, the exponent Mg is replaced by an effective mass, to be thought 

of as the 'binding energy' of the B-meson. This is not a true mass, in that 

it contains the exp (—m^̂ ) factors absorbed from the static quark propagator, 

= Mg — m;,. These factors are in terms of the bare quark mass, which are 

divergent in the » — 0 limit, [87]. At present theses 1/a divergences cannot be 

dealt with. The main consequence of this is that finite hadronic masses cannot 

be obtained directly from the static theory. It is, however, possible to calculate 

mass differences in this limit, as shown in Chapter 5. A further consequence 
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is that, until some means of non-perturbative subtraction of these divergences 

is formulated, the corrections to the static approximation cannot be 

included in the calculation of /g. 

The second problem involved in simulating with static quarks lies in the 

asymptotic behaviour of the two point correlators. As was discussed in Sec-

tion 4.3, calculating static matrix elements with local currents it is virtually 

impossible to isolate the ground state before the statistical fluctuations swamp 

any signal. This introduces the need for 'smeared' operators, Section 4.3, which 

increase the overlap of the operator with the ground state, allowing for measure-

ments of the lowest state, the B-meson. With these extended currents we can 

calculate various smeared correlation functions, 

= E 0)) (4.37) 

(4.38) 

where indices ^ and 6" indicate different smearing functions, including one corre-

sponding to the local current. In what follows, there will be frequent references 

to the effective mass. For the correlators in Equation (4.38), this is deiined as, 

The decay constant is defined in terms of the local amplitude, which can 

be extracted from these smeared correlation functions in two ways, 

1. • f i t rat io, 

to a constant, shown in Figure 4.6, 

• and then f i t 

C^^(() (Z^)^ exp ( - f ^t), (4.41) 

to extract The effective mass plot for is shown in Fig-

ure 4.7(a), 

• from which, 

= 7? X (4.42) 

This will be labeled as smeared-smeared (SS) method. 

82 



1.4 

1.3 

1.2 — 

1.1 —'—I—'—1-
0 5 10 15 
Time (t) : Fit Range [6,10] X'/dof = 3.3/4 

Figure 4.6: Ratio of for exponential smearing. 

0.7 

0.6 

0.5 

0.4 

Time (t) : Fit Range [6,10] X ' /do f = 3 . 7 / 3 
Time (t) : Fit Range [6.10] X^/dof — 1 .5 /3 

(a) : SS S m e a r e d Cor r e l a to r (b) LS S m e a r e d Cor re l a to r 

Figure 4.7: Effective mass plots of (a) C'̂ '̂  and (b) for exponential smearing. 
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LS : o, SS : O 

d 0̂  

Time (t) 

Figure 4.8: Combined effective mass plots of and Provides a consistency 
check on smeared correlators. 

2. • fit ratio. 

to a constant, 

# and then fit, 

to extract P 

ure 4.T(b), 

• from which, 

( 4 . 4 c 

exp (-(^^t), (4.44) 

The LS effective mass plot shown in Fig-

= VA X P. (4.45) 

This will be labeled as local-smeared (LS) method. 

A consistency check exists on the C'̂ '̂  and correlators, as the effective 

masses must be the same, This is demonstrated in Figure 4.8 for 

gauge invariant smearing. The advantage of using the LS method is the reduced 

statistical errors compared to the SS case (as borne out by the results in Tables 4.1 

and 5.1). Countering this, however, is the observation that the LS effective 

masses reach their asymptotic value from below, introducing some uncertainty 

84 



(a) Cube smear ing , CC O, LC o 

Lower Pit Range 11 : Upper Fitting 12 = 10 (fixed) 

Figure 4.9: Correlated mass Ats : LS and SS : vary lower At remge, keeping upper 
time fixed, 2̂ = 10, for cube smearing. 

as to whether the lightest state has indeed been isolated. This is demonstrated 

in Figure 4.9 which plots the results from fits of the mass, varying the lower 

fitting time = 2 , 8) with fixed end time for upper fit reinge (̂ 2 = 10)- To 

emphasise the difference between the LS and SS approach to the asymptotic 

limit, we consider the 'worst case', looking at the stabihty of the fits from cube 

smeared correlators. We find that the fits from the SS correlators are reasonably 

stable with changing fit range, where ag the Rts from the LS correlator approach 

an asymptotic value from below. Both of these faxztors, of agreement between LS 

and SS effective masses and the stability of the fits, are taken into account when 

searching for an appropriate fitting range. 

With the values of extracted by these various methods, and a 'true' ground 

state signal isolated, we use Equation (4.36) to obtain 

f static 
J B 

^STATIC ̂  - 3 / 2 (4.46) 

The renormalisation constant of the axial current, from the matching 

procedure of the continuum to the lattice regularised static elTective theory, has 

been calculated for the Clover action in [43]. We follow the Lepage Mackenzie 

prescription and use a boosted coupling, from which we take = 0.79. For 
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the mass of the B-meson, we use Mg = (5279 i 2) MeV, [53], and take as scale 

= 2.7 Zgj GeV. It should be noted that the uncertainty due to the lattice 

spacing occurs as 3/2 powers of 

By using these values for the renormalisation constant and the scale, we nec-

essarily introduce some uncertainty into the calculation. A way often used to 

reduce such uncertainties is to take a ratio, where it is hoped that there will be 

cancellations of these systematics. Such a quantity exists here in the form of the 

dimensionless ratio This is calculated from the matrix element at its 

critical value compared to the value interpolated to the stremge mass, 

Required for this is the mags splitting which is calculated in Section 5.1. 

Although in terms of lattice calculations, represents an interesting and 

extremely important result, phenomenologically speaking what is of greater in-

terest is a value for / g itself. How can we get / g from As wag mentioned 

earlier, there are at least two approaches to studying heavy quarks on the lattice. 

We have followed the approach which considers the infinite quark mass limit. It 

is also possible to calculate the heavy-light decay constants using propagating 

quarks, [36], albeit at quark masses lower them the 6 quark mass. To combine 

results from these two regimes, we look to the HQET which predicts a scaling 

law for heavy-light pseudo-scalar mesons, 

/ p y M p = Mp oo, (4.48) 

which can be used to interpolate between the propagating and static results. 

In fact, it was found in ref. [88], that this scaling law contciins sizable 0( l /mQ) 

corrections. These can be quantified by parameterising the scaling law as. 

Calculation of gives only the first term in this expansion, but fit to the 

results with propagating quarks can be used to fix the other constants and obtain 

a value for the pseudoscalar decay constant at Mp = Mg. 
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4.4 .1 R e s u l t s for 

The building blocks for this calculation are the simple two point functions of the 

time component of the axial operator, Equation (4.33). These were calculated 

at three light kappa values and for all possible smearings. In following the two 

procedures outlined above it was necessary to fit to three types of functions; 

and To choose the fit ranges, a number of criteria were 

applied; agreement of correlated and uncorrelated fits, 1, agreement 

of effective masses from and correlators and stability of the fits with 

respect to changes in fit reinge. These fit ranges for the correlators are given in 

the results table. Values for the fits obtained with the value from extrapolation 

of the light quark masses to the chiral limit are shown in Table 4.1. Values 

for the decay constant including all factors of scale and renormalisation 

constant are also listed. This table is complemented by the values of the effective 

masses for these Hts, which are given in Table 5.1 in Section 5.1. The eight 

results quoted come from all different smearing functions used, following the two 

methods outlined earlier in Equations (4.42) and (4.45) for extracting from 

the correlation functions available. 

To quote a Anal answer for we take a series of weighted averages for the 

correlated hts, quoting errors from statistics and uncertainty in lattice spacing. 

We average over all combinations of LS and SS, 

CUBE : (260 ± 9 1^°^) MeV (4.50) 

DOUBLE : (256 ± 12 ) MeV (4.51) 

EXP : (249 ± 9 MeV (4.52) 

G I : ( 2 4 8 ± 7 t^;^)MeV. (4.53) 

The values obtained for vary with the smearing method used, though 

there is agreement of all results within errors. Another point to note is the 

very small statistical errors, especially for the LS hts, perhaps indicating an 

underestimation of the errors involved. A 'best' estimate of is given by 

the results from the exponential or gauge invariant smearings. these smearing 

functions were found to be the most stable in the fitting procedure. 

Comparison of the results with those of other groups is shown in Figure 4.10. 

The values for the points plotted are taken from ref. [3], and includes results 



Smearing 144 226 262 

LC 

[9,11], [5,11] 

0.143 (5) 0.131 (5) 0.125 (5) 
0.4/1, 8.0/6 1.7/1, 5.3/6 1.8/1, 4.5/6 

0.119 (5) 
0.2 

0.256 (10) 

LD 

[9,11], [9,11] 

0.146 (5) 0.132 (5) 0.126 (5) 
0.01/1, 0.6/2 0.2/1, 0.5/2 0.1/1, 0.4/2 

0.119 (5) 
0.3 

0.257 (11) 

LE 

[6,10], [6,10] 

0.137 (2) 0.126 (2) 0.121 (2) 
1.5/3, 3.3/4 2.0/3, 2.6/4 2.4/3, 2.6/4 

0.116 (2) 
0.2 

0.249 (4) 

GI LE 

[6,10], [5,10] 

0.134 (3) 0.125 (2) 0.120 (2) 
1.2/3, 4.4/5 1.2/3, 2.6/5 0.9/3, 2.5/5 

0.115 (2) 
0.2 

0.247 (5) 

CC 

[7,9], [5,11] 

0.149 (7) 0.137 (7) 0.131 (8) 
0.1/1, 8.0/6 0.1/1, 5.3/6 0.1/1, 4.5/6 

0.127 (7) 
0.8 

0.273 (16) 

DD 

[6,10], [9,11] 

0.150 (7) 0.136 (7) 0.131 (7) 
3.4/3, 0.6/2 3.1/3, 0.5/2 3.0/3, 0.4/2 

0.119 (7) 
1.5 

0.256 (14) 

EE 

[6,10], [6,10] 

0.140 (6) 0.128 (6) 0.123 (6) 
2.8/3, 3.3/4 2.6/3, 2.6/4 2.5/3, 2.6/4 

0.114 (6) 
1.3 

0.245 (14) 

GI EE 
X^/do/ 

[6,10], [5,10] 

0.139 (4) 0.128 (4) 0.123 (4) 
0.3/3, 4.5/5 0.9/3, 2.6/5 1.4/3, 2.5/5 

0.116 (4) 
0.01 

0.250 (9) 

Table 4.1: 8-Meson Decay Constant Values of pseudoscalar decay con-
stant for three light quark masses, with extrapolated value included. Correlated 

are quoted. 
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Figure 4.10: Comparison of results for / against scale. (Taken from [3].) 

from refs. [3, 89, 88, 84, 90, 83]. In order to compare different calculations from 

different on the same graph, the function, 

7 = Z ^ o - i ( G e V ) - \ (4.54) 

is plotted against the lattice spacing a. This removes differences in values of the 

renormalisation constant used by the various groups. 

Taking for our result from the exponential smearing, 

2^ = 0.115 ±0.006, (4.55) 

the value from this study to be compared with those in Figure 4.10 is, 

/ = 0.510 ±0.030 (4.56) 

where the first error is statistical with the second from uncertainty in the scale, 
at a = 0.37. 

4.4.2 C a l c u l a t i o n of J STATIC J J STATIC 

Combining the values obtained for the ratio Z^(K,)/Z/,(/(c) with the values of the 

Ba — Bd mass sphtting in Section 5.1. We are able to determine 

(4.51 
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Figure 4.11: Comparison of results for against scale. (Taken from [3]. 

with Mgj = 5.279 GeV. taken from experimental measurement. This was done 

for all smearing types and a weighted average for the results given below, 

CUBE : 1.11T± 0.006 

DOUBLE : 1.113 ±0.008 

EXP : 1.128 ±0.012 

GI : 1.120 ±0.005, 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

The error in this case is purely statistical. 

We compare the results obtained here with those published in ref. [3] and 

including results from [3, 89, 88, 84, 90, 85]. The combined plot is shown in 

Figure 4.11. 

4.4 .3 C a l c u l a t i o n of f g 

The above results Eire those relating to In order to extract the decay con-

stant of the B-Meson, /g , for comparison with continuum physics, it is necessary 

to combine these results with those determined by the use of simulations based 

on propagating quarks. The value of /g with 6 quarks at their physical mass 

is found from an interpolation in the heavy-light pseudoscalar mass, Mp to the 
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Figure 4.12: Scaling Violations : $ against inverse meson mass. Full line; At to 
four propagating points only. Dotted line; fit to three hghtest propagating points 
and static point. 

B-meson mass, Mg. The inclusion of the static point is used to further constrain 

the physical values of /g obtained from the interpolation. In previous calcula-

tions, [36], this caused many problems aa the static point could not be included 

in a fit with the propagating results. 

We follow the treatment given in [36], attempting to quantify the deviations 

from the scaling law, (4.48), by studying the quantity, 

0 

oo) = ( / f 

(4.62) 

(4.63) 

as a function of 1/Mp. This is plotted in Figure 4.12, including both results 

from propagating quarks and the static point at 1/Mp = 0. In order to directly 

compare static and propagating results it is necessary to include factors of 

which arise from corrections to the scaling law away from the oo limit, as 

well as the appropriate renormalisation constants. We approximate ^^(Mf) by, 

27r 
4.64) 

^0 log (M/Agco) ' 

taking Aqcn = 200 MeV, /3o = H and n/ = 0 in the quenched approxima-

tion. 
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We attempt fits to 0 as either linear or quadratic functions of 1/Mp, 

<S.(Mp) = - 4 ( 1 - - ^ ) , (4.65) 

or 

though it was found that a quadratic fit best approximated the data. 

We fit these functions twice, once using all four light values cind then the 

four propagating results with the static result. This is shown in Figure 4.12, 

with the perturbative value for the renormalisation constant of the axial vector, 

= 0.97. It was not possible to obtain a consistent fit to include the static 

point and those from simulations with propagating quarks. 

Clearly the problem originally seen in ref. [36] has not been resolved with this 

calculation of The authors mention possible reaaons for the discrepancy; 

uncertainties in the renormalisation constants and residual discretisation error 

effects in the simulations of propagating quarks. We are unable to comment 

further on these suggestions, instead we quote their value for /g , 

/ 8 = 1 6 0 ± 6 t (4.67) 

4.4.4 C o m p a r i s o n of S m e a r i n g F u n c t i o n s 

One of the main aims of this calculation of by use of smeared correlators 

is to attempt to improve the signal of the ground state contributions. Various 

smearing functions have been used, the details of which were outlined in Sec-

tion 4.3. This section attempts to compare the ability of these smearing functions 

to offer good signals for the various correlators studied. 

Unfortunately, such comparison is not clear cut aa there are no well defined 

ways to determine the 'goodness' of a smearing function. In order to make any 

comment on these smearing functions, we turn to the criteria used to determine 

the fit ranges chosen; the existence of a plateau at early times, comparison of 

uncorrelated and correlated fits, goodness of fit i.e. stabiUty of fits 

obtained with varying fit ranges and agreement between effective masses of LS 

and SS type correlators. 

These criteria are studied from the following sets of graphs. Figure 4.13 shows 

the effective mass plots of the SS and LS correlation functions. This demonstrates 
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Figure 4.13: Comparison of Smearing Functions : Effective Masses of SS and LS 
Correlators (a) Cube, (b) Double Cube, (c) Exponential (d) Gauge Invariant. 
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Figure 4.14: Comparison of Smearing Functions : Fits of Elective Masses of SS 
and LS Correlators, with Varying Time Range (̂ 2 = 10 fixed). 
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the time at which a plateau sets in and also the agreement of effective masses for 

SS and LS correlators. Figure 4.14, on the other hand, plots mass fits against the 

lower time of the fitting range, keeping the upper time of the fitting range fixed 

(^2=10). This shows the stabihty of the mass fits, over varying time intervals. 

What features do these graphs show? One important aapect is the approach 

of the LS correlators to the asymptotic from below. For both exponential and 

double smearings plateaux exist at early times and the LS and SS correlators 

agree well over a wide time range. These features are seen to a lesser extent from 

the gauge invciriant smearing. These findings are borne out further by Figure 4.14, 

where the mass fits for double and exponential type smearings are very stable 

over a range of time fits, but gauge invariant smearing shows this only for the SS 

version. Perhaps it is not surprising that the most naive smearing function, the 

simple cube, does not compare as well as these others. 

Smearing is a necessary evil when dealing with calculations involving static 

quarks, without which no ground state signal at all could be extracted. A variety 

of different smearing functions have been used to attempt to isolate the ground 

state B-Meson, all with relative benefits and varying degrees of success. Clearly, 

this comparison barely scratches the surface of the subject and there is much 

work to be done in refining the smearing process. 

4.4,5 C o n c l u s i o n s 

The decay constant of the B-Meson is an important quantity. Phenomenolog-

ically it is the main theoretical uncertainty in mixing which, with B -

parameter, contains all non-perturbative strong interaction effects. From a lat-

tice perspective, this calculation pushes both the analytical field theoretic tech-

niques, using the Heavy Quark Effective Theory, and also the technology involved 

in extracting clean signals by the use of extended interpolating operators. 

In this chapter, we have used the technique introduced by Eichten treating the 

heavy quark propagator with an expansion in heavy quark mags. Calculations 

using the lowest order term in this expansion were performed to determine the 

decay constant of the B-meson in the static limit, This was done with a 

variety of smearing functions, generated by both gauge invariant and Coulomb 

gauge methods. As a final answer we quote the result from exponential and gauge 
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invariant smearing methods, 

^ ^ g +102̂  gĝ  

where the first error is purely statistical and the second from uncertainty in the 

lattice spacing. 

With the growing interest in mixing in the system, the ratio is also 

an important quantity. Calculation of a dimensionless ratio is also desirable on the 

lattice, where it avoids the systematic errors introduced by the renormalisation 

constant ajid the lattice spacing. In the static hmit, we quote a Anal answer, 

=1 .12 ±0.01. (4.69) 
static 

FL 

In order to extract a measurement of / g it is necessary to combine data from 

calculations using both static and propagating quarks. We attempt a fit using 

a parameterisation of the scaling law which includes 1/Mp corrections. It was 

found that it was not possible to reconcile the results obtained from the static 

and propagating methods. 

Although we say 'Anal' einswer, the range of values obtained from different 

smearing functions cannot be ignored. Indeed the spreeid of results among the 

'world data' for calculations of shows that the calculation is far from fin-

ished. A straight forward refinement of the method applied here would be in a 

global fit to the parameters of and Thia would improve the 

consistency of the results from LS and SS methods. Clearly an essential aspect 

of any further study of ig the use of smearing. We have demonstrated the 

use of various ground state smearing functions. However, to include some in-

formation from an excited state smearing function using a multi-state smearing 

method as outlined in [3], would be useful and informative. 

On a more speculative note, we mention two possibilities for the future. Non-

perturbative renormalisation has been mentioned already for the renormalisation 

constant of the axial current. In ref. [62] the author also mentions the possibility 

of a non-perturbative calculation of Also to be considered is the possibility 

of including the l/m;, corrections of HQET in the calculation of / g . A preliminary 

study is presented in ref. [91]. Perhaps only with the inclusion of these two 

procedures will the seemingly simple calculation of /g be fully understood. 
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Chapte r 5 

Heavy Quark Spectroscopy 

With increasing experimental activity focused on heavy flavour physics, the spec-

t r u m of hadrons contain ing heavy quarks, i n particular the b quark, is slowly 

being mapped out. Indeed, the spectroscopy of heavy hadrons will continue to 

be refined as dedicated B physics machines come on-line in the near future. On 

the theoretical front, the Standard Model, though a great success in many ar-

eas, still has a large number of free parameters which must be determined from 

experiment. Standard theoretical techniques, however, offer no means to deter-

mine hadronic masses. Lattice QCD, meanwhile, offers the only hrst principles 

approach to studying hadron spectroscopy. 

The success of state-of-the-art Lattice QCD calculations with light hadrons 

is demonstrated in ref. [52]. In recent years considerable progress has been 

made in the study of heavy-light systems both in terms of numerical calculations 

and theoretical developments. In this chapter we continue to use the approach of 

Eichten, [73], in considering the heavy quark propagator in terms of an expansion 

in inverse powers of the quark mass. In particular we consider primarily the 

lowest order term in this expansion, the so called static limit. With this static 

formulation, the only choice we have is to measure mass differences. 

In studying the propagation of hadrons containing one heavy quark treated 

by the static formahsm, we are unable to measure finite masses, Mp. Instead, 

only binding energies, = Mp — can be extracted, containing dependence 

on the bare quark mass mg. These bare masses are linearly divergent in the 

a — 0 limit, [87], requiring non-perturbative renormalisation, which as yet cannot 

be attempted. However, if we are able to measure two particles, and fg, 

say, containing the same heavy quark, Q, the difference in binding energies is 
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independent of bare quark mass, 

1̂1 — 1̂2 = — mq) — (Mpg — mq) = Afp, — (5.1) 

In this way we can determine finite physical mass splittings. 

In the calculation of the B, — Bj and — Bj maas splittings we only consider 

results from the lowest order term in the l /mg expeinsion, the mass splittings 

arising from the different light quark dependencies. The vector-pseudoscalar 

splitting is slightly different, in that is arises from the spin dependent term in the 

effective action, which only occurs at first order in l /mq. We calculate the mass 

splitting by considering this spin dependent term as a perturbation to the static 

result. 

5.1 Mass of Bs 

Following the outline above concerning the extraction of physical mass splittings 

from simulations involving the static heavy quarks, it is possible to calculate the 

B, — Bj mass difference. This mass difference is also of interest experimentally, 

with the study of B^ mesons becoming a<:ces5ible from current accelerators. 

In this case, we are studying two particles which differ in their light quark 

make up, Bj = M and B^ = 5s. In terms of lattice simulations this corresponds to 

studying the same correlation functions, though at different light quark masses or 

kappa values. These correlation functions have been used in the determination 

of the decay constant of the B-Meson, in Section 4.4, and take the following 

asymptotic form, 

— Z ^ e x p ( — ( 5 . 2 ) 
large t 

The dependence of the effective mass, = '^(ftf), ou light kappa value can 

be used to extract the mass difference. It is assumed that these 

effective masses are linear in light kappa value and we fit the effective masses to 

the following form, 

,^(/C/)=A-| , (5-3) 
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to extract parameters /I and B. The mass difference is then determined from 

these parameters by, 

(Mg. = B X l'— - 1 ] X (5.4) 

where K, = 0.1419, [6], corresponds to the strange quark mass. From paper [92] 

the authors quote mg, — = (71 ± 13 — 16) MeV. Experimentally. [93], the 

mass splitting is found to be. 

Am = m(B,) — m(Bj) = (96 d: 6) MeV. (5.5) 

5.1 .1 R e s u l t s 

The correlators for this mags difference have been used to calculate Sec-

tion 4.4. Indeed, the effective mass resulting from fits to the B-meson correlator 

was one of the main criteria for choosing fitting range for the particular correla-

tion function. In this calculation we use the effective mass fits from both LS and 

SS type correlators and from all possible different smearings. Table 5.1 contains 

the mass fits for all three light kappa values, the mass splitting in lattice units and 

the physical result with the inclusion of the scale from the lattice spacing. The 

error quoted in the table are purely statistical calculated with a scale = 2 . 7 

GeV. An error due to the uncertainty in the scale is quoted in the combined 

results. 

S S : ( 7 4 ± 6 t ^ ^ ) M e V (5.6) 

L S : ( 6 2 ± 4 l ^ ^ ) M e V (5.7) 

from weighted averages to the four LS type correlators and four SS type correla-

tors. The result consists of a central value for the weighted average, a statistical 

error and a systematic error due to uncertainties in the lattice spacing. Clearly 

this last effect, in terms of lattice spacing, is the largest uncertainty. 

The results quoted indicate a difference between the mass sphtting determined 

from the LS and SS type correlators. At Arst sight this seems to be at odds with 

the criteria used to choose the fitting ranges, that is, agreement between mass 

fits for LS and SS correlators. However, looking at Table 5.1 we can see that the 

fits to the effective masses do agree within errors. It is the interpolation to the 

strange mass that introduces the differences in the values obtained for the mass 
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Smearing 144 226 262 Am x a Am(GeV) 

LC 

[9,11] 

0.562 (7) 0.544 (8) 0.535 (9) 
0.4/1 1.7/1 1.8/1 

0.026 (2) 
0.1 

0.072 (6) 

LD 
X^/(Zo/ 
[9,11] 

0.565 (6) 0.546 (7) 0.536 (8) 
0.01/1 0.2/1 0.1/1 

0.026 (2) 
0.8 

0.070 (5) 

LE 

[6,10] 

0.564 (3) 0.548 (3) 0.541 (3) 
1.5/3 2.0/3 2.4/3 

0.023 (1) 
0.01 

0.063 (2) 

GI LE 
X^/do/ 
[6,10] 

0.561 (2) 0.545 (3) 0.539 (3) 
1.2/3 1.2/3 0.9/3 

0.022 (1) 
0.04 

0.060 (2) 

CC 
%^/do/ 

[7,9] 

0.575 (12) 0.557 (14) 0.549 (15) 
0.1/1 0.1/1 0.1/1 

0.024 (3) 
0.2 

0.066 (7) 

DD 

[6,10] 

0.572 (8) 0.554 (9) 0.547 (10) 
3.4/3 3.1/3 3.0/3 

0.028 (2) 
0.4 

0.074 (5) 

EE 
xVc^o/ 
[6,10] 

0.572 (10) 0.553 (12) 0.547 (13) 
2.8/3 2.6/3 2.5/3 

0.030 (3) 
1.2 

0.080 (9) 

GI EE 

[6,10] 

0.572 (7) 0.553 (8) 0.546 (8) 
0.3/3 0.9/3 1.4/3 

0.028 (2) 
0.1 

0.075 (4) 

Table 5.1: Effective Masses. Am = mg, 
for correlated fits and extrapolation. 

mgj for B-Meson correlators, given 
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Figure 5.1: Extrapolation of effective masses for LS(dotted line) and SS(fu]l line) 
correlators, for exponential smearing. Values at strange mass marked by a cross. 

splitting. This is demonstrated in Figure 5.1 which shows the correlated fits with 

errors to the LS and SS correlators for exponential smearing. The values at 

are also marked. Although the actual values including those from extrapolations 

agree, it is the difference or gradient that is relevant in this case. This is shghtly 

different for the LS and SS cases. 

The differences between these can be understood in terms of asymptotic values 

of the various correlators. Although the LS correlators have far lower statistical 

error, there still may be some doubt as to whether these smearing functions 

really do attain an asymptotic plateau. In Section 4.4.4 it was seen that the 

SS correlators, although seeming more 'noisy' obtained fits which were in fact 

remarkably stable, a good indication that the ground state has been isolated. 

This was not the case for the LS correlators. 

As a best estimate of the B, — mass splitting we quote the value given in 

Equation (5.6). This agrees well with other works, with a full comparison of the 

results shown in Figure 5.2, including results from refs. [3, 89, 88, 84, 90, 85]. We 

also include Figure 5.3 which contains results of simulations on the same gauge 

configurations, with propagating quarks at several finite mass values. The static 

result at infinite mass and the experimental point, at Mg are also plotted on this 
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Figure 5.2: Comparison of results for against scale. (Taken from [3].) 

graph. 

5.2 Mass of 

Beautiful baryons are now well within the grasp of experimentalists since the 

discovery of the Af, at CERN's UAl detector, [94]. With the experimental side 

opening up it is interesting to see what can be determined theoretically and in 

particular from lattice calculations. An initial lattice study, [92], was made using 

Wilson fermions giving a first determination of the A;, mass. This section aims 

to attempt a similar calculation with an improved action. 

In Section 5.1 the determination of the mass splitting was obtained 

from quEintities with the same heavy quark dependence, but with different light 

quark contents. A similar analysis can be applied when studying heavy baryons. 

The A;, contains one heavy quark and two light quarks coupled in a spin 0, isospin 

0 singlet combination. The resulting linear divergences from treating the heavy 

quark in the static hmit are the same as for the B meson. Thus, by comparing the 

time behaviour of a Â  with the B-mesons used earlier, it is possible to calculate 

the At — B mass difference. 

As usual for most lattice calculations, particle properties are extracted from 
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Figure 5.3: Extrapolation of B, — mass difference in l/M^. (Taken from [4].) 

the large time behaviour of a two point correlator. For the A;, the local interpo-

lating operator, representing a heavy quark, Q, coupled to two light quarks in a 

spin singlet, is, 

A(f, (z) , (5.8) 

where C is the charge conjugation operator. Using this, the zero momentum 

baryon propagator haa the following asymptotic form, 

large t 
ZA,exp(-,^A&(). (5.9) 

As with B-mesons, the Â , contains only one heavy quark. The hnear diver-

gences contained in the 'binding energy', can be canceled by calculating the 

difference, 

= (5.10) 

We fit the ratio of the two point correlator. Equation (5.9), to that for the B 

meson and extract the mass difference in lattice units from an exponential fit to 

the large time behaviour of the ratio, 

C 
^A(^) = const. exp(—A?7%A&(). (5 .11) 

large t 

In order to get any signal at all from this ratio it was necessary to use a 

smeared interpolating operator to isolate the ground state, A,,. This was done 
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Figure 5.4: Effective mass difference, + GI SS 
correlator used for both and B meson interpolating operators. 

in a similar way to the smearing of the B mesons, though in the baryonic case 

there are two light quarks. For simplicity, we consider the di-quark pair as a 

local object and smear this with respect to the heavy quark, 

(5.12) 

where the smearing functions, are those described in Section 4.3. The 

baryon correlation functions are calculated in the usual way; a smeared heavy 

quark propagator is constructed and then combined with the light quark singlet 

The measurements of were taken for the set of three light quark masses 

and for all smearing combinations. Linear extrapolation to Kcrit waa required for 

a measurement of the mass splitting at the physical light quark mass. Inclusion 

of factors of the lattice spacing gives the mags difference in physical units, 

MA, - Mg = (GeV). (5.13) 

In [92], the authors quote MA, — Mg = (720 i 160 — 130) MeV for the Â  —B 

mass splitting using a similar method to the one presented in this section. At the 

time of publication, however, the authors were unable to comment on the consis-

tency of this result with experiment. Since then the At mass has been measured, 
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Figure 5.5: Mass fits for B mass splitting. Upper time range varies in 
(2 € [10,12], while fits vary with lower time range. 

[94, 95], and the Particle Data Book quotes an average At = (5641 ± 50) MeV 

with Mg = (5279 ± 2) MeV. Experimentally, this gives — Mg = (362 d: 50) 

MeV. It is of interest to see whether this calculation with an 0(0) improved ac-

tion and leirger statistical sample gives any improvement on the original lattice 

calculation with Wilson fermions and also to compare it with the confirmed ex-

perimental results. 

5.2.1 Resu l t s 

Two point correlation functions for the propagator of the A;, were calculated 

from Equation (5.9) with all smearing functions of the type defined in Equa-

tion (5.12). These correlation functions were used to construct the ratio form 

which the mass differences were extracted. An effective mass plot is shown 

in Figure 5.4 with the effective mass defined as = log (72yY(̂ )//2,\(̂  4- 1)). 

It seems from Figure 5.4 that a plateau is obtained. However, caution should 

be taken in ascribing this to the isolation of the ground state as this would only 

be made completely clear by a simulation of higher statistics with a longer time 

extent. 

Fits for the mass difference were made over the time interval ^ 6 [9.11]. 

Table 5.2 lists mass differences for three light kappa values, extrapolated to 
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Figiire 5.6: Chiral Extrapolation of Â  —B mass splitting comparing uncorrelated 
and correlated fits. Cube smearing of LS type smearing shown. 

in lattice units and expressed in physical units. We may justify using this small 

fitting range by looking at how the effective mass fits chcinge with fitting time 

range. The fits for the SS exponential smearing are shown in Figure 5.5 with 

upper time range varying in the region E [10,12] and effective mass hts plotted 

against lower fit time. The fits obtained with > 9 seem stable to variation in 

fit range indicating the beginning of a plateau in effective mass. It was also noted 

that good agreement was lacking between the uncorrelated and correlated chiral 

extrapolations of the mass differences. This is clearly demonstrated in Figure 5.6. 

In this case the correlated fit seems to take into account the large error on the 

lightest mass value and gives a fit of a higher, and perhaps more sensible, value 

than the uncorrelated fit. 

Combining the results obtained from all smearing types in a weighted average 

we quote as best estimates for the A,, — B mass splitting, 

SS : (429 ± 8 3 I^gjMeV 

LS : (554 ± 5 8 :^^)MeV 

(5.14) 

(5.15) 

where again we have quoted a statistical error and an uncertainty due to the 

lattice spacing. 
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Smearing 144 226 262 AmAt (GeV) 

LC 0.258 (15) 0.223 (21) 0.193 (31) 

0.03/1 0.08/1 0.1/1 

(u) 0.177 (35) 
(c) 0.211 (26) 

2.2 

(u) 0.478 (93) 
(c) 0.571 (70) 

LD 0.265 (14) 0.231 (17) 0.204 (21) 

0.5/1 0.3/1 0.08/1 

(u) 0.187 (24) 
(c) 0.209 (21) 

3.8 

(u) 0.504 (64) 
(c) 0.563 (57) 

LE 0.262 (14) 0.228 (17) 0.207 (23) 

0.5/1 0.2/1 0.01/1 

(u) 0.188 (25) 
(cj 0.201 (20) 

0.7 

(u) 0.509 (67) 
(c) 0.542 (54) 

GI LE 0.266 (11) 0.226 (15) 0.188 (20) 

0.0/1 0.05/1 0.2/1 

(li) 0.169 (22) 
(c) 0.203 (19) 

7.6 

(u) 0.455 (60) 
(c) 0.547 (50) 

CC 0.230 (18) 0.194 (31) 0.172 (49) 

0.0/1 0.01/1 0.1/1 

(u) 0.154 (54) 
(c) 0.173 (31) 

0.2 

(u) 0.416 (146) 
(c) 0.467 ( 84) 

DD 

X^/do/ 

0.219 (16) 0.176 (31) 0.144 (50) 

0.04/1 0.2/1 0.2/1 

(u) 0.124 (54) 
(c) 0.157 (33) 

0.6 

(u) 0.334 (147) 
(c) 0.424 ( 90) 

EE 0.218 (15) 0.181 (24) 0.165 (37) 

0.02/1 0.5/1 1.2/1 

(u) 0.144 (42) 
(c) 0.146 (31) 

0.01 

(u) 0.388 (112) 
(c) 0.394 ( 83) 

GI EE 0.230 (16) 0.189 (21) 0.157 (28) 

0.2/1 0.8/1 0.9/1 

(u) 0.137 (32) 
(c) 0.160 (27) 

2.0 

(u) 0.369 (86) 
(c) 0.431 (74) 

Table 5.2: A ,̂—B effective mass differences, for three light kappa and extrapolated 
to the chiral limit. All fits done over range [9,11], with both uncorrelated, (u), 
and correlated, (c), results given. given for correlated fits. 
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Clearly this is an improvement on the calculation using Wilson fermions and 

goes some way towards a value comparable with the experimental result. Again, 

the main problem seems to be in cleanly extracting the ground state baryon 

from the Euchdean correlator. This can be seen in two places. In Figure 5.4 a 

'plateau' is only obtained after nine time steps leaving only a short time range 

from which to extract a ground state before the signal stops^. Also, from the 

results in Table 5.2, we see higher values of the mass difference values from the 

LS correlators compared to the SS correlators suggesting that a true plateau has 

not been reached for the LS case. With greater time extent and higher statistics, 

however, these issues should be less relevant. As a best estimate we quote the 

figure in (5.14) as our final result. 

The most obvious improvement would be to include smearing of the light 

quarks relative to each other. As mentioned earlier, for reaaons of simplicity 

the two light quarks in the baryon were taken as being local to eeich other with 

smearing only of this di-quark pair relative to the heavy quark. Clearly this is 

somewhat unphysical in that the light quarks in a baryon are not expected to be 

in the same position relative to the heavy quark at the centre. By using smearing 

between the light quarks one could hope to better model such a baryon. Work is 

being carried out with such smeared hght quarks and propagating heavy quarks, 

In using the static theory we cein only look at the first term in an expansion 

of this mass difference as powers of mg. Using propagating quarks, however, it 

is possible to determine the 1/Mp corrections to this static limit. This has been 

done by the authors of ref. [5] and they find = (458 i 144 i 18) MeV, 

with corrections of the order 20% to the static theory. Extrapolation of their 

results to the infinite mass limit would give results compatible with those found 

here, though perhaps the static results are still a little high. This again points 

to the problems of extracting a clean signal for the ground state contributions. 

This is clearly seen in Figure 5.7, which includes the values of AniAb several 

values of Mp, the static value for both Clover and Wilson, [92], fermions and the 

experimental value. 

^no measurements were taken after times lice 12 
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Figure 5.7: A(, — B Mass Splittings against l/Mp, with inclusion of static point. 
(Taken from [5].) 

5.3 B* — B Mass Splitting 

Throughout this thesis the properties and spectrum of hadrons containing a 

beauty quark have been studied by means of an effective field theory. This was 

based on Eichten's expansion of the heavy quark propagator in. powers of mg. In 

particular the static limit of this theory is concerned only with the lowest order 

term in this expansion. However, the mass difference between the vector and 

pseudoscalar meson states arises from spin dependent terms in the action. To 

lowest order in the expansion in these states are degenerate in mass. To mea-

sure the vector pseudoscalar mass splitting it is necessary to take into account the 

corrections to the static theory. As such, the calculation of this mass 

difference acts as a test of the heavy quark formalism and in particular the effect 

of the chromo-magnetic operator correction term. It also plays an important role 

in testing the effect of 'Clover improvement' on lattice measurements, following 

directly from the conclusions of ref. [92] which presents the original calculation 

of the — B mass sphtting, with Wilson fermions. The discrepajicy between 

their results and experimental values was attributed to either the heavy quark 

expansion or to lattice systematic errors. The following calculation will attempt 

to go some way in establishing the validity of these conclusions. 
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Keeping only the hrst two terms of Eichten's expansion of the heavy quark 

propagator gives, 

=exp(-mQ(a;'^-:;/'^)) + , (5.16) 

with the leading term the static propagator, as given earlier in Equation (4.16), 

and second term with four contributions, 

<̂1 = 'S'gz 4- S'cr + . (5.17) 

These four correction terms, corresponding to kinetic, chromo-magnetic and 

end-point operators, have the following forms, given in terms of the static prop-

agator, 6'o(z;?/) 

D^(f, w )̂7:)y (w ,̂ (:r - ^ (5.18) 

w )̂7:)̂ ('u;̂ , (^ - ^ (5.19) 

= - ( — ^ ) : F ' f ( a ; \ 2 / ^ ) ( i ; - D ( f , / ) ) 5 ( ^ ) ( f - ^ (5.20) 

'5'D,(:i:;3/) = - (i-D(f,z'^))P^(%^,2/'^)(^(^)(f-^. (5.21) 

Measurements of the properties of the pseudoscalar and vector mesona come 

from two point correlation functions, defined as, 

Cb-W = - i i : ( 7 ' 5 Q ( a : ; 0 ) 7 ' S , ( 0 ; x ) ) (5.22) 

Cg(() = - ^ (7\5^Q(a;; 0)7'^i'5^g(0; z ) ) (5.23) 

At lowest order, including only the first term in the heavy quark expansion, 

the two point functions C8(^) and Cg. (̂ ) propagate with the same mass. This 

can be seen by comparing the Dirac structure of both correlation functions, 

1 + 74 \ 1 / l + 7 4 \ 

74^5 ^—j 747.5 = - - 7 k ^ j 7k, (5.24) 

i.e. Cg(() = —^Cg.((). 
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The contributions from the correction terms in Equations (5.18), (5.20) and 

(5.21) are the same for both pseudoscalar and vector two point functions. It is 

only the spin dependent term given in Equation (5.19) that enters with a different 

constant of proportionality, 

= TkOTij-yk. (5 .25) 

It is this chromomagnetic operator term that differentiates between pseudoscalar 

and vector correlation functions, providing the only contribution to the mass 

splitting. 

As with the other calculations in this section we can define a set of quantities 

which allow us to extract a finite mass difference. To measure the B* — B mass 

splitting it is useful to define the following local correlation functions, in terms 

of the spin dependent correction to the static propagator, (5.19), and the static 

propagator itself, 

Cy(() = - ^ (y'ys5'^(3;; 0)''ŷ 'y55'((0; r ) ) (5.26) 

Cp(t) = - ^ (7S55'o(3:; 0)Y755'!(0; a;)) . (5.27) 

To model the behaviour of this spin dependent correlator in terms of a mass 

splitting, the ratio of these two correlation functions is considered and the spin 

term is treated as a perturbation to the static correlator. This ratio can easily 

be seen to behave linearly with time, 

—̂  Ccr + Dcrt, (5.29) 

with the mass splitting found from, 

mg. - mg = Zg. ̂  (GeV)\ (5.30) 

where is the renormalisation constant of the chromomagnetic moment operator 

of the heavy quark. This renormalisation constant was calculated from the one 

loop corrections to the chromomagnetic operator, matched between the heavy 

quark effective theory on the lattice and the continuum regulators. The original 

calculation in ref. [44], was carried out for Wilson fermions. However, using the 
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'Clover' improved action has no effect on the calculation of the renormalisation 

constant. Z,; comes from the renormalisation of an operator defined purely in 

terms of heavy quark physics, whereas improvement only changes the light physics 

content. For = 6.2, at a scale % 2.7 GeV and with a boosted coupling, 

we take, 

Z . = = 1.45. (5 .31) 

The calculation in ref. [92], was the first to use this technique to measure the 

vector pseudosccilar mass splitting. They used Wilson fermions and obtained a 

result, Afg. — = (0.28 d: 0.06)GeV^ (using = 1.45). Experimentally, the 

B' — B mass difference is measured at CLEO above the T(45) energy, creating 

B ' B pairs. The B* decays, B* —'yB, and the energy of the photon measured. 

The Particle Data Group quotes, [97], Mg. — Mg = (46.0 ± 6.0) MeV, giving a 

value = (0.488 ± 0.007 )GeV^. 

5.3.1 La t t i ce Calcu la t ion 

The two point correlation functions for the spin dependent correction to the heavy 

quark propagator are calculated in a similar way to those of the lowest order. It 

is useful to define an effective Wilson line, including the smeill perturbations due 

to insertion of the field tensor along the ordinary Wilson line. This effective 

Wilson line is then used in exactly the same way as the original Wilson lines, in 

Equation (5.27), as the basis for the two point correlator, Equation (5.26). 

To construct an effective Wilson line we discretise the spin dependent correc-

tion terms to the propagator, in Equation (5.19), which gives, 

i<j w''=0 

= H E (;(e(jkF;k(:r,w^) 'Pj^(w^,0), (5 .32) 
w''=0 \i,j<k J 

where the lattice definition of the field tensor, is defined in terms of plaquettes 

in the (_;', A;)th plane. The field tensor was discussed in Section 2.4 in terms of 

'Clover' improved actions with the field tensor shown in Figure 2.2. Expressed 

as a sum of plaquettes, 

^ () + , D't _j(f, () 

+ i) + (o,', t) — h.c.] • (5.33) 
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Figure 5.8: (a) Effective mass diiference 4-1) with time and 
(b) ratio for vector pseudosceilar meiss splitting. Gauge invariant smearing 
used. 

The plaquette on the lattice was defined earlier, Figure 2.1, ag. 

(5.34) 

With the effective Wilson lines of Equation (5.32) calculated, the two point 

function is determined in exactly the same way as outlined earlier for studying 

Section 4.4, but now with the simple Wilson line, Vx{t, 0) replaced by 

the effective Wilson line, 0). It should be noted, in this latter case the 

heavy quark propagator now combines off-diagonal components of the light quark 

propagator. This is to be expected by the inclusion of a term which breaks the 

spin symmetry of the Heavy Queirk Effective Theory. A further advantage of 

constructing these effective Wilson lines is that they can be smeared in exactly 

the same way as the original Wilson lines, with the smearing procedure originally 

discussed in Section 4.3. 

5.3.2 Resu l t s 

As with all calculations in the static effective theory, smeared interpolating op-

erators are required to obtain any signal with the two point correlation functions 

in Equations (5.26) and (5.27). A variety of smearing functions, both gauge in-
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144 226 262 Critical mg. —'mg(GeV)^ 
LC 0.041 (4) 0.042 (4) 0.043 (5) 

1.6/3 1.1/3 1.0/3 
0.042 (5) 

0.7 
0.444 (48) 

LD 
X^/c(o/ 

0.042 (3) 0.042 (3) 0.042 (3) 
2.6/3 1.7/3 1.4/3 

0.042 (4) 
1.6 

0.448 (37) 

LE 0.040 (3) 0.040 (3) 0.039 (3) 
1.5/3 0.6/3 0.2/3 

0.040 (3) 
1.9 

0.424 (35) 

GI LE 0.039 (2) 0.039 (2) 0.039 (3) 
0.5/3 0.1/3 1.0/3 

0.040 (3) 
0.3 

0.420 (28) 

GI EE 0.036 (2) 0.037 (2) 0.037 (3) 
0.03/1 0.3/1 0.5/1 

0.038 (2) 
0.4 

0.405 (26) 

Table 5.3: Values for mass splitting, from linear fit to ratio extrapola-
tion to the chiral limit and physiceil value. Correlated fits and %^/do/ given. 

variant and Coulomb gauge were used, though it was only possible to calculate 

a smeared-smeared correlator for the gauge invariant smearing. 

To check the ratio (5.28) did actually isolate the ground state contributions, an 

effective mass difference was calculated, 1)- An example 

of this effective mass is shown in Figure 5.8(a). With a plateau confirmed, 

was fitted to the asymptotic form in Equation (5.29) and parameters and 

Dq. extracted. An example of the linear behaviour of the ratio is also shown in 

Figure 5.8(b). In all LS cases the At range waa chosen to be t € [5,9], but for 

the gauge invariant SS cage, the plateau set in earher, and a time range ^ E [2,4] 

was used. The values from three light kappa and the chirally extrapolated result 

are shown in Table 5.3. We note good agreement with the uncorrelated and 

correlated fits and only include the correlated fits in the table. The final column 

in this table shows the corresponding continuum result in physical units, using 

centrcil value only for the scale, = 2.7 GeV, and with the inclusion of the 

renormalisation constant of the chromo-magnetic operator. 

As a final answer, we take a weighted average over the LS type results, and 

quote for 

SS : (0.405 ± 0.026 % ) (GeV):̂  (5.35) 

LS : (0.431 ± 0.037 ) (GeV)^ (5.36) 

where the first error is purely statistical and an error due to uncertainty in the 
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Measurement Clover Wilson Experiment 
B, - Bj(MeV) 74^:6 71 d: 13 tiG 96 ± 6 

A6 - B (MeV) 429 ± 8 3 720 ± 160 +30 362 ± 50 

B* - B (GeV)^ 0.431 ±0.037 0.28 ±0.06 0.488 ± 0.007 

Table 5.4: Results of heavy quark spectroscopy, clover, wilson and experimental 
results given. 

lattice spacing. 

The major source of error is introduced due to uncertainty in the lattice 

spacing, this mass sphtting having quadratic dependence on the choice of scale. 

All values from different smearing functions agree well, even between the LS and 

SS types. There is a marked improvement over the results obtained from use of 

the Wilson action and a strong agreement with the experimental result. In this 

case the use of an improved action, and in particular one which introduces this 

improvement by use of a 'Clover' like term, seems to improve the results based 

on matrix elements dependent on this same chromo-magnetic operator. 

5.4 Conclusions 

The calculation of hadronic masses from first principles is an intrinsically non-

perturbative problem. The main practical means of attacking such a calculation 

is by Lattice QCD to calculate the strong interaction effects binding the quarks 

into hadrons. 

In this chapter, we have used Lattice QCD techniques, in conjunction with 

theoretical techniques for treating the dynamics of heavy quarks, to determine 

mass splittings of hadrons containing one heavy quark, in particular the — Bj, 

Ah — B and B* — B mass splittings. The hnal results of these calculations are 

shown in Table 5.4, along with the results using Wilson fermions from ref. [92], 

and experimental measurements from ref. [53]. For the lattice results we quote 

two errors; the hrst purely statistical and the second due to uncertainty in the 

calibration of the lattice spacing. 

These results were obtained by use of an improved action, one of the aims 

of such calculations being to see the effect of this improvement on the results 
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obtained. The — Bj mass sphtting agrees well between Clover and Wilson 

though is a little low compared to the experimental mass. The difference between 

Clover and Wilson, results for the A;, —B splitting is most likely a statistical effect, 

though further studies with higher statistics and longer time extents could change 

this. The vector pseudoscalar mass splitting shows a marked improvement, a 

result also seen with simulations with light quarks, [4]. 
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Chapte r 6 

Conclusions 

Lattice QCD is a powerful tool for the calculation of non-perturbative phenomena 

in particle physics. In this thesis we have used the techniques of Lattice QCD with 

large scale numerical simulations to calculate several quantities which depend 

crucially on the effects of the strong interaction. These include, weak matrix 

elements, containing all the long distance physics of a low energy effective held 

theory and hadron masses, depending on the confinement of quarks in hadrons. 

In Chapter 3 we calculated the kaon B-parameter. This is the quantity in 

neutral kacn mixing containing all the strong interaction effects on the weak de-

cay. We find = 0.66^:0.08. This calculation was done with an 0(G) improved 

action. We compared the results with those found from a calculation with Wilson 

fermions. Slight improvement was observed though use of this improved action, 

though the effect waa not conclusive. 

In Chapter 4, we studied the decay constant of the B-meson, using a formu-

lation of heavy quarks in the static limit of the HQET. From this calculation, we 

find /g = 248 i 8 MeV. To remove the uncerteiinty in scale and renormal-

isation constant we calculated the dimensionless ratio 0.01. 

Using a parameterisation of the heavy quark scahng relation we compared results 

for the decay constant from propagating quarks with the result in the infinite mass 

limit. It was still not possible to obtain a consistent At to all points. In the cal-

culation of quantities containing static quarks, smeared interpolating operators 

were required to extract the ground state. We compared the effect on of a 

variety of smearing functions and observed that Coulomb gauge exponential and 

gauge invariant smearings best satisfied the criteria for good smearing functions. 

Heavy quark spectroscopy was studied in Chapter 5 and we calculated three 
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mass splittings in the B-system; B, — Bj, — B and the B* — B mass differences. 

The first two mass splittings were calculated from the lowest order term in the 

HQET expansion in quark mass. We find, = 74 ± 6 MeV and 

— mg = 429 d: 83 MeV. These agree well with experiment, simulations 

with propagating quarks and also show slight improvement over results with 

an earlier calculation with Wilson fermions, mainly due to better statistics. The 

vector-pseudoscalar mass splitting required the calculation of the spin dependent 

correction to the static quark propagator. From this we obtained = 

0.431 d: 0.037 t^g^(GeV)^, a result much closer to the experimental value than 

the original Wilson calculation. In this measurement of a spin sensitive quantity, 

use of an improved action did indeed lead to em improved result. 

None of the calculations presented here are particularly new, instead they 

represent a set of quantities that crug/it to be calculated on the existing gauge 

configurations. Perhaps the main conclusion from this thesis is that with larger 

statistical samples, on finer lattices, using improved actions and employing smear-

ing techniques, the systematic uncertainties of lattice calculations are beginning 

to come under control. Things look bright for the lattice community with their 

results slowly being accepted by a wider audience, a process which cannot fail to 

continue as the simulations become ever more accurate and understood. 
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Appendix A 

The S tandard Model Lagrangian 

The Standard Model is a combination of three gauge theories, baaed on the gauge 

group, 

(A.l) 

the with the corresponding gauge bosons, (a = 1, (% = 1,2,3) 

and and gauge couphngs, ps, pg and respectively, and which have as their 

generators, T" = A''/2, cr' = T'/2 and 1. 

The fermion content of the Standard Model is three families, v4 = 1,2,3 

consisting of left handed quark S[/(2) doublets, right handed quark singlets, 

and left handed lepton doublet, right handed lepton singlet, e^. 

In this Appendix, we specify the Lagrangain that governs the dynamics of the 

Standard Model, 

^SM ^Gauge ~i~ ^Fermion ^Higgs 4" ^Yukawa 4" ^ • ( A . 2 ) 

We take each sector in turn: 

* Gauge sector: 

(A.3) 

where a = 1 , . . . ,8 , 2 = 1,2,3 and. 

= d,A: - a^Al - (A.4) 
rk F;. = (A.s) 

Hfjiu = (A.6) 

are the field tensors of the 6'[/(3), ^[/(2) and [/(I) gauge groups respec-

tively, with the structure constants and 1. 

119 



» fermion sector: 

^Fermion (A.7) 

for covariant derivatives, 

D^Qt = (a , - i f A-.4; ^ iSIt'WI - i f s ^ j Qi (A.8) 

D , u i = (a„ - < (A.9) 

= (a„ - i f AM; + (A.IO) 

= (a , - i f ^ w ; + i f s „ ) It (A.11) 

(A.12) 

# Higgs sector 

+ A(0t0)2 (A.13) 

where 

D„$ = {d^ - i ^ T ' W ; - i f g , ) i>. (A.14) 

# Yukawa sector: 

^Yukawa = + ^'abQ^.^'^R + h.C., (A.15) 

where $ = ^rg^*, and A/̂ g are the cross generational Yukawa couplings. 

# topological terms: 

r'' = (A.16) 

where This term can be written as a total divergence, 

which only contributes as a surface term to the action. 
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