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ABSTRACT

This thesis is concerned with some aspects of the theory
of parametric interactions which have not been fully considered
in the literature. The existing theory of nonlinear
interactions in nonabsorbing, non-gyrétropic, anisotropic
crystals has been generalised so that the basic theory of
interactions in absorbing and gyrotropic crystals is now
understood. Full allowance has been made for the fact that
the interacting waves are elliptically polarized and not
linearly polarized as they are in the nonabsorbing case. When
an experiment has been performed on an absorbing or gyrotropic
crystal to measure the nonlinear coefficients this theory
must be used to obtain the nonlinear coefficient from the
experimentél results.

The equations governing the amplitﬁdes of the interacting
waves is found to be of the same form as for nonabsorbing non-

gyrotropic crystals.
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I _INTRODUCTION

The work which is described in this thesis has been
performed in connection with the laser research group, which is a
purely experimental group.

The theoretical subjects considered were chosen to augment
the group's activities and to overcome limitations in the theory
of nonlinear interactions and devices. - The experimental work in
the laser group is on three topics;

1. parametric amplification and oscillation in tellurium

2. parametric‘amplification and oscillation in proustite

3. second harmonic generation in tellurium with a view to measuring
accurately the nonlinear coefficient.

The crystals proustite and tellurium are both absorbing and as there

is no theory-which satisfactorily treats absorbing crystals, it

was decided to extend the theory to cover these cases. The crystal

tellurium is also strongly gyrotropic and it was not known what

effect this property would have on the phase matching condition.

A theory was consequently developed for nonlinear interactions in

gyrotropic media.

It should be mentioned that nonlinear optics is a comparatively
- new field in which a considerable amount of experimental and

theoretical work is being done.



-2=

The theory of the optics of linear crystals has been
studied extensively and is well described (Szivessy 1928). More
recently the interaction of infinite plane waves has been

considered in crystals which have a nonlinear constitutive relation
between D and E (ABDP 1962), but which do not display optical

activity or are lossy.



II LINEAR CRYSTAL OPTICS

This chapter is concerned with the propagation of electro-
magnetic radiation in linear media. 1Its purpose is to introduce a
terminology which will serve for the rest of the thesis and to
describe the simpler case of linear crystal optics before
considering nonlinear propagation -

The history of the optics of linear crystals is long,
comprehensive and is well documeﬁted (SéiVessy 1928, Ram.and. Ram.1961
Consequently there is no need to discuss ih detail the solving of
the field equations here and it ié only necessary to present the
solutions of the field equations.

‘The propagaﬁibn.of electromagnetic radiation in crystals is
only slightly more complicated than the more familiar case of
propagation in isotropic media. In all respects the equations are
of a more general form and all solutions must feduce to the
isotropic ones when the tensor properties associated with the
crystal become scalar or zero, depending on the tensor property.
The effects observed in crystal optics can be explained in terms
of two different theories, the elastic aether theory and Maxwell's
theory. This duality of approach has led to many terminological
difficulties. In this thesis the analysis is based upon Maxwell's
electromagnetic theéry and the emphasis throughout is on clarity

and simplicity of approach.
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2.1 The Field Equations and the Linear Constitutive Relations

The propagation of light in crystals both linear and nonlinear
is governed, as in isotropic media, by Maxwell's equations; in

c.g.s. units,for media with no free charge these are :

VxH -+ 30 =L e (2.1)
e (2.2)

V-D =0 e. (2.3)

ce. (2.4)
These equations are not sufficient as they describe wave propagation
and it is necessary to introduce additional relationships which
relate the field vectors B and H, D and E and j and E. These
relationships are known as the constitutive relations and have

always been known to be approximations. For absorbing, non-optically-

active crystals which are electrically and magnetically anisotropic

they are : |
D:_é.{_:;' ee. (2.5)
5:%-5 cer (2.6)
é:g-.g .. (2.7

where(i,fl,gf’are symmetric second-rank tensors of dielectric
A In

constant, magnetic permeability and conductivity respectively; all
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the elements of these tensors are real. At optical frequencies the
magnetic permeability tensor approaches a scalar value which in
c.g.s. units is unity (B and W 1965).

The case of gyrotropic media is more complex. For infinite
plane waves traversing non-absorbing, gyrotropic crystéls the

constitutive relation between D and E is :

D= c.E -ré(@—xg) | e (2.8)
where G is a vector known as the gyration vector and is derived
from the relation:
G = %'g ee. (2.9)
Here s is a unit vector in the direction of propagation of the
wave and ﬁbis a Fensor known as the gyration tensor and is
characteristic of the medium; it is not necessarily symmetric, but
the elements are real.
The more general case of absorbing, optically-active crystals
reduires the constitutive relation between D and E to be :
D= (Eg +{ G xE .e. (2.10)

where again G = g,s. The tensor g is now composed of a real part

&
and an imaginary part neither of which is necessarily symmetric.

g = #,g-é@é . (2.11)
Each of these tensors cause special effects and are not
independent of one another. By making all of the tensors except
one equal to zero or to a scalar, depending on the tensor, it is

possible to see the effects each has.
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The tensor £ has the effect that waves propagating through
AL

a crystal are linearly polarized and each linearly polarized
component has a certain propagation constant which is a function of
the angle of propagation of the‘wavé with respect to the crystallo-
graphic axis. This tensor is also responsible for the fact that in
general the two polarized components do not propagate their energy
in the same direction. An example of the first effect is the inter-
ference pattern seen in the conoscopic photographs which are
obtained when crystal slabs are illuminated with linearly polarised
convergent light and are viewed through an analyser and an example of
the second effect is the familiar effect of double images seen
when an object is viewed through a calcite crystal.

The effects of the conductivity tensor are that the
absorption of the waves is different for the characteristic
polarizations and for different directions of propagation in the
crystal. Usually the effect is linked with anisotropy of the
dielectric constant and in this case the polarization states
cﬁaracteristic of a given direction are elliptical and in general
they are not orthogonal. An example which shows that the absorption
is different for different directions is given by the phenomena of
pleochroism which enables tourmaline or Polaroid to be used as a
polarizer. An example of the ﬁon-orthogonaiity of polarization
states is the appearance of idiophanic frimges when a drystal is

viewed in convergent light using only a polarizer or analyser.
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The gyration tensor causes the characteristic poiarization
states to be circular and leads to the effect of optical rotation.
This effect is caused by the incident linearly-polarized wave being
decomposed into two circularly-polarized waves which pass through
the gyrotropic media with different propagation constants and then
interfere to produce linearly-polarized radiation. When the di-
electric tensor does not behave as a scalar the situation becomes
slightly more complicated. The characteristic polarizations become
elliptical and are orthogonal. The eccentricity and‘orientation of
the ellipses is a function of the direction of propagation as is the
refractive index for each polarization state. The refractive
indices experienced by the waves are not quite those obtained from
the dielectric tensor, but are also dependent upon the gyration
tensor. A familiar crystal which exhibits these effects is quartz.
Here the polarization states for propagation down the optic axis
are circular while the polarization states for propagation at right
angles to it are linear; there are elliptically-polarized states for

intermediate directions.

2.2 The Solution of the Field Equations for Infinite Plane Waves

Traversing Crystals

As has been mentioned earlier the solution of the field
equations for the linear case is well documented (Szivessy 1928,

Ram. and Ram. 1961) and consequently the final result presented here
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discusses only the solution of the field equations for infinite

plane waves of radian frequency w.

Each of the field vectors E, D, H and B are of the form

..A, - Al & W[é“"(’f}'f‘? _t)] cer (2.12)

where EAf is the amplitude of the wave and is a constant,
independent of distance and time; it will be seen that when we come
to discuss nonlinear effects !A! is no longer a constant.

The unit vector 3 represents the state of polarization of
ﬁhe wave; this vector can be complex in the sense that it can be
of the form g’ = b + i &- The meaning of this is that the vector'
A is cqmposed of the sum of two trans§erse sinusoidal vibrations
with a constant phase relation between them and thus the propagating

modes are of elliptical polarization. It is still possible to have

o>

Vi A

A,
an orthogonal polarlzatlon, g ’ to an elllptlcal polarlzatlon a.
;’ FF h . . / //
7

vj
The ellipticity and the orlentatlon “of the ellipse are glveégéy
solving the field equations.

In equation 2.12 n' is the complex refractive index
associated with a given direction and is comprised of a real part
which governs the phase velocity and an imaginary part which is
related to the absorption coefficient,

X is a position vector, r= @5& *5\% + g?}'

S is a unit vector in the direction of propagation and t



represents time.

2.3 Solution of the Field Equations for other than Infinite Plane

Waves

The solutions which are found.in the literature are mainly of
tﬁe homogeneous plane wave type. It is also possible to solve for
inhomogeneous plane waves, but it is difficult to solve for more
general waves. The wave equation is, in general, not separable when
there are more than two tensor properties which, when reduced to
canonical form, do not have coincident principal axes. In any case
the equations are only separable in one system of cartesian
'éoordiﬁates which means that the method of separation of variables
is only of limited usefulnesé in practice.

The general method of solution is to meet a boundary
condition by the addition of an infinite number of homogeneous and
inhomogeneous plane waves travelling in all directions, then to
allow each plane wave to propagate and find the effect at any point
by the interference of the propagated waves.

It should be mentioned here that the method of superimposition
is not valid in nonlinear media. The reason for solving for
infinite plane waves in chapter 3 is not to form a basis on which
to obtain a general solution, but to enable the only case which can
be solved exactly to be cdnsidered. It should also be remarked that

there is no solution which predicts correctly the second harmonic
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power output when a crystal is illuminated with laser light and

there is significant conversion of fundamental to second harmonic.
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III THE CONSTITUTIVE RELATION BETWEEN D AND E IN NONLINEAR MEDIA

AND THE TENSOR

No original work is presented in this chapter which is
consequently kept as short as possible.

It has always been known that the linear constitutive
relations D = ég and B =lf:/v' H ére approximations (Blogm.1964) .
The magnetic nonlinearity has been well investigated and is used
in magnetic amplifiers while the non-linearity associated with
ferromagnetic resonance has been used to generate second and higher
harmonics in the microwave region of the spectrum. Until quite
recently (1960) nonlinearities had not been observed at optical
frequeﬁcies because the effects were‘very small. However the advent
of the laser haé meant that high power densities (>106watts/cm2)
can be realised thus enabling the nonlinear effects to be demonstrated

The nonlinear properties which will be considered in the
rest of this thesis arise from the nonlinearity between D and E.

The relation B = H is taken to be valid at optical frequencies.

The relation between D and E is obtained by gxpanding the

polarization as a power series in the electric field. For the pure

electric dipole case we have:

! 1, E 3| "E .
-0 E: + .E'L + UL Eé;_.'f c e e
P ?é"~ .z; ==~ - o0 (3:1)
n
where the tensors ?C denote the linear and higher-order
susceptibilities. It should be added that expansion 1 is not the

-

most general one and that it would be better to use a multipole
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expansion (Terhune 1964) then effects such as second harmonic
generation in calcite could be explained.

In what follows the polarization will be considered to be
composed of the linear susceptibility and the first nonlinear

Qontribution then :
D<e.E M'w%:f}fﬁ .. (3.2)
- V%4 - AL

The nonlinear tensor‘)i has certain symmetry conditions
imposed on it by the material, just as has the linear dielectric
tensor. The tensor'}i_has the same symmetry as the piezoelectric
tensor which means that allythe terms are identically equal to zero
whenever the medium has a centre of inversion. When the medium
does not have this centre of inversion some of the elements are
equal or zero in the crystals of higher symmetry. These equal and
zero terms are to be found elsewhere and so neéd no further
discussion.

The tensor ;X: can be complex and this leads to phase shifts
being introduced between the interacting waves which are not present

when the tensor ?C is real (Bloembergen 1964).



-13-

IV_WAVE PROPAGATION IN NONLINEAR CRYSTALS

4.1 Parametric Effects in Nonlinear, Nonabsorbing Anisotropic Media

The essential results presented in this section were first
derived in (ABDP 1962); however the approach used is slightly
different and forms the basis for the entirely original work in
the next two sections on parametric effects in absorbing crystals and
optically active crystals.

We start from Maxwell's equations and making the assumptions

B=Hand D = € E -I-Lﬂ’P"L this gives:
2= -

VxE = -1 oH o (6.1)
VxH

0"
of-
o
™
LARY
+
£
>
30
-

(4.2)

We now take the curl of (1)and substitute from (2).
L o o e (4-3)
VATeE +L O (€)= -k 3'Bn
é-E o - CZ atg.
PNL is a source term of radian frequency . For simplicity we will

consider all the waves involved to be monochromatic. Then the

'J

operation &

-—’?'

is equivalent.to multiplication by -wz, so that

C-

eee (4.8)

VxUxE - w g _ Lﬂ'w IDL

It should be noted that this is the usual linear wave equation
with a source term.

We now consider the interaction of three infinite plane
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waves travelling in the +z direction, with propagation constants,

kl’ k2, k3 and with radian frequencies Wy Woy Wg respectively.

At wy
E ('}: ) %P\ g«\wp[ (&}3/ w, H . (4.5)
an( } %(u),-u)g w) E, (%,t) ﬁ(},é’) (4.6)
At w, |
Ea[g;é) e A, (%ieﬁl’ﬂ,[ (%, - w, )] e (4.7)
_@WL(@)‘&): %(wwa);-w,):g (3}6);‘5' (é}t).“ (4.8)
At wg

CEylpt) s € Asglen Lilhyy-we)] @
»g@a.(énf) z %(u)g:m@—%) : é.(é,é’)é@{g}(}u (4.10)

Separating out each frequency term when substituted into (5) and

then by scalar multiplication with the unit vector of E we find

_et,.VxVxé, -(Q);,,) E () ) . (4.11)

] = 7’ k/% 3..'1.

c&

.éz,.VxVx E. {wa/}ﬁ;(mz) ez L;'» m., %(&Jg}msf (4.12)

A
e; . VxVxE; - (u‘ )E(u) wﬁu;)m.,‘;;xzz.-- (4.13)
: £ . WY,

A
In Appendix I an expression is derived for ¢ {xVx E where
represents a vector wave propagating in the z direction and

is a unit vector of g the result is:

TS S
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PN &AF eee (4.148)
Q VxVxE c}‘%

where o = %/2 - the angle between the z direction and the
direction of F. 1In crystal optics a is the same as the angle between
the wave normal and ray directioms.
In Appendix II an expression.is derived for 8"~;,5
which is :
S0 E - nem |El
where n is the phase refractive index.

Substituting (14) and (15) into (11),(12) and (13) yields equations

of the form :

JIE[ + Mfﬁl**hﬁw

P vor (4.16)
d% ct cresd ol W '

O>

Now

.5"5‘} [y Yo i (hiy-wt)[reilhg-ot) <Jhab m;:,;\] (617

In physically realisabie situations, the relative change in the
amplitude per wavelength is small, since the nonlinear susceptibility
is‘very small compared to the linear part. Thus terms in the

second derivative of amplitude are negligible compared with the

first derivatives , so (Bloem. 1964):

ﬂa<< é{@iﬁ eee (4.18)
6!{;; cﬁéf .

After substitution and simplification we find
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L 1 > A A |
g?&' % Qv L€ ,qéé/wg::wf}"wx):gﬁgaﬁgﬁ\ﬁﬁﬁéé%}ww)
0700, ¢

where Ak = k3 k2 kl.

From the fact that a photon at the pump frequency splits into one at

the idler plus one at the signal frequency it is found that

. L(w): €, @3- hig

~ A A A A
= 3 &A): ”ﬁQ’? ' \;.
k c,%w@ g{;’ e tans gﬁﬁ%( z) @Q% zfé*fig %{’&@;j@&%. (4.20)

Hence:

c;—g

(%@_) Ay AL eop (cDR3) o (a2D)

QL
=

(i_{%ag‘) As,&} é@%(’& ) ven (4.22)

@3’1

Q.
e

. "“L—f-»)/j‘x A;,wm( YR ) cor (4.23)

These equations will be called the parametric equations. They are

‘T

a set of three nonlinear differential equations which can be
solved exactly by the methods of (ABDP 1962) or approximately by

assuming A3 is independent of z.

4.2 Parametric Effects in Gyrotropic Crystals

The problem of parametric interactions in gyrotropic crystals
has not been considered previously in the literature. This section
is probably the most valuable part of the thesis and is not only

of academic interest, but is also of great practical importance
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because all gyrotropic crystals lack a centre of inversion which
means they can exhibit a first-order nonlinearity. Such potentially
useful crystals as tellurium, cinnabar and lithium niobate are
strongly gyrotropic.

In what follows the inﬁeraction of plane waves in a medium
which has anisotropy of the dielectric tensor and is gyrotropic is
considered. This situation, as will be seen, is somewhat similar to
the case of parameﬁric amplification in nonabsorbing crystals which
possess anisotropy of the dielectric tensor only, but it is
complicated by the fact that the polarizations of the interacting
waves are no longer linearly polarized, but are, in general,
elliptically polarized. 1In this chapter crystals which are non-
absorbing are considered, so that the two characteristic polarization
states are elliptical and orthogonal.

Derivation of the differential equations governing the amplitudes

of the interacting waves as they pass through the nonlinear media

In what follows, the elliptical polarizations are represented
by the addition of two mutually-orthogonal-linearly-polarized
components with a constant phase rélation between them.

From Maxwell's equations, as in chapter 1, for monochromatic

radiation of radian frequency w we obtain the relation:

Vx VxE = f.:«’f[) aee (ha28)
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The constitutive relation between D and E is taken as :
Q“é‘g%’i@'}{é + 4P e (4.25)
This relation is chosen because when the nonlinearity drops to zero
the expression becomes Q:: g- E + g@x é which is the
usual relation taken in linear crystal optics and when the vector
G is zero indicating no optical ac.tivity it becomes, Q;Q‘E +hff‘f3%
-which is the expression taken when discussing nonlinear effects in

nongyrotropic crystals.

Consequently vxﬁ\‘?x E = (C E + l[-‘ﬂ"%L +i G_ XE) . (4.26)

Equation 4.3 is now multlplled scalarly by @‘ and the results

of Appendices I and II are utilized to obtain :

v
J IE :w‘n"ifj L M\é? FF)JB« - (4.27)
Bt TeE T atemielel) T -

In the absence of any nonlinearities one solution of this

equation represents a wave travelling in the positive z direction
given by :
Ety) = Aeaxp(:hn) coo (4.28)
where A is an amplitude which is independent of z.
In the presence of nonlinearities we postulate the solution
to be : v '
) Y )
= 1T jenn (L
E(g,) @{ﬁjuﬁé Ay ven (4.29)

A(z) is governed by the differential equation :

Q_ﬁ-rQ,z‘éL(;'Q @mcﬁ‘gf gﬁrrm p

. )
a’ n CM%@ UL (4.30)
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2
as before the term gﬂi} is ignored in comparison with the term
PR
Q,,é F* which gives }

Iy

. L ,
_g.B_ = +L %ﬂ” L&)z E}ﬁ"g‘%ﬁ?% (»,;’gé} ... (4.31)
& ntctees'ed

The nonlinear term is of interest and should be considered

in slightly greater depth.
A A

A n .
P'JL' @ — g"'x’ gt?g e o0 (4.32)

, A | |
The unit vectors ¢ ; are complex and are of the form :

'\# A

e v - a . A} N (4‘33)

\ S fo-fa

Where 31 = 1, 2, 3

v
= ?_q ,%:{@L‘?s“‘g:@g)'@- % (g‘ Q}Tazg

e il s
+efok a4, 0 ) a, Lil by van 6]

The tensor 3{ is known and the vectors a, and bi are also
known; it is thus possible to calculate the coupling term
It should also be remarked that it ié necessary to use the approach
" developed in this chapter to determine the elements of the nonlinear
tensor ;K, . It will be appreciated that the calculation of the
coupling term is lengthy and somewhat involved.

There are two cases of éarametric interaction which must be
dealt with. They are the situation of second harmonic generation and

the case of parametric amplification.
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Second-harmonic generation

L]

Some work has appeared in the literature on SHG in gyrotropic
crystals and it is appropriate at this point to mention what has
been done. The only theoretical work consists of two papers
published by Rabin and Bey (Rabin and Bey 1967, 1967). These papers
are concerned with the effects of obtical activity on phase matching
and they tackle the problem by two different approaches. The first
of these is similar to Franken and Ward method (Franken and Ward,
1968) where the fundamental is considered to establish a phased
three-dimensional array of dipoles at the second-harmonic frequency,
which then radiate and second harmonic radiation is emitted. This
method is only approximate because no allowance can be made for
the pump wave beéoming weaker due to conversion to second harmonic.
To overcome this deficiency Rabin and Bey published a second paper
which was of a coupled-wave approach as is the work described here.

The two papers were concerned only with waves which are
cirqularly polarized. The results given here are much more general
and apply equally to elliptically polarized waves as well as to the
special case of circular polarization. When the interacting waves
are allowed to become circularly polarized the growth equations
- reduce to those of Rabin and Bey. It should be mentioned, however,
that Rabin and Bey have not uséd quite the same definition of k,
the propagation constant, as I‘have. They have taken k as that

part of the propagation constant which arises from the dielectric
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tensor and have added to this another part, a, which comes from

the gyration tensor. In what is presented here these two terms are
added, or subtracted, and means this work falls in line with the
treatment given by texts on linear crystal optics (Born and Wolf, 19%

The equations governing the growth of second harmonic

For second-harmonic generation the fundamental establishes
a nonlinear polarization ét twice the opticai‘freqﬁency
me?g(w,,wé;wz)féé veo (4.36)
There is also a mixing between the second harmonic and the
fundamental which yields:

l .
Pm_, “"'%(wu‘dv 7(‘0\):515 ee. (4.37)

The equations governing the amplitides are :

4;)
{11.38)

\

(}H "": fQﬂ:_— A t%('| a')l wL :é\lé A.A' ("“A
By T Cinign )ie.e A el

=

v A A LAy
: ) ”‘:%é '%(w,,,éd,, w):?‘?'#AzA:W{Lé'QZ)(“ 39)
' ' ’

‘here AR - &,—2)&. ee. (4 40)

These equations are of exactly the same form as the equations

governing second-harmonic generation in nongyrotropic media. The

. ' A « AN
" differences are chiefly in the coupling terms € % ege

Pal
and in the unit vectors €
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Parametric amplification in gyrotropic media

Here there are three waves interacting; the pump, the signal

and the idler.
The pump and signal mix to produce a nonlinear polarization
at the idler frequency. 1In the following the éubscript '1l"' refers

to the signal,'2' to the idler and '3' to the pump wave. Thus

Puy = }’,(ws;w,,w,) 3 MA A.,&o:/L[ (rﬁés fff’z)dj} cer (4.41)

The growth equation for the signal is thus:

| /P : )
gﬁ. oA w! i e, }{.e ezﬁ /}@wc/z(aﬂfgcf (4.42)
where 1,7, o, C
r
L - , |
Similarly the 31gna1 and pump mix to produce a nonlinear polarization

at the signal frequency and the growth equation is:

2+ A A AX ¥
i@.’; = = Qﬂ’u); e @L‘x:?@@l As/q. Q@?’L((’A&’}/)

dy  Aumyen'w,C’ - (4.43)

Thg signal and idler also mix to produce radiation at the pump

frequency

o’As = —LQﬂ'wg e X @ Q(A et (;4;&
Jz\/ ﬁvbﬂgm “:sc 3 ] ' f )

(4.44)

The equations above govern the amplitudes of the waves as they pass
through the crystal; It is possible, however, to find a useful
relationship by requiring the number of photons at the pump
frequency. plus the number at the signal frequency to be constant, and

the number of photons at the idler frequency plus the number at the
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pump frequency to be another constant independent of z. This is

because a pump photon splits into one signal plus one idler photon.

#
4A) - (8 al) s

From equations (42) to (45) a relation can be found between the

Then

terms @ X+ ee . Equation (43) is divided by (42) and after
simplification and manipulation, as in section 1 of this chapter,

it is found that to be consistent with equation(45 we require

A A A , A A*—g

e-X'ee e Liée,
L2, 200 o,

and from equation (43 and the complex conjugate of equation (44)

(4.46)

A A A A
€o L1€C2€ _ és'x":@,gz ee. (4.47)
Py P
Hence €00 " xq L0076y
y; s pY A AL A A A
' A48
Q'M;K;GSS =2 = gﬁ«'%'ggel - _63'% Qngz - K (4 4 )
Jrely 2 of
Thus the paraaetrlc equé%iogs are : €69" %4
dh, fm, (Agﬁ lﬂ(o &%) cor (4.49)

i v
A

(‘j: _l;“é&f}!,‘a },,(; & C Aﬁ? ) .o (4.50)
Jg I 3 L W |

é& ) ﬂu)g K A, ﬂle,p{/z( LA&G’/) o (625D)
dy By ct
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This set of three nonlinear differential equations can be
solved exactly by the methods of (ABDP, 1962) or by the small gain
theory whereby ;%ais regarded as being independent of z and then
the equations become linear and are soluble by the usual methods
for simultaneous linear differential equations.

The effect of the medium beiﬁg gyrotropic is that the
nonlinear coupling tenﬁ év’x«’éé\ is no loﬁger the same as for the
corresponding nongyrotropic medium and this term is also complex
which means that there will be effects produced which are akin to
those produced by a complex ix tensor - that is extra phase
shifts will be produced in the waves as mentioned in chapter 2. In
all other ways however the waves behave like the more familiar

linearly polarized ones.

4.3 Parametric Effects in Nonlinear, Absorbing, Anisotropic Media

The following derivation of the parametric growth equations
is not to be found elsewhere. There are two things which justify
the inclusion of this work in the thesis. The first is that it
extends the theory of the previous sub-section and enables real
crystals, which have absorption at the interacting frequencies, to
be considered. This is of relevance to the experimental work being
undertaken in the group because both the tellurium and proustite
crystals are absorbing. The sécond is that a point arises which

has not been mentioned elsewhere.
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When an experiment is performed to measure nonlinear
coefficients the polarizations are taken to be linear, and assuming
this the unknown nonlinear coefficients can be determined. In fact,
from the theory of linear crystal optics, the polarizations are
known to be elliptical and allowance should be . made for this
ellipticity when calculating the nénlinear coefficients. The theory
presented here allows the nonlinear coefficients to be determined
correctly. More is said about this latter point when gyrotropic
crystals are considered.

The effects of absorption are introduced by assuming the
medium to have a finite conductivity at the frequencies concerned.
This pfoperty is direction dependent and is formulated using the
conductivity tehsor, which need not have the same principal directions
as the dielectric tensor. The derivation given here is general and
applies to all nonlinear absorbing crystals, both uniaxial and
biaxial which are not gyrotropic.

As in the last section we start with Maxwell's equations
and take B = H. The interacting waves are assumed to be mono-
chromatic and of radian frequency w. In this case the operation

éL is equivalent to multiplication by - i w giving:

C

VxE = (W H cor (4.52)
C - .

Vill: borg B _cwD e (459)
¢ 3 .

The curl of equation (52) is taken and substituted into equation

A
(53) as before, and followed by scalar multiplication by & which
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is the complex unit vector of E, and determines the ellipticity of

its polarization. We have

A |
Ej- b [ ... (4.54)

-

CZ

A 1 A 'b
e'VXVXE““>e.@~E+L$?an
As before (Appendix I) @ Vx VA/& = =000 %d /{;/
T2z
a .
and in Appendix III it is shown that Jé/
A N
¢ (¢.E Még;}f“:a",E)svz coo ot IE]
. ¥ - T w o~
where n is the complex refractive index and a is the angle
between the Poynting vector and the wave normal. After making
these substitutions equation 4.54 becomes
J[__J n'le] -
{ bd w ."L) e P}& X .o (4-55)
opotel O

Now {E i omplex and is of the form :

|E] :.'-B(j) Wﬁ{éﬁ“ﬁ)«g/) (4.56)
=By ) oxpr (- Ba) e 3 &) cee (4.57)

ly) o (- By %
(4.58)

-A(g eopt (¢ 74%/)

k is the propagation constant andjg is the imaginary part of the
complex propagation constant; in fact it is the amplitude absorption
coefficient when there are no nonlinear interactions, i.e. at small

signals.
2

!
dy

Now

)z'}?, _ Lﬂmg,) <¢§E§ N J«}ngg ﬂ' B) (4.59)
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This is then substituted into equation (57) and ignoring c§£3
Qéﬂ'u) 38 y as before, we obtain : é

compared with w
© dy
!
» ’ h'yl,} %J L (4-60)
s q)

, $ P * £ s *
Now g%g} o éQ‘yL,Q and k is >>;3 thus in equation (60) we

set b . é% on LHS of equation (60) and obtain:
C
(A
. (4.61)

é. _P,,;. enf (-¢ ﬁ}j@%(ﬁ&) ..

- 2z, ’2 .
Jg, hcter e
Now from'equations (57) and (58)

A(3)=B(3)8&?1 (--,8?() - cor (4.62)

so substituting from (62) into (61) gives

dh A=ilrw 2 sl - oo
J%f F fciemn - eyl &) .. (4.63)

There are three equations like (63) governing the amplitudes of

the waves:

A LBA = i2ow’ é,—,'}é:éggk Qe,x/g(ﬁfzg) (4.64)

2cw ®,

A,
g i ) .

Jﬂ (4.66
“‘""*ﬁ Ay = ifrwy 9/ 10,8, ), ;5?} , cﬁég 4-66)
‘ &56 6‘69"":3 . b;ﬁé /
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Equations (64) to (66) are the parametric equations when there is
absorption present. It will be noticed that these reduce to the
parametric equations for nonabsorbing media when the quantities
ﬁ, 7& . ﬁg become zero.
These equations are more difficult to solve than those which
arise for the lossless case. It is no longer possible to find an

A AT
expression relating the terms 24 "X , € @ for the
o=l
equations (64) to (66). When these are obtained from experiment

the quantity should be written as:

(CL.# é'@\).'}if&&‘a”@,ﬂé’-ﬂ;é(@fyg’ ....é»ma.),}] eo. (4.67)

The quantities &, b decide the ellipticity of the waves and
can be determined experimentally The tensor elements of ;{ can
be obtained.

It should be emphasised that this is not just ofkacademic
interest. The propagating modes are significantly different from
linear and they are circular in certain directions known as the

singular axes.
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CHAPTER V SOLUTIONS OF THE PARAMETRIC EQUATIONS

1. Introduction

The parametric equations are derived in chapter 3. Some
solutions of these equations are discussed in this‘chapter. The
solution is of the small-signal type in which the depletion
of the pump wave is neglected. The absorption at the pump
frequency is also taken to be zero. The solutions are applicable

to absorbing, optically-active and nonabsorbing crystals.

2. Solution of the equations

The relevant parametric equations are re-stated from chapter 3:

dﬁ, . - BA +ec, pr wm{ﬂ»ifw) ce. (5.1)
Jﬂt __’3 /Q%_,HCUZ} g;/z (-f"cd‘ﬁ’»d/) e.. (5.2)

A ALY

where ¢, = Qﬁr'd: @ N s ”“ A cee (5.3)
1 ficm"% A A

and c, = AT Wt Qx»{%:gfie; AS ee. (5.4)

&QC £09°0(s

Now dﬁ, _wg,q &/4 )""Jf/@w“”f/ {y) cer (5.5)
and d.ﬁi'— Tﬁ ﬁz«ﬁ”f”( ﬁ’? {/ e /;‘«,Ca) wer (5:6)

dj
Thus ,_Q,l., ﬁ 6&?1 C“/ - + ¢ C fj} @?2 .f.(b)%&%) (5.7)

and / $2 _ CC /? oL ( ,#{fﬁf ..... (5.8)
: Aéﬁ( f%szf f C;} + /§ }? ) ,
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The complex conjugate of (8) is :

%(ﬁce,e%[?/?é/> = -0 C, fﬁ*e“*?//ﬂ Pumc Bz ) oo

(5.9)

& )
from (7) /:)L 7 ;3'7\4, -t ’N?( ~ {23 «-;5_73,5 \(5 10)

from (9) (5 11)

A.A@?‘/L!gtz = @?{l(( a&ﬁé“/,fﬂ (*#
Now put P (Q;Qi *,@, **ji?z, ' ... (5.12)

Then differentiating (10) w.r.t. z

Jér( a,w’f‘{, 3/ 'm@ﬁ%(/%!)f (ﬂa@f’/» ’I;?;ﬂ(mﬁ/) ;25

Similarly dlfferentlatlng (11) w.r.t. z gives

.13)

i

k“)

Agmseﬁf ;vﬂ{,«f--t em(ﬂ; @‘ﬂ ( 53 "'"f %p (5 14)
Now substitute from (14) for {9 {q) &% ;gﬂ) 1nto 7)

;

N A
‘C?« W( Pa g@ll iﬂ (/3&?}) /2% (H% éw/e" (‘8“53) | .o ;%'1?515‘.1/5) “\/
Simplification gives 4 =Ciln oy Ew(w%

Jﬁ bl jJ (f e )< LR

a8 a
Substltutlng for cJ { ; «jﬁ/?f f”*% from (13) into (9)

gives after re-arrangement

L (hepfs J*Pff (Peqp i) -l (Rep B):0 (s
2N d
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Equations (16) and (17) are equations which control the magnitudes
and phases of the amplitudes. These. equations . will now be solved

subject to boundary conditions :

ﬁjﬁ) = /‘): ° .. (5.18)
A /0/\ . fq ¢ _ ee. (5.19)
A\ ]

Jﬁ) and (}”3 at z = O are obtained from equations (7) and (9)

o

‘a small idler ﬂl present at z = O.

These boundary condltlons represent a small signal /7 and

3. Applications of Boundary Conditions

The solution of (16) is : -

Aj&m ﬁ;g:&méﬁ%}{}]eﬁg‘éhﬁx[(—dﬁ] ... (5.20)

and the solution of (17) is :

oo by - e (13, e (o) Corp (3, o,
where 6£r='.NJE_;;#JLJC“‘

We now determine F,~C, H, J from the boundary conditions at z = 0O

which are obtained from equations (7), (9), (18) and (19) .

. n°"" 'Q" HO
G = e, fi, —ph 4 A ee. (5.22)
- o b’x —.Q“ -
F = -/ I} L ° ° ’ ‘ P .
c(C *ﬁﬁ-’ + H; | (3.23)
a he L |
J = _L‘(.X,Qo /)yo yeo e (5.24)
Lol 4 plh Ao |
_ ‘Qd o Lol o
H LC;A: A(O ) | ees (5.25)
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From (20), (21), (23), (24) and (25)

Al emﬁé' 6&'/1( 4@3}{ LCH" *lsf\/b“f’r (M’j{ ...(5.

-rﬂ cm? &fgf

(5.

Arespfog = (b Llhiudey -p A il of 0]

26)

27)

Equations (26) and (27) are in a more convenient form if written:

Al) = A MG) +A. IVG) -
Aly) rﬁ,of((g) *Ff:%(?c}) wee (5.
where
M(a)a@xf,(-%éyw(.%@%wgdg zﬁ_ngg)... 5.
M(s) = exp(- ,@,__,F,ﬁ epp( A#/} ";%' Qé,;_gimg} ... (.
PGs) = e {-ﬁ%}ig)w(c%ﬁ%(%*m;] (5.

-B a4l Ad 2 N VTN IR
Cz€})::€5§6 ( Jg%gimw%jﬁ%/é( Rég?%y fﬁ@ﬁp%}éfiéhﬁﬁ%;;. (5.

Npttie,e,

ol =

There is a relevant special case of these equations when the
absorption at both the signal and idler frequencies are zero.

The equations are then 31mp11f1ed to :

7 ... (5.
F: LA& - ,?f‘fgg, oo (5.

28)

29)

30)

31)

32)

33)

34)

35)

A.G) :ﬂ,ofi(z) + B, 5(3) | | c. (5.36)
H;"(})-;ﬁ, T/J) A, d() ver (5 ‘

.37)
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where

. (Al fwﬁm +L___£_Sj_%g,mioe
R(z,) = G/X/l( -‘ﬁww & 20 WA L. (5.38)

... (5.39)

TG) = en

. (5.40)
' LY FOPUNAY 45,1/3!;/@‘{5{.
U,(‘g) @%(%&g{w&z%&' %% é}... (5.41)

A = ,Jlf(’,c-l_ NP ver (5.42)
2

4. Parametric Amplification with No Absorption

This has been discussed elsewhere (Yariv 1967) consequently
this section is very brief. In this case there is a signal A?
at z = 0 and the idler at z = 0 is zero.

Hence from equations (36) to (42)

and

o g
Ag‘(g)) f:} Q?fl{; ﬂ'?s\{ g’;z zu"wﬁﬂcﬁ’ eee (5.44)

The amplitude of the signal wave entering the amplifying region
is A: and that which leave is Al(e) and Aé(l) where ¢ is the
length of the nonlinear medium.

The power gain for the signal is thus :



N
) b N 3&‘5@,@41 N maoé
A.(‘?pﬁé@ ﬁ,fii:‘% wﬁ&g %&@wﬁﬁé\ Cﬁaﬁ" o 8“"’ %)(5 45)
ﬁ’ ﬁl

¢ g i
2 Bk g lovy b wm/w@,mw ez i) (5+46)

L™ 2 e o

Then power gain

oy4 ;)
Iwim cam(afwé ) 4 l ";}M ) eevcfw“'gff‘

1 o )gﬂmf ;ﬁx ,,M

There are two cases to be considered.

Case 1 when / ’g% < e, ¢,
sy
Here o{.:»jéé,&ueﬂﬁ is real eee (5.48)
7
Then d‘roﬂ:’{ 3’?@’6 cee (5.49)
and (;?‘ﬁ"@éf% 2 7 oo (5.50)

I ' . A ﬂs. 2 / /2.)
Case 2 [\a@ 1 ?

Here (¢ :_:1[;6‘,0, M{?gé’;fi" is pure imaginary e.. (5.52)
2
Then a‘r&,jﬁ O e.. (5.53)
. :

. (5.55)

L d
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6. Parametric Amplifier with Absorption

¥ o
Absorption is present. 4 é%z is zero and

we require to find the power gain of the amplifier which is :

Is‘@ - A;fffe};{}«,é@i ' v.. (5.56)

Is/0) A0l foci
Now from equations (28) to (35)

| A ,4? “‘;?f”( (13'“9) Lyz( ‘{7%4&:’ ! } (5.57)

%%?dyvzxﬁi

hence

'f‘” 0 | + &/
As & "Qf*‘ *g—-mi‘ - /’%')ﬁz Elm%xﬁﬂmaﬁa 74 "fm(?sf)
,1);";1 , w»a& 2

¢ %/*
fﬁ”éff*{j{ {Qﬁ“”ﬁ,ﬁ’( ES @6‘» M{\f.}géﬁ g}

Simplifying

f}j ’ 'M/g) { M/éuﬁ)@// +,L) ,.waﬂ((pc-ac)? { 7

’ *M(W)é/(ﬁ ﬁ’\,rwl((x ek }<s 50
mso  AMRY pA /’([jf)/é/ . (5.60)
ﬂ@fﬂ("w*%)é*c‘ s ki ) (5.61)

“ﬂo%/} W((/f/a/é \ C» CP{ fc’m{/(’/ ? (5.62)

aaﬁéx o/ ?j‘
I é Ly * 2 4 A f':j
-—"U - D Ca G &)ﬁ{«f 7 é m%[m £ 569

1.6/  #wWe 2.5 ? (-cotd (e Ryl

Equations (59) and (63) are interesting because they show that

L.,(\J

Thus

the effects of absorption are similar to those of the phase mismatch
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Ak becoﬁing complex. It is in fact related ciosely to the number
p by equation (35). The quantity a is complex and the equations
cannot be put in the simple form of (51) and (55).
The whole situation is much more complicated than the
familiar lossless case and to clarify the situation it is considered
useful to look at a few examples before moving onto the slightly

more complicated parametric oscillator.

6. The Threshold for Amplification with Absorption

The most important threshold is when the output power is just
equal to the input power and hence the power gain is unity.

From equation (58)

ot (’ Fir 3¢€Q JQJQ wh {0l o 4{? *ﬁ?éﬁﬂﬁﬁ&-abéqﬁ:?

P
&

*ﬁ, @.véwwm wé/ rodoul il (5.64)

Now p:gm‘k— +Pa | .. (5.65)
and o= Jprrhe,cy ... (5.66)
The quantity C'Cf‘z}ealz

C,el= brtolw ¢ LY e # /é‘:., Z?)?F eee (5.67)

RQ cteer e, f’f‘ v“%’t
and hence by solving the transendental equatlon (64) with

parameters ﬁ,,ﬁt; &fﬁ{ specified it is possible to find the
threshold power for unity power gain.
The equation is impossible to solve generally and so it must

be solved by numerical, approximate techniques or for special cases.
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Special case 1

‘ N -
then ¢t= o« = ¢, C. and /936?
Equation (64) simplifies to
1 4 '
&m(ﬁﬁﬁ¥@=amd%{ . ce. (5.68)

The approximation

2 / onYe |
ol w0 = |+ wl) | ve. (5.69)
is now subsituted to give
et = e {/Qﬂ“"/ﬂ”/ -1 ... (5.70)
Hence ITerfgpﬁfn, ’Z) ')ﬁ’ﬂw&*’ PR, Q’;ﬁ@\z%y. Z;«S?{Zl)‘s
;f,d!"x.) ‘e & y @ g
This equation shows how  the éhreshold pump powgr increéases with |

the absorption coefficients. It is interesting to note that the

signal and idler absorptions appear together.

7. The Parametric Oscillator

The parametric oscillator with no absorption at the signal
and idler frequencies is, in fact, a special case of the oscillator
when there is absorption at the signal and idler frequencies and
in this chapter it will be treated as such. In the literature a
distinction is méde between the singly -resonant oscillator and the
doubly-resonant oscillator that is oscillators which have one or
two frequencies reéonant. In the present work, the two are
considered together by taking the reflectivities at the signal and
idler frequencies to Ee parameters and later considering the

special cases.
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- From equations (28) and (29)

A (2y) - A1 l3/ %HMI\/(&) ... (5.72)
Az,(;) =4, P(/f‘”"%;“ 52(2() | ee. (5.73)

and M, N, P, Q are defined by equations (30) to (33).
[
A small signal, f%wv , is present at z=0, and this enters the
2 170
crystal and at the end face of the crystal becomes f%g;and /ﬁffl
respectively. These are then reflected at z = ¢ and again at

z = 0, when the amplitude is the same as at z = 0. Initially this

process is

IQ /?g.,+£ eyyz(-w é’)&,«/l( éa@/’? ;/ .. (5.74)
e Rresntnd) exp(e 2L Al e 579

The signal and idler frequencies are resonant hence:

@?"f’e‘{zm’*wgﬁw ”’«f?(c 22&;({) eee (5.76)

From (73) and (76)

A¥= R Cf?f@( s (PU/L} +Q ) cee (5.77)
A (1-R. @ﬁm(ﬁz@/ﬁ{(yr,ﬂ erp-F @P’%‘ (5.78)

From (77) and (72)

‘ , Hipalp @
ﬁ@f f Vi Mﬁ' Wit Mﬂﬁ LR G PG

1 =Re et (= R '{:/h(i/} .. (5.79)
Therefore (1-Re'eunlf0M m}%} g’ )= . ﬁf“’,,!?@f;i Y W}z/ ;?Qf—//?éé%i’ifif ,Y
-f»R ez, 35,,’7(%{[{(4’? f(/s“/’f

sen (-4, (e

f/;” “”Ii
(5. 80)
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/ Cy }f” . . ?, "
Now - P@N{é) = eop (-F. f/ﬁgaf'f//) Z%gfs pund wih. (5.8D)
[ I Ig ‘2» ,‘/;] A s 4 /’l’
W) G4 - oy (- ;ﬁf’)[wm;;—zf X

Hence {74 {’/éf‘j [?{i:‘ij;ij)“ __egcfa( ({p f{%}/.) . (5.83)

Thus from (80)
ﬁ 4/ . M ﬁ}m[@* Al (- {F, “-‘»f"“/’/ (5 84)
AM [- R ’g"f”{ -5 é)@f// -Rs" &= f‘?fﬁf’/fﬁif*/‘? W’"(

The oscillator threshold is that pump power which is

necessary for oscillations to be sustained with no injected signal.
It is determined by:
. (5.85)
i.e. when the denominator is zero.

- (-F a0 SeplhY, MY Reeap 2 10

. (5.86)

ie. i»maayz(,(@ﬁgg%)%%(@g}/igw ,g,,ﬂ @Wja
Rs &%f(' 3ﬁf*/‘ 69 5 i{dg@j%h{tJZAhéi/) (5.87)

R85 exp (<205 4 3)
Equation (87) is solved for a and the threshold determlned As

can be seen this equation is not readily soluble and a solution
under arbitrary conditions would call for numerical methods.
However, it is possible to solve the equation under special

conditions. In practice parametric oscillators are usually run
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in a near-degenerate condition, that is with the signal and idler

frequencies nearly equal, and in a nearly phase matched condition.

}
s

Because of the former it is a good approximation to set /g,
equal to /gL if the signal and idler are of the same polarization
and because of the latter it is useful to set Ak equal to zero.
The threshold'condition then beco@es greatly smmplified.

From equation (87) can be obtained the singly- and doubly-
resonant parametric oscillator cases. The singly-resonant case
happens when one of tﬁe reflection coefficients, RS or Ri’ becomes

zZero.

8. Special Cases

Signal only resonant, i.e. Ri=0

Equation (87) becomes

| "R¢ é%}Q “'méimwé: €7m§ﬁ . (5.88)

and when [3’: 2 and Ak 0
| -R; e//fﬂ( 2F, i’( Mﬂoe/) =0 ... (5.89)
and ... (5.90)

£ p Y sl A { g ) ’ffy/'
' . R , % § . f ?k 'é"” ;?:,‘ §l ; g !32!) y ‘j yf «i.}i ?# ( :’:’,\f/wm 1,,@# ({K_{,&zf;l’léﬁ. R

{ B v‘f: e

v\ Tz | ,

.»\‘
(el

. , P
- RSL@%( - (5 3,; .555; }&) o { c/ 4 /(u%;(

,W¢%ﬁ¢+a;f

RSB0 e s

< ,f
X {
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When [1 :/23 and Ak = 0, (91) becomes

oV

/‘-'Rgeuft(/@,"’é’” csod alop LMA{{)

2ol
Hs@f"/l(, /&» /’)(%4 f}”%ﬁx@)% /&e@f(’%f é{' (5 92)

The threshold is found by solving for a.

,._:.ms,

Determination of the threshold in special cases

No absorption, no mismatch case

ﬁ.w [f g@ f&f‘% ’ | ee. (5.93)

"From (87)

| P e \ z‘-
f«@gz,w%ﬂd@%‘fﬁ "R:Ca‘fﬁf@f“@*ﬁ’%ﬁ" *0 .. (5.94)

so wﬁﬁm’é e *f"ﬁé ﬁf (5.955
HQS

oaé)z’ fém( R R | (5.96)

R”‘*ff?

I'm £9¢§»€ cw; &ms 2 ;gw . Ax A ggﬁ’) fﬁgf 2 (5.97)
é!»‘wﬁ% 4’” ((?f"’?/ré;fgzgge.y 65‘ HZ f\g fﬂ(]

An approximate solution of (95) can be obtained by expanding

cosh(a{) in a power series and ignoring all but the first two terms:

then L (5.98)
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:ﬁ_ and Ak = 0
. - S / f ‘nt
Rl el 2 et UEER) 0o

M - &%ﬁ(ifig %'t/’)*‘zg?f‘fﬂ({ Qﬁ{/) ... (5.100)

Special case when /)7,

+ st

2
4 ./ 4 ,
éa%“’f“ Mé@iﬁg PRSI ... (5.101)

2!

Ll Zexp 2f2+ K ? e (ap 4R R ... (5.102)
Re*rbe

- ce fi&g “(!%'J .
ITH - -ﬁz‘ g" C é‘é‘% ﬁ v\wf%;% %@Amé-}{ .. (5.103)
j{;’.} w; L)b fé (ﬁg \!» "?.g{‘? ’y@; i e) z/
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APPENDIX I DERIVATION OF A VECTOR RELATIONSHIP

A

" In this appendix is derived an expression for gf ;;?:4rn

where F represents a vector wave propagating in the +z direction

« £+

For a wave WBlch is infinite in the x, y plane the operations

3/dx and 3/3y are equivalent to multiplication by zero

then A
~ A7
vx F = {’ g ., ‘f\“’
= £ A L2
thus [:K‘ @f )gf zgfj cgéﬁ/f
P/ |
§7X§L¥f;" - g Ef? \* _
0 o SN .,
B 1 hY oo = ot é;F;’ﬁjz‘g
hence ' c}“”{“““ ' a?’% = N éé |
i ¢ 9

IR
. - o * e

LSO L2 (24fF )0 (7 0503 F))
from dlagram 1 of the vector' A g _ég"L "is the

| b { Fyofpeg
vector in the z=0 plane which is the projection of F in this plane;

) b,

it is equal in magnitude to {F;cosa. {%/ is a complex number

hence f ( 'fff /i"-‘) = /}:/Qm 2%

@ihwﬁﬁ? g? t7%’¥%£ ss% ik?@ ?@;;jg ﬁfsff

'(\)

s

In our case the anglexis the angle between the wave normal

direction and the Poynting vector.



Diagram 1

Frr

>

| 4 S
A
'8 1is the direction perpendicular to F in the same plane as k
and F. The direction F corresponds to that of E, ﬁ”%?‘ to

that of D, k to the wave normal direction and s to the direction

of the Poynting vector.
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APPENDIX II TO DERIVE AN EXPRESSION FOR E D

This derivative applies to crystals which possess anisotropy
of the dielectric tensor and optical activity, but which are non-

absorbing.
We start with Maxwell's equations and consider infinite
plane waves. The field vectors E, D, H and B are proportional to

exp[hi£g(ggfyﬁs)‘*€2] and hence the 6perations ¢9/0t and 9/9x

are equivalent to multiplication by .,w and (:a}ﬂgx,4:

" respectively.
Hence n S H L Q and p cpAf = };f become
Maxwell's curl equations. eee (1)

Eliminating H between equations (1) and then using a well known

vector identity gives:

\,

0+ -t slsrf)e L s(sE)]mEy - 0

Figure 1.

D/\

7S

Here Ekris the vector component of E in the direction of D. See

fig.1l.
eee (3)



Thus from (2)

0=n*(£D)D e 8

(0} 10] |
Now ED = [Z110] ot (9
3 Yo 8 2 f C o o 00 6
> 101iD} = ¥ [E 11D ] esoct (©)
Multiply both sides of this expression by éffggﬁﬁi
which gives: _ _ — /&f

: "x eeo (7
JELID eorot = 21 1E fesser 7

From (5)
(E:D) = ntomie [E)?
where é?.é}4§% au7y@f“ &ﬁ%@ggifwﬂ%fﬁé?
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APPENDIX III DERIVATION OF AN EXPRESSION FOR ‘ D o )

7

This identity is for crystals which are both anisotropic
and which are anisotropic in their absorption coefficient.

We start ffom Maxwell's equations and consider infinite
plane waves. The field vectors E D H and B are proportional to
exPZ:‘wg:;} '(f'*S)-f“] and hence the operations 98/t and 9/ox

o\
are equivalent to multiplication by =¢ tuJ aqd f‘ujﬁ?ﬁrfﬁz
respectively. n' is not the complex refractive index?lﬁ?ﬁ“zgf
where n is the part which govern the phase velocity and a is the

absorption coefficient at that particular frequency.

Hence from Maxwell's curl equations :

nSxlt . ,9 Lm@ g/} e (D)
and ﬂé"{g - H ... (2)

Eliminating H between (1) and (2) gives:

. ey B
0{"&5«7}‘335 ==-N kaﬁ'}‘{&/ from a well known
vector identity

=0t [E-s(sE)f e (3)

see fig. 2.

Here Eémls the vector omponent of E in the dlrectlon of [L&ga%(réé

Ep - E (D+ckraE)
b = E (D e (&)
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Hence from (3)

Thus - : . -
(D'H%Q'?Ei :n"E.(&w&?”rg'@/)
~ w
N - ! , "
> E(D4 Cal g, C)= /}E/{@*e‘j’f‘g é}di«froo\,
So from (5)

(
I_me}g.é?/ n [Elpse if*vgm /m%
e

Multiply both sides of this expression by ,é?!-éﬁf
then (Drcin-a
' T e ¢

/-w: [0”“‘}» /M?@Z '7& 1£] eeo’od

Again using (7)

5(0 '*‘il%ﬁ“@“s /} PR -4 /f"/

hence

A .
€. (D+iilrg.E) = mieos lEl

QTTé?y%:té

!m‘ﬁj
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