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ABSTRACT 

This thesis is concerned with some aspects of the theory 

of parametric interactions which have not been fully considered 

in the literature. The existing theory of nonlinear 

interactions in nonabsorbing, non-gyrotropic, anisotropic 

crystals has been generalised so that the basic theory of 

interactions in absorbing and gyrotropic crystals is now 

understood. Full allowance has been made for the fact that 

the interacting waves are elliptically polarized and not 

linearly polarized as they are in the nonabsorbing case. When 

an experiment has been performed on an absorbing or gyrotropic 

crystal to measure the nonlinear coefficients this theory 

must be used to obtain the nonlinear coefficient from the 

experimental results. 

The equations governing the amplitudes of the interacting 

waves is found to be of the same form as for nonabsorbing non-

gyrotropic crystals. 
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I INTRODUCTION 

The work which is described in this thesis has been 

P®i-fornied in connection with the laser research group, which is a 

purely experimental group. 

The theoretical subjects considered were chosen to augment 

the group's activities and to overcome limitations in the theory 

of nonlinear interactions and devices. The experimental work in 

the laser group is on three topics; 

1. parametric amplification and oscillation in tellurium 
\ 

2. parametric amplification and oscillation in proustite 

3. second harmonic generation in tellurium with a view to measuring 

accurately the nonlinear coefficient. 

The crystals proustite and tellurium are both absorbing and as there 

is no theory which satisfactorily treats absorbing crystals, it 

was decided to extend the theory to cover these cases. The crystal 

tellurium is also strongly gyrotropic and it was not known what 

effect this property would have on the phase matching condition. 

A theory was consequently developed for nonlinear interactions in 

gyrotropic media. 

It should be mentioned that nonlinear optics is a comparatively 

new field in which a considerable amount of experimental and 

theoretical work is being done. 
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The theory of the optics of linear crystals has been 

studied extensively and is well described (Szivessy 1928). More 

recently the interaction of infinite plane waves has been 

considered in crystals which have a nonlinear constitutive relation 

between D and E (ABDP 1962), but which do not display optical 

activity or are lossy. 
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II LINEAR CRYSTAL OPTICS 

This chapter is concerned with the propagation of electro-

magnetic radiation in linear media. Its purpose is to introduce a 

terminology which will serve for the rest of the thesis and to 

describe the simpler case of linear crystal optics before 

considering nonlinear propagation • 

The history of the optics of linear crystals is long, 

comprehensive and is well documented (Szivessy 1928, . Ram.and. Ram.1961 

Consequently there is no need to discuss in detail the solving of 

the field equations here and it is only necessary to present the 

solutions of the field equations. 

The propagation of electromagnetic radiation in crystals is 

only slightly more complicated than the more familiar case of 

propagation in isotropic media. In all respects the equations are 

of a more general form and all solutions must reduce to the 

isotropic ones when the tensor properties associated with the 

crystal become scalar or zero, depending on the tensor property. 

The effects observed in crystal optics can be explained in terms 

of two different theories, the elastic aether theory and Maxwell's 

theory. This duality of approach has led to many terminological 

difficulties. In this thesis the analysis is based upon Maxwell's 

electromagnetic theory and the emphasis throughout is on clarity 

and simplicity of approach. 



2.1 The Field Equations and the Linear Constitutive Relations 

The propagation of light in crystals both linear and nonlinear 

is governed, as in isotropic media, by Maxwell's equations; in 

c.g.s. units I for media with no free charge these are : 

V x H ...(2.1) 

V x E ^ - i ^ B _ n ... (2.2) 

' " i t " 

^ ' 0 - 0 ... (2.3) 

~ ... (2.4) 

These equations are not sufficient as they describe wave propagation 

and it is necessary to introduce additional relationships which 

relate the field vectors B and H, D and E and j_ and E. These 

relationships are known as the constitutive relations and have 

always been known to be approximations. For absorbing, non-optically-

active crystals which are electrically and magnetically anisotropic 

they are : 

[) = 6 .E ... (2.5) 

(2 .6) 

# r ,or.Er ... (2.7) 

where 6, A/ , CT are symmetric second-rank tensors of dielectric 
A/ ^ 

constant, magnetic permeability and conductivity respectively; all 
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the elements of these tensors are real. At optical frequencies the 

magnetic permeability tensor approaches a scalar value which in 

c.g.s. units is unity (B and W 1965). 

The case of gyrotropic media is more complex. For infinite 

plane waves traversing non-absorbing, gyrotropic crystals the 

constitutive relation between D and E is : 

[) s f t (2-8) 

where G is a vector known as the gyration vector and is derived 

from the relation; 

...(2.9) 

Here £ is a unit vector in the direction of propagation of the 

wave and ̂ i s a tensor known as the gyration tensor and is 

characteristic of the medium; it is not necessarily symmetric, but 

the elements are real. 

The more general case of absorbing, optically-active crystals 

requires the constitutive relation between D and E to be ; 

where again G = The tensor g is now composed of a real part 

and an imaginary part neither of which is necessarily symmetric. 

f L ... (2.11) 

Each of these tensors cause special effects and are not 

independent of one another. By making all of the tensors except 

one equal to zero or to a scalar, depending on the tensor, it is 

possible to see the effects each has. 
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The tensor ^ has the effect that waves propagating through 

a crystal are linearly polarized and each linearly polarized 

component has a certain propagation constant which is a function of 

the angle of propagation of the wave with respect to the crystallo-

graphic axis. This tensor is also responsible for the fact that in 

general the two polarized components do not propagate their energy 

in the same direction. An example of the first effect is the inter-

ference pattern seen in the conoscopic photographs which are 

obtained when crystal slabs are illuminated with linearly polarised 

convergent light and are viewed through an analyser and an example of 

the second effect is the familiar effect of double images seen 

when an object is viewed through a calcite crystal. 

The effects of the conductivity tensor are that the 

absorption of the waves is different for the characteristic 

polarizations and for different directions of propagation in the 

crystal. Usually the effect is linked with anisotropy of the 

dielectric constant and in this case the polarization states 

characteristic of a given direction are elliptical and in general 

they are not orthogonal. An example which shows that the absorption 

different for different directions is given by the phenomena of 

pleochroism which enables tourmaline or Polaroid to be used as a 

polarizer. An example of the lion-orthogonality of polarization 

states is the appearance of idiophanic fringes when a crystal is 

viewed in convergent light using only a polarizer or analyser. 
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The gyration tensor causes the characteristic polarization 

states to be circular and leads to the effect of optical rotation. 

This effect is caused by the incident linearly-polarized wave being 

decomposed into two circularly-polarized waves which pass through 

the gyrotropic media with different propagation constants and then 

interfere to produce linearly-polarized radiation. When the di-

electric tensor does not behave as a scalar the situation becomes 

slightly more complicated. The characteristic polarizations become 

elliptical and are orthogonal. The eccentricity and orientation of 

the ellipses is a function of the direction of propagation as is the 

refractive index for each polarization state. The refractive 

indices experienced by the waves are not quite those obtained from 

the dielectric tensor, but are also dependent upon the gyration 

tensor. A familiar crystal which exhibits these effects is quartz. 

Here the polarization states for propagation down the optic axis 

are circular while the polarization states for propagation at right 

angles to it are linear; there are elliptically-polarized states for 

intermediate directions. 

2.2 The Solution of the Field Equations for Infinite Plane Waves 

Traversing Crystals 

As has been mentioned earlier the solution of the field 

equations for the linear case is well documented (Szivessy 1928, 

Ram. and Ram. 1961) and consequently the final result presented here 
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discusses only the solution of the field equations for infinite 

plane waves of radian frequency w. 

Each of the field vectors E, D, H and B are of the form 

A = lAI & ... (2.12) 

where j A| is the amplitude of the wave and is a constant, 

independent of distance and time; it will be seen that when we come 

to discuss nonlinear effects |A| is no longer a constant. 

The unit vector a represents the state of polarization of 

the wave; this vector can be complex in the sense that it can be 

of the form a = b + i ĉ  The meaning of this is that the vector 

A is composed of the sum of two transverse sinusoidal vibrations 

with a constant phase relation between them and thus the propagating 

modes are of elliptical polarization. It is still possible to have 

an orthogonal polarization, a', to an elliptical polarization a. 

The ellipticity and the orientation of the ellipse are given by 

solving the field equations. 

In equation 2.12 n' is the complex refractive index 

associated with a given direction and is comprised of a real part 

which governs the phase velocity and an imaginary part which is 

related to the absorption coefficient. 

r i s a p o s i t i o n v e c t o r , r = 0 fC + j + A ^ 

^ is a unit vector in the direction of propagation and t 
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represents time. 

2.3 Solution of the Field Equations for other than Infinite Plane 

Waves 

The solutions which are found in the literature are mainly of 

the homogeneous plane wave type. It is also possible to solve for 

inhomogeneous plane waves, but it is difficult to solve for more 

general waves. The wave equation is, in general, not separable when 

there are more than two tensor properties which, when reduced to 

canonical form, do not have coincident principal axes. In any case 

the equations are only separable in one system of cartesian 

coordinates which means that the method of separation of variables 

is only of limited usefulness in practice. 

The general method of solution is to meet a boundary 

condition by the addition of an infinite number of homogeneous and 

inhomogeneous plane waves travelling in all directions, then to 

allow each plane wave to propagate and find the effect at any point 

by the interference of the propagated waves. 

It should be mentioned here that the method of superimposition 

is not valid in nonlinear media. The reason for solving for 

infinite plane waves in chapter 3 is not to form a basis on which 

to obtain a general solution, but to enable the only case which can 

be solved exactly to be considered. It should also be remarked that 

there is no solution which predicts correctly the second harmonic 
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power output when a crystal is Illuminated with laser light and 

there is significant conversion of fundamental to second harmonic. 
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III THE CONSTITUTIVE RELATION BETWEEN D AND E IN NONLINEAR MEDIA 

AND THE TENSOR 

No original work is presented in this chapter which, is 

consequently kept as short as possible. 

It has always been known that the linear constitutive 

relations D = A . E and B = ^ are approximations (Bloern. 1964) • 
— /w/ — lA' 

The magnetic nonlinearity has been well investigated and is used 

in magnetic amplifiers while the non-linearity associated with 

ferromagnetic resonance has been used to generate second and higher 

harmonics in the microwave region of the spectrum. Until quite 

recently (1960) nonlinearities had not been observed at optical 

frequencies because the effects were very small. However the advent 
6 2 

of the laser has meant that high power densities (>10 watts/cm ) 

can be realised thus enabling the nonlinear effects to be demonstrated 

The nonlinear properties which will be considered in the 

rest of this thesis arise from the nonlinearity between D and E. 

The relation B = H is taken to be valid at optical frequencies. 

The relation between D and E is obtained by expanding the 

polarization as a power series in the electric field. For the pure 

electric dipole case we have; 
p X'.E ... ... (3 

fs/ " A/ "" ^ 

where the tensors denote the linear and higher-order 

susceptibilities. It should be added that expansion 1 is not the 

most general one and that it would be better to use a multipole 
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expansion (Terhune 1964) then effects such as second harmonic 

generation in calcite could be explained. 

In what follows the polarization will be considered to be 

composed of the linear susceptibility and the first nonlinear 

contribution then : 

= 6.2: 1^4^^3^ I: r? 

The nonlinear tensor ̂  has certain symmetry conditions 

imposed on it by the material, just as has the linear dielectric 

tensor. The tensor has the same symmetry as the piezoelectric 

tensor which means that all the terms are identically equal to zero 

whenever the medium has a centre of inversion. When the medium 

does not have this centre of inversion some of the elements are 

equal or zero in the crystals of higher symmetry. These equal and 

zero terms are to be found elsewhere and so need no further 

discussion. 

The tensor can be complex and this leads to phase shifts 

being introduced between the interacting waves which are not present 

when the tensor % is real (Bloembergen 1964). 
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IV WAVE PROPAGATION IN NONLINEAR CRYSTALS 

4«1 Parametric Effects in Nonlinear, Nonabsorbing Anisotropic Media 

The essential results presented in this section were first 

derived in (ABDP 1962) ; however the approach used is slightly 

different and forms the basis for the entirely original work in 

the next two sections on parametric effects in absorbing crystals and 

optically active crystals. 

We start from Maxwell's equations and making the assumptions 

B = H and D = ^ f this gives; 
fv — -

V X F = ... (4.1) 

i It (s.-5 (4.2) 

... (4.3) 

We now take the curl of (1)and substitute from (2). 

^NL ^ source term of radian frequency »- For simplicity we will 

consider all the waves involved to be monochromatic. Then the 

operation ^ is equivalent to multiplication by so that 

C* ~ " —2. 

... (4.4) 

It should be noted that this is the usual linear wave equation 

with a source term. 

We now consider the interaction of three infinite plane 
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waves travelling in the +z direction, with, propagation constants, 

k^, k^, k^ and with radian frequencies respectively. 

At 

... (4• 5) 

At 

At <03 

• • • (4-7) 

••• 

£0, ru),.} ; E, (},t)Ei(2>l:}'' 

Separating out each frequency term when substituted into (5) and 

then by scalar multiplication with the unit vector of E we find 

c , , v . v , E , - | ' j e 

Iv .7P< Vx §1 - 6 ^ 1 efWa) • f 

Ic |cV ' - -

e j . e ( " u j . ^ 

In Appendix I an expression is derived for 6 . ̂ X E" where 

E represents a vector wave propagating in the z direction and 

A 
g is a unit vector of E the result is: 
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t V x V x B -- •••(4.14) 

where a = %/2 - the angle between the z direction and the 

direction of F. In crystal optics a is the same as the angle between 

the wave normal and ray directions. 

In Appendix II an expression is derived for C « 6 ' E 

which is ; 

s |l:j (4.15) 

where n is the phase refractive index. 

Substituting (14) and (15) into (11),(12) and (13) yields equations 

of the form ; 

i i l i -t IeI = - k S U s C e .Pwt ••• (4-16) 

Now 

In physically realisable situations, the relative change in the 

amplitude per wavelength is small, since the nonlinear susceptibility 

is very small compared to the linear part. Thus terms in the 

second derivative of amplitude are negligible compared with the 

first derivatives , so (Bloem. 1964): 

...(4.18) 

After substitution and simplification we find ; 
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= 4 2 ^ 2 e, W ; - J : 1 9 ) 
» V -ft., «•?«;, c •• - ' - - ^ 

where Ak = - k^. 

From the fact that a photon at the pump frequency splits into one at 

the idler plus one at the signal frequency it is found that 

(4 .20) 

Hence; 

6̂ /1, 
J—^ ^ I CLzLL J n t (4 .21) 

. . . (4.22) 

... (4.23) 

These equations will be called the parametric equations. They are 

a set of three nonlinear differential equations which can be 

solved exactly by the methods of (ABDP 1962) or approximately by 

assuming is independent of z. 

4.2 Parametric Effects in Gyrotropic Crystals 

The problem of parametric interactions in gyrotropic crystals 

has not been considered previously in the literature. This section 

is probably the most valuable part of the thesis and is not only 

of academic interest, but is also of great practical importance 
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because all gyrotropic crystals lack a centre of inversion which 

means they can exhibit a first-order nonlinearity. Such potentially 

useful crystals as tellurium, cinnabar and lithium niobate are 

strongly gyrotropic. 

In what follows the interaction of plane waves in a medium 

which has anisotropy of the dielectric tensor and is gyrotropic is 

considered. This situation, as will be seen, is somewhat similar to 

the case of parametric amplification in nonabsorbing crystals which 

possess anisotropy of the dielectric tensor only, but it is 

complicated by the fact that the polarizations of the interacting 

waves are no longer linearly polarized, but are, in general, 

elliptically polarized. In this chapter crystals which are non-

absorbing are considered, so that the two characteristic polarization 

states are elliptical and orthogonal. 

Derivation of the differential equations governing the amplitudes 

of the interacting waves as they pass through the nonlinear media 

In what follows, the elliptical polarizations are represented 

by the addition of two mutually-orthogonal-linearly-polarized 

components with a constant phase relation between them. 

From Maxwell's equations, as in chapter 1, for mionochromatic 

radiation of radian frequency w we obtain the relation: 

. . . ( 4 . 2 4 ) 
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The constitutive relation between D and E is taken as : 

C) = jE. E f t ( 4 -25 ) 
mss* * w » • 

This relation is chosen because when the nonlinearity drops to zero 

the e x p r e s s i o n becomes Q r & ' ^ t L (r X E which i s the 

usual relation taken in linear crystal optics and when the vector 

G is zero indicating no optical activity it becomes, 0 - £.E+I^fr^, 

which is the expression taken when discussing nonlinear effects in 

nongyrotropic crystals. 

Consequently T J / f f y f T ' ' - ( 4 . 2 6 ) 
• • • 

Equation 4.3 is now multiplied scalarly by 0 and the results 

of Appendices I and II are utilized to obtain : 

In the absence of any nonlinearities one solution of this 

equation represents a wave travelling in the positive z direction 

given by : 

I: = /9 . . . ( 4 . 2 8 ) 

where A is an amplitude which is independent of z. 

In the presence of nonlinearities we postulate the solution 

to be : 

. . . ( 4 . 2 9 ) 

A(z) is governed by the differential equation ; 

[spi lexyi &K&, = Urrt^'' p 5 
o l W ^ . - J - ( 4 . 3 0 ) 
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as before the term () fl, is ignored in comparison with the term 

which g ives^ 

1 

(J " (4 31) 

The nonlinear term is of interest and should be considered 

in slightly greater depth. 

€ 6. ... (4.32) 
^ ^ «» » «• s,»>i * ' 

A 
The unit vectors ^ ̂  are complex and are of the form : 

where 1 « 1, 2, 3 

then g, g ; f , 

g f Wt 

The tensor ^ is known and the vectors a^ and b^ are also 

known; it is thus possible to calculate the coupling term 

It should also be remarked that it is necessary to use the approach 

developed in this chapter to determine the elements of the nonlinear 

tensor ^ . It will be appreciated that the calculation of the 

coupling term is lengthy and somewhat involved. 

There are two cases of parametric interaction which must be 

dealt with. They are the situation of second harmonic generation and 

the case of parametric amplification. 
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Second-harmonic generation 

Some work has appeared in the literature on SHG in gyrotropic 

crystals and it is appropriate at this point to mention what has 

been done. The only theoretical work consists of two papers 

published by Rabin and Bey (Rabin and Bey 1967, 1967). These papers 

are concerned with the effects of optical activity on phase matching 

and they tackle the problem by two different approaches. The first 

of these is similar to Franken and Ward method (Franken and Ward, 

1963) where the fundamental is considered to establish a phased 

three-dimensional array of dipoles at the second-harmonic frequency, 

which then radiate and second harmonic radiation is emitted. This 

method is only approximate because no allowance can be made for 

the pump wave becoming weaker due to conversion to second harmonic. 

Tf* overcome this deficiency Rabin and Bey published a second paper 

which was of a coupled-wave approach as is the work described here. 

The two papers were concerned only with waves which are 

circularly polarized. The results given here are much more general 

and apply equally to elliptically polarized waves as well as to the 

special case of circular polarization. When the interacting waves 

are allowed to become circularly polarized the growth equations 

reduce to those of Rabin and Bey. It should be mentioned, however, 

that Rabin and Bey have not used quite the same definition of k, 

the propagation constant, as I have. They have taken k as that 

part of the propagation constant which arises from the dielectric 
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tensor and have added to this another part, a, which comes from 
I 
I 

the gyration tensor. In what is presented here these two terms are 

added, or subtracted, and means this work falls in line with the 

treatment given by texts on linear crystal optics (Born and Wolf, 196' 

The equations governing the growth of second harmonic 

For second-harmonic generation the fundamental establishes 

a nonlinear polarization at twice the optical frequency 

^ ' E,E, ••• (4.36) 

There is also a mixing between the second harmonic and the 

fundamental which yields: 

... (4.37) 

The equations governing the amplitides are : 

^ ~ ••• ^^"38) 

"'^^4 39) 

here AA. = A v - d k , ... (4 40) 

These equations are of exactly the same form as the equations 

governing second-harmonic generation in nongyrotropic media. The 

^ 1/ , /V /\ 
differences are chiefly in the coupling terms -C » • 6 6 

/V 
and in the unit vectors -G 
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Parametric amplification in gyrotroplc media 

Here there are three waves interacting; the pump, the signal 

and the idler. 

The pump and signal mix to produce a nonlinear polarization 

at the idler frequency. In the following the subscript ' 1 ' refers 

to the signal,'2' to the idler and '3' to the pump wave. Thus 

A j A . . . ( 4 . 4 1 ) 

The growth equation for the signal is thus: 

W, ( 4 . 4 2 ) OL. _ 

where 
LyfL- ft 2 

Similarly the signal and pump mix to produce a nonlinear polarization 

at the signal frequency and the growth equation is: 

, " Az/A, 
Aitl^teSfiCzC ' (4-43) 

The signal and idler also mix to produce radiation at the pump 

frequency 

-- "j • - e,.%; e, enf. 

The equations above govern the amplitudes of the waves as they pass 

through the crystal. It is possible, however, to find a useful 

relationship by requiring the number of photons at the pump 

frequency, plus the number at the signal frequency to be constant, and 

the number of photons at the idler frequency plus the number at the 
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pump frequency to be another constant independent of z. This is 

because a pump photon splits into one signal plus one idler photon. 

Then 

= qL f flg A).) - - J I • • • ( 4 - 4 5 ) 

From equations (42) to (45) a relation can be found between the 

terms 8 . G 6 • Equation (43) is divided by (42) and after 

simplification and manipulation, as in section 1 of this chapter, 

it is found that to be consistent with equation(49 we require 

A 
A 

e ^ . X ' e s ? , . e , , X . ' e , e 
... (4.46) 

and from equation (43) and the complex conjugate of equation (44) 

^ t 6$ % I — , Qz (4.47) 

Hence ew'pCi " W ' U f 

Thus t h e ^ a r l l n e t r l c equall^'rj^ are : 

^ = tiAnniLl K /?34/ esfi i i ( 4 . 4 9 ) 

... (4.51) 
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This set of three nonlinear differential equations can be 

solved exactly by the methods of (ABDP, 1952) or by the small gain 

theory whereby is regarded as being independent of z and then 

the equations become linear and are soluble by the usual methods 

for simultaneous linear differential equations. 

The effect of the medium being gyrotropic is that the 

A ̂  , A A 

nonlinear coupling term 6'A' G 6 is no longer the same as for the 

corresponding nongyrotropic medium and this term is also complex 

which means that there will be effects produced which are akin to 

those produced by a complex ^ tensor - that is extra phase 

shifts will be produced in the waves as mentioned in chapter 2. In 

all other ways however the waves behave like the more familiar 

linearly polarized ones. 

4.3 Parametric Effects in Nonlinear, Absorbing, Anisotropic Media 

The following derivation of the parametric growth equations 

is not to be found elsewhere. There are two things which justify 

the inclusion of this work in the thesis. The first is that it 

extends the theory of the previous sub-section and enables real 

crystals, which have absorption at the interacting frequencies, to 

be considered. This is of relevance to the experimental work being 

undertaken in the group because both the tellurium and proustite 

crystals are absorbing. The second is that a point arises which 

has not been mentioned elsewhere. 
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When an experiment is performed to measure nonlinear 

coefficients the polarizations are taken to be linear, and assuming 

this the unknown nonlinear coefficients can be determined. In fact, 

from the theory of linear crystal optics, the polarizations are 

known to be elliptical and allowance should be made for this 

ellipticity when calculating the nonlinear coefficients. The theory 

presented here allows the nonlinear coefficients to be determined 

correctly. More is said about this latter point when gyrotropic 

crystals are considered. 

The effects of absorption are introduced by assuming the 

medium to have a finite conductivity at the frequencies concerned. 

This property is direction dependent and is formulated using the 

conductivity tensor, which need not have the same principal direction; 

as the dielectric tensor. The derivation given here is general and 

applies to all nonlinear absorbing crystals, both uniaxial and 

biaxial which are not gyrotropic. 

As in the last section we start with Maxwell's equations 

and take B = H. The interacting waves are assumed to be mono-

chromatic and of radian frequency w. In this case the operation 

^ is equivalent to multiplication by - i w giving : 

V y E = c W W ••• (4-52) 

C -

3 E ( 4 - 5 3 ) 

The curl of equation (52) is taken and substituted into equation 

(53) as before, and followed by scalar multiplication by ^ which 
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is the complex unit vector of E, and determines the ellipticity of 

its polarization. We have 

6 , 0 , ̂ 6 E + L 2). 0,P,... (4.54) 

As before (Appendix I) g, 7;̂  V y E r 

and in Appendix III it is shown that ^ 

f cAilrcr, 5) 

where n is the complex refractive index and a is the angle 

between the Poynting vector and the wave normal. After making 

these substitutions equation 4.54 becomes 

f /f/ = - kjr (4.55) 

Now [E/ is complex and is of the form : 

... (4.56) 

... (4.57) 

... (4.58) 

k is the propagation constant and p is the imaginary part of the 

complex propagation constant; in fact it is the amplitude absorption 

coefficient when there are no nonlinear interactions, i.e. at small 

signals. 
2̂  • 

' c V \ h ' c j y c W 
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This is then substituted into equation (57) and ignoring 

compared with d i tl'Vd S B > as before, we obtain : 

= i2n t^ e . & L eap(-!-' 

Now W ^ >>J0 thus in equation (60) we 

set fi Oj _ M on LHS of equation (60) and obtain: 
f 

. . . (4.61) 

... (4.62) 

= tJjLHL i.P^L em 
eg/ 

Now from equations (57) and (58) 

so substituting from (62) into (61) gives 

P ' — e • 1^^) 

Ac^ao'cC - ~ ' ° ' ... (4.63) 

There are three equations like (63) governing the amplitudes of 

the waves I 

(4.64) 

^ 1- ihniii: • ^ g , /i, W ) ) (4.65) 

% kvC^ c&o'a,' " ' - , 
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Equations (64) to (66) are the parametric equations when there is 

absorption present. It will be noticed that these reduce to the 

parametric equations for nonabsorbing media when the quantities 

^3 become zero. 

These equations are more difficult to solve than those which 

arise for the lossless case. It is no longer possible to find an 

expression relating the terms Q. . # 6 S for the 

equations (64) to (66). When these are obtained from experiment 

the quantity should be written as: 

( + L ) ."X; + K ^ fa. - & a • • • 

The quantities a, b decide the ellipticity of the waves and 

can be determined experimentally The tensor elements of can 

be obtained. 

It should be emphasised that this is not just of academic 

interest- The propagating modes are significantly different from 

linear and they are circular in certain directions known as the 

singular axes. 
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CHAPTER V SOLUTIONS OF THE PARAMETRIC EQUATIONS 

I Introduction 

The parametric equations are derived in chapter 3. Some 

solutions of these equations are discussed in this chapter. The 

solution is of the small-signal type in which the depletion 

of the pump wave is neglected. The absorption at the pump 

frequency is also taken to be zero. The solutions are applicable 

to absorbing, optically-active and nonabsorbing crystals. 

2. Solution of the equations 

The relevant parametric equations are re-stated from chapter 3. 

4^' : - f . f i , ••• (5.1) 

4 ^ ^ •", 

CC^ft,'e/'p If) ... (5.2) 

where c. = _ G, ... (5.3) '1 

<=2 = ... (5.4) 
ft.c'os'oc, , A 

Now 

Thus (S,^) = + t (5.7) 

and 

4 ^ / 
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The complex conjugate of (8) is : 

from (7) f\ 

from (9) 

^ CX/L & 

c7 
972a-t Uf-L :'a& 

. ( 5 . 9 ) 

\ ( 5 . 1 0 ) 

' \ 

. ̂  ̂  (A A W A) A 

/? Now pub jO . ( 6 A. 

Then differentiating (10) w r.t. z 

y &/ 

Similarly differentiating (11) w.r.t. z gives 

... (5.11) 
4' r ^ 

. . . ( 5 . 1 2 ) 

• #.13) 

,6T./t0̂ V 

t) 

cJ }? . \ ' 

{ 6<yL ^ ye 

c 
Now substitute from (14) for., 

/ 

/ /? 

i r " ) ) 
into (7) 

a 

CJ 
Simplification gives 

,lA _ \ 

(7̂  
... (5.15) 

.A"/ 

(3/̂  

-pi 
} j'-

Substituting for 

\ 

/ " "Cd /V . ( 5 . 1 6 ) 

from (13) into (9) 

gives after re-arrangement: 

U - f ' S f A ^ / ' ; 0 ( 5 . 1 7 ) 
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Equations (16) and (17) are equations which control the magnitudes 

and phases of the amplitudes. These.equations.will now be solved 

subject to boundary conditions : 

>1 /I ̂  o 
••• (5.18) 

hlo) -
... (5.19) 

and 6 a t z = 0 are obtained from equations (7) and (9) 

These boundary conditions represent a small signal and 

a small idler present at z = 0. 

3. Applications of Boundary Conditions 

The solution of (16) is : 

A r r ^ ^ f - - - (5.20) 

and the solution of (17) is : ^ 

OC r J/j' 

We now determine F,*°G, H, J from the boundary conditions at z = 0 

•^^5.21) 

which are obtained from equations (7), (9), (18) and (19) . 

a'* A ® 
t C t n?_ — pHi ^ f\i . . . ( 5 . 2 2 ) 

vcot UoL 

G 

J-

J = ^ . . . ( 5 . 2 4 ) 

77 
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From (20), (21), (23), (24) and (25) 

' <? / \ yff, <aL f 2;<. . 
..(5.26) 

A'̂  I7 / (̂  ^ A ••• (5.27) 

/v t ( /2k\;fp(;r ir/?* 

Equations (26) and (27) are in a more convenient form if written; 

o Y 
. . . ( 5 . 2 8 ) 

. . . ( 5 . 2 9 ) 

where 

/)/)) =A' % ) + / ) / % ) 

- f i , f ( ^ ) 

^ (' t£^ ••• (5-30) 

h/ll) -- ^/i(-fyh})m/i(-s^)f -i£, 
-i \ %. ]/( fC 

f ( ^ ) - e ^ l -

. . . ( 5 . 3 1 ) 

,# /•*• (5.32) 

« W ' V ( • « • » 

X . . - S F E 
^ . . . ( 5 . 3 4 ) 

f) 3 l / \ A -/% ( 5 . 3 5 ) 

There is a relevant special case of these equations when the 

absorption at both the signal and idler frequencies are zero. 

The equations are then simplified to : 

/ ) . % ) ' A T & j 

. . . ( 5 . 3 6 ) 

. . . ( 5 . 3 7 ) 



- 3 3 -

where 

, , , ( 5 . 3 8 ) 

S (g? = G/yi ̂  ^ ^ ̂  

T~(g)- 4*yt 4% 

) : 4:%}yi ,t *(/}/ -

. . . ( 5 . 3 9 ) 

... (5.40) 

... (5.41) 

^ c J •.• (5.42) 

4. Parametric Amplification with No Absorption 

This has been discussed elsewhere (Yariv 1967) consequently 

this section is very brief. In this case there is a signal A, 

at z = 0 and the idler at z = 0 is zero. 

Hence from equations (35) to (42) 

and 

/)*(%) ; / % , * j L E i l (^'44) 

The amplitude of the signal wave entering the amplifying region 

O 

is A, and that which leave is ^^(i) and A*(^) where I is the 

length of the nonlinear medium. 

The power gain for the signal is thus : 
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"Yl 

: Afe /rfg»uLS^ *i&M^bM*tf»tt^ (5.46) 

Then power gain = 

(f ,J|\ 4-f̂  (»<?<'/' * j/' 
V 

There are two cases to be considered. 

Cas:e IL vdheri ^ L^, 

Here (t C:. .6x1 is 

Then ol- f -

and (? 
Then 

= & ?̂rC 'K 

i^'p) 

Case 2 ZL& (/) z' &c. r. 

real ... (5.48) 

... (5.49) 

... (5.50) 

y- 5 w y (^ & ^ y 

Here ^ r 'itCT, - &S.^ is pure imaginary ... (5.52) 

2 
Then ^ ^ * * ^ 

and fC-oC* - '" (5'54) 

h D _ l / j . ••• (5.55) 

^ f w V 
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6. Parametric Amplifier with Absorption 

Absorption is present y is zero and 

we require to find the power gain of the amplifier which is : 

h M ...(5.56) 

Now from equations (28) to (35) 

A.lj ' (5-57) 
hence / 

J 
Simplifying 

^luJ^[Uici*Xy_E. ̂  ffj) ( ( ^ iy 5.59) 

/ \4-^ h-p- j 
^ 1 - - (5.60) 

- ( 5 . 6 1 ) 

Thus 

' ̂[cx: Lr'Afcd (ef-of/Afji 

r c Z c ^ e m J ^ 

62) 

63) 

Equations (59) and (63) are interesting because they show that 

the effects of absorption are similar to those of the phase mismatch 
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Ak becoming complex. It is in fact related closely to the number 

p by equation (35). The quantity a is complex and the equations 

cannot be put in the simple form of (51) and (55). 

The whole situation is much more complicated than the 

familiar lossless case and to clarify the situation it is considered 

useful to look at a few examples before moving onto the slightly 

more complicated parametric oscillator. 

6. The Threshold for Amplification with Absorption 

The most important threshold is when the output power is just 

equal to the input power and hence the power gain is unity. 

From equation (58) 

Now - t fit ̂ f . (5.65) 

and OC • ... (5.66) 

The quantity real: 

C,C*= ••• (5-67) 

and hence by solving the transendental equation (64) with 

parameters ^ ^ specified it is possible to find the 

threshold power for unity power gain. 

The equation is impossible to solve generally and so it must 

be solved by numerical, approximate techniques or for special cases. 
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Special case 1 

Ak = 0, A = B 

then 

Equation (64) simplifies to 

... (5.68) 

The approximation 

: /+ ... (5.69) 

is now subsituted to give 

' 6 % ( F - ' * ^ ... (5.70) 

Hence p^p)-1 WA', arjkt^, ... (5.7_1). 

r / W f \ f: 'XS:»C:e,l 

This equation shows how the threshold pump power increases with 

the absorption coefficients. It is interesting to note that the 

signal and idler absorptions appear together. 

7. The Parametric Oscillator 

The parametric oscillator with no absorption at the signal 

and idler frequencies is, in fact, a special case of the oscillator 

when there is absorption at the signal and idler frequencies and 

in this chapter it will be treated as such. In the literature a 

distinction is made between the singly-resonant oscillator and the 

doubly-resonant oscillator that is oscillators which have one or 

two frequencies resonant. In the present work, the two are 

considered together by taking the reflectivities at the signal and 

idler frequencies to be parameters and later considering the 

special cases. 
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Frora equations (28) and (29) 

4 

... (5.72) 

... (5.73) 

and M, N, P, Q are defined by equations (30) to (33). 

A small signal, , is present at z=0, and this enters the 

crystal and at the end face of the crystal becomes /l?;^knd 

respectively. These are then reflected at z = ^ and again at 

z = 0, when the amplitude is the same as at z = 0. Initially this 

process is : 

pi f y ( t ^ 

The signal and idler frequencies are resonant hence: 

f } ( i 2 k , 0 

(5.74) 

(5.75) 

(5.76) 

From (73) and (76) 

From (77) and (72) 

(5.77) 

(5.78) 

7 
/ 

Therefore 
(j-fli 

1/ V / 

. / 

(5.79) 

.). (5.80) 



Now 

-39-

A/(i f 
1/7 

£i£l /)jjXiL (5.81) 

( 5 . 8 2 ) 

Hence 

Thus from (80) 

'.. (5-83) 

I 
/ fx ( 5 . 8 4 ) 

-,., -R; ayi - A W'*' 

The oscillator threshold is that pump power which is 

necessary for oscillations to be sustained with no injected signal. 

It is determined by: 

US! 
7 ) ' • 

i.e. when the denominator is zero. 

» / 
/1 /« 

Is * /"( -/ 

. . . ( 5 . 8 5 ) 

. . . ( 5 . 8 6 ) 

.0ff/-Axk J . . . ( 5 . 8 7 ) 

///" (*/$%?-.7 //l% f./Jf/'c:, 

Equation (87) is solved for a and the threshold determined. As 

can be seen this equation is not readily soluble and a solution 

under arbitrary conditions would call for numerical methods. 

However, it is possible to solve the equation under special 

conditions. In practice parametric oscillators are usually run 
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in a near-degenerate condition, that is with the signal and idler 

frequencies nearly equal, and in a nearly phase matched condition. 

Because of the former it is a good approximation to set 

equal to if the signal and idler are of the same polarization 

and because of the latter it is useful to set Ak equal to zero. 

The threshold condition then becomes greatly smmplified. 

From equation (87) can be obtained the singly- and doubly-

resonant parametric oscillator cases. The singly-resonant case 

happens when one of the reflection coefficients, or R^, becomes 

zero. 

8. Special Cases 

Signal only resonant, i.e. R^=0 

Equation (87) becomes 

I ( 5 . 8 8 ) 
\ \ 9L / / & I 

and when and Ak = 0 

/ ' : : d!? ... (5.(;<)) 

and 

Jc, c 
... (5.90) 

Signal and idler resonant 

I - RP' t f / l i - ( 9. + / j orcp \ l s t L u l Z f - - i V 

" KiOlXfJ - / g/y, -f' -it. •' / 
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When / 
I ? and Ak = 0, (91) becomes 

K 

2,%: 

: (5.92) 

The threshold is found by solving for a. 

Determination of the threshold in special cases 

No absorption, no mismatch case 

From (87) 

so 

h / j 
A i i 

t ( -C / 

(5.93) 

(5.94) 

(5.95) 

&toA. fIt-Pi ... (5.96) 

/ A TM ^ (5.97) 

An approximate solution of (95) can be obtained by expanding 

cosh(a^) in a power series and ignoring all but the first two terms: 

I t 
tjiA 

2/ 

then 

qL 

K " f & * 

... (5.98) 
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Sporial case when 
and Ak — 0 

. . . ( 5 . 9 9 ) 

. . . ( 5 . 1 0 0 ) 

. . . ( 5 . 1 0 1 ) 

/?. ̂  + u 

. ( 5 . 1 0 2 ) 

I TH 
kĴ  W) \ w / : i , A. i. - i V 

. ( 5 . 1 0 3 ) 
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APPENDIX I DERIVATION OF A VECTOR RELATIONSHIP 

In this appendix is derived an expression for L 
y V 

where F represents a vector wave propagating in the +z direction 

and ^ . f-

For a wave which is infinite in the x, y plane the operations 

6/dx and d/3y are equivalent to multiplication by zero 

then 

thus 1 'a 

hence 

\ 

c 

/ . f . . - / ( ( E ,//rj, 

from diagram 1 of the vector̂ / ^ £- ^ p ^ Pji V" is the ' 

vector in the z=0 plane which is the projection of F in this plane; 

it is equal in magnitude to jFi cosa 

* r 1 

/ J FJ is a complex number 

hence 
/ • C f 

X Y/ 

P 

In our case the angleXis the angle between the wave normal 

direction and the Poynting vector. 
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Diagram 1 

A . 
£ IS the direction perpendicular to F in the same plane as k 

and F. The direction F corresponds to that of E, to 
* ^ 

that of D, k to the wave normal direction and _s to the direction 

of the Poynting vector. 
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APPENDIX II TO DERIVE AN EXPRESSION FOR E D 

This derivative applies to crystals which possess anisotropy 

of the dielectric tensor and optical activity, but which are non-

absorbing. 

We start with Maxwell's equations and consider infinite 

plane waves. The field vectors E, D, H and B are proportional to 

and hence the operations ^/dt and 3/dx 

are equivalent to multiplication by _/to and c u) A /q̂  

respectively. 

Hence 5///? -iP and become 
^ 

Maxwell's curl equations. ... (1) 

Eliminating H between equations (1) and then using a well known 

vector identity gives; 

exp[i 

Figure 1. 

El /I 

Here E^ is the vector component of E in the direction of D. See 

fig.l, 

... (3) 
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Thus from (2) 

0 = Y f ' D j p 

Now 

so 

E..0 

'Dligl 

' l E l \ 0 ] €e^ct 

• h i lOl&n Pi 

Multiply both sides of this expression by 

which gives; 

From (5) 

and 

where 

/ f / m 

(a "6^ ( / 

•• (4) 

.. (5) 

•• (6) 

.. (7) 
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APPENDIX III DERIVATION OF AN EXPRESSION FOR 
w—w—Iii»mnniiini»wiiiiww IIW I mmmwrnwrniiimii,, ,ii ii ,iiiiiii'n,mm, mi,i,iiiii,u,mwmWl% iiii 'ill , irf » iiii mil ii 

This identity is for crystals which are both anisotropic 

and which are anisotropic in their absorption coefficient. 

We start from Maxwell's equations and consider infinite 

plane waves. The field vectors E J) H and ^ are proportional to 

and hence the operations 8/6t and 6/8% 

are equivalent to multiplication by W and i uJ 

respectively, n is not the complex refractive index f l ^ 

where n is the part which govern the phase velocity and a is the 

absorption coefficient at that particular frequency. 

Hence from Maxwell's curl equations ; 

nSxIj , ~i) f iAsta- .£ ] --- (1) 

and (2) 

Eliminating ^ between (1) and (2) gives: 

from a well known 
vector identity 

- ... (3) 

^ see fig. 2. 

Here E, is the vector omponent of E in the direction of 

\ W /\ tv y • • • (4) 

.V fLv,. r / ; 
I f ̂  _ r 

CO I I w 
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Hence from (3) 

(Z. 
w 

r V" 
\ ^ 

Thus 

iO+c 

[ D t c ^ 5 •£/'' = Tz'f. ^ 

Now 

So from (5) 

kJ 

f 

f/ 

w 
<r, 

f f ( 

. /.' 
^ * ( • Ei 

MJ 

(5 ) 

(6) 

(7 ) 

wJ 

Multiply both sides of this expression by jkl^^O^' 

then /DfC 
W ; 

i-i' lP^^i^£tjga?a- = n 
Again using (7) 

^ * f/ W 'r 

hence 

e.(0 + ^ 
W 

if j , ^ If I 

lei 

0-<-'ks-e:4 
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